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1 Introduction

Latent variable models (LVMs) are of central interest in empirical microeconomics, where

unobserved heterogeneity, censoring, and measurement error in variables are common; see

Hu (2015) for a recent review of the literature. In many economic applications the latent

variables are discrete. Examples are models with discrete covariates and misclassification

errors (Mahajan, 2006; Hu, 2008), models of individual earnings dynamics (Keane and

Wolpin, 1997; Geweke and Keane, 2000), structural discrete choice models (Kasahara and

Shimotsu, 2009), or classification errors in dynamic discrete choice models (Keane and

Sauer, 2009). LVMs are also useful in empirical macroeconomics, for example the switching

regime model of Hamilton (1989) and state space models more generally.

Hall and Zhou (2003), Allman et al. (2009), and others provide powerful nonparametric

identification results for finite mixture models and related LVMs based on the availability

of short panel data. A review of this literature is given in Chauveau et al. (2014). These

results cover in particular the class of models that we focus on in this paper: finite mixtures

of conditionally-independent measurements, with possibly different distributions (i.e. non-

exchangeable measurements). Hidden Markov models (HMM, or regime-switching models)

are particular members of the class of latent variable models where, rather than remaining

fixed, the latent variable follows a Markov chain. Allman et al. (2009) show that for

these models three measurements are generically sufficient for identification. One of them

can have coarse support, such as a binary variable. Although identification is now well

understood, nonparametric estimation is still a subject of active research.

In this paper, we develop a two-step procedure for estimating conditional expectations

of general functions of observed measurements given unobserved types, without imposing

parametric restrictions on the underlying distributions. We build on and extend the results

derived in Bonhomme et al. (2016b) (first submitted in 2013; BJR1 hereafter) and Bon-

homme et al. (2016a) (first submitted in 2014; BJR2 hereafter). In the first step, weights

are estimated that operate like the individual posterior probabilities of unobserved types
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calculated in the E-step of the EM algorithm.1 The second step is analogous to the M-step:

conditional moments given unobserved types are estimated as weighted sample averages.

However, unlike in the EM algorithm, only one iteration suffices to deliver a consistent es-

timator. This method exploits the multilinear structure of the problem for fast estimation

of the weights,2 and readily lends itself to asymptotic analysis.

BJR1 focus on finite mixtures of iid distributions. BJR2 consider the non-exchangeable

case, including HMMs. BJR2 use orthogonal polynomials for density estimation and show

how the Fourier coefficients can be obtained using techniques related to, yet different from,

those used in BJR1. This allows one to estimate conditional moments given latent types,

but only after estimating the entire conditional distribution. The current paper shows

how BJR1 and BJR2 can be adapted in order to estimate conditional moments of contin-

uous outcomes given the unobserved types without first estimating the entire conditional

distributions in the non-exchangeable case. Our method works under the identification

restrictions of Allman et al. (2009): three measurements are necessary, two measurements

have at least as many points of support as the number of latent types, while the third

measurement may have a coarser support (such as binary). In addition, we show how

to estimate the conditional densities of outcomes and the state transition probabilities in

nonstationary hidden Markov models, using four periods of panel data.

The key difference between the exchangeable and non-exchangeable cases lies in the way

the estimation weights are constructed. In models with identically distributed outcomes,

the identifying restrictions take the form of a simultaneous diagonalization problem for a set

of symmetric matrices. With non-exchangeable outcomes, a set of general, non-symmetric

matrices are now simultaneously diagonalizable in the same basis. The joint diagonalization

algorithm that we use in this paper takes advantage of recent developments in the signal

1See Benaglia et al. (2009) and Levine et al. (2011) for applications of the EM algorithms to the

nonparametric estimation of finite mixtures.
2This method may be called a “spectral” method because it is based on eigenvalue and singular value

decompositions. Related techniques may be found the signal processing literature, see Comon and Jutten

(2010) and Cichocki et al. (2015) for recent surveys.
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processing literature, and it is numerically fast and stable. In contrast, our experience with

applying the Generalized Method of Moments (GMM) to polynomial restrictions is that

standard nonlinear solvers may not work well when the number of parameters to estimate

becomes large. Our approach allows for a larger number of potential applications than

BJR1, while preserving the computational simplicity of their method.

Our work contributes to a growing literature using spectral methods. Notably, Song

et al. (2013) develop an estimation procedure related to the one in BJR1. Their method

applies to both the “symmetric view” case (exchangeable) and the “multi-view” case (non-

exchangeable), thanks to a symmetrization technique due to Anandkumar et al. (2012) that

allows transforming the non-symmetric identifying matrices into symmetric ones. For this

method to work, all three measurements must have as many points of support as the number

of types. Symmetrization techniques are also used by Anandkumar et al. (2014) and De

Castro et al. (2015). Lastly, Anandkumar et al. (2012) and Hsu et al. (2012) also propose

spectral algorithms for finite mixture models and hidden Markov models for discrete, non-

exchangeable measurements which are related to the transformation algorithm that we use

in BJR2 and in this paper.

Relative to these references, our original contribution is as follows. None of these alter-

native methods use a joint diagonalization algorithm. Jointly enforcing model restrictions

as we do may help improve the precision of the estimates compared to methods based on

a single diagonalization. Also, from BJR1 and BJR2 it follows that nonparametric density

estimation based on joint diagonalization leads to optimal convergence rates. Lastly, we

provide a complete identification and estimation procedure for the case where only three

measurements are available, one of them with possibly coarse support (Propositions 1 and

2). We also discuss identification and estimation of hidden Markov models in the non

stationary case (Proposition 3).

An attractive feature of our approach is that it allows for a simple treatment of contin-

uous outcomes. In particular, kernel estimators of component densities can be obtained by

reweighting, and the bandwidths can be chosen using standard techniques such as cross-
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validation. Our estimator being a weighted mean, with weights being functions of a finite-

dimensional parameter, asymptotic theory is standard, in contrast with iterated algorithms

such as EM, for which no asymptotic theory has yet been proposed. At the same time, rel-

ative to full information methods, method of moments such as the one we advocate in this

paper may be less efficient. The relative asymptotic efficiency of the different approaches

is currently unknown.3

As an empirical illustration, we use our method to document the structure and evo-

lution of wage distributions in the US. As documented by a large literature, allowing for

unobserved heterogeneity is particularly important in this context. For example, augment-

ing canonical models of earnings by allowing for type heterogeneity, Geweke and Keane

(2000) and Gu and Koenker (2014) found that heterogeneity is quantitatively important

for explaining and forecasting earnings trajectories. The models estimated by these au-

thors are parametric, and thus restrict the channels through which type heterogeneity is

allowed to affect earnings. To assess the impact of unobserved factors on the entire wage

distributions, we fit a nonparametric model with time-invariant unobserved heterogeneity

to PSID data spanning a period of two decades.

