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First-Principles Studies of Complex Oxide Materials
Can Philipp Kocer

Abstract

This thesis uses first-principles methods to study complex oxide materials. The first part
of the thesis deals with complex oxide materials that have applications as lithium-ion battery
electrodes. In the second part, a new method for the calculation of vibrational properties of

correlated materials, specifically transition metal oxides, is developed.

After introducing the relevant background and computational methods in Chapters 1 and 2,
three chapters are devoted to the study of Wadsley—Roth crystallographic shear phases. This
family of niobium-based oxides has attracted significant attention due to their promise as high-rate
lithium-ion battery electrodes. Chapter 3 is devoted to the study of the electronic structure and
magnetism of niobium suboxides. An electronic structure analysis establishes the coexistence of
flat and dispersive energy bands, corresponding to localised and delocalised electron states. These
states are shown to be inherent features of the crystal structures. A localisation-delocalisation
transition occurs as the structural capacity for localised electrons is exceeded. The results shed

light on the experimentally observed electrical and magnetic properties of the niobium suboxides.

Chapter 4 examines cation disorder and lithium insertion mechanism of crystallographic shear
phases, making use of an enumeration approach to generate sets of cation configurations and
lithium-vacancy configurations. A three-step lithium insertion mechanism is revealed, discernible
in the evolution of lattice parameters and the voltage profile. A predicted theoretical voltage curve
is in good agreement with available experimental data. A distinctive change in the local structure
is also discovered: transition metal oxygen octahedra become more symmetric on lithium insertion.
The electronic structure behaves as expected for crystallographic shear phases, given the results
of the previous chapter: small amounts of localised electrons are present during initial lithium

insertion, but on further lithiation, metallicity results.

Chapter 5 investigates the lithium diffusion mechanism of niobium tungsten oxide shear struc-
tures. Building on the results of the previous two chapters, transition state searches and molecular
dynamics simulations were used to obtain hopping barriers and diffusion coefficients. Overall, a
quasi-1D diffusion mechanism is observed with low activation barriers (80-300 meV) and high
diffusion coefficients (10712-1071! m2s71). Structure-property relationships for crystallographic

shear phases are discussed in detail in relation to battery performance.

Chapter 6 develops a robust and efficient method to calculate phonons in correlated materials
with DFT4+DMFT. The method combines a DFT+DMFT force implementation with the direct
method for lattice dynamics, using non-diagonal rather than diagonal supercells. In addition, a
fixed self-energy approximation is proposed. The method is tested for a set of typical correlated

materials, and shown to drastically reduce computational costs compared to previous work.
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Chapter 1

Introduction and Background

1.1 Overview

This thesis presents the results of research performed between October 2017 and May 2021 in the
Theory of Condensed Matter Group of the Cavendish Laboratory, University of Cambridge.

The research presented herein is concerned with first-principles quantum mechanical studies of
complex oxides. The first part of the thesis focuses on the Wadsley—Roth family of crystallographic
shear phases, which have attracted significant attention due to their promise as lithium-ion battery
electrodes. For these materials, the complexity arises from their large and hierarchical crystal
structures that can host different metal cations. Interesting phenomena occur when these materials
are electrochemically exposed to lithium. The last chapter of the thesis is concerned with the
calculation of lattice dynamics and associated properties in oxides which show complex interplays
between multiple degrees of freedom — atomic, electronic and magnetic.

The thesis is structured as follows: the remainder of this chapter summarises the background
and context of the research, introducing relevant aspects of lithium-ion batteries, complex oxide
battery materials, and the theory of correlated electron materials. Chapter 2 describes the
electronic structure methods used in this work, specifically density-functional theory and dynamical
mean field theory. The next three chapters present the results of my research into the properties of
complex niobium-based oxide materials: Chapter 3 deals with the electronic structure of niobium
suboxides NbsOs5_,, Chapter 4 investigates structural aspects of complex niobium tungsten oxides
and their lithium insertion mechanism, and Chapter 5 examines lithium diffusion within these
materials. In Chapter 6, a method for the calculation of lattice dynamics with DFT+DMFT is

developed. Conclusions and possible directions for future research are presented in Chapter 7.

1.2 Motivation

The modern age presents our species with many challenges. Among the most difficult of these are
climate change and ocean acidification, caused by carbon dioxide emissions from the combustion of

fossil fuels. To prevent drastic changes to the ecology of our planet we are forced to revolutionise
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our energy infrastructure. While the precise energy mix of the future is still being debated, a
shift away from fossil fuels and towards renewables, such as solar and wind, is inevitable. The

development of new and improved energy technologies facilitates this shift.

Any energy technology relies fundamentally on the availability of appropriate materials. Within
a device, materials with specific properties are integrated into the working mechanism to perform
specific functions. The goal of materials research is to find materials with better properties to
perform these functions. In the present work, the focus is on materials for electrochemical energy
storage, i.e. batteries. The lithium-ion battery is a breakthrough technology of the last century,
enabling the portable electronics revolution. Devices such as cellphones and laptops are nowadays
exclusively powered by lithium-ion batteries, due to their superior energy density as compared to
other battery types. Governments worldwide have recognized the key role of electrochemical energy
storage in the electrification of transport. The UK recently introduced the Faraday Institution to
rise to this challenge [1]. Outside of consumer applications, electrochemical energy storage on the
grid scale is projected to play a role in relieving the intermittency of renewable energy resources [2].
Many different materials have been proposed for use in batteries, with different chemistries for each
application. However, the road from laboratory demonstration to commercialisation is long and

difficult, involving multiple years of development.

Developing and improving materials is challenging because it is very difficult to ‘see’ what goes
on inside a material during operation in a device. Experimental evidence is always indirect and
can be hard to interpret. But for the human that does the research, ‘seeing’ is very much key
to understanding. Material scientists, chemists and physicists have all been educated to think in
terms of models of atomic and electronic structure. Interpreting the experimental data in terms
of one of these models — or proposing a new one — is what constitutes understanding in this
field. Computer simulations of materials play an important role in this regard by bridging the gap
between experimental data and the underlying atomic and electronic mechanisms that give rise to
the observed behaviour. Thanks to improvements in computer power and algorithmic efficiency, ab
initio quantum mechanical calculations can nowadays be performed on a wide range of materials.
The most popular technique used in condensed matter physics, materials science and chemistry
is density-functional theory (DFT), which offers a good balance of accuracy and efficiency. The
battery materials field is no exception in this regard. DFT calculations can provide insight into
the electrochemical profile, structural evolution and ionic diffusion pathways of a material [3, 4].
Together with the experimental data, DFT calculations allow us to understand how a material
works and to suggest strategies to improve its performance. Todays powerful supercomputers
enable calculations to be performed in a high-throughput fashion, working with thousands, if
not tens of thousands, of structures to compute properties or screen for a desired outcome. In
this context, Chapters 3, 4, and 5 present results of computational simulations of complex oxide

Wadsley—Roth phases, a family of promising battery anodes.

Taking a broader view of the computational materials physics field, it is clear that DFT is
still the main workhorse. However, modelling certain classes of compounds and properties requires
more advanced methods. For complex transition metal oxides in particular, the strong electron-

electron interactions in d-orbitals pose problems for DFT. Combining DFT with dynamical mean
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field theory (DMFT) results in an advanced electronic structure method capable of accurately
modelling the electronic structure of correlated materials. However, as with most beyond-DFT
methods, only some aspects of materials physics can be modelled. DMFT is usually limited to
calculations of electronic structure, and does not allow the calculation of nuclear dynamics, for
example phonons. This motivates the work presented in Chapter 7, where a method for the
calculation of lattice dynamics with DFT+DMFT is developed.

1.3 Battery Science

[ A )
t
€ Anode Cathode
Z“ @ Electrolyte
e O Q. Om» \O, @ \Q’
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Figure 1.1: Operating principle of a Li-ion battery. During the discharge, both electrons and lithium
ions flow from the anode to the cathode. Ions flow through the electrolyte while electrons flow through
the external circuit. The anode is graphitic carbon and the cathode is LiMOy (LiCoQs3), a layered
transition metal oxide. From Ref. [2], reproduced with permission from AAAS and based on public
domain material in Ref. [5].

Operating Principle and Thermodynamics

A battery is an electrochemical device that stores energy. All batteries consist of three main parts;
an anode, a cathode, and an electrolyte. The electrodes (anode and cathode) are electronically and
ionically conductive, while the electrolyte only conducts ions. During the discharge of the battery,
the active ions (lithium ions in lithium-ion batteries) flow from the anode to the cathode, passing
through the electrolyte. The electrons flow through the external circuit and do work (Fig. 1.1). By

separating the flow of ions and electrons, the chemical energy stored in the device is converted to
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electrical energy. Transfer of lithium ions from anode to cathode produces a thermodynamically
more stable arrangement of atoms and chemical bonds, reducing the Gibbs free energy of the
system. The chemistry of the electrode materials determines the amount of charge that can be
shuttled between the electrodes and the change in Gibbs free energy on doing so, which ultimately
limits both the capacity and the operating potential of the cell. The cell reaction illustrated in

Figure 1.1 — the same as in most portable electronic devices — is

Anode: LiCg — Li; _,C¢ + 2z LiT +ze
Cathode: Li;_;CoOy + zLiT + ze~ —— LiCoOs
Full: LiCg + Li;_;Co0Oy — Li;_,Cg + LiCoOs

Electrode materials are classified according to the changes they undergo during cycling [6].
Graphite and LiCoOg3 (Fig. 1.1) are insertion electrode materials, as are the transition metal oxides
that form the subject of later chapters. In such an insertion electrode, lithium ions are inserted
into empty sites in the lattice and the material undergoes only small structural changes during
operation. The lithium is ionised and the electron occupies empty states at the Fermi level. The
second type, alloying electrodes such as phosphorus, show more pronounced structural changes
on reaction with lithium [7]. Chemical bonds change and the materials undergo large volume
expansion. A third type, conversion electrodes, consists of a binary transtion metal compound,
M, X}, which on reaction with lithium yields a microstructure composed of metallic nanoparticles
in a matrix of LiyX. The vast majority of commercial devices use insertion electrodes, which are
the subject of later chapters. Cathode materials are usually late first-row transition metal oxides.
Common anode materials are graphitic carbon, main group alloying compounds such as silicon or
germanium, or compounds of early or second-row transition metals. Organic liquids are the most
prominent electrolyte, but solid state electrolytes are attracting attention for their improved safety

characteristics.

The capacity of an electrode is the amount of charge that can be stored in a certain amount

of mass or volume of material. The gravimetric capacity (in mAh/g) is calculated according to

zF
M - 3.6 C/mAh (1.1)

capacity =

where z is the number of electrons transferred during the reaction, F' is the Faraday constant, and
M is the molar mass of the electrode material. The volumetric capacity is found by multiplying
the gravimetric capacity by the density of the material. The voltage V is determined by the
combination of electrodes and generally changes over the course of the discharge. The energy

stored in the battery is determined by the integral of the voltage over the charge g

Q
energy:/o V(q) dq (1.2)

where @) is the total amount of charge stored in the battery. Normalising the energy by mass
or volume of the materials (or the entire cell) gives the gravimetric or volumetric energy density.

Note that all measures of battery performance are usually given in terms of mass/volume of
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Figure 1.2: Voltage profile (blue) and free energy of two distinct phases (grey) during a first-order
phase transition. The free energy of the system is minimized between x; and x by forming a two-
phase mixture, represented by the orange line (tangent to grey curves). The sloping parts at the start
and end of discharge correspond to single-phase regions. Adapted from Ref. [9].

active electrode materials, without any binder material, electrolyte, or auxilliary cell components.
Charge/discharge rates are usually given in terms of the C-rate, which is the number of times
the battery can be fully discharged within one hour. For example, a rate of 10C would mean the
discharge takes 6 minutes. If the capacity of the cell is 200 mAh /g, this implies a discharge current
of 2000 mA /g. Voltage and rate are not independent of each other — at higher discharge rates the
voltage of a battery will necessarily drop due to the development of an overpotential [8].

