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This study investigated the surging Hagafellsjökull outlets of the Langjökull ice cap, Iceland.  
It utilises digital elevation models from 1986, 1997, 2004 and 2007 in order to assess 
topographic change.  These changes are linked to the surging outlets in terms of alteration of 
the subglacial hydrological system.  Flux of water through the subglacial system is 
considered using a degree day surface melt model.  Possible mechanisms of surging are 
considered and linked to the apparent disparity in surging between the neighbouring outlets 
Hagafellsjökull Eystri and Hagafellsjökull Vestari.  It is found that accumulation in the upper 
reaches of both outlets led to increased overburden pressure of ice.  This resulted in a partial 
flow switch from the southern Hagafallsjokull outlets to more northern outlets.  The loss of 
flow is considered to have led to instability in the subglacial drainage system resulting in a 
surge of Hagafellsjökull Eystri and a partial, but failed, surge of Hagafellsjökull Vestari in 
1998.  Modelled changes in neighbouring subglacial hydrological systems are linked to 
historic evidence that more outlets of Langjökull ice cap may be, or may have been, surge 
type.  The possibility is suggested that Sudurjökull and Þrístapajökull may well have been 
subject to surging through alteration of their subglacial hydrological systems, most likely 
related to the Hagafellsjökull system.  The future of Langjökull is considered and agreement 
is made that the ice cap is retreating with the potential to melt completely within the next 150 
years.  Future surges seem likely: primarily Hagafellsjökull Vestari is expected to surge 
within the next 5 years due to increasing imbalance and loss of subglacial meltwater flow.  
Hagafellsjökull Eystri, post 1998 surge, is also suggested to have returned to a period of 
quiescence and recent data shows moderate surface elevation increases characteristic of an 
outlet building up to a surge.  Future surge behaviour may also be influenced by increased 
melting through climatic change and precipitation increases with the possibility of increased 
surge incidence suggested.  The techniques employed are suggested to be useful and highly 
transable to other studies provided adequate data is available.  
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1 - Introduction 

 

1.1: The glaciers of Iceland 

  

At the last glacial maximum (circa 20 ka BP) ice caps of Iceland extended 

onto the continental shelf with ice thicknesses of around 2000 m before rising sea 

levels caused the collapse of the marine section around 13 ka BP. The Younger Dryas 

(c.10 ka BP) saw a brief re-advance followed by rapid retreat and readvance to similar 

positions around 9.8 ka BP (Norðdahl, 2008). 

  
Retreat from this extent saw Icelandic ice caps reach similar positions to their 

contemporaries around 8 ka B.P.  This retreat continued, and during the climatic 

optimum of the mid Holocene Icelandic ice caps were substantially reduced.  

Neoglacial cooling (beginning  c. 5-6 ka BP) saw a series of advances of Icelandic ice 

caps between this date and the Little Ice Age, which began in the 16th century. 

(Gudmundsson, 1997).  The Little Ice Age maximum was reached in the 18th or 19th 

century (Kirkbride & Dugmore, 2006). Worldwide, smaller ice caps and glaciers 

(other than the Antarctica and Greenland ice sheets) have been estimated to have 

contributed around 0.25 mm a-1 to global sea levels between 1961 and 1990 

(Dyurgerov & Meier, 1997).  Measuring glacial variation associated with climate 

 

 
               

              

 
Figure 1.1: The maximum extent of glaciation in Iceland (c. 20ka BP) 

showing physical evidence and modelled outlines (from Norðahl et al., 
2008)  
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change is important considering the effect changes can cause.  At a wide scale even a 

small sea level rise poses a threat to millions of people worldwide who inhabit low-

lying land, and to entire island nations. In has been estimated that if they were to melt 

completely small ice caps and glaciers would raise sea level by about 0.5 m 

(Jóhannesson , 2006) – a 

disastrous prospect for areas 

already struggling with 

problems of flooding and 

increasing soil salinity. At a 

more local scale these small ice 

caps and glaciers are vital for 

resources such as agricultural 

irrigation, water for human 

consumption, supplying major 

navigable rivers for transport 

and, increasingly, for hydroelectric power production.  For example, the Svartisen ice 

cap other smaller ice caps and other smaller surrounding ice caps cover about 50% of 

the drainage area that is utilised by the Svartisen hydropower plant in northern 

Norway (Jóhannesson et al., 2006).  Glaciers have provided Iceland with valuable 

resources. Iceland’s main agricultural areas of the south and west which are 

constructed of glacial/fluvioglacial sediments in the early Holocene (Björnsson & 

Pálsson, 2008).  Icelandic icecaps and geothermal activity have also provide vital 

water supplies and have been harnessed from hydro and geothermal electricity 

production (Árnason et al., 2001).  Iceland has no fossil resources so the contribution 

of Icelandic glaciers of around 20% to river runoff and groundwater supplies has great 

importance (Jóhannesson & Sigurðsson, 1998).   

 

Glacier variation in the past, present and future can, and will, document 

widespread changes in the climate of mountain regions that are often poorly 

represented by point meteorological measurements (Jóhannesson & Sigurðsson, 

1998).  Approximately 11% of Iceland is covered by glaciers as either ice caps or 

valley glaciers and they are all classified as temperate (Björnsson & Pálsson, 2008).   

The glaciers of Iceland are more dynamic than the majority of other Arctic glaciers 

due to several factors.  The high volcanic activity of the island can cause to 

 
 

Figure 1.2: The major ice caps of Iceland, showing 
volcanically active areas in grey From: Bjornsson et al., 
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jökulhlaups induced by sudden ice melt.  Jökulhlaups also occur more predictably at 

sites of geothermal heat flux that cause more gradual but high rates of melting 

accumulation and periodic release of water from subglacial lakes.  60% of Iceland’s 

current glacial area is underlain by a volcanic/geothermally active bed (Björnsson & 

Pálsson, 2008) and this gives rise to frequent threats to inhabited areas.  The 

Grímsvötn area of Vatnajökull is especially effected by geothermal activity (Nye, 

1976; Björnsson, 1992; Jóhannesson, 2002) with the most recent outburst in 1996 

releasing up to 50,000 m3 s-1 of water from beneath the outlet Skeiðarárjökull at peak 

flow , which almost completely flooded the Skeiðarársandur plains.   

Response to climatic variation also affects the dynamics of Iceland’s glaciers.  

Precipitation in Iceland generally arrives from the south on prevailing winds: hence 

the greatest amounts of precipitation are found on the southern highlands and decease 

towards the north (Flowers et al., 2007).  Precipitation levels of up to 7000 mm a-1 are 

recorded on the southern slopes of Vatnajökull.  These heavy falls are a result of the 

elevation and also due to the convergence of warm, moist tropical air and cold arctic 

air (Björnsson & Pálsson, 2008).  This maritime climate leads to Icelandic glaciers 

being characterised by high precipitation and large mass turnover compared with 

glaciers in continental environments (de Woul et al., 2006).  Whilst summer balance 

levels on the highest ice caps are usually negative, a cooler summer can give a 

marginally positive summer balance in the highest reaches resulting in a marked 

increase in albedo and an associated reduction in ablation.  This interannual variability 

demonstrates how small climatic changes may have a considerable effect on Iceland’s 

glaciers.  Responses to climate shifts are seen at the glacier snout of an Icelandic 

icecap within approximately a decade, depending upon the size and location of the ice 

cap (Sigurðsson & Jónsson, 1995).  Due to the Irminger current (a maritime current  

of warm water) Iceland benefits from a relatively small variation in temperature with 

average winter temperatures on the southern coast close to 0oC and a mean annual 

temperature of 5oC (Einarsson, 1984).  

Another reason the glaciers of Iceland are so dynamic is their surge behaviour.  

This is discussed in the next section.  

 

1.2: Surging Glaciers in Iceland 

Surging glaciers in Iceland have a relatively high incidence and cover all 

ranges of climatic conditions. They occur on all of the major Icelandic ice caps as 
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outlet glaciers and also in individual mountain glaciers. They show no spatial 

relationship to geothermal heat sources (Björnsson et al., 2003).  Surging glaciers are 

also well distributed in terms of basal geology; Vatnajökull glaciers are underlain by 

impermeable bedrock (basalts) contrasting with those from Mysdalsjökull and parts of 

Langjökull which may be underlain by porous lavas – young formations of the late 

Tertiary/early Quaternary (Björnsson et al., 2003; Sigurðsson, 1990).  In total there 

are 26 identified surging glaciers in Iceland with size ranges from 0.5 to 1,500 km2 

(Björnsson and Pálsson, 2008).  80 surges are recorded through history with advances 

ranging from tens of metres to around ten thousand metres (Sigurðsson, 1998).  

Icelandic surging glaciers are characterised by more gently sloping surfaces of 1.6 - 4° 

- somewhat lower than the c.12° average of the non-surging Icelandic glaciers 

(Björnsson et al., 2003).  As characterises surging glaciers worldwide they flow too 

slowly to maintain a balance between accumulation in the upper reaches and ablation 

due to ice flowing to the glacier snout.  As a result they become out of equilibrium 

and this is theorised to be the cause of their surging characteristic (see Section 2). 

  

  

 

 
Figure 1.3: Known surging outlet glaciers of Icelandic ice caps. Solid and dashed lines represent 
certain and less certain boundaries respectively and dates are of confirmed surges. Stars 
indicate possible historic surges. (Björnsson et al., 2003) 
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Figure 1.4: Map of the Langjökull Ice Cap showing elevation (m a.s.l.), ice divide, and central flow 
lines.  Large map courtesy of Finnur Pálsson and Helgi Björnsson. Inset map from Eyre et al., 
(2005). L, H, M and V refer to Langjökull, Hofsjökull, Mýrdalsjökull and Vatnajökull respectively.  

 
 

Surges therefore play an important role in transporting ice and restoring the 

equilibrium of many Icelandic glaciers.  For example, surging outlets of Vatnajökull 

are estimated to be responsible for the transfer of at least 10% of total ice flux to 

ablation areas.  Surges also increase out flowing water sediment loads markedly 

(Sharp, 1985). In particular the finest grain sizes are increased with loads of 7-10 kg 

m-3 recorded following surges of Vatnajökull (Björnsson & Pálsson, 2008).  This is a 

substantial increase over more normal sediment loads of ~1.5 kg m-3 (Flowers et al., 

2007).  

 

1.3: The Langjökull Ice Cap  

Langjökull is Iceland’s second largest ice cap with an area of around 925 km2 and a 

total ice volume of ~195 km3 (Palmer et al., 2009). This gives the potential for 0.5 

mm of eustatic sea level rise.  The ice cap is located in central western Iceland 

approximately 85 km north east of the capital, Reykjavík and is orientated SW-NE.  

Radio echo sounding studies have revealed a mean ice thickness of ~200 m and a 
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maximum of 580 m (Björnsson et al., 2006).  Surface elevations extend from around 

500 m up to around 1500 m a.s.l. (Figure 1.4) with the equilibrium line altitude of the 

Langjökull ice cap at around 1000 m.  Langjökull is considered to be a completely 

temperate ice mass throughout, with moulins signifying melt water is freely able to 

reach the glacier bed - believed to be of deformable sediments of a porous lava 

bedrock material (Eyre et al., 2005).  Around 69% percent of drainage from the entire 

ice cap is calculated to flow out as groundwater (Flowers et al., 2007) and the 

remainder subglacially.  No postglacial volcanic activity is in evidence beneath 

Langjökull, despite the widespread volcanic activity of Iceland. No jökulhlaup has 

ever been recorded to have issued from the ice cap (Sigurðsson, 1998).   

Precipitation on Langjökull is similar to that of neighbouring Hofsjökull with 

lower amounts than the most southerly ice caps due to the prevailing wind direction. 

Precipitation of around 3,500 mm a-1 are recorded. A negative mass balance from 

observations during the period 1996-2006 caused a total mass loss of 13.1 km-3 (7% of 

the total) during this period (Bjornsson & Palsson, 2008).  Model predictions of a 

2.8°C temperature rise and 6% precipitation increase towards the end of the 21st 

century suggest rapid changes for the future of the Langjökull ice cap (Bjornsson & 

Palsson, 2008).  These climatic changes would diminish Langjökull by around 35-

40% of its present volume during 50 years and would see the ice cap disappear in 150 

years (Jóhannesson & Sigurðsson, 1998; Björnsson & Pálsson, 2008).  Studies of 

sediments from lake Hvítárvatn imply Langjökull may have completely melted during 

the warmest Holocene period around 10 ka BP before accumulation began again 

around 5-6 ka BP (Black et al., 2006).  The Holocene maximum of the ice cap is 

thought to have been attained around 250 years ago.  Melt since this time has led to 

sedimentation of the Little Ice Age portion of proglacial lake Hvitarvatn (Flowers et 

al., 2007).   

