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Abstract

Nanoscience is a multi-disciplinary field with the potential to both create new

applications and understand existent systems, but its materials may be sources of

toxicological concern. Understanding their toxic potential becomes essential to

prevent any occupational, environmental, and consumer hazards. In this study, the

toxicity of three different nanoparticles (NPs) was assessed: multi-walled carbon

nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and zinc oxide

(ZnO) nanopowders. A combination of cell viability assays—NR, MTT, LDH, live

dead—and microscopy—TEM, SEM, confocal—was used. No direct interactions

occurred with any of the assays except the NR and ZnO nanopowders at > 50

µg/mL.

The overall cytotoxic trend was ZnO > MWNT > SWNT. Both uncoated and

PVA-coated ZnO nanopowders exhibited dose dependent toxicity with a sudden

rate of increase between 12.5 and 25 µg/mL. Zn2+ cations appeared to be the ma-

jor toxic source. Cytotoxic curves of ZnO nanopowders were similar to ZnCl2,

a chemical known to dissociate into Zn2+ + Cl-, and a stereological analysis in-

dicated specific mitochondrial damage, a condition associated with Zn2+ neuro-

toxicity. Zinc dissolution also increased with decreasing cell pH. Unpurified and

purified MWNTs exhibited dose and time dependent toxicity with necrosis as the

main mechanism of cell death. The residual iron Fe2O3 yielded no toxicity sug-

gesting the nanotubes themselves as the toxic source. MWNTs entered cells both

actively and passively and were found in the cytoplasm and nuclei. Only HiPco

SWNTs caused significant cell death; none was observed for the unpurified and

purified SWNTs. At the concentrations tested, this study found that both ZnO

nanopowders and MWNTs caused acute toxicity while SWNTs were not acutely

toxic. All three NPs should remain in the research and development stage until

further studies can fully characterise their relationship with cells.
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Chapter 1

Introduction

1.1 Nanoscience/Nanotoxicology

The prefix "nano" derives from Greek meaning "dwarf" [1]. Prior to the emergence of the

nanoscience field in the recent few decades, most people may have only known "nano" in

reference to the metric unit the "nanometer" (10-9 m). Scientists define nano-sized materials

as any substance with at least one structural dimension that is 100 nm or less [2]. Hence,

nano-substances encompass both natural and man-made materials. In nature, many complex

systems are built from nanoscale components; some are benign and critical to the process of

life, such as proteins, DNA, and cells, while others may cause harm, such as viruses, dust, or

ash particles. Man-made nanoparticles (NPs) may be unintentional by-products of processes,

such as vehicle exhaust, tobacco smoke, cooking, or construction, or ones made specifically for

product enhancements, such as concealers in cosmetics, whitening ingredients, toothpaste, UV

protectors in sun screen, antibacterial agents in sanitising products and apparels, and stain and

wrinkle protectors in clothes [1, 3].

The interest in nanomaterials mainly stems from the discovery that nano-sized particles

behave differently from their bulk form. Many particles are relatively inert in bulk form, but

as the particle size decreases, the surface area increases exponentially and a higher proportion

of atoms are exposed to the surface. This increases their surface and chemical reactivity and

changes their electric, magnetic, optical, and mechanical properties, qualities that can be har-

nessed in all areas of science and production, including electronics, mechanical engineering,
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chemistry, biology, and medicine. Furthermore, the discovery of the nano-world has led to

interest not only in the construction of nano-scale materials but also in the understanding of

existent systems. Elucidation of nature’s complex systems has always been limited by the trail-

ing development of human technology, but as science enters the nano-realm, researchers have

begun to delve into nature’s nano-world both to understand how the complex systems work as

well as to mimic them. For example, scientists have identified that Lotus leaves are actually

covered with parabolic-shaped projections that promote water to bead into droplets and roll off

the surface, picking up dirt in the process. Companies have subsequently adapted this effect

into self-cleaning surfaces that can be used on windshields, windows, solar panels, and any

material that benefits from self-cleaning [4].

On the other hand, the small size is a cause for concern towards human health. Although

humans are equipped with natural protective barriers and mechanisms—the skin, mucocil-

iary escalator protecting the respiratory tract, membranes surrounding organs and cells, and

macrophages eliminating foreign substances in the blood—nano-sized foreign substances can

by-pass these defences and interfere with the normal processes of the cell. Various autoimmune

diseases have been attributed to NPs, such as Crohn’s, Parkinson’s, and Alzheimer’s disease.

NPs may aggravate the pulmonary system and lead to asthma, bronchitis, or emphysema. Ones

that enter the blood may contribute to atherosclerosis, vasoconstriction, or high blood pressure.

Those that infiltrate cells may disrupt their processes and induce cancer. Because of these con-

cerns, a part of nanoscience has emerged to understand what specific particles, characteristics,

compositions, and behaviors lead to harmful effects.

1.2 Human exposure

With nanomaterials present in such wide-ranging sources, humans are easily, if not constantly,

exposed to nanomaterials. Concern arises when the nanomaterials are particularly harmful or

when the exposure levels are abnormally high. Foreign substances can enter humans predom-

inantly via three routes: dermal contact, ingestion, and inhalation. The natural human body

has its own protective barriers for each route; but when they are perturbed, the substances can

enter the systemic circulation and damage less protected sites such as blood vessels, organs, the

nervous system, and the brain.
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1.2.1 Skin

The skin averages about 1.5 m2 in area and comprises three layers (in descending order): the

epidermis, dermis, and subcutaneous. The outermost layer, the epidermis, ranges between 0.05

mm and 1.5 mm in thickness and is further composed of five layers (in descending order):

the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum

basale. The stratum corneum is the thickest layer and consists of dead cells that are shed every

two weeks. The dermis, ranging between 0.3 mm and 3.0 mm in thickness, houses the hair

follicles, oil and sweat glands, and smaller blood vessels and nerves, while the subcutaneous

layer contains the fat, connective tissues, and larger blood vessels and nerves [5, 6].

Research on NPs penetrating through the skin suggested that NPs did not penetrate beyond

the stratum corneum. In a study by Alvarez-Roman et al. [7], polystyrene NPs 20 and 200

nm in diameter were applied to porcine skin. The NPs were found to accumulate at follicular

openings with increasing time and decreasing size; however, the NPs did not penetrate beyond

the stratum corneum. In another study, Zvyagin et al. [8] applied 0.3 g of a commercial

sunscreen containing ZnO NPs between 26–30 nm topically to human volunteers for 5 minutes.

Accumulation was assessed immediately and after 4 and 24 hours after application. ZnO NPs

were found mainly in the stratum corneum—in skin folds and hair follicles. The ZnO NPs

within the hair follicle roots did not penetrate into neighboring cells or extracellular regions. In

a third study, Pflucker et al. [9] applied 20 and 100 nm TiO2 NPs at a concentration that was

double the recommended amount for sunscreen application on the forearm of human volunteers

for 6 hours. TiO2 NPs were found only in the outermost layer of the stratum corneum. All these

studies indicated that the skin was an effective barrier against NPs. However, the field of topical

drug delivery has sought to deliver drugs across the skin barrier.

In topical drug delivery, researchers have focused on coating drugs with lipids to increase

penetration across the thick layers of the stratum corneum. Attention has also centered on the

role of hair follicles because they extended into the epidermis and were surrounded by cells and

blood vessels. Lademann et al. [10] formulated hydrogels containing 320 nm NPs into particle

and non-particle forms and assessed how long either remained inside hair follicles. Each gel

was applied onto the calves of human volunteers and massaged for 3 minutes. Presence of

the hydrogel in the non-particle form was only detected for up to 4 days, while the particle
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form lasted until 10 days. The researchers concluded that surface structure affected retention.

The same study further assessed the effects of massaging using porcine skin and found that

massaging increased penetration depth. In a different study, Toll et al. [11] assessed the effect

of NP size and the ”opening up” of hair follicles using skin surface stripping. 0.75, 1.5, 3, or

6.0 µm microspheres were massaged for 2 minutes onto skin samples from human volunteers.

Without skin surface stripping, the NPs penetrated up to 25% of the follicles to a maximum

depth of 1500 µm, while skin surface stripping yielded up to 55% penetration and a depth of

2300 µm. All four NPs penetrated the follicles, although the optimum size was 1.5 µm. These

results indicated that NPs could indeed penetrate the skin barrier via hair follicles. For NPs

that could manage to penetrate the follicles, they could then enter the systemic circulation via

neighbouring cells and blood vessels.

1.2.2 Pulmonary system

The lungs have a surface area of about 140 m2 and can be divided into two regions: ~2300 km

of airways for air flow and ~300 million alveoli for gas exchange. The airways are covered

by a thick layer of mucus and comprise the first line of defence against foreign particles. The

mucus traps the particles and slowly moves them upwards along the airway where the particles

are subsequently swallowed or expelled orally. The barrier in the alveolar region is much

thinner with only 0.5 µm separating the alveoli from the underlying capillaries to allow for

gas exchange, and it is protected by macrophages that can phagocytose foreign particles and

transport themselves to the mucociliary escalator for excretion. [5, 12]

Pulmonary infiltration is of notable concern as humans survive by breathing. Air, and any

foreign particles contained within, constantly flow through the lungs, and the thin alveolar bar-

rier makes the alveoli particularly susceptible to penetration. In 1994, the International Comm-

sion on Radiological Protection predicted the deposition of inhaled particles with diameters of

1–100 nm in the human lung using a mathematical model. Figure 1.1 graphically summarises

the results. As the particle diameters decrease, they penetrate further into the pulmonary sys-

tem. At diameters < 10 µm, the particles can enter the lungs, and at 10 nm, they have the

highest deposition in the alveolar regions. With the thin alveolar barrier, such a high deposition

rate significantly increases the probability of the particles penetrating the barrier and entering
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the systemic circulations [2]. If, indeed, particles are too small and do not activate macrophage

phagocytosis or the particle concentration is too high and the macrophages are unable to clear

the particles in time, the particles can penetrate the interstitium and subsequently enter the cir-

culatory system and distribute throughout the body, affecting the organs, the cardiovascular

system, and numerous other regions.

Figure 1.1: Particle deposition (diameters of 1–100 nm) based on a mathematical prediction
model by the International Commission on Radiological Protection in 1994. Each graph on the
right corresponded to the respectively coloured regions on the diagram on the left. At 10 µm,
particles could enter the lung. As the diameters decreased, the particles penetrated deeper into
the lungs. 10 nm yielded the greatest deposition potential in the deepest region of the lungs
(alveolar). (Image from [2])

1.2.3 Intestinal tract

The intestinal tract is designed to absorb macromolecules. The small intestine is covered with

villi and micro-villi which results in a total surface area of about 200 m2. Intestinal uptake can

occur via normal enterocytes or specialised enterocytes called M-cells [13], although a layer

of mucus protects access to these cells. Research has shown that the smaller the particles, the
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faster they permeate the mucosa into the enterocytes. When latex polystyrene spheres with

diameters of 14 nm, 415 nm, and 1.09 µm were administered interluminally into the colon of

rats, the 14 nm spheres had crossed the mucous layer and reached the outer mucosa layer within

2 minutes. The 415 nm spheres did not reach the mucosa until 30 minutes, while the 1.09 µm

spheres remained within the mucous layer even after 30 minutes [14].

Penetration of intestinal enterocytes have also been shown to be size-dependent. When 50

nm, 300 nm, 1 µm, and 3 µm polystyrene spheres were orally administered to rats at 12.5

mg/kg for 10 days, 50 nm spheres were found in the intestinal enterocytes, villi, crypts, and

intracellular junctions. They were also found throughout the body, in the lymph nodes, kidneys,

liver, and spleen. 1 µm spheres were present in similar locations but at lower concentrations.

The 3 µm spheres, however, were observed only in the intestinal enterocytes and no where else

[15]. These results indicated that NPs could cross the epithelial membrane and enter either

the lymphatic tissues to trigger the immune system or the capillaries and diffuse to the organs

throughout the body.

1.3 Human macrophage cells

Macrophages are a critical component in the human immune system. They originate from the

bone marrow as blood monocytes where they circulate in the blood and migrate to tissues to dif-

ferentiate into macrophages (lung→alveolar macrophages, bone→osteoclasts, liver→Kupffer

cells, central nervous system→microglial cells, connective tissue→histiocytes) [16]. Depend-

ing on the tissue type, their life span can range from 6 to > 60 days [17, 18]. It is unclear in the

literature whether macrophages are able to proliferate. Some studies claim that macrophages

are end-stage cells that cannot divide [18, 19], while others have found them to renew for a

limited number of cycles [20, 21].

Macrophages are responsible for clearing tissues of waste, such as old or dead cells, and

foreign materials, such as pathogens, bacteria, and viruses. When activated, they release vari-

ous inflammatory markers, including interleukins, reactive oxygen species (ROS), and tumour

necrosis factors, that trigger an immune response; additional macrophages and other immune

cells are attracted to the site [16, 18, 22].

Because of their broad distribution in the body and their substantial role in foreign body

6



clearance, primary macrophages are used in the studies in the subsequent chapters. The direct

isolation of monocytes from human buffy coats is a more realistic model as the macrophages

are primary cells rather than immortalised cell lines.

1.3.1 Phagocytosis

One of the main characteristics of macrophages are their ability to phagocytose. Substances

such as cells, cell fragments, bacteria, or particles that are greater than 1 µm in diameter are

actively ingested. Once ingested, ROS, digestive enzymes, and acid are produced in contained

compartments within the cell to destroy these substances, making macrophages a critical com-

ponent in pathogen defence [23].

When removing cellular debris, little or no immune response is involved and macrophages

remain unstimulated. However, when stress caused by injury or foreign substances triggers

an immune response, macrophages become activated and converge at the site of inflamma-

tion. They begin their phagocytotic process while simultaneously releasing cytokines and

pro-inflammatory mediators and presenting surface antigens that both promote the immune

response further as well as attracting the migration of additional macrophages [16, 18, 22].

Macrophages can recognise foreign materials via two main methods. The first method

involves certain motifs that are innate on the surface of the foreign material, such as carbo-

hydrates, glycolipids, proteolipids, glycoproteins, and proteins. The second method involves

opsonisation, whereby proteins, such as immunoglobulins and complements, are attached to

the foreign material to promote phagocytosis [24, 25]. Once the receptors are activated, they

begin to cluster and cross-link. This is believed to be the first step leading to the cytoskeletal

rearrangement that is a key characteristic of phagocytosis, although the exact mechanisms in-

volved in internalisation are still not fully understood [23, 26]. Depending on which process,

the cell membrane either protrudes and surrounds the foreign material or the material “sinks”

into the cell [25, 27, 28].

During the final stage of internalisation and the formation of the phagosome, membrane

trafficking occurs in order to replenish the lost plasma membrane and to form the new phago-

somal membrane. Once the phagosome is formed, it is trafficked through the cell via micro-

tubules where it first merges with late endosomes and, ultimately, with lysosomes where di-
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gestive enzymes, proteins, and peptides in an acidic environment destroy the foreign pathogen

[24, 25, 27]

1.3.1.1 Frustrated phagocytosis

Figure 1.2: Possible proinflammatory cellular pathways caused by fibres. Specifically, frus-
trated phagocytosis prevents the cell membrane from sealing, which causes digestive enzymes
to leak out and generate oxidative stress [12].

During fibre cytotoxicity research, an interesting phenomenon was observed in macrophage

phagocytosis. When a fibre’s length exceeded the diameter of the macrophage, the macrophage

could not fully engulf the fibre within itself; rather, the fibre was seen to protrude from the

macrophage plasma membrane. In a study by Dörger et al. [29], rat alveolar and peritoneal

macrophages were treated with glass and wool fibres ranging from 1.8 to 76.9 µm in length

(median length = 16.3-19.4 µm). Fibres > 20 µm were seen fully phagocytosed; however, 98%

of the phagocytosed fibres were < 20 µm indicating that macrophages had difficulty phagocy-
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tosing fibres > 20 µm in length. One possible reason might have been the availability of plasma

membrane.

Canon et al. [30] assessed the phagocytic capacity of murine bone marrow-derived macroph-

age cells with polystyrene beads between 13 to > 30 µm in diameter. Beads up to 24 µm

were found fully phagocytosed. They determined that phagocytosing macrophages reached a

surface area of 3,080 µm2, much higher than the reported surface area of 825 µm2 for rest-

ing macrophages. This implicated the possibility of internal membranes being recruited for

phagocytosis. To test this observation, macrophages were treated with sucrose to osmotically

overload the lysosomes, and phagocytic capacity did indeed decrease.

These results indicated that the macrophage phagocytotic potential could be limited by

the available plasma membrane resources. When the macrophages attempted to phagocytose

particles greater than its capacity, the phenomenon termed "frustrated phagocytosis" occured.

This was implicated in fibre-induced cytotoxicity. When a macrophage failed to fully engulf

the fibre, the macrophage remained activated and would attract more macrophages. This, in

turn, could lead to increased lung burden. Furthermore, with incomplete phagocytosis, the

phagosome could not be fully sealed. As a result, oxidants and enzymes could leak out from

the macrophage into the surrounding area and lead to further cytotoxicity (Figure 1.2).

1.3.2 Passive uptake

Cells can also internalise substances passively. Gases, molecules, and inorganic ions are trans-

ported by way of a concentration gradient whereby molecules move from areas of higher con-

centration to lower concentration. As the cell membrane is semi-permeable, oxygen, carbon

dioxide, water, and other small molecules can move across the membrane by diffusion [31].

Additionally, channels exist throughout the cell membrane, although movements across are

limited by size restrictions, conformation matching, or other protein(s) binding to the channel

in order to open/close the channel [32, 33]. Despite these various exclusions, NPs can lead to

subsequent cytotoxic effects if they are small enough or shaped similary to the molecules or

proteins that are designed to cross membranes or control ion channels.
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1.3.3 Cell death

Cell death occurs via two main processes: apoptosis and necrosis (Figure 1.3). Apoptosis, of-

ten termed “programmed cell death,” is a form of cell suicide triggered by an internal clock or

external agents that ultimately leads to nuclear (karyorrhexis) and DNA fragmentation. Mor-

phologically, cells shrink, the nuclei become condensed (pyknosis) leading to margination of

chromatin (capping), and apoptotic bodies are formed from the nuclear fragmentation. Necrosis

is a more passive form of cell death that can result from environmental stress, such as nutri-

ent deficiency, ATP depletion, and physical damage, and leads to inflammation caused by the

release of cell contents and pro-inflammatory molecules. Cells and organelles typically swell,

the cytoplasm becomes vacuolated, and the plasma membrane breaks down.

If apoptotic cells are not phagocytosed due to reasons such as insufficient macrophages, ex-

cessive apoptosis overwhelming available macrophages, or inability for macrophages to recog-

nise apoptotic cells, secondary necrosis can occur. The plasma membrane of the unphagocy-

tosed cell will subsequently break down and release the intracellular contents that will trigger

an inflammatory response [34].

Figure 1.3: Morphological and chemical changes in apoptosis and necrosis [35].
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1.4 Challenges of characterising the effects of NPs

1.4.1 Cell viability assays

Stain/dye Action CB SWNT C60
Neutral red Lysosomal uptake into live

cells
Lysosomal
membrane

F F D

MTT Tetrazolium conversion to
insoluble purple formazan
in live cells

Mitochondrial
metabolism

F D D

CellTiter 96®
AQueous One

MTS conversion to soluble
purple formazan in live
cells

Cell metabolism C A A

alamar Blue Resazurin reduction to red
fluorescent dye resorufin by
live cells

Cell metabolism F D A

CellTiter-Blue® Kit form of alamar Blue Cell metabolism D C A

CytoTox One™
Homogeneous
Membrane Integrity

LDH enzymatically
reduces resazurin into
resorufin

Cell metabolism F F B

A – Assay works well; data reliable.
B – Assay works well; significant difference against no cell control (p < 0.05) < 10%.
C – Assay works; significant difference against no cell control (p < 0.05) from 10% to < 20%.
D – Assay works poorly; significant difference against no cell control (p < 0.05) from 20% to
< 50%.
F – Assay fails; significant difference against no cell control (p < 0.05) ≥ 50%.

Table 1.1: Description of various cell viability assays and their graded validity in measuring
CB, SWNT, and C60 toxicity (synthesised from [36])

Various studies have found that some types of NPs (e.g. carbon-based NPs) can interfere

with spectrophotometric assay dyes. Monteiro-Riviere et al. [36] recently graded the validity

of several assays in assessing the toxicity of the carbon NPs carbon black (CB), single-walled

carbon nanotubes (SWNTs), and C60. Table 1.1 listed some of the assay dyes that were as-

sessed using human epithelial keratinocytes (HEK). Two different set-ups were performed for

each assay dye: without and with cells present. Without cell presence assessed the interaction

between the NPs and the assay dyes only, while the presence of cells assessed the interaction

of the NPs after the assay dyes had first interacted with the cells. The difference between these
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two set-ups determined the effects that the NPs had on the assay dyes.

Of specific interest were the NR and MTT assays as they were used to assess the toxicity

of the NPs in the following chapters. The authors found that the NR dye was readily adsorbed

by the carbon NPs which yielded falsely positive toxicity. It seemed that a decrease in particle

size led to an increase in surface area and reactive groups, which resulted in increased dye

adsorption. For the MTT, CB and SWNT by themselves could convert the tetrazolium into

formazan without the presence of cells which also led to a falsely positive toxicity. With NPs

affecting many of the standard assays in different ways, the authors concluded that several

different spectrophotometric assays should be used in conjunction with imaging to profile NP

toxicity.

The following assays are used in this study:

• Neutral Red (NR) is a dye made of basic red 5 and toluene red that is internalised into

the lysosomes of viable cells only [37].

• MTT, or 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, measures the

enzymatic conversion of MTT to purple formazan crystals by dehydrogenase enzymes in

viable cells [38].

• Lactate Dehydrogenase (LDH) is an enzyme present in the cytoplasm of all cells that

is released upon damage to the plasma membrane. The presence of LDH will convert the

dye tetrazolium salt INT into formazan for the spectrophotometer to detect [39].

• Live dead is an assay employing the confocal microscope. Cells are treated with fluo-

rescent markers Hoechst 33358 and propidium iodide (PI) which stain the nuclei of all

cells and non-viable cells, respectively. Random frames for each treatment are taken and

the number of living and dead cells counted individually.

1.4.2 Imaging

Electron microscopes are ideal imaging tools as electrons have shorter wavelengths than pho-

tons, which allow for detailed imaging to as low as 0.1 nm [40], but there are certain limitations

depending on which type of microscope is used. The following sections briefly describe the

microscopes and techniques used in this study.
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1.4.2.1 Transmission electron microscope (TEM)

The TEM operates very similarly to the light microscope. Instead of light, electrons are emitted

through a vacuum and concentrated into a beam by way of electromagnetic lenses and yields

a resolving power—the point where two adjacent objects are still distinguishable—of 0.1 nm

or lower. Depending on the density of the specimen, electrons either travel through and are

projected onto a fluorescent screen or are scattered away from the specimen. Because electrons

are easily scattered, samples are usually between 20 to 150 nm in thickness [41, 42, 43]. A

special protocol is employed to prepare biological samples for the TEM. Treated cells are first

chemically fixed to stabilise and preserve the cell structures before all water is removed and

embedding resin allowed to infiltrate the cells [44]. Once set, the embedded sample is cut into

thin sections with a diamond knife on an ultramicrotome and the sections placed onto grids

for imaging. This technique is limited by the required thinness and preservation of the cell

samples.

1.4.2.2 Scanning electron microscope (SEM)

The SEM, like the TEM, uses an electron beam condensed by electromagnetic lenses; but

rather than penetrating the sample, the electron beam is scanned across the sample surface and

the secondary electrons (generated from inelastic scattering—the release of electrons from the

atom surface) produced are detected and amplified by detectors and transferred to a cathode

ray tube screen for visualisation. A topographical image is produced with a resolution of 1

nm. Sample preparation is not as complex as the TEM; however, all volatile compounds (e.g.

water) must be removed or immobilised and a thin electron-conducting layer sputter coated

onto non-conducting samples to prevent image disruptions caused by electrons collecting onto

the sample (charging) [41, 43]. Details may also be lost if they are finer than the thickness of

the sputter-coated layer.

1.4.2.3 Electron dispersive x-ray (EDX) analysis

EDX is a technique that can quantitatively or qualitatively determine the elemental composition

of a sample based on emitted x-rays. The technique can be used in either the TEM or SEM.