The outline of the paper is as follows. In Section 2 we present the latent variable models

and describe a number of examples. In Section 3 we introduce our two-step estimation

strategy and report simulation evidence on its performance. Section 4 discusses a number

of extensions, including applying the framework to models with time-varying unobserved

types. In Section 5 we apply our method to PSID data.

3Such efficiency calculations are difficult because of the lack of asymptotic theory for EM-based esti-

mators. Even though one may expect full-information approaches to be more efficient asymptotically, an

important issue with the EM approach is the lack of data-driven, component-specific bandwidth. See, e.g.,

Chauveau et al. (2014) for more on this.
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2 Framework and examples

2.1 Finite mixtures

Let (Y1, ..., YM) be a random vector of observed outcome variables with joint cumulative

distribution function (cdf) F (y1, ..., yM). Let X ∈ {1, ..., K} be a discrete latent random

variable with K points of support.

Assumption 1 (Finite Mixture). Y1,..., YM are mutually independent conditional on X.

Under Assumption 1,

F (y1, ..., yM) =
K∑
k=1

πk Fk1(y1) · · ·FkM(yM), (2.1)

where πk = Pr(X = k), and Fkm denotes the conditional cdf of outcome Ym given X = k.

Our goal is to construct estimators of the conditional distributions Fkm and moments

thereof, as well as of the probabilities (π1, . . . , πK), from a random sample on (Y1, ..., YM)

drawn from the model in (2.1), without imposing functional-form restrictions on the dis-

tributions Fkm.

Conditions that ensure identification are now well known (see, e.g., Allman et al. 2009).

We will assume that the number of components, K, is known,4 that the number of outcome

variables, M , is at least equal to three, and that certain rank conditions to be detailed below

are satisfied. When M = 3, these rank conditions require that at least two measurements

have at least K points of support. The third measurement is not restricted beyond the

fact that it has at least two points of support (as in Hu, 2015, for example). When M > 3,

these support requirements can be relaxed further.

We now review several applications of these models in economics.

4Identification when K is unknown is difficult. Moreover, in the nonparametric context, there may be

multiple K for which a decomposition as in (2.1) can be obtained. Kasahara and Shimotsu (2014) show

that a lower bound on K is identified under weak conditions.
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Example 1 (Unobserved heterogeneity and wage dynamics). Consider a panel data model

for individual log wages measured over M periods, Y1, ..., YM . Suppose that individuals can

be clustered into different groups indexed by X ∈ {1, ..., K}, which correspond to different

types of unobserved ability. Under Assumption 1, wages are conditionally independent

over time given ability type. This model encompasses the simple additive one-factor model

estimated by Gottschalk and Moffitt (1994), with an individual time-invariant fixed-effect

and a transitory, serially-independent shock.

Example 2 (Misclassification error). Suppose we wish to explore the relationship between

an outcome Y1 and a discrete covariate X, but one only observes an error-laden version

of X, say Y2. Assume that a second measurement Y3 of X is available, and that Y1, Y2

and Y3 are mutually independent given X. Then Assumption 1 holds, and the methods

of this paper can be applied. In this example, the conditional independence requirement

is an assumption of conditional ignorability, which is conventional in the literature on

measurement error. Note that, while in this application it is natural to assume that Y2 and

X have the same (discrete) support, our setup allows the second measure Y3 to possibly

have a coarser support.

LVMs have been used in a number of other economic applications. Studies in empirical

industrial organization, for example, make intensive use of dynamic discrete choice models

with unobserved type heterogeneity (Kasahara and Shimotsu, 2009). In the analysis of

games with finitely many equilibria, treating the realized equilibrium as a latent variable

may lead to a similar LVM structure as the one we study here (Bajari et al., 2011; Hahn

and Moon, 2010).

2.2 Regime-switching models

Consider now a panel model where the latent state is time-varying, (X1, ..., XM). In a

model of earnings dynamics, Xm could denote the latent skills of a worker evolving over
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time as a result of health shocks or job training, for example. We restrict the dynamics of

Xm to be first-order Markov, and we make the following assumption.

Assumption 2 (Hidden Markov Models). For all m > 1,

1. Ym is independent of Ym−1, ..., Y1 and Xm−1, ..., X1 given Xm;

2. Xm is independent of Ym−1, ..., Y1 and Xm−2, ..., X1 given Xm−1.

Under Assumption 2 the model has a hidden Markov structure. Note that the present

setup differs from stationary hidden-Markov models popular in the time-series literature

(e.g. Gassiat et al., 2013; Gassiat and Rousseau, 2013). There, asymptotics are done for

M diverging. Here, in contrast, we consider a panel data setup with fixed M , and we do

not assume stationarity. The conditional distribution of Ym given Xm may depend on m,

as well as the transition probability from state Xm−1 to state Xm.

In principle we could define a vector-valued latent variable X = (X1, ..., XM) and treat

the model with time-varying latent states as a standard finite mixture model in (2.1), with

X being the latent variable. However, doing so would lead to a mixture with a potentially

very large number of components, as the cardinality of the state space of X grows rapidly

with M . This may be problematic in practice, as nonparametric identification requires

restricting the number of latent types.

The Markovian assumption significantly reduces the dimensionality of the unobserved

states. To see why this is so, consider the case M = 3, and note that by Assumption 2, we

have

(Y3, X3) ⊥⊥ (Y2, Y1, X1) |X2 and Y2 ⊥⊥ (Y1, X1) |X2,

where ⊥⊥ denotes statistical independence. Hence (Y1, X1), Y2 and (Y3, X3) are mutually

independent given X2. It follows that Y1, Y2, and Y3 are independent given X2. This,

therefore, implies that Assumption 1 is satisfied for X = X2. We will show in Section

4 that the techniques developed for finite mixtures can also be applied to models with

time-varying unobserved states.
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3 Two-step estimation

Now consider the model in (2.1) and set M = 3, and denote the three scalar measure-

ments as Y1, Y2, Y3. The theory to follow can be extended to accommodate more than 3

measurements (see the next section), and the results can easily be adapted to deal with

vector-valued measurements. As a notational shorthand, we write EkW = E(W |X = k)

for the conditional expectation of any random variable W .

In this section we show how to consistently estimate linear functionals of the form

Ekϕ(Ym) for any measurable univariate function ϕ. Particular cases of interest are power

functions, ϕ(u) = up, which deliver conditional moments of outcomes. Also, setting ϕy(u) =

1{u ≤ y} gives Ekϕy(Ym) = Fkm(y), the conditional cdf. Finally, if ϕy(u) = h−1κ(h−1(u−

y)), then Ekϕy(Ym) is the conditional density of Ym + hε at point y, where ε is a random

error with density κ. This delivers a kernel density estimator of the density function of

Fkm that is particularly easy to implement.

