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Abstract 15 

Control of DNA methylation level is critical for gene regulation, and the factors that govern 16 

hypomethylation at CpG islands (CGIs) are still being uncovered. Here, we provide evidence 17 

that G-quadruplex (G4) DNA secondary structures are genomic features that influence 18 

methylation at CGIs. We show that the presence of G4 structure is tightly associated with CGI 19 

hypomethylation in the human genome. Surprisingly, we find that these G4 sites are 20 

enriched for DNA methyltransferase 1 (DNMT1) occupancy, which is consistent with our 21 

biophysical observations that DNMT1 exhibits higher binding affinity for G4s as compared to 22 

duplex, hemi-methylated or single-stranded DNA. The biochemical assays also show that the 23 

G4 structure itself, rather than sequence, inhibits DNMT1 enzymatic activity. Based on these 24 

data, we propose that G4 formation sequesters DNMT1 thereby protecting certain CGIs from 25 

methylation and inhibiting local methylation. 26 

 27 

Introduction 28 

Methylation of cytosine at C-5 is a key DNA modification in development and disease1,2. In 29 

mammals, cytosine methylation occurs predominantly at CpG dinucleotides and is installed 30 

and maintained by three DNA methyltransferase enzymes (DNMT1, 3A and 3B) that are 31 

essential for development3–5. CpGs occur less frequently than expected in the mammalian 32 

genome and show a bimodal distribution with respect to methylation6,7. Sparsely distributed 33 

CpGs (~90%), found in genic and intergenic regions, tend to be highly methylated, while CpGs 34 
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found in dense GC-rich regions, so-called CpG Islands (CGIs), are largely depleted of 35 

methylation and are prevalent at the promoters of house-keeping and developmental 36 

genes8,9. Outside of embryonic development, gross methylation patterns are generally stable 37 

across different tissues10,11. Nonetheless during key cellular events, methylation can be 38 

dynamic at specific loci to modulate gene expression, such as de novo methylation of some 39 

promoter CGIs with intermediate CpG density during lineage commitment12. 40 

 41 

General rules on maintenance of the default methylation state are being uncovered and 42 

several studies suggest that CGI hypomethylation is sequence-dependent13–18. Furthermore, 43 

DNMTs are reported to be actively and continuously excluded from CpG-poor distal 44 

regulatory regions through competitive inhibition with DNA binding proteins, such as NRF1 45 

and CTCF/REST,  thus maintaining the hypomethylated state of regulatory regions19,20. Lowly 46 

methylated regions also co-localise with DNase I hypersensitivity sites marking accessible 47 

chromatin regions21. The presence of enhancer chromatin marks, such as  histone 48 

modifications, also play an important role in forming the unique chromatin structure of 49 

CGIs22,23. In mouse embryonic stem cells, the CXXC finger protein 1, Cfp1, is believed to 50 

promote CGI hypomethylation through binding unmethylated CpG and recruitment of H3K4 51 

methyltransferases to promote H3K4me324,25. However, Cfp1 binding and/or H3K4me3 are 52 

not required for the ‘protection’ of CGI from DNA methylation since Cfp1 knockout results in 53 

a dramatic loss of H3K4me3 at CGIs without increasing DNA methylation24. This suggests that 54 

Cfp1 binding and/or H3K4me3 are not required to prevent CGIs from DNA methylation, thus 55 

there may be other factors that are fundamental to impart the hypomethylated state.  56 

 57 

Alternative DNA secondary structures, known as G-quadruplexes (G4s) are found within 58 

certain G-rich sequences and arise through the self-association of guanine bases to form 59 

stacked tetrads (Fig. 1a)26. G4s are increasingly being recognised as important features in the 60 

genome and over 700,000 G4s have been biophysically mapped in purified human genomic 61 

DNA by high-throughput sequencing27. G4 structures have been observed in human using 62 

immunofluorescence with a G4-specific antibody (BG4)28, and linked with transcriptional 63 

regulation and are enriched in gene promoters including many oncogenes26,29. Recently, G4-64 

chromatin immunoprecipitation sequencing (G4-ChIP-seq) has been developed to map G4 65 
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structures in human chromatin30,31. Corroborating a link with transcription, the majority of 66 

G4-ChIP-seq sites were found predominantly in regulatory, nucleosome-depleted chromatin, 67 

particularly in gene promoters31,32. As both G4s and hypomethylated CGIs are associated 68 

with actively transcribed genes9,31, this raises the question of whether there is an interplay 69 

between G4 formation and DNA methylation. 70 

 71 

Herein we present evidence that most G4 structures, as detected by G4-ChIP-seq, are formed 72 

in regions comprising unmethylated CGIs in the human genome. We also uncover a striking 73 

co-localisation of G4 structures and DNMT1 docked at CGIs, and we demonstrate that 74 

DNMT1 methylation activity is inhibited by DNA G4 structures. Our data suggest a 75 

mechanism for the ‘protection’ of CGIs from methylation by G-quadruplex structures that 76 

locally sequester and inhibit DNMT1. 77 

 78 

Results 79 

G4 structures in active chromatin are found within hypomethylated CGIs 80 

To explore any potential relationship between G4 structures in chromatin and methylation 81 

levels, we employed human K562 chronic myelogenous leukaemia cells in which methylation 82 

has been comprehensively characterised at single base resolution using whole genome 83 

bisulfite sequencing (WGBS) by the ENCODE project33. We generated a genome-wide dataset 84 

for G4 structures by G4 ChIP-Seq31 using the G4-specific antibody BG428 and compared the 85 