When electrons from the electron beam hits the sample, x-rays are released from the atoms
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in the sample. Each atomic species releases a characteristic x-ray which the EDX detects in

order to generate a spectrum that identifies the type and frequency of the elements present in

the sample. As with the SEM, all non-conducting samples require a thin electron-conducting

layer to prevent charging. Carbon is chosen as it is at the low end of the spectrum and far from

the elements of interest [43, 45].

1.4.2.4 Confocal microscopy

With the confocal microscope, sample thickness is less restricted and cells can be imaged alive

and whole without chemical fixation, freeze drying, or any significant manipulation other than

the addition of fluorescent stains. The following fluorescent markers are used in this study:

• Hoechst 33358 diffuses through the plasma membrane of both viable and non-viable

cells and binds to the lesser curvature of DNA. The stain is excitable by ultraviolet light

usually captured between 400–480 nm by a mercury vapor lamp or an argon laser at 351

or 364 nm to generate a blue emitted fluorescence [46].

• Propidium Iodide (PI) enters non-viable cells through their compromised plasma mem-

brane and bind to nucleic acids. It is excitable by a mercury vapor lamp or the argon laser

at 488 nm to generate a red emitted fluorescence [46].

• FM4-64 can be used to label the plasma membrane as well as study endocytosis. The dye

inserts into the outer bilayer of the plasma membrane and fluoresces red. It is excitable

at 561 or 568 nm with an emission maximum around 630 nm. The dye is a plasma

membrane marker and can be tracked as it is internalised into the cell [46].

• Calcein AM permeates the cell membrane as a molecule. Intracellular esterases of

viable cells hydrolyse the lipophilic acetomethoxyester (AM) group allowing calcium

ions to bind to the calcein and generate a green fluorescence. It is excitable by the argon

laser at 488 nm emitting at 530 nm [46].

In a confocal microscope, the light source is derived from one or multiple laser(s). The light

is focused onto a point in the sample and scanned across the sample. The reflected light from

the plane-of-focus is directed through a pinhole and into a detector. The pinhole blocks light
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reflected from outside the plane-of-focus which improves the resolution of the plane of interest.

Because thin optical sections are scanned each time, multiple sections (Z-plane stacks) can be

digitally assembled to create an average or maximum image projection [47]. The microscope

can be modified for live cell imaging over extended time periods by housing either the entire

microscope or only the culture dish at 37°C and providing a constant supply of oxygen and

carbon dioxide. One limitation is light diffraction, where the edges become undefined and hazy,

causing the boundaries of objects smaller than the diffraction limit to diffuse, merge, and appear

bigger (Figure 1.4); as a result, the XY axes and Z axis resolutions are approximately 200 nm

and 600 nm, respectively [48]. This limits the type of NP visible in the microscope. Certain

Figure 1.4: Example of light diffraction with a graph of how light intensity is affected in relation
to the radius [48].

manipulations can be employed, such as using reflectance if the NP is reflective, exciting the

NP if it can be excited to emit fluoresence, or binding fluorescent proteins to the NP to help

it fluoresce; however, the low resolution means only large aggregates can be seen rather than

individual NPs.

1.5 Scope of project

For this PhD, three different NPs were chosen to assess their toxic potential using similar exper-

imental methods. At the start of this project, the paper by Oberdorster et al. [49] reporting the

toxic potential of C60 had only been released for about two years. There was an intense interest

in determining whether other carbon-based nanomaterials were toxic; consequently, the carbon

nanotubes (CNTs) multi-walled carbon nanotubes (MWNTs) and SWNTs were chosen for this
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project. The third NP assessed were the ZnO nanopowders. Although the dimensions of ZnO

nanowires would make them better comparisons to the CNTs, ZnO nanopowders constituted

the nanowires; understanding how the nanopowders interacted with cells could shed light into

later assessments of the nanowires themselves.
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Chapter 2

MWNT

2.1 Introduction

MWNTs are stiff, tubular structures consisting of concentric layers of cylindrical graphene

sheets. Their diameters can range from 1.4 to 100 nm with lengths ≥ 1 µm. MWNTs can

have very high aspect ratios and surface area with highly ordered structures and mechanical

strength. They also have high electrical and thermal conductivity and can be either metallic

or semi-conducting depending on their structure. These features make them ideal candidates

for many applications. MWNTs have been formed into "super-strong" fibres that can be used

in textiles and electrodes [50]. They can improve the structural and electrical properties of

composites such as epoxy which are used for structural applications in aerospace, automotive,

and marine industries [51, 52]. Microcatheters containing MWNTs have been developed to

improve flexibility and shape retention after intravascular use and to prevent blood coagulation

and clot formation [53]. Scaffolds can be created from MWNTs for cell growth in tissue engi-

neering [54]. With such wide-ranging potential, attention has become focused on the possible

negative effects of MWNTs. Table 2.1 summarised the details of some of the papers discussed

in this chapter.

Many papers were published on the potential health effects of MWNTs, but results were

often conflicting. Some studies found that MWNTs decreased cell viability:

• Bottini et al. [55] assessed the toxicity of pristine and oxidised (derived from refluxing

the pristine MWNTs in concentrated nitric acid) MWNTs on human tumour T lympho-
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Table 2.1: Summary of experimental details of some of the MWNT papers discussed in chapter.
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cytes (Jurkat) using the Trypan Blue assay. 40 or 400 µg/mL of each were treated for up

to 5 days. Both samples caused dose and time dependent toxicity. The oxidised MWNTs

were found to be more toxic than the pristine with the highest concentration (400 µg/mL)

at 5 days causing > 80% cell death for the oxidised compared to only 35% for the pristine.

• Hirano et al. [56] assessed 10-1000 µg/mL of MWNTs on mouse macrophages (J774.1)

for up to 32 hours and similarly found a dose and time dependent toxicity with the WST-

8 assay, a modified MTT assay. Cell death reached close to 90% at 100 µg/mL after 32

hours. However, cell death reversed after the 100 µg/mL concentration mark, possibly

caused by the observed MWNT aggregation at the higher concentrations. As the MWNTs

aggregated, less surface area was exposed to interact with the cells.

• Simon-Deckers et al. [57] compared the toxicity of three different MWNTs—long and

short unpurified MWNTs and short purified (via heat treatment) MWNTs—on human

type II lung epithelial cells (A549) and found that length and contamination had no ef-

fect on the observed dose dependent toxicity. 0.25–100 µg/mL of each were treated

for 48 hours, and three assays were used to assess their effects: LDH, XTT (3-[1-

(phenylaminocarbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hy-

drate), and MTT. Maximum toxic effect was observed with the MTT assay with cell death

reaching 50% for the lowest concentration (0.25 µg/mL), while the XTT assay yielded

only 10% death at the highest concentration (100 µg/mL). The LDH assay detected 40%

death for the highest concentration.

• De Nicola et al. [58] determined that MWNTs induced apoptosis in a dose and time

dependent manner. Jurkat cells were treated with 25 or 100 µg/mL of MWNTs for up to

3 days. Hoechst 33358 was used to stain the nuclei, and apoptosis was identified as cells

containing fragmented nuclei.

Despite the different MWNT materials, cell lines, concentrations, time points, and assays, all

four studies observed a dose and time dependent toxic effect. This confirmed that MWNTs

could indeed cause cell death. Studies went further and assessed the mechanisms affected

by MWNTs and found that MWNTs up-regulated genes associated with cell cycle regulation,

inflammation, and apoptosis:

20



• Ding et al. [59] used an Affymetrix high-throughput analysis automated GeneChip sys-

tem to profile genes expressed by human skin fibroblast cells treated with 0.06 and 0.6

ug/mL of MWNTs for 24 and 48 hours. The authors found that different genes were

expressed for the two different doses. For the low dose, the genes expressed caused a

reduction in cell growth and metabolism and an acceleration in protein degradation. For

the high dose, several apoptotic genes were up-regulated, and a significant number of

immune and inflammatory response genes were over-expressed.

• Monteiro-Riviere et al. [60] directly assessed for interleukin (IL) 8, a proinflammatory

cytokine marker, using an IL-8 cytoset kit. HEK cells were treated with 0.1–0.4 µg/mL

of MWNTs for up to 24 hours, and a dose and time dependent increase of IL-8 was

observed.

• Zhu et al. [61] detected a dose and time dependent p53 activation, indicating DNA dam-

age, with Western blot on mouse embryonic stem cells treated with 5 and 100 µg/mL of

MWNTs purified in concentrated HCl for 2 and 4 hours. The p53 protein was responsible

for arresting the cell cycle to allow cells to repair any DNA damage.

These three studies further implicated the toxic role of MWNTs in cells. Genes, markers,

and proteins associated with cell damage/repair and inflammation were induced by MWNTs.

However, despite the toxic results from the studies above, some studies found that MWNTs

caused minimal or no decrease of cell viability:

• Kateb et al. [62] treated 80 µg/mL of MWNTs for 15–48 hours on two mouse cell

lines—microglial (BV2) and glioma (GL261). Ten frames for each sample were taken

with a two-photon inverted confocal microscope and the number of adherent cells counted

to determine cell viability. No statistically significant differences in adherent cells be-

tween the control and MWNT-treated cells were observed.

• Pulskamp et al. [63] treated 5–100 µg/mL of MWNTs for 24–96 hours on rat alveolar

macrophage (NR8383) cells. Three different assays were used: MTT, WST-1, and PI.

The MTT detected up to 70% cell death at the highest concentration and longest time

point. As MTT could inflate the toxic response,the WST-1 and PI were used for verifi-

cation. The WST-1, an assay similar to the MTT, did not detect any cell death. For the
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PI, the dye only entered cells with compromised membrances; consequently, cells were

treated with PI and FACS analysis used to differentiate between living and dead cells. No

significant differences were detected between control and MWNT-treated cells. As both

the WST-1 and PI indicated no cytotoxicity, the authors concluded the MWNTs were not

toxic.

These two studies used different MWNT materials, cell lines, concentrations, time points, and

assays compared to the previous six studies and concluded very different results. With few con-

sistent experimental parameters, the reason(s) for the differing results were difficult to identify.

The contradicting results from these eight studies highlight the difficulty in determining the ef-

fects of MWNTs. Some of the reasons could be attributed to the MWNT materials themselves,

such as the metal content, structural defects, length, and surface chemistry.

Metal content. The metal catalyst (e.g. iron, nickel) used to synthesise CNTs have been

found to cause oxidative stress related toxicity, possibly via the Fenton reaction. Two stud-

ies found that ROS generation corresponded to the amount of iron available in carbon nan-

otubes. Grabinski et al. [64] assessed the ROS generation of mouse keratinocytes treated

with 5–50µg/mL of MWNTs with 3.75 wt% Fe for 24 hours using the fluorescent probe

20,70-dichlorohydrofluorescein diacetate (DCHF-DA). The DCHF-DA probe bound to ROS

and generated fluorescence which would be detected by a microplate reader. They found that

the MWNTs caused a dose-dependent increase in ROS generation with a total of 3–7 fold

increase over the control. Schrand et al. [65] used the same assay on rat macrophage and neu-

roblastoma cells treated with 25–100 µg/mL of MWNTs containing 0.49 wt% Fe for 24 hours

and similarly found that ROS generation correlated with the amount of Fe in the MWNTs. They

also noticed a difference between the two cell lines with macrophages (25 fold increase over

control) generating five times more ROS than the neuroblastoma (5 fold increase) cells. If the

two studies were compared using the same concentration (25 µg/mL), the MWNTs with 3.75

wt% Fe actually generated less ROS than the MWNTs with 0.49 wt% on macrophage cells.

This could be due to the difference in cell line as well as the MWNTs themselves as different

characteristics could affect the bioavailability of the Fe.

As ROS were destructive to cells, studies assessed the effect of impurities on cells. Shvedova

et al. [66] detected the presence of OH- free radicals using a technique called electron spin res-
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onance spin trapping and found that SWNTs containing 30 wt% Fe caused a dose-dependent

decrease in the antioxidants vitamin E and glutathione (GSH) in human keratinocyte (HaCaT)

cells treated at 60–240 µg/mL for 18 hours. The addition of the Fe3+ chelator, deferoxamine,

significantly reduced the cytotoxic effect of SWNTs by up to 30%. Pulskamp et al. [63] deter-

mined that MWNTs containing 5 wt% Fe and Ni generated up to a 4 fold increase of ROS in

NR8383 cells treated at 5–100 µg/mL for 24 hours. As ROS could affect cell organelles, the

authors assessed for mitochondrial damage as mitochondria were important in many cell func-

tions. They observed a dose-dependent (up to 40%) destruction of mitochondrial membrane

in NR8383 cells treated with MWNTs containing 5 wt% Fe and Ni. Although the study by

Shvedova et al. used SWNTs, these two studies established that the observed ROS generation

from the CNTs depleted antioxidants, damaged mitochondria, and led to cell death.

Structural defects. Defects on the MWNT structure could cause inflammation and geno-

toxic (DNA damage resulting in mutations or cancer) effects. One such defect was the Stone-

Wales defect where pentagon-heptagon pairs replaced the normal hexagonal structures. An-

other was the exposed ends which might be caused by breakages or uncapped ends. Two

different papers used the same set of MWNT samples to assess the impact of structural defects.

MWNTs were first ground to introduce defects by an agate ball mill (MWNTg) and were

subsequently heated to either 600°C (MWNTg600) to eliminate any molecules adsorbed onto

the MWNT surface or 2400°C (MWNTg2400) to remove any metal contaminants. One set of

MWNTs treated at 2400°C was also ground (MWNT2400g) to prepare a fourth sample consist-

ing of damaged MWNTs without metal contaminants. Table 2.2 listed the characteristics of the

different MWNT samples.

The MWNT samples were dispersed in 1% Tween 80 and injected directly into the lungs of

MWNT MWNTg MWNTg600 MWNTg2400 MWNT2400g

Length (µm) 5.9 ± 0.05 0.7 ± 0.07
Diameter (nm) 9.7 ± 2.1 11.3 ± 3.9

Surface area (m2/g) 213 299 274 190 240
ID/IG 1.05 ± 0.05 1.16 ± 0.08 1.10 ± 0.10 0.58 ± 0.14 0.93 ± 0.09

Metal content (%) 2.20 2.94 3.3 0.37 0.21

Table 2.2: A summary of the characterisation details for the MWNTs that were heat treated and
ground for the studies by Fenoglio et al. [67] and Muller et al. 2008a [68].
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female Wistar rats at 500 µL/rat for 3 or 60 days. After MWNT treatment, the bronchoalveolar

lavage fluid was extracted and the production of LDH and proinflammatory factors IL-1β and

TNF-α measured to determine acute toxicity. MWNTg caused the greatest acute toxicity. As

both the MWNTg600 and MWNTg2400 samples decreased LDH, IL-1β, and TNF-α production,

acute toxicity appeared to correlate with heat treatment rather than metal content. The MWNT

samples were also treated on rat lung epithelial cells and genotoxicity assessed by the preva-

lence of micronuclei. Similar results were observed: MWNTg caused the greatest genotoxic

response and genotoxicity was better correlated with heat treatment rather than metal con-

tent [68]. Interestingly, no ROS production was detected; instead, the MWNTs exhibited free

radical scavenging abilities with the ability affected mainly be the amount of defects present

[67]. In general, MWNTg, the sample with the most defects, caused the greatest toxicity while

MWNTg2400, the sample with the least defects, caused the least toxicity.

Length. With length, the toxicology paradigm had established fibres < 3 µm wide, > 20

µm long, and biopersistent as hazardous. MWNTs often fitted into this paradigm, and Poland

et al. [69] sought to confirm if MWNTs could cause similar toxicological responses as haz-

ardous fibres. Four different MWNT samples were injected into the abdominal cavity of mice

at 50 µg per mice for 1 or 7 days. Two samples contained long straight MWNTs > 20 µm

(11% and 76%) while two samples contained short tangled MWNTs (< 20 µm). Histological

sections revealed that the MWNT samples with > 20 µm fibres generated polymorphonuclear

leukocytes and granulomas, characteristics seen in inflammation when macrophages cannot ef-

fectively phagocytose and clear the fibres from the lung airway. These results suggested that

long MWNTs could indeed behave similarly to hazardous fibres.

Two studies assessed the impact of length on toxicity. Muller et al. 2005 [70] ground

MWNTs to generate two samples of differing length: 5.9 ± 0.05 µm and 0.7 ± 0.07 µm. In vivo,

rats were treated with 0.5–5 mg/animal of either sample for 60 days. The unground MWNTs

formed large aggregates that lodged in airways resulting in artificial granulomas, while grinding

the MWNTs led to more effective dispersion in the airways and more rapid clearance, although

a substantial amount (36%) still remained in the lungs. In vitro, the ground MWNTs caused

significant dose-dependent increase in LDH and TNF-α production, while the long MWNTs

did not. As the unground MWNTs formed large aggregates that floated at the top of the cul-
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ture medium, the authors hypothesised that less of the unground MWNTs were exposed to

the cells to cause any toxicity. Contrarily, Simon-deckers et al. [57] found no cytotoxic dif-

ference between MWNTs averaging at 1.5 µm and 0.97 µm long. Arabic gum was used to

disperse the MWNTs and prevent aggregation suggesting that aggregation might be significant

in determining MWNT toxicity.

These studies indicated that length indeed affected the toxic potential of MWNTs, although

no definite conclusions could be drawn as results were affected by experimental method (in

vivo versus in vitro) or aggregation.

Surface chemistry. Pristine CNTs were hydrophobic and tended to agglomerate due to

van der Waal forces. Studies used a variety of organic solvents (e.g. tetrahydrofuran (THF) and

DMSO), and detergents (e.g. SDS, 1% Pluronic, Triton X-100, and Tween 80) to help disperse

the CNTs; however, the solvents and detergents themselves were inherently toxic to cells. Al-

though the concentration used was very low, possible cytotoxic effects could still exist. As an

alternative to dispersants, MWNTs were functionalised to improve dispersion. Lacerda et al.

[71] functionalised MWNTs with diethylentriaminepentaacetic (DTPA) dianhydride using the

1,3 dipolar cycloaddition reaction and significantly unbundled and individualised the MWNTs.

The functionalised MWNTs were radio-labelled, and 300 µg/mice were injected into the tail

vein. Using a microSingle Photon Emission Tomography computed tomography scanner, the

tissue distribution was traced. The functionalised MWNTs entered the systemic circulation

within 60 seconds. After 30 minutes, most were localized in the kidneys and bladder, and by

6 hours, almost all the functionalised MWNTs were eliminated via renal excretion. A separate

experiment using histological sections of Wistar rats injected with 600 µg/mice of function-

alised and unfunctionalised MWNTs was performed, and it was found the unfunctionalised

MWNTs accumulated in the lungs and liver after 24 hours while the functionalised MWNTs

had no tissue accumulation. This study implicated that functionalised MWNTs, and potentially

unbundled and individualised MWNTs, could significantly alter their systemic behaviour and

decrease their toxicity.

Clearly, metal content, structural defects, length, and surface chemistry could affect the

health effects of MWNTs which made the unambiguous determination of the toxic effects of
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MWNTs a challenge. Such contradictory results highlighted the need for alternative ways to

study MWNT uptake and cytotoxic effects in cells. Whilst traditional cell viability assays were

commonly used for large throughput, they could be prone to false positives; and most assays

did not discriminate between the routes of cell death. In contrast, microscopy could provide

direct estimates of cell viability with the advantage of assessing CNT presence within the cell.

In previous work, lysosomal uptake of short (average length ~0.3 µm) and long MWNTs

(average length ~2 µm) were compared in mouse hippocampal cells (HN9.10e) using a fluo-

rescent Lysotracker probe and fluorescence microscopy. Internalisation of short MWNTs was

greater than the long MWNTs. The uptake mechanism was also investigated by employing two

different methods of inhibiting active uptake: the endocytosis inhibitor sodium azide and refrig-

erating the cells at 4°C. Interestingly, results remained the same, indicating that the MWNTs

were internalised passively [72]. Two studies using TEM, Monteiro-Riviere et al. [60] and

Simon-Deckers et al. [57], found slightly longer MWNTs (< 2–3 µm) in the vacuoles of the

cytoplasm, within the free cytoplasm, near the nucleus, and even appearing to pierce the nuclear

membrane. Much longer MWNTs (> 50 µm) caused frustrated phagocytosis (as seen through a

light microscope) and stimulated TNF-α and superoxide (O-
2) free radical production in human

macrophage cells [73]. All these studies used different forms of microscopy to confirm the

presence of MWNT within cells. Understanding how the MWNTs enter cells could provide

further insight into their cytotoxic potential.

In a computer simulation, Lopez et al. [74] proposed that nanotubes could spontaneously

penetrate the plasma membrane and create pore channels. NTs with a 2 nm length equal to the

width of a plasma membrane bilayer hydrophobic core, a 1.3 nm diameter equal to the width

of a water molecule, and functionalised hydrophilic end caps were computationally analysed.

Figure 2.1 depicted the simulated results. The NT long axis first aligned parallel to the plasma

membrane (a), and membrane lipids bound to the hydrophilic ends (b). Thermal fluctuations

gradually pushed the NT towards the other end of the bilayer (c) allowing the bound membrane

lipids to completely pull one end of the NT across the hydrophobic core (d). The NT situated

perpendicularly in the plasma membrane as the lipids rejoined the opposite membrane layer

and resulted as a pore (e) that could allow ions or peptides to cross between the intracellular

and extracellular environment.

These results have led to the conclusion that MWNTs might not enter cells via active pro-
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Figure 2.1: Depiction of a computer simulation of an NT crossing a plasma membrane bilayer:
a) NT aligns parallel to plasma membrane, b) lipids bind to hydrophilic end cap, c) thermal
fluctuation pushes the NT across the hydrophobic core, d) bound lipids begin to interact with
opposite plasma membrane, and e) NT nestled across plasma membrane. (Image from Lopez
et al. [74]

cesses such as endocytosis, but rather macropinocytosis or diffusion across the plasma mem-

brane. Penetration could lead to negative consequences, such as damaging membranes or cre-

ating unnatural pores that expose intracellular compartments to the extracellular environment.

Consequently, this study sought to use a combination of cell viability assays and microscopy

to understand the cytotoxic effects and uptake mechanisms of MWNTs.

2.2 Materials and methods

2.2.1 Unpurified MWNT production

Aligned arrays of unpurified MWNTs with a carpet-like morphology (Figures 2.2 and 2.3) were

synthesised by K. K. Koziol using a chemical vapour deposition (CVD) method from a solution

of 5 wt% ferrocene in toluene injected into a furnace at 760°C under an argon atmosphere. The

CVD method was used as a technique for producing large amounts of nanotubes with minimal

contamination. Ferrocene was used as the source of the metal catalyst iron, and toluene was

used as the solvent for ferrocene and the main source of carbon. MWNTs were grown on a

quartz substrate and detached after synthesis.

2.2.2 Purification of MWNTs

The removal of metallic impurities from MWNTs by K. K. Koziol was based on high tempera-

ture annealing [75, 76, 77] rather than acid treatment in order to minimise highly reactive sites
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Figure 2.2: A) Diagram of vertically aligned carpet of MWNTs grown from a substrate. Max-
imum substrate dimensions were 50 x 70 mm. B) SEM image with a magnified inset of verti-
cally aligned MWNTs. (Images and details provided by K. K. Koziol)
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Figure 2.3: SEM images showing the top view of a MWNT carpet. Image B was at higher
magnification. (Images provided by K. K. Koziol)
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on the surface which could lead to ROS generation. The sample was heated to 2300°C for 6

hours in inert atmosphere (argon).

2.2.3 MWNT characterisation methods

K. K. Koziol performed the characterisation for both the unpurified and purified MWNTs. The

protocols were as follows:

• SEM – MWNTs were dispersed in ethanol and a few droplets dispensed on an SEM stub

and allowed to dry. ImageJ was used to measure the lengths of each individual MWNT.

• TEM – MWNTs were dispersed in ethanol and a few droplets were dispensed on a TEM

grid and allowed to dry. ImageJ was used to measure the diameters of each individual

MWNT.

• Brunauer Emerett Teller (BET) – MWNTs were dried thoroughly overnight using

heat (200°C) and nitrogen gas. They were then loaded into a MicroMetrics TriStar 3000,

and the chamber cooled with liquid nitrogen. The machine introduced nitrogen gas at

controlled pressure increments, and the pressure measurements were compared with the

saturation pressure to determine the amount of adsorbed gas. The surface area was deter-

mined based on the Brunauer Emerett Teller (BET) adsorption isotherm equation [78].

• Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) – MWNTs

were digested with HCl or nitric acid and calibration standards for the elements of interest

were prepared. As the atoms and ions were excited by the argon laser, characteristic

wavelengths and their intensities were emitted and compared to the calibrated standards

to determine the exact quantities of the observed elements.