3.1 Identification

Let ψ1, ..., ψJ be a set of J ≥ K univariate functions, and let Ψ = (ψ1, ..., ψJ)′. In addition,

we define the following J × J matrix,5

A = E [Ψ(Y1)Ψ(Y2)
′] =

K∑
k=1

πk EkΨ(Y1)EkΨ(Y2)
′. (3.2)

Identification rests on the following restriction on the matrix A and the number of types

K.

Assumption 3. A has rank K.

Assumption 3 is satisfied provided both E1Ψ(Y1), . . . ,EKΨ(Y1) and E1Ψ(Y2), . . . ,EKΨ(Y2)

are linearly independent, and πk > 0 for all k.

5Alternatively, one could use different functions ψj , and a different J , for each measurement Y1, Y2.

Here we focus on the case where A is a square matrix in order to keep the notation simple.
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Under Assumption 3, the singular value decomposition (SVD) of A is A = USV ′, where

U and V are J×K matrices with orthogonal and unitary columns, and S is aK×K diagonal

and non singular matrix with non-negative elements. The matrix A allows to construct

two whitening matrices, W1 = S−
1
2U ′ and W2 = S−

1
2V ′, such that the matrices

B(ϕ) = W1E [Ψ(Y1)Ψ(Y2)
′ϕ(Y3)]W

′
2 (3.3)

have their eigenvalues equal to the unknown conditional moments Ekϕ(Y3). More precisely,

we show in Appendix A.1 the following proposition.

Proposition 1. Let Assumptions 1 and 3 hold. The set of matrices B(ϕ), for all univariate

functions ϕ, can be jointly diagonalized in the same basis, and the conditional moments

Ekϕ(Y3) are their eigenvalues. That is, there exists a non singular K ×K matrix Q such

that, for all ϕ,

Q−1B(ϕ)Q = D3(ϕ), (3.4)

for D3(ϕ) = diag (E1ϕ(Y3), ...,EKϕ(Y3)). The matrix Q is unique up to column swapping

and rescaling provided for all k 6= k′ there exists ϕ such that Ekϕ(Y3) 6= Ek′ϕ(Y3).

Let τk(Y1, Y2) denote the k-th diagonal element of the random matrix whose expectation

is B(ϕ), i.e.

τk(Y1, Y2) = e′kQ
−1W1Ψ(Y1)Ψ(Y2)

′W ′
2Qek, (3.5)

where ek is the kth column of the K ×K identity matrix. Proposition 1 implies that, for

any univariate function ϕ, the functionals

Ekϕ(Y3) = E [τk(Y1, Y2)ϕ(Y3)] , k = 1, ..., K, (3.6)

are identified up to relabeling the types. The weights τk thus transform moments of the

distribution of Y3 into moments of the type-k distributions.

It is interesting to compare the weights τk(Y1, Y2) with the posterior probabilities

pk(Y1, Y2, Y3) =
πkfk1(Y1)fk2(Y2)fk3(Y3)∑K
`=1 π`f`1(Y1)f`2(Y2)f`3(Y3)

,
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where fkm denotes the conditional probability density (or mass) function of Ym given X =

k. The ratios of posterior to prior probabilities, pk/πk, also transform functionals of the

distribution of Y3 into functionals of the type-k distributions. Specifically,

Ekϕ(Y3) = E
[
pk(Y1, Y2, Y3)

πk
ϕ(Y3)

]
.

However, the posterior probabilities pk depend on the conditional densities fkm, which are

unknown and need first to be nonparametrically estimated, whereas the weights τk depend

only on the matrices W1,W2, Q.

Proposition 1 shows that the type-specific distributions of Y3 are nonparametrically

identified up to relabeling. This result is closely related to Theorem 1 of BJR2 and Lemma

3.2 of Anandkumar et al. (2012). A noteworthy feature of Proposition 1 is that it provides

a set of joint restrictions on the matrix Q, for all functions ϕ. We will enforce these

joint restrictions in estimation. In addition, the restrictions involve moments of the form

Ekϕ(Y3). This will be useful to construct simple empirical counterparts of those moments

that converge at the parametric rate.

In many situations, Proposition 1 will be enough to identify moments Ekϕ(Ym), for all

m = 1, 2, 3. It suffices to apply Proposition 1 three times redefining A = E [Ψ(Ym1)Ψ(Ym2)
′],

for all couples (m1,m2) ∈ {(1, 2), (1, 3), (2, 3)}. Each choice of A delivers a different Q, with

a possibly different labeling of the unobserved types.6

However, Proposition 1 cannot directly be applied for identifying Ekϕ(Ym), m ∈ {1, 2}

when, say, Y3 is a binary variable and E [Ψ(Y1)Ψ(Y3)
′] does not satisfy the rank condition

of Assumption 3. The next result shows that the type-specific distributions of Y1 and Y2,

as well as the type proportions, are also identified for the same choice of matrix A, and up

to the same labeling of types as in Proposition 1.

Proposition 2. Given Q from Proposition 1, for all univariate functions ϕ and k =

6Theorem 2 of BJR2 shows how to recover a common labeling of the types across the different mea-

surements.
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1, ..., K,

Ekϕ(Y1) =
e′kQ

′W2E [Ψ(Y2)ϕ(Y1)]

e′kQ
′W2EΨ(Y2)

, (3.7)

Ekϕ(Y2) =
e′kQ

−1W1E [Ψ(Y1)ϕ(Y2)]

e′kQ
−1W1EΨ(Y1)

. (3.8)

Furthermore, the type-k proportion satisfies

πk = e′kQ
−1W1EΨ(Y1) · e′kQ′W2EΨ(Y2). (3.9)

Equations (3.7), (3.8), and (3.9) hold irrespective of the choice of observationally-

equivalent eigenvector matrix Q. Moments Ekϕ(Y1), Ekϕ(Y2), and proportions πk are

thus identified up to the labeling chosen for Ekϕ(Y3), but they are not subject to the scale

indeterminacy of the matrix Q.

3.2 Estimation

Propositions 1 and 2 suggest a two-step estimation strategy. In the first step, the matrix

Q is estimated by approximately jointly diagonalizing empirical counterparts of matrices

B(ψ1), ..., B(ψJ). The weights τk in (3.5) can then be estimated. In the second step, any

functional of the type-specific distributions associated with a given measurement can be

estimated as a simple weighted average. We now detail the two estimation steps. We work

with an iid sample (Yi1, Yi2, Yi3), i = 1, .., N .