The Langjökull ice cap has several outlet glaciers (figure 1.4).  A recent study 

utilising Interferometric Synthetic Aperture Radar (InSAR) identified eight principle 

outlet glaciers with flow speeds of up to 75 m a-1 (Palmer et al., 2009).  Of these, two 

are recorded to be surge type: Hagafellsjökull Eystri and Hagafellsjökull Vestari 

(Sigurðsson, 1998).  These Hagafellsjökull outlets are separated by the Hagafell ridge 

and are the two main outlets of the Langjökull ice cap.  As described previously the 

southern outlets of Langjökull are believed to be underlain by porous lavas (Bjornsson 

et al., 2003).   In addition to the Hagafellsjökull outlets the InSAR study described 
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above also suggests the smaller, easterly glacier Suðurjökull may be surge type after 

observing increased flow velocity in 1994 (Palmer et al., 2009).  Björnsson et al., 

(2003) also suggest Suðurjökull and the more northerly Þrístapajökull (figure 1.4) 

may also be surge type although evidence is anecdotal only.  The surges of the 

Hagafellsjökull glaciers after the 1970s (described below) seem to have been preceded 

by at least 40 years of quiescence (Björnsson et al., 2003).  It is suggested the surges 

may be a reaction to positive mass balance from the 1960s-1980s.  

 

1.3.1: Hagafellsjökull Eystri (East) 

Hagafellsjökull Eystri is around 4 km wide and 25km long. It currently 

terminates in proglacial lake Hagavatn.  It is constrained to the by a volcanic ridge 

(Jarlhettur) and in places overflows the ridge and forms a series of small piedmont 

lobes in the Jarlhettukvísl Valley (Bennett et al., 2005). To the west it is constrained 

by the Hagafell ridge. Surges have been recorded in 1974, 1980, and 1998. No earlier 

surges are recorded although landforms that mark the ice maximum may be the result 

of surge-like oscillations (Bennett et al., 2005).  Monitoring of this outlet glacier 

started in the 1930s (unsystematically) and by professional surveyors during the 1960s 

(Sigurðsson, 1998 ; Björnsson & Pálsson, 2008).  During the three recorded surges the 

glacier advanced between 900 and 1500 m during the period of late winter or early 

spring (Sigurðsson, 1998 ; Bennett et al., 2005).  The latest surge began slowly in 

1998 with the advance of the piedmont lobes in the Jarlhettukvísl valley with a rapid 

increase in velocity in April 1999 (30 m in 24 hours).  It then advanced 1165 m during 

the subsequent six weeks. 

 
1.3.2: Hagafellsjökull Vestari (West) 

Hagafellsjökull Vestari is approximately 7 km wide and 25 km long. It is constrained 

to the east by the Hagafell Ridge. This outlet surged in 1971 and 1980 with no surge 

recorded since.  The recorded terminus advances were in the region of 650-720 m and 

like those for Hagafellsjökull Eystri, the surges began in late winter to early spring.  

The 1980 surge of both Hagafellsjökull outlet glaciers coincided with each other.  

Although there appeared to be no surge (i.e. an advance of the ice front) of 

Hagafellsjökull Vestari to coincide with the 1998 surge of Eystri there is some 

evidence that an incipient surge may have been prematurely halted. Finnur Pálsson 

(2010, personal communication) recorded highly increased flow velocity that led to 
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some transport of ice from the accumulation area to the ablation area through greatly 

increased flow velocities. However, the surge wave of Hagafellsjökull Vestari did not 

reach the glacier margin and the surge came to a halt.  Fluvial erosion in front of the 

glacier in autumn 1998 suggests a sudden flood of water from beneath the glacier may 

have terminated the surge early (Björnsson et al., 2003).  
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2: Literature Review 

 

2.1: Glacier surging 

Surging glaciers are glaciers that exhibit cyclic flow instability: flow is usually 

at a relatively constant rate but is punctuated by periods of rapid flow.  This rapid 

flow (surging phase) is usually between 10 and 1000 times that of the normal flow 

(quiescent phase) (Murray et al., 2003).  Around 1% of worldwide glaciers have been 

classified as surge type (Jiskoot et al., 2001) and the distribution of surging glaciers 

worldwide is described as non-random (Clarke, 1976).  Understanding this non-

random distribution would be useful for placing constraints on the mechanisms 

responsible for surging but this has so far proved difficult to understand (Harrison & 

Post, 2003).  Bedrock parent material has also been the subject of study with 

sedimentary rocks seemingly providing a greater likelihood of surging in Svalbard 

(Hamilton & Dowdeswell, 1996).  These supports the suggestion that surging glaciers 

are more likely in glaciers overlying ‘easily eroded materials’ (Harrison & Post, 2003 

: 1).  This implies surging may be related to till at the glacier bed, which seems to be 

present, at least in part, at the beds of all surging glaciers.  Other studies of the 

distribution of surge type glaciers suggest length may be a causal factor in some 

regions: longer glaciers in Svalbard and the Saint Elias mountains of Alaska/Canada 

seeming more likely to surge (Clarke, 1991).   For some surging glaciers the length of 

surging and quiescent phases tends to be relatively constant allowing reasonably 

accurate prediction of when a surge is likely to occur.  Others, however, have show 

more variation – Variegated glacier, Alaska, U.S.A, has experienced quiescent phase 

variation of 10-18 years during the 20th century as discussed later (Eisen et al., 2001).  

There is much variation between surge phase lengths in differing areas of the world.  

Regions characterised by temperate glaciers have much shorter surging phases that 

may last only last for periods of years or even months (Joughin et al., 1996).  

Conversely, subpolar Svalbard glaciers are characterised by longer surges than others 

typically lasting >5 years with lower flow velocities, (Murray et al., 2002).  This more 

subdued style of surging compared to temperate glaciers is likely linked to the thermal 

regime of the glacier.  Clearly, the thermal regime is one element of the glacial system 

that could be linked to climate.  The effects of a changing climate make understanding 

the distribution of surging glaciers even more complex because of the constant 

evolution of glacier topography through time which might alter the suseceptability of 
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glaciers to surging – glaciers which surge now may not necessarily surge in 100 years 

(Harrison & Post, 2003)   For example, Vernagtferner in the Tyrol region of the 

European Alps, underwent a series of large surges (c. 2km) from the late 16th century 

until the late 19th century and then ceased to surge (Hoinkes, 1969).  During this 

period glaciers in the Alps were relatively large due to climatic conditions.  As 

climate changed the ability of the glacier to surge was diminished.  Quiescent phases 

exhibit a similar variability that could be of the order of several to over 100 years 

(Kamb et al., 1985).  As briefly mentioned above previous climate has the potential to 

affect the length of quiescence (or the frequency of surge recurrence) through 

alteration of the mass balance of the glacier system (Eisen et al., 2001).  The surges of 

Variegated Glacier, Alaska, and Medivizhiy glacier, Russia have been correlated with 

cumulative mass balances in their respective reservoir areas (Dyurgerov & Meier, 

1997, Harrison & Post, 2003).  A changing climate could influence the mass balance 

of a glacier thereby altering the surge frequency.  This influence can be dependant 

upon where surges are initiated within the glacier system.  Glaciers with surges that 

are initiated in the higher reaches may be more slowly affected by climatic alteration 

than glaciers with surges initiating in lower reaches.  Surges often commence in early 

winter when the least meltwater is available (Harrison & Post, 2003).  Intuitively it 

would be expected that a changing climate could influence the timing, or even 

possibility of a surge through changing patterns and quantities of melt. 

The identification of surging 

glaciers is possible during both 

surging and quiescent phase 

although via differing indicators.  

During the surging phase 

identification is possible due to 

rapid advance, high surface 

velocities, heavy crevassing, shear 

margins between rapid and non 

rapid ice flow zones, a steep ice 

front and stranded ice on bedrock 

topographic high points due to rapid 

surface lowering (Post, 1969 ; 

Copland et al., 2003).  Characteristics identifiable during quiescent phases are fewer - 

 
Fig. 2.1: Looped moraines characteristic of surging 
glaciers seen here in Landsat 7 imagery of Airdrop 
glacier, Canadian High Arctic. Also evident is a highly 
crevassed surface near the terminus (Copland et al., 
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Figs 2.2 (above) and 2.3 (Below): Idealised non-surging and surging glacier systems. In figure 2.3 the 
letters A-D symbolise how the glaciers profile changes as the surge transports mass from the 
accumulation zone to the ablation zone causing advance.  Adapted from Fountain & Walder (1998) 
and Budd (1975) respectively. 
 

 
 

push moraines due to advance of the snout are possible identifiers.  The most clearly 

identifiable features are looped moraines (Figure 2.1) formed when tributary glaciers 

advance into a main glacier.  Surges can pose hazards to agricultural land and 

property and also more widespread hazards such as outbursts from ice dammed lakes.  

The surge of the Grande del Nevado glacier Argentina  led to a rapid advance of 

several kilometres in 1933 (Espizua, 1986).  This formed an ice dammed lake which 

in turn caused a catastrophic flood of the Rio Mendoza when released.   

 

2.2: Surging mechanisms 

Two main mechanisms that lead to surging have been proposed.  These may 

explain why some glaciers exhibit different characteristic during surging phases - such 

as many Svalbard glaciers that surge more slowly than most.  Surging glaciers are 

caused by ‘dynamic instability of the glacier systems themselves and are unrelated to 

external factors’ (Dolgoushin & Osipova, 1975: 1) although the effect of external 

factors from a changing climate may be influential as this work seeks to investigate.  

It has long been noted that surging glaciers, regardless of surge mechanism, exhibit an 

increase of mass in their accumulation zone that is greater than the loss in the ablation 
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area.  Figure 2.2 demonstrates an idealised temperate glacial system in which the 

glacier is in balance with ice flow to the ablation area equalling the accumulation.  

Figure 2.3 demonstrates how a theoretical surging glacier increases mass in the 

accumulation area and becomes unbalanced because flow is not sufficient to balance 

it.  The surface slope is visibly steeper because of this imbalance.  The evolution of 

the glacier profile through a surge is then shown.  During this period mass is rapidly 

transported to the ablation zone via increased flow velocities to return the glacier to a 

balanced state with an advance of the snout position.  It has long been recognised 

(Robin, 1955) that the only mechanism by which such flow velocities could occur is 

increased basal sliding but the causal mechanisms leading to such considerable 

increases remained elusive.  The theorised mechanisms that lead to surges of glaciers 

are summarised below.  

 

2.2.1: Link Cavity System surging 

The first mechanism is applicable to temperate glaciers, which have water 

available at the ice-bed interface.  One of the best documented glacier surges is 

Variegated Glacier, Alaska, which was heavily monitored during a surge in 1982-83.  

The ice mass was known to be at melting point throughout (Kamb et al., 1985) ruling 

out possible thermally controlled glacial 

surging (see section 2.2.3). Kamb (1987) 

proposed a model of surging that involving a 

linked cavity configuration of the basal 

hydrological system. Put simply, during non-

surging periods water flows out freely 

through a channelised system, which drains 

the glacier efficiently.  A surge might be 

initiated when water becomes trapped in 

linked cavities at the glacier bed and the 

glacier is no longer efficiently drained.  This 

occurs because ice pressure throttles the 

drainage channels.  If meltwater flux remains 

constant the throttling of drainage channels 

can be due to increased pressure of ice causing channels to collapse.  Conversely, if 

the pressure of ice remains constant the throttling can be due to a decrease in 

 
Figure 2.4: The linked cavity system as 
proposed by Kamb et al., (1985) 
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meltwater flux failing to maintain the channels through melting thus allowing them to 

collapse.  Once drainage channels collapse, trapped water increases the basal water 

pressure greatly and increases the lubrication at the glacier bed by effectively forming 

a layer of water at the ice/bed interface. Thus the ice flow velocity increases greatly, 

also driven by the increased slope of the glacier due to accumulation in the upper 

reaches.  The surge ceases when the water is released and the throttling by ice reduced 

sufficiently for drainage channels to reform.  Many observations support this theory.  

During the 1982-3 surge of Variegated Glacier the basal water pressure was greatly 

increased reaching totals occasionally equal to the overburden pressure (generally 2-5 

bar below overburden pressure).  Immediately prior to the surge basal water pressures 

were much lower (4 -16 bar below the overburden pressure) and any peaks in these 

values corresponded to peaks in sliding motion.  These peaks were termed 

‘minisurges’ and were observed mainly in the melt season of the years before the 

onset of the major surge (Raymond, 1987). They were characterised by an abrupt 

increase in velocity over a period of a few hours with a slowdown of around a day.  