• Raman Spectroscopy – Samples were dried on a coverslip and the Raman spectrum

taken using an argon ion laser with an excitation of 514.5 nm. The D peak (1500-1600

cm-1) and G peak (~1300 cm-1 ) could be determined from the Raman spectrum in order

to calculate the ID/IG ratio (the intensity value of the D peak divided by the intensity value

of the G peak), which assessed the amount of disorder within the CNTs. The D mode

arose due to laser scattering from defects within the carbon atom structure while the G
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mode originated from the carbon atoms vibrating tangentially. No defects would yield a

ratio of zero [79].

2.2.4 Human monocyte-derived macrophage (HMM) isolation

Mature HMM cells were obtained from human buffy coat residues (National Blood Service,

Brentwood, UK). Individual buffy coat residues were pooled from 3–4 donors and yielded

enough HMMs to seed about 5–6 cell culture plates. The buffy coat residues were washed

once with PBS, and the resulting cell sediment was mixed with an equal volume of fresh PBS.

30 mL of diluted buffy coat residue were layered onto 15 mL of LymphoPrep (Axis-Shields,

Oslo, Norway), and, after centrifugation at 20 °C for 30 min at 600 g, the opaque interphase of

mononuclear cells was removed and washed three times with PBS containing 4 mg/mL bovine

serum albumin (BSA) to remove platelets. Monocytes were then enriched by an additional

centrifugation step in a Percoll gradient [80]. Mononuclear cells were resuspended in 4 mL

of PBS and mixed with 8 mL of Percoll: Hanks’ balanced salt solution (10× concentrate,

6:1 dilution, at pH 7.0). After centrifugation at 20°C for 30 min at 450 g, the monocytes were

collected from the top of the gradient, washed in PBS/BSA, and seeded in 24 and 48-well tissue

culture plates at 1–2 × 106 cells/well and 0.5–1 × 106 cells/well respectively using macrophage

serum-free medium (Mφ-SFM, Invitrogen) unless otherwise stated. After incubation for 1 h at

37 °C, any remaining non-adherent cells were removed by washing twice with PBS. Adherent

monocytes were cultured at 37°C in humidified air/5% CO2 using Mφ-SFM for at least 6–7

days prior to experiments unless stated otherwise, renewing the culture medium twice a week.

HMM preparations were done by K. H. Müller and M. Motskin.

2.2.5 Dispersion

MWNTs are hydrophobic and tend to agglomerate causing extreme difficulty dispersing them

in aqueous culture medium. With cell culturing, uniform dispersion is desired to ensure even

chemical exposure to cells. As the purpose of this project is to explore natural exposure to

MWNTs, minimal manipulation is desired.

MWNTs were initially dispersed in THF; however, THF was cytotoxic. As a result, bovine

serum albumin (BSA) was used as the dispersing agent since it was not cytotoxic, and it was
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previously used to study lung surfactant proteins [81, 82]. BSA also dispersed the MWNTs

better than THF, an observation later confirmed by Buford et al. [83] who found that CNPs

dispersed best in serum suspensions.

The MWNTs were first sterilised with ethanol which was subsequently evaporated. The

MWNTs were then dispersed in a solution of BSA and phosphate-buffered saline (PBS) that

would yield a concentration of 250 µg/mL BSA in the final culture medium treatment solution.

The MWNT + BSA solution was sonicated for ~5 minutes before the culture medium was

added. The final solution was vortexed, shaken vigorously, and sonicated to enable further

dispersion. Although aggregates were still present, a 20 µg/mL solution appeared greyish-

pink. As the MWNTs did fall out of solution, the mixture was agitated prior to addition to

cells.

2.2.6 Cell viability assays

Three different assays were used: NR, MTT , and live dead.

For the NR, cells were gently washed with PBS for 2–3 times after MWNT treatment. 500

µL/well of NR dye at a concentration of 40 µg/mL in culture medium were added to the cells

and placed in the incubator at 37°C for 2–3 hours. The NR dye was removed and the cells

gently washed with PBS for 2–3 times. 500 µL/ well of an extracting solution composed of

50% ethanol and 1% glacial acid mixed in DIW was added to lyse the cells and release the dye

from the lysosomes. The plates were returned to the incubator for 10–15 minutes. The solutions

from each of the wells were mixed using a pipette (to ensure that any available dye has been

fully resolubilised) and transferred to a 96-well plate. The absorbance was then measured at

the wavelength 540 nm with a spectrophotometer.

For the MTT, cells were gently washed with PBS for 2–3 times after MWNT treatment.

500 µL/well of MTT dye at a concentration of 500 µg/mL in culture medium were added

to the cells and placed in the incubator at 37°C for 1–2 hours. The MTT dye was removed

and the cells gently washed with PBS for 2–3 times. 500 µL/ well of an extracting solution

composed of 0.04 N HCl in isopropanol was added to dissolve the formazan crystals. The

plates were returned to the incubator for 10–15 minutes. The solutions from each of the wells

were mixed using a pipette (to ensure that any available dye has been fully resolubilised) and
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transferred to a 96-well plate. The absorbance was measured at the wavelength 570 nm with a

spectrophotometer.

For the live dead, macrophages were seeded and cultured on 13 mm coverslips. Two dif-

ferent dyes were used: Hoechst 33358 and PI. After sample treatment, 6 µL/mL of Hoechst

33358 (from a 1 g/L stock solution made with PBS) was added to each well 4–6 hours prior

to confocal microscope imaging. 50 µL/mL of PI (from a 50 µg/mL stock solution made with

PBS) was added to each well 30 minutes prior. The coverslips were placed in a lab-made petri

dish: a 19 mm hole was drilled in the base of a 30 mm vented-side petri dish and covered with

a 27 mm diameter #1 thickness cover-slip with elastomeric cement (Sylguard, Dow Corning)

to make a viewing window. 2 mL of culture medium was added. Ten random frames were im-

aged for each concentration on a Leica SP1 confocal microscope with an HCX APO L U-V-I

40x 0.8w lens or a Leica SP2 confocal microscope with an HCX PL APO CS 63x 1.2 with

correction lens. The number of live and dead cells were individually counted, and the results

from all ten frames were totaled to determine the final cell death percentage.

2.2.6.1 Assessment of potential interactions between assay dyes and unpurified MWNTs

The MWNTs were incubated with the NR dye for 2–3 hours at a concentration of 40 µg/mL

in culture medium and the MTT dye for 1–2 hours at a concentration of 500 µg/mL in culture

medium before being washed twice with PBS. Solutions were centrifuged at each wash and the

supernatant removed in order to eliminate the extraneous dye without aspirating the MWNTs or

any dye that may have bound to the MWNTs. The appropriate extracting solutions (NR: 50%

ethanol and 1% glacial acid mixed in DIW, MTT: 0.04 N HCl in isopropanol) were added to

dissolve any existing dye and the solutions centrifuged. Only the supernatants were transferred

to a 96-well plate in order to eliminate any possible interferences the MWNTs would cause

with the laser detection from the plate reader. The NR was scanned at 540 nm and the MTT at

570 nm. There was no statistical analysis as the experiment was only performed once.

2.2.6.2 Unpurified MWNTs treatment

Once the HMMs seeded in 48-well plates were ready, the cells were treated with unpurified

MWNTs. A stock solution was prepared for only the highest concentration (20 µg/mL). Sub-

sequent concentrations (0.31 µg/mL to 10 µg/mL) were prepared from this stock solution by
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diluting 1:2 with culture medium. The old culture medium was removed from the cells, and 500

µL/well of the treatment solutions were added. The cells were treated with unpurified MWNTs

for 1, 2 or 4 days. The treatment solutions were removed, and the cell viability was assessed

using NR, MTT, and live dead. The controls were prepared by treating cells under similar con-

ditions but without any unpurified MWNT treatments. NR and MTT assays were performed in

triplicates and repeated 6 times, and the live dead was repeated 7 times as singletons. Statistical

analysis of ANOVA with LSD and P < 0.01 was performed using Analyse-it®.

2.2.6.3 Purified MWNTs and Fe2O3 treatment

For the purified MWNTs, a stock solution for the highest concentration (20 µg/mL) was pre-

pared; and for the Fe2O3, the proportional equivalent concentration of Fe2O3 present at the

highest unpurified MWNT concentration was calulated: 1 µg/mL Fe2O3 for 20 µg/mL of un-

purified MWNTs. Subsequent concentrations for both chemicals were prepared from the stock

solutions by diluting 1:2 with culture medium. The NR and MTT assays were performed in

triplicates and repeated 3 times, and the live dead was repeated 5 times as singletons. Statistical

analysis of ANOVA with LSD and P < 0.01 was performed using Analyse-it®.

2.2.7 Time-lapse

HMM cells were seeded and cultured on a 13 mm coverslip and treated with 5 µg/mL of

unpurified MWNTs for 4 days. The coverslip was then transferred to a 35 mm Iwaki dish

(Barloworld). HEPES buffer was added to eliminate the need for CO2. 6 µL/mL of Hoechst

33358 (from a 1 g/L stock solution made with PBS) was added 4–6 hours prior to imaging.

15 µL/mL of Annexin V (from Invitrogen ApoDETECT Annexin V-FITC kit) and 5 µL/mL of

PI (from a 50 µg/mL stock solution made with PBS) were added shortly before imaging. The

Iwaki dish containing the coverslip was placed in a temperature-controlled environment (37°C)

with constant oxygen supply on a Leica SP2 confocal microscope using an HCX PL APO CS

63x 1.2 with correction lens. Images were taken at periodic intervals to track the fluorescent

colour changes.
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2.2.8 Immunostaining

HMM cells were seeded and cultured on a 13 mm coverslip and treated with 5 µg/mL of un-

purified MWNTs for 4 days. The treatment solution was removed and the coverslip washed

once with PBS. The cells were fixed in 2% formaldehyde for 20 minutes at 4°C. The formalde-

hyde was removed and the coverslip washed with PBS. PBS containing 1% Triton X-100 and

1% Tween-20 was added for about 30 minutes to permeabilise the cells. The PBS solution

was removed, and 2% BSA was added for about 30 minutes. The BSA was removed and,

without washing, the primary antibodies (1/100 of cytochrome c (Pharmingen) and 1/500 of

cleaved caspase-3 (Promega and Abcam) diluted in 2% BSA) were added and left to refrigerate

overnight at 4°C in a humidified chamber. The coverslips were washed 3 times with PBS. 3

µL Hoechst (from a 1 g/L stock solution made with PBS) and the secondary antibodies (mouse

anti-goat and rabbit anti-goat) at a concentration of 1/100 were added for 1 hour at room tem-

perature. The coverslips were washed 6 times with PBS and, finally, once in DIW. It was placed

face-down over a drop of Prolong medium atop a glass slide and left to dry overnight.

2.2.9 TEM

For general TEM sample preparation, HMM cells were seeded on 6-well plates. Following

MWNT exposure, the cells were washed 3 times with saline and then fixed with 4% glutaralde-

hyde in PIPES buffer (0.1 M, pH 7.4) for 1 hour at 4°C. Without removing the glutaraldehyde,

the cells were scraped and transferred to a polypropylene tube to be centrifuged. The super-

natant was removed, saline added, and the mixture centrifuged again. This washing process was

repeated for a total of 4 times to remove the glutaraldehyde while minimising cell loss. The

cells were then incubated in suspension in 1% osmium tetroxide containing 1.5% potassium

ferricyanide and 2 mmol/L calcium chloride in 0.1M PIPES buffer at pH 7.4 for 1 hour at 4°C.

They were washed 4 times in de-ionised water (DIW) before bulk staining with uranyl acetate

for 1 hour at room temperature and covered with aluminium foil. Samples were washed twice

in DIW followed by graded solutions of ethanol (70, 95, and 100%) and 100% acetonitrile at

three times for each solution. Samples were then infiltrated under vacuum in quetol resin (Agar

Scientific, UK) for 3 days and finally cured in fresh quetol resin for 24 h at 60°C. The fixed and

embedded cells were sectioned with an ultramicrotome at 70 nm for BF TEM.
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For the morphological analysis, the cells were treated with 5 µg/mL and 20 µg/mL unpu-

rified MWNTs for 4 days. A control was prepared by treating cells under similar conditions

but without any unpurifid MWNT treatment. After embedding, the samples were sectioned at

70 nm. At least 1000 cells were identified as normal, apoptotic, or necrotic for each treatment

condition (control, 5 and 20 µg/mL) according to reference images from Hardwick et al. [84].

Cells were counted as dead only if they exhibited clear signs of end-stage apoptotic or necrotic

death. The experiment was repeated a total of 4 times. ANOVA with LSD and P < 0.01 was

performed using Analyse-it®.

2.2.10 Active/Passive uptake

HMM cells were grown on 13 mm coverslips. To assess active uptake, the cells were treated

with 5 µg/mL unpurified MWNTs and placed in the incubator at 37°C for 4 hours. The treat-

ment solution was removed, coverslips washed with 2–3 times with PBS, and fresh culture

medium added prior to imaging. To inhibit active processes in order to assess passive uptake,

the coverslips were first refrigerated at 4°C for 10–15 minutes or when the culture medium

had cooled down. The 5 µg/mL of unpurified MWNTs treatment solution was cooled to 4°C

before addition to the cells, and the coverslips were placed back in the refrigerator at 4°C

for 4 hours. After the 4 hour treatment, the coverslips were immediately washed 2–3 times

with cold PBS and cold culture medium added until imaging. For imaging, the coverslip were

transferred to a lab-made Petri dish (refer to section 2.2.6 Cell viability assays). 6 µL/mL of

Hoechst 33358 (from a 1 g/L stock solution made with PBS) was added 4–6 hours and Calcein

AM (1 µL/mL from a stock of 50 µg diluted in 100 µL DMSO) immediately prior to confo-

cal microscope imaging to identify the nuclei and cytoplasm of living cells, respectively. The

unpurified MWNTs were identified via reflectance from the internalised iron. Z-plane stacks

were taken with a Leica SP2 confocal microscope using a HCX PL APO CS 63x 1.2 NA lens

with a correction collar for coverslip thickness to create an average projection.

For the SEM, cells were grown on 6 mm coverslips and treated similarly as the the cov-

erslips for the confocal imaging. After treatment, the coverslips were rinsed briefly in cold

de-ionised water and quench frozen in melting propane cooled in liquid nitrogen according to

Warley et al. [85]. They were transferred into a brass block which was placed in an Edwards
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360 vacuum coating unit and brought to room temperature over 24 hours at a vacuum of < 1 x

10-5 mbar. They then were coated with a thin film of carbon and viewed in a FEI Philips XL30

FEGSEM operated at 5 keV or 20 keV for EDX.

For the viability assays, HMM cells were grown on 48-well plates and subjected to the

same conditions as the imaging coverslips. The plates were treated with 5 µg/mL of unpurified

MWNTs at either 37°C or 4°C. After 4 hours, the treatment solution was removed, and the

cells gently washed 2–3 times with PBS (cold PBS for the cells at 4°C). Fresh culture medium

was added, and the cells refrigerated at 4°C were placed in the incubator at 37°C for 1–2

hours to reactivate the cells since active cell processes were required for the viability assays.

The NR and MTT assays were performed in triplicates for 3 separate experiments and the live

dead individually in 5 separate experiments according to section 2.2.6 Cell viability assays.

Controls were prepared by treating cells under similar conditions but without any unpurified

MWNT treatments. Statistical analysis of ANOVA with LSD and P < 0.01 was performed

using Analyse-it®.

2.2.11 Pulse chase

HMM cells were seeded on 48-well plates and treated with 5 µg/mL of unpurified MWNTs for

1 day (pulse). Cell viability was assessed using NR (refer to section 2.2.6 Cell viability assays)

at various time points after the initial pulse: 0, 1, 2, 4, 7, 10, and 14 day. For the 0 day, cells

were not washed in PBS prior to NR incubation because PBS washing frequently yielded low

spectrophotometric readings. Controls were cells treated under similar conditions but without

the unpurified MWNT pulse. Controls were performed in duplicates and NR in quadruplicates.

Each experiment was repeated 3 times and statistically analysed with ANOVA with LSD and P

< 0.01 using Analyse-it®.

2.3 Results

2.3.1 MWNT characterisation

Table 2.3 summarised the characterisation of MWNTs as determined by K. K. Koziol. The

diameters and BET surface area of both MWNT samples were the same, although the lengths
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Length(µm) Diameter
(nm)

Surface
Area (m2/g)

Purity
(wt% Fe)

ID/IG

Ratio

Unpurified 2 – 164 (Mean: 26 ± 22.7) 68 ± 30 50 6.2 0.44
Purified 4 – 65 (Mean: 12 ± 9.9) 68 ± 30 50 0.0005 0.32

Method SEM TEM BET ICP-AES Raman

Table 2.3: MWNT characterisation details as assessed by SEM, TEM, BET (Brunauer Emmett
and Teller) method, ICP-AES (inductively coupled plasma atomic emission spectroscopy), and
Raman spectroscopy.

of the purified MWNTs were about half of the unpurified MWNTs. ICP-AES confirmed that

the high temperature purification removed the iron NPs from the unpurified MWNTs. The ID/IG

ratio revealed a decreasing ratio, indicating that the perfection of the nanotube graphene walls

(crystallinity) increased after heat treatment. One side effect of increasing crystallinity would

be an increase in brittleness which could be seen in the shorter average length distribution of

the purified MWNTs.

Iron NPs could mostly be seen encapsulated within the core of the unpurified MWNTs and

on the outer surface (Figure 2.4). As the MWNTs were sealed during processing, only the iron

on the outer surface would be directly exposed to the cells. X-ray powder diffraction (XRD)

indicated these exterior contaminants as Fe2O3.

2.3.2 Assessment of cell viability assay interactions

The discovery that NPs may interfere with certain assays elicited the need to use more than

one assay to assess the toxicity of MWNTs. Two colorimetric dye based assays—NR and

MTT—and an imaging technique—confocal live dead—were used. The NR and MTT assays

were chosen for their ability to analyse large sample sizes quickly; however, their simplicity and

efficiency meant decreased sensitivity and limitations. For example, for both assays, a dying

cell could register as viable as long as the cell membranes were intact for NR incorporation

or dehydrogenase enzymes were present to convert the MTT. Consequently, a more sensitive

assay was used as comparison—the live dead assay—which required the user to determine and

tally each cell as alive or dead. Nonetheless, dead cells could detach from the coverslips which

would deflate the toxicity.
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Figure 2.4: BF TEM images of MWNTs: A) unpurified MWNTs with presence of iron particles
(red arrows), and B) purified MWNTs. (Images provided by K. K. Koziol)

As it is the dyes in the colorimetric assays that have been shown to bind to NPs, control

experiments on the NR and MTT assays were performed using the same protocol as the exper-

iments in this study—but without cells—in order to confirm that the MWNTs did not interfere

with the viability assays. Minimal effects were observed for both assays suggesting that the

nanotubes did not directly affect the viability assays (Figure 2.5). Only the unpurified MWNTs

were assessed as they yielded minimal effects. The purified MWNTs were not assessed since

they were derived from the unpurified MWNTs and were assumed to have similar properties.

2.3.3 Unpurified MWNTs toxicity

The HMMs were treated with unpurified MWNTs for 1, 2, and 4 days at concentrations of

0.31 to 20 µg/mL. A time and concentration dependent toxicity was observed with statistical

significance for both the MTT and live dead assays at ≥ 10 µg/mL (Figure 2.6). Although

assay control experiments revealed no interaction between the unpurified MWNTs and the

colorimetric dyes, the MTT assay consistently yielded a significantly higher concentration de-
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Figure 2.5: Effects of unpurified MWNTs on the NR and MTT dyes. Minimal effects observed.

pendent toxicity than NR and live dead; the highest toxicity was 58% at 10 µg/mL at 1 day.

Interestingly, cell death decreased at 2 days. One possibility was that the unpurified MWNTs

eliminated the vulnerable cells within the first day while the resistant cells remained viable

against the unpurified MWNTs at the second day. By the fourth day, even the resistant cells

had become susceptible to the unpurified MWNTs.

2.3.3.1 Mechanism of cell death

Various methods were explored to determine whether unpurified MWNTs caused apoptotic or

necrotic death: time-lapse, immunostaining, and morphology.

Time-lapse Time-lapse was performed with the confocal microscope using Hoechst 33358,

Annexin V, and PI stains. In normal cells, phosphatidylserine is a phospholipid that remains

in the inner layer of the plasma membrane bilayer. During apoptosis, the phosphatidylserine is

exposed into the outer layer, and Annexin V binds specifically to the phosphatidylserine [86].

When used in conjunction with PI, apoptosis can be differentiated from necrosis:

1. Hoechst 33358 is used to identify the nuclei of all cells (blue).

2. An apoptotic cell is stained green by the Annexin V. As the plasma membrane becomes

permeable, PI, which only stains the nuclei of membrane-compromised cells, would stain

the cell red. Thus, the colour sequence would be blue→green→red.
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Figure 2.6: Toxicity of unpurified MWNTs. Cells were incubated with MWNTs for 1 (A),
2 (B), and 4 (C) days at 37°C. Cell viability was measured using NR, MTT, and live dead
assays. NR and MTT values represented the mean ± SE of six experiments each performed
in triplicates; live dead values were the mean ± SE of seven individual experiments (ANOVA
with LSD, P < 0.01, Analyse-it®). Cells treated under similar conditions but without unpu-
rified MWNTs were used as controls. Statistical significance (*) was assessed between the
concentrations and their respective controls.
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3. In necrosis, the plasma membrane is already compromised allowing PI to stain the nu-

cleus. Annexin V subsequently infiltrates the cell and stains the now exposed phos-

phatidylserine. The colour sequence would be blue→red→green [87].

Figure 2.7 was a snapshot of a time lapse experiment with cells only and no MWNT treatment.

Thermal drift frequently caused the coverslip to move out of focus during the live imaging.

Consequently, the frame of focus could not be maintained long enough to observe significant

changes in fluorescence. Additionally, the unpurified MWNTs were found to bind to the An-

nexin V stain, a different method—immunostaining—was pursued.

Immunostaining for cytochrome c and active caspase-3 Immunostaining eliminated live

imaging; instead, cells were fixed and stained for cytochrome c and active caspase-3. Cy-

tochrome c is found within the mitochondria and, when released into the cytosol, indicates

early-stage apoptosis. Caspase-3 is an enzyme activated during late stage apoptosis [46]. For

this protocol, difficulties arose with active caspase-3 autofluorescence. Active caspase-3 anti-

body from two different companies (Promega UK and AbCam) were used; however, it could

not be determined whether the intense fluoresence observed was caused by active caspase-3 or

the cells themselves.

Morphology TEM offered the ability to differentiate apoptosis from necrosis via cell mor-

phology. Images from Hardwick et al. [84] were used as references to determine cells as

normal, apoptotic, or necrotic (Figure 2.8).

1. Apoptotic cells appeared shrunken with a condensed cytoplasm and nucleus and heavily

capped chromatin (Figure 2.8B).

2. Necrosis could be divided into primary or secondary necrosis:

(a) Primary necrotic cells were identified as electron-translucent with cytoplasmic and

nuclear contents appearing leached out and cytoplasmic vacuolation (Figure 2.8C).

(b) Secondary necrosis occurred when apoptotic cells were not cleared away fast enough

[34, 88]; consequently, they exhibited the nuclear condensation, heavily capped

chromatin, and apoptotic bodies characterisitic of apoptosis and the leached out

cytoplasmic and nuclear contents of primary necrosis (Figure 2.8D).
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Figure 2.7: Confocal microscope snapshot of a time lapse experiment. HMM cells with flu-
orescent dyes only (blue = Hoechst 33358, green = Annexin V, red = PI); no MWNTs were
present. White arrows indicated cells undergoing necrosis.
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Figure 2.8: BF TEM images of characteristic cell morphologies: A) normal, B) primary apop-
tosis, C) primary necrosis, and D) secondary necrosis. (Images taken from Hardwick et al
[84])
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As this method was more labour intensive, only a medium (5 µg/mL) and high (20 µg/mL)

concentration at the longest exposure time (4 days) were used. A similar concentration depen-

dent toxicity was observed with 2.11% and 14.28% total cell death (apoptosis + necrosis) at

5 and 20 µg/mL, respectively; only the 20 µg/mL concentration was significantly toxic com-

pared to the control (Figure 2.9). The main route of cell death observed was primary necrosis

(Figure 2.10). Apoptosis was mainly observed as secondary necrosis. Additionally, a similar

percentage of healthy to dead cells contained unpurified MWNTs suggesting that cells could

survive with internalised unpurified MWNTs (Figure 2.11). However, this conclusion could

not be confirmed as this study did not determine how long cells containing MWNTs survived

and cells were only counted as dead if they exhibited end-stage death.