Step 1: Weights

Let us first estimate the matrices B(ϕ) in Proposition 1 by

B̂(ϕ) = Ŵ1Ê [Ψ(Y1)Ψ(Y2)
′ϕ(Y3)] Ŵ

′
2, (3.10)

where Ê(Z) = 1
N

∑N
i=1 Zi, and Ŵ1 = Ŝ−

1
2 Û ′ and Ŵ2 = Ŝ−

1
2 V̂ ′, with (Û , Ŝ, V̂ ) coming from

the SVD of Â = Ê (Ψ(Y1)Ψ(Y2)
′).
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Proposition 1 implies that Q is the matrix of joint eigenvectors of all matrices B(ϕ). As

in BJR2, we estimate Q by approximate joint diagonalization of the matrices B̂(ψj), j =

1, ..., J , i.e.

Q̂ = arg min
Q∈Q

J∑
j=1

off
(
Q−1B̂(ψj)Q

)
, (3.11)

where off(A) =
∑K

k=1

∑
6̀=k a

2
k` denotes the sum of squared off-diagonal coefficients of a

square matrix A = [ak`], and the set Q of K ×K matrices enforces a scaling constraint; in

practice we normalize detQ = 1.

The objective function in (3.11) can be minimized using the algorithms of Iferroud-

jene et al. (2009, 2010) or Luciani and Albera (2010).7 These algorithms allow for fast

computation of the matrix Q̂.

Finally, we construct the weight functions,

ω̂1k(y1) = e′kQ̂
−1Ŵ1Ψ(y1), ω̂2k(y2) = e′kQ̂

′Ŵ2Ψ(y2), k = 1, ..., K.

The product τ̂k(y1, y2) = ω̂1k(y1)ω̂2k(y2) is an estimate of τk(y1, y2) in (3.5).

Remark. Note that Algorithm 4 in Anandkumar et al. (2012, 2015) allows to transform

the problem of diagonalizing the non-symmetric matrices B̂(ψj) in the same basis into

the joint diagonalization of a set of symmetric matrices. Hence, an alternative approach

would be to use the algorithm of Cardoso and Souloumiac (1993), which is a well-known

algorithm used in Independent Component Analysis, and which we used in BJR1. However,

as we show in Appendix A.1.3, this symmetrization algorithm delivers matrices of the form

C3ΩC
′
3 and C3ΩD3(ψj)C

′
3, and identification requires the matrix C3 to be of full column

rank K. As already emphasized, this is not likely to hold if the third measurement Y3 has

coarse support.8

7In the Monte Carlo and the application we use the Matlab code that Xavier Luciani and Laurent

Albera kindly provided to us.
8The symmetrization algorithm (without joint diagonalization) was used by Song et al. (2013) and De

Castro et al. (2015) for estimating component densities.
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Step 2: Averaging

Let ϕ be a univariate function. Let θkm = Ekϕ(Ym), for all (k,m) ∈ {1, ..., K} × {1, 2, 3}.

For all k, we can estimate the functionals θk1, θk2, and θk3 as weighted averages

θ̂k1 =
Ê [ω̂2k(Y2)ϕ(Y1)]

Êω̂2k(Y2)
, θ̂k2 =

Ê [ω̂1k(Y1)ϕ(Y2)]

Êω̂1k(Y1)
, θ̂k3 = Ê [ω̂1k(Y1)ω̂2k(Y2)ϕ(Y3)] ,

(3.12)

and type proportions as

π̂k = Ê [ω̂1k(Y1)] Ê [ω̂2k(Y2)] . (3.13)

Note that (3.13) does not guarantee that the type proportions be non negative and sum

up to one. In practice, these constraints can be imposed ex post, by projecting the vector

(π̂1, ..., π̂K) on the K-dimensional simplex. Similarly, estimates of cdfs may be re-arranged

in order to be non-decreasing (as in Chernozhukov et al., 2009), and the density estimates

below can be guaranteed to be non negative by using for example the procedure of Gajek

(1986).

Given that conditional moments of outcomes given the unobserved types take the form

of simple weighted averages with pre-estimated weights, one can readily show that they

are root-N consistent and asymptotically normal under standard conditions. In Appendix

A.2 we derive the form of the influence function of the estimator of θk3 = Ekϕ(Y3) given

by (3.12) as an example, using results from BJR1 and BJR2. The estimator is root-

N consistent under the following additional assumptions: 1) E[ψ2
j (Ym)] is finite for all

j = 1, ..., J and m = 1, 2; 2) E[ϕ2(Y3)] is finite; and 3) all eigenvalues of matrix A are

simple. The asymptotic distributions of conditional moments of other measurements and

type proportions can be derived similarly.
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3.3 Simulations

3.3.1 Experiment 1: continuous outcomes

We illustrate the performance of our estimators by means of two Monte Carlo experiments.

The first is taken from Levine et al. (2011). This allows a comparison of our results with the

parametric EM estimator, the nonparametric EM estimator, and the estimator in BJR1.

The design is as follows. Three measurements are drawn from a mixture model with two

latent types. The distribution of each measurement is a bivariate mixture of normals with

means zero and three, respectively, and unit variances. Moreover,

F1m(y) = Φ(y), F2m(y) = Φ(y − 3),

for all m = 1, 2, 3, and we will provide results for the different mixing proportions π1 ∈

{.2, .4, .6, .8} This is a symmetric design, but our estimator does not use this information.

We will estimate the mean (µkm) and standard deviation (σkm) of each component using

the formulae in (3.12). The results we report below are for samples of size N = 500 and

were obtained over 1, 000 Monte Carlo simulations.

We implemented our procedures for Ψ set to the leading J orthonormalized Hermite

polynomials. We report results for J ∈ {5, 10} to evaluate the impact of J on the results.

To estimate the joint diagonalizer Q, we use equation 3.11.

Table 1 contains the mean and the standard deviation (in italics) of our estimators of

µkm and σkm for each k,m. Biases are generally moderate. However, standard deviations

can be quite large. In particular, the standard deviations of the parameters of the first

mixture component increase when the mixing probability π1 decreases (and those for the

second mixture component decrease). Inspection of (3.7) and (3.8) suggests that, as esti-

mates corresponding to these outcomes are ratios of two components, they may be poorly

estimated when the denominator is close to zero.9 The estimator for the third outcome

9An interesting possibility, which we do not study in this paper, would be to add a regularization term

to the denominator, chosen as a decreasing function of the sample size.
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is much more stable. We also see that the estimates tend to be more precise when J is

10 instead of 5. However, even in that case there is a loss of efficiency compared to EM

estimators and the method of BJR1 tailored to the exchangeable case, as may be seen when

comparing Table 1 to Table 1 in BJR1.