These minisurges pulsed down glacier as waves at ~0.1 – 0.6 km h-1.  A rapid onset 

and termination of the surge was recorded and major slowdowns in ice flow velocity 

corresponded to outflow floods of much more turbid water than normally produced 

(more than ten times normal amounts) and also resulted in a drop in the glacier 

surface height of 0.1-0.7 m.  Dye tracing experiments showed water flow through the 

glacier to be much slower during surging phases with a drop from around 0.7 m s-1 to 

0.025 m s-1.  These dye experiments also showed much greater dispersal of the dye 

during the surging phase with dye emerging from all the outflow streams.  The 

transition between the channelised flow system and the linked cavity system is 

modelled by Kamb (1985) as: 

 

ψ = aw3/2 h7/6 (ή/v)1/2 (Pi – Pw)-1/2 M-1            (Eq. 1) 

 

where aw is the hydraulic gradient, h is the orifice step height (as in figure 2.4), ή is 

ice viscosity, Pi is the ice overburden pressure, Pw is the subglacial water pressure 

and M is the Manning roughness coefficient. Values of ψ of less than 0.8 are 

suggested as forming a stable cavity system. Fowler (1987) links channel instability to 

the increase in velocity.  His theory states that the stability of each drainage system 

depends mainly upon the velocity. Velocity increases as the glacier thickens in the 



Robert O. Plews  Scott Polar Research Institute 
 

- 21 - 

accumulation area (and thus gains a steeper profile overall).  At a critical velocity the 

system switches from a tunnel based system to a linked cavity system.  This results in 

an activation wave of hydraulic transition front travelling up and down glacier at 

approximately 50 m hr-1. At the wave front the transition from one system to another 

occurs rapidly through the collapse of the tunnel system leading to the high pressure, 

link cavity system.  The starting point of this wave is likely to be the area termed the 

‘zone of enhanced velocity’ (Björnsson et al., 2003: 87).  This zone experiences 

increased velocity in the months prior to a surge leading to a step-like bulge in the 

lower part of the zone. On Vatnajökull and Langjökull the zone has been observed to 

be approximately 10km long in the upper ablation zone.  Movement of this bulge is 

often the first sign of a surge with rapid velocities (several tens of metres per day).  

Fowler (1989) also applies this theory of velocity relation to a surge of Hubbard 

Glacier, Alaska where similar observations were made and the theory of the linked 

cavity system is supported.  It is also suggested a wave of deactivation exists which 

spreads in the opposite direction to the activation wave, restoring the efficient 

channelised drainage of the glacier. 

 

2.2.2: Thermally Regulated Surging 

Alongside the linked cavity mechanism another theory of surging is proposed 

– thermally regulated surging.  This provides an alternative mechanism of surging that 

is relevant to cold based/polythermal glaciers, and often glaciers overlying frozen or 

partially sediments. These glaciers are generally found at high latitudes, such as those 

found in Svalbard.  A positive feedback system exists that involves thicker ice 

warming the bed of the glacier thus permitting increased basal sliding.  This idea was 

first suggested by Robin (1955) and was called ‘thermal instability’.  The basic 

principle is that during the quiescent phase ice is frozen to the bed and that ice flow by 

sliding/ice deformation is limited.  Hence, mass accumulates and increases the 

pressure of ice.  The surging phase is initiated when pressure warms the glacier bed to 

melting point through both frictional heating from sliding and also sheer stress due to 

the ice pressure. This enhances sliding and ice deformation increasing the flow 

velocity of the glacier.  This increased sliding feeds back into the system in the form 

of increased frictional heating thus causing more melt and increasing the ice flow 

velocity further.  The surge ceases when the heat is lost by advective cooling of the 

ice-bed interface and when ice mass transfer to the ablation zone reduces the driving 
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force for ice to flow. This theory was later altered (Robin, 1969) and featured a 

thicker layer of warm ice and the surge halting for mechanical reasons rather than the 

advection of heat.  Clarke (1976) suggested this ‘thermal instability’ was a viable 

mechanism for surging of cold based glaciers with basal temperatures at or close to 

freezing but stressed that another mechanism for the surging of temperate glaciers 

must exist, as the previous section explains.  The concept of thermally regulated 

surging was considered further by Fowler et al., (2001). This study involved the 

glaciers Bakaninbreen, Svalbard, and Trapridge, North West Canada, which both 

overlie several metres of sediments and considered the effects of temperature increase 

on frozen sediments beneath glaciers.   The warming of the bed causes increased 

velocity not only by sliding/deformation of ice at the ice-bed interface but also 

through deformation and/or shearing of the subglacial sediments when they reached 

melting point.  The warming of the bed is theorised to create activation waves, which 

spread up and down glacier.  If the surging wave speed is faster than the activation 

wave speed an advancing wall of ice may propagate down glacier as observed at 

Trapridge and Bakaninbreen.  This mechanism initiates a slower surge initiation and 

overall ice velocity as it relies on the weakening of underlying till by the pore water 

resulting from pressure melting once sufficient ice has built up in during the quiescent 

phase.  A gradually accelerating till deformation releases steadily more heat and a 

positive feedback exists until sufficient ice thinning allows heat to dissipate and the 

glacier to refreeze to its bed.  

Of course, many of the systems described above are idealised and theoretical.  

At one extreme are glaciers that would potentially be temperate and overlying a bed 

of impermeable bedrock.  At the other would be a cold based glacier with a thick, 

entirely frozen sediment bed.  Neither of these two perfect extremes is likely to be 

encountered – particularly considering that sediment seems to be found at the base of 

all surging glaciers (and of course non-surging ones).  The thermal regime of glaciers 

is also highly variable with many being polythermal and featuring areas of both frozen 

bed and temperate bed.  The interaction of hydrological and sediment systems is 

inevitable.  As described above the hydrological system may play an important role in 

the till strength beneath glaciers but conversely the hydrology is equally likely to be 

influenced, or even controlled, by the sediment present on the bed (Harrison & Post, 

2003).  Part of the lack of understanding of these interactions is due to difficulties of 

observations at the ice bed interface.  
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Figure 2.5: The changing subglacial 
hydrological potential at the heads of 
Rutford Ice Stream and Carlson Inlet, 
Antarctica.  The dashed line is the current 
flow divide and the solid line represents the 
change with Rutford Ice Stream thickening 
40, 80 and 120 m. (Vaughan et al., 2008).  

2.3: Glacial topography influences on subglacial hydrology – flow switching and 

water piracy 

As the previous section has described changes in glacial surface topography 

can have important influences on subglacial hydrology due to the effects of 

increasing/decreasing ice mass on processes occurring at the glacier bed.  Ice surface 

topography changes are also present in the ice streams of Antarctica and have 

considerable, although interestingly different, consequences for subglacial conditions.   

Ice streams are not generally believed to surge although it has been suggested that the 

Kamb Ice Stream may be subject to surging and is currently in a quiescent phase 

(Rose, 1979).  Alley et al., (1994) reason that 

this is unlikely because surge type glaciers 

spend most of their time in the quiescent phase 

yet four out of five of the Antarctic Siple Coast 

ice streams are currently flowing quickly.  

Topographic differences between the ice streams 

are also few with no sign of the characteristic 

increase of mass in the accumulation area – 

Kamb Ice Stream is very similar in appearance 

to its neighbouring ice streams.  Despite this, the 

fact remains that Kamb Ice Stream is currently 

flowing much slower than its neighbouring ice 

steams with velocities of <10 m yr-1 compared 

to neighbouring Whillans Ice Stream with 

velocities ~800 ma-1 (Anandakrishnan & Alley, 

1997).   This apparent cessation occurred 

approximately 140 years ago.  One explanation 

for this rapid change is explained by Alley et al., 

(1994) and Anandakrishnan & Alley (1997).  

Holocene surface warming and subsequent basal 

warming allowed the headward extension of the 

Kamb Ice Stream.  This lowered the surface 

slope of the ice stream thereby changing its 

topography considerably.  This allowed the 
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subglacial hydrological system to change – particularly the hydrological potential.  

Basal slopes allowed the water to flow beneath the neighbouring Whillans Ice Stream 

that may have also been extending headward towards the drainage catchment of the 

Kamb Ice Stream.  In effect this removed the lubricating water beneath Ice Stream C 

(required for basal sliding and also to enable till deformation) thereby causing 

stagnation of the Kamb Ice Stream.  

In a similar study in Antarctica (Vaughan et al., 2008) analysed the contrast 

between two neighbouring ice streams; the Rutford Ice Stream and the Carlson Inlet.  

These glaciers are similar in size and driving stress and yet Carlson inlet exhibits flow 

speeds approximately 10-50 times lower than Rutford Ice Stream, which flows at 

~350m a-1.  Carlson inlet is believed to have been an active ice stream until around 

250 a-1 BP.  Evidence to support this is in the form of relict shear margins (Doake et 

al., 2001) and water content in basal sediments despite steady state calculations 

showing that the glacier should be frozen to its bed (Frolich et al., 1989).  Its is 

suggested that Carlson Inlet has stagnated because of a flow switch to Rutford Ice 

stream – possibly caused by a thinning of the Rutford Ice Stream altering the 

hydraulic potential beneath it.  Modelling has shown that even small thickness 

increases in the topography of Rutford Ice Stream could divert significant amounts of 

water towards Carlson Inlet (Figure 2.5). An ~ 4% thickness increase (around 120 m) 

would potentially divert all of the subglacial water towards Carlson Inlet and could 

reactivate it, although there is no sign of any thickening at present.  

The behaviour of the Kamb Ice Stream and Carlson Inlet is very interesting 

and somewhat different from the behaviour of glaciers such as Variegated Glacier 

described previously.  Absence of basal water from two Antarctic glaciers may have 

had the effect of substantially decreasing their flow.  By contrast, although on a much 

more rapid timescale, a lack of water in the basal system of the valley glaciers had the 

effect of initiating a surge and therefore greatly increasing velocity.  This difference 

seems to lie in conditions at the bed.  The Antarctic ice streams are reported to be 

underlain by poorly consolidated and easily eroded sediments around 400 m thick 

thinner in places (Anandakrishnan & Bentley, 1993).  Deformation of this sediment is 

essential for ice stream flow and reduced water content would decrease sediment 

deformation thus slowing ice stream flow.  Reduced water in the basal system would 

also allow ‘sticky spots’ to exert more drag on the ice stream causing reduced ice 

stream flow or stagnation as described in the cases of Kamb Ice Stream and Carlson 
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Inlet.  These sticky spots can come in various forms including areas of bedrock 

bumps, till-free areas and areas of ‘strong’ (i.e. well drained) till (Stokes et al., 2007). 
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3 - Key Study Aims 

 

 There are several areas into which this study may be able to provide insight.  

This study intends to incorporate several different methods that should allow the 

assessment of numerous glaciological processes occurring within Langjökull – in 

particular the surging behaviour of the southern Hagafellsjökull outlets.  

 

Topographic Change 

Primarily it should be possible to bring together all of the available Digital 

Elevation Model data from the University of Iceland and the Scott Polar Research 

Institute.  This will allow a view of the evolution of the Langjökull Ice Cap from 1986 

to 2007 through a period of quiescence, a period of surging of at least one outlet and 

back into a period of quiescence.  The data from 1997 and 2004 provide useful 

temporal reference points to gauge the magnitude of topographic change following the 

surge in 1998. Previous studies did not have the advantage of the 2004 data. 

 

Surface Melt 

Using a simple degree day melt model from the Scott Polar Research Institute 

model the surface melt across the ice cap. This model will be driven using corrected 

precipitation data from a nearby weather station to compliment automatic weather 

station temperature data from the Langjökull Ice Cap.  From this it should be possible 

to estimate the total amount of water flux through the subglacial 

hydrological/groundwater system.  

 

Subglacial Hydrology 

Using the Digital Elevation Models recreate the subglacial flow system.  This 

recreation can then be related to the surface melt model and the flux of melt water 

through the system assessed.  The topographic change of the glacier calculated from 

the ice cap DEMs – particularly in the build up to the 1998 surge of Hagafellsjökull 

Eystri and the apparent failure of Hagafellsjökull Vestari to surge – can be assessed 

relating to effects upon subglacial processes.  Assessing how changes in hydrological 

flow pattern due to topographic change may have led to the disparity between the 

neighbouring Hagafellsjökull outlets. It is hypothesised this is due to a switch in 
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subglacial hydrology to an unstable system beneath Hagafellsjökull Eystri leading to 

increased surface velocities. 