Furthermore, the 70 nm thickness required for TEM imaging meant that only parts of the

cell were assessed for the presence of MWNTs; consequently, it was uncertain if MWNTs

could be present in the unsectioned parts of the cell.

Figure 2.9: TEM viability analysis. Cells were treated with unpurified MWNTs for 4 days at
5 and 20 µg/mL and identified as healthy, apoptotic, or necrotic and whether MWNTs were
present in cells or not. Values represented the mean ± SE of four experiments with 1000 cells
indexed for each sample (ANOVA with LSD, P < 0.01, Analyse-it®). Cells treated under sim-
ilar conditions but without unpurified MWNTs were used as controls. Letters (a–e) indicated
significant difference between values with same letters. Control bars were coloured differently
to reduce confusion with samples treated with MWNTs.
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Figure 2.10: BF TEM image of a primary necrotic cell with an unpurified MWNT in the nucleus
(black arrow).
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Figure 2.11: BF TEM image of a healthy cell with an unpurified MWNT (white arrow).
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Several papers have suggested that MWNTs caused death via apoptosis rather than primary

necrosis:

• Bottini et al. [55] only assessed for the presence of apoptosis using Annexin V on Jurkat

cells.

• Ding et al. [59] observed dose-dependent apoptotic and necrotic death using YO-PRO1

(apoptotic cells) and PI (necrotic cells) stains on human skin fibroblasts but did not dif-

ferentiate between primary and secondary necrosis.

• De Nicola et al. [58] used Hoechst 33358 to detect apoptosis and a combination of

Hoechst 33358 and PI to differentiate primary from secondary necrosis on Jurkat cells.

Primary necrotic cells were defined as PI-stained cells with swollen nuclei and secondary

necrotic cells as PI-stained with fragmented or shrunken nuclei. They found that the

MWNTs caused dose and time dependent increase in apoptosis and secondary necrosis,

but no increase in primary necrosis. Increasing the time exposure increased secondary

necrotic death with respect to apoptosis.

These results were contrary to those in this study as primary necrosis was observed as the main

route of cell death with minimal apoptosis. Possible reasons for the different results between

De Nicola et al. [58] and this study included differences in cell lines (Jurkat versus primary

human monocyte macrophages), MWNT dimension and composition (110–170 nm x 5–9 µm

with <0.1 wt% Fe versus 68 nm x 2–164 µm with 6.2 wt% Fe), and dose and time exposure

(100 µg/mL for 24–48 hrs versus 5 and 20 µg/mL for 96 hrs). Additionally, necrosis could

result from culturing cells for an extended time period.

2.3.4 Purified MWNTs toxicity

TEM showed that the majority of the iron was located within the bore of the unpurified MWNT

sample and remained as iron NPs and inaccessible to cells (Figure 2.4). Some iron was found

on the outer surface—potentially accessible to cells—but had been oxidised mainly into Fe2O3.

Consequently, the unpurified MWNTs were purified via heat treatment (with no chemical treat-

ment) to eliminate the outer iron contaminants, and cells were treated with purified MWNTs

or Fe2O3 for 4 days at a proportionally equivalent concentration (i.e. 1 µg/mL Fe2O3 for the
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Figure 2.12: Cytotoxic response of cells to purified MWNTs and Fe2O3 after 4 days. Cell via-
bility was measured using NR, MTT, and live dead assays. NR and MTT values represent the
mean ± SE of three experiments each performed in triplicates; live dead values are the mean
± SE of five individual experiments (ANOVA with LSD, P < 0.01, Analyse-it®). Concentra-
tions listed for “Free Fe2O3 (µg/mL)” were the proportionally equivalent amounts found in the
unpurified MWNTs that were treated on the cells. Cells treated under similar conditions but
without purified MWNTs or Fe2O3 were used as controls. Statistical significance was com-
pared between the control and treatment concentrations within the individual experiments only
(*); significant cell death was seen for the purified MWNTs but not the Fe2O3 NPs.
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highest MWNT concentration of 20 µg/mL) to further identify the source of MWNT toxicity.

Significant toxicity was observed at 10 µg/mL and above for the purified MWNTs whilst none

was seen for the Fe2O3 (Figure 2.12). Although this study did not measure ROS generation,

these results suggested that toxicity was caused by the nanotubes themselves and not the iron

within or potentially leached out from the MWNTs.

The results in this study correlated with Simon-deckers et al. [57] and Muller et al. 2008a

[68]. Simon-deckers et al. detected that unpurified and purified MWNTs of mean lengths 1.5

µm and diameters 44 nm yielded similar levels of cell death. Muller et al. 2008a concluded

that metal contaminants did not generate ROS. They did, however, find that structural defects

correlated with acute lung inflammation in rats and genotoxicity in rat lung epithelial cells. In

this study, the MWNTs differed only slightly in the ID/IG ratios and were more structurally

pure than those in the study by Muller et al. 2008a; thus, it could be possible to eliminate

structural defects as a factor in the observed toxicity. Nevertheless, the purified MWNTs in

this study were about half the length of the unpurified. Although the similar toxicities between

the unpurified and purified MWNTs implied that length might not have any effects, such a

conclusion cannot be confirmed as the samples were not the same in all aspects (e.g. Fe purity).

Further work assessing ROS production is also needed to confirm the presence and source of

ROS and whether there is a direct link between the presence of iron NPs, ROS production, and

cytotoxic response.

2.3.5 Active/Passive uptake

The confocal microscope was first used to visually determine unpurified MWNT active and

passive uptake. Unpurified MWNTs were found within the HMMs after treating for only 4

hours (Figure 2.13) and 4 days (Figure 2.14) at 37°C. To further assess how cells sequestered

the unpurified MWNTs, cells were kept on ice and refrigerated at 4°C to inhibit active uptake.

Unpurified MWNTs were still found within cells although there were noticeably fewer than at

37°C (Figure 2.15).

These data were confirmed further by SEM of cells treated with unpurified MWNTs at 37°C

and 4°C. Cell surface images clearly identified internalised MWNTs extending from the cell

surface (Figures 2.16, 2.17). This confirmed that MWNTs could enter cells via both active and
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Figure 2.13: Confocal microscope average projection of a stack of images of unpurified
MWNTs penetrating the cytoplasm of a cell after 4 hours at 37°C (green = cytoplasm, blue
= nuclei, white = MWNTs). White arrows indicated the unpurified MWNTs. Inset A was a
XYZ axes projection with a gray cross-section pinpointing the location for the YZ (inset B) and
XZ (inset C) axes projections. White reflectance in insets B and C (white arrows) confirmed
MWNT presence within the cytoplasm.
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Figure 2.14: Confocal microscope average projection of a stack of images of unpurified
MWNTs penetrating the cytoplasm and nucleus of a cell after 4 days at 37°C (green = cy-
toplasm, blue = nuclei, white = MWNTs). White arrows indicated the unpurified MWNTs.
Inset A was a XYZ axes projection with a gray cross-section pinpointing the location for the
YZ (inset B) and XZ (inset C) axes projections. White reflectance in insets B and C (white
arrows) confirmed MWNT presence within the cytoplasm.
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Figure 2.15: Confocal microscope average projection of a stack of images of unpurified
MWNTs penetrating the cytoplasm and nucleus of a cell after 4 hours at 4°C (green = cy-
toplasm, blue = nuclei, white = MWNTs). White arrows indicated the unpurified MWNTs.
Inset A was a XYZ axes projection with a gray cross-section pinpointing the location for the
YZ (inset B) and XZ (inset C) axes projections. White reflectance in insets B and C (white
arrows) confirmed MWNT presence within the nucleus.
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Figure 2.16: SEM image of an unpurified MWNT (white arrows) protruding from a cell after
4 hours at 37°C. Ragged and uneven cell surfaces were indicative of active cell processes;
active cells were surrounded by membrane ruffles which, when quench frozen during sample
preparation, were preserved as rough protrusions.
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Figure 2.17: SEM image of an unpurified MWNT (white arrows) protruding from a cell after 4
hours at 4°C. Contrary to the previous figure (2.16), the cell surfaces appeared smooth; inactive
cells were unable to produce membrane ruffles, which resulted in the observed smooth cell
surfaces.
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passive pathways. Viability assays were also performed to verify that no effects were caused

by the refrigeration of cells (Figure 2.18).

Figure 2.18: Cytotoxic response of HMM cells treated for 4 hours with unpurified MWNTs
at 4°C and 37°C. NR and MTT values represented the mean ± SE of three experiments each
performed in triplicates; live dead values were the mean ± SE of five individual experiments
(ANOVA with LSD, P < 0.01, Analyse-it®). Cells treated under similar conditions but with-
out unpurified MWNTs were used as controls. No significant differences between the treated
conditions and the respective controls were observed.

2.3.6 Pulse chase

One of the main determinants of long term toxicity was DNA damage. ROS generation was

a major contributor, although direct physical interactions between the CNTs and the proteins

involved in division and DNA were also implicated [89]. As the MWNTs exhibited short

term toxicity, long term toxicity was preliminarily assessed using a pulse chase. Cells were

treated with the test substance at a non-toxic concentration for a short period of time (pulse)

and subsequently cultured in culture medium alone for an extended period of time (chase). The

effects of the substances internalised during the pulse could be assessed in the chase.

The HMMs were pulsed at 5 µg/mL for 1 day and chased for 14 days, the longest time

period the primary cells could remain viable. Only the unpurified MWNTs were assessed as

they were the most toxic in the cell viability assays. Figure 2.19 showed that the MWNTs did

not cause any significant toxic effects during the 14 day chase. This suggested that the short
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Figure 2.19: Toxicity of cells pulsed with unpurified MWNTs at 5 µg/mL for 1 day and chased
for 14 days in culture medium alone. Cell viability was measured using NR. Control (cells
treated under similar conditions but without MWNTs) values represented the mean ± SE of
three experiments each performed in duplicates, while the treated cells represented the mean
± SE of three experiments each performed in quadruplicates (ANOVA with LSD, P < 0.01,
Analyse-it®). No statistical significance was observed between the control and treated time
points and between 0 day and all other days.

MWNT exposure did not cause any long term toxic effects. Several papers concluded other-

wise. In another study by Muller et al. 2008b [89], the ground purified MWNTs (MWNTg)

were found to induce both DNA damage and chromosome loss in rat lung epithelial (RLE) cells

and human breast carcinoma cells (MCF-7) using a combination of a micronucleus assay and

fluorescent in situ hybridization. This technique allowed discrimination between micronuclei

containing a whole chromosome (indicating aneugenicity) and a chromosome fragment (indi-

cating clastogenicity). The MWNTs were found to induce both events indicating the presence

of DNA damage and chromosome loss. They disproved ROS as the contributor; instead, they

suggested that the observed damage could result from physical interaction between cell proteins

and the MWNTs or any metallic contaminants known to cause chromosome loss (e.g. cobalt).

Zhu et al. [61] found that MWNTs induced p53 and increased the frequency of mutations;

however, they implicated ROS as the contributor as they found MWNTs generated ROS based

on Fe content. Different cell types (rat lung epithelial cells versus mouse embryonic stems

cells), MWNTs dimensions (11.3 nm x 0.7 µm with < 2 wt% Co and Fe versus 9–30 nm x tens
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of µm with < 0.49 wt% Fe), and treatment concentrations (10, 25, and 50 µg/mL versus 5 and

100 µg/mL) between the two studies may have caused the differing results. As this study only

assessed the long term effects in terms of viability, direct analyses of DNA damage similar to

these two studies are required.

2.4 Discussion

A variety of assays were used to help counter the possibility of NPs interfering with toxicity

assays. Control experiments did not find unpurified MWNTs binding to the NR and MTT col-

orimetric dyes. However, the MTT results in this study consistently yielded higher cell death

over the other assays. When Worle-Knirsch et al. [90] used the MTT assay to assess the cy-

totoxic effects of A549 cells treated with SWNTs, electron micrographs revealed that MTT

formazan crystals had bound to the SWNTs which prevented their resolubilisation. Casey et

al. [91] found that SWNTs could reduce the MTT into formazan without the presence of cells.

They verified this observation by first incubating cells with the MTT dye and extracting the

converted purple formazan crystals. SWNTs were then mixed with the crystals and found to

convert the purple formazan crystals back to yellow, the colour of unconverted MTT dye. The

interactions observed by these two studies would cause an inflated toxic response. Although

control experiments in this study indicated that MWNTs did not lead to formazan production in

the absence of cells, the consistently higher cell death observed with the MTT assay suggested

that MWNTs may bind to the insoluble formazan product and prevent its resolubilisation. Fur-

ther studies are required to confirm this observation. Nevertheless, a live dead assay and an

ultrastructural analysis via TEM were used in this study to reduce sole reliance on spectropho-

tometric readings of NR and MTT dye accumulation.

All four methods concluded a dose and time dependent toxicity for unpurified and purified

MWNTs. For the unpurified MWNTs, similar levels of toxicity were observed when compared

to other studies. Both Hirano et al. [56] and Simon-deckers et al. [57] used pulmonary cell

lines (J774.1 and A549) and found similar levels of cell death where time and concentration

points corresponded. Both assessed higher concentrations and found even greater toxicity. If

purity was considered, De Nicola et al. [58] assessed MWNTs with < 0.1 wt% Fe on Jurkat

cells and found similar toxicities when treatment conditions corresponded. Although Pulskamp
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et al. [63] found similar levels of cell death, they concluded that MWNTs exhibited no acute

toxicity. No concrete conclusions could be drawn from any of these comparisons as the MWNT

structural dimensions and cell lines were different; nonetheless, the similar cytotoxicities ob-

served suggest that MWNTs were toxic in vitro.

Many papers have proposed the possibility of toxicity due to ROS generation from metal

catalysts, the most pertinent being Fenton chemistry where Fe2+ could convert hydrogen perox-

ide (H2O2) into hydroxyl (OH-) radicals and lead to lipid peroxidation or DNA damage. In this

study, toxicity was observed only in the purified MWNTs and not the residual iron suggesting

that the nanotubes themselves were the principle cause of cytotoxicity. The inactivity of iron

should be confirmed in a future experiment via the DCFH-DA assay, for example, which mea-

sures the presence of H2O2. Another possible experiment is to analyse whether the increased

brittleness of the purified MWNTs may have generated reactive sites along the outer structure,

exposing electrons that could produce free radicals such as superoxide (O2
.-). Lastly, the effects

caused by the length differences between the unpurified and purified MWNTs should also be

assessed, potentially by comparing the original unpurified MWNTs with shortened ones.

Studies contradicted whether individual CNTs or aggregates caused greater toxicity. Wick

et al. [92] found that well-dispersed CNTs were least toxic while Tian et al. [93] concluded

the opposite. When Wick et al. compared the toxicity of two SWNTs with similar impurities

(yittrium and nickel), the SWNTs dispersed with Tween-80 had fewer aggregates and were

less toxic. The authors suggested that the higher toxicity of SWNT aggregates was caused

by the stiffer and more solid nature. When Tian et al., however, compared the toxicity of

unpurified and purified SWNTs, they found that the purified SWNTs were more toxic. The

authors proposed that one possible reason for the difference in toxicity was contributed by

the difference in aggregation as the unpurifed SWNTs tended to aggregate. The contradicting

conclusions between these two studies could be explained by comparing the toxic effects of

aggregates between in vivo and in vitro analysis. In vivo, aggregates would be lodged in the

alveolar walls or glomerular capillaries causing granuloma formation. In vitro, however, the

aggregates would be too large to cause any effects to cells: the reactive surface area decreased

and the size could be too large for cell uptake. Instead, the individual CNTs would be able to

enter cells more easily and cause more damage with their increased surface area. Even with

the BSA, the MWNTs in this study still formed aggregates, and no analyses were made to
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determine the aggregate size range. Future studies are required to determine the aggregating

potential of the MWNTs and if there is a relationship between aggregation and toxic potential.

Imaging provided further clues to the active and passive cell uptake into the cytoplasm and

nucleus by the MWNTs. Confocal microscpy and SEM confirmed that MWNTs could enter

HMMs both actively and passively; and contrary to several papers, MWNTs longer than 3 µm

were observed in cells, although the exact mechanisms for MWNT uptake remains to be iden-

tified. If the MWNTs can passively enter the cell by mechanically translocating through the

lipid bilayer and create a nanopore as proposed by Lopez et al. [74], the MWNTs can damage

membrane integrity or act as conduits for fluid and ion exchanges. Alternatively, MWNTs could

mimic asbestos fibres and cause incomplete phagocytosis, where cells are unable to fully engulf

particles. These activated macrophages may release ROS and attract additional macrophages;

the surge in active macrophages can then lead to heightened ROS release. Additionally, diges-

tive enzymes from the unsealed phagosome can enter the extracellular regions. Both the ROS

and the digestive enzymes can lead to inflammation and may result in complications such as

granuloma formation or fibrosis. Fibre ends protruding from macrophages caused by incom-

plete phagocytosis will prevent the macrophages from properly clearing the fibres from the lung

and potentially lead to granuloma formation and fibrosis as well.

As MWNTs were observed in the nucleus, the reactive surfaces on the CNTs could generate

free radicals and lead to DNA damage. CNTs can even bind to DNA and RNA [94]. Two studies

confirmed that MWNTs damage DNA and chromosome, which could lead to genotoxic effects

such as mutagenesis (formation of mutation) or carcinogenesis (formation of cancer). The

pulse chase in this study found that MWNTs did not cause any long term effects to viability;

however, further analyses are required to determine if the MWNTs may be damaging DNA or

chromosome which the viability assays do not detect.

2.5 Conclusion

Both the unpurified and purified MWNTs exhibited dose and time dependent toxicity, and

cell death mainly resulted from primary necrosis. The residual iron Fe2O3 yielded no toxic-

ity. MWNTs were found to enter cells both actively and passively and were observed in the

cytoplasm and nucleus. The results from this study contributed to the field in the following
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ways:

• TEM was used to determine cell viability. This allowed differentiation between cell states

(healthy, primary/secondary necrosis, apoptosis) and identification of MWNTs within

cells. A relationship could then be proposed between the presence of MWNTs and cell

states.

• The exposed residual iron was identified and its toxicological potential assessed directly

on cells.

• Both active and passive uptake were visually confirmed using confocal microscopy and

SEM.

The results from this study conclude that MWNTs can cause harmful effects to human cells,

and the source appears to stem from the nanotubes themselves rather than the residual iron.
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Chapter 3

SWNT

3.1 Introduction

SWNTs are very similar to MWNTs but with smaller dimensions. Structurally, they consist of

only a single sheet of graphene rolled into a cylinder with diameters that can range from 0.4

to 2.0 nm [95]. The simpler structure has allowed researchers to determine whether SWNTs

are metallic or semiconducting based on how the graphene sheet is “rolled up” (chirality).

The circumference of the SWNT is defined as the chiral vector and can be drawn on a two-

dimensional hexagonal lattice using the equation Ch= n a1+ m a2, where n and m are integers

and a1 and a2 define the unit vectors. Depending on the location of the chiral vector, SWNTs

can be labelled as armchair when n = m, zig-zag when m = 0, or chiral for all other types

(Figure 3.1). SWNTs are metallic when |n - m| is divisible by 3, while all other combinations

are semiconducting [96].

As with MWNTs, applications of SWNTs are very broad. Their unique electrical conduc-

tivity make them ideal candidates for field-emission transistors, technology commonly used

in computer circuits. Semiconducting SWNTs have been shown to switch between conduc-

tion and insulation, and such technology can be applied to the logic gates in computers that

switch between binary "0" and "1" [51, 99]. SWNTs (< 1 µm in length) make ideal probe

tips for atomic force microscopy; their small diameter provides higher resolution, their high

mechanical strength prevents breakage, and their surface reactivity allows functionalisation for

studying electrochemical properties [100]. Biomedically, SWNTs have been explored as gene
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Figure 3.1: . Left: Two-dimensional hexagonal lattice structure with a chiral vector (Ch= n a1+
m a2), unit vectors a1 and a2 defined, tube axis (T), and chiral vectors for zig-zag and armchair
nanotubes. Right: Three-dimensional structure of an armchair, zig-zag, and chiral SWNT.
[97, 98]

and drug delivery vehicles, where SWNTs can be conjugated with various molecules such as

amino acids, peptides, and DNA and transported into cells [101, 102]. SWNTs can also be

conjugated with tumour markers and act as anti-tumour agents; an external near infrared laser

source would heat the SWNTs internalised by the tumour cells and subsequently kill them

[103]. However, their potential toxic effects to humans have similarly limited their develop-

ment. Table 3.1 summarised the details of some of the papers discussed in this chapter.

Several studies found that SWNTs were the most toxic amongst the three carbon NPs C60,

SWNTs, and MWNTs:

• De Nicola et al. [58] compared the toxicity of SWNTs to MWNTs in Jurkat cells treated

with 25 or 100 µg/mL of each sample for up to 3 days. Cell death was calculated as

a total of apoptotic and necrotic death. Apoptosis was identified as cells stained with

Hoechst 33358 and containing fragmented nuclei, while necrosis was identified as cells

stained with PI. A concentration and time dependent increase in cell death was observed

with SWNTs exhibiting higher cytotoxicity in all concentrations and time points than
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Table 3.1: Summary of experimental details of some of the SWNT papers discussed in chapter.
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MWNTs. At the lowest concentration (25 µg/mL) and time point (24 hrs), SWNTs

exhibited 12% cell death while MWNTs 8.5%; at the highest concentration (100 µg/mL)

and time point (72 hrs), SWNTs exhibited 25% while MWNTs 22%.

• Jia et al. [104] compared the toxicity of C60s, SWNTs, and MWNTs in primary alveolar

macrophages isolated from guinea pigs. 1.41–226 µg/cm2 of each sample was added for

6 hours and MTT used to assess toxicity. At the lowest concentration, SWNTs caused

20% death, while MWNTs did not induce significant toxicity until 22.6 µg/cm2(14%

death). No toxicity was observed for C60 within the tested concentrations.

• Zhang et al. [105] compared the toxicity of SWNTs to MWNTs in primary mice os-

teoblast cells treated with 0.1–50 µg/mL of each sample for 1, 2, and 3 days. Cytotoxic-

ity was similarly assessed with MTT and a concentration and time dependent toxicity for

both samples observed. The SWNTs exhibited higher toxicity at the highest concentra-

tion for all time points: 30%, 37%, and 47% death for SWNTs versus 29%, 35%, 40%

death for MWNTs.

All of these studies revealed the higher cytotoxic potential of SWNTs compared to other car-
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bon NPs. Specifically, SWNTs were found to dose-dependently decrease cell viability, cell

adhesion, and cell proliferation and to cause DNA damage:

• Cui et al. [106] assessed the effects of SWNTs on human embryo kidney cells treated

with 0.78–200 µg/mL of SWNTs for 1–5 days. MTT was used for assessing viabil-

ity. Cell adhesion was determined by first treating cells with fibrinogen and vitronectin,

adding SWNT samples, and subsequently centrifuging to quantify spectrophotometri-

cally the number of adherent cells. Apoptosis was identified morphologically as cells

with condensed nuclei, chromatin condensation, and internucleosomal DNA fragmen-

tation. A concentration and time dependent toxicity was observed for all three factors:

viability, adhesion, and apoptosis. Further assessment with Western blot identified that

SWNTs arrested the cell cycle at the G1 phase, confirming the mechanism of death as

apoptosis.

• Pacurari et al. [107] similarly observed that normal and malignant mesothelial cells

treated with 12.5–125 µg/cm2 of SWNTs for 24 hours caused concentration dependent

toxicity as confirmed with the MTT and Trypan blue assays. DNA damage was identified

using the comet assay.

Clearly, all six studies indicated that SWNTs were toxic. Several factors have been implicated

as possible sources of toxicity, including ROS generation, dispersibility of the SWNTs, and

interactions with the culture medium.

ROS generation. Two studies observed concentration dependent cell death correlated with

ROS generation, and the addition of metal chelators reduced the cytotoxic response:

• Pacurari et al. [107] used electron spin resonance and H2DCF-DA and identified pres-

ence of OH-, O-
2, and H2O2 with 12.5–125 µg/cm2 of SWNT for 24 hours on both nor-

mal and malignant mesothelial cells. Deferoxamine, superoxide dismutase, and cata-

lase—chelators of each of the respective ROS—all reduced the observed cytotoxic ef-

fects.