3.3.2 Experiment 2: coarse support

The second design we consider is a modification of the first which allows us to evaluate our

procedure when one of the measurements has a coarse support. To do so we generate the

first two outcomes as before, but now restrict the third outcome to have a probability mass

function supported only on the set {0, 1, 2}, with mass functions

Pr(Y3 = v|X = 0) =


.50 if v = 0

.34 if v = 1

.16 if v = 2

, Pr(Y3 = v|X = 1) =


.16 if v = 0

.68 if v = 1

.16 if v = 2

.

In this case, µ13 = E1Y3 = .6587 and µ23 = E2Y3 = 1, and the corresponding standard

deviations are σ13 = .7363 and σ23 = .5633, respectively. The rest of the design and

implementation are the same as in the first experiment.

The simulation results are collected in Table 2. As in the first experiment, we see that

while biases are moderate some of the standard deviations are large, particularly for the

first two outcomes when π1 is closer to zero or one and J = 5. The results when J = 10

are more encouraging. Developing a data-driven choice of J is an interesting question for

future work.
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4 Extensions

4.1 Additional measurements

If M > 3 measurements are available, the above results can easily be adapted. Suppose for

example that one has 4 measurements Y1, ..., Y4. In order to estimate Ekϕ(Y4) one can use

Â = Ê [Ψ2(Y1, Y2)Ψ(Y3)
′] ,

where

Ψ2(y1, y2) = Ψ(y1)⊗ Ψ(y2)

is a vector of interactions ψj1(y1)ψj2(y2), and estimate Q as a joint diagonalizer of matrices

B̂(ψj) = Ŵ1Ê [Ψ2(Y1, Y2)Ψ(Y3)
′ψj(Y4)] Ŵ

′
2.

Letting

ω̂12k(y1, y2) = e′kQ̂
−1Ŵ1Ψ2(y1, y2), ω̂3k(y3) = e′kQ̂

′Ŵ2Ψ(y3),

we can estimate θk12 = Ekϕ(Y1, Y2), θk3 = Ekϕ(Y3), θk4 = Ekϕ(Y4), and πk, respectively, as

θ̂k12 =
Ê [ω̂3k(Y3)ϕ(Y1, Y2)]

Êω̂3k(Y3)
, θ̂k3 =

Ê [ω̂12k(Y1, Y2)ϕ(Y3)]

Êω̂12k(Y1, Y2)
, θ̂k4 = Ê [ω̂12k(Y1, Y2)ω̂3k(Y3)ϕ(Y4)] ,

and π̂k = Ê [ω̂12k(Y1, Y2)] Ê [ω̂3k(Y3)] .

Everything works as before because (Y1, Y2), Y3, and Y4 are independent given X.

There are many possibilities to combine the restrictions implied by the model in estima-

tion. Characterizing semi-parametric efficient estimators in this context is a very interesting

question, which exceeds the scope of this paper.

4.2 Density estimation

In models with continuous measurements, one can construct kernel density estimators of

type-specific densities as well. Consider as an example the conditional density fk3 of Y3

19



given X = k. Let κ be a kernel function and h > 0 be a bandwidth parameter. Let us

define

f̂k3(y) = Ê
[
τ̂k(Y1, Y2)

1

h
κ

(
Y3 − y
h

)]
. (4.14)

Under conditions similar to the ones in Proposition 2 in BJR1, this density estimator is
√
Nh-consistent for fk3(y) and asymptotically normal. In addition, f̂k3(y) is (pointwise)

asymptotically equivalent to the infeasible estimator obtained upon replacing τ̂k (Y1, Y2)

in (4.14) by its population counterpart τk (Y1, Y2) given by (3.5). For density estimation,

an appealing feature of our approach is that bandwidths may be chosen using data-driven

methods such as cross-validation. See BJR1 for details.

4.3 Regime-switching models

We now consider panel data models with time-varying latent variables. In these models,

multiple measurements may be particularly useful because they can allow to identify and

estimate the transition probabilities of the latent states Xt, t ∈ {1, ..., T}. We show in this

section that one can nonparametrically identify and estimate Pr(X2 = k) and Ekϕ(Yt) =

E [ϕ(Yt)|Xt = k] for t = 2, ..., T − 1, and Pr(Xt|Xt−1) for t = 3, ..., T − 1. The first and last

transitions cannot be recovered nonparametrically without further assumptions.

4.3.1 Three measurements

Consider first the case of three measurements (Y1, Y2, Y3). Under Assumption 2, (Y1, Y2, Y3)

are independent given X2. It follows that one can apply the results obtained above with

A = E [Ψ(Y1)Ψ(Y3)
′] , B(ϕ) = W1E [Ψ(Y1)Ψ(Y3)

′ϕ(Y2)]W
′
2.

Assuming that A has maximal rank and that Pr(X2 = k) = πk2 > 0 for all k, these

matrices identify E [ϕ(Y2)|X2 = k] = Ekϕ(Y2) and πk2 for all k, and also E [ϕ(Y1)|X2 = k]

and E [ϕ(Y3)|X2 = k]. Yet, it is not possible in general to identify the conditional moments

Ekϕ(Y1) and Ekϕ(Y3) or the probabilities Pr(X1 = k,X2 = `) and Pr(X2 = k,X3 = `).
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In the stationary case, the conditional distributions and transition probabilities remain

constant over time, and both Pr(Xt = k|Xt−1 = `) and all Ekϕ(Yt) may be identified based

on three measurements (see BJR2). We now show how a fourth measurement allows to

identify Pr(X2 = k,X3 = `) in the general, non stationary case.

4.3.2 Four measurements

Let the matrix used for whitening now be

A = E [Ψ(Y1)Ψ(Y4)
′] .

Moreover, let Π denote the K ×K matrix whose (k, `)-element is Pr(X2 = k,X3 = `).

Assumption 4. A has rank K and Π is non singular.

Let us denote the SVD of A as A = USV ′, and let W1 = S−
1
2U ′ and W2 = S−

1
2V ′. Let

B2(ϕ) = W1E [Ψ(Y1)Ψ(Y4)
′ϕ(Y2)]W

′
2, B3(ϕ) = W1E [Ψ(Y1)Ψ(Y4)

′ϕ(Y3)]W
′
2,

and let

D2(ϕ) = diag (E1ϕ(Y2), ...,EKϕ(Y2)) , D3(ϕ) = diag (E1ϕ(Y3), ...,EKϕ(Y3)) ,

for Ekϕ(Yt) = E [ϕ(Yt)|Xt = k].

The following result shows that the joint distribution of (Y2, X2, Y3, X3) is nonparamet-

rically identified.