BG4 peak overlap with CGIs34. Strikingly, we found that the majority of BG4 peaks (79%, 86 

7111/8952) overlapped with a CGI (covering 23% of all CGIs) (Fig. 1b). The majority of CpG 87 

island regions span 200 to 1000 bp (median/mean, 569/775 bp), while BG4 peak regions 88 

span 100 to 400 bp (median/mean, 205/226 bp) (Fig. 1c). 83% (5935/7111) of these CGIs 89 

overlap with one BG4 peak (Fig. 1d). Furthermore, when the level of methylation at BG4 90 

peaks was considered, we noted that there was a dramatic absence of methylation at BG4 91 

peaks (mean 1%, median 0.5%), compared with average genome methylation (28.4%) (Fig. 92 

1e). To rule out any effect of the cytosine methylation state on the ability of the BG4 93 

antibody to recognise a G4 structure, an ELISA binding assay was used to show that BG4 can 94 

bind to G4 structured DNA with equal affinity irrespective of the presence of cytosine 95 

methylation (SI Fig. 1). DNase I hypersensitive sites (DHS), which mark open chromatin, are 96 
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also mainly hypomethylated (mean 11%, median 2.5%, Fig. 1e). Confirming our previous 97 

observations31, the majority of BG4 peaks are found in open chromatin (DHSs, 97%, 98 

8655/8952), and it is notable that these sites have the lowest methylation levels (Fig. 1e). 99 

Overall CGI methylation (mean 27%, median 8%, Fig. 1e) shows a broader distribution than 100 

BG4 regions, since some CGIs are associated with active hypomethylated promoters while 101 

others with inactive genes or gene bodies and thus are more heavily methylated9,35. This 102 

prominent association between BG4 peaks, hypomethylation and particular CGIs is 103 

suggestive of a functional link between G4 secondary structures and the establishment 104 

and/or maintenance of low methylation status at these CGIs in active chromatin.  105 

 106 

It has recently been concluded from work in mouse embryonic stem cells, that both high 107 

CpG-density and high GC-richness are required to establish the hypomethylated state at 108 

CGIs15. It is therefore notable that BG4 peaks have a similar level of GC richness to CGIs (Fig. 109 

1f) with most (79%) being located in regions of CpG density comparable to that seen in CGIs 110 

(Fig. 1g). It has been suggested that CpG density alone is only a minor determinant of the 111 

unmethylated state, as dense CpG sequences embedded within an AT-rich context are 112 

invariably highly methylated when inserted into the mouse genome15,16. Indeed, when we 113 

compare the average methylation of CGIs (Fig. 1h) to that of BG4 peaks at different CpG 114 

dinucleotide densities, it is noteworthy that across a wide range of CpG densities, BG4 peak 115 

regions are always largely devoid of methylation (Fig. 1h). We also confirmed these 116 

observations using an alternative CGI definition set generated by CpGCluster algorithm36 (SI 117 

Fig. 2a, 2b). Furthermore, when methylation at CGIs is considered with respect to the 118 

presence or absence of a BG4 peak, it is noteworthy that there is an almost a total lack of 119 

methylation at CGIs with BG4 than CGIs without (SI Fig. 2c). This strongly suggests that CGIs 120 

associated with the physical presence of a G4 structure generally have particularly low 121 

methylation.  122 

 123 

To explore low methylation in different CGI contexts, we calculated methylation levels 124 

relative to BG4 presence in CGIs containing i) no promoter or DHS site, ii) a promoter alone, 125 

iii) a DHS site alone and iv) both a promoter and DHS site. It is apparent that CGIs containing 126 

a BG4 peak always have lower methylation in open (DHS +) or closed (DHS −) chromatin, or in 127 

the presence or absence of a promoter. (SI Fig. 2d). CGIs with a DHS site and promoter but 128 
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without a BG4 peak (4500 sites) have higher methylation (mean 2%, median 2%) than those 129 

CGIs (5567 sites) with a BG4 peak plus promoter and DHSs (mean 1%, median 0.5%) (SI Fig. 130 

2d, right two panels). The lowest observed methylation states are found therefore at sites 131 

carrying a G4 structure, suggesting that the physical presence of a G4 structure within CGI is 132 

an important feature with respect to the hypomethylation state. This is illustrated in Fig. 1i 133 

which shows the co-incidence of BG4 peaks with hypomethylated promoter CGIs for a 134 

representative genome region.  135 

 136 

In earlier work, we found that treatment of human epidermal keratinocytes (HaCaT) cells 137 

with the HDAC inhibitor entinostat led to increased BG4 binding signal primarily located in 138 

open chromatin promoter regions37.  We therefore generated WGBS datasets to examine 139 

DNA methylation changes with respect to BG4 signal. Consistent with our observation in 140 

K562 cells, BG4 peaks in HaCaT cells have lower methylation compared with open chromatin 141 

and CGI regions (SI Fig. 2e). In open-chromatin promoter CGI regions, 307 had a significant 142 

increase in BG4 signal (BG4 increase, > 1.5-fold change in signal and FDR < 0.05, see Online 143 

Methods). No change in BG4 signal was seen in 3261 CGI promoter regions before and after 144 

treatment (BG4 constant), or for 1504 G-rich CGI promoter regions that do not have a BG4 145 

peak (BG4 negative) but have the potential to form a G4 in vitro27. Despite open-chromatin 146 

promoter CGI regions already being predisposed to low methylation, we see a statistically 147 

significant additional drop in methylation levels at CGIs where BG4 peak size increases after 148 