• Shvedova et al. [108] also used electron spin resonance on human bronchial epithelial

cells (BEAS-2B) treated with 60–240 µg/mL SWNTs for 18 hours and observed similar
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results. The ROS species OH- and H2O2 were detected and treatment with deferoxamine

and catalase both reduced ROS detection.

• A third study similarly observed ROS generation with SWNT treatments and correlated

the ROS presence with metal contamination. Pulskamp et al. [63] detected up to 20%

concentration and time dependent toxicity at the highest concentration and time point.

Rat alveolar (NR8383) and epithelial cells (A549) were treated with 5–100 µg/mL un-

purified and acid purified SWNTs for up to 8 days. The WST-1 and PI assays indicated

up to 20% cell death at the highest concentration and time point. ROS generation was

assessed using 2’7’-dichlorofluorescein (DCF) fluorescence and found to increase 4 fold

in NR8383 cells and 8 fold in A549 cells for the unpurified SWNTs; the acid purified

SWNTs yielded no response indicating that ROS was influenced by metal content.

Clearly, all three studies implicated that SWNTs could generate ROS. Although Pacurari et al.

[107]and Shvedova et al. [108]did not compare their results with purified SWNTs, the presence

of metal contaminants similar to Pulskamp et al. suggested their possible contribution.

Dispersion. Well-dispersed SWNTs were found to be less toxic than agglomerates. As

discussed in the MWNT chapter, Wick et al. [92]found that SWNTs dispersed with the sur-

factant Tween-80 had fewer aggregates and were less toxic. Yet aside from surfactants, SWNT

dispersion could be improved by attaching (or functionalising) functional groups (e.g. amines,

esters) through covalent reactions between the surface of the SWNTs and the functional group

[109]. Singh et al. [110] functionalised SWNTs with ammonium using the 1,3 dipolar cycload-

dition reaction and found that they were excreted more quickly through the renal system in rats

than unfunctionalised SWNTs, thereby decreasing toxicity. The functionalised SWNTs were

radio-labelled with indium, 60 µg were injected into the tail vein of mice for 0.5–24 hrs, and the

SWNTs traced using gamma scintigraphy. The functionalised SWNTs were found to exit the

systemic circulation via renal excretion with a half-life of 3 hours. Additionally, the excreted

SWNTs were still intact. These results indicated that SWNT dispersability could decrease their

toxicity.

Interactions with culture medium. SWNTs have even been found to cause indirect toxic-
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ity by binding to essential micronutrients in the culture medium, resulting in cell death due to

nutrient starvation. Casey et al. [91] first confirmed that SWNTs bound to the pH indicator dye

phenol red and riboflavin in culture medium using UV/visible spectroscopy. Guo et al. [111]

assessed further and found that 80 µg/mL of purified SWNTs depleted 90% of the phenol red

in culture medium. Using HPLC, the authors identified that the SWNTs most readily adsorbed

to the amino acids tyrosine, phenylalanine, and methionine and vitamins folate, riboflavin, and

thiamine at concentrations between 0.01–10 mg/mL. When nutrient depleted medium was re-

plenished with folate, the majority of the observed cell death was recovered. The results from

these studies indicated that the observed cytotoxicity of SWNTs may not be caused solely from

interactions between the SWNTs and cells, but also from indirect reactions, such as the nutrient

depletion by the SWNTs.

Although the previous studies indicated the cytotoxicity of SWNTs, a number of studies

have concluded differently—that SWNTs were not acutely toxic:

• When three different assays (alamar Blue, Coomassie Blue, and MTT) were used in one

study, all yielded less than 50% cell death in the concentration range tested (1.5–800

µg/mL) on A549 cells for 24 hours [112].

• In proliferating cell lines, two studies observed significant decreases in cell prolifera-

tion but no decrease in cell viability; no DNA damage was observed either. Jacobsen et

al. [113] used the LDH and NucleoCounter live/dead assays to assess cell viability in

mouse epithelial cells treated with 20-200 µg/mL of SWNTs. The cells were repeatedly

seeded and treated with SWNTs for eight passages; and after each passage, the viability

remained the same (90-99%), suggesting that the SWNTs were preventing proliferation

rather than decreasing viability. Zeni et al. [114] used Trypan blue and LDH to assess

the effects of 5–50 µg/mL of SWNTs on the proliferation of primary human peripheral

blood lymphocytes (HPBL). The SWNTs concentration dependently decreased cell pro-

liferation; however, cell death never exceeded 90%. Additionally, the comet assay did

not yield any DNA damage.

• In a fourth study, 0.195–50 µg/mL of SWNTs dispersed in culture medium did not reduce

cell viability; however, inflammatory markers such as IL-8 and IL-6 were suppressed,
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potentially leading to a less responsive immune system [115].

Clearly, such contradicting results have made establishing the toxic potential of SWNTs diffi-

cult. This study sought to use the same cell viability assays and microscopy techniques applied

to the MWNTs in an effort to draw a more definite conclusion. Additionally, by applying the

same techniques, a comparison could be drawn between the MWNTs and SWNTs.

3.2 Materials and methods

3.2.1 HiPco SWNT production

HiPco SWNTs were purchased from Carbon Nanotechnologies Inc (CNI). Developed at Rice

University for large-scale SWNT production, the HiPco process utilised gas-phase CVD by

flowing CO gas with Fe(CO)5 into a high pressure (30–50 atm) and high temperature (900–

1100°C) reactor. The high temperature decomposed the Fe(CO)5 into iron clusters that acted

as nuclei for SWNTs to nucleate and grow [116].

3.2.2 Unpurified and purified SWNT production

Both the unpurified and purified SWNTs were synthesised by K. K. Koziol. The unpurified

SWNTs were generated using thermal CVD heated to 1100°C for 30 minutes. Iron NPs were

stabilised in magnesium oxide (MgO) to maintain the small sizes required for SWNT diameters

(or the iron would aggregate and form MWNTs) and the substrate placed directly into the

furnace. Methane was used as the carbon source.

The SWNTs were purified using concentrated hydrochloric acid (HCl) (35%). The unpuri-

fied SWNTs were placed in the HCl and mixed by hand for 10 minutes before being left alone

for 24 hours. The HCl was then decanted and replaced with fresh HCl (repeated 3 times).

The HCl was decanted one final time and replaced with DIW. The slurry was then filtered and

washed with DIW several times via a vacuum-filter system before being dried.
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3.2.3 SWNT characterisation methods

3.2.3.1 Raman spectroscopy

The diameter and ID/IG ratio were determined using Raman spectroscopy (refer to chapter 2.2.3

MWNT: MWNT characterisation). Spectra from four different areas were measured, and the

following equation was used to calculate the diameters [117]:

ωRBM =
A
dt

+B

where, ωRBM = wavelength determined fromRaman spectrum

A = 234 cm-1

B = 10 cm-1

The final diameter for each of the SWNT samples was calculated by averaging the four calcu-

lated diameters for each sample.

3.2.3.2 BET

The BET surface area was measured using the MicroMetrics TriStar 3000 (refer to chapter

2.2.3 MWNT: MWNT characterisation).

3.2.3.3 ICP-AES

The ICP-AES analyses for the unpurified and purified SWNTs were performed by K. K. Koziol

(refer to chapter 2.2.3 MWNT: MWNT characterisation).

3.3 Dispersion

Similar to MWNTs, SWNTs are hydrophobic and tend to aggregate due to van der Waals

forces. As described in the MWNT chapter (2.2.5 MWNT: Dispersion), uniform dispersion

is desired in cell culturing. For this study, SWNTs were dispersed with BSA using the same

protocol as the MWNTs and were compared to SWNTs dispersed in culture medium alone.

The SWNTs were found to disperse better without BSA. As minimal manipulation was desired

to mimic natural exposure conditions, all experiments were carried out by first sterilising the
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SWNTs with ethanol, evaporating the ethanol, and then dispersing the SWNTs directly in the

culture medium. The solutions were agitated prior to addition to cells as the SWNTs fell out of

solution.

3.3.1 Cell viability assays

HMM cells were prepared according to chapter 2.2.4 (MWNT: HMM isolation), and three

different assays were used to assess cell viability: NR, LDH, and live dead. Refer to chapter

2.2.6 (MWNT: Cell viability assays) for NR and live dead protocols.

For the LDH, HMM cells were grown on 48-well plates. The experimental control was

prepared by culturing cells similarly but without any SWNT treatment. After treatment, the

plates were centrifuged and 100 µL of the sample supernatants transferred to a 96-well plate.

A background control was prepared by adding 100 µL of culture medium only to separate wells

in the 96-well plate.The remaining sample supernatants from the 48-well plates were removed

and 500 µL of 2% Triton X-100 in culture medium was added to lyse the cells. This provided

the high control. The plates were incubated at 37°C for 25–30 minutes before being centrifuged

and 50 µL of the supernatants transferred to the 96-well plates (different set of wells from the

initial 100 µL of sample supernatants). A high control background control was prepared by

adding 50 µL of 2% Triton X-100 only to separate wells in the 96-well plate. As the assay is

light sensitive, all procedures henceforth were performed in the absence of light.

The LDH Cytotoxicity Kit from Roche Applied Science was used. The diaphorase/NAD+

catalyst mixture was reconstituted with 1 mL DIW for 10 minutes. For 100 tests, a reaction

mixture was prepared by adding 11.25 mL of the diaphorase/NAD+ mixture to 250 µL of the

ready-to-use Iodotetrazolium chloride (INT) and sodium lactate dye. 100 µL of this reaction

mixture was added to the 100 µL of sample supernatants and 50 µL of high control super-

natants. The 96-well plate was covered with aluminium foil and left at room temperature for

20–25 minutes. The presence of LDH caused the diaphorase to convert the dye into formazan

which generated the color for the spectrophotometer to detect at 500 nm. The following for-

mula yielded the % LDH released [39]:
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(sample− background control)
(sample− background control) + (high control − high control background control)

×100

3.3.1.1 Assessment of potential interactions between assay dyes and SWNTs

For the NR, the same protocol for the MWNTs was used for the SWNTs (chapter 2.2.6.1

MWNT: Assessment of potential interactions between assay dyes and unpurified MWNTs).

Briefly, the SWNTs were incubated with the NR dye for 2–3 hours and washed twice with

PBS (via centrifugation and removal of supernatant). The extracting solution of 50% ethanol

and 1% glacial acid mixed in DIW was added to dissolve any existing dye. The solution was

centrifuged and the supernatant placed in the plate reader and scanned at 540 nm.

For the LDH, 50 µL of the corresponding SWNT concentrations (0.31 to 20 µg/mL) was

added to a 96-well plate. 50 µL of LDH enzyme at 0.05 U/mL concentration was added to the

SWNTs (total of 100 µL solution in each well). Two time periods were tested: one immediate

and the other with 24 hour incubation to assess whether any binding occurred between the

LDH enzyme and SWNTs over a longer period of time. After the appropriate incubation time,

the solutions were centrifuged and the supernatant transferred to a separate 96-well plate (100

µL/well). 100 µL of the reaction mixture (11.25 mL of the diaphorase/NAD+ mixture with 250

µL of the ready-to-use Iodotetrazolium chloride (INT) and sodium lactate dye) was added to

100 µL supernatants and the 96-well plate scanned at 500 nm. There was no statistical analysis

as the experiment was only performed once.

3.3.1.2 HiPco SWNTs

Once the HMMs seeded in 48-well plates were ready, the cells were treated with HiPco SWNTs.

A stock solution was prepared for only the highest concentration (20 µg/mL). Subsequent con-

centrations (0.31 µg/mL to 10 µg/mL) were prepared from this stock solution by diluting 1:2

with culture medium. The old culture medium was removed from the cells, and 500 µL/well

of the treatment solutions were added. The cells were treated with HiPco SWNTs for 1, 2 or

4 days. The treatment solutions were removed, and the cell viability was assessed using NR,

LDH, and live dead. The controls were prepared by treating cells under similar conditions but

without any HiPco SWNT treatments. NR and LDH assays were performed in triplicates and
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repeated 3 times, and the live dead was repeated 8 times as singletons. Statistical analysis of

ANOVA with LSD and P < 0.01 was performed using Analyse-it®.

3.3.1.3 Unpurified and purified SWNTs

For the unpurified and purified SWNTs, stock solutions for the highest concentration (20

µg/mL) were prepared. Subsequent concentrations for both chemicals were prepared from

the stock solutions by diluting 1:2 with culture medium. For both samples, the NR and LDH

assays were performed in triplicates and repeated 3 times and the live dead repeated 5 times

as singletons. Statistical analysis of ANOVA with LSD and P < 0.01 was performed using

Analyse-it®.

3.3.2 Pulse chase

The pulse chase was performed similar to the MWNTs (refer to chapter 2.2.11 MWNT: Pulse

chase). HMM cells were seeded on 48-well plates and treated with 5 µg/mL of unpurified

MWNTs for 1 day (pulse). The treatment solution was removed and the cells washed 2–3 times

with PBS. Fresh culture medium was added and the cells cultured for up to 14 days (chase),

renewing culture medium every 2–3 days. Cell viability was assessed using NR (refer to chapter

2.2.6 MWNT: Cell viability assays) at various time points after the initial pulse: 0, 1, 2, 4, 7,

10, and 14 day. For the 0 day, cells were not washed in PBS prior to NR incubation because

PBS washing frequently yielded low spectrophotometric readings. Controls were cells treated

under similar conditions but without the unpurified MWNT pulse. Controls were performed in

duplicates and NR in quadruplicates. Each experiment was repeated 3 times and statistically

analysed with ANOVA with LSD and P < 0.01 using Analyse-it®.

3.3.3 Live imaging

3.3.3.1 SWNTs filled with silver iodide (AgI@SWNTs)

As SWNTs were difficult to differentiate from cells under the microscope due to their carbon

and single-layer structures, one method to improve recognition was by filling the core with

a reflectant metal (Figure 3.2). In this study, silver iodide (AgI) was used. J. Bendall first
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Figure 3.2: BF TEM image of HiPco SWNTs filled with AgI. The arrows indicated the indi-
vidual SWNTs, and EDX confirmed the presence of AgI. (Image taken by J. Bendall [118])

purified the HiPco SWNTs (CNI) to remove unwanted material (e.g. amorphorous cafirst rbon,

other carbon NPs, metal catalysts). The SWNTs were reflux-heated at 110°C in concentrated

HNO3 for 3 hours. They were then vacuum-filtered, washed and dried at 110°C for 6 hours,

and allowed to oxidise in static air at 380°C for 2 hours. The sample was again reflux-heated

at 110°C, but in concentrated HCl for 6 hours, vacuum-filtered, washed and dried at 110°C for

6 hours, and oxidised in static air at 400°C for 45 minutes. The SWNTs were ground together

with the AgI using an agate mortar and pestle in order to mix the two substances together and

to break them down into fine powders. The mixture was vacuum sealed in a quartz ampoule

(backing pressure = 10-3 mbar) and placed in a tube furnace for 8 cycles of melting (650°C)

and annealing (500°C) before a final cool down over 12 hours. The excess AgI was removed

via bath-sonication as the mechanical motion caused the AgI to settle to the bottom, and the

desired carbon material could be decanted from the liquid [118].
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3.3.3.2 AgI@SWNTs dispersion

The AgI@SWNTs were first sterilised in ethanol and allowed to evaporate. When dispersed

with BSA and PBS, many aggregates were present. Dispersing in PBS alone yielded better

results. Chloroform and toulene were also assessed with chloroform yielding the best disper-

sion, but both solvents were extremely toxic to cells. Consequently, PBS alone was used to

disperse the AgI@SWNTs. Although the SWNTs were not fully dispersed, the aggregates

allowed easier identification in the confocal microscope.

3.3.3.3 Confocal microscope imaging

HMMs were seeded sparsely on 13 mm coverslips to allow imaging of individual cells rather

than clusters. 6 µL/mL of Hoechst 33358 (from a 1 g/L stock solution made with PBS) was

added 4–6 hours before imaging. The coverslips were then transferred to a lab-made Petri dish

(refer to 2.2.6 MWNT: Cell viability assays) containing HEPES buffer to eliminate the need for

CO2. 5 µL/mL of FM4-64 (from a 3.025 µg/mL stock made with DMSO) was added. The Petri

dish was placed in a temperature-controlled environment (37°C) with constant oxygen supply

on a Leica SP2 confocal microscope using an HCX PL APO CS 63x 1.2 with correction lens.

5 µg/mL of AgI@SWNTs dispersed in PBS was added. Individual cells with AgI@SWNTs

near the surface were located and Z-plane stacks were taken at various time intervals for 1 to 2

hours to create average projections. The AgI@SWNTs were identified using reflectance. The

same protocol was used for the Leica SP1 multi-photon inverted microscope.

3.4 Results

3.4.1 SWNT characterisation

Table 3.2 summarised the characterisation of SWNTs. The average diameter of the HiPco

SWNTs was slightly shorter than the unpurified and purified SWNTs. The unpurified and

purified SWNTs had similar diameters which was expected as the purified SWNTs derived from

the unpurified SWNTs. Unfortunately, length could not be accurately measured as the SWNTs

formed bundles, causing difficulty in identifying where each nanotube began and ended.

According to the company (CNI), the HiPco SWNTs contained 5 wt% Fe. Figure 3.3 is
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Diameter (nm) Surface Area (m2/g) Elemental Composition ID/IG Ratio

HiPco 1.05 ± 0.16 644 5% Fea 0.042
Unpurified 1.25 ± 0.23 250 30% Carbon, 70% Fe/MgO 0.092
Purified 1.24 ± 0.22 850–900 100% Carbon 0.076

Method Raman BET ICP-AES Raman

aObtained from company (CNI)

Table 3.2: SWNT characterisation details as assessed by Raman spectroscopy, BET method,
and ICP-AES.

a BF TEM image of individual HiPco SWNTs and bundles; EDX confirmed the presence of

Fe as well as other minor contaminants. For the purified SWNTs, ICP-AES confirmed that no

other contaminants were present. Figures 3.4 and 3.5 were BF TEM images of individuals and

bundles of unpurified and purified SWNTs. The Fe/MgO contaminants could clearly be seen

in Figure 3.4 as large round particles; EDX further confirmed their presence. Although the

ICP-AES yielded 100% purity for the purified SWNTs, some Fe was still detected in the EDX

(Figure 3.5).

The ID/IG ratios suggested increasing CNT purity as the ratio for the purified SWNTs de-

creased in value from 0.092 to 0.076. The higher BET value for the purified SWNTs was

further confirmation as the contaminants in the unpurified SWNTs could substantially decrease

BET readings. No changes in surface area or crystal structure were expected as acid-treatment

was non-oxidising; any changes would require exposure to heat or nitric acid.

3.4.2 Assessment of cell viability assay interactions

Various studies have noticed that SWNTs seem to affect certain viability assays (e.g. NR, MTT,

alamar Blue). For the MTT, SWNTs have been found to prevent the formazan crystals from

resolubilising which inflates the toxic result and to convert the MTT into formazan without the

presence of cells which deflates the toxic result [90, 91] (refer to chapter 2.4 MWNT: Discus-

sion for details). Monteiro-Riviere et al. [36], as explained in the Introduction (chapter 1.4.1

Introduction: Cell viability assays), provided a graded system of effective viability assays and

determined that the NR and an assay similar to the LDH (CytoTox One™ Homogeneous Mem-

brane Integrity) were graded as failures. As a result, control experiments for the NR and LDH
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Figure 3.3: BF TEM image of HiPco SWNTs with EDX analysis. Large black areas in BF
TEM image indicated bundles. A white box marked the area selected for EDX analysis. EDX
analysis indicated presence of Fe and other minor contaminants. The low Fe reading was
suggestive of the low Fe in the sample composition (5%) as specified by the company. The Cu
was from the TEM column and imaging grid.
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Figure 3.4: BF TEM image of unpurified SWNTs with EDX analysis. Round particles were
the MgO and Fe contaminants as confirmed by the EDX analysis. A white box marked the
area selected for EDX analysis. The Fe reading was lower in relation to the Mg and O because
Fe NPs were surrounded by MgO. This maintained the small Fe NP size required to generate
SWNTs, or else MWNTs would form from clustered Fe NPs.The Cu originated from the TEM
column and imaging grid.
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Figure 3.5: BF TEM images of purified SWNTs with EDX analysis. A white box marked the
area selected for EDX analysis. Both the TEM and EDX analysis revealed evidence of some
remaining Fe contaminants in the sample. The Cu in originated from the TEM column and
imaging grid.
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assays were performed on the HiPco and unpurified SWNTs using the same protocol as the

experiments in this study but without cells present. No interactions were observed suggesting

that the SWNTs had no direct effect with the assays (Figure 3.6). Purified SWNTs were not

assessed as the unpurified SWNTs yielded no effects, and the purified SWNTs were derived

from the unpurified SWNTs and were assumed to have similar properties. Consequently, NR

and LDH were used to assess SWNT toxicity in this study, and a third assay, the live dead,

which did not rely on colorimetric dyes, was used for comparison.

3.4.3 HiPco SWNTs toxicity

The HMMs were treated with HiPco SWNTs for 1, 2, and 4 days at concentrations ranging from

0.31 to 20 µg/mL. A concentration and time dependent toxicity was observed with significant

toxicity found only at the highest concentration of 20 µg/mL (Figure 3.7). NR yielded 16%

and 18% cell death after 2 and 4 days, respectively, while live dead yielded 7% and 14%.

Significant toxicity was observed at the highest concentration of 20 µg/mL only for the NR and

live dead assays. LDH enzyme release varied minimally from the control suggesting minimal

damage to the plasma membrane. These results suggested that HiPco SWNTs were not acutely

toxic to HMMs.

These results corresponded to the studies by Davoren et al. [112], Herzog et al. [115],

and Casey et al. [119], all using HiPco SWNTs. Although the cell types (A549 human lung

epithelial) and assays (CellTiterBlue, alamar Blue, Coomassie Blue, MTT) differed, none of

the studies observed significant reduction in cell viability at similar concentrations.

3.4.4 Unpurified and purified SWNTs toxicity

For the unpurified and purified SWNTs, the HMMs were treated similarly for 1, 2, and 4 days

at concentrations ranging from 0.31 to 20 µg/mL. No significant decrease in cell viability nor

plasma membrane damage was observed for either (Figures 3.8 and 3.9). Rather, the NR assay

revealed an increase in viability at various concentrations; one possible explanation was the

increased uptake of NR dye due to lysosomal distension from SWNTs.

Pulskamp et al. [63] acquired similar non-cytotoxic results assessing CVD-produced SWNTs

containing nickel/cobalt impurities and SWNTs that were purified with acetone. No loss of
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Figure 3.6: Effects of SWNTs on colorimetric dyes: A) NR, B) LDH, and C) LDH after 24
hour incubation of LDH enzyme with SWNTs. Minimal effects were observed.
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Figure 3.7: Toxicity of HiPco SWNTs after 1, 2, and 4 days based on three assays: (A) NR, (B)
LDH, and (C) live dead. NR and LDH values represented the mean ± SE of three experiments
each performed in triplicates; live dead values were the mean ± SE of eight individual experi-
ments (ANOVA with LSD, P < 0.01, Analyse-it®). Cells treated under similar conditions but
without SWNTs were used as controls. Statistical significance (*) was assessed between the
concentrations and their respective controls.
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Figure 3.8: Toxicity of unpurified SWNTs after 1, 2, and 4 days based on three assays: (A)
NR, (B) LDH, and (C) live dead. NR and LDH values represented the mean ± SE of three ex-
periments each performed in triplicates; live dead values were the mean ± SE of five individual
experiments (ANOVA with LSD, P < 0.01, Analyse-it®). Cells treated under similar condi-
tions but without SWNTs were used as controls. No statistical significance was seen between
the concentrations and their respective controls.
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Figure 3.9: Toxicity of purified SWNTs after 1, 2, and 4 days based on three assays: (A) NR,
(B) LDH, and (C) live dead. NR and LDH values represented the mean ± SE of three exper-
iments each performed in triplicates; live dead values were the mean ± SE of five individual
experiments (ANOVA with LSD, P < 0.01, Analyse-it®). Cells treated under similar condi-
tions but without SWNTs were used as controls. No statistical significance was seen between
the concentrations and their respective controls.
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viability nor significant decrease in cell membrane integrity was observed; however, ROS gen-

eration was correlated with the presence of metal impurities. Shvedova et al. [108] found a

similar correlation when assessing SWNTs with 30% iron, and the addition of a metal chelator

reduced the observed toxicity. In this study, the unpurified SWNTs contained 70% Fe/MgO

contaminants, and neither the unpurified nor purified SWNTs yielded significant cell death. It

could be concluded that the SWNTs did not cause acute cell death, but no conclusions regarding

ROS could be drawn as it was not assessed.