Proposition 3. Let Assumptions 2 and 4 hold. Let Q and R be two non-singular K ×K

matrices solutions to the simultaneous diagonalization problems,

Q−1B2(ϕ)Q = D2(ϕ), R−1B3(ϕ)R = D3(ϕ),

for all univariate functions ϕ. Q and R are unique up to rescaling and permutation of

their columns provided for all k 6= k′ there exists ϕ and ϕ′ such that Ekϕ(Y2) 6= Ek′ϕ(Y2)
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and Ekϕ
′(Y3) 6= Ek′ϕ

′(Y3). Conditional moments of Y2 and Y3, Ekϕ(Y2) and Ekϕ(Y3), are

identified as the eigenvalues. Moreover, the probability matrix of (X2, X3) is given, up to

permutation of its rows and columns, by

Π = diag (Q′W2EΨ(Y4))× (Q−1R)× diag
(
R−1W1EΨ(Y1)

)
.

Proposition 3 allows to construct estimators Q̂ and R̂ by solving two approximate joint

diagonalization problems. An estimator of Π is then given by

Π̂ = diag
(
Q̂′Ŵ2ÊΨ(Y4)

)
× (Q̂−1R̂)× diag

(
R̂−1Ŵ1ÊΨ(Y1)

)
.

Conditional moments Ekϕ(Y2) and Ekϕ(Y3) can then be estimated as simple weighted

averages, as above. The asymptotic distributions of all these quantities can be derived

using essentially the same arguments as in the case of time-invariant heterogeneity detailed

in Appendix A.2.

5 Illustration on wage distributions

A simple representation of individual log wages is

Yit = Xi + ηit, (5.15)

where Yit may be log wages or residuals from a standard Mincer equation, Xi is a worker

effect, and ηit is an idiosyncratic white noise process. In a classic paper, Gottschalk and

Moffitt (1994) estimate model (5.15) on log earnings residuals, and contrast US earnings in-

equality in the 1970s with earnings inequality in the 1980s. Model (5.15) has been extended

in various directions, replacing the worker effect by a random walk with individual-specific

drift or initial condition, or replacing the white noise by a more general ARMA process, see

for example Moffitt and Gottschalk (2012). In this section, we take a nonparametric ap-

proach and show how finite mixtures can be used to document the structure and evolution

of wage inequality in the U.S.
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From the PSID 1969–1998 we construct a set of non-overlapping three-period (M = 3)

balanced subpanels.10 In each subpanel t = 1, 2, 3, we compute log hourly wages Yim =

Yi,t+m−1,m = 1, 2, 3. Taking instead residuals from a pooled regression of log wages on a

set of time dummies, years of schooling, and a second-degree polynomial in experience gave

similar results.

We first estimate conditional means and variances of log wages given the unobserved

worker types (Figures 1 and 2). Througout, we use the estimator θ̂k3 as defined in (3.12),

with orthonormal Hermite polynomials as basis functions and J = 7. Experimentation

with different J yielded similar results. We focus on a small number of types, K = 3,

for ease of exposition. In this way, one can think of the latent X as an indicator for low,

intermediate, and high values of unobserved ability, for example. We label latent groups

by decreasing order of the conditional means.

The first two groups have rather stable log wage means, which increase after 1990.

The last group’s mean steadily decreases throughout the whole period. All groups show

increasing dispersion over time, accelerating after 1990. The standard deviations of groups

1 and 3 show similar trends, and their levels are higher than the standard deviation of

group 2. These differences confirms the usefulness of allowing for type-specific differences

in distributions, beyond differences in means.

Figure 3 shows how the total variance of log wages decomposes into within-group (WG)

and between-group (BG) components. The BG-component clearly takes the bigger share

(about 75%).

We then estimate the conditional densities for each subpanel using the weighted kernel

density estimator in equation (4.14). The densities were estimated using our weighted

kernel density estimator with bandwidth set by cross-validation. Figure 4 contains the

estimated conditional densities for a selection of subpanels. All component densities are

10We excluded self-employed individuals and students, as well as individuals for whom earnings were top

coded. The sample was restricted to individuals between the ages of 20 and 60, with at most 40 years of

experience.
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estimated unimodal and rather symmetric. These nonparametric results could be useful to

guide the choice of parametric specifications of wage distributions.
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Appendix

A.1 Proofs

A.1.1 Proof of Proposition 1

Define the J ×K matrices

Cm = [E1Ψ(Ym), ...,EKΨ(Ym)] , m ∈ {1, 2, 3},

and the K × K diagonal matrix Ω = diag (π1, ..., πK). By Assumption 1 (conditional

independence) we have

A12 ≡ E [Ψ(Y1)Ψ(Y2)
′] =

K∑
k=1

πk EkΨ(Y1)EkΨ(Y2)
′ = C1ΩC

′
2, (A.1)

and, for any scalar function ϕ,

A123(ϕ) ≡ E [Ψ(Y1)Ψ(Y2)
′ϕ(Y3)] = C1ΩD3(ϕ)C ′2, (A.2)

where we have denoted D3(ϕ) = diag (E1ϕ(Y3), ...,EKϕ(Y3)).

Next, write the singular value decomposition (SVD) of A12 as

A12 = USV ′,

where U and V are J ×K, with orthogonal columns, and S is K ×K diagonal. All these

matrices have rank K by Assumption 3. Let W1 = S−
1
2U ′ and W2 = S−

1
2V ′, and let

Q = W1C1Ω, (A.3)

which is also non-singular by Assumption 3. Equation (A.1) then implies that

W1C1ΩC
′
2W

′
2 = W1A12W

′
2 = IK ,

where IK is the identity matrix of size K. Hence

C ′2W
′
2 = Q−1. (A.4)
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It thus follows from (A.2) that

Q−1W1E [Ψ(Y1)Ψ(Y2)
′ϕ(Y3)]W

′
2Q = Q−1W1C1ΩD3(ϕ)C ′2W

′
2Q

= D3(ϕ),

which is equation (3.4) of Proposition 1. The matrices

B(ϕ) = W1E [Ψ(Y1)Ψ(Y2)
′ϕ(Y3)]W

′
2

can thus be diagonalized in the same basis, and the moments Ekϕ(Y3) are their eigenvalues.

Lastly, by Theorem 6.1 in De Lathauwer et al. (2004) the matrix Q of joint eigenvectors

is unique up to scaling and permutation of its columns.

Remark. Note that

EΨ(Y1) = C1Ωe,

denoting as e the K × 1 vector of ones. Hence, Q̃ = Q∆−1, for some invertible diagonal

matrix ∆ = diag(δ), δ ∈ RK×1, is identified up to permutation of its columns. Now,

W1EΨ(Y1) = Q̃∆e = Q̃δ,

so δ = Q̃−1W1EΨ(Y1), from which it follows that Q is identified up to permutation of its

columns.