The reactions that take place in a battery are governed by both thermodynamic and kinetic
factors. If the battery is discharged slowly enough, the reaction can be treated as taking place

under equilibrium conditions. For a reaction
o0x Li+ LizA — Lig s, A

where A denotes an unspecified material reacting with lithium, the change in the Gibbs free energy

per formula unit is

AG = G(Lipys:A) — G(LigA) — 6z G(Li) (1.3)

and the (open circuit) voltage V,. measured between the two electrodes is given by
AG = —nFVy (1.4)

where n is the number of mols of charge that is transferred during the reaction, and F' is the
Faraday constant. Note that V. is the voltage measured if no current is allowed to flow and is
therefore the change in the Gibbs free energy of the system per amount of charge. Since the Gibbs

free energy and the voltage are directly related, thermodynamic quantities can be obtained from
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measurements of the voltage profile.

Two general features are commonly observed in voltage profiles: flat regions with constant volt-
age, and sloping regions where the voltage varies as a function of capacity (Fig. 1.2). Flat regions
in voltage profiles mark the coexistence of two phases. Consider the region between the points x;
and x9 in Figure 1.2; the two grey half-curves between x; and x9 represent the (hypothetical) free
energies of the two phases, if they were to adopt compositions between those points. However,
since the Gibbs free energy is a convex function of composition, its minimal value between x; and
x9 is given by the orange tangent. On the tangent the Gibbs free energy is G = (1 — f)G1 + fGa,
where f is the fraction of phase 2, and GG; and G2 are the Gibbs free energies of compositions
z1 and z3. The tangent line has a constant slope, which results in a constant voltage within the
region 1 < x < 2.

Sloping regions indicate the presence of a single phase, with a voltage that changes over the

course of the discharge. Consider the voltage measured for an infinitesimal composition change dx

— = lim —— =
nF  sz—0 Oz e

V;Jc - (15)

AG . AG 1 (
— — 1 _
52—0 ox e

1o — lim G(Ligts5.A) — G(LixA)> _ Mo — wu(x)

where f19 is the chemical potential of bulk lithium and p(z) is the chemical potential of lithium
at the reacting electrode. In contrast to the previous case of a two phase reaction, lithium is
inserted into a single phase for which the lithium chemical potential is changing as a function of
composition x. This so-called solid solution behaviour is often observed in insertion electrodes. A
simple model for a solid solution is the lattice gas [9]. In this model, we assume that insertion of
a single lithium into an otherwise empty lattice leads to an energy decrease of e. The lattice in
question has N equivalent sites, which are randomly occupied by lithium atoms. For a fractional

occupancy of x, the entropy is

N!

S=kpln(Q)=kgln|{ ————
Bn() Bn((N—nLi)!nLi!

) = —Nkp(zln(z) + (1 — z)In(1 — z)) (1.6)
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where nr; = xN and we have used Stirling’s approximation to simpify the expression. As G =

H-TS, and p;i(z) = ddTGLi’ the entropy makes the following contribution to the chemical potential

-T

= 7= kLTl
dni; Ndz BHH

dsS 1dS (1fm> (1.7)

Interaction between lithium atoms is modelled by a linear term Uz, where U represents the energy

change per lithium if all sites of the lattice are occupied. In total, we have that

e :e+Ux+k;BT1n(1fx

) (1.8)

An example of the voltage profile of a solid solution is shown in Figure 1.3. In summary, a two-phase
region is characterised by a flat part of the voltage profile, while single-phase solid solutions show a
sloping voltage. The study of voltage profiles can provide information on the phase transitions that
occur within materials during battery operation. This is demonstrated in Chapter 4, where the
voltage profile of the Wadsley—Roth phases (exhibiting both solid-solution and two-phase reaction

behaviour) is studied from first principles.

Experimental Characterisation

Electrochemical studies on battery materials provide both important performance data and in-
formation on the phase diagram as a function of charge state. However, the structural changes
that occur inside a battery material can not be studied using electrochemistry alone. Techniques
that can provide this information include X-ray (powder) diffraction (XRD), Nuclear magnetic
resonance spectroscopy (NMR), and X-ray absorption spectroscopy (XAS). XRD measurements
provide information on the crystal symmetry of phases and changes of lattice parameters during
cycling. NMR measurements are very sensitive to the local atomic environment of the nucleus
under study, and can in some cases be matched to specific atomic coordination numbers and oxi-
dation states. XAS probes core-to-valence electronic transitions providing a wealth of information
on both local geometric as well as electronic structure. All of these techniques can be performed
post mortem, i.e. after disassembling the battery at a certain state of charge, or in situ, during
operation of the device. NMR and post mortem XRD experiments can be done in a regular lab,
while in situ XRD and all XAS experiments require powerful synchrotron beamlines. Often dif-
ferent behaviour is observed for in situ vs. post mortem — a testament to the fact that the cycling

rate plays an important role in determining the phase transformation mechanism of the material.

Most of the experimental data acquired from these methods can be compared to first-principles
DFT predictions of the same phenomena. This approach has been very successful in the study
of alloying electrodes, such as lithium and sodium phosphide [7], lithium and sodium anodes of
tin [10, 11], and the Li-FeSy conversion anode [12]. Of particular relevance to this work are XRD
measurements and XANES (X-ray absorption near-edge structure) recorded on the Wadsley—Roth
phases as a function of charge state, providing direct experimental information regarding the
relationship between structural evolution and electrochemistry [13]. In Chapter 4, the mechanisms

behind the local and long-range structural evolution of these materials are studied using first-
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principles calculations, and linked to the electrochemical properties.

Kinetic Factors

The thermodynamic principles underlying battery operation have been described above. Kinetic
factors are equally important, because the ability to quickly charge and discharge devices is crucial
for most applications. Both electronic and ionic conductivity contribute to rate performance, and
we shall discuss each in turn. Lithium is a highly electropositive element and thus usually exists
as LiT + e~ within solid-state materials. Both the ion and the electron need to be accommodated.
In insertion electrodes, lithium ions occupy empty lattice positions, while the electrons fill the
lowest energy unoccupied electronic states in the material. In transition metal oxide electrodes,
these states are predominantly of transition metal d-orbital character. We can separate two cases
in this regard: TMOs in which the d-orbitals form delocalised band-like states, and TMOs in
which the d-orbitals remain atomic-like, with strong Coulomb repulsion between electrons in those
orbitals [9]. If band states are filled by the electrons, the resulting material is a metal and shows
good electronic conductivity, with the Fermi level shifting up and down depending on the charge
state. In the case of localised d-orbitals, the electronic conductivity is often poor since the electrons
cannot move freely through the material. There are a number of different effects that can lead to
localisation: the material might be a Mott insulator, or the electrons are trapped as polarons. In
Chapters 3 and 4, the electronic structure of n-doped Wadsley—Roth phases is examined, and we

discover a coexistence of both types of electronic behaviour in those materials.

i

Ry

l

Figure 1.4: Schematic potential energy surface during ionic motion in solid-state materials. T'wo min-
ima are separated by a real-space distance of Ry. Within each minimum the ion has a characteristic
vibrational frequency wg. The activation energy E, depends on the direction of the hop. On the
right, a single particle is shown performing a single instance of a random walk on a 2D lattice.

High ionic conductivity is an essential requirement for all battery materials. A prerequisite for
ionic motion is that the lattice is only partially filled, so that ions have an empty site next to them
into which they can move. The rate of this process is governed by structure of the potential energy
surface (PES) of the material. The typical shape of a PES for ion hopping is shown in Fig. 1.4,
with two minima 4 and j corresponding to stable positions, and a maximum between them that
is referred to as the transition state (TS) or activated complex. The calculation of reaction rates

is a well-developed field of theoretical chemistry, and the most commonly used theory to calculate
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rates in practice is transition-state theory (TST), a detailed description of which is available in
Refs [14, 15]. For ionic motion, a simple expression is often used for the rate of hopping I';_,; from

a site ¢ to an adjacent site j
i—J
Lisj=A- exp(— 2 ) (1.9)
kg

where E, is the activation energy, kp is Boltzmann’s constant, 71" is the temperature, and A is

a prefactor determined by TST. The prefactor contains the ratio of the partition functions of
the transition state and the initial state, and is commonly approximated by a single attempt
frequency wqg for ionic diffusion in solids. Note that the activation energy FE, is the potential
energy difference between the transition state and the initial state, and therefore depends on the
direction of hopping. If the two sites ¢ and j have different potential energies, the i — j and j — ¢
hops will have different rates. Under equilibrium conditions, the populations of sites i and j (P;
and Pj) are given by the Boltzmann distribution P;/P; = exp(—é—%), and rates and populations
satisfy the detailed balance condition F; -I';_,; = P; - I'j_;. Given the exponential dependence of
the rate on the activation energy and the temperature, it is common to ignore the prefactor and

discuss ion kinetics in terms of the magnitude of the activation energy alone.

Diffusion of particles on a lattice can be described as a random walk (Fig. 1.4). For a single
particle diffusing on a 2D square lattice (Fig. 1.4) the walk consists of a sequence of N steps
Ry; where i = 1,..., N. The quantity we are interested in is the mean squared displacement as a

function of time (r?(t)):

(r’(t)) = <(ZR0J‘) : (ZROJ)> = <ZR3 +> > Roi-Roy)

i=1 j=1
i#] (1.10)

= (N)R§ + ) _(Ro;-Roy) = (N)Rp.
Z’hj
i
The cross term is zero because on average the particle is equally likely to move into any of the four
adjacent sites at any step. Time and number of steps are related as follows: Since the number of
steps N is a Poisson-distributed random variable with rate I', the average number of steps (N) in

time interval ¢ is given by N = I't. It therefore follows that
(r’(t)) = R2I't (1.11)

The diffusion coefficient Dy, is defined as the long-time limit of the time derivative of the mean
squared displacement. For this case of a single particle diffusing on a simple lattice, it is possible

to find an expression of the diffusion coefficient Ds), in terms of the rate I' and jump distance Ry

. d(r*(t)) RET
C 2dtsoe  dt 2d

(1.12)

where d is the number of dimensions. The subscript emphasises that this applies to the case of a

single particle diffusing on an otherwise empty lattice. This expression is often given in the form
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Dy, = R%f‘, where T' = I'/2d is the hopping frequency per bond.

The general principles introduced above hold true even for more complicated lattices in real
materials, for which a fraction ¢ of sites is occupied by diffusing particles. In the case of many
particles, we define two different diffusion coefficients: the tracer diffusion coefficient D* and the

jump diffusion coefficient D ;
n

oLy ilz 2
D™ =5 i dtni:1<ri(t)> (1.13)
1 dl) < 2
DJ:zcztE%zdm<[ZH ri(t)]’) (1.14)

where n is the number of diffusing particles. The tracer diffusion coefficient captures the ability of a
single tagged particle to diffuse through the medium, while the jump diffusion coefficient measures
the diffusivity of the center of mass of the particles, and hence is relevant for mass transport.
While the mean squared displacement of an individual particle still grows linearly with time, the
motion is impacted by interactions. In the simplest (mean-field) model, the interactions are taken
into account by a factor of (1 —c¢), to approximate D* = (1 —c¢)Ds,. Beyond a mean-field model, it
becomes much more complicated to treat effects of inter-particle correlations on the tracer diffusion
coefficient. For non-zero values of ¢, but the same values of I' and Ry, the tracer diffusion coeffient
will not be equal to the expression given in Eqn. 1.12 due to particle-particle interactions, and in
general it is not possible to find simple expressions for it in terms of I', Ry, and ¢. Note that the
jump diffusion coefficient D is unaffected by interactions, and has the value R3T for all ¢ [16]. The
importance of the diffusion coefficient lies in its relationship to transport and ionic conductivity.
The chemical diffusion coefficient D, (closely related to D ;) enters Fick’s law and determines Li-ion
flux in the presence of chemical potential gradients. Via the Einstein relation, it also determines
mobility in the presence of electric fields. The rate at which a battery can be cycled is therefore
ultimately determined by the lithium diffusion within the active materials.