HDAC inhibition (SI Fig. 2f). Overall, these data support that formation of G-quadruplex 149 

structures in CGIs is linked to lower methylation. 150 

 151 

DNMT1 is sequestered at G4 structures associated with low methylation 152 

Given that regions where G4 structures marked by BG4 peaks are generally observed to be 153 

hypomethylated, we considered that the DNA methyltransferases might have some form of 154 

physical interaction with G4 structures in the chromatin context. We focused on DNMT1 155 

since DNMT1 knockout is lethal causing global DNA methylation loss in all dividing somatic 156 

cells and human embryonic stem cells (ESCs)3,5,38,39, whereas  DNMT3A/B knockouts mainly 157 

affect non-CpG methylation in human ESCs5. When we considered the distribution of DNMT1 158 

binding sites in K562 cells, downloaded from ENCODE33 (516,483 peaks in total across both 159 

biological replicates), we found that 52% (4611/8952, Monte Carlo simulation’s P-value 160 
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1.25e-04) of the G4 structures mapped by G4-ChIP (BG4 peaks) overlapped with at least one 161 

DNMT1 binding site. Of the remaining 4341 BG4 peaks, 4003 were within 1 Kb of a DNMT1 162 

binding site. The proximity of BG4 peaks to DNMT1 recruitment sites is illustrated graphically 163 

in Fig. 2a for a representative genome region. Intriguingly, when the distribution of DNMT1 164 

binding is plotted relative to high, intermediate or low methylated CGIs, we observe a 165 

prominent enrichment of DNMT1 binding at lowly methylated CGIs which overlaps with 166 

those regions with the highest BG4 peak density as well as DHS sites (Fig. 2b). A similar 167 

profile is also seen using alternative CGI definition set generated by CpGCluster36 (SI Fig. 3). 168 

The observation that DNMT1 enrichment at G4 regions that lack methylation is, at first 169 

glance, somewhat unexpected and counter-intuitive, given that DNMT1 installs methylation. 170 

We therefore considered the possibility of a mechanism whereby DNMT1 protein is 171 

sequestered at these sites in active chromatin but prevented from methylating CpGs in that 172 

locality. 173 

 174 

DNMT1 selectively binds to and is inhibited by G4 structures  175 

To address whether DNMT1 binds G4 structures directly, we carried out biophysical 176 

measurements using an enzyme-linked immunosorbent assay (ELISA) to measure the binding 177 

of recombinant human FLAG-tagged full-length DNMT1 protein to immobilized target DNA 178 

structures (see Online Methods). Biotinylated single-stranded oligonucleotides of sequence 179 

based on the promoters of BCL2, KIT2 and MYC were chosen as these fold into well-180 

characterised G4 structures40–42. Mutated versions (BCL2-mut, KIT2-mut and MYC-mut) that 181 

are unable to form a G4 structure were also used as controls. The presence or absence of G4 182 

folded structure with G4 oligonucleotides and mutated controls was confirmed by circular 183 

dichroism (CD) spectroscopy and ultraviolet (UV) thermal melting spectroscopic analysis (SI 184 

Fig. 4a-f). We found that DNMT1 binds to all three G4 structures with low nanomolar affinity 185 

(Kd[BCL2] = 9.6 ± 0.3 nM; Kd [KIT2] = 15.2 ± 0.4 nM, Kd [MYC] = 25.3 ± 0.4 nM, n=3; Fig. 3a-c). 186 

DNMT1 showed a lower binding affinity for unmethylated duplex DNA (BCL2, 107±5 nM; Fig. 187 

3d) and there was no specific binding observed for the single stranded mutated 188 

oligonucleotide controls. Notably, DNMT1 generally showed a greater affinity for G4 189 

structures than known DNMT1 substrates such as a hemi-methylated duplex DNA (BCL2, 85 ± 190 

7 nM, Fig. 3e), or a synthetic poly(dI-dC)50 substrate (75 ± 2 nM, Fig. 3f). DNMT1 binding to 191 

G4 structures does not appear to depend on CpG dinucleotides, since the absence of CpG in 192 
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the MYC G4 did not preclude DNMT1 binding (Fig. 3c). To begin to dissect the binding mode 193 

of DNMT1 to G4s, we used a competition ELISA assay. 50 nM immobilized BCL2 G4 (Kd for 194 

DNMT1 = 9.6 nM, Fig. 3a) was incubated with DNMT1 protein in the presence of increasing 195 

concentrations of competitors. Even with 100-fold excess (5 M) of DNA duplex (Kd for 196 

DNMT1 = 107 nM, Fig. 3d) or poly-dIdC (Kd for DNMT1 = 75 nM, Fig. 3f), there was no 197 

inhibition (Fig. 3g). This suggests that G4s and duplex DNA occupy different binding sites and 198 

that the catalytic domain is not involved in G4 binding. A similar, non-overlapping G4 and 199 

duplex binding has also been observed in other proteins such as TRF243 and Rap144. 200 

 201 

The relatively high binding affinity and selectivity of DNMT1 for DNA G4 structures is 202 

consistent with the observation that DNMT1 shows some localisation to G4 structures in 203 