A.1.2 Proof of Proposition 2

Let ϕ be an R-valued, univariate function. We have, by Assumption 1,

E [Ψ(Y2)ϕ(Y1)] = C2Ωv1(ϕ),

E [Ψ(Y1)ϕ(Y2)] = C1Ωv2(ϕ),

where vm(ϕ) = (E1ϕ(Ym), ...,EKϕ(Ym))′ ,m = 1, 2. Let Q be one solution to the simulta-

neous diagonalization problem in Proposition 1. Then, by equations (A.3) and (A.4), there
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exists λk 6= 0, k = 1, ..., K, and Λ = diag(λ1, ..., λK) such that, up to columns permutation,

Q = W1C1ΩΛ
−1, Q−1 = ΛC ′2W

′
2.

Hence,

W2E [Ψ(Y2)ϕ(Y1)] = (Q−1)′Λ−1Ωv1(ϕ), (A.5)

W1E [Ψ(Y1)ϕ(Y2)] = QΛv2(ϕ). (A.6)

Taking ϕ = 1 we obtain

λk = e′kQ
−1W1EΨ(Y1), (A.7)

πk = λke
′
kQ
′W2EΨ(Y2). (A.8)

Note that πk 6= 0 for all k by Assumption 3. It follows that, for any ϕ,

v1(ϕ) = Ω−1ΛQ′W2E [Ψ(Y2)ϕ(Y1)] , (A.9)

v2(ϕ) = Λ−1Q−1W1E [Ψ(Y1)ϕ(Y2)] . (A.10)

Combining this with (A.7) and (A.8) yields (3.7) and (3.8).

A.1.3 A symmetrization result by Anandkumar et al. (2012)

Define Aij = E [Ψ(Yi)Ψ(Yj)
′] = CiΩC

′
j for all i 6= j ∈ {1, 2, 3}. Let A12 = USV ′ be the

SVD of matrix A12, with S ∈ RK×K a non singular diagonal matrix. Define

Ã12 = U ′A12V, Ã13 = U ′A13, Ã32 = A32V.

Note that Ã12 = U ′C1ΩC
′
2V = S is invertible. It follows that matrices U ′C1 and C ′2V are

invertible as Ω has non zero diagonal entries. Then,

Ã′13(Ã
′
12)
−1Ã′32 = C3ΩC

′
1U
[
(C ′1U)−1Ω−1(V ′C2)

−1]V ′C2ΩC
′
3 = C3ΩC

′
3.
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Moreover, define Ã123(ϕ) = U ′A123(ϕ)V . Then

Ã32Ã
−1
12 Ã123(ϕ)Ã−112 Ã13 = C3ΩC

′
2V
[
(C ′2V )−1Ω−1(U ′C1)

−1]
× [U ′C1ΩD3(ϕ)C ′2V ]×

[
(C ′2V )−1Ω−1(U ′C1)

−1]U ′C1ΩC
′
3 = C3ΩD3(ϕ)C ′3.

It follows that the methods of BJR1 directly apply under the additional restriction that C3

has rank K. However, as pointed out in the text, this condition may be unlikely when Y3

has coarse support.

A.1.4 Proof of Proposition 3

Define the J ×K matrices

C1 = (E [Ψ(Y1) |X2 = 1] , ...,E [Ψ(Y1) |X2 = K]) ,

C4 = (E [Ψ(Y4) |X3 = 1] , ...,E [Ψ(Y4) |X3 = K]) .

By Assumption 2 we have

A = E [Ψ(Y1)Ψ(Y4)
′] =

K∑
k=1

K∑
`=1

Pr(X2 = k,X3 = `)E [Ψ(Y1)Ψ(Y4)
′ |X2 = k,X3 = `]

=
K∑
k=1

K∑
`=1

Pr(X2 = k,X3 = `)E [Ψ(Y1) |X2 = k]E [Ψ(Y4)
′ |X3 = `] ,

making use of the fact that, under Assumption (2),

f(Y1, Y2, Y3, Y4|X2, X3) = f(Y1|X2)f(Y2|X2)f(Y3|X3)f(Y4|X3),

where f(Y |Z) denotes the density of Y conditional on Z for any Y, Z.

Hence

A = C1ΠC
′
4. (A.11)

It is also straightforward to verify that

E [Ψ(Y1)Ψ(Y4)
′ϕ(Y2)] = C1D2(ϕ)ΠC ′4,

E [Ψ(Y1)Ψ(Y4)
′ϕ(Y3)] = C1ΠD3(ϕ)C ′4,
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for Dt(ϕ) = diag (E1ϕ(Yt), ...,EKϕ(Yt)), with Ekϕ(Yt) = E [ϕ(Yt)|Xt = k].

Using the SVD of A (= USV ′), and defining W1 and W2 as in the text, let

Q = W1C1, (A.12)

which is non-singular by Assumption 4. From (A.11) we get

W1C1ΠC
′
4W

′
2 = IK .

Hence

ΠC ′4W
′
2 = Q−1. (A.13)

Moreover,

Q−1B2(ϕ)Q = D2(ϕ),

Q−1B3(ϕ)Q = ΠD3(ϕ)Π−1,

where Bt(ϕ) = W1E [Ψ(Y1)Ψ(Y4)
′ϕ(Yt)]W

′
2. Hence, similarly as in Proposition 1, Ekϕ(Y2)

and Ekϕ(Y3) follow as the eigenvalues of two simultaneous diagonalization problems. The

matrices of common eigenvectors, Q and QΠ, are therefore also unique up to rescaling and

permutation of their columns.

This implies that, for two K ×K non-singular diagonal matrices Λ and ∆, and up to

relabeling of their columns, we have

Q = W1C1Λ, R = W1C1Π∆,

where Q and R are any solutions to

Q−1B2(ϕ)Q = D2(ϕ), R−1B3(ϕ)R = D3(ϕ),

for all ϕ.

Now, note that, by Assumption 2, and denoting as e the K × 1 vector of ones,

EΨ(Y1) = C1Πe,
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so

W1EΨ(Y1) = R∆−1e,

from which it follows that

∆−1 = diag
(
R−1W1EΨ(Y1)

)
.

Likewise,

EΨ(Y4) = C4Π
′e,

so

W2EΨ(Y4) = (Q′)−1Λe,

from which it follows that

Λ = diag (Q′W2EΨ(Y4)) .

Combining results, we finally obtain

Π = diag (Q′W2EΨ(Y4))× (Q−1R)× diag
(
R−1W1EΨ(Y1)

)
.