There are a variety of experimental techniques that can determine the diffusivity and the
activation energies of ionic motion in solid-state materials. A simple measurement is the cycling of
batteries at different rates. This gives direct performance data but it is difficult to disentangle the
many complex factors contributing to this measurement to obtain intrinsic material characteristics.
Techniques that are relevant to the materials studied in this work are NMR relaxometry and
PFG (pulsed-field gradient) NMR. NMR relaxometry is a technique to obtain data on activation
barriers of ionic motion. PFG NMR on the other hand allows direct measurements of diffusion
coefficients in solid-state materials. In combination with first-principles simulations of the ionic
hopping pathways and activation barriers, these techniques can provide detailed insight into the

ionic motion in materials, as demonstrated in Chapter 5.

1.4 Complex Oxide Battery Materials

A vast number of materials have been studied as lithium-ion battery electrodes. The present

work is concerned with the study of a family of complex niobium-based oxides, variously known
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as Wadsley—Roth phases, crystallographic shear phases, or block-type structures. These can be
found in the phase diagrams of NbyO5, NboO5—WOj3, TiO2—NbgsO5. Common to this family is a
specific type of crystal structure that is made up of blocks (Fig. 1.5). The blocks are formed by
connecting the constituent metal-oxygen octahedra via corner-sharing to form units that are n
octahedra wide and m octahedra long. The blocks are then stacked together and connected via
edge-sharing to form the crystal structure of the material. Within their plane, blocks are connected
via edge-sharing of octahedra, while perpendicular to the plane, they connect via corner-sharing
to form columns. In some structures, tetrahedrally coordinated metal ions fill voids at the corners
of the blocks.

corner-sharing

MOy octahedra nx m block

— a
edge-sharing A
b c

Block units Crystal structure

Figure 1.5: Building a block-type crystal structure, specifically NbaaOs54. Metal-oxygen octahedra are
connected via corner-sharing to form a n x m block. Block units are stacked together and connected
via edge-sharing to form the crystal.

The planes along which the blocks are connected are referred to as crystallographic shear
planes, due to the fact that the blocks connected by one of these planes are sheared relative to
each other by half the size of an MOg octahedron. It is often useful to think of these structures
as modifications of a perfect infinite array of corner-shared octahedra, equivalent to the ReOj
structure (which in turn can be described as a perovskite lacking the A-site cation). Compared
to a ReOgs structure, the two in-plane directions in block-type structures are interrupted by a
series of crystallographic shear planes, leading to an array of quasi-one-dimensional columns. This
confinement has important ramifications for the electronic structure and ion transport properties

of the materials, as detailed in Chapters 4 and 6.

To set the context of the present work, it is worth providing a short historical overview. The
first comprehensive studies of block-type structures were done by Wadsley and Roth [17, 18, 19, 20].
In a series of seminal papers in the 1960s, Wadsley and Roth established the phase diagrams of
the binary systems NbaO5—WO3 and TiO3—NbsOs. In doing so, they also introduced the so-called
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“block principle” that underpins the structural description of these phases [20]. One of the essential
characteristics of these compounds is their ability to sustain small changes in stoichiometry, which
do not lead to isolated defect formation, but instead result in changes to the crystal structure
as a whole. This adaptability leads to very complex phase diagrams, since any small change
in stoichiometry leads to the formation of a new phase with a distinct crystal structure. Two
examples of how this adaptability is manifested are unit cell-level intergrowths, and planar defects

along which the blocks deviate from the typical size.

A systematic and comprehensive study of lithium insertion into Wadsley—Roth phases was
reported by Cava et al. in 1983 [21] (14 different compounds). This was motivated by observations
made on ReOs, which on lithium insertion undergoes a sequence of structural distortions [22]. As
the octahedra in ReOs twist about their shared corners, the diffusion channels are obstructed,
inhibiting lithium diffusion and resulting in poor electrochemical performance. The structural
distortions are associated with rotations of the octahedra, similar to what is commonly observed in
perovskite oxides. In contrast, Wadsley—Roth phases feature crystallographic shear planes which,
due to edge-sharing between octahedra, frustrate octahedral tilts and rotations. The diffusion

channels remain open, allowing facile lithium intercalation.

A few years after the electrochemical study, Cava et al. reported that the Wadsley—Roth phase
Nb12029 is a metallic antiferromagnet with an ordering temperature of 4 K [23]. Nbj3Oq9 is a
suboxide of NbsOj5 belonging to a series of phases NbaOj5_,, formed by n-doping of the parent oxide,
i.e. incorporating a small amount of Nb**. Measurements of the electrical and magnetic properties
of NboO5_, were reported by Cava et al. and Riischer, and provide interesting indications regarding
the interplay of electronic and crystallographic structure in the Wadsley—Roth phases [24, 25, 26,
27]. These are interpreted in the light of first-principles calculations in Chapter 4.

Wadsley—Roth phases are oxides of early transition metals with characteristic intercalation
voltages of 1-2 V vs. Li/Lit and operate as anodes. The graphite anode used in commercial
devices suffers from a number of problems that make oxide anodes attractive alternatives. One
major problem is the low operating voltage of graphite, which promotes electrolyte reduction,
lithium plating, and dendrite growth, leading to possible short circuiting of the device. Oxide
anodes generally operate in a safer voltage window > 1 V vs. Li/Li* and do not show these issues,
although the higher operating voltage leads to lower full-cell voltages and energy densities. The
primary commercial oxide anode material is LTO (LigTi5O12). Two recent developments have led
to a surge of interest in anode applications of the Wadsley—Roth phases. The first of these is the
report of Wadsley—Roth TiNbyO7 (TNO) as an anode by Goodenough [28] as a possible alternative
to the LTO (LisTi5O12) anode. While LTO suffers from low ionic and electronic conductivity, TNO
does not, and shows higher capacity and better rate performance than LTO. TNO is attracting
much attention at the moment, including commercial development efforts by Toshiba [29]. A second
recent development is the report of high-rate performance and high energy densities achieved with
niobium tungsten oxides [13]. These materials show the highest measured diffusion coefficients
of any electrode material. Motivated by these developments, Chapters 4, 5, and 6 examine the
electronic structure, lithium insertion mechanism, and lithium diffusion in Wadsley—Roth phases,

and niobium tungsten oxides specifically.
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1.5 Correlated Transition Metal Oxides

Transition metal compounds display a diverse range of physical phenomena, including metal—
insulator transitions, multiferroicity, and high-T, superconductivity. Transition metal oxides (TMO)
in particular are of great interest for both applications and fundamental science. Many of the phe-
nomena that occur in TMOs are due to electronic correlation, defined here as the effect of strong
interactions between electrons. Key concepts for our understanding of correlated materials will be

introduced here, while the details of computational methods will be discussed in the next chapter.

Consider two limits of describing the electronic structure of solids: fully itinerant, and fully
localised. If the electrons are fully itinerant, the electronic states of the solid are Bloch states
characterised by a wavevector k, which is a good quantum number. Many properties of solids arise
naturally from this description: bandstructures, densities of states, and the distinction between
metals and insulators. On the other hand, we can think of the solid as an assembly of atoms. If
the intra-atomic interactions between electrons are much larger than the inter-atomic interactions,
it is reasonable to describe the physics of these solids in terms of concepts of atomic physics. Both
of these limits are represented to certain degrees in real materials. Simple metals like lithium and
potassium, and semiconductors like silicon are examples of the first limit, while isolated dopants
embedded in an inert host serve as example of the second limit. Excitation processes, driven by
light, provide good illustrations of their behaviour. In the case of silicon, the excitations are well
described as transitions between delocalised band states. On the other hand, for transition metal
dopants in gemstones, the excitation process is very accurately described as being purely local,

while the solid might only provide a perturbing field that breaks symmetries.

Simple lattice models exist for both cases. In the delocalised limit, a nearest-neighbour tight-

binding model is often used, with a Hamiltonian of the form

H=—tY" (e, ¢j0 +cl,e0) (1.15)
(ij)o

where t > 0 is the hopping parameter, éja and ¢, are creation and annihilation operators for an
electron with spin o at lattice site i. The sum is over pairs of nearest neighbors, denoted by (ij).
This Hamiltonian is easily solved by transforming to the Bloch basis, defined by élT( o= 2 etkeri éj‘a
and equivalently for ¢x,. The eigenstates have well-defined k vectors, and for n-cubic lattices the
dispersion is €(k) = —2tz cos(k - a) where z is the number of neighbours and a the vector of lattice
constants. DFT in its most commonly used form can be viewed as a first-principles version of
these ideas, leading to a materials-specific, parameter-free, and reasonably accurate computational

method.

The other extreme is the atomic limit, for which eigenstates are solutions to the atomic problem.
In multi-orbital atoms this results in term symbols. Taking the simplest case of an array of
hydrogen-like atom with a single orbital and neglecting interactions, the Hamiltonian that defines

the system is
H=UY i, (1.16)
i
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where U > 0 is the inter-electronic repulsion term and 7;, = éjaéw is the number operator for an
electron with spin o at lattice site ¢. If we consider only a single site, there are four eigenstates:
|0) with 0 e~ and E =0, | 1) and | |) with 1 e~ and E =0, and | 1)) with 2 e~ and E = U.

Correlated solids usually lie in between these two extremes and have a Hamiltonian that con-

tains terms of both types. The simplest model to describe this behaviour is the Hubbard model

H=—t>" el tjo+& io+ U i (1.17)

where the terms have the same meaning as described above. Despite its apparent simplicity, the
model leads to a very rich phase diagram, and due to its mixed localised-itinerant character, cannot
be solved analytically except in one dimension. Of particular difficulty is the regime ¢ ~ U. The
Hubbard model is the starting point for the description of correlated materials. The spatial extent
of d or f orbitals is generally smaller than that of s or p electrons, and Coulomb interactions
between d or f electrons are correspondingly much stronger. It is therefore d or f electrons that
show strong correlation effects and require treatment beyond band theory'. However, compared
to the simple Hubbard model with one orbital, real materials are much more complex due to
the presence of additional degrees of freedom (spin and orbital) inherent to d and f electrons.
DFT+DMFT, which is a method to model strongly correlated materials from first principles, will

be introduced in the next chapter.

The interplay between spin, charge, and orbital degrees of freedom — coupled to the itineracy —
leads to a large number of different phenomena and properties. Additionally, different degrees of
freedom often compete. Changes in external parameters such as temperature or pressure can tip the
balance of factors, making correlated materials quite sensitive and easily tuned. The most notable
example of competition between localisation and itineracy is the Mott metal-insulator transition.
In the case of the Hubbard model, the first term favours delocalisation (metal) whereas the second
term favours localisation (insulator). The balance is governed by the ratio of the Coulomb repulsion
U to the hopping ¢t. Changes in pressure or temperature can favour one or the other behaviour,

tipping the balance with drastic changes in physical properties during metal-insulator transitions.

The rich phenomenology and sensitivity to changes of external parameters make them interest-
ing but challenging systems to study from first principles. Computational techniques appropriate
for correlated materials are much more expensive and difficult to use than DFT, while usually
only allowing the calculation of a small number of properties compared to DFT. To extend the
capabilities of these techniques, Chapter 7 develops methods to calculate phonons in correlated

materials.

IThat is not to say that electrons in materials that are well-described by band theory do not interact. However, the
interactions tend to be weaker and not strongly local, such that the interacting system is a perturbed or renormalised
version of the non-interacting system (e.g. Fermi-liquid theory of metals).



Chapter 2
Electronic Structure Theory

The following sections present a brief account of aspects of electronic structure theory relevant to
this thesis. The first part deals with density-functional theory, with a focus on the planewave pseu-
dopotential method. The second part introduces Green’s function methods, specifically dynamical
mean-field theory (DMFT). More detailed explanations can be found in Refs [30, 31, 32] (DFT)
and Refs [33, 34, 35, 36] (Green’s functions, DMFT) on which much of the following is based.

2.1 The Electronic Structure Problem

The electronic structure of assemblies of atoms is governed by the laws of quantum mechanics.