K562 cells (Fig. 2a, b). To validate the association with low methylation in the locality G4 sites 204 

in the genome, we evaluated whether G4 DNA could actually inhibit DNA methylation on a 205 

standard assay using poly(dI-dC)n as substrate45 of DNMT1 using a fluorometric biochemical 206 

assay (Abcam, see Online Methods). Specifically, we evaluated different concentrations of 207 

folded G4-structured oligonucleotides or mutated non-G4 controls, where the presence or 208 

absence of G4 structure had been confirmed by CD spectroscopy (SI Fig. 4g-i). We indeed 209 

found that each of three G4 structures resulted in significant inhibition of DNMT1 210 

methyltransferase activity whereas the mutated control oligonucleotides did not (Fig 3h-j). 211 

Gratifyingly, the potency of inhibition by each G4 was related to the binding affinity for 212 

DNMT1, as determined by ELISA with BCL2 being the most potent inhibitor (50% inhibition at 213 

~25 nM), MYC being least potent (50% inhibition at ~1 M) and KIT2 being intermediate (50% 214 

inhibition at 90 nM). No inhibition of activity was seen with mutated controls ranging from 215 

400 nM-8 μM concentration. C-rich oligonucleotides complementary to the G4 sequences 216 

(BCL2-CCC, KIT2-CCC and MYC-CCC) or corresponding duplex DNA also had no effect on 217 

DNMT1 activity (SI Fig. 4j-l). We also tested G4 oligonucleotides that were able to fold into a 218 

G4 structure but carried a reduced number CpGs (BCL2, KIT) or had a number of artificially 219 

introduced CpGs (MYC). In all cases, changes in the number of CpG sites only had minor 220 

effects on DNMT1 inhibition (SI Fig. 4j-l). Taken together, these results indicate a novel and 221 

unexpected feature of G4 structures as potential genomic regions that promote the 222 

unmethylated state through recruitment and inhibition of DNMT1 activity.  223 

 224 
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Recruitment of DNMT to G4 structures shapes the methylome  225 

The above data suggest that there is a striking lack of methylation (Fig. 1e, h, SI Fig. 2a-d) in 226 

chromatin regions where G4 structure formation is observed. To rigorously question whether 227 

this observation was related to the detectable formation of a G4 structure in chromatin (i. e. 228 

a BG4 peak), or merely the G-rich sequences per se with potential to form a G4 structure, the 229 

methylation profile for BG4 peak regions was compared to those of G-rich sequences that 230 

can physically form a G4 structure in an in vitro sequencing assay27 (here called Sequences 231 

with potential to form G4s, Fig. 4a). As the majority of BG4 peaks (8,210) are found in open 232 

chromatin, only sequences with potential to form G4s located in open chromatin (36,015) 233 

were considered. The mean and median length is 226/205 bp for BG4 peaks, and 383/285 bp 234 

for the latter. G-rich sequences with the potential to form a G4 are largely hypomethylated 235 

(12%), with methylation levels rising in the flanking regions (45%), whereas BG4 peaks have 236 

substantially lower methylation (down to 1%) and flanking regions being more methylated 237 

(60%). The contrast between lowest methylation at BG4 sites with highest methylation at 238 

distal flanking regions is also exemplified in the genome browser view in Fig. 1i. While G-239 

richness as defined by G4 sequence without structure is a feature that correlates with the 240 

lack of methylation, there is a further dramatic loss of methylation due to the physical 241 

presence of a G4 structure with these regions also being marked by a greater methylation 242 

flanking the G4 structure. Regions with a G4 structure also correspond to CGIs that mark 243 

particular active genes, and is in keeping with our previous data showing that G4s are 244 

associated with particular chromatin states to promote elevated transcription31. R-loops 245 

(three-stranded DNA-RNA hybrids) have also been linked to reduced methylation in 246 

transcribed CpG island promoters46,47. As R-loops form in a similar genomic context to G4s, 247 

we tested the correlation of R-loops, BG4 peaks and methylation. Using the K562 R-loop 248 

dataset46, we found that 5685 BG4 peaks overlap with a R-loop, while 3267 BG4 peaks do not 249 

and that BG4 peaks are depleted of methylation independent of R-loop presence (SI Fig. 5). 250 

This suggests that G4 structure is strongly linked to hypomethylation, irrespective of the 251 

presence of R-loop. 252 

 253 

Discussion 254 

Here we have provided evidence for a link between a DNA secondary structure formation 255 

and epigenetic status. We have uncovered a unique chromatin context whereby certain CGIs 256 



 9 

in active chromatin are depleted in methylation but carry a G4 structure and also the 257 

surrounding flanking regions display higher than average methylation. This suggests that G4s 258 

may impart a previously unknown and important function in the establishment of epigenome.  259 

We propose a model (Fig. 4b) in which G4 formation, together with transcription factor 260 

binding19,20, contributes to loss of methylation at key genomic loci by sequestering DNMT1, 261 

via G4 recognition, and locally inhibiting DNMT1 function at CpG islands. It is noteworthy 262 

that this mechanism resembles a recently proposed model for recruitment and inhibition of 263 

PRC2 complex by a RNA G-quadruplex present in the HOTAIR lncRNA48,49. This suggests there 264 

may be other mechanisms for epigenetic regulation that operate by the sequestration and 265 

inhibition of epigenetic modifiers mediated by high affinity interactions with nucleic acid 266 

secondary structures. 267 

 268 
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Figure 1. G4 formation is associated with hypomethylation at CGIs  403 

a)  A G-tetrad stabilized by Hoogsteen hydrogen bonding and a central monovalent cation 404 

(left). Schematic representations of a three-tetrad G4 structure (Right). b) Venn diagram 405 

illustrating the overlap of G4 structure formation (BG4 peaks) and CGIs. c) Violin plot 406 

showing size distribution of BG4 peaks and CGIs. d) Count of BG4 peaks overlapping a CGI. e) 407 