 

Utilising DEMs of Langjokull since the 1998 surge it will be possible to assess 

how changes have affected the system since.  Patterns of continuing change may 

allow predictions into when surges may occur again and how surging behaviour may 

into the future – with possible links to a changing climate considered.  
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4 - Data sources 
 
4.1 - Digital Elevation Models (DEMs) 
 
2007 LiDAR data. (Light detection and ranging) 
 
The initial LiDAR data was collected on 2nd August 2007.  The instrument used for 

data collection was an Optech ALTM3033 LiDAR system belonging to Cambridge 

University’s Unit for Landscape Modelling flown aboard a Dornier 228 aircraft 

provided by the Airborne Research and Survey Facility of the UK Natural 

Environment Research Council. The vertical accuracy of the data was c.10 cm after 

processing and the data was gridded to a 10m resolution. Details of similar collection 

and processing techniques of data are given by Arnold et al., (2006).  However, due to 

logistical constrains the LiDAR flight data did not supply a complete DEM, as can be 

seen in figure 4.1.  Although coverage is mostly continuous in the southeast other 

areas show c.3 km strips lacking LiDAR coverage.  Comparison of the LiDAR data 

and overlapping summer 2007 elevation data from differential GPS tracks (collected 

on snowmobile) was undertaken.  Differential GPS has up to c. 2 cm vertical accuracy 

 
Figure 4.1: August 2007 LiDAR survey overlayed on a 2002 Landsat-derived image.  

10km 
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depending on the distance to the base station.  The data used here was provided by 

Finnur Pálsson and Helgi Björnsson at the University of Iceland’s Earth Science 

Institute. This comparison was used to confirm that there was no systematic offset 

between the data sources, thereby acting as a check of the accuracy of the LiDAR 

data.  The comparison showed the LiDAR data to be accurate with no offset from the 

GPS data. 

Consequently, all differential GPS data were used to supplement the LiDAR 

DEM, this work was done by Allen Pope of the Scott Polar Research Institute.  The 

DEM of Langjökull was the subject of a study using the technique of photoclinometry 

to provide a complete DEM for the ice cap.  Photoclinometry is a method which 

unifies visible light imagery with elevation data. Basically, photoclinometry 

transforms the brightness of a given pixel in a visible light image into a surface slope 

parallel to the solar azimuth for that image.  It is also known as ‘shape from shading’ 

for these reasons.  Pope’s study utilised a Landsat ETM+ band 4 image collected on 

19 March 2002 to produce the completed DEM (henceforth referred to as LiDAR v.2)  

– essentially a hybrid of LiDAR, skidoo and photoclinometric data as seen in figure 

4.2.  A geoid correction was also produced to be applied the DEM to account for 

differences in the WGS84 datum: our Icelandic colleagues use a pre geoid corrected 

datum whereas SPRI does not.  

 
Figure 4.2: 2007 LiDAR v.2 DEM produced by Allen Pope (SPRI) utilising 2007 LiDAR data, 
2001 skidoo data and photoclinometry of 2002 Landsat ETM+ band 4 imagery. Scale as figure 
4.1. 
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1997 DEM 

A DEM of the entire 1997 Langjökull surface and surrounding ice free 

topography was processed by Dr. Ian Willis (SPRI) from data provided by Finnur 

Pálsson and Helgi Björnsson (University of Iceland). The data was based on an 

extensive network of differential GPS snowmobile tracks and the ‘kriging’ method of 

interpolation was used to grid the data at 100m resolution and is presented in figure 

4.3.  

 

 

 

 

 

 

 

 

 
Figure 4.3: 1997 DEM and surroundings produced from differential GPS data 
collected via skidoo tracks. Courtesy of Helgi Björnsson and Finnur Pálsson with 
processing by Dr. Ian Willis. Scale as figure 4.1. 
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1986 and 2004 DEMs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4.5: 2004 DEM overlain on the surrounding topography 

 
Figure 4.4: 1986 DEM created from photgrammetry. 
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Both the 1986 (figure 4.4) and 2004 (figure 4.5) DEMs were supplied courtesy 

of Helgi Björnsson and Finnur Pálsson at the University of Iceland.  The 2004 DEM 

was constructed from SPOT 5 satelitte data with a spatial resolution of 40m. Accuracy 

is around 10 m in elevation and around 30 m in horizontal position.  As acquired the 

data was gridded to a resolution of 170 m.  The 1986 DEM was constructed by using 

photogrammetry and gridded to a resolution of 30m.  

 

Subglacial topography DEM 

The subglacial topography DEM (figure 4.6) was created from data collected 

via ground penetrating RaDAR (GPR).  It was supplied courtesy of Helgi Björnsson 

and Finnur Pálsson, University of Iceland.  It is gridded to a resolution of 400m.  

 

 
 

 

 

 

 

 

 

Figure 4.6: The subglacial and surrounding topography of the 
Langjökull ice cap 
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Figure 4.7: Location of AWS stations on Langjökull. 
(Map courtesy of Finnur Palsson, University of 
Iceland). H marks the location of Hveravellir station. 

4.2 - Automatic weather station data (AWS) 

 Data from two automatic weather stations (AWS) located on the Langjökull 

ice cap was supplied by Finnur Pálsson (University of Iceland).  The data is for 2006 

at the locations L01 (490m) and 

L05 (1100m) as in figure 4.7.  The 

data record the summer season; 

running from day 136 (16th May), 

to days 291 (18th October) for L01 

and 325 (22nd November)for L05.  

The recording frequency was every 

10 minutes.  The data recorded 

included; temperature, relative 

humidity, solar radiation, albedo, 

long wave radiation, wind speed, 

wind direction and snow elevation.  

 

4.3 - Precipitation data 

Precipitation data was supplied by Sverrir Guðmundsson of the Institute of 

Earth Sciences, University of Iceland.  The data was from automatic weather station 

Hveravellir (H in figure 4.7). It is located between the Langjökull and Hofsjökull 

icecaps (64°52.005' N, 19°33.733'W) at around 650 m a.s.l.  The data supplied was in 

mm d-1 format for the years 2005 and 2006.  Due to the steep precipitation gradients 

found in Iceland, described in section 1, it was necessary to correct the data to altitude 

before it could be incorporated into the melt model (see section 5.3.  Using the 30% 

per 100m precipitation gradient figure from de Woul et al., (2006) the data was firstly 

regressed to sea level.  It was then possible to calculate precipitation values for the 

automatic weather station altitudes - again using the 30% 100m precipitation increase 

to extrapolate. 

 

4.4 - Mass Balance Data 

 Similarly, mass balance data was supplied by Finnur Pálsson of the University 

of Iceland.  Data were available from 1997 to 2007. The mass balance was determined 

by a stratigraphic method through measuring changes in thickness and density relative 

to the summer surface. Ablation was monitored using snow stakes in the accumulation 

• H 
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area while wires were drilled down in the ablation area.  The summer balance was 

measured in the autumn.  To measure the winter balance ice cores were drilled 

through the winter layer in the spring.  The available data included;  

• Elevation,  

• Specific winter balance in m w.e. (metres water equivalent)  

• Specific summer balance in m w.e.  

• Specific annual balance in m w.e. 

• Date of the autumn reading from stakes or wires the previous year 

• Date of spring measurements and the date of autumn reading from stakes or 

wires.   

 

Mass balance measurements are known to be variable from year to year: for example 

from drifting and redistribution of snow or predominant wind direction influencing 

precipitation accumulation.  Sampling locations for mass balance follow outlet 

flowlines (for example L01-L08 in figure # represents the flow line of Hagafellsjökull 

Vestari).  The readings from all points of the ice cap are combined and then 

extrapolated to give mass balance figures for the entire ice cap. Combining stake 

measurements from multiple outlets should theoretically account for both lateral and 

vertical variability in mass balance across the icecap. Error limits following 

integration are considered to be no lower than 15% (Björnsson & Pálsson, (2005). 

Personal communication) 

This data was used to calculate the snow gradient for the ice cap to be used in 

the degree day melt model (section 5.3).  The available total winter accumulation data 

from the weather stations across the glacier (in this case from L01-L08) was plotted 

against the altitude and the gradient which precipitation changed with progression up 

glacier was calculated.  The mass balance data used was for the year 2006 as this is 

also the year for which the temperature and precipitation data are available.  The 

calculated gradient for Langjökull was 4.45 mm m-1 (accumulation increasing from 

~325 mm at 490 m a.s.l. to ~3650 mm at 1287 m a.s.l.).  
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5 - Methodology 
 
5.1 - Ice surface topographic changes 
 

After gathering and processing all of the DEMs and climate data into the 

correct format analysis began using primarily using ESRI’s ArcGIS package.  The 

initial analysis was to calculate the change in ice topography between the dates 

available.  This was to provide a chronology of ice thickness.  The ice margin was 

defined by the known extent for the various DEMs. Where this was not known (for 

example the 1986 does not have ice margins defined) available but where this was not 

possible the most appropriate margin was chosen.  For example, the comparison for 

the 1997 DEM - 2007 LiDAR DEM was constrained by the 2004 margin. The 

rationale for this decision was that changes in the glacier margin are removed from 

the analysis.  This aids clarity when assessing topographic changes. Although this 

method does not always allow advances in snout position due to surging to be 

measured it does, in the context of this study, avoid confusion.  Ice mass transported 

down glacier during a surge is still easily detectable due to elevation increases around 

the margins.  If required the snout position can be analysed separately although yearly 

snout position data is already well documented by Sigurðsson (1998) and also Pope et 

al., (2009).  

The differences between the DEMs, calculated for the various timescales, are 

presented in figures 6.1, 6.2, 6.3 and 6.4. 

 

5.2 - Subglacial Hydrological System Reconstruction 

  

Once changes in topography of the Langjökull ice cap had been assessed the 

next step was to analyse how these changes may have affected the hydrology of the 

subglacial system.  As explained in section 2 the mass of ice is critical to the 

conditions at the ice/bed interface with a critical level of ice pressure suggested to be 

critical to surge initiation.  In the case of a temperate glacier like Langjökull the 

switch from an efficient, channelised drainage system to an inefficient linked cavity 

system is the widely suggested mechanism that leads to surging of outlet glaciers.  
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The first step in this process is to calculate the hydraulic potential at every 

point beneath the ice cap. Utilising the DEM for each year and the DEM of the 

subglacial topography this is possible using equation 2, below: 

 

Equation 2:  Φ = Es – Eβ * ρi * g + (Eβ * ρw * g) 

 

Where; 

Φ = Hydraulic potential in Pascals 

Es = Surface Elevation 

Eβ = Bed Elevation 

ρi = Density of ice (900 kg m-3) 

ρw = Density of water (1000 kg m-3) 

g = Gravitational constant (9.81 m s-2) 

 

Once the hydraulic potential across the entire ice cap was calculated it was 

necessary to evaluate any potential sinks within the glacier.  In terms of the DEM this 

would constitute a cell with a value sufficiently low to allow all surrounding cells to 

flow into it.  Once these sinks are identified it is necessary to fill them to a minimum 

level to allow the flow to move outwards to the lowest surrounding cell.  For example 

see figure 5.1: 

 

 
With the potential sinks filled the direction of flow is then considered.  The 

filled potential DEM was analysed so each cell finds the lowest surrounding cell -

replicating the flow down the hydraulic potential gradient.  The accumulation of flow 

can then be added to this by analysing how many upstream cells flow into the next 

cell.  A visual interpretation of the flow is produced from this representing the 

20 25 28 
19 17 35 
21 25 30 

  
Figure 5.1: A visualisation of a potential sink being filled. On the left all cells flow in to the lowest 
cell. On the right the lowest cell is filled to a level to allow it to flow outwards to the lowest 
surrounding cell 

20 25 28 
19 20 35 
21 25 30 
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direction of flow and also the total amount of flux through the cells – often resulting 

in a branched system as would be intuitively expected.  

 

5.3 - Degree Day Melt Model 

 The subglacial hydrological system is the key element responsible for surging.  

Once the main flow pathways are calculated (as section 5.2) it was necessary to 

calculate values of water flux through the system.  This makes it possible to assess 

how changes in the flux and the surface topography may interact to result in a surge of 

the glacier (or conversely to delay a surge).  In order to evaluate the potential water 

flux through the Langjökull subglacial hydrological system a distributed glacier 

surface degree day model was used and was implemented using the MATLAB 

software package.  The code for the model was originally written by Cameron Rye of 

the Scott Polar Research Institute and has been adapted from a study in Norway.  

 The model involves numerous input data which were taken from existing 

literature or, where unavailable or specific to Langjökull, calculated from other 

available data.  Degree day factors are input for a single point on the glacier (the 

location of an AWS) and melt is then distributed over the glacier using a DEM.  The 

following data were input into the model:  

 

• AWS data: this included the Julian day, the average air temperature and the daily 

average precipitation data. 

• Ice density:  For ice sheet modelling purposes the density of ice is assumed to be 

900 km m3. Previous studies have also used this value specifically for Langjökull 

(Flowers et al., 2007, Eyre et al., 2005). 

• Snow density: Snow density in Iceland has been found to be relatively independent 

of altitude (Jóhannesson et al., 1998).  The density of snow at the end of the 

accumulation season is, of course, variable.  Lundberg et al., (2000) suggest a typical 

value of 350 kg m3 as do Björnsson & Pálsson (2010, Personal communication) 

when modelling on Langjokull.  However, Jóhannesson et al., (1998) noted mid 

winter snowpack density values in Iceland to be higher than other noted values such 

as from the European Alps.  They measured values of around 400-450kg m-3, similar 

to Norwegian values.  Due to this disagreement between studies a value of 400 kg 

m3 is assumed.  