The full Hamiltonian for a molecule or solid is

2M ) " 8meg &~~~ |R; — Ry
1£J
62 M N 7 62 N 1 (21)
I
4meg ;; IR;r —r;|  8mep P Jz:; r; —
i#]

where the nuclear masses, coordinates and charges are denoted by My, R; and Z} respectively. The
electronic coordinates are labelled by r;, M and N are the numbers of nuclei and electrons. The
Hamiltonian H consists of terms representing the nuclear and electron kinetic energies, the nuclear-
nuclear, nuclear-electron, and electron-electron interactions. The time-independent Schrédinger
equation is

HU({R}, {r}) = BT, ({R}, {r})) (2.2)

where {R} and {r} denote the sets of nuclear and electronic coordinates, respectively, and E,, and
W, represent the energy and wavefunction of the nth state. The full Schrodinger equation includes
both nuclear and electronic degrees of freedom, and is impossible to solve for any but the simplest

systems.

15
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To make progress, we separate the electronic and nuclear degrees of freedom. Electrons are
much heavier than nuclei, and move much faster if in equilibrium. We can therefore assume that
the electronic ground state adjusts instantaneously to changes in the nuclear positions, and that
the electrons always remain in their ground state. This is commonly referred to as the adiabatic
approximation. The subsequent Born-Oppenheimer approximation assumes that the potential en-
ergy of a nuclear configuration is equal to the ground state electronic energy of that configuration,
ignoring certain correction terms. The electronic energies are obtained from solutions of the elec-
tronic Schrédinger equation into which the the nuclear positions enter as parameters.

Solving the electronic Schrédinger equation is by far the more difficult task, and therefore we

will concern ourselves exclusively with the electronic Schrodinger equation in the following. The

Hamiltonian for the electrons in atomic units (h = m. = e = 4wey = 1) is given by

Ho=-53 V2~ 1 R y
) 2; ' ;;|Rl—ri|+2;2|ri_rj+ nn ( )
— — — =
i#£]

where V,,,, denotes the Coulomb interaction between nuclei, which is included for completeness.
Solving the electronic Schrodinger equation is still extremely difficult, and the only systems for
which analytic solutions exist are very simple (such as the hydrogen atom). In order to make further
progress, we have to make additional approximations. Two very important approximate methods
of treating multi-electron systems are the Hartree-Fock method and practical density-functional
theory.

Before moving on, let us consider the implications of the Born-Oppenheimer approximation.
Given that we have an electronic structure method that provides us with the ground-state elec-
tronic energy of any nuclear configuration, we can treat the nuclear motion as an entirely separate
problem. We then have a choice of considering the nuclear motion to be either classical or quan-
tum mechanical in nature. A large number of possible applications follow directly from this: if we
choose to make the classical nuclei approximation, we can optimise the nuclear positions to the
minimum of the potential energy surface (PES), we can perform molecular dynamics to obtain
thermodynamic quantities, or obtain transition states using specialised search methods. Treating
the nuclei quantum mechanically is far less common, but can be done with methods such as path
integral molecular dynamics (PIMD). The important point is that after we have separated nuclear
and electronic degrees of freedom, the electronic structure method can be treated as a blackbox
and replaced as desired. All properties that are defined in terms of the PES can be obtained with
different descriptions of the electronic structure. An example of this is the work in Chapter 7,
where instead of using DFT to calculate phonons, we use DFT+DMEFT.

2.2 Hartree-Fock Method

The Hartree-Fock approach relies on the variational principle of quantum mechanics, which states
that the expectation value of the energy E for a normalised trial wavefunction ¥ that satisfies the

boundary conditions of the problem will always be larger than or equal to the true ground state
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energy
E = (U|H.|¥) > Ey (2.4)

Within Hartree-Fock, the trial wavefunction is chosen to be a Slater determinant of single-particle

orbitals, since this ansatz directly satisfies the required antisymmetry under electron exchange

Yi(r1) ba(ri) ... Pa(r)
1 | ¥i(r2) to(ra) ... tu(ra)

Y({r}) = W

: ' . (2.5)
PYi(rn) Ya(rn) ... Pn(rs)

with [¢f1; dr = d;;. The \/% prefactor ensures (V|W) = 1. Evaluating Eqn. 2.4 with the Slater

determinant, we find that

Fo L w2 dr L [ PEDPE) 4
E_—zg:/%vm drz—|—2// o~ dr dr

1 O ) )4
22]:/ r— 1| dr'd ZI:ZI/\RI—ﬂd

where p(r) = Y_,|¢i|? is the electron density. To find the best approximation to the true ground

(2.6)

state wavefunction, the energy is minimised with respect to each of the 1; by using variational
calculus [37]. Orthonormalisation of the orbitals is added as a constraint with a Lagrange multi-

plier A;;

ij

By minimising with respect to 1} (which can be treated as independent to 1;), we arrive at N

coupled single-particle equations

[— ~V?+ / T dr +V ]% Z% / ¢*|r —y ZAU% (2.8)

The first term in the square brackets is the kinetic energy operator, the following one is the Hartree
potential, and the third term denotes the Coulomb potential due to the nuclei. The last term is
the Fock exchange operator. Through a unitary transformation )} = S;;1; these are transformed

into IV eigenvalue equations for the single-particle orbitals

[_VQ /| —I‘/|d +V]¢Z Z% /1/’* %/| dr’ = €;9;(r). (2.9)

These equations are not independent of each other, and have to be solved self-consistently.

In the Hartree-Fock method, the energy Epyp is decomposed into a series of progressively

smaller terms: the electron kinetic energy T, the electron-nuclear interaction energy FE._,, the
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Hartree energy Ep, and the exchange energy E'x
Fgp=T+ FE._,+ FEg+ Ex. (210)

The remaining difference between Epr and the true ground state energy Ej is referred to as the
correlation energy Eo. While the correlation energy is by far the smallest term in this decomposi-
tion, it is nontheless very important for an accurate description of electronic structure. Breaking
the total energy down into a series of terms is common in all of electronic structure theory, but not
all theories use the exact same definitions of exchange and correlation. For example, ‘exchange’
has a different meaning in the context of DFT than in HF. Due to the complete lack of correlation,
Hartree-Fock is not a very accurate method by itself. Quantum chemistry techniques, such as
coupled-cluster and configuration interaction, include correlation effects by adding further Slater
determinants to the HF trial wavefunction. In contrast, DFT takes a different approach and tries

to treat exchange and correlation on the same footing, as described in the next section.

2.3 Density-Functional Theory

2.3.1 Foundation of DFT

Density-functional theory is traditionally more popular than Hartree-Fock within the solid-state
physics community, and treats the electron density as the fundamental variable rather than the
wavefunction. Within the full Hamiltonian of a many-body system (Eqn. 2.1), the interaction
term between the electrons and the nuclei is referred to as the external potential (external to the
interacting electron system). The external potential plays an important role in the two foundational
theorems of DFT, proven by Hohenberg and Kohn [38]:

Theorem I: The ground state charge density po(r) for a system of interacting particles

uniquely determines the external potential Ve, (r), up to a constant.

The proof is by contradiction. Suppose there are two external potentials, Ve(;t) (r) and Ve(jg (r),
which differ by more than a constant and give two different hamiltonians, H® and H® | with two
different ground state wavefunctions \I/él) and \I/(()g) which, however, have the same ground state

charge density po(r). The variational principle of quantum mechanics requires that
(o907 < (o)

= (v A + (w0 - A | e (2.11)

Er

— B+t / V)~ VO po(r) dr
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and similarly
By = (9| A2 )w) < (v A®|w)
= (iAW) + (o | - a0 |w ) (2.12)
= But [V = VE) o) ar.

The last two statements added imply E7 4+ Fo < E9+ Eq, which is impossible. Therefore the initial
assumption of different V.,; leading to the same ground state charge density must be wrong. The
ground state charge density determines the external potential up to a trivial constant, and thereby
the Hamiltonian. Since the Hamiltonian is fully determined by the ground state charge density,
so are all other properties of the system, including the total energy, ground state and all excited

state wavefunctions.

Theorem II: A universal functional for the energy in terms of the density E[p] exists, valid
for any external potential Ve (r). For a given V., (r), the ground state energy is the global
minimum of this functional and the density p(r) that minimizes this functional is the exact

ground state density.

The following proof assumes that electron densities are V-representable, i.e. can be obtained
from ground state wavefunctions of electronic Hamiltonians with some external potential V,,;. For
these densities all properties, including the Hamiltonian, ground state wavefunction, and total
energy, are uniquely determined by the density p as shown in theorem I. The energy is therefore
a functional of the electron density, F[p]. Given a Hamiltonian H with ground state density po
and wavefunction Wg[pg], any other density p that corresponds to the ground state of a different
Hamiltonian with a different ground state wavefunction \T/[ﬁ] will have an energy expectation value

E that is larger than the ground state energy Ej
Elp) = B = (WI7)| B[ %(7]) > (Wolpo] | H]¥o[po]) = Bo = Elp. (2.13)

This follows simply from the variational principle. Minimising E|[p] with respect to p yields the
exact ground state energy and density. We can decompose the energy functional as E[p] = F[p] +
En_n+ [p- Vegrdr. The term F[p] is independent of the external potential, and applies to all
electronic systems (it is a “universal” functional).

Levy [39] later reformulated DFT in terms of a constrained search. In Levy’s formulation, the

universal functional is defined as

Flp] = ggr;{ (U|T + V,o|T) } (2.14)

where T" and V.. are the kinetic energy operator and the electron-electron interaction, respectively
(first and third terms in Equation 2.3). The Levy functional searches over all wavefunctions that
give rise to the specified density p to return the minimal value of the sum of electron kinetic

and interaction energies. With this definition of F[p] we only require that the density is N-
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representable, meaning that p can be obtained from an antisymmetric wavefunction. Since the
conditions for this N-representability are known, the constrained search formulation is more general

than the original HK theorems.

2.3.2 Kohn-Sham DFT

The exact functional F[p] of DFT is unknown. As shown above, F[p] captures the electron kinetic
energy and electron-electron interaction energies, but unfortunately, approximations to F[p| are
not accurate enough for simulations of molecules and materials. The Kohn-Sham (KS) approach
to DFT introduces an auxiliary system of non-interacting electrons to circumvent this issue. For
non-interacting electrons, the analytic expression for the kinetic energy is known, as are certain
contributions to the electron-electron interaction energy. KS-DFT maps the fully interacting sys-
tem onto a non-interacting system and expresses all the major contributions to the total energy in
terms of single-particle concepts. All of our ignorance regarding true many-body effects is relegated

to the exchange-correlation functional, E,.[p]. With this, the total energy functional is

Z /¢V2¢1d+ // ddr+Ven+Em[] (2.15)

for a set of Kohn-Sham orbitals ¢;, which are required to reproduce the true ground state charge
density po(r) = ZZM)ZP According to the second HK theorem, the true ground state density is
the global minimum of this functional. By variational calculus, the energy is minimised under

constraints of orthonormality, similar to Hartree-Fock, leading to the Kohn-Sham equations
Hiséi(r) = [— V24 Vi + Vewr + u]@( ) = €ipi(r) (2.16)

where V7 is the Hartree potential, V., is the electron-nuclear interaction and % is the exchange-
correlation potential. The electron density forms both input and output of these equations. The

equations therefore have to be solved self-consistently.

2.3.3 Approximations to the Exchange-Correlation Functional

The exact form of the exchange-correlation functional E,.[p] is unknown. Different levels of ap-
proximations are used in practice. The simplest approximation is the local density approximation

(LDA). The LDA expression for the exchange-correlation energy is

Eaolp] = / p(r) - eelp(r)) dr (2.17)

where €,.(p) is the exchange-correlation energy per particle for a uniform electron gas of density p.
The expression for the exchange energy of a uniform electron gas is known exactly. The correlation
energy can be obtained from quantum monte carlo simulations [40] and has been parameterised to
give a closed-form expression [41]. The two contributions are added to give €,.(p). Incorporating

inhomogeneity in the density to first order leads to the generalised gradient approximations (GGA).
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The most popular of these is the Perdew-Burke-Ernzerhof (PBE) functional [42]. It has long been
recognised that the success of these rather simple approximations to E,. is largely due to the fact
that both LDA and PBE satisfy some of the properties that are known for the exact XC functional.
An important example is the sum rule obeyed by the exchange-correlation hole. Since there is
no systematic way to improve XC functionals, designing functionals that obey ever more exact
constraints has been the guiding philosophy. An important recent development in this direction
is the SCAN meta-GGA functional [43]. Meta-GGA functionals improve on GGA by using the
kinetic energy density in addition to the density and its derivative. This additional flexibility

allows the SCAN functional to satisfy all known exact constraints, leading to better accuracy.