Box and whisker plot showing the average methylation for BG4 peaks (n = 8,210), DHSs (n = 408 

142,115) and CGIs (n = 27,073). Centre line represents the median value separating upper 409 

and lower quartiles in the box, whiskers indicate 1.5× interquartile range (IQR), points are 410 

actual values of outliers. Note that methylation level at CpG sites with less than 5x coverage 411 

is considered unreliable and discarded. f) Histogram showing the distribution of BG4 peaks 412 

and CGIs relative to percentage of GC. g) Histogram showing the distribution of BG4 peaks 413 

and CGIs relative to percentage of CpGs per 100 bp. h) Box and whisker plot showing the 414 

methylation levels for BG4 peaks and CGIs at different CpG densities. Note that by definition 415 

there are no CGIs at a CpG density < 5 CpGs/100bp and that at > 20 CpGs/100bp there are 416 

few CGIs (1) and BG4 (36) peaks to consider. The number of CGI regions and BG4 peaks in 417 

each category are presented on top of the plot. i) An IGV screen shot illustrating the co-418 

incidence of BG4 peaks (blue) with hypomethylated promoter CGIs (green) and DHSs (orange) 419 

for a representative genome region from Chr 7. Shown are normalised signal. Whole genome 420 

bisulfite sequence tracks are in black (top). RefGene tracks are in grey (bottom). 421 

 422 

Figure 2. DNMT1 is recruited to BG4 peaks associated with low methylation 423 

a) An IGV screen shot showing the co-incidence (blue-masked) of BG4 peaks (blue) with 424 

DNMT1 ChIP-seq peaks (red) and CGIs (green) at hypomethylated region from Chr 6. Orange-425 

masked regions are hypermethylated and enriched with DNMT1 presence, but not BG4 426 

signal. Whole genome bisulfite sequence tracks in black (top). b) Binding profile of DNMT1 427 

shown across CGIs with low (less than 20%, n = 16,523), intermediate (between 20% and 80%, 428 

n = 6,042) and high (more than 80%, n = 4,266) methylation. Y-axis shows the number of 429 

reads in the ChIP normalised to 1 of sequencing depth (also known as Reads Per Genomic 430 

Content (RPGC), more details in computational methods). Replicate 1 and 2 are indicated in 431 

red and blue respectively. Above each plot is a heat map showing the enrichment of BG4 432 

peaks and DHSs across the respective regions. The heat maps show RPGC of active chromatin 433 

marks (DHSs) and BG4 peaks on these three classes of CGIs.  434 
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 435 

Figure 3. DNMT1 selectively binds and is inhibited by G4 structures  436 

a-f) ELISA assays testing the binding of recombinant DNMT1 to G4 structure and control 437 

oligonucleotides. Binding curves for: a) BCL2 G4 and non-G4-forming control (BCL2-mut); b) 438 

KIT2 G4 and non-G4-forming control (KIT2-mut); c) MYC G4 and non-G4-forming control 439 

(MYC-mut); d) BCL2 duplex DNA; e) BCL2 hemi-methylated duplex DNA; f) poly(dI-dC), 100 nt. 440 

Absorbance was measured at 450 nm. a.u., arbitrary unit. Sequences of oligonucleotides are 441 

given below the graphs. g) Binding curve of BCL2 G4 in presence of different concentration of 442 

BCL2 duplex or poly(dIdC)n. h-j) Relative methylation activity of recombinant DNMT1 in 443 

presence of G4 structure and control oligonucleotides: h) BCL2 G4 and BCL2-mut; i) KIT2 G4 444 

and KIT2-mut; j) MYC G4 and MYC-mut. Shown are mean ± s.d., n = 3 independent 445 

experiments in all plots but g (n = 2). 446 

 447 

Figure 4. Recruitment of DNMT1 by G4 structures shapes the methylome in G-rich regions 448 

a) Plot showing the average methylation profile centred around G4 forming regions (red and 449 

blue are replicates 1 and 2 respectively, n = 7,491) or G4 sequences without structure 450 

(orange and green are replicates 1 and 2 respectively, n = 36,015). The plot extends ± 5 Kb 451 

from the centre. The dotted line denotes the lowest methylation level of G4 sequence 452 

without structure. b) Proposed model for potential involvement of G4 structures and 453 

methylation control at CGIs: i) G4 structures sequester DNMT1 due to high affinity binding; ii) 454 

G4 structures inhibit the methylation activity of DNMT1. Together with the binding of 455 

transcription factors, G4 structures contribute to protection of CGIs from methylation.  456 

  457 
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Online Methods 458 

 459 

Cell culture 460 

Mycoplasma-free human chronic myelogenous leukaemia K-562 cells (CCL-243) were 461 

purchased from ATCC and grown in RPMI1640 (Glutamine plus, Life Technologies) 462 

supplemented with 10% of fetal bovine serum and 100 U/ml penicillin-streptomycin (Life 463 

Technologies). All cell stocks were regularly tested for mycoplasma contamination. 464 

 465 

G-quadruplex ChIP-seq 466 

ChIP-seq for G-quadruplex structures (G4-ChIP-seq) was performed using the G4-specific 467 

antibody BG4 essentially as described previously31. 468 

 469 

Oligonucleotide annealing  470 

All oligonucleotides were PAGE purification quality (Sigma). For G4 formation, 10 µM DNA 471 

oligonucleotide was annealed in 10 mM Tris HCl, pH 7.4, 100 mM KCl by heating at 95 °C for 472 