3.4.5 Pulse chase

Similar to the MWNTs, long term toxicity was assessed using a pulse chase. Cells were pulsed

for 1 day at 5 µg/mL with HiPco, unpurified, or purified SWNTs and chased for 14 days. No

significant effects were observed for any of the three types of SWNTs (Figure 3.10). This

suggested that a short exposure to the SWNTs did not cause lingering effects. This could

correspond to the lack of DNA damage observed by Zeni et al. [114], although Pacurari et al.

[107] determined the opposite. Unfortunately, accurate comparisons between the studies were

Figure 3.10: Toxicity of cells pulsed with all three SWNTs (HiPco, unpurified, and purified)
at 5µg/mL for 1 day and chased for 14 days in culture medium alone. Cell viability was
measured using NR. Control (cells treated under similar conditions but without SWNTs) val-
ues represented the mean ± SE of three experiments each performed in duplicates, while the
treated cells represented the mean ± SE of three experiments each performed in quadruplicates
(ANOVA with LSD, P < 0.01, Analyse-it®). No statistical significance was observed between
the control and treated time points and between 0 day and all other days.
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complicated by the different concentration units used (µg/mL versus µg/cm2, respectively).

Further studies into the metabolic processes are required to make any conclusive statements on

the effects of SWNTs on long term toxicity.

3.4.6 Live imaging

Confocal microscopy preparation is quicker and simpler than the TEM, and cells can be kept

alive during imaging. The cells can be imaged live for an extended period of time, allowing

the possibility of capturing whether CNTs cross the cell membrane, where they migrate to

within the cell, and if the cell remains alive or not afterwards. One complication for SWNTs

is that individual and small aggregates are not visible in the confocal microscope as they are

much smaller than the microscope resolution allows. Filling the SWNTs with a reflectant

metal improves their visualisation although individual SWNTs are still not visible. The abil-

ity to visualise the AgI@SWNTs in the confocal microscope was confirmed by imaging the

AgI@SWNTS alone using reflectance mode.

Preliminary imaging trials yielded one cell with AgI@SWNTs already present near or

within the cell at the start of imaging that later died by necrosis. An influx of FM4-64 dye

could be seen near the AgI@SWNTs. This suggested that the SWNTs could comprise the

plasma membrane; however, this was inconclusive as the imaging resolution and dye fluo-

rescence were fairly poor (Figure 3.11). Several other imaging trials yielded cells with no

significant reactions to AgI@SWNTs at the plasma membrane barrier throughout the imaging

time period, and no SWNTs were observed entering the cell. Additionally, many of the cells

were in an unhealthy state before the start of imaging, possibly due to the sparse cell seeding

on the coverslips.

All the preliminary trials were imaged with a Leica SP2 confocal microscope; however,

the multi-photon confocal microscope was better suited for live imaging. The Leica SP2,

a single photon confocal microscope, excited the fluorescent particles above and below the

plane of focus while a multi-photon confocal microscope only excited at the plane of focus.

This significantly reduced phototoxicity (cellular damage caused by fluorophore excitation)

and photobleaching (degradation of fluorophores from excitation), allowing cells and the fluo-

rescent particles to be imaged for an extended period of time [48]. The live imaging was trialed
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Figure 3.11: Confocal microscope average projection of a stack of images of AgI@SWNTs
in HMMs: A) t = 0 min, B) t = 30 min. White arrows indicated the AgI@SWNTs. Inset
A and B were XYZ axes projection with gray cross-sections pinpointing the location for the
YZ (inset a and c) and XZ (inset b and d) axes projections. White reflectance in insets a–d
(white arrows) showed that the AgI@SWNTs were located within the cell (blue = nucleus, red
= plasma membrane, white = AgI@SWNTs).

on the Leica SP1 multi-photon confocal microscope; however, the near infrared laser source

caused the SWNTs to heat and subsequently kill the cells, making the multi-photon confocal

microscope unusable. With the lack of any successful trails on the single photon confocal mi-

croscope, technical difficulties such as the imaging view drifting out of focus, and inability in

visualising individual SWNTs, live imaging was not pursued further. Future experiments using

the TEM could be performed as the reflectant metal filling in the AgI@SWNTs should make it

easier to differentiate the SWNTs from cell components.

3.5 Discussion

The characterisation data suggested that HiPco SWNTs would yield a higher BET value than

the purified SWNTs since surface area increases with decreasing diameter; however, the bun-

dle sizes could affect the BET value because larger bundles would prevent the nitrogen gas

88



from accessing individual nanotubes properly and lower the surface area adsorption readings.

Secondly, the purified SWNTs were expected to yield the lowest ID/IG ratio since decreasing

ratios suggest increasing purity. Several factors could have contributed to the unexpected re-

sults. The G-peak value could be affected by nanotube orientation; if a substantial amount of

nanotubes were aligned parallel to the polarised direction of the Raman laser, the G-peak would

increase, thereby decreasing the ID/IG ratio. Although length could not be determined for any

of the SWNTs, the unpurified and purified SWNTs might be shorter than the HiPco since the

catalyst for the unpurified and purified SWNTs was designed to produce 1 µm long SWNTs.

Shorter SWNTs signified more nanotube ends which would increase defective sites if they were

not properly capped; such defects would yield higher ID/IG ratios. Additionally, the different

methods of SWNT synthesis could affect the outcome of the ratio.

As Worle-Knirsch et al. [90] and Casey et al. [91] found that SWNTs interfered with the

MTT assay, the LDH assay was used instead. However, two later studies found that SWNTs

could also affect the LDH assay. Pacurari et al. [107] used the same LDH assay as this study

in which LDH release was measured via the enzymatic conversion of tetrazolium salt INT into

formazan and found that SWNTs adsorbed the LDH enzyme; this caused the LDH release to

decrease with increasing concentration. The assay used by Monteiro-Riviere et al. [36] mea-

sured LDH release by the enzymatic conversion of reasuzurin to resorufin; no direct interaction

between the SWNTs and the assay was indicated, but results yielded large error bars indicating

highly variable results. Although these two studies observed that SWNTs could influence the

LDH assay, control experiments in this study found no direct interferences; further trials were

required for statistical analysis to determine variability. As Monteiro-Riviere et al. suggested,

several assays were used in this study to assess the toxicity of the SWNTs; the live dead assay

provided a form of viability assessment that did not rely on colorimetric dyes. All three assays

correlated fairly well, although the NR and LDH did show greater variability than the live dead.

Of the three SWNT NPs, only the HiPco SWNTs exhibited an observable dose and time

dependent toxicity. No significant toxicity was found for the unpurified or purified SWNTs.

These results suggested that SWNTs were not acutely toxic. Furthermore, as the LDH assay

assessed plasma membrane leakage, no significantly different values suggested that SWNTs

did not cause plasma membrane damage. The percentages of cell death correlated with several

other studies [63, 106, 112], but higher concentrations were also used, and toxicity increased
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with increasing concentration. As the concentration range used in this study was chosen to

compare with the MWNTs, higher concentrations could determine whether toxicity would also

increase as observed in the other studies.

For the unpurified SWNTs, 70% of the sample was composed of Fe and MgO while the pu-

rified SWNTs contained no contaminants. The lack of toxicity observed for both the unpurified

and purified SWNTs suggested that neither the Fe and MgO nor the SWNTs themselves caused

cell death. Contrarily, the HiPco SWNTs, which contained up to 5 wt% Fe, yielded greater tox-

icity. Two studies compared cell death with ROS generation from metal contaminants and drew

opposing conclusions. Shvedova et al. [108] observed significant ROS generation but compa-

rable levels of cell death, while Herzog et al. [120] found no significant ROS generation and no

correlation with cell death. Herzog et al. proposed that the iron contaminants in HiPco SWNTs

were enclosed within the nanotube tips and were not bioavailable. They further suggested that

the fetal bovine serum (FBS) used in the culture medium induced a protective effect against

oxidative stress. The higher iron content and treatment concentrations used by Shvedova et

al. might explain the ROS generation observed. Furthermore, Shvedova et al. used electron

spin resonance to determine free radical presence, chemiluminescence for antioxidant response

against peroxyl radicals, and 2-thiobarbituric acid for lipid peroxidation while Herzog et al.

only used the carboxy-DCFDA assay which assessed the presence of hydrogen peroxide, per-

oxyl radicals, and peroxynitrite anions. As this study did not assess ROS generation, it would

be interesting to determine whether ROS were generated by using similar assays as these two

studies and if any differences existed between the SWNTs.

Aggregates could be observed when the SWNTs were dispersed in culture medium alone.

As mentioned in the MWNT chapter (2.4 MWNT: Conclusion), conclusions contradicted as

to whether aggregates increased or decreased toxicity. In vivo, large aggregates trapped along

alveolar walls or capillaries could cause granuloma formation while in vitro, they may be too

large to affect the cells. Instead, individual CNTs would be able to enter cells more easily and

cause more damage. No analyses were made on the degree of dispersion between the three dif-

ferent SWNTs in this study. Although little to no cytototoxicity was observed, further studies

could determine whether dispersion had an effect on SWNT cytotoxic potential. Additionally,

the lack of toxicity suggested that no interactions existed between the SWNTs and the nutrients

in the culture medium. No significant changes in medium colour were observed which was
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contrary to the results by Guo et al. [111]; however, the SWNT concentration used (80 µg/mL)

was much higher than this study (20 µg/mL) and the type of culture medium (RPMI) was dif-

ferent. The lack of medium interaction can be confirmed in the future using HPLC as assessed

by Guo et al.

Even though SWNTs were found to be not toxic, analysing their localisation and interaction

within the cell could further explain their effects toward cells. An attempt was made using

confocal microscopy; however, the SWNT size was below the resolution limitation, and only

bundles could be seen. BF TEM was not sufficient as SWNTs were difficult to discern from

cell components. Porter et al. [121] reported that energy filtered TEM (EFTEM) and high

angle annular dark field scanning TEM (HAADF-STEM) were effective in observing SWNTs

in HMM cells. Future studies using these techniques are required to determine if and where

SWNTs are internalised, the mechanism of uptake, and what happens after internalisation in

order to fully understand the interaction between SWNTs and cells.

In the study by Porter et al. [121], HMM cells were treated with 0–10 µg/mL of SWNTs

for 2 or 4 days, and SWNTs were observed in the nucleus, suggesting that SWNTs could

cause genotoxicity if they interact with the DNA. The pulse chase in this study indicated that

the SWNTs did not cause long term effects to viability; however, as with the MWNTs, fur-

ther studies directly assessing whether SWNTs damage DNA or chromosomes are required to

determine if SWNTs do cause genotoxicity.

3.6 Conclusion

HiPco SWNTs yielded a dose and time dependent toxicity with significant toxicity only at

the highest concentration (20 µg/mL). The unpurified and purified SWNTs yielded no toxic-

ity. This was the first time that SWNTs filled with a reflectant metal were used to enhance

their identification in the confocal microscope (as opposed to SWNTs functionalised with flu-

orescent probes). At these concentrations, the results concluded that SWNTs were not acutely

cytotoxic.
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Chapter 4

ZnO

4.1 Introduction

Zinc is a naturally-occurring metal found in the Earth’s crust, rocks, minerals, and soil. It is

commonly used in alloys, paint coatings, and as protective coatings for other metals. Zinc is

also an essential nutrient for humans with a recommended daily allowance of 15 mg/day [122].

It acts as a catalyst for over 300 enzymes as well as structural or regulatory ions for enzymes,

proteins, and transcription factors [123]. In the brain, zinc maintains normal neurological func-

tions as it regulates synaptic transmissions and memory formation [124]. Additionally, zinc

contributes to DNA synthesis, membrane metabolism, and cell growth and division. Deficien-

cies can result in infections, skin disease, delayed wound healing, impaired immune function,

growth retardation, and cancer whilst over-exposure can lead to gastrointestinal damage, ane-

mia, pancreatic damage, and a decrease in high-density lipoprotein (HDL) [122].

In nanotechnology, zinc oxide (ZnO) has gained significant interest with its semiconduct-

ing property, high surface area, transparency, resistance to radiation, and unique electrical,

optical, and photonic properties. Potential applications include field-effect transistors [125],

liquid crystal displays [126], light emitting diodes [127], solar cells [128], biological and gas

sensors [129], and pollutant filters in air and water [130]. Its broad ultraviolet (UV) absorp-

tion spectrum (covering both UV A and B radiation) and low refractive index has contributed

to its extensive application in cosmetics and sunscreens [131, 132]. Additionally, ZnO has

been found to protect against intestinal diseases, promote healing, and resist against bacterial
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infection promoting its application in many antimicrobial products [133, 134].

In industrial applications, workers exposed to ZnO have developed the flu-like illness "metal

fume fever," a pulmonary inflammatory response caused by inhaling metal oxide fumes. This

has been characterised by coughs, thirst, a metallic taste, salivation, fever, headache, myalgia,

fatigue, dyspnea, and neutrophil leucocytosis (higher than normal level of neutrophil leukocytes

in the blood), although symptoms are reversible within 1 to 4 days after cessation of exposure

[122, 135]. The US has set the permissible exposure limit to 5.0 mg/m3[136], although one

study has still found cases of metal fume fever within this limit when thirteen human subjects

were exposed to 5.0 mg/m3 of ZnO fume for 2 hours [137]. Table 4.1 summarised the details

of some of the papers discussed in this chapter.

Following the addition of ZnO into cosmetics and sunscreen, studies investigated whether

topical exposure can lead to health effects. A number of earlier studies found that ZnO could

penetrate the skin. Hallmans et al. [138] detected zinc in the blood and tissues of rats after

ZnO application to their skin. Zinc was found mainly in the dermis and panniculus carnosus

(muscle tissue) with the greatest concentration around the epidermis and hair follicles. Agren

et al. [139] applied ZnO via an occlusive dressing for 2 days on human skin and detected zinc

in the epidermis, blister fluid, and dermis. Despite evidence of zinc penetration from these

earlier studies, more recent studies indicated that ZnO remained in the stratum corneum and

hair follicle roots and did not penetrate into the deeper layers of the skin. Gamer et al. [140]

was able to retrieve all of the zinc that was applied onto porcine skin for 48 hours. Zvyagin et

al. [8] found that the ZnO NPs remained on the stratum corneum, collecting mainly in the skin

folds and hair follicles. Although results were contradictory, the prevailing lack of evidence of

ZnO skin penetration suggested that topical exposure was not a likely source of toxicity.

In vitro, studies assessed the toxic potential of ZnO and compared it with other metal NPs

(TiO2, Fe2O3, Al2O3, CrO3) only to discover that ZnO appeared to be the most toxic:

• Jeng et al. [141] found that 10–100 µg/mL of ZnO treated on mouse neuroblastoma

(Neuro-2A) cells for 48 hours caused concentration dependent cell death (50% at the

highest concentration), concentration dependent mitochondrial damage (80% at the high-

est concentration), and significant LDH release (nearly 100% after 70 hours at 50 µg/mL).

• Lin et al. [142] concluded that human lung epithelial cells treated with 8–25 µg/mL of
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Table 4.1: Summary of experimental details of some of the ZnO papers discussed in chapter.
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ZnO for 6–24 hours yielded a concentration and time dependent toxicity (85% at the

highest concentration) with a steep increase in cell death between 8 and 10 µg/mL.

The observed dose dependent toxicity has been attributed to ROS oxidative stress, and mito-

chondrial damage, and DNA damage:

• Daniels et al. [143] observed increased DCDHF fluorescence in mouse neuroblastoma

(Neuro-2A) cells treated with 10–300 µM ZnO indicating presence of ROS.

• Xia et al. [144] identified the ROS species as H2O2 and O-
2 in mouse leukemic macrophages

cells treated with 25 µg/mL of ZnO for 24 hours. They also detected decreased mitochon-

dria membrane potential.

• Sharma et al. [145] found that human epidermal cells treated with 0.008–20 µg/mL of

ZnO for 6 hours caused a concentration dependent increase in DNA damage.

Clearly, all these studies indicated that ZnO was highly toxic. One potential source implicated

for the observed toxicity was ZnO dissolution:

• Franklin et al. [146] proposed that cell death was mainly contributed by the dissolved

zinc. They first determined the dissolution rate and percentage of zinc from bulk and
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nanoparticulate ZnO using dialysis and found that, after 72 hours, only 19% of the max-

imum concentration of zinc was dissolved for both samples. The bacteria P. subcapitata

was treated with 10–100 µg/mL of ZnO for up to 80 hours and the toxic curve compared

to ZnCl2, a chemical known to readily dissolve into Zn2+ and Cl2-; the graphs nearly

corresponded fully, implicating the role of dissolved zinc.

• Heinlaan et al. [147], on the other hand, suggested that zinc dissolution only contributed

partially to the observed toxicity. They similarly concluded that both bulk and nanopar-

ticulate ZnO released comparable levels of Zn2+, although it was ~83% release (a recom-

binant sensor bacteria was used rather than dialysis). Both ZnO particles were compared

with ZnSO4, another chemical known to readily dissolve into Zn2+ and SO4
2-, in V. fis-

cheri bacteria and found to be 6 times less toxic than the reference substance ZnSO4. The

authors proposed that the difference was due to the limited solubility of ZnO NPs, which

would decrease the amount of dissolved zinc ions.

• Xia et al. [144] similarly used ZnSO4 but suggested that ZnO toxicity was due to both

dissolved zinc and solid ZnO NPs. The maximum concentration of dissolved zinc from

ZnO in culture media—190 µM for BEGM (BEAS-2B cells) and 225 µM for DMEM

(RAW 264.7 cells)—was determined to be lower than ZnSO4. ZnO reached > 80% zinc

dissolution in culture media within 3 hours, suggesting that using < 80% of the 190–225

µM maximum dissolved zinc concentration should result in only zinc and oxide particles

and no solid ZnO NPs. At such lowered concentrations, ZnO yielded less toxicity than

ZnSO4, and at higher concentrations where both dissolved zinc and ZnO solid NPs were

present, ZnO exhibited an acceleration in cell death. Such contradictory results led the

authors to conclude that solid ZnO NPs may contribute to cell death.

All three studies determined that ZnO released less Zn2+ ions than the reference chemicals that

readily released their Zn2+ ions (ZnCl2 and ZnSO4). Franklin et al. detected the least release

from ZnO, although different assessment methods were used in each study. Regardless of the

differences, these studies implicated the contribution of zinc dissolution to ZnO toxicity. The

extent of its contribution, however, remained uncertain.

As the potential applications for ZnO continue to grow, deducing the seemingly toxic im-

plications becomes essential. With nanotechnologists using ZnO as building blocks for other
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nanostructures such as ZnO nanowires, assessing how ZnO itself causes cellular effects may

help in understanding any possible toxic effects of ZnO nanostructures. This study seeks to use

similar experimental techniques as the CNTs in the previous two chapters in analysing ZnO

nanopowders in hopes of contributing to the assessment of ZnO nanowire toxicity for future

comparison with the CNTs.

4.2 Materials and methods

4.2.1 ZnO nanopowder production

Two types of 100 nm-sized ZnO nanopowders were purchased from Meliorum Technologies,

Inc: uncoated and PVA (polyvinyl alcohol) coated. PVA is a copolymer that can dissolve in

aqueous solutions and has been developed into a coating agent [148]; therefore, the PVA coat-

ing should improve ZnO nanopowder dispersion. According to the company, the nanopowders

were produced by a combination of wet chemistry and flame spray pyrolysis. For the wet

chemistry, zinc ions were reduced from ZnCl2 using ammonia or sodium borohydride. The

zinc ions were then oxidized into ZnO precipitates in an oxygen-rich environment (e.g. water

or oxygen gas). The ZnO precipitate (precursor) was dispersed into the flame spray pyrolysis

as micron-sized droplets. The flame evaporated the droplets and ignited the combustion with

an oxidant to generate ZnO nanopowders [149, 150].

4.2.2 ZnO characterisation methods

4.2.2.1 Length

BF TEM images were taken by evaporating a few droplets of uncoated or PVA-coated ZnO

nanopowders dispersed in ethanol on TEM grids. The long and short dimensional lengths

were determined by individually measuring 2000 NPs for each ZnO nanopowder sample using

ImageJ.

4.2.2.2 ICP-AES

ICP-AES analysis was performed by Warwick Analytical Services.
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4.2.2.3 Aggregation

Analysis on the Malvern Nanosizer (Malvern Instruments Ltd) was performed by E. Thomp-

son. 50 µg/ml of both samples were dispersed in de-ionised water, and 1 mL of each sample

was placed in a disposable curvette for analysis. After an intial analysis, the samples were

centrifuged at 1500 x g for 5 minutes to remove aggregates and the supernatant measured.

For the SEM, both ZnO nanopowders were dissolved in de-ionised water and allowed to

evaporate on Formvar-coated copper grids. The grids were attached onto SEM stubs and

coated with a thin layer of gold. 100 aggregates for each of the uncoated and PVA-coated

ZnO nanopowders were individually measured using ImageJ.

4.2.2.4 Raman spectroscopy

Each nanopowder was placed on a coverslide and the Raman spectrum taken by J. Bendall with

an excitation of 633 nm.

4.2.2.5 Photoluminescence

Each nanopowder was dispersed in ethanol and sonicated for 15 minutes. Solution was placed

on a silicon wafer and allowed to evaporate before analysation in a HORIBA Jobin Yvon

FluoroLog®-3 spectrofluorometer was performed by J. Bendall.

4.2.3 Cell viability assays

HMM cells were prepared according to chapter 2.2.4 (MWNT: HMM isolation), and three

different assays were used to assess cell viability: NR, LDH, and live dead. Refer to chapter

2.2.6 (MWNT: Cell viability assays) for NR and live dead protocols and chapter 3.3.1 (SWNT:

Cell viability assays) for LDH protocol.

4.2.3.1 Assessment of potential interactions between assay dyes

For the NR, the same protocol as the MWNTs was used (refer to chapter 2.2.6.1 MWNT:

Assessment of potential interactions between assay dyes and unpurified MWNTs), and for the

LDH, the same protocol as the SWNTs was used (refer to chapter 3.3.1 SWNT: Assessment of

potential interactions between assay dyes and SWNTs).
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4.2.3.2 ZnO nanopowder toxicity

HMM cells were grown in 48-well plates. Both ZnO nanopowders were first sterilised in

ethanol and the ethanol allowed to evaporate. Stock solutions in culture medium were prepared

for only the highest concentration (50 µg/mL). Subsequent concentrations (1.56 µg/mL to 25

µg/mL) were prepared from this stock solution by diluting 1:2 with culture medium. The old

culture medium was removed from the cells, and 500 µL/well of the treatment solutions were

added for 24 hours. The treatment solutions were removed, and the cell viability was assessed

using NR, LDH, and live dead. The controls were prepared by treating cells under similar con-

ditions but without any ZnO nanopowder treatments. NR and LDH assays were performed in

triplicates and repeated 3 times, and the live dead was repeated 5 times as singletons. Statistical

analysis of ANOVA with LSD and P < 0.01 was performed using Analyse-it®.

4.2.4 ZnO dissolution

ZnCl2 toxicity was assessed by K. H. Müller. HMM cells were seeded in 48-well plates and

treated with concentrations of ZnCl2that contained equivalent amounts of Zn2+ as the ZnO

nanopowder concentrations (i.e. 65 µg/mL ZnCl2 for 50 µg/mL ZnO—both concentrations

contained 40 µg/mL Zn2+). The old culture medium was removed from the cells, and 500

µL/well of the treatment solutions were added for 24 hours. The treatment solutions were re-

moved, and the cell viability was assessed using NR. The controls were prepared by treating

cells under similar conditions but without any ZnCl2 treatments. The experiments were per-

formed in triplicates and repeated 3 times. Statistical analysis of ANOVA with LSD and P <

0.01 was performed using Analyse-it®. The NR results for the uncoated and PVA-coated ZnO

nanopowders were taken from the toxicity assays (refer to section 4.2.3.2 ZnO nanopowder

toxicity).