Kohn-Sham DFT with local (LDA) or semilocal (GGA) functionals successfully describes the
electronic structure and energetics of a wide variety of systems, including metals, semiconductors,
and insulators. However, systematic errors on predictions of certain properties have been docu-
mented: LDA and GGA functionals underestimate band gaps of semiconductors and insulators,
and often fail completely for transition metal compounds with strongly localised electrons. Rather
than fitting the small number of exact constraints, an equally useful way to develop improved XC
functionals is to fit them to correctly reproduce certain properties. Many of the most widely used
functionals are based on this idea. Hybrid functionals, such as HSE [44] or PBEO [45], modify the

exchange energy to include a fraction of Hartree-Fock exchange. For example for PBEO

Eulp, {01 = 1 {90} + SEEPP L)

E.[p] = EFPPp]

(2.18)

where EXF[{¢;}] is the Hartree-Fock exchange (‘exact’ exchange, third term in Eqn. 2.6) evaluated
with the Kohn-Sham orbitals {¢;}. It turns out that adding exact exchange significantly improves
band gap predictions. As discussed in the previous chapter, transition metal compounds often
feature strong Coulomb repulsion between electrons in d or f orbitals. DFT+U, also known as
Hubbard-corrected DFT, aims to correct this by explicitly incorporating the Coulomb repulsion
into the DFT energy functional, which now depends explicitly on the occupation of the d or f
orbitals. The idea of fitting functionals to experimental data can be taken even further, leaving
behind any physical motivations. One example of this is the B3LYP functional which achieves an
accuracy comparable to quantum chemistry methods such as coupled-cluster, but is much more

computationally efficient.

2.4 Practical Aspects of DFT

The technical details of KS-DFT codes vary from field to field. Physicists and materials scientists
are mostly concerned with solid-state materials, and DFT implementations are tailored accord-
ingly: they offer a natural description of periodic crystals and reciprocal space, exploit fast Fourier
transforms for efficient conversion between real and reciprocal space, and use appropriate basis
sets. However, a number of technical issues arise when building DFT implementations that satisfy

these requirements. The root problem is that the most natural solid-state basis set (planewaves)
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cannot be used to describe electronic wavefunctions close to the nucleus. One possible solution
is to use a localised basis set inside spheres around each atom, and planewaves in the interstitial
regions. Another is to give up on a planewave basis set and instead use atomic orbitals. The third
and most popular approach is to eliminate the problematic core states from the calculation, and
replace their effect with a so-called pseudopotential. The details of this planewave pseudopotential

method are described in the following sections.

2.4.1 The Solid State

Within the planewave pseudopotential DF'T approach, all systems are modelled as periodic solids
(crystals). Three dimensional crystals are defined by a set of vectors, {aj, as,az}, which define
the lattice and the unitcell. The unitcell is imagined to connect to itself at each of the six plane
boundaries, forming a hypertorus with periodic boundary conditions. Atoms inside the unitcell are
referred to as the basis. The crystal is generated by translating the unitcell by all combinations of
lattice vectors {R} = vaj + pag + yas for integer v, pi,y. Systems that are not naturally described
as an assembly of unitcells (such as 2D slabs or molecules) can be treated with this approach by

choosing an appropriate simulation cell.

The reciprocal lattice is defined by the set of vectors {b1, bs, bs}. The real space and reciprocal
space vectors satisfy a; - b; = 27m6;;. The set of reciprocal lattice vectors {G}, analogous to the

real space lattice, consists of all combinations vby + pbs 4 vbg for integer v, u, .

Within periodic boundary conditions Bloch’s theorem [46] simplifies the description of single-
particle electronic states. The single-particle Hamiltonian of KS-DFT, H kS, has the periodicity
of the lattice. Therefore, all translation operators T r commute with it. This implies that the
Hamiltonian and the translation operators have a complete set of common eigenstates. Without

loss of generality, this is satisfied if the eigenstates can be written in the following form

¢nk(r) = eik.runk(r) (219)

where R is a lattice vector, n labels the band and k is the wavevector. The functions u,y(r) have
the same periodicity as the lattice, i.e. uyk(r + R) = unk(r). The wavevector is confined to the

first Brillouin zone.

2.4.2 Planewaves and Grids

The most natural basis set for periodic solids are planewaves €'G, where G is a reciprocal lattice

vector. Kohn-Sham orbitals are represented as a linear combination of plane waves

1
Vi

Yk (r) = > ck(G) e GHOT (2.20)
G

where €1, is the crystal volume, and the sum runs over the complete set of reciprocal lattice vectors
{G}. There are an infinite number of G vectors, but in practice the number of G vectors in the

expansion can be converged to a manageable, finite number. One advantage of a planewave basis
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set is the easily controlled convergence criterion: one simply increases the kinetic energy cutoff

FEou = %|k + G]2 until the desired properties are converged to the desired precision.

In terms of the planewave coefficients, the Kohn-Sham equations become

1
3 [5 Ik + G%5g.c + Ver(G — &) encr (k) = en(K)enc (k) (2.21)
G/

the first term is the kinetic energy, which is diagonal in reciprocal space, and the second term is

the Fourier transform of the effective potential.

An important operation is the calculation of the density p(r) = >, [¢nk(r)[* where the
sum runs over occupied KS-orbitals. The most efficient way to calculate p is to use fast Fourier
transforms to obtain real space wavefunctions, and then to square and sum them. This requires
the introduction of a real space grid. While the non-zero Fourier components of the wavefunctions
lie within the cut-off sphere in reciprocal space, the real space grid is a regular grid of points within
the parallelepiped of the unit cell, with a number of points that can be an order of magnitude
larger than the reciprocal space grid. The FFTs and grids are also used in the calculations of
potentials in the solution of the KS equations. The large number of planewave basis functions
does not lend itself to solutions of the KS-equations using traditional full matrix diagonalisation
algorithms. The size of the basis is simply too large, and the number of desires eigenstates is
usually only a small fraction of that number. Instead, iterative algorithms are employed, where

the lowest-lying eigenstates are filtered out, leading to much more efficient methods.

Quantities such as the total energy are given as integrals over the first Brillouin zone. In
practice, we need to choose to sample the Brillouin zone using a finite set of points. There are
various methods to choose the most representative set of k-points. A commonly used method is

that of Monkhorst and Pack [47] which uses a regular grid. For a (g1 X g2 X ¢3) grid, we define

_2[—(]1‘—1

= [=1,2,..,q 2.22
Uy g 2(]1 y y 4y ooy i ( )

and the set of grid points is then given by
k = u,1b1 + u 2ba 4w 3bs, for all values of [ (2.23)

This results in a regular grid of gi1q2gs points in the BZ. It is often possible to achieve significant
savings when the symmetry of the crystal can be exploited to reduce the number of k-points at

which calculations have to be performed.

2.4.3 Pseudopotentials

In an atom, wavefunctions of core states are much more contracted than those of valence states.
Since the valence state wavefunctions have to be orthogonal to the core states of the same (angular
momentum) [-symmetry, they oscillate rapidly in the core region. Within plane wave basis sets, the
representation of these oscillations requires a large number of planewaves with large |G|. Further

away from the core, valence wavefunctions are much smoother. By eliminating the core electrons
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and replacing their effect by a pseudopotential, we can make the valence wavefunctions smoother

in the core region, resulting in appreciable savings of computational resources.

What is a pseudopotential? In its simplest form, it is what the name implies: a potential, but
not the real one. The pseudopotential is a potential term entering the Kohn-Sham Hamiltonian,
which now describes a pseudo-system with a pseudo-wavefunction. To be useful, we require a
relation between the pseudo-system and the real one. In practice, we make a pseudopotential Vps
such that the pseudo-wavefunctions agree with the real ones outside a spherical region around each
atom. We also require that the pseudo-wavefunction with the pseudo-Hamiltonian have the same
eigenvalue as the real wavefunction with the real Hamiltonian. Even with these two requirements,

there are a large number of different ways of constructing pseudopotentials.

The pseudopotential is the extra potential term that enters the single-particle Hamiltonian for
the pseudo-wavefunction, replacing the singular Coulomb potential with a smoother function. To
find the pseudopotential, we need to first find the pseudo-wavefunction. There is a huge freedom
in doing that, but most schemes set a cutoff radius r. beyond which the pseudo-wavefunction is
equal to the actual wavefunction, and then require that the pseudo-wavefunction is nodeless. With

this, the Schrodinger equation can be inverted to find the potential term.

Because of the orthogonality to core states, each [ will feel a different potential. This leads to

a potential of the form

00 l
Vps =Y > vbg(r)|im) (Im]. (2.24)

1=0 m=—1I
In this form, each I-component of the wavefunction is projected out and multiplied by a separate
potential U}S(r). Pseudopotential theory forms a field in its own right, and almost all pseu-
dopotentials used in actual calculations are constructed by schemes which differ from the above.
The fundamental ideas however are the same. Two very important considerations when choosing
pseudopotentials for calculations are the hardness and the transferability. Hardness refers to the
maximum kinetic energy of planewaves required to obtain converged results in a calculation. The
hardness is a function of the cutoff radius; the smaller the cutoff radius, the harder the pseudopo-
tential. The second consideration is the transferability of the pseudopotential. Pseudopotentials
are usually generated from wavefunctions of isolated atoms, and one needs to ensure that the pseu-
dopotential is also appropriate for an atom in a crystal or molecule. In general, the transferability

is better the harder the pseudopotential.

2.5 Beyond DFT: Green’s Function Methods

Approximate DFT is a very successful mean-field theory of electronic structure, but it has a
number of shortcomings. The development of exchange-correlation functionals is an active field,
but unlike other electronic structure approaches, there is no systematic route to improvement of
DFT functionals. In addition, DFT is naturally a theory of ground-state properties, and as such

does not offer a good description of some electronic and excited state properties. On the other
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hand, wavefunction-based methods from quantum chemistry, or stochastic method like quantum
monte carlo (QMC) are very accurate but do not retain any aspects of the one-electron picture,

and often do not offer a natural description of reciprocal space.

Green’s function methods are a good alternative to both DF'T and wavefunction methods. They
offer a route to systematic improvement of the approximations while retaining some aspects of the
single particle picture. The single particle picture turns into the quasiparticle picture: all of the
complicated interactions between particles are captured by describing their effect on the motion
of a single particle. Green’s functions are also naturally suited to the description of perturbations

and responses of systems, and therefore easily connected to spectroscopic experiments.

The one-electron Green’s function is defined as
G, 7', t') = —il0| TR (x, )67 (!, #)]]0) (2.25)

where |0) is the exact ground-state wavefunction, and the field operators 1211-, 1& create or destroy an
electron at (r,t). The time-ordering operator 1" orders the operators in square brackets such that
earlier times are on the right. The Green’s function describes the propagation amplitude of an
electron, created at (r',t') and destroyed at (r,t). For time-independent Hamiltonians G' depends
only on t — t/, and it is often convenient to work in terms of frequency rather than time. The
Greens’s function can be expressed in bases other than real space, so that in general it takes the
form of a matrix Gy (t) = —i(T[é(t)é} (0)]).