Robert O. Plews  Scott Polar Research Institute 
 

- 38 - 

• Temperature lapse rate: in a previous study using degree day models on Langjökull 

Guðmundsson et al., (2003) give the figure 0.0062°C m-1 and as this is relatively 

constant is utilised in this study.  

• Precipitation gradient:  The precipitation characteristics of Icelandic ice caps are 

controlled by a maritime climate with the highest precipitation found towards the 

south (see section 1).  Precipitation on Langjökull is similar to that of neighbouring 

Hofsjökull. (De Woul et al., 2006) justify a precipitation gradient of 30% per 100m 

when modelling melt of Hofsjökull therefore this gradient is assumed here.   

• Precipitation threshold:  It is necessary to consider whether precipitation is rain or 

snow.  Previous studies in Iceland (de Woul et al., 2006) have assumed a mixture of 

snow and rain is found in a transition from ranging from -1 °C to to +1 °C.  Using 

this as a guide a precipitation ratio of 50% snow and 50% rain at +1°C is expected 

which would potentially lead to some accumulation.  Consequently the value is set at 

+1°C for this study. 

• Snow gradient: As described previously (section 4.4) the gradient with which 

precipitation changed with progression up glacier was calculated from the mass 

balance change related to altitude.  The calculated figure is 4.45 mm m-1. 

• Degree Day Factors (ice and snow): Guðmundsson et al., (2003) calculate several 

degree day factors (ddf) linking the summer balance to the weather parameters and 

surface albedo via different calculations. They are calculated for two weather 

stations on Langjökull – 490m and 1090m.  Four empirical models are used to 

calculate the degree day factors with various successes at modelling; one being 

discounted as it modelled the ablation poorly.  The model most suited to this study 

gives values of 5.3mm °C-1 d-1 for snow and 6.0mm °C-1 d-1 for ice.  Guðmundsson 

et al., (2003: 12) describe this model as coming ‘nearer to depending solely on 

conditions at the glacier surface’.  It also varies more gradually and is less sensitive 

to changes in weather parameters than other models and better represented the melt 

through the early part of the melt season (May) when net radiation, strong winds and 

relatively high temperatures combine.  The values selected here are also within 1 mm 

°C-1 d-1 to those used when modelling melt in the later part of the 20th century on 

Langjökull by Flowers et al., (2007).  
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5.3.1 - Flux of melt water through system 

Using the model to calculate the total melt across the ice cap surface during the 

ablation season it is then important to consider how much of this water enters the 

subglacial system.  Flowers et al., (2007) estimate a total input of meltwater of around 

80m-3s-1 from the glacier.  They simulate hydrogeologic parameters beneath 

Langjökull and suggest that 69% of melt water from the Langjökull ice cap is 

transported through the groundwater system with the remainder transported 

subglacially.  Although studies are sparse a similar figure of groundwater transport 

(70%) is given by Sigurðsson’s (1990) geochemical estimate.  The study estimates a 

groundwater recharge figure 50-80 m3 s-1.  Therefore in this study 30% of the 

calculated melt will be assumed to be routed through the subglacial system at the 

ice/bed interface.  It is also assumed that the meltwater enters the system immediately 

via moulins and is does not flow over the glacier surface.  Figure 6.5 shows the final 

DEM of melt for the summer of 2006.  
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6 – Description of results 

  

6.1 – Topographic change 

 

1986 – 1997 (Figure 6.1) 

 

 
 Topographic changes of the Hagafellsjökull outlet glaciers during the period 

1986 to 1997 reflect outlets that are in the quiescent phase and are building up to a 

Figure 6.1: Topographic change of the Langjökull ice cap (top) and the southern outlets (bottom) 
from 1986 – 1997.  
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surge.  The ablation areas of the two outlets are clearly and strongly identified as 

loosing mass by the red colouring.  The amount of ablation in these areas is generally 

>40m with a gradual progression up glacier seeing a reducing rate of ablation leading 

into a brief area of equilibrium before a considerable area of accumulation is reached 

at c. 900 -1000 m a.s.l (matching the equilibrium line altitude of Langjökull given by 

Eyre et al., (2005).  The area that accumulated mass (c. 10 km2) shows a gain of 

around 20-50 m and is distributed all across the upper reaches of both Hagafellsjökull 

Eystri and Hagafellsjökull Vestari (for comparison glacier divides are shown in figure 

1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Robert O. Plews  Scott Polar Research Institute 
 

- 42 - 

 

1997 – 2004 and 1997-2007 (figures 6.2 and 6.3) 

 
Following the surge of Hagafellsjökull Eystri in 1998 the topography 

underwent some considerable change.  Ideally a DEM from 1999/2000 would allow 

the yearly change to be analysed but unfortunately this is not available.  However, the 

changes are still very evident when compared with the 2004 data.  Figure 6.2 shows 

 
 

 

Figure 6.2: Topographic change of the Langjökull ice cap (top) and the southern outlets (bottom) 
from 1997 – 2004.  
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considerable losses in the upper reaches of Hagafellsjökull Eystri with generally 

c.40m of surface lowering.  Conversely there are strong gains (the green section) in 

ice surface elevation in the lowest reaches (generally in the mid 20s of metres). It is 

worth considering that the advance of the terminus is not visible as the ice margin 

does not take this into account as explained previously.  To quantify this advance: the 

1998/1999 surge gave an advance of around 1100m which will have extended the 

glacier margin somewhat.  Similarly this figure does not take into account the ablation 

during the c. 6 year period between DEMs so the initial surface height increase would 

have been greater still. Pope et al., (2009) calculate a figure of -2.28 m yr-1 w.e. for 

the period 1997 – 2001.  

 During the same period Hagafellsjökull Vestari demonstrates very different 

patterns.  The opposing colouring to its neighbouring outlet shows Vestari continued 

to loose mass in the ablation area at similar levels to the previous comparison.  The 

upper reaches do not generally show any ice surface lowering – instead they border 

between stagnant and moderate gain.  Figure 6.3 also shows this pattern continuing to 

2007 with some gain in surface height.  
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2004-2007 (Figure 6.4)  

 

 
 

 
Figure 6.3: Topographic change of the Langjökull ice cap from 1997 – 2007.  

 
 Figure 6.4: Topographic change of the southern outlets from 2004 – 2007. 
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The 2004-2007 comparison of surface height show the outlets in what should 

be the quiescent phase.  Indeed, the topography over this short three year period 

shows signs of a pattern of topography change that may well develop to be similar to 

that seen in figure (86-97).  Accumulation is apparent in the upper areas of both 

outlets and ablation is predominant in the lower reaches as expected during normal ice 

flow conditions in the quiescent phase. 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 – Surface melt model 

 

 The degree day surface melt model described in section 5.3 for run using the 

acquired data from 2006.  The modelled melt is displayed in figure 6.5.  
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The melt model shows good relation to the areas of greatest ablation as identified in 

this chapter.  Hagafellsjökull Eystri and Vestari show the highest levels of melt with 

maximums almost reaching 5 m.w.e a-1.  The lowest levels of melt are the highest 

elevations in the west and north-east.  These areas do not correspond entirely with the 

greatest areas of topographic change (for example those shown in figure 6.1).  The 

greatest areas of elevation increase in the Hagafellsjökull accumulation areas is south 

of the highest elevations of the ice cap.  

 

 

 

 

6.3 – Subglacial Hydrological reconstruction 

 

Following the reconstruction of the hydrological system the meltwater DEM 

was routed through the subglacial system.  This gave each grid square in the 

 
 Figure 6.5: Modelled melt for the degree day model. Values show the total calculated summer melt for the 

year 2006  
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hydrological system values of water flux, in mm, over the entire melt period.  For 

flow comparisons in was, of course, preferable to convert this value into a more 

useable value of m3 s-1.  However, for the purposes of display and comparison much 

better results are obtained using by displaying the total melt period values.  Equivalent 

values in m3 s-1 are given as a guide where necessary.  After processing the flow 

accumulation the following figures 6.6 to 6.9 were produced for each of the DEMs 

from 1986 – 2007.  

 

 

 
Figure 6.6: Subglacial hydrological reconstruction 1986. Bracketed values in m3 yr-1. 
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Figure 6.7: Subglacial hydrological reconstruction 1997. Bracketed values in m3 yr-1. 
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 Figure 6.8: Subglacial hydrological reconstruction 2004. Bracketed values in m3 yr-1. 
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Figures 6.6 to 6.9 show that widely speaking the subglacial hydrological system of the 

ice cap has remained relatively consistent in most areas.  However, as intuitively expected, 

changes are apparent in the Hagafellsjökull outlets – particularly in the accumulation area 

between 1986 and 1997.  These changes are described in the following section.  

 

 Figure 6.9: Subglacial hydrological reconstruction 2007. Bracketed values in m3 yr-1. 
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6.4: Description of changes: 1986 – 1997 

 

Following subglacial hydrological system reconstruction of Langjokull for both 

1986 and 1997 comparison reveals a mixture of changes.  Parts of the system remain 

very similar – for example the 

modelled hydrological system 

beneath Noðurjökull (figure 6.10) 

shows little change with a good 

agreement in drainage area and 

drainage pathway size and position. 

Similarly, Flosaskardsjöklar (top, 

figure 6.11) shows an almost 

overlapping system accumulating 

meltwater from a similar sized 

catchment area. Main outlets are in 

generally matching positions for 

both 1986 and 1997.  There are, however, some particularly pronounced changes. 

 
Figure 6.11: A composite of the 1986 and 1997 modelled hydrological systems (southern outlets shown) 

 
Fig 6.10: Agreement of modelled hydrology of Noðurjökull for 
1986 and 1997. 
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Figure 6.11 shows the upper reaches of the southern Langjökull outlets. It is a 

composite image with the modelled accumulation from both 1986 and 1997 overlain.  

There is considerable overlap between the 1997 system (blue) and the 1986 system 

(red) in the circled area and the direction of flow is reversed.  The flow of meltwater 

to the north-east appears to have extended south west by c. 6-7 km in places.  The 

effect of this is to have reduced the size of the drainage catchment to the 

Hagafellsjökull glaciers considerably.  The model shows meltwater instead being 

directed initially north-east before joining the catchment of Þrístapajökull (see figure 

1.4) and flowing out towards the north-west.  

In terms of estimates of meltwater flow the accumulated value from the tributary 

draining the circled area to the north-east (labelled ‘tne’) increases from 

approximately 0.2 m3s-1 in 1986 to 1.4 m3s-1 in 1997 – a considerable increase of 

700% the original value.  

 

6.4.1 - Hagafellsjökull Eystri  

The modelled subglacial hydrological system of Hagafellsjökull Eystri appears 

to have a similar level number and relatively similar pattern of drainage pathways.  

However, it is apparent that in figure 6.12 that the catchment area of the outlet is 

somewhat less because the pathways are shorter by several kilometres.  As described, 

more flow appears to be directed towards the north-east in 1997 compared to 1986.  

The accumulation of flow lost from the catchment of Hagafellsjökull Eystri is well 

visualised in figure # (on the following page). This affects practically the entire 

Figure 6.12: Comparison of the 1986 and 1997 hydrological systems of Hagafellsjökull Eystri.  
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system and is reflected in the modelled values of accumulated flow from the 

pathways.  For example – at point ‘L’, which marks one of the main pathways flowing 

beneath Eystri in both 1986 and 1997, modelled flow is reduced from 0.7m3s-1 to 

0.4m3s-1.   

 

6.4.2 - Hagafellsjökull Vestari 

Similarly, Hagafellsjokull Vestari exhibits a modelled reduction in its 

catchment area when comparing the 1986 model to the 1997 model. 

 

 
 

 
 
 
 
 

Figure 6.13: The changing flow of the upper Hagafellsjökull area from 1986 (top) to 
1997(bottom)  
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The black lines labelled ‘fd’ in figure 6.13 give a basic comparison of how the 

apparent flow divide between the south-west and north east is modelled to alter.  As 

with Hagafellsjökull Eystri this results in the drainage pathways becoming shorter by 

several kilometres.  Worthy of note at this point is the change in the pattern of 

drainage pathways.  As described in the previous section the pathways of 

Hagafellsjökull Eystri become shorter in 1997 but maintain a similar pattern with a 

comparable number of pathways.  Hagafellsjökull Vestari shows similar levels of 

pathway shortening but also shows some considerable differences in the form of the 

drainage system.  The modelled 1986 system shows numerous (c. 6-7) main drainage 

pathways reaching the edge of the outlet.  However, in the 1997 model many of these 

pathways coalesce in the centre of the outlet to form a branched system with one main 

outlet.  As a result comparison of the modelled flow values is somewhat misleading.  