A.2 Asymptotic theory

The parameter of interest is

θ = Ekϕ(Y3) = E[τk(Y1, Y2)ϕ(Y3)]

for fixed k. The estimator is

θ̂ = Ê [τ̂k(Y1, Y2)ϕ(Y3)] ,

with the weight functions τ̂k(Y1, Y2) = ω̂1k(Y1)ω̂2k(Y2).

To present the asymptotic distribution of θ̂, note that it is a plug-in version of the

infeasible estimator

θ̃ = Ê [τk(Y1, Y2)ϕ(Y3)] ,
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that is, the estimator that would be used if the weights were known. This estimator

is a simple sample average, and so the central limit theorem can be directly applied to

show that
√
N(θ̃ − θ) is asymptotically normal. It remains only to quantify the impact of

estimating the weights. Thus, we need to derive the asymptotic behavior of
√
N(θ̂−θ̃). This

requires quantifying the impact of (i) the whitening step, and (ii) the joint approximate

diagonalization step. We turn to each of these next.

Whitening. Recall that the whitening is done using a plug-in estimator of the singular-

value decomposition of the matrix

A = E[Ψ(Y1)Ψ(Y2)
′] = USV ′ = UKSKV

′
K ,

where we now let SK be the K × K block of S containing the non-zero singular values,

and let UK and VK denote the associated left and right singular vectors. We denote as U ,

S and V the J × J matrices that contain UK , VK and SK , respectively. Note that this

notation differs from the one used in the main text. The whitening matrices

W1 = S
− 1

2
K U ′K , W2 = S

− 1
2

K V ′K ,

are then estimated using the singular-value decomposition of

Â = Ê [Ψ(Y1)Ψ(Y2)
′] ,

which is the empirical counterpart of A.

Let
col
⊗ and

row
⊗ be the columnwise and rowwise Kronecker product, respectively, and let

	 be the “Kronecker difference”.11 Define

JW1 = −(U ⊗ I) (S2 	 S2
K)+(U ′ ⊗W1)−

1

4
(W ′

1

col
⊗ I)S−1K (W1

row
⊗ W1)

JW ′
2

= (I ⊗ V ) (S2
K 	 S2)+(W2 ⊗ V ′)−

1

4
(I

col
⊗W ′

2)S
−1
K (W2

row
⊗ W2),

11That is, A	B = A⊗ IdimB − IdimA ⊗B.
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where I denotes the identity matrix of conformable dimension and A+ is the Moore-Penrose

pseudo inverse of matrix A. In the following result we assume that the non-zero singular

values of A are simple. This allows us to avoid issues related to asymptotic distributions

depending on the multiplicity of singular values in a complicated way; see Eaton and Tyler

(1991).

Lemma 1. Assume that E[ψ2
j (Ym)] is finite for all j = 1, ..., J and m = 1, 2, and suppose

that all non-zero singular values of A are simple. Then

√
Nvec(Ŵ1 −W1) = JW1

√
Nvec(ÂÂ′ − AA′) + op(1),

√
Nvec(Ŵ ′

2 −W ′
2) = JW ′

2

√
Nvec (Â′Â− A′A) + op(1),

and are asymptotically normal.

Proof. The results can be proved by adapting the proof of Lemmas S.1 and S.2 in BJR1 to

the eigendecompositions AA′ = US2U ′ and A′A = V S2V ′. The condition E[ψ2
j (Ym)] <∞

allows to apply the Lindeberg-Lévy CLT to
√
Nvec(Â− A).

Note that under the conditions of Lemma 1 we have

vec(ÂÂ′ − AA′) = (A⊗ I) vec(Â− A) + (I ⊗ A) vec(Â′ − A′) + op(N
−1/2),

vec(Â′Â− A′A) = (I ⊗ A)′ vec(Â− A) + (A⊗ I)′ vec(Â′ − A′) + op(N
−1/2).

Diagonalization. Introduce the shorthand

Bj = E[Ψ(Y1)Ψ(Y2)
′ψj(Y3)],

and write the whitened matrices compactly as

Bj = B(ψj) = W1BjW
′
2.

We estimate Q by the joint approximate diagonalizer of the sample counterparts of the Bj,

B̂j = Ŵ1B̂jŴ
′
2.
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Let vert denote the vertical concatenation operator, for example B = vert[B1, B2, . . . , BJ ]

and B̂ = vert[B̂1, B̂2, . . . , B̂J ], and similarly let horz denote the horizontal concatenation

operator. Introduce the matrix

H = (I ⊗Q)

(
J∑

j=1

(Dj 	Dj)
2

)+

horz[D1 	D1, . . . , DJ 	DJ ] (I ⊗Q′ ⊗Q−1).

Lemma 2. Assume that E[ψ2
j (Ym)] is finite for all j = 1, ..., J and m = 1, 2, and suppose

that all non-zero singular values of A are simple. Then

√
Nvec(Q̂−Q) = H

√
N vec(B̂ −B) + op(1),

and is asymptotically normal.

Proof. Follows directly from Theorem 5 in BJR2.

Under the conditions of Lemma 2,

vec(B̂ −B) = vert[W2B
′
1 ⊗ I, . . . ,W2B

′
J ⊗ I] vec(Ŵ1 −W1)

+ vert[I ⊗W1B1, . . . , I ⊗W1BJ ] vec(Ŵ2 −W2)

+ (I ⊗W2 ⊗W1) vec(B̂ −B) + op(N
−1/2),

where B = vert[B1, B2, . . . , BJ ] and B̂ = vert[B̂1, B̂2, . . . , B̂J ].

Feasible estimator. With Lemmas 1 and 2 in hand, a standard argument (as in the

proof of Theorem 2 in BJR1 gives

θ̂ − θ = Ê [τk(Y1, Y2)ϕ(Y3)− θ] +
(
ν2k(e′k ⊗ I)Z1 + ν1k(I ⊗ ek)Z2

)
+ op(N

−1/2),

where the second right-hand side term represents the contribution to the influence function

of the estimation noise in the weights. It features the terms

ν1k = e′kQ
−1W1B(ϕ), ν2k = e′kQ

′W2B(ϕ)′,
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and the random variables

Z1 = (I ⊗Q−1)vec(Ŵ1 −W1)− (W ′
1 ⊗ I)(Q′ ⊗Q)−1vec(Q̂−Q)

Z2 = (Q′ ⊗ I)vec(Ŵ ′
2 −W ′

2) + (I ⊗W ′
2)vec(Q̂−Q),

where expressions for vec(Ŵ1 −W1), vec(Ŵ ′
2 −W ′

2), and vec(Q̂−Q) are given above.

It follows that θ̂ is asymptotically normal provided that the variance of ϕ(Y3) exists. It

also follows that its asymptotic variance can be readily characterized.
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Figure 1: Means
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Figure 2: Standard deviations
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Figure 3: Within-between variance decompositions
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