For a non-interacting, diagonal Hamiltonian H= > elé;él, the Green’s function is given by

Gll/ ((.U) — : (5ll/
w — € + in sign(e; — p)

(2.26)

where p is the chemical potential. The poles of the Green’s function are simply the energy levels of
the electrons. For Hamiltonians that are not simply diagonalisable, the Green’s function for the full
interacting system is calculated by breaking the Hamiltonian H into two parts Hy and Hj, where
Hy non-interacting and diagonalisable, and H; contains all the particle interaction terms that
render the full problem difficult. With the non-interacting Green’s function G of Hy as a starting
point, the full, interacting Green’s function G is obtained using many-body perturbation theory
(MBPT). In practice this can only be done approximately, but the approximation scheme is useful
and systematically improvable. The full theoretical apparatus of MBPT with Feynman diagram
techniques is beyond the scope of this thesis. Instead, a few key concepts will be introduced.

One important concept is the self-energy 3, which encapsulates all of the effects of electron
interactions in a single object and connects the non-interacting Greens function Gy with the inter-

acting Green’s function G via the Dyson equation
Gl=Gy'-% (2.27)

where it is understood that all quantities are expressed w.r.t. some basis and contain a time
or frequency dependence. Within a quasiparticle picture, the real part of ¥ leads to a shift in

energy of the quasiparticle relative to its unperturbed state, while the imaginary part of X leads
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to a finite lifetime. The spectral function A(k,w) = —1/7 Im[G(k,w)] is the equivalent of a
bandstructure/DOS in the Green’s function formalism. In particular, for one-electron Green’s
functions, the spectral function is directly related to electron emission or absorption phenomena

probed by photoemission or inverse photoemission spectroscopy.

At finite temperatures, calculations are carried out in the imaginary time (Matsubara) formal-
ism. Imaginary time calculations turn out to be much simpler for nonzero temperatures. Real time
Green’s functions at finite temperature can be obtained from imaginary time Green’s functions
via analytic continuation. The important implication here is that the DMFT as introduced below

usually deals with finite 7" scenarios and thus uses the Matsubara formalism.

2.5.1 Dynamical Mean Field Theory

Dynamical mean-field theory (DMFT) emerged as a method to obtain approximate solutions to
the Hubbard model [48, 49]. It is based on the observation that as the number of dimensions of the
Hubbard model tends to infinity, the self-energy 3 loses its dependence on k and becomes purely
local. This locality allows the construction of an exact mapping between the Hubbard model and
a self-consistent quantum impurity problem. Solving the quantum impurity problem will thus
yield the self-energy of the Hubbard model. Using the same idea for Hubbard models in finite

dimensions leads to very good approximations.

For completeness, we reproduce the Hamiltonian of the Hubbard model that was introduced

in the previous chapter

H=—t>"(eh¢j0+clytin) + U iy, (2.28)

The non-interacting part of H (first term) consists of a nearest-neighbour tight-binding model on
a (hyper)cubic lattice, with dispersion e(k) = —2tz cos(k - a) where z is the number of neighbours
and a the vector of lattice constants. Consequently, the Green’s function for the non-interacting
part of the Hamiltonian takes the general form of Eqn. 2.26. To calculate the interacting Green’s

function, an auxiliary Anderson impurity model is introduced.

The Anderson impurity model (AIM) describes an atom with on-site interactions embedded in

a bath of non-interacting electrons. The AIM Hamiltonian is

H= Z el e+ Z et [ fo + Unprig + Z (Viflew + Vel fr) (2.29)

lo o l,o
where the first term represents the non-interacting medium, the second term the impurity levels,
the third term the interactions on the impurity, and the fourth term the hybridisation between
impurity and bath. V; and V;* denote the quantum mechanical amplitudes for absorption and

emission of electrons by the impurity. The individual hybridisation terms are collected together in

Alw) =D, Vil® " The Hamiltonian of Eqn. 2.29 contains only a single orbital on the impurity, but

w—e]
it may be generalised to multi-orbital impurities. The quantity of interest in the AIM is the local

Green’s function of the impurity, denoted G. Since we are interested in the physics of the impurity
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(the bath being non-interacting and fully solved), we care only about the Green’s function of the
impurity. In contrast to the Hubbard model, numerically exact solvers for the AIM exist. These

impurity solvers start with one of two choices for Gy:

1. If we let the U term in the H be the perturbation, the Gy of the impurity is [w—ef —A(w)] ™.
The impurity solver takes Gg and U and returns G. With both G and Gy, the self energy is
obtained from the Dyson equation ¥ = ggl - gL

2. If we let the hybridisation term be the perturbation, we can solve for the local non-interacting
Green’s function simply by diagonalising the Hamiltonian in the relatively small subspace
corresponding to the impurity (2!° = 1024-dimensional for a d-orbital impurity). The im-
purity solver takes Gy and A(w) and returns G, from which we can calculate ¥ via the
Dyson equation. The current state-of-the-art method that uses this hybridisation expansion

is continuous time quantum monte carlo (CTQMC).

In mapping a Hubbard model onto an AIM, the first three terms in the AIM Hamiltonian
are fully determined: the non-interacting bath term is equivalent to the tight-binding term of the
Hubbard Hamiltonian, and the on-site and interaction terms of the Hubbard model are those of the
impurity. Only the hybridisation is left undetermined. This is where the self-consistency condition
comes in: we require that the Green function of the impurity G equals the local Green function of
the lattice Gjoe. The Green’s function of the lattice is G(k,w)

1

Glk,w) = w— ek — B(w)

(2.30)
and Gioe(w) = Nik >« G(k,w). The key point is that ¥(w) = Xguz(w), i.e. the self-energy of the
Hubbard model is set equal to the one obtained from the AIM. The hybridisation is adjusted from

one cycle to the next until the self-consistency condition G = G, is fulfilled.

DMEFT is a mean-field theory for a quantum lattice model. Similar to how in the classical
Ising model a mean-field approximation is made by requiring that the local magnetisation of a site
equals the average magnetisation of the lattice, DMFT requires that the local Green’s function of

a site equals the averaged Green’s function of the lattice.

2.5.2 DFT+DMEFT

DMEFT as outlined above is appropriate for lattice models. To apply the same ideas to real
materials, they need to be generalised and fitted into a first-principles framework. KS-DFT is
a good choice for the non-interacting part of the Hamiltonian. While Hubbard-type interactions
could in principle be added for all electrons, they are most appropriate for electrons in d or f
orbitals. The interactions between electrons in this correlated subspace are parameterised by
Coulomb repulsions U and exchange couplings J.

How are the electrons in the correlated subspace connected to the rest of the solid? The
traditional approach is to build a Hubbard-like model from the DFT solution through the use

of Wannier functions. Wannier functions are constructed from the relevant d/f bands around
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the Fermi energy. Each Wannier function represents a site in the Hubbard model, with hopping
parameters t;; between sites derived from first principles. The resulting lattice model is solved
with the methods described above.

A second option to connect the correlated subspace with the rest of the solid is to construct
projection and embedding operations. This is referred to as embedded DMFT. A projection
operator PR ig defined such that Gj,. = PRG, i.e. it projects the lattice Green’s function G into
the correlated subspace of the atom at site R. The projection is usually defined in terms of a set of
fixed, quasi-atomic orbitals gblffn(r) which are solutions to the atomic Schrédinger equation in the
muffin-tin sphere, for the angular momentum ! under consideration. In terms of these functions,

the projection is

Gl%c = Z (r|da) <¢a|G‘¢ﬁ> <q§/3‘r/> = Z (r|da) Gap <¢ﬂ|r,> . (2.31)
a,f a,p

When we have obtained the self-energy X in the basis of the correlated subspace via the impurity

solver, it can be embedded into real space by the embedding

SR w) =) (rléa) Bap (psr') . (2.32)
a,

In this sense the embedding is the inverse of the projection operation. Note how embedding and
projection provide a simple way to change from a real-space basis to the finite-dimensional basis

of the correlated subspace.

DFT and DMFT are most easily combined into a computational scheme by defining an energy
functional. The DFT+DMFT functional I'[n, Gj,.] for the free energy of a system depends on both

the electron density p and the local Green’s function Gj,. The form of this functional is

F[p(r)a G1loc] = T[P; Gloc] + /V;Emt : ,O(I‘) dr + Ey + E:cc[pa Gloc] (233)

Both the kinetic energy term T and the exchange-correlation term FE,. now explicitly depend on
the local Green’s function. The new E,. term is a combination of DF'T exchange-correlation, and
DMET correlation term involving the self-energy. However, we cannot entirely separate the part
of correlation included in DFT, and the part that comes in through DMFT. We therefore need to
correct for the correlation that occurs in both by subtracting a double-counting correction. The
theoretically most rigorous option is the exact double-counting [50], which treats both LDA-DFT

and DMFT as approximations to an exact energy functional of the Green’s function.

With the definition of a free energy functional, we can find the ground state of the system by
minimising the functional with respect to the Green’s function. This leads to a Schrédinger-like
equation that can be solved using numerical techniques very similar to those used to solve the Kohn-
Sham equations. If the theoretical formalism has been defined appropriately, one can calculate
energies from DFT+DMEFT in a numerically robust way. Recently, it has become possible to
calculate forces with DEFT+DMFT (derivatives of the energy functional I'[n(r), Gj,.] with respect

to nuclear positions R). This interesting development can now be used to compute phonons with
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DFT+DMFT, as shown in Chapter 7.



30

CHAPTER 2. ELECTRONIC STRUCTURE THEORY




Chapter 3

Electronic Structure of Niobium
Suboxides Nb20O5_ ;.

This chapter is based on “First-Principles Study of Localised and Delocalised Electronic States
in Crystallographic Shear Phases of Niobium Oxide”, Can P. Kocer, Kent J. Griffith, Clare P.
Grey, Andrew J. Morris, Phys. Rev. B, 99, 075151 (2019). Reproduced with permission from the

American Physical Society.

Abstract

Crystallographic shear phases of niobium oxide form an interesting family of compounds that
have received attention both for their unusual electronic and magnetic properties, as well as their
performance as intercalation electrode materials for lithium-ion batteries. Here, we present a
first-principles density-functional theory study of the electronic structure and magnetism of H-
Nb2Os5, NbosOg2, Nbg7O116, NbooOsy4, and Nb130g9. These compounds feature blocks of niobium-
oxygen octahedra as structural units, and we show that this block structure leads to a coexistence
of flat and dispersive energy bands, corresponding to localised and delocalised electronic states.
Electrons localise in orbitals spanning multiple niobium sites in the plane of the blocks. Localised
and delocalised electronic states are both effectively one-dimensional and are partitioned between
different types of niobium sites. Flat bands associated with localised electrons are present even
at the GGA level, but a correct description of the localisation requires the use of GGA+U or
hybrid functionals. We discuss the experimentally observed electrical and magnetic properties
of niobium suboxides in light of our results, and argue that their behaviour is similar to that of
n-doped semiconductors, but with a limited capacity for localised electrons. When a threshold of
one electron per block is exceeded, metallic electrons are added to existing localised electrons. We
propose that this behaviour of shear phases is general for any type of n-doping, and should transfer
to doping by alkali metal (lithium) ions during operation of niobium oxide-based battery electrodes.

Future directions for theory and experiment on mixed-metal shear phases are suggested.
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3.1 Introduction

Transition metal oxides form a fascinating class of compounds with interesting electronic, mag-
netic, and crystallographic structures. The phase diagram of niobium oxide is especially rich, with
a large number of reported phases for NbyO5 [51, 52, 53], in addition to NbO and NbOg. The
high-temperature NboOs polymorph (H-NbyOs) can be regarded as the parent compound of a
family known as crystallographic shear (or Wadsley—Roth) phases [17, 20]. In these phases, nio-
bium is present in octahedral coordination, but the Nb/O ratio of NboO3 prevents the formation of
purely corner-sharing octahedra. Instead, the structure must include some amount of edge-sharing
connections between octahedra. The metal-oxygen octahedra in these compounds are strongly
distorted due to a combination of electrostatic repulsion between transition metal ions and the
second-order Jahn—Teller effect [54, 55]. Niobium sites in the center of the block are less dis-
torted than those at the periphery. The crystallographic principles were introduced in Chapter 1.
By reduction of NbyOs, small amounts of Nb** can be incorporated, and a series of NbyOs_;
compounds form. These suboxides include NbosOg2, Nbs70116, NbosOs4, and two polymorphs of
Nb12029 with different crystal symmetries (Fig. 4.1, Table 3.1).