The largest pathway in 1986 has a calculated discharge of approximately 1.4 m3 s-1 

whereas in 1997 it is approximately 2.2 m3 s-1 - despite the drainage catchment in 

1986 being somewhat larger.  Overall the total out flow of meltwater from beneath 

Hagafellsjökull Vestari through the series of smaller, individual systems in 1986 is a 

higher value compared to total for 1997.  

 

6.4.3 - Suðurjökull 

 Most of the subglacial drainage beneath the other outlets of Langjökull  

exhibit similar patterns and levels of flow in comparison between 1986 and 1997.  

One exception to this is the neighbouring Suðurjökull outlet, located to the north-east 

of Hagafellsjökull Eystri (figure 1.4).  As a result of the modelled increase in flow to 

the north-east the upper reaches of Suðurjökull see some increase in the modelled 

catchment area - the black line in figure 6.14 demonstrate approximately where the 

flow divide is located.  The pattern of flow - numerous tributaries feeding a single 

main outlet - exhibits little change.  One key change is apparent however.  Due a 

modelled increase in the catchment area the volume of flow increases.  Figure 6.14 

shows the flow divide of Suðurjökull.  In 1986 the catchment area stays broadly 

within this area.  However, in 1997 an increased amount of flow is modelled as being 

collected by Suðurjökull from the south-west.  The area is not defined as an outlet; it 

forms an unnamed area between Suðurjökull and Hagafellsjökull Eystri confined by 

topography.  In 1997 this means that despite the model showing a smaller catchment 

in the upper reaches compared to 1986 the overall output from the main outlet does 
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increase.  The calculated output figures are 1.4 m3 s-1 and 2.3 m3 s-1 for 1997 and 1986 

respectively.  

 
 

6.5 - Post 1998 surge changes 

  

The 1997 DEM represents a model of Langjökull in a stage now known to be 

immediately prior to a surge of Hagafellsjökull Eystri in 1998.  As expected during a 

glacial surge this rapid flow led to rapid transfer of accumulated ice mass from the 

upper area of Hagfellsjokull Eystri to the ablation area. This increased the ablation 

area altitude by around 25 m when the 1997 and 2004 DEMs are compared (figure 

6.2).  Following the surge the glacier returned to a similar pattern to that prior to the 

surge. Surface lowering was once again predominant in the ablation area and 

comparison between the 2004 and 2007 DEMs showed accumulation was again 

causing moderate increases in surface elevation in the upper reaches (Figure 6.4). 

 

 

  
 

 

 
 
 
 
Figure 6.14: Comparison of Sudurjökull and the 
surrounding area. Clockwise from left: 1: Sudurjökull 
flow margins, 2: 1986 modelled subglacial hydrology 
and 3: 1997 subglacial hydrology.  Black lines in 2 & 3 
indicate approximate flow divides.  
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6.5.1 - Post 1998 surge changes: Hagafellsjökull Eystri and Vestari  

 Comparisons of the modelled subglacial drainage from 1997 and 2004/2007 

again show many areas of little change.  Conversely, they also demonstrate some 

areas with change as marked as the period 1997 – 1986.  Perhaps unsurprisingly, 

given the large amount of change in topography instigated by the Hagafellsjökull 

Eystri surge, the key area is once again the upper reaches of the Hagafellsjökull 

outlets.  The modelled change in topography in 2004 returns the hydrological system 

to, what appears to be, a similar arrangement to that modelled for 1986.  The 

percentage of flow ‘lost’ to Þrístapajökull flows back to the Hagafellsjökull outlets.  

This is evident in figure 6.15. These changes reduced the flow to the Þrístapajökull 

branch (labelled ‘tne’ in figure 6.11) back to volumes comparable to 1986.  The 1986 

model calculated c. 0.2 m3 s-1 and the 2004 calculation estimates c. 0.24 m-3 s-1.  

 
 

                                                                                      

 
 
 
Figure 6.15: The evolution of the upper 
Hagafellsjökull outlets. Clockwise from above: 
1986, 1997 and 2004.  The comparison shows a 
significant switch between 1986 and 1997.  This 
switch is mainly reversed by 2004.   
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This modelled return switch of this meltwater increases the flow of melt water 

beneath Hagafellsjökull Eystri and Hagafellsjökull Vestari.  The largest outlet from 

Eystri is modelled as having ~0.75 m3 s-1 of output in 2007 which is a comparable 

flow rate to 1986 values.  Values from the 2004 model were considerably higher than 

this but are not considered accurate because the modelled system provides only a very 

basic flow system in which most of the tributaries coalesce.  This seems to be a 

consequence of the lower resolution of the 2004 imagery combined with the relatively 

low resolution of the subglacial DEM.  Hence it was decided to use the considerably 

higher resolution 2007 model for comparison of outflow.  Vestari also shows 

increases in flow - although the changes are more subtle and difficult to compare as 

there are some changes in the flow patterns (discussed overleaf).   

 

The modelled subglacial hydrology of Hagafellsjökull Vestari following the 

surge of its neighbouring outlet shows some slight but influencial differences, 

particularly in the upper reaches.  Figure 6.16 shows a certain amount of flow divide 

switch – the lines ‘fd86’ and ‘fd07’ demonstrate the extent of this change.  The branch 

of the system modelled to switch has an output in the Eystri system of ~0.41 m -3 s-1.  

This implies a gain to the hydrological system of Eystri and a loss to that of Vestari. 

 

There are also some differences in the patterns of flow modelled for the 

Vestari hydrological system.  Figure 6.17 shows how the pattern of the hydrological 

system has changed from 1986 to 2007.  In the 1986 model there are essentially two 

main branch systems draining the upper accumulation area of Hagafellsjökull Vestari.  

   
Figure 6.16: Comparison of pre (1986) and post surge (2007) hydrological systems of the  upper Hagafellsjökull. 
Black lines indicate flow divides 



Robert O. Plews  Scott Polar Research Institute 
 

- 58 - 

    
Figure 6.17: Pre (1986)  and post surge (2007) comparison of the upper Hagafellsjökull Vestari system. Black arrows indicate 
shift in flow patterns 

 

These branches form two main channels which flow approximately parallel to each 

other in a southerly direction.  In the 2007 model much of the melt water from the 

most westerly of these branches is routed further south beneath the outlet before being 

routed out towards the south west. This branch is calculated to collect ~2m3s-1 of melt 

water that is now flowing in a different direction - causing much more flow through 

the central section of the Vestari outlet. Despite this change in direction the model 

does not show the branches coalescing and the systems remain in separate channels 

that flow in closer proximity.   

 

6.5.2 - Post 1997 changes to other outlets 

 The other outlets of the 

Langjokull ice cap again exhibit little 

change with similar flow levels and 

patterns.  One exception to this is 

Þrístapajökull, which because 

described above, is modelled to 

experience reduced levels of flow as 

less meltwater is collected from the 

Hagafellsjökull accumulation area.   

Another exception to this is 

Suðurjökull which is shown in the 

2007 model to have lost part of the 

flow increase in the 1997 model.  

Figure 6.18: Composite of the 1997 and 2007 hydrological 
systems beneath Sudurjökull. Black lines and arrows 
approximate flow divides 
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Figure 6.18 shows a composite demonstrating this change.  The black lines 

approximate the flow divided as they are modelled.  Notably, they fall very close to 

the glacier flow margins shown in figure 6.14.  This partial loss is calculated as a 

decrease in meltwater flow from c. 2.3 m3 s-1 to c. 1.4 m3 s-1 from 1997 – 2007.  Most 

of this flow is lost to the unidentified area to the south.  The remainder is lost to 

Hagafellsjökull Eystri.  
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7 - Discussion of results 
 
 The figures and description presented in the previous chapter show some 

considerable changes in the modelled drainage system of the Langjökull ice cap with 

progression from 1986 to 2007.  This section will discuss why these changes occurred 

and link, wherever possible, to mechanisms and processes from the existing literature.  

Encompassed within this section will be deliberation of changes since the surge of 

Hagafellsjökull Eystri. This will include how the most recent modelled changes may 

suggest Langjökull is evolving into the future; particularly with reference to future 

surge behaviour. It also considers the methods used to acquire these results in terms of 

their confidence and potential applicability to other studies.  

 It should be considered at this point that while every effort was taken to model 

the melt across Langjökull as accurately as possible any figures for meltwater flux 

serve as a guide only.  The melt model was calculated from data for 2006 – clearly 

annual variation in meltwater flux due to varying winter accumulation and summer 

melt means this cannot be representative for all of the time period considered here.  

Rather than supplying absolute figures for summer melt the meltwater flux model is 

more useful for analysing changes in patterns of flow due to topographic change 

under assumed reasonable meltwater flux estimates.  

 

7.1 - Hagafellsjökull Eystri and Vestari: 1986 to 1997 

 The largest modelled change in the system was the considerable change in 

flow direction in the upper reaches of the Hagafellsjökull outlets.  Over the entire 

modelled summer melt period of 155 days this is calculated from the model to have 

resulted in the loss of approximately 18.7x10-6 m-3 of meltwater from the 

Hagafellsjökull outlets.  This flow was redirected to the north-east where it flowed out 

beneath Þrístapajökull.  In terms of subglacial topography this switch seems entire 

feasible.  The DEM of the subglacial area shows this area to be a relatively flat SW-

NE orientated valley with a slight surface slope in a similar direction before turning to 

the NW beneath Þrístapajökull.   

Figure 7.1 compares the modelled drainage systems in 1986 and 1997.  Both 

systems are overlain by the calculated surface height change during the 1986-1997 

period – characterised by accumulation in the upper reaches and ablation in the lower 

reaches.  The change in the overburden pressure along with ice thickness change is  
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also shown in this figure.  The comparison shows that in 1986 a considerable amount 

of meltwater input to the Hagafellsjökull drainage systems is from the area 

accumulated the greatest amount of ice by 1997.  By 1997 the drainage system has 

altered and the flow divide (approximated by the black lines) appears to have shifted.  

The position of this divide across the area of the greatest surface elevation increase 

 
 

 
Figure 7.1: The change in flow divide from 1986 (top) to 1997 (bottom) 
overlain by surface elevation change.  Black lines indicate approximate flow 
divides 
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Figure 7.2: Overview of the change in the calculated hydraulic gradient from 1986 to 1997. 
The box indicate the area in figure 7.3(overleaf). 

suggests increase in surface elevation of 20-30 m had a substantial effect upon the 

subglacial drainage system.  Comparatively, the area to the north-east is characterised 

by little or no change in ice mass from 1986 to 1997.  It therefore seems that the 

relative increase in overburden pressure in the upper area of the Hagafellsjökull 

outlets had the effect of causing some of the flow to switch to the north.  This concept 

is similar to the flow switching hypothesised to have occurred between the Rutford 

Ice Stream and the Carlson Inlet, Antarctica (Vaughan et al., 2008).  Here, the 

suggested reason for this switch in flow is alteration of the hydraulic gradient at the 

glacier bed.  Figure 7.2 shows the calculated change in the hydraulic gradient from 

1986 to 1997.  The hydraulic gradient was calculable using equation 3, as utilised by 

Arnold & Sharp (2002):  

 

Equation 3: φ = α + [(ρw−ρi)/ρw]β. 

 

Here: φ is hydraulic gradient, α the surface slope, ρw the density of water (1000 kg 

m3), ρi the density of ice (900 kg m3) and β the bed slope.  The increased overburden 

pressure of ice associated with the slope increase in the upper reaches of the 
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Hagafellsjökull outlets from 1986 to 1997 is modelled to have created changes that 

certainly had the potential to alter the flow of subglacial water.  The areas of the 

greatest overburden pressure increase show, as expected, the greatest loss in hydraulic 

gradient.  A loss of hydraulic gradient in a particular area results in meltwater flowing 

away from this area towards an area of lower overburden pressure – meltwater will 

always take the route of least resistance.  Towards the north-east where overburden 

pressures showed little change from 1986 to 1997 the trend of hydraulic gradient 

matches accordingly.  This lack of change relative to the loss in the hydraulic gradient 

in the upper Hagafellsjökull glaciers would certainly provide a distinct hydraulic 

gradient towards the north-east.  An area of lower hydraulic potential in the upper 

reaches of Hagafellsjökull Eystri primarily appears to form a barrier to flow to the 

north-east.  However, the solid black arrows indicate inconsistent gaps in this ‘barrier’ 

that have higher hydraulic gradient and could potentially draw water from areas of 

lower gradient.  These gaps could well be the key to allowing meltwater to flow to the 

north-east.  These arrows also bear a good spatial relation to the modelled main flow 

channels for 1997.  Further to this it is clear in figure 7.1 that the area of surface 

height increase of Eystri extends further south than that of Vestari.  This would result 

  
Figure 7.3: 1986-1997 change in hydraulic gradient in upper Hagafellsjökull.  The solid arrows 
indicate possible flow paths to the north-east in 1997. The dashed arrows indicate the general 
1986 flow direction.  
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in higher overburden pressure restricting flow towards Eystri.  It is therefore 

suggested that this increased hydraulic gradient running south-west to north-east is the 

mechanism resulting in the loss of some of the flow from the Hagafellsjökull glaciers 

in 1997.  