5 min followed by gradually cooling to 21 °C. For double-stranded DNA, 10 µM forward and 473 

reverse strand oligonucleotides were mixed and annealed in 10 mM Tris HCl, pH 7.4, 100 mM 474 

NaCl in the same manner. 20 µM poly(dI-dC)50 was annealed as for double-stranded DNA. 475 

 476 

Enzyme-linked immunosorbent assay (ELISA) 477 

ELISAs for binding affinity and specificity were performed as described previously28 with 478 

minor modifications. Briefly, biotinylated oligonucleotides were bound to Pierce™ 479 

Streptavidin Coated High Capacity Plates (ThermoFisher) followed by blocking with 1.5% BSA 480 

and incubation with recombinant full-length human FLAG-tagged DNMT1 protein (Active 481 

Motif, Cat. No: 31404) in ELISA buffer (100 mM KCl, 50 mM KH2PO4, pH7.4). After three 482 

washes with ELISA buffer, detection was achieved with an anti-FLAG horseradish peroxidase 483 

(HRP)-conjugated antibody (ab1238, Abcam) and TMB (3,3′,5,5′-tetramethylbenzidine) ELISA 484 

Substrate (Fast Kinetic Rate, ab171524, Abcam). Signal intensity was measured at 450 nm on 485 

a PHERAstar microplate reader (BMG Labtech). Dissociation constants (Kd) were calculated 486 

from saturation binding curves assuming one-site binding using Prism (GraphPad Software 487 

Inc.). Standard error of mean (s.e.m.) values were calculated from three replicates.  488 

 489 

In vitro DNA methylation assay 490 

DNA methylation assays were performed using a DNMT Activity Assay Kit (Fluorometric, 491 

ab113468, Abcam) as per manufacturer's instructions. Briefly, 100ng recombinant DNMT1 492 

was incubated with substrate assay wells in presence of different concentrations of G4 or 493 

non-G4 oligonucleotides at 37 °C for 90 min. Methylation levels were quantified from the 494 

binding of an anti-5-methylcytosine antibody detected by fluorescent secondary antibody. 495 

Fluorescence signal was measured using a PHERAstar microplate reader (530 nm excitation, 496 

590 nm emission). DNMT enzyme activity is proportional to the fluorescence intensity (RFU, 497 
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relative fluorescence unit) measured. Relative methylation activity is then calculated against 498 

mock control. 499 

 500 

Circular dichroism spectroscopy   501 

CD spectra were recorded on an Applied Photo-physics Chirascan circular dichroism 502 

spectropolarimeter using a 1 mm path length quartz cuvette. CD measurements were 503 

performed at 298 K over a range of 220-300 nm using a response time of 0.5 s, 1 nm pitch 504 

and 0.5 nm bandwidth. The recorded spectra represent a smoothed average of three scans, 505 

zero-corrected at 300 nm (Molar ellipticity θ is quoted in 105 deg cm2 dmol−1). The 506 

absorbance of the buffer was subtracted from the recorded spectra. Oligonucleotides were 507 

dissolved in lithium cacodylate buffer (100 mM, pH 7.2) containing 100 mM of KCl and 1 mM 508 

EDTA to the concentration of 10 μM. 200 L of the oligonucleotides were annealed prior 509 

measurement by warming up to 90 °C and slowly cooling down at room temperature. 510 

  511 

UV Melting 512 

For UV melting experiments, measurements were collected using a Varian Cary 100-Bio 513 

UV−visible spectrophotometer by following absorbance at 295 nm. Samples (200 μl) with 514 

final concentration of 2 M were measured in black, small window, 1 cm path-length quartz 515 

cuvettes, covered with a layer of mineral oil (50 μl). Samples were equilibrated at 5 °C for 10 516 

min, heated to 95 °C and cooled back to 5 °C at a rate of 0.5 °C/min. The samples were held 517 

for a further 10 min and then the 5 °C to 95 °C ramp was repeated. Data were recorded every 518 

1 °C during both the melting and cooling steps. 200 L of oligonucleotides were annealed 519 

prior measurement by warming up to 90 °C and slowly cooling down at room temperature. 520 

 521 

Bioinformatics Software and Scripts 522 

Bioinformatic data analyses and processing were performed using Perl, Bash, Python and R 523 

programming languages. The following tools were also used: cutadapt (1.15)50, BWA 524 

(0.7.15)51, Picard (2.8.3), (http://broadinstitute.github.io/picard), MACS (2.1.1)52, Bedtools 525 

(2.26.0), (http://bedtools.readthedocs.io/en/latest/content/overview.html), Deeptools 526 

(2.5.1)53 and Bismark (v0.19.0)54. 527 

All scripts and software developed are released in the following GitHub page: 528 

https://github.com/sblab-bioinformatics/dna-g4-methylation-dnmt1 529 

 530 

G4-ChIP-seq analysis 531 

Raw fastq reads from G4-ChIP-seq in K562 cells were trimmed with cutadapt50 to remove 532 

adapter sequences and low-quality reads (mapping quality < 10). Reads were aligned to the 533 

human genome (version hg19) with BWA51 and duplicates were removed using Picard. Peaks 534 

were called by MACS252 (p < 10-5) following our previous work31: https://github.com/sblab-535 

bioinformatics/dna-secondary-struct-chrom-lands/blob/master/Methods.md  536 

Peaks were merged from different replicates with bedtools multiIntersect. Only peaks 537 

overlapping in 3 out 5 replicates were considered high-confidence. K562 datasets for DHSs 538 

https://github.com/sblab-bioinformatics/dna-g4-methylation-dnmt1
https://github.com/sblab-bioinformatics/dna-secondary-struct-chrom-lands/blob/master/Methods.md
https://github.com/sblab-bioinformatics/dna-secondary-struct-chrom-lands/blob/master/Methods.md
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(ENCSR000EPC), DNMT1 ChIP-seq (ENCSR987PBI), whole genome bisulfite sequencing 539 