ICP-OES (or ICP-AES) analysis was performed by M. Motskin. Extracellular, intracellular,

and lysosomal buffers were made according to Table 4.2; culture medium was also used in the

comparison. Both uncoated and PVA-coated ZnO were dispersed in the various buffers for

24 hours at a concentration of 200 µg/mL. Solutions were then compared to zinc calibration

standards to determine the amount of zinc present in each buffer. Refer to chapter 2.2.3 MWNT:

MWNT characterisation for ICP-AES details.
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CaCl2 MgCl2 KCl NaCl Glucose Buffer (25 mM) pH

Extracellular 1 mM 1 mM 5.8 mM 141.8 mM 5.6 mM HEPES-KOH 7.2
Intracellular 1 mM 142 mM 5 mM 5.6 mM HEPES-NaOH 7.2
Lysosomal 500 µm 1 mM 200 mM Mes-NaOH 5.0

Culture Medium 7.4

Table 4.2: Ingredient composition of cellular buffers used for the ICP-OES analyses of ZnO
nanopowder dissolution. No ingredient compositions for the culture medium were included as
the company (Invitrogen) did not provide any. Information synthesised from M. Motskin.

4.2.5 Confocal microscopy

HMM cells were grown on 13 mm coverslips and treated with 6 µg/mL of uncoated ZnO

nanopowder at 37°C for 1 day. The treatment solution was removed, coverslips washed with

2–3 times with PBS, and fresh culture medium added prior to imaging. The coverslip were

transferred to a lab-made petri dish (refer to chapter 2.2.6 Cell viability assays). 6 µL/mL

of Hoechst 33358 (from a 1 g/L stock solution made with PBS) was added 4–6 hours and

Calcein AM (1 µL/mL from a stock of 50 µg diluted in 100 µL DMSO) immediately prior to

confocal microscope imaging to identify the nuclei and cytoplasm of living cells, respectively.

The uncoated ZnO nanopowders were identified via reflectance imaging. Z-plane stacks were

taken with a Leica SP2 confocal microscope using a HCX PL APO CS 63x 1.2 with coverslip

thickness correction lens to create an average projection.

4.2.6 TEM

Chapter 2.3.3.1 (MWNT: Results and Discussion) provided the detailed embedding protocol,

although one change was made: cells were treated with 1% osmium tetroxide only (without

1.5% potassium ferricyanide and 2 mmol/L calcium chloride) as it was difficult to differen-

tiate between the potassium ferricyanide and ZnO nanopowders. To summarise, HMM cells

were seeded on 6-well plates. Following ZnO nanopowder exposure, the cells were washed 3

times with saline and then fixed with 4% glutaraldehyde in PIPES buffer (0.1 M, pH 7.4) for

1 hour at 4°C. Without removing the glutaraldehyde, the cells were scraped and transferred to

a polypropylene tube to be centrifuged. The supernatant was removed, saline added, and the
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mixture centrifuged again. This washing process was repeated for a total of 4 times to remove

the glutaraldehyde while minimising cell loss. The cells were then incubated in suspension in

1% osmium tetroxide only at pH 7.4 for 1 hour at 4°C. They were washed 4 times in de-ionised

water (DIW) before bulk staining with uranyl acetate for 1 hour at room temperature and cov-

ered with aluminium foil. Samples were washed twice in DIW followed by graded solutions

of ethanol (70, 95, and 100%) and 100% acetonitrile at three times for each solution. Samples

were then infiltrated under vacuum in quetol resin (Agar Scientific, UK) for 3 days and finally

cured in fresh quetol resin for 24 h at 60°C. The fixed and embedded cells were sectioned with

an ultramicrotome at 70 nm for BF TEM.

4.2.6.1 Mitochondria stereology

For the stereology, HMM cells seeded in 6-well plates were treated with either uncoated or

PVA-coated ZnO nanopowders at 6 and 12 µg/mL for 24 hours. Control samples were pre-

pared by culturing cells in similar conditions but without any ZnO nanopowder treatment. After

sample embedding and ultramicrotome sectioning at 70 nm, forty BF TEM images were taken

for every treatment. Only cells with recognisable mitochondria were imaged; this included

healthy and unhealthy cells. A grid was superimposed over each image, and only grid intersec-

tions that fell within cell parts and mitochondria were counted. Each image was assessed for

the normal and abnormal mitochondrial states (swollen cristae, pyknotic (electron-dense ma-

trix with dilated electron-lucent cristae [151]), electron translucent matrices, cristae rearrange-

ment). "Total Mitochondria" was determined by dividing the total number of intersections over

mitochondria by the total number of intersections over cell parts. The "Normal Mitochondria"

and "Abnormal Mitochondria" were determined by dividing the total intersections over normal

or abnormal mitochondria by the total number of intersections over cell parts. Each treatment

(Control, uncoated and PVA-coated ZnO nanopowders each at 6 and 12 µg/mL) was repeated

a total of four times. No association was made between the mitochondrial states and different

cell states (e.g. healthy, apoptotic, or necrotic). Statistical analysis of ANOVA with LSD and P

< 0.01 was performed using Analyse-it®.
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4.2.6.2 EDX

As the uranyl acetate used in bulk staining was found to replace the zinc, EDX cell samples

were neither osmicated nor bulk stained. Thus, after the gluteraldehyde was removed, samples

were directly treated in graded solutions of ethanol and acetonitrile before being infiltrated with

quetol resin. Embedded samples were sectioned at 150–200 nm thick to increase the elemental

counts available for EDX acquisition. All samples were carbon-coated to eliminate sample

charging. The EDX was calibrated using an aluminium grid on copper foil.

4.2.6.3 Cryo-immobilisation by freeze-drying

HMM cells were seeded on Formvar-coated 100-meshTEM gold grids attached to 13 mm cov-

erslips. Cells were treated with 3 µg/mL uncoated or PVA-coated ZnO nanopowder for 24

hours. The gold grids with the treated cells were removed from the coverslips, briefly rinsed

twice in cold de-ionised water, and quench frozen in melting propane cooled in liquid nitrogen.

They then were transferred into a brass block which was placed in an Edwards 360 vacuum

coating unit and brought to room temperature over 24 hours at a vacuum of < 1 x 10-5 mbar.

Samples were carbon-coated before EDX analysis.

4.2.6.4 Cryo-immobilisation by fixation then freeze-drying

HMM cells were seeded on Formvar-coated 100-meshTEM gold grids attached to 13 mm cov-

erslips. Cells were treated with 3 µg/mL uncoated or PVA-coated ZnO nanopowder for 24

hours. The treatment solutions were removed and the coverslips washed 3 times with saline

and refrigerated with 4% glutaraldehyde at 4°C overnight. They were then washed 3 times in

DIW at 10 minutes each. The gold grids with the treated cells were removed from the cov-

erslips, briefly rinsed twice in cold de-ionised water, and quench frozen in melting propane

cooled in liquid nitrogen. They then were transferred into a brass block which was placed in an

Edwards 360 vacuum coating unit and brought to room temperature over 24 hours at a vacuum

of < 1 x 10-5 mbar. Samples were carbon-coated before EDX analysis.
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4.2.6.5 Anhydrous preparation

HMM cells were seeded on 6-well plates and treated with 3 µg/mL uncoated or PVA-coated

ZnO nanopowders for 24 hours and washed with saline before being fixed with 10% acrolein

in polypropylene glycol for at least 1 hour. Samples were then scraped and washed with 100%

ethanol at least 3 times followed by 2 washes in 100% acetonitrile. Samples were then infil-

trated under vacuum in quetol resin for 3 days and finally cured in fresh quetol resin for 24 h

at 60°C. The fixed and embedded cells were sectioned to 70 nm for BF TEM and 200 nm for

EDX analysis. Samples for EDX analysis were carbon-coated.

4.2.7 Pulse chase

HMM cells were seeded on 6-well plates and treated with 3 µg/mL uncoated or PVA-coated

ZnO nanopowders for 24 hours (pulse). The treatment solution was removed and the cells

washed 2–3 times with PBS. Fresh culture medium was added and the cells cultured for 1 hour,

2 days, and 7 days (chase), renewing culture medium every 2–3 days. For the short pulse short

chase, the cells were treated at 50 µg/mL for 1 hour and chased for 0, 5, 15, and 60 minutes.

After the appropriate chase time points, cells were washed and fixed with 4% glutaralde-

hyde according to section 4.2.6 TEM. Once the cells were scraped and cleaned of the gluter-

aldehyde, each sample was further divided into two separate samples: one for normal TEM

imaging where cells were osmicated with 1% osmium tetroxide only and one for EDX analysis

where cells were neither osmicated nor bulk stained. Embedded samples were sectioned to 70

nm for BF TEM and 200 nm for EDX analysis. EDX analysis samples were carbon-coated.

4.3 Results

4.3.1 ZnO Characterisation

Table 4.3 summarised the characterisation of both ZnO nanopowders. 100 nm-sized nanopow-

ders were ordered; however, analysis yielded extremely variable size distributions. BF TEM

images (Figures 4.1 and 4.2) showed the wide range of nanopowder size and shapes. Figure

4.3 revealed that the uncoated ZnO nanopowders had long dimensional lengths that ranged

from 10 to 705 nm and short dimensional lengths from 7 to 359 nm. For the PVA-coated, the
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Figure 4.1: BF TEM image of uncoated ZnO nanopowders. Nanopowders ranged in all shapes
and sizes with the very tiny NPs considered as ZnO nanopowders as well. Holes in the back-
ground were from the holey carbon support film on the TEM grid.
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Figure 4.2: BF TEM image of PVA-coated ZnO nanopowders. Nanopowders ranged in all
shapes and sizes with the very tiny NPs considered as ZnO nanopowders as well. Holes in the
background were from the holey carbon support film on the TEM grid.
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Figure 4.3: Size frequency distribution of the long and short dimensions of uncoated (ZnO)
and PVA-coated (ZnO+PVA) ZnO nanopowders. 2000 NPs for each of the ZnO nanopowder
samples were individually measured using ImageJ for the analysis.

Dimension
Long (nm)

Dimension
Short (nm) Aspect Ratio

Surface
Area (m2/g) Composition

ZnO 80.3 ± 85.6 52.3 ± 52.8 1.6 ± 0.7 13.7 0.0292 wt% Ca
ZnO+PVA 76.1 ± 75.3 52.0 ± 49.6 1.5 ± 0.6 13.2 0.0307 wt% Ca

Method TEM BET ICP-AES

Table 4.3: Characterisation details of the uncoated and PVA-coated ZnO nanopowders as as-
sessed by TEM, BET method, and ICP-AES. 2000 NPs for each of the ZnO nanopowder sam-
ples were individually measured using ImageJ to determine the long and short dimensions and
aspect ratio.
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long dimensional lengths ranged from 0.161 to 455 nm and the short dimentional lengths from

0.109 to 271 nm. ICP-AES analysis determined that both the uncoated and PVA-coated ZnO

nanopowders were fairly pure. Although numerous elements were identified in the samples,

only calcium registered a substantial amount (all were < 0.01 wt%).

4.3.1.1 Aggregation

As PVA is soluble in aqueous solutions, the PVA-coated ZnO was expected to remain in so-

lution better than the uncoated ZnO. Both samples were analysed in a Malvern Nanosizer

(Malvern Instruments Ltd) in hopes of confirming this aspect. A Malvern Nanosizer measures

the size of particles by analysing the rate that laser light scattered from the particles diffuses

across the aqueous solution. Contrary to expectations, the results suggested that both were

aggregating. The initial analysis of the uncoated ZnO yielded an average aggregate size of

400 nm. If the nanopowders formed a true solution, they would remain dissolved even after

centrifugation. Consequently, the solution was centrifuged to remove aggregates, and particles

from the supernatant were measured. Subsequent analysis yielded an average diameter range

of 26.5–115 nm. For the PVA-coated ZnO, an initial reading yielded an average diameter range

of 30.4–181 nm. After centrifugation, no readings could be generated. This suggested that

the PVA-coated ZnO may have completely aggregated and none were left in solution. Un-

fortunately, analysis from a Malvern Nanosizer was limited as it did not directly measure the

aggregate sizes; moreover, the average could be skewed by the presence of extremely large or

small aggregates [152]. Additionally, if either the uncoated or coated ZnO nanopowders dis-

solved into ions, it would not be detected as the Malvern Nanosizer required at least 2 nm in

size.

With the inconclusive results from the Malvern Nanosizer, both nanopowders were further

analysed in the SEM to determine aggregation (Figure 4.4 and Table 4.4). Both nanopow-

ders formed aggregates. Although the PVA-coated ZnO nanopowders seemed to yield slightly

smaller aggregates, the differences were fairly minor.

4.3.1.2 Raman spectroscopy

Raman spectroscopy was measured to assess the crystalline structure of the ZnO nanopowders.

Figure 4.5 contained the spectra for both the uncoated and PVA-coated ZnO nanopowder. Both
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Figure 4.4: Size frequency distribution of the long and short dimensions of uncoated (ZnO)
and PVA-coated (ZnO+PVA) ZnO nanopowder aggregates. 100 aggregates for each of the
ZnO nanopowder samples were individually measured using ImageJ for the analysis. Most
aggregate lengths were < 2 µm with the exception of a few outliers that were > 9 µm for both
nanopowder aggregates.

Dimension
Long (µm) Mean(µm)

Dimension
Short (µm) Mean (µm) Aspect Ratio Mean

ZnO 0.134 – 15.2 1.9 ± 2.6 0.059 – 10.8 1.1 ± 1.8 1.04 – 7.22 1.9 ± 0.8

ZnO+PVA 0.050 – 16.6 1.0 ± 2.3 0.031 – 9.34 0.6 ± 1.4 1.00 – 3.89 1.7 ± 0.6

Table 4.4: Characterisation of uncoated and PVA-coated ZnO aggregates via SEM. 100 aggre-
gates for each of the ZnO nanopowder samples were individually measured via ImageJ. The
PVA-coated ZnO nanopowders resulted in slightly smaller aggregates.

109



Figure 4.5: Raman spectra of uncoated (ZnO) and PVA-coated (ZnO+PVA) ZnO nanopowders
using the excitation wavelength 633 nm. Both spectra were nearly identical. The high inten-
sity peak at 439 cm-1 indicated good crystalline structures. No apparent peak near 580 cm-1

suggested no obvious defects.

spectra were nearly identical. A larger sample quantity or higher background noise might have

caused the higher intensity spectra for the PVA-coated. The high intensity peaks near 439 cm-1

for both spectra indicated good crystallinity while no apparent peaks near 580 cm-1 signified a

lack of defects in the crystalline structure, such as oxygen vacancies or zinc interstitials caused

by missing oxygen atoms. These defects could yield unpaired zinc ions which might generate

ROS [153, 154].

4.3.1.3 Photoluminescence

As ZnO was found to excite at the UV and violet light range (360–385 nm), photolumines-

cence was performed to confirm the excitation wavelength for the uncoated and PVA-coated

ZnO nanopowders. Figure 4.6 confirmed that the peak excitation wavelength for both ZnO

nanopowders was 379 nm. The PVA-coated ZnO nanopowder yielded a lower intensity spec-

trum, suggesting that the PVA-coating might affect the emission intensity of ZnO nanopow-
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Figure 4.6: Photoluminescence spectra of uncoated (ZnO) and PVA-coated (ZnO+PVA) ZnO
nanopowders using the excitation wavelength 320 nm. Main emission peak was at 379 nm for
both nanopowders. The small emission peak at 476 nm resulted from defects in the nanopow-
ders. The emission intensity was lower for the PVA-coated ZnO nanopowder.

ders. Contrary to the Raman spectra, the small peaks at 476 nm suggested possible defects. As

Raman spectroscopy only assessed the crystalline structure, the defects noted in photolumines-

cence included those that would affect the generated luminescence by the ZnO nanopowders.

These defects could include oxygen vacancies, zinc interstitials, surface defects, or surface im-

purities (e.g. hydrogen, hydroxyl, carboxylate, alkane) [155]. The exact defect(s) and their

effects on cells would require further analysis.

4.3.2 Assessment of cell viability assay interactions

As no current literature exists assessing whether ZnO NPs interact with viability assays, control

experiments for the NR and LDH were performed similarly to the MWNTs and SWNTs to

investigate this possibility. A different set of concentrations were used: only two coincided with

the actual cell viability assays with one additional high concentration. This was to provide a

broader spectrum in case interactions only occurred at higher concentrations. The NR revealed

111



Figure 4.7: Effects of uncoated (ZnO) and PVA-coated (ZnO+PVA) ZnO nanopowders on
colorimetric dyes: A) NR and B) LDH without and with 24 hour incubation of LDH enzyme
with ZnO nanopowders. Potential binding effects were observed in the NR assay while minimal
effects were seen with the LDH.
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some interactions at the higher concentrations, although interactions remained minimal at 50

µg/mL, the highest concentration used in the viability assays in this study (Figure 4.7). Little to

no interactions were observed in the LDH. Consequently, the NR and LDH assay, in addition

to the live dead assay, were used in this study.

4.3.3 ZnO nanopowder toxicity

HMMs were treated with both nanopowders at concentrations ranging from 1.563 to 50 µg/mL

for only 24 hours as significant death was already present. The ZnO nanopowders exhibited

a concentration dependent toxicity with a sudden increase in cell death between 12.5 and 25

µg/mL; all three assays reflected this threshold (Figure 4.8). Significant toxicity was observed

for the uncoated ZnO in all three assays at 12.5 µg/mL and above, while only the live dead

assay yielded similar results for the PVA-coated. Significant toxicity for the PVA-coated was

only observed at 25 µg/mL and above for the NR and LDH. No clear distinction in toxicity

could be differentiated between the uncoated and PVA-coated ZnO nanopowders, although the

slight difference in significant toxicity suggested that the uncoated was slightly more toxic.

Several papers similarly observed the sudden increase in cell death (Table 4.5). Lin et

al. [142] found that both 70 and 420 nm ZnO NPs yielded accelerated cell death between

10–18 µg/mL (length of exposure used not indicated). Deng et al. [156] concluded similarly

when comparing 10, 30, 60, and 200 nm ZnO NPs in mouse neural stem cells for 24 hours

and observed the acceleration after 12 µg/mL. On the contrary, Jeng et al. [141] found that

mouse neuroblastoma cells exhibited a gradual increase in cell death when 50–70 nm ZnO

NPs were treated at 10–200 µg/mL for 24 hours. One explanation may be the homeostatic

mechanisms in neurons as proposed by Vallee et al. [123]. As zinc was involved in neurological

processes, a large concentration existed in the brain; up to 300 µM zinc could be found in the

synaptic vesicles of neurons. Although toxic effects were observed in neuronal cells in vitro, the

existence of such high concentrations of zinc in the brain suggested that a different metabolic

strategy may exist. Another factor may be the length of treatment. Both Sharma et al. [145]

and Lin et al. [142] revealed that increasing the ZnO NP treatment time increased the rate of

cell death after the threshold point. When Sharma et al. exposed A431 cells to ZnO for 3, 6, 24,

or 48 hours, no sudden acceleration in cell death was observed until 24 and 48 hour exposure
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Figure 4.8: Toxicity of uncoated (ZnO) and PVA-coated (ZnO+PVA) ZnO nanopowders after
24 hours based on 3 assays: (A) NR, (B) LDH, and (C) live dead. NR and LDH values repre-
sented the mean ± SE of three experiments each performed in triplicates; live dead values were
the mean ± SE of five individual experiments (ANOVA with LSD, P < 0.01, Analyse-it®).
Cells treated under similar conditions but without either ZnO nanopowders were used as con-
trols. Statistical significance (*) was assessed between the concentrations and their respective
controls.
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(at 0.8 µg/mL). For Lin et al., exposing ZnO to A549 for 6, 12, and 24 hours yielded gentle-

sloped rate of toxicity for the 6 hour exposure (highest death of ~20%), medium-sloped rate of

toxicity for the 12 hours (highest death of ~40%), and steep-sloped rate of toxicity for the 24

hours (highest death of ~80%). All these studies indicated that ZnO toxicity could be affected

by factors such as size, cell line, and length of exposure and should be taken into consideration

when determining their cytotoxic potential.

Particle
size (nm)

Cell Type Conc.
µg/mL

Time
(hrs)

Assay Threshold point

Xia et
al [159]

13 RAW 264.7
murine

macrophage

25 1–16 MTS 4 hrs

Sharma
et al
[160]

30 A431
human

epithelial

0.008–
20

3–48 NR, MTT,
LDH

0.8 µg/mL, most
apparent after 24 hrs

Lin et al
[158]

70, 420 A549
human
alveolar

8–18 6–24 LDH 8 µg/mL, rate of
death increases with

longer treatment
This
study

80x52 HMMs
human

macrophage

1.5–50 24 NR, LDH,
live dead

12.5 µg/mL

Table 4.5: Comparison of studies that observed sudden acceleration of ZnO-induced cell death

4.3.4 ZnO dissolution

Zinc is known to exist in aqueous solutions as Zn2+ cations, and acidic conditions can further

promote ZnO dissolution [122]. Xia et al. found that ZnO dissolved more readily in culture

medium (Dulbecco’s modified eagle medium) than water, although the dissolution was less

complete than ZnSO4, which readily dissolved into Zn2+ cations [144]. Franklin et al. [146]

compared ZnCl2 toxicity in freshwater alga to ZnO and found the concentration-response curve

for Zn2+ for both ZnCl2 and ZnO corresponded suggesting that ZnO toxicity resulted from the

Zn2+ cations. Both Xia et al. [144] and Heinlaan et al. [147] compared ZnSO4 to ZnO and

found that ZnSO4 caused greater toxicity than ZnO. The difference in result may be caused by

the different reference Zn2+ cation source chemicals; however, all concluded that ZnO disso-
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lution contributed to the observed toxicity. Consequently, a similar assessment was performed

comparing the toxicity of ZnCl2 with the uncoated and PVA-coated ZnO nanopowders (Figure

4.9). As ZnCl2 readily dissociates into Zn2+ + 2 Cl-, any toxicity caused by ZnCl2 could be at-

tributed to Zn2+ cations. The uncoated ZnO nanopowder yielded a curve similar to ZnCl2 with

no significant differences implicating the role ZnO dissolution may have in the resulting cell

death. The PVA-coated ZnO nanopowder resulted in a slightly less toxic curve with significant

differences at the 10 and 20 µg/mL to both the ZnCl2 and uncoated ZnO. This suggested that

the PVA-coating might have decreased the effects of Zn2+.

Figure 4.9: Toxicity of ZnCl2 and uncoated (ZnO) and PVA-coated (ZnO+PVA) ZnO nanopow-
ders using NR to determine the possible effects of ZnO dissolution. NR values represented the
mean ± SE of three experiments each performed in triplicates for each of the three samples
(ANOVA with LSD, P < 0.01, Analyse-it®). ZnCl2 experiments were performed by K. H.
Müller. Cells treated under similar conditions but without chemicals were used as controls.
Statistical significance was assessed between the three chemicals; the * indicated significant
difference between the PVA-coated ZnO (ZnO+PVA) and both ZnCl2 and uncoated ZnO.

As the pH varied within the cell (Table 4.2), ZnO dissolution was further analysed using

ICP-OES (or ICP-AES) to determine if the concentration of dissolved zinc varied amongst

the various cell compartments. Results revealed that ZnO dissolved the greatest in lysosomal

buffer, the buffer with the lowest pH (5.0) amongst all 4 buffers (Figure 4.10). This confirmed

that acidic conditions promote ZnO dissolution, which may affect the amount of Zn2+ cations

exposed to cells depending on where the ZnO nanopowders access the cells. As the ICP-OES

only assessed the presence of zinc particles, direct analysis of the type of zinc ion(s) dissociated
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is required to determine if only Zn2+ cations are present or if other ion species exist as well (e.g.

Zn(OH)+, Zn(OH)2, Zn(OH)-
3 and Zn(OH)2-

4 ).

Figure 4.10: Uncoated and PVA-coated ZnO nanopowder dissolution in different cell buffers
according to ICP-OES. All readings were performed three times, each in duplicates, for a total
of six readings per sample. Data presented as mean ± SE of the six readings (ANOVA with
LSD, P < 0.01, Analyse-it®). Symbols (*, �) indicated statistical significance between buffers
within each nanopowder. For the uncoated ZnO (ZnO), zinc presence in all four buffers were
statistically significantly different. For the PVA-coated ZnO (ZnO+PVA), only the lysosomal
buffer was statistically different from all the other buffers. Additionally, for the intracellular
buffer, lysosomal buffer, and culture medium, dissolution was statistically significantly dif-
ferent between the control, ZnO, and ZnO+PVA (not shown on graph to reduce confusion).
Control buffers were respective buffer solutions without either ZnO nanopowders added. Ex-
periments were performed by M. Motskin.

4.3.5 Microscopy

The ZnO nanopowders were first imaged in the confocal microscope to determine visibility

(refer to chapter 2.3.5 MWNT: Active/Passive Uptake for protocol). None of the lasers used

caused the ZnO to fluoresce; as a result, they were imaged using the 488 nm laser in reflectance

mode. Figure 4.11 showed indications of a HMM phagocytosing a cluster of ZnO nanopow-

ders. As only large clusters could be seen in the confocal microscope coupled by the possibility

of ZnO dissolution, all imaging was directed to the TEM.