The fully oxidised parent compound NboOs is a wide bandgap insulator. Low concentrations
of valence electrons are introduced through n-type doping to form the NbsOs_s phases. This
reduction changes the crystal structure, but the structural motif of the blocks is retained, which
makes the niobium suboxides an excellent series of phases to study the interplay between charge
state and crystal structure. Magnetic susceptibility measurements show that all NbsOs_5 phases
are paramagnetic, with the number of localised moments increasing with § [24, 26]. Spin interac-
tions are antiferromagnetic and their strength increases with the level of reduction, as indicated
by their Curie—Weiss constants. However, only the monoclinic Nb;2099 phase is found to exhibit
long-range antiferromagnetic order, with an ordering temperature of 12 K [23, 56]. Electrical con-
ductivity measurements show that all NboO5_s phases show thermally-activated transport, except
for Nbj2099, which is metallic down to 2 K [25, 24]. Both electrical and optical measurements
indicate that the electron transport in the NboO5_s phases is effectively one-dimensional along the
block columns [27]. Despite the evidence for localised electrons, single crystal X-ray diffraction
studies on NbgoOs4 and 0-Nb12029 have not found evidence for charge ordering [57]. Additional
studies have been performed on Nbi20O99 indicating the presence of localised as well as delocalised
electrons [25, 58, 59].

Despite their interesting physical properties, the niobium suboxides have not been investi-
gated with first-principles methods, and the relationship between the level of reduction and the
electronic and magnetic properties remains unclear. Two previous first-principles studies have
examined the two polymorphs of Nbj2Og9, with rather different conclusions regarding the elec-
tronic structure, despite their very strong structural similarity [60, 61]. Additionally, there is new
interest in crystallographic shear phases due to their excellent performance as electrode materials
in batteries [13, 62], and the electronic structure of the suboxides is likely to be similar to that of

other shear phases.
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Figure 3.1: a) Idealised (left) and locally distorted (right) crystal structure of NbosOs4. The tetra-
hedral site is shown as a black dot in the idealised structure. Crystal structures of b) H-NboOs,
¢) monoclinic Nb190ag, d) orthorhombic Nb13029, €) NbosOga, and f) Nby7O116. Light and dark
colored blocks are offset by half of the lattice parameter perpendicular to the plane of the page. Unit
cells are outlined in black.
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Compound O/Nb N,-/block Space group Source a b c B Block size(s)
H-NbsO5 2.500 0 P2/m Expt. [52] 21.153 3.823 19.356 119.80° 3x4,3x5
P2 PBE 21.433 3.841 19.614 119.85°
NbosOg2 2.480 % C2 Expt. [24] 29.78  3.825 21.14 94.7° 3 x4
PBE 30.224  3.84 21.44 95.0°
Nbs7O116  2.468 p 2 Expt. [24] 57.74 3.823 21.18  105.3° 3x3,3x4
PBE 58.43 3.84 21.44 105.3°
NbooOs4 2.455 1 P2/m Expt. [57] 15.749 3.824 17.852 102.029° 3 x 3,3 x4
P2 PBE 15.931 3.842 18.036 102.06°
P2 PBE+U 15.935 3.836 18.061 101.99°
m-Nb12Oq9  2.417 2 A2/m Expt. [63] 15.695 3.831 20.723 113.103° 3 x4

PBE 15903 3.832 20.967 113.1°
PBE+U 15.885 3.837 20.950 113.09°
0-Nb120g9  2.417 2 Cmem Expt. [67] 3.832 20.740 28.890 - 3x4
PBE 3.833  20.955 29.241 -
PBE+U  3.836 20.961 29.204 -

Table 3.1: Structural properties of niobium (sub)oxides. Experimental and DFT optimised lattice
parameters a, b and ¢ are given in A. Structural optimisations with DFT+U were performed with a
U.g value of 4.0 eV on niobium d-orbitals. N,.- denotes number of electrons introduced by doping.
Difference between experimental and DFT space group choices related to ordering of tetrahedral sites
(see text).

In this chapter, we study six different niobium (sub)oxides using density-functional theory
calculations and establish common principles governing their electronic and magnetic behaviour.
As the 4d band in these materials is highly complex, we first examine NbooOs4 in detail, and
then present results on Nbi2Oo9, Nbs7O116, NbosOgo, and H-NboOs. We show that all of these
structures host flat and dispersive bands, which correspond to localised and delocalised electronic
states. Each block can host a single localised state in the block plane that is spread over multiple
niobium sites. Delocalised states are present along the shear planes. These results are independent
of the type of n-doping, and alkali metal doped (lithiated) shear phases show similar features to
the suboxides, which has implications for their use as battery electrodes. We discuss experimental
studies of electrical and magnetic properties of the suboxides in terms of a consecutive filling of
localised and delocalised states. Finally, based on these results, we suggest new directions for

theory and experiment.

3.2 Methods

All density-functional theory calculations were performed using the planewave DFT code CASTEP [64]
(version 18.1). Pseudopotentials including Nb 4s, 4p, 4d and 5s, O 2s and 2p, and Li 1s and
2s states were used for all calculations. Calculations using hybrid functionals employed norm-
conserving pseudopotentials [65], all other calculations were performed using Vanderbilt ultrasoft
pseudopotentials [66]. Crystal structures were obtained from the Inorganic Crystal Structure
Database [67] (ICSD) when available. The structure of Nby7O116 was constructed as described
in Ref. [24] as a unit cell intergrowth of NbesOgo and NbgeOs4 since no crystallographic data,
other than the lattice parameters, was available. The space groups of H-NboO5 and NbooOs4 are
reported as both P2 and P2/m in the literature [52, 24, 57]. These two space group choices differ
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only in the full or partial occupancy of the tetrahedral site. For modelling purposes, the ion on
the tetrahedral site has to be ordered, resulting in space group P2. Atomic positions and lattice
parameters of the structures were relaxed using the gradient-corrected Perdew—Burke—Ernzerhof
(PBE) functional [42], until the maximum force on any atom was smaller than 0.01 eV/A. The
calculations used a planewave kinetic energy cutoff of 800 eV for ultrasoft pseudopotentials, and
900 eV for norm-conserving pseudopotentials, unless otherwise stated. The Brillouin zone was
sampled with a Monkhorst-Pack grid [47] finer than 27 x 0.03 A~!. Lattice parameters obtained
from the structural relaxations are listed in Table 3.1, and agree very well with the experimental
values. Crystallographic information files (CIF) of the PBE optimised structures are available
in the Supplemental Material of the published article on which this chapter is based [68]. All
electronic structure calculations were performed for antiferromagnetic spin arrangements in the

conventional unit cells, as antiferromagnetic spin interactions are observed experimentally [24].

Semilocal density functionals suffer from self-interaction error, which can be alleviated by the
use of DFT+U. For calculations in this work, the DFT+U implementation in CASTEP [69] was
used, which defines an effective U value Uyg = U — J. A value of Usg = 4.0 eV was chosen for the
Nb d orbitals, in line with other studies on niobium oxides that employed similar implementations
of DFT+U within planewave codes [70]. The results presented herein are mostly insensitive to
the exact value of the U.g parameter if it lies in the range 3-5 eV, even though the value of the
bandgap does depend on the choice of the Ueg parameter'. The structures of NbyyOs4 and the
Nb12099 polymorphs were additionally optimised with PBE+U, and the results are listed in Table
3.1. PBE and PBE+U lattice parameters agree closely, and PBE+U bandstructure and density
of states calculations for compounds other than NboyOs4 and NbijoOgg were performed on PBE

optimised structures.

Hybrid functionals are another way to correct the self-interaction error of semilocal functionals.
The range-separated HSE06 functional [44] was used to calculate the bandstructure for NbgoOsy.
Due to the significant additional expense incurred by the use of hybrid functionals, the computa-
tional parameters for the calculations of bandstructures at the HSEQ6 level are coarser. The unit
cell of NboyOs4 contains 610 valence electrons, but since the cell is rather short in one particular
dimension and extended in the other two, one cannot use only the I'-point in the Brillouin zone
(BZ) sampling. Instead, a 1 x 5 x 1 I'-centered k-point grid was used in the HSE06 self-consistent
field calculations for NbggOsy.

Bandstructure calculations were performed for high-symmetry Brillouin zone directions ac-
cording to those obtained from the SeeK-path package [71], which relies on spglib [72]. A spacing
between k-points of 27 x 0.025 A~! was used. Density of states calculations were performed with
a grid spacing of 27 x 0.01 A~!, and the results were postprocessed with the OptaDO0S package [73],
using the linear extrapolative scheme [74, 75]. The c2x [76] utility and VESTA [77] were used

'Regarding the appropriateness of DFT+U for calculating the electronic structure of the niobium suboxides,
we note the following: (1) While DFT+U in most popular implementations is most appropriate for the correct
description of atomic-like localised states, this study deals with localised states that are not quite localised atomic-
like orbitals, (2) While the ab initio determination of the U parameters is possible, the complexity of the crystal
structures is this case would require different U values for different types of niobium sites, (3) Our analysis of the
electronic structure of the suboxides includes comparisons at GGA, GGA+U and hybrid functional levels of theory,
so the “correct” U value is unlikely to yield drastically different conclusions than the ones presented herein.
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for visualisation of wavefunction and density data. Data analysis and visualisation was performed

with the matador [78] package.

3.3 Results

3.3.1 Nb22054
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Figure 3.2: Spin-polarised bandstructure and electronic density of states of NbogOs4 (PBE4U, Uegr =
4 eV). Up and down spins colored in red and blue. High symmetry points are marked on slices through
the first Brillouin zone. The flat bands below the Fermi level (dashed line) represent localised states.

Nba2Os4 crystallises in space group P2/m [57], and shows an ordered mixture of 3 x 3 and 3 x 4
blocks of octahedra, in addition to a tetrahedral site (Figure 4.1a). Assuming an ionic model, the
compound can be described as (Nb®)oo(Nb*+)5(027)54, with two 4d electrons per 22 Nb atoms
(1 e~ per block, Table 3.1).

The a and c lattice vectors of NbosOs4 are longer than b, which is perpendicular to the block
plane (Fig. 4.1, Table 3.1). The Brillouin zone (BZ) therefore has one long (along b*) and two short
directions. The PBE+U spin-polarised bandstructure and electronic density of states (DOS) of
NbgoOs4 show a large gap between the valence and conduction bands, which are of oxygen 2p and
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niobium 4d character, respectively (Fig. 3.2). Two fully occupied flat bands (one for each spin) lie
within the band gap, leading to the peaks in the DOS below the Fermi level. The flat bands have a
very small one-dimensional dispersion, as evidenced by the shapes of the corresponding peaks in the
DOS, and represent localised states. In addition to the flat bands, a set of dispersive bands exists
just above the Fermi level, which show the largest dispersion along b*. The separation between
the flat bands and the rest of the conduction states is smallest at special points lying in the a*-c*
plane of I (Y, A, B), and largest in the parallel plane at the BZ boundary (Z, C, D, E). Due to
this pattern, the dispersive bands are also effectively one-dimensional. The effective mass tensor
for the lowest unoccupied bands was evaluated and diagonalised with the EMC program [79] using
a stepsize of 0.0025 bohr~!. The effective mass m? along the high-symmetry b* direction at points
I' and A is 0.47 m.. The effective masses within the a*-c* plane along the other eigenvectors of the
effective mass tensor are 1.27 m, and 3.15 m, at the CBM minimum at point A. This difference in
the effective masses demonstrates that the electron transport predominantly occurs along the b*
direction. We also note that the bands along b* are the only ones that show a reasonably parabolic

shape and are not interrupted by frequent band crossings and hybridisation.
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Figure 3.3: Spin-summed projected density of states (PBE+4U) for NbgyOsy. Fermi level is indicated
by the dashed line. a) PDOS for central (gold) and peripheral (green) niobium sites. b) DOS projected
for sites in different blocks, demonstrating separate localisation of electrons in 3 x 3 and 3 x 4 blocks.
Contributions from sites are proportional to the shaded area.