(ENCSR765JPC) were downloaded from ENCODE. Promoters were defined as 1 kb (+/−) from 540 

the transcription start sites of 31,239 hg19 transcripts. Methylation levels at CpG sites with 541 

less than 5x coverage were discarded. If not otherwise specified, CGI34 were downloaded 542 

using the UCSC’s table browser and then ported to human genome release hg38 using the 543 

batch coordinate conversion (liftover) tool of the UCSC. The alternative CGI sets were 544 

generated using CpGCluster36.  545 

 546 

Enrichment analysis 547 

ENCODE DHS and ChIP-seq data sets were normalised to sequencing depth of 1 (i.e. RPGC, 548 

Reads Per Genomic Content). Sequencing depth is defined as: (total number of mapped 549 

reads * fragment length) / effective genome size. The effective genome size was set to be 550 

3,209,286,105 and enrichment values for DHSs and BG4 peaks over CGIs and their flanking 551 

sequences were visualised in R using ggplot2 library. Enrichment values for DNMT1 over CGIs 552 

and their flanks were visualised with DeepTools53. 553 

 554 

Monte Carlo Simulation  555 

Monte Carlo simulation was used to calculate the significance of overlap between BG4 peaks 556 

and high confidence DNMT1 peaks, defined by Irreproducible Discovery Rate (IDR) in 557 

ENCODE’s ChIP pipeline. We first counted how many BG4 peaks overlapped with OQSs in 558 

open chromatin (defined as all OQSs seen potassium and/or PDS conditions (749,339 559 

sequences)27, which overlap at least one DHS region (43,506 sequences)). We then randomly 560 

selected the same number of OQSs from all OQSs in open chromatin and counted how many 561 

overlapped with at least one high confidence DNMT1 peak. The Monte Carlo P-value was 562 

then calculated as (N+1)/(M+1), where M is the number of iterations and N is the number of 563 

times the same or more overlaps were observed between randomised OQSs and high 564 

confidence DNMT1 peaks (compared to the number of overlaps observed between BG4 565 

peaks and high confidence DNMT1 peaks). Randomisation was repeated for 8000 times and 566 

on average the number of overlaps between the shuffled OQSs and DNMT1 were two-fold 567 

less than those observed between BG4 and DNMT1 peaks. 568 

 569 

Differential methylation and BG4 binding analysis of entinostat treated HaCaT cells 570 

HaCaT cells were treated with 10 M entinostat for 48 hours as we previously described31. 571 

Genomic DNA from untreated and treated cells were extracted with phenol/chloroform. 50 572 

ng DNA were used to generate whole genome bisulfite sequencing libraries using Pico 573 

Methyl-Seq Library Prep Kit from Zymo research. Libraries were sequenced using the pair-574 

end 150 bp high-output kit on Illumina Next-seq platform. Data from 4 runs were pooled 575 

together. After quality assessment using FastQC 576 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), reads were processed to 577 

remove adaptors and low-quality bases using cutadapt3. Options –u 6 –u -1 –U 6 –U -1 were 578 

used to trim the initial six and last nucleotide bases. High-quality reads were aligned using 579 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Bismark in paired-end mode with options --non_directional, --unmapped and -N 0 to hg19 580 

reference genome. Reads were then de-duplicated and methylation was extracted. To 581 

increase mapping efficiency and following previous work55, unmapped reads resulting from 582 

the paired-end alignments were then re-aligned in single-end mode with options --583 

non_directional and -N 0, and then deduplicated. Methylation was extracted for paired-end 584 

and single-end alignments separately and then aggregated. Technical replicates for each 585 

condition (before and after entinostat treatment) were merged and methylation counts were 586 

aggregated by CpG site. A threshold was then applied to keep CpG sites with more than 5X 587 

bisulfite sequencing depth both before and after treatment. This resulted in 21,106,307 CpG 588 

sites, 75% of all CpG sites in hg19. 589 

Differential BG4 binding analysis was done as previously reported31. Analysis focused on 590 

open chromatin promoter regions (5351) which have at least one G-rich sequence27 and 591 

ATAC-seq peak unaltered in size (log2 fold change = −0.6 to 0.6, FDR < 0.05) between 592 

untreated and entinostat-treated HaCaT cells. Depending on differential BG4 signal, these 593 

regions were categorized into BG4 gain (> 1.5-fold change in signal and FDR < 0.05) and BG4 594 

constant and BG4 negative. 95% (5072/5351) of these regions are overlapping with CGIs. 595 

Difference of the percentage methylation of the overlapping CGIs in each of the categories 596 

were calculated. Statistic test was done with Mann–Whitney U test. Plotting of methylation 597 

data were performed in the R programming language. 598 

 599 

Data availability. K562 datasets for DHS (ENCSR000EPC), DNMT1 ChIP-seq (ENCSR987PBI) 600 

and whole genome bisulfate sequencing (ENCSR765JPC) were downloaded from ENCODE. 601 

G4-ChIP-seq data sets for K562 and WGBS datasets for entinostat-treated and untreated 602 

HaCaT cells are available at the NCBI GEO repository under accession number GSE107690. 603 

G4-ChIP-seq data in entinostat-treated and untreated HaCaT cells were taken from 604 

GSE76688. Source data for figure 1d, e, h and Figure 3 are available with the paper online. 605 

 606 
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Supplementary Figure 1 

BG4 binds unmethylated and methylated G4 structures with the same affinity. 