  

 If this mechanism is correct the obvious question is why did Hagafellsjökull 

Eystri surge in 1998 whereas Hagafellsjökull Vestari failed to do so?  Clearly both 

outlets were subject to accumulation in their upper reaches and yet only 

Hagafellsjökull Eystri surged successfully.  However, noting the observations of 

increased surface velocities on Hagafellsjökull Vestari in 1998 (Pálsson, 2010. 

Personal communication) it seems apparent that a surge of Vestari was near but failed 

to initialise fully.  The increased velocity noted in the upper areas may well have been 

the enhanced velocity zone described by Björnsson et al., (2003).  The formation of a 

bulge at the lower area of this zone precedes a surge. The rapid movement of this 

bulge is described as “first unquestionable sign of a surge” (Björnsson et al., 2003 : 

pg. 87).  Hagafellsjökull Vestari seem to have reached the stage of the increased 

velocity zone (with the formation of a bulge probable) but then failed to progress to 

the next stage – i.e. surging.  The noted flood of water from the subglacial system 

implies a linked cavity system may have formed temporarily, but it was not stable or 

did not dominate a sufficient area of the bed to cause a surge. Hence, the water was 

released as an efficient channel drainage system was reformed. Linking this back to 

Kamb’s stability criteria (Kamb et al., 1985 – equation 1) this would imply a ψ value 

less than 0.8 was not reached across a sufficiently wide area of the bed to sustain a 

surge.  Attempts to produce a model displaying values of ψ were made here but 

conclusions could not be reached – partly due to lack of knowledge of basal velocity 

fields and orifice step heights specific to Langjökull.  The cause of the failure to 

sustain the surge of Vestari could lie with several observed factors.  Figure 6.13 

shows the tributary branches feeding Hagafellsjökull Eystri are somewhat shorter and 

accumulate less than those of Hagafellsjökull Vestari.  Eystri does, however, have one 

branch noticeably longer than most which is modelled to be lost to the Þrístapajökull 

hydrological system in 1997 (labelled L in figure 6.12).  Surges usually begin in 

winter (Harrison & Post, 2003) due to lower water fluxes as melt rates decrease.  The 

1998 surge of Eystri was no exception with the surge beginning in the last months of 

the year.  The loss of the large branch ‘L’ may have been pivotal in the initiation of 
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the surge. The decrease of accumulated flow through this main drainage channel may 

have resulted in the collapse of the system and a switch to a linked cavity system.  

This change, coupled with less flow through the smaller flow tributaries during 

winter, could well have sparked a change to a linked cavity system beneath a 

sufficient proportion of the glacier to initiate a surge.  The overburden pressure 

increase between 1986 and 1997 (figure 7.1) shows the increase spreads considerably 

further south on Eystri than Vestari and this could also have been important causing 

drainage channel closure.   

 

Hagafellsjökull Vestari was similarly affected by the modelled switch in flow 

towards Þrístapajökull but a surge was not sustained.  Figure 6.13 shows a 

considerable pattern change in the hydrological system beneath Vestari with fewer, 

larger channels. Unfortunately this may again be the result of the lower resolution of 

the 1997 surface DEM combined with the lower resolution subglacial DEM.  

Intriguingly, however, the modelled 1997 system beneath Eystri shows no such 

change – indeed Eystri appears to have a greater number of smaller channels despite 

the same data resolutions being applied.  Consideration is therefore given to the idea 

that a surge of Vestari was averted due to a change in the hydrological flow pattern.  

A single channel with larger flow would potentially be more stable against collapse 

through overburden pressure than numerous small channels because increased flow 

levels would be more likely to sustain channels via melting.  The possibility of a 

larger channel forming from confluence of other channels, particularly beneath the 

rapidly thinning ablation area of Vestari, could be possible considering the ever 

reducing overburden pressure due to surface lowering.  The change could also be 

driven by the pattern of accumulation above Hagafellsjökull Vestari (see section 

7.4.1).  The change in the system to fewer, larger channels is modelled to be carried 

over to the 2004 reconstruction (figure 6.15) although the lower resolution makes its 

reliability questionable.  The 2007 DEM shows a switch to smaller channels but the 

pattern evolves somewhat differently (also discussed in section 7.4.1). 

 

7.2: Suðurjökull changes: 1986-1997 

 The modelled changes in Suðurjökull from 1986 are somewhat difficult to 

explain.  The incorporation into the Suðurjökull system of flow from the unnamed 

area between Suðurjökull and Hagafellsjökull Eystri (and some very limited flow 
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capture from Hagafelljokull Eystri) seems to have had little effect upon the system.  

One slight change in the topography constrained area between Eystri and Suðurjökull 

is some marginal thickening against this constraining feature at the south-east edge.  

This appears to have led to a drop in hydraulic gradient at this bounded area, visible 

around ‘Th’ in figure 7.4.  Conversely the area ‘D’ shows slightly increased hydraulic 

gradient.  Although this area is not classed as an outlet it could be possible that flow 

velocities increased slightly due to increased pressure caused by moderate surface 

elevation increases in the upper reaches.   The slight change of hydraulic gradient 

from the outside to the centre may explain the slight flow migration north towards 

Suðurjökull – the overlain 1997 modelled hydrological system follows this pattern as 

figure 7.4 shows.  The effects these modelled changes had upon Suðurjökull and the 

neighbouring area seem to have been nil or small.  Again, these it is difficult to assess 

such relatively small changes as they may be the result of DEM resolution variability.  

 

7.3 - Climatic impacts upon accumulation 

The accumulation of mass in the upper reaches of the Hagafellsjökull appears 

to have had a considerable impact upon the flow direction and the modelled system 

implies a link to the surge of Hagafellsjökull Eystri.  The pattern of surface elevation 

change from 1986 to 1997 is interesting.  The highest levels of accumulation are not 

necessarily the highest elevations.  The accumulation data from 2006 shows that the 

highest levels of precipitation (c. 3.5m a-1) are reached on the SW facing slopes at 

around 1300m: the Hagafellsjökull accumulation area.  This corresponds to L07 in 

figure 4.7.  The highest point of the ice cap actually lies to the north (L08 – 1413 m 

 
Figure7.4: Changes in hydraulic gradient of Sudurjökull overlain by  

                        1997 flow system 
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a.s.l.) but actually receives c. 1.4m a-1 less precipitation.  This is visible in the surface 

elevation change (figure 7.1) where the greatest surface increases do not correspond to 

the highest points of the glacier.  This demonstrates how Langjökull is influenced by 

the prevailing winds which bring the greatest levels of precipitation to the south.  This 

may have had important influence upon the flow switching from the Hagafellsjökull 

outlets to a north-easterly direction.  The accumulation on the southern slopes coupled 

with the decrease in precipitation with northerly progression appears to have changed 

the hydraulic gradient sufficiently to switch the meltwater flow direction.  Had the 

accumulation of mass on Langjökull been equal this gradient may have formed.  The 

influence of precipitation seems to have been important in redefining part of the 

hydraulic gradient from NE-SW to SW-NE.  

 

 

7.4: Hagafellsjökull Eystri and Vestari: 1997-2007 

 Following the surge of Hagafellsjökull Eystri in 1998 the increased surface 

velocities led to significant transfer of ice mass to the ablation zone with the effect of 

rapidly increasing the surface velocity.  Figure 7.5, below, shows this change clearly 

with a pronounced switch from loss to gain from pre 1997 (top) to post 1997 

(bottom).  Hagafellsjökull Vestari, which apparently did not surge, shows no such 

change and retains generally a similar pattern.  There are however, some subtle 

 
Figure 7.5: Changes in the apparent equilibrium line of Hagafellsjökull Vestari from 1986-
1997(top) and 1997-2004 (bottom).  The lowering line suggest some mass transfer on Vestari – 
possibly during the failed 1998 surge.  
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changes in the topography of Vestari.  The black lines indicate essentially the 

equilibrium line – the point between the accumulation and ablation zones.  There is a 

decided shift to the south in this line when compared pre and post surge.  The cause of 

this is likely to be the increased surface velocities noted by Pálsson (2010, personal 

communication) that appear to have lead to led to some transfer of mass.  This 

appears to have been a failed surge as explained in the previous section – assuming a 

surge is defined by the advance of the glacier terminus.  If a surge were to be defined 

as a rapid, considerable transfer of mass down glacier (but not necessarily a terminus 

advance) then arguably Hagafellsjökull Vestari did surge in 1998.  The transfer of 

mass during the early part of the surge (in the enhanced velocity zone of Björnsson et 

al., 2003) could well have restored the balance of the glacier sufficiently to allow an 

efficient channelised drainage system to reform in the upper area.  The slope angle of 

Hagafellsjökull Eystri shows a clear post surge reduction – the lighter colouring of the 

lower reaches in figure 7.6 demonstrate this well.  Comparatively, Hagafellsjökull 

Vestari seems to show little change with a similar slope across the whole outlet for 

both years. This implies the 1998 increased flow of Hagafellsjökull Vestari did little 

to rebalance the outlet - slope is a key characteristic that alters as a surging glacier 

becomes out of balance with accumulation only to be restored it during surging.  

Comparison with a DEM closer to 1997 may allow a change in surface slope to be 

assessed better – the 2004 DEM unfortunately leaves a considerable temporal gap 

from the 1998 surge and the data resolution is less.  

 

 

 

 

 

 

Some surface thickening of lower Suðurjökull from 1997-2004 (figure 97-04) could 

be a sign of increased flow velocities. 

  

 

 

 

  
Figure 7.6: Slope angle comparison of the southern outlets, 1997 (left) and 2004 (right).  
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   Figure 7.7: Hydraulic gradient changes of the southern   
   outlets from 1997-2004. 

 

As described in the results chapter the key modelled change from 1997 – 2004 

was the switch of the flow lost to Þrístapajökull back to the Hagafellsjökull outlets.  

The previous section explains this change was caused initially by alterations in the 

subglacial hydrological gradient through increased overburden pressure of 

accumulating ice.  The switch back of a modelled 1.2 m3 s-1 back the Hagafellsjökull 

outlets would therefore instinctively be due to a lowering of the overburden pressure 

and restoration of a similar hydraulic gradient to that of 1986.  Figure 7.7 certainly 

shows an increase in gradient 

towards Hagafellsjökull Eystri 

(the blue areas in the upper 

reaches).  The increases in the 

surface elevation in the lower 

reaches of Hagafellsjökull 

Eystri are also well pronounced 

with a loss of potential clearly 

visible (red/yellow areas).  

Hagafellsjökull Vestari shows 

little change in hydraulic gradient - although the continued ablation of the lower 

reaches has led some increase in this area.  The upper reaches are marked by little 

change – in-keeping with the lack of a full surge to restore the balance of the outlet.  

Post 1998 the overburden pressure in upper Vestari is still higher than in 1986 – also 

suggesting the glacier remains out of balance, although presumably insufficiently to 

cause a surge.  Due to this lower hydraulic gradient caused it therefore seems unlikely 

that the flow modelled to be lost in 1997 would be capable of re-establishing drainage 

beneath Hagafellsjökull Vestari. Indeed this does not seem to have occurred.  The 

conditions surrounding this are discussed in the next section.  A post surge decrease in 

overburden pressure and increased potential for flow is therefore suggested as the 

mechanism for the switch of flow back to the Hagafellsjökull glaciers.  
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Figure 7.8: 1986 (top) and 2007 (bottom) modelled hydrological systems 

                                          overlain by the change in surface elevation for the period 

7.4.1 – Effects of failed surge of Hagafellsjökull Vestari 

The modelled flow switching due to mass build-up prior to the 1998 surge is 

not modelled to have affected the flow distribution between the two Hagafellsjökull 

outlets: each outlet is modelled to have lost a similar share of meltwater to 

Þrístapajökull.  However, following the 1998 surge and the modelled return of flow to 

the Hagafellsjökull outlets there are some differences in the flow patterns and 

volumes as described in the previous chapter (figure 6.16).  Figure 7.8 shows the 

modelled hydrological systems for 1986 and 2007 overlain by the total change in 

surface elevation during this period.  The effects of the surge disparity are clear. 