With 12 inequivalent niobium sites in the unit cell of NbosOs4, site-resolved projected densities
of states (PDOS) are complicated and difficult to interpret. More insight is gained by summing
PDOS for sets of sites. Figure 3.3a shows the projection onto different types of niobium sites
within the structure, which are classified as central and peripheral, depending on where they sit
within the block. We note two things: (1) Both peripheral and central niobium sites contribute
to the localised states, even though the contribution of the central sites is greater given the ratio
of the two; and (2) only peripheral niobium sites contribute to the unoccupied density of states
above the Fermi level (until 0.5 eV above), the contribution from the central sites is exactly zero.
The PDOS resolved by block in Fig. 3.3b demonstrates that one localised state is contained in the
3 x 4 block, and the other, lower energy one, in the 3 x 3 block. Both blocks contribute roughly

equally to the density of unoccupied conduction states.
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Figure 3.4: a) Spin density plot of NbgsOs54. Niobium and oxygen shown in dark blue and orange,
respectively. Purple and light blue represent up and down spin density, respectively. The rectangles

outline the 3 x 4 and 3 x 3 blocks. Spin density isosurface drawn at a value of 0.03 e~/ A% b) Kohn-
Sham orbitals associated with localised states (flat bands in Fig. 3.2) in 3 x 4 and 3 x 3 blocks,
different phases of the orbitals shown in yellow and light green.

Spin density in NbgsOs4 is predominantly located on the central niobium sites (Fig. 3.4a),
which also dominate the relevant states as seen from the PDOS (Fig. 3.3a). One spin is located
in each block, and the spin arrangement is antiferromagnetic between the two blocks. However,
the ferromagnetic arrangement is only marginally higher in energy (less than 1 meV), indicating
very weak spin interactions that are likely a result of the long (nm) magnetic interaction lengths.
Kohn—Sham orbitals that are occupied by these localised electrons span the entire block, but only
have contribution from niobium sites in the same block (Fig. 3.4b). The flat dispersion is a result
of the very weak face-on overlap (d-overlap) between these orbitals along b. Both localised orbitals
are similar in appearance, despite the different sizes of the blocks. This suggests that the presence

of these states is a general feature of block-type structures.

The results presented above were obtained from PBE+U (Uegg = 4 eV) calculations. The
I' — Z segment of the NbyoOs4 bandstructure computed with HSEQ6 and PBE is compared to
the PBE+U result in Fig. 3.5. Only the up-spin component is shown, which is associated with
the localised electron in the 3 x 3 block. The bandstructure looks similar for all functionals, and
importantly, the relevant feature of localised states, i.e. the flat bands, are present even at the
PBE level. However, PBE places the flat bands within the dispersive conduction bands, and both
are partially occupied, while both DFT+U and the HSE06 functional place the flat bands below
the other conduction bands?’. PBE also places the opposite spin partner of the localised state in
the other block much lower in energy than either PBE+U or HSE06. The precise placement of
the flat bands depends on the U value, but in the tested range of 2-5 eV the flat bands are placed

2For the HSE06 bandstructure calculation, the k-point grid was coarser than for the GGA or GGA+U calculations.
This was necessary to make the calculations possible. While the HSE06 bandstructure might not be fully converged,
we note that the flat band localised state dropped lower in energy the finer the k-point grid became. The placement
of the flat band state below the rest of the conduction band is therefore correct.
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below the conduction bands, and the gap between them increases by approximately 200 meV per
increase in U by 1 eV. The degree of electron localisation depends on the presence of a gap between
flat and dispersive bands. PBE implies metallic behaviour with some amount of localised electrons,
while HSE06 and PBE+U show full localisation of the electrons. A major difference between the
HSE06 and PBE or PBE+U calculations is the size of the gap between valence and conduction
bands, which is larger by approximately 1.2 eV for HSE06 compared to PBE+U. The spin density
and Kohn-Sham orbitals were plotted from the output of PBE+U calculations, but we note that
the results from PBE and HSEO6 are visually indistinguishable from the PBE+U results.

Figure 3.5: I' — Z segment of the bandstructure of NboyOs4 calculated with different levels of theory.
PBE, PBE+4U (Ueg = 4.0 €V), and HSEO0G, from left to right.

3.3.2 Nb12029

Nb12029 is more reduced than NbyyOs4 and hosts two 4d electrons per 12 niobium sites (i.e. 2 per
block, Table 3.1). The two Nb12029 polymorphs are structurally similar, and only differ in the
long-range arrangement of the blocks; in the monoclinic polymorph the blocks form a ribbon along
a, while in the orthorhombic structure the blocks zig-zag along ¢ (Fig. 4.1).

The bandstructure of monoclinic Nbj30g9 shows two flat bands (one for each spin), which lead
to two peaks in the DOS (Fig. 3.6). The shape of the real-space unit cell results in a Brillouin
zone with two short and one long dimension, and the bandstructure path segments are similar to
those in NbgoOs4. The bands for both spins lie exactly on top of each other due to the symmetry
of the crystal structure, even though there is a spatial separation of spins (Fig. 3.8a). The flat
bands coexist with more dispersive conduction bands, which show a dispersion which is largest in
the b* direction, making them effectively one-dimensional. Independent of the position of the flat
bands, the larger number of electrons per block requires that some of the electrons fill dispersive
conduction bands. This indicates a structural capacity for localised electrons. In Nbi209g9 flat

and dispersive bands are interspersed, while in NbooOs4, the flat bands lie below the rest of the
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d-bands (cf. Fig. 3.2). Similar to NbgyOs4, the central Nb sites contribute exclusively to the
occupied density of states in a narrow region that is associated with the flat bands (Fig. 3.7). The

remainder of the conduction states involve contributions from the peripheral sites.
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Figure 3.6: Bandstructure and density of states of monoclinic Nb130g9 (PBE+U). Fermi level indi-
cated by a dashed line. Up and down spins colored in red and blue, respectively. Flat and dispersive
bands are present, with strong similarity to those in NbgyOs4.

Kohn-Sham orbitals of the localised states (Fig. 3.8c) look remarkably similar to those in
Nb92Os4, and are predominantly made up of Nb d-orbitals lying within the plane of the block.
Electrons occupying these localised states are responsible for the non-zero spin density (Fig. 3.8a).
Orbitals associated with dispersive bands (Fig. 3.8b,d) are made up of d, and d,, atomic orbitals
that are parallel to the crystallographic shear planes. The band dispersion along I' — Z is ex-
plained by a reduction of in-phase overlap of the constituent atomic orbitals along the real-space b
direction. The fact that the contributing atomic orbitals are parallel to the crystallographic shear
planes and overlap face-on (Fig. 3.8b,d), rather than end-on, can be understood from a crystal
field argument. For a transition metal ion in an ideal octahedral crystal field, the to, orbitals form
a degenerate set. The MOg octahedra in shear phases, however, are far from ideal. When the
degeneracy of the t9, orbitals is lifted by a distortion, those d-orbitals that do not overlap with
any o-type ligand orbitals will be lowest in energy and contribute to the low-energy d-bands.

The bandstructure of the orthorhombic Nb120q9 polymorph (Fig. 3.9) looks very similar to that
of the monoclinic polymorph. In fact, the results on the monoclinic polymorph presented above
are transferable to the orthorhombic one. Experimentally, both polymorphs are metallic and show
antiferromagnetic spin interactions, but only the monoclinic polymorph shows long-range magnetic
order [56]. The magnetic susceptibility of m-Nbj2Og9 can be fit using the Bonner-Fisher form,
possibly indicating one-dimensional magnetism [58]. The differences are clearly subtle, and the
small energy differences (10-20 K, around 1 meV) make comparisons using density-functional the-

ory total energy differences difficult. However, the picture of the electronic structure of Nbi3Oaq9
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Figure 3.7: Projected density of states (PBE+U) for central (gold) and peripheral (green) niobium
sites in monoclinic Nb15O29. Central niobium sites contribute to the density of occupied states only
in a narrow window that is associated with the flat bands.

that emerges is clear: for both polymorphs, conductivity and local moment magnetism are pro-
vided by different sets of electrons. Our conclusions on the orthorhombic polymorph are broadly
in line with the first-principles study of Lee and Pickett [61]. Those authors also found a coex-
istence of localised and delocalised electrons, with the localised spin residing in a large orbital
dominated by the central niobium sites of the blocks, with delocalised electrons forming another

subset. Our results as well as experimental studies using heat capacity measurements [59] and uSR

O
A

(©) (d)

Figure 3.8: Spin density plot (a) and orbitals associated with localised (c) and delocalised (b,d) states
in monoclinic Nb12Og9. Spin density (a) is predominantly located on the central niobium sites, and
results from the occupation of localised states (c). Delocalised states have no contribution from the
central niobium sites.
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spectroscopy [58] establish the presence of localised magnetic electrons in m-Nbj3029. We note
that a previous study suggested the presence of itinerant moments in m-Nb;3099 on the basis of
GGA calculations [60]. However, the high density of states at the Fermi level that was described to
be the reason for the itinerant magnetism in fact arises from the flat band representing a localised

state.

L) [ K] [ ] ® 9
1 . 0§ )
(] [ ]
E -3
Z 0 /4 : :
<L
e
o0
g
= -1 ®
°
g o369
-2 6
o1 \ 2
e o ° o o é
r Y a®
(a) (b)

Figure 3.9: Bandstructure (PBE+U) (a) and spin density (b) of orthorhombic Nb130g9. ¥ = a*/2.
The orthorhombic and monoclinic Nby3029 polymorphs show a strong similarity in their bandstruc-
ture and spin density distribution (cf. Figs. 3.6, 3.8a).

3.3.3 Nby50¢2 and Nby7Oq46

The compounds NbosOgo and Nby7O116 are less reduced than NbooOs4 and host less than one
electron per structural block unit (Fig. 4.1, Table 3.1). The mutually occurring localised and
delocalised electronic states that were found above for NbOs4 and monoclinic Nb13049 are also
present in NbosOgo and NbyyO116. Localised states in blocks of the same size are nearly degenerate,
and since only a fraction of the localised states is occupied (less than 1 electron per block), it is
very difficult in a first-principles calculation to localise the electrons within a specific block. This
could be done if the occupation of particular bands was constrained. Similarly, since the energy
of the localised states depends on their occupation, judging the relative position of dispersive and
localised states in these two compounds is very difficult. Charge densities for the localised states
in the Nby70116 and NbosOga are shown in Fig. 3.10. It seems very likely that both NbosOgo
and Nby7O116 possess only localised electrons, occupying a fraction of these localised states. Since
Nby70116 is a unit cell level intergrowth of NbooOs4 and NbgsOg2, and NbooOs4 shows complete
localisation of electrons, it is very likely that electrons should also fully localise in Nby70116, at

least in those parts of the structure that derive from NbosOsy.
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(a) NbsOg2 (b) Nbs7O116

Figure 3.10: Summed charge densities from bands in (a) NbgsOge and (b) NbyyOq16. Selected empty
and filled localised states within blocks are framed by rectangles. The same (conventional) unit cell
as in Fig. 4.1 is shown for NbysOg2, but a smaller primitive cell for Nby7O11¢.

3.3.4 H-Nb,Oj

H-NbyOs5 is the high-temperature phase of niobium pentoxide, and crystallises in space group
P2/m (Table 3.1, Fig. 4.1). As the parent compound of the crystallographic shear structures, its
electronic structure provides a reference. However, since it is fully oxidised, all niobium ions have

a d° configuration and there are no electrons occupying the conduction band.

The bandstructure of H-NbyOs shows the presence of flat and dispersive bands (Fig. 3.11a),
similar to those found for the other shear phases above. However, the relative position of these
bands depends on whether or not they are occupied. Doping by alkali metal ions is one way to
introduce electrons into the conduction band, and in the particular case of H-NboOp this has a
practical relevance. Transition metal oxides in general, and the niobium-based oxide shear phases
of this work, are used as electrodes within