Preliminary morphological analysis on the TEM of HMMs treated with 6, 12, and 25 µg/mL
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Figure 4.11: Confocal microscope average projection of an image stack of a HMM phago-
cytosing ZnO nanopowders (green = cytoplasm, blue = nucleus, white = ZnO). White arrows
indicated the ZnO nanopowders and site of phagocytosis.
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uncoated and PVA-coated ZnO nanopowders for 24 hours suggested that treated cells died

mainly via apoptosis and exhibited pronounced microfilaments (Figures 4.12 and 4.13) and

pyknotic mitochondria (Figure 4.14) more frequently than control cells.

Mitochondrial damage has been associated with Zn2+ neurotoxicity, including disruption

of the mitochondrial electron transport chain, loss of mitochondrial membrane potential, re-

duced ATP production, and increase in mitochondrial ROS production [157]. Sensi et al. [158]

found that Zn2+ could enter mitochondria through the Ca2+-permeable α-amino3-hydroxy-5-

methyl-4-isoxazolepropionic-acid/kainate channels and cause ROS generation and subsequent

mitochondrial damage. Marin et al. [159] concluded that Zn2+ inhibited mitochondrial res-

piration which led to depleted ATP production. Because of this relationship, a stereological

analysis of the abnormal mitochondrial states (pyknotic, swollen cristae, or electron translu-

cent) was carried out (Figure 4.15). Table 4.6 summarised the results. The total mitochondria

ZnO ZnO+PVA
Control 6 µg/mL 12 µg/mL 6 µg/mL 12 µg/mL

Total Mitochondria 3.95 % 3.69 % 3.16 % 3.94 % 3.59 %
Normal Mitochondria 3.55 % 3.10 % 2.36 % 2.87 % 2.94 %
Abnormal Mitochondria 0.40 % 0.60 % 0.79 % 1.07 % 0.65 %

Table 4.6: ZnO mitochondria stereology results. No statistical significance between any of the
treatment conditions were found (ANOVA with LSD, p > 0.01, Analyse-it®).

present were similar between the control and treated conditions. The number of abnormal

mitochondria in the 6 µg/mL uncoated ZnO increased by 50% and 12 µg/mL by 100%; the

PVA-coated ZnO yielded a slightly different result with 6 µg/mL increasing by 168% and 12

µg/mL by 63%. Although the actual percentages were relatively small, the increase observed

in both the uncoated and PVA-coated ZnO treated cells indicated that ZnO may indeed affect

the mitochondrial condition.

Foreign NPs indicative of uncoated and PVA-coated ZnO nanopowders could be seen in

the TEM images; however, it was uncertain if they were actual ZnO nanopowders or debris.

EDX was used in an attempt to identify ZnO nanopowder presence in the cells. Although many

cells were found with ZnO-like nanopowders, very few registered positively as zinc on the

EDX (Figure 4.16). With evidence that ZnO nanopowders can dissolve into Zn2+ cations, we
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Figure 4.12: BF TEM image of a cell treated with uncoated ZnO nanopowder (12 µg/mL ZnO
for 24 hours). Morphology indicative of secondary necrosis, although the condensed nucleus
appeared atypical and no apoptotic bodies were present. Pronounced microfilaments could be
seen in the cytoplasm (black arrows).
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Figure 4.13: BF TEM image of a cell treated with uncoated ZnO nanopowder (25 µg/mL
ZnO for 24 hours). Cell appeared unhealthy as no pseudopodia (projections along the plasma
membrane) were present. Pronounced microfilaments were observed in the cytoplasm (black
arrows). A large vacuole was also present containing, most likely, only debris.
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Figure 4.14: BF TEM image of a cell treated with uncoated ZnO nanopowder (6 µg/mL ZnO
for 24 hours). Cell appeared unhealthy as pseudopodia had disappeared and blebbing (budding
of cell parts along plasma membrane) was present. Mitochondria exhibited pyknosis (black
arrows). A large vacuole was present, but it could not be confirmed whether the dark NPs were
ZnO nanopowders or debris.
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Figure 4.15: BF TEM images of abnormal mitochondria: A) Mitochondria with swollen cristae,
B) Pyknotic (electron dense matrix with lucent cristae) (black arrow), C) Electron translucent
matrices, and D) Cristae rearrangement. White lines were the grid lines superimposed for
mitochondria stereology. A normal mitochondria could be seen in inset B indicated by a white
arrow.
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Figure 4.16: BF TEM image of uncoated ZnO nanopowder in a HMM with EDX confirming
presence of ZnO. The black arrow indicated the identified ZnO nanopowder selected for the
EDX analysis.

124



hypothesised that the uncoated and PVA-coated ZnO nanopowders may have dissolved during

treatment or sample preparation resulting in the lack of detection in the TEM and EDX. Various

methods were undertaken to address this possibility: cryo-immobilisation followed by freeze-

drying, cryo-immobilisation by fixation then freeze-drying, and anhydrous preparation.

Cryo-immobilisation by freeze-drying and cryo-immobilisation by fixation then freeze-

drying could help identify whether ZnO dissolved into zinc ions. When cells are freeze-dried,

both ZnO nanopowders and zinc ions are retained while fixed cells become permeable and

release the zinc ions; this affirms whether any ZnO nanopowders remain or all are dissolved

into zinc ions. As the freeze-dried cells should retain the most zinc, the freeze-dried gold grids

were quantitatively analysed first with the EDX; unfortunately, no zinc registered.

Since all previous sample preparations involved aqueous solutions, an anhydrous protocol

which eliminated the use of water was employed to prevent any remaining uncoated or PVA-

coated ZnO nanopowders from dissolving. Black NPs indicative of ZnO NPs were seen in

the treated cells and not in the control cells; however, when analysed in the EDX, no zinc

registered. We concluded that the amount of ZnO present may be too low for the detector to

detect.

4.3.6 Pulse chase

As the toxicity assays revealed that both uncoated and PVA-coated ZnO nanopowders were

acutely toxic, pulse chase experiments were performed to assess long term toxicity. Cells were

pulsed at a less toxic concentration of 3 µg/mL for 24 hours to ensure that cells could survive

the longer chase time points. Cells were initially chased for 1 hour (Figure 4.17), 2 days

(Figure 4.18), and 7 days (Figure 4.19). BF TEM yielded similar images as the preliminary

morphological analysis (i.e. pronounced microfilaments and mitochondrial pyknosis). Black

NPs suggestive of ZnO nanopowders were observed; however, EDX analysis could not confirm

the presence of ZnO in the cells. A short pulse at high concentration followed by short chases

was attempted to try and reduce ZnO nanopowder dissolution. HMMs were pulsed at 50 µg/mL

for 1 hour and chased at 0, 5, 15, and 60 minutes. BF TEM revealed few dead cells suggesting

that the uncoated and PVA-coated ZnO nanopowders were not exceedingly acutely toxic. No

EDX was performed as the ZnO present was too low for the detector to detect.
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Figure 4.17: BF TEM image of a cell with unconfirmed NPs after a 3 µg/mL pulse with un-
coated ZnO nanopowders for 24 hours and a 1 hour chase. White arrows indicated NPs sug-
gestive of uncoated ZnO nanopowders, but EDX analysis could not confirm. The cell was in a
healthy state (determined from a separate less magnified image).
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Figure 4.18: BF TEM image of a cell with pyknotic mitochondria (white arrows) after a 3
µg/mL pulse with uncoated ZnO nanopowders for 24 hours and a 2 day chase. The remaining
blackened organelles/vacuoles could not be clearly identified. Presence of blebbing (black
arrows) indicated an unhealthy cell state.
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Figure 4.19: BF TEM image of a cell with pyknotic mitochondria (white arrows) after a 3
µg/mL pulse with PVA-coated ZnO nanopowders for 24 hours and a 7 day chase. The remain-
ing blackened organelles/vacuoles could not be clearly identified. Presence of blebbing (black
arrows) indicated an unhealthy cell state.
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4.4 Discussion

According to the U.S. Department of Health and Human Services, zinc toxicity was mainly

manifested as metal fume fever and copper deficiency. No confirmable evidence existed that

zinc causes significant dermal, reproductive, developmental, or carcinogenic effects [122].

However, zinc was associated with many neurological disorders, such as Alzheimer’s, Menkes,

Wilson’s, Pick’s, and Parkinson’s disease; amyotrophic lateral sclerosis; dementia; stroke; and

seizures [160]. Substantial amounts of zinc were found in the brain, whether in synaptic vesi-

cles, as free ions in the cell cytoplasm, or bound to proteins or membranes; and exogenous zinc

was implicated in cell death for both in vivo and in vitro environments [161]. The results in this

study combined with several other studies confirmed that ZnO was acutely toxic in vitro and

was marked by a sudden acceleration in cell death after a certain threshold concentration. The

corresponding cell death curve with ZnCl2, inability to detect ZnO NPs despite various efforts

to retain any remaining undissolved ZnO NPs, and evidence of mitochondrial damage as ob-

served in Zn2+ neurotoxicity confirmed that ZnO dissolution contributes to the toxic response.

ZnO dissolution was affected by pH and protein. According to Degen et al. [162], ZnO

formed a stable solution at pH 7.2. Figure 4.20 revealed that ZnO dissolution increased with

decreasing pH, beginning at about pH 10. Depending on the starting pH of the solvent, the

addition of ZnO could potentially decrease the final pH: when ZnO was added to a pH 9.9 so-

lution, the final pH decreased to 7.6 after 3 days when it stabilised. Yang et al. [163] found that

human serum albumin caused an initial increase in Zn2+ release before precipitation resulted

in a decrease in Zn2+ presence. In this study, ZnO dissolution was found to be dependent on

the pH within the various cell compartments (extracellular, intracellular, and lysosome). ZnO

dissolution was greatest in the lysosome where pH is 5.0, while the pH of 7.2 in the extracel-

lular and intracellular compartments resulted in significantly less dissolution. Direct analysis

of the zinc ion species produced in the dissolution were required to determine if only Zn2+

cations were present or if other ion species as presented in Figure 4.20 were produced as well.

Nonetheless, pH and the presence of protein could impact the toxic effects of Zn2+ cations.

As other cell compartments had pH < 7.2 (e.g. Golgi apparatus pH = 6.4, endosomes pH = 6,

lysosomes pH < 5 [164, 165]), the impact of Zn2+ toxicity was significant. Additionally, the

potential decrease in pH after ZnO addition might result in suboptimal pH for certain cell parts.
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Figure 4.20: Fraction of Zn (II) ion species as Zn2+, Zn(OH)+, Zn(OH)2, Zn(OH)-
3 and Zn(OH)2-

4

between pH 6 and 14 at 25°C [162].

Both the uncoated and PVA-coated ZnO nanopowders aggregated. According to both

Franklin et al. [146], the ZnO dissolution rate was similar for both bulk and nanoparticu-

late ZnO. The accepted theory in NP research was that the rate of dissolution was proportional

to the particle surface area; as NPs have higher surface area, they should dissolve faster than

bulk particles. Yang et al. [163] did indeed observe that ZnO dissolution was faster for ZnO

NPs than microparticles. They found that NPs released a maximum of 95% of the Zn2+ions

after ~50 hours incubation while microparticles released 85% after ~250 hours. One proposed

reason for the differing results by Franklin et al. [146] was the observed aggregation in the

nanoparticulate ZnO. Aggregation could decrease the available surface area, which would de-

crease the dissolution rate. This would then bring the nanoparticulate dissolution rate similar

to the bulk ZnO. In this study, both the uncoated and PVA-coated ZnO nanopowders tended

to aggregate. The slightly smaller individual and aggregate sizes for the PVA-coated ZnO

would suggest a greater ZnO dissolution, but the slightly less toxic curve when compared to

ZnCl2 indicated otherwise. The ICP-OES analysis further confirmed a lower ZnO dissolu-

tion for the PVA-coated ZnO nanopowders as the ZnO dissolution in the lysosomal buffer for
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the PVA-coated ZnO nanopowders was statistically significantly less than the uncoated ZnO

nanopowders. These results suggested that the PVA-coating may affect ZnO dissolution. How-

ever, further studies are required to confirm that the ZnO nanopowders are fully coated with

PVA. The PVA-coating was expected to promote ZnO solubility, but as both nanopowders ag-

gregated, this suggested that there may have been problems with the PVA-coating or that the

PVA-coating was ineffective with ZnO nanopowders.

The ability for ZnO NPs to absorb UV A and B (280–400 nm) light rays made them ideal

candidates for UV protection in sunscreen. However, studies found that when excited, ions and

free radicals such as Zn+, Zn2+, O-, OH-, and H2O2 could be formed. In the presence of oxy-

gen, Zn+ and O- species were generated [166], while in the presence of water and oxygen, the

highly reactive free radical hydrogen peroxide (H2O2) was created [167]. The other NP com-

monly found in sunscreen, TiO2, was similarly found to generate ROS in the presence of water

or oxygen, including O-, O-
2, and OH- [168]. In vitro, TiO2 was found to be cytotoxic and geno-

toxic to lymphoma [169], cervical carcinoma [170], colon carcinoma [171], fibroblast [172],

and ovary cells [173]. Coating TiO2 with silica, alumina, or zirconium eliminated the ROS gen-

eration by UV radiation; however, Brezova et al. [174] still found that irradiating commercial

sunscreen products at wavelengths > 300 nm generated ROS. It was still uncertain whether the

ROS generating potential of UV-excited TiO2 resulted in any significant consequences in vivo

or topically, but the European Union cosmetic regulatory bodies in 2000 concluded that TiO2

was not cytotoxic, phototoxic, or genotoxic [175]. What remains to be seen is whether ZnO

behaves similarly when excited with UV radiation in vitro. Studies examining this possibility

are required as well as whether any consequences exist in vivo or topically. Additionally, the

PVA-coating appeared to decrease the emission intensity of the ZnO nanopowders. Depending

on the in vitro effects of ZnO under UV radiation, the PVA-coating could attenuate any ROS

generation from UV radiation.

With clear evidence that ZnO is acutely toxic, further studies are required to isolate the

source of the toxicity. ZnO dissolution has been implicated, although the extent of its con-

tribution remains unclear. Different techniques will be required to determine whether the cell

death is from the Zn2+ cations that have dissolved in the culture medium before treatment or

after it has entered the cell, to isolate whether the ZnO nanopowder itself contributes to any

toxicity, and to determine which components of the cell are affected by either the Zn2+ cations
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or ZnO nanopowder. Additionally, understanding what causes the sudden acceleration in cell

death, where the threshold concentration is and what affects it, and whether such behavior is

consistent across all cell types may provide further clues. As zinc has also been associated with

neurological disorders, results from these studies may contribute to further understanding in

this area.

4.5 Conclusion

Both the uncoated and PVA-coated ZnO nanopowders exhibited acute toxicity after only 24

hours, and the rate of toxicity increased after a certain threshold (12.5–25 µg/mL). The ob-

served toxicity seemed to result from ZnO dissolution as supported by a similar toxicity curve

between the ZnO nanopowders and ZnCl2 and the slight increase in observed mitochondrial ab-

normality with ZnO nanopowder treatment. Acidic pH was found to promote ZnO dissolution

with the lysosomal buffer (pH of 5.0) resulting in the greatest dissolution. BF TEM imaging

revealed an increased presence of pronounced microfilaments and pyknotic mitochondria; how-

ever, EDX analysis could not confirm the presence of ZnO. In this study, it was the first time

that:

• ZnO dissolution was compared between four different cellular buffers using ICP-OES,

• a TEM mitochondrial sterology was used to assess potential effects of the ZnO nanopow-

ders to mitochondria,

• multiple sample preparations (cryo-immobilisation followed by freeze-drying, cryo-imm-

obilisation by fixation then freeze-drying, and anhydrous preparation) were used in the

attempt to retain ZnO nanopowders within cells.

The results from this study conclude that ZnO nanopowders are acutely toxic. As ZnO NPs

may be exposed occupationally and in consumer products, it is critical to determine the safe

exposure limit in NP size, amount, and duration in order to establish appropriate safety precau-

tions.
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Chapter 5

Conclusion

5.1 General discussion

For this PhD, MWNTs, SWNTs, and ZnO were assessed on primary HMM cells using a variety

of cell viability assays—NR, MTT, LDH, live dead—and microscopy techniques—confocal,

TEM, SEM—to attempt to draw a comprehensive conclusion on their toxic potential. The

unpurified and purified MWNTs were acutely toxic with 8–43% cell death (depending on the

assay used) at the highest concentration (20 µg/mL) and longest time point (4 days) while

the residual iron yielded no toxicity at all. Mainly necrotic death was observed, and MWNTs

entered the cells both actively and passively. They were observed in the cytoplasm and nuclei.

HiPco SWNTs were mildly acutely toxic with 7–18% cell death at the highest concentration

and time point while a separate set of unpurified and purified SWNTs yielded no toxicity at

all. For the ZnO, both the uncoated and PVA-coated exhibited highly acute toxicity after only

24 hours. Both accelerated cell death after a certain threshold concentration (12–25 µg/mL).

Comparison with ZnCl2 and mitochondrial analysis suggested that ZnO dissolution contributed

to the observed toxicity.

5.1.1 Comparing MWNTs and SWNTs

The MWNTs in this study were slightly more toxic than the SWNTs. When comparing the

unpurified MWNTs with the HiPco SWNTs, the unpurified MWNTs were significantly toxic

at ≥ 10 µg/mL while the HiPco SWNTs at ≥ 20 µg/mL. At highest concentration (20 µg/mL)
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and longest time point (4 days), the unpurified MWNTs yielded a significant cell death of NR

8%, MTT 43%, and live dead 21% while the HiPco SWNTs yielded NR 18%, minimal change

in the LDH, and live dead 14%. These results contradicted several other studies concluding

that SWNTs were more toxic than MWNTs. Three of these studies [65, 104, 105] used the

MTT assay which might explain the higher toxic response as SWNTs were found to bind the

MTT formazan crystals and yield an inflated toxic response. The study by De Nicola et al. [58]

determined cell death with a hemacytometer, an interactive method where the total number

of cells was determined by counting the number of cells within a specified unit volume, and

found that SWNTs caused greater concentration and time dependent toxicity and decrease in

plasma membrane potential than MWNTs. A different study analysing the antibacterial effects

found that SWNTs were more efficient at degrading E. coli cell membrane integrity [176]. Both

studies attributed the effects to the higher surface area and smaller dimensions of the SWNTs.

Indeed, the SWNTs in this study had a higher surface area and smaller dimension than the

MWNTs, but when analysed closely, both De Nicola et al. [58] and Kang et al. [176] used

shorter MWNTs while the length in this study was between the two studies. For surface area,

the CNTs in the study by De Nicola et al. [58] were much higher while purity varied amongst

all three studies. As the CNTs in all three studies were different, it was difficult to make a fair

comparison (Figure 5.1). One study observed similar toxicity between MWNTs and SWNTs

when exposed to human aortic endothelial cells [177]. As the CNT dimensions and properties

were similar to those in this study, the differing results might be due to the different cell types

used. Clearly, the numerous dissimilar factors make definite conclusions difficult. Further

studies using similar or same CNTs on different cell types or using different CNTs on the same

cell types may bring better insight.

As no further studies on the mechanism of uptake nor type of cell death were performed

on the SWNTs due to its small size and advanced imaging techniques required, no further

comparisons could be made between the two CNTs within this study.

5.1.2 Comparing all three NPs

Comparing all three NPs in this study, the general cytotoxic potential was ZnO > MWNTs

> SWNTs. Although MWNTs exhibited significant cell death at a lower concentration (10
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µg/mL) than ZnO (12.5 µg/mL), ZnO at 12.5 µg/mL caused much higher cell death (uncoated

ZnO—NR: 28% toxicity, live dead: 45%) than the MWNTs (unpurified MWNT—NR: 9%

toxicity, live dead: 6%). Three other studies concluded similarly with ZnO generally causing

greater toxicity than CNTs [178, 179, 180]. Different NP characteristics, assays, and cell types

were used across all studies, yet results coincided (Figure 5.1). One common assay was the

LDH where Yang et al. [179] and this study observed minimal LDH leakage from both CNTs

and ZnO suggesting that membrane damage was not the likely cause of cell death.

5.1.3 Efficacy of analysis techniques

The assay control experiments in this study revealed minimal to no interactions with the NPs.

One exception was the NR assay where interactions with ZnO became apparent after 50 µg/mL.

Fortunately, this was beyond the highest concentration used in the viability studies here. As

MTT interaction with CNTs has been confirmed in several studies, the NR and live dead assays

remain better assay tools. The ideal method to eliminate any doubts of possible NP and assay

interactions is to integrate microscopy with viability, such as the live dead assay and TEM

analysis used in this study. The disadvantages are the extensive time and effort required to

yield statistically significant data; however, they can provide further certainty to the viability

results.

The confocal microscope is effective only at imaging larger, reflective, or fluorescent NPs;

and very little cell detail can be seen. The SEM has a higher resolving power but is limited to

analysing surfaces. In order to investigate the internal interactions of NPs with cells, the TEM

becomes a critical tool. Several papers have been published detailing further techniques (e.g.

dark-field TEM, EF TEM, HAADF-STEM, tomography [121, 181]) that enable visualising

nano-sized or non-reflective NPs in cells. However, even the TEM has its limitations in bio-

logical investigations as samples must be specially treated and specimen thickness is restricted.

Consequently, the type of microscopy technique used depends on the ultimate goal. As with the

viability assays, using a combination of microscopy techniques may provide greater certainty

and comprehensive conclusions as each technique analyses a different facet of NP interaction

with cells.

136



5.2 Future outlook

This study remains in the infancy stage as many confounding factors exist: size, degree of

dispersion, aggregation, surface coating, and purity. Slight variations in any of these factors

can alter results as detailed in the previous chapters. In a review by Hussain et al. [182], it

states:

The overall agreement for nanoscale and nanostructured materials and methods

and controls, from synthesis, processing, characterization, to applications of mate-

rials containing true nanosize dimensions or nanostructures, is still in its infancy.

Currently, in the study of particle characterization there is no single instrument that

is the right tool for every assay and methodology, and there are in fact, more than

400 different techniques for particle counting, sizing, and characterization.

Although a general conclusion can be drawn regarding the extent MWNTs, SWNTs, and ZnO

cause cell death, the cause for the toxicities remain uncertain when compared with other stud-

ies. As the synthesis condition, purification technique, purity of the NPs, use of solvent, NP

surface chemistry, aggregation potential, assay type, and research model differ amongst every

study, more detailed characterisation of the NPs in this study and further studies into the cell

processes affected by the NPs are required. As the ZnO NPs are yielding such significant tox-

icity, it would be interesting to see whether ZnO nanowires will behave similarly, especially

if ZnO dissolution does contribute to cell death and zinc ion species can dissolve from the

nanowires. The results may reveal if any differences exist between the ZnO NPs themselves

and the nanowires that are formed. The nanowires can also be compared to the MWNTs and

SWNTs to further understand how these NPs fit into the fibre toxicity paradigm: whether the

toxicity is caused by dimension, dose, durability, or other factors [183].

In this study, all three NPs—MWNTs, SWNTs, and ZnO—exhibited acute toxicity to vary-

ing degrees, indicating that caution is required in using these NPs. Researchers have explored

ways of decreasing or eliminating the toxicities; well-dispersed MWNTs and SWNTs via sur-

face functionalisation have been shown to reduce toxicity. Several studies using a variety of

assays and imaging techniques should be performed to confirm their lack of toxicity. Prior

to confirmation, products containing these NPs should remain in the research and development
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stage, especially with ZnO as they exhibited such acute toxicities. Once confirmed, a consistent

way of producing these NPs should be developed as slight variations in the production condi-

tions (e.g. temperature, time, amount of carbon or catalyst, type of catalyst, contamination) can

alter the characteristics of the NPs.

Occupationally, safety measures should be promoted, educated, implemented, and moni-

tored as this is the main contact point with the raw materials before modification. Additionally,

safe disposal or elimination methods should be examined. Kohler et al. [184] assessed where

raw CNTs would be exposed when produced in lithium ion batteries and textiles and found that

CNTs were released during production, wear and tear damage, waste disposal, and recycling. If

the NPs are to be used medically, safe bodily excretion should be determined. These measures

may impede technological advancement; however, preemptive cautious measures may prevent

subsequent health consequences. For now, all three NPs should remain off-the-market until

safer versions are developed and their safety confirmed.
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