ELISA assays testing binding of BG4 antibody to unmethylated and methylated G4 structures and control non-G4 forming 

oligonucleotides. CpG sites are highlighted in red. MG denotes methylated CpG. Shown are mean and SD from three measurements. 



 
 

 

 



 
 

Supplementary Figure 2 

Methylation is depleted in BG4 regions. 

a) Box and whisker plot showing the average methylation for BG4 peaks (n = 8,210), DHSs (n = 142,115) and CGIs (n = 22,673). 

Similar as in Fig 1e, apart from using CGI set generated by CpGCluster. b) Box and whisker plot showing the methylation levels for 

BG4 peaks and CGIs at different CpG densities. Similar as in Fig 1h, apart from using CGI set generated by CpGCluster. c) Box and 

whisker plot showing the average methylation levels for CGIs with or without a BG4 peak at different CpG densities. d) Box and whisker 

plot showing average methylation on CGIs with respect to BG4 peaks in presence (+) or absence (–) of a DHS or promoter. The 

number of CGI regions in each category are presented on top of the plot. e) Box and whisker plot showing the average methylation for 

BG4 peaks (n = 17,101), ATAC (ATAC-seq peaks denoting open chromatin, n = 23,217) and CGI regions (n = 26,580) in untreated 

HaCaT cells. f) Box and scatter plot showing differential percentage methylation in entinostat treated vs untreated cells for promoter 

CGIs in open chromatin regions containing sequences with potential to form G4s. i) BG4 negative CGIs without a G4 ChIP–seq peak 

but having potential to form a G4 structure (n = 1504); ii) BG4 constant CGIs with a least one high-confidence G4 ChIP–seq peak that 

does not significantly change before and after treatment (n = 3261), and iii) BG4 increases where a BG4 peak significantly increases in 

size after treatment (n = 307). Each grey dot represents one CGI region. p-values were calculated using a Mann–Whitney U test. 



 
 

 

 

Supplementary Figure 3 

DNMT1 is enriched at BG4 peaks associated with low methylation. 

Binding profile of DNMT1 in CGIs with low (less than 20%, n = 14,983), intermediate (between 20% and 80%, n = 4,864) and high 

(more than 80%, n = 2,826) methylation. Above each plot is a heat map showing the enrichment of BG4 peaks and DHSs across the 

respective regions. Similar as in Fig. 2b, apart from using CGI set generated by CpGCluster. 



 
 

 



 
 

Supplementary Figure 4 

Structure verification of oligonucleotides used in this study and inhibition of DNMT1 by G4 DNA. 

Circular dichroism spectra of a) BCL2 and BCL2-mut, b) KIT2 and BKIT2-mut, c) MYC and MYC-mut. Sequences are listed below the 

graph. UV melting profiles of the d) BCL2, e) KIT2, f) MYC. Mutated oligonucleotides lose the capacity to form G4s and therefore have 

no absorbance at 295 nm. Circular dichroism spectra of the g) BCL2-0CG/2CG/3CG and BCL2-CCC, h) KIT2-0CG/2CG/CGCG and 

KIT2-CCC, i) MYC-2CG/CTCA/4CG and MYC-CCC. Sequences are listed below the graph. Note that CD spectra of all G4 forming 

oligonucleotides show a positive peak at ~263nm and a negative peak at ~240nm, which is characteristic of a G4 structures. DNMT1 

activity in presence of: j) BCL2 (G4 structure), BCL2-CCC (C-rich, non-G4 forming with 5 CpGs), BCL2-mut (wild type BCL2 with 

mutations in G4 tetrad Gs, non-G4 forming), BCL2-2CG (G4-forming with 2 CpGs), BCL2-3CG (G4 forming with 3CpGs) and BCL2-

0CG (G4 forming without CpGs). k) KIT2 (G4 structure), KIT2-CCC (C-rich, non-G4 forming with 4 CpGs), KIT2-mut (wild type KIT2 

with mutations in G4 tetrad Gs, non-G4 forming), KIT2-0CG (G4 forming without CpGs), KIT2- 2CG (G4-forming with 2 CpGs), KIT-

CGCG (G4 forming with 2 adjacent CpGs). l) MYC (G4 structure), MYC-CCC (C-rich, non-G4 forming with no CpGs), MYC-mut (wild 

type MYC with mutations in G4 tetrad Gs, non-G4 forming), MYC-2CG (G4 forming with 2 CpGs), MYC-CTCA (G4-forming without 

CpGs), MYC-4CG (G4 forming with 4 CpGs). Sequences of oligonucleotides used are given below the graphs. Shown are mean ± s.d., 

n = 3 independent experiments. Statistical tests were done using two-way ANOVA. 



 
 

 

Supplementary Figure 5 

Depletion of DNA methylation is independent of R-loop formation. 

Plot showing the average methylation profile centered around BG4 peak regions overlapping with R-loop regions (BG4 + R-loop, red 

and blue are replicate 1 and 2 respectively, n = 5,464) or BG4 peak regions without overlapping R-loop (BG4 – R-loop, pink and green 

are replicate 1 and 2 respectively, n = 3,111). The plot extends ± 5 kb from the centre of BG4 peaks. 
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