Hagafellsjökull Eystri shows seemingly little change - it has rebalanced by the surge 

in 1998.  On the contrary, Hagafellsjökull Vestari shows considerable surface 

elevation gains in the accumulation area because it has not surged.  Both outlets have 
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net loss of mass in their ablation areas (showing that the increase in elevation caused 

by rapid discharge during the 1998 surge was quickly melted).  The effects of this 

elevation difference, and thus overburden pressure and hydraulic gradient, are clear to 

see in comparisons of the modelled 1986 and 2007 subglacial drainage systems.  The 

arrows labelled ‘S’ in figure 7.8 indicate a flow shift from Hagafellsjökull Vestari to 

Hagafellsjökull Eystri.  Comparison with the overlain surface elevation change shows 

a good relation between this shift and areas of surface elevation increase.  This 

appears to be due to the failure of Vestari to surge fully in 1998 which caused it to 

remain out of balance.  The increased pressure of ice is causing displacement of 

subglacial water towards Hagafellsjökull Eystri.  Following the 1998 surge and a 

decrease in overburden pressure of Hagafellsjökull Eystri an increased hydraulic 

gradient will exist.  It therefore appears to the author that Hagafellsjökull Vestari is 

not only out of balance within its own glacial system but is also out of balance with its 

neighbouring glacier and this imbalance is causing changing interaction between the 

two.  Further to this, the increased mass of ice is causing changes in the flow pattern 

beneath Hagafellsjökull Vestari itself.  The arrows labelled ‘C’ in figure 7.8 suggest a 

shift in flow towards the east (also see figure 6.17).  Again, consideration of the 

elevation changes from 1986-2007 show a relation to these changes.  The greatest 

elevation increase areas (green) see less accumulation of flow as flow is being forced 

east by increased overburden pressure.  Similarly, this likely to be being increased by 

the surface lowering (red) in the east close to the Hagafel ridge leading to an increased 

hydraulic gradient.  

 

7.5: Post 1997 changes to other outlets 

 The outlet Suðurjökull is modelled in figure 6.18 to lose the flux of meltwater 

gained from the area between itself and Hagafellsjökull Eystri.  The reasons for this 

are not widely apparent with little change in ice thickness exhibited after 1997– again 

this suggests the accuracy of modelling such small changes may be limited by the 

resolution of the DEM.  One possible reason that can be suggested is that the 

increased hydraulic gradient towards the subglacial system of Hagafellsjökull Eystri 

following the surge in 1997 may have removed potential meltwater sources.  The only 

other notable change to an outlet glacier is Þrístapajökull which, as described, 

returned to a flow volume similar to 1986 when the flow gained from the 
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Hagafellsjökull hydrological system switched back following the 1997 surge of 

Hagafeljokull Eystri. 

 The changes in the hydrological systems of Suðurjökull and Þrístapajökull are 

small, difficult to deduce clear mechanisms for and seem to have little effect upon the 

ice flow of the outlets.  There is, however, one particular reason they are worthy of 

note.  With the exception of Hagafellsjökull Eystri and Vestari these outlets are the 

only outlets modelled to have subglacial hydrology affected by the changing surface 

topography. These changes are both it direct (as Suðurjökull which shows some 

surface elevation changes) or indirectly via changing meltwater flow divides as 

Þrístapajökull experienced.  Intriguingly, both of these outlets are identified by 

Björnsson et al., (2003) as having potentially surged in the past (figure 1.3). Evidence 

for this is described as anecdotal only and unfortunately no further evidence is given.  

Palmer et al., (2009) also imply Suðurjökull may be a surge type outlet after recording 

increased surface velocities in 2004 (although this study finds no change in surface 

elevation to suggest a transfer of mass down glacier). Þrístapajökull is described by 

Flowers et al., (2007) as having a ‘tendency to advance from its current position over 

the gently sloping plain’ during modelling experiments of the Little Ice Age.  The 

occurrence of the modelled changes in hydrological systems found here and the 

suggestion of these glaciers once surged seems an unlikely coincidence.  The author 

therefore suggests that under past conditions of surface melt and icecap topography 

changes in the hydrological system may have been responsible for surges of these 

other outlets of the Langjökull ice cap.  A suggested method is a periodic switching of 

flow from the southern Hagafellsjökull and Suðurjökull systems to the northerly 

Þrístapajökull.  This could potentially have resulted in a periodic switch in surging of 

southern and northern facing outlets.  

 

7.6 : The future of the Langjökull Ice Cap 

  

 The changes modelled here show a retreating ice cap characterised by a 

general decrease in volume through continued ablation of outlet glaciers.  Comparison 

of the earliest (1986) and latest (2007) DEMs (figure 7.9) show the most prominently 

retreating areas are Hagafellsjökull Vestari, Eystri and Þrístapajökull.   This study 

sees no reason to disagree with estimates of a c. 7% loss from 1997-2006 and that 

Langjökull could disappear entirely within 150 years (Björnsson & Palsson, 2008).  
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7.6.1 - Hagafellsjökull Vestari: Ice volume gains across the entire ice cap are 

restricted to modest increases in the interior, possibly due to increased precipitation, 

and substantial gains in the accumulation area of Hagafelljokull Vestari (again, as 

shown in figure 7.9).  This increase is the result of the failure of Hagafellsjökull 

Vestari to surge fully along with its neighbouring outlet in 1998.  The continued 

ablation in of lower Vestari coupled with continuing gains of upper Vestari are 

resulting in the system becoming increasingly imbalanced. 

Hydrological changes resulting from this, as described in the previous section, are 

modelled to be forcing meltwater to switch flow away from Vestari into the system of 

Eystri.  This imbalance and reduced meltwater flux suggest a surge of Hagafellsjökull 

Vestari is increasingly likely and inevitable.  Estimation of a precise date is difficult 

but the author would suggest, due the presently increasing imbalance and meltwater 

flow switching to neighbouring Eystri it will certainly occur within the next 5 years. 

 

7.6.2: Hagafellsjökull Eystri: Recent observation from 2004 - 2007 (figure 6.4) shows 

the surge cycle of this outlet appears to have restarted placing the outlet in the 

quiescent phase.  Ablation in the lower reaches and modest accumulation in the upper 

reaches over this brief period of monitoring suggest the outlet is currently building up 
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to another surge.  This could be delayed by increasing meltwater flow levels feeding 

into the system from neighbouring Vestari caused by ice cap topography changes 

described.  If a surge of Vestari occurs first, which seems likely, this change could be 

reversed making a surge of Eystri increasingly likely after this juncture.  This 

demonstrates the dynamic relationship these outlets are currently modelled to sustain.  

 

7.6.3 – Climate effects into the future 

 Surges of both glaciers could be influenced by modelled climatic changes. 

Modelled predictions of a 2.8°C temperature rise and 6% precipitation increase 

towards the end of the 21st century (Bjornsson & Palsson, 2008) could result in 

considerable changes.  The rising temperatures will surely lead to an increase in 

ablation of the outlets cited above and also the other lower altitude areas of the ice 

cap, resulting in higher levels of meltwater production.  Meltwater discharge is 

estimated to peak within 50 years and then decrease to present levels within 100 

years.  Increased precipitation levels have the potential to cause greater accumulation 

in the higher altitude areas (assuming of course these changes are not counteracted by 

increased melt).  These changes in melt and precipitation considered together give the 

possibility of an increased incidence of surging in the Hagafellsjökull outlets due to 

greater imbalance of the system, although as yet there the frequency of surging does 

not show any such pattern.  Varying meltwater flux is expected to become an 

increasingly important factor leading to surge initiation.  Greater variation in levels 

from summer to winter could causes greater instability in subglacial drainage systems. 

For example: a particularly warm, meltwater abundant summer followed by a cold, 

melt water deprived winter could be increasingly likely to trigger a surge.  

 

7.7 - Review of techniques employed.  

 The analysis technique used here provides excellent spatial cover of the 

Langjökull ice cap and could be readily applied to any mountain glacier, small ice cap 

or a section of a larger ice cap.  It allows the changes within the entire system to be 

considered, particularly interactions between individual outlets.   One of the main 

limiting factors to another study could be data availability; in particular the GPR 

derived subglacial topography which is not readily available for most glaciers.  In 

terms of both this study and others the temporal resolution of DEMs could be 

problematic. This study could certainly have benefited from more frequent DEMs of 
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the ice cap in order to consider the rapid changes that occurred in and around the 

surge of 1998.  As considered throughout the study the spatial resolution of the DEMs 

themselves can be problematic.  Here the most accurate DEM is the 2007 LiDAR data 

and the least accurate the 2004 data.  This has a great effect on how much can be 

gleaned from modelled changes in both surface topography and subglacial hydrology 

as it can be difficult to assess how much changes are due to actual changes or merely 

the difference in DEM resolution.  

 Similarly the melt model employed here has the potential to be adapted for use 

in other areas.  The model used here was adapted from a previous study in Norway – 

this was possible through existing knowledge of input parameters from the existing 

literature and calculation of unknown specific parameters to Langjokull (as in section 

5.3).  In order to adapt this model to different locations knowledge of specific local 

parameters would be necessary.   Clearly the dependability of the modelled output 

will be affected by the accuracy of this data.  A limiting factor in this study is the 

change in precipitation with northerly progression which characterises Iceland and the 

rain-shadow effect of the highest points in the south (Flowers et al., 2007).  While the 

precipitation gradient with altitude was taken into account the melt model contains no 

consideration of this other spatial variation in precipitation.  
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8 – Conclusion 
 

 Digital elevation models derived from a number of sources for the period 1986 

to 2007 have been used to assess changes in the surging Hagafellsjökull outlet glaciers 

of the Langjökull ice cap, Iceland as well as the neighbouring outlet glaciers.  A 

model of surface melt was used to provide an input of water flux for reconstructions 

of the subglacial hydrology of the years 1986, 1997, 2004 and 2007.  Topographic 

changes in the ice cap have been considered and related to noted changes in the 

modelled subglacial hydrology.  This interaction is considered with regard to the 

causal mechanisms of glacier surging in order to better understand the behaviour of 

the surging outlets of Langjökull.  

 This study concludes that accumulation of mass in the upper reaches of the 

Hagafellsjökull outlets between the previous recorded surge in 1980 and 1997 led to 

an imbalance glacier system, as characterises surging glaciers.  Coupled with 

continued ablation in the lower reaches of the outlets this led to changes and in 

overburden pressure of ice and, accordingly, subglacial hydraulic gradients.  These 

alterations eventually resulted in temporary migration of a percentage of subglacial 

away from the Hagafellsjökull outlets towards the northern Þrístapajökull outlet.  The 

reduced flow levels are here linked to the concept of the collapse of the subglacial 

channelised drainage system and the formation of a linked cavity system.  The 

formation of this system led to rapidly increased surface velocities of Hagafellsjökull 

Eystri, beginning in 1998, which resulted in a terminus advance and considerable 

gains in surface elevation in the lower reaches through transfer of glacier mass from 

the accumulation area, thus rebalancing the glacier system.  Noted surface velocity 

increases on neighbouring Hagafellsjökull Vestari, also in 1998, are suggested to be 

the beginning of a similar surge which was not sustained due to the reestablishment of 

efficient subglacial drainage.  Possible reasons for this surge failure from the 

modelled system are suggested; the change to a single, larger drainage system and a 

sufficient rebalancing of the glacier system. 

 Following the 1998 surge the associated change in topography reduced 

overburden pressure in the upper Hagafelljokull Eystri.  This resulted in a change in 

hydraulic gradient back to a similar pattern to 1986.  Partial restoration of flow 

previously lost to the Þrístapajökull system is modelled.  Most recent observations 

show Hagafellsjökull Eystri to have returned to its quiescent phase with moderate 
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surface elevation gains in the upper reaches once more.  The failure of Hagsfelljokull 

Vestari to surge has led to a net gain in elevation over the entire study period and as a 

consequence patterns of flow between the Hagafellsjökull outlets have changed, with 

more flow being driven towards Hagafellsjökull Eystri.    

 It is suggested that modelled changes in the subglacial hydrology of 

neighbouring Suðurjökull and Þrístapajökull are linked to the surge behaviour of the 

Hagafellsjökull outlets.  This is linked to evidence suggesting these outlets may once 

have been surge type: study supports these claims through observations of potential 

influences on their subglacial hydrology and suggests previous conditions could well 

have resulted in surging.  

 The future of Langjökull is discussed and agreement is reached with published 

work that Langjökull is an ice cap under going retreat with the potential to melt 

completely within approximately 150 years.  A warming climate will increase 

meltwater production rates rapidly in the next 50 years.  This, along with continued 

retreat elsewhere in Iceland, will have profound impacts upon groundwater and river 

runoff, which are both heavily dependant upon glaciers.  The current imbalance of the 

Hagafellsjökull Vestari glacier system coupled with the modelled changes in 

subglacial hydrology suggest a surge of this outlet is increasingly likely within the 

next 5 years and it is suggested that increased precipitation and meltwater production 

rates under a changing climate have the potential to increase the likelihood of outlet 

surging into the next century.  

 The techniques employed here are found to be limited by spatial and temporal 

resolution of data to some extent but provide an excellent method of linking 

topographic changes to subglacial processes.  Despite some potential limiting factors 

the technique is suggested to be highly applicable to studies in other areas and could 

be used to investigate similarly interacting glacier systems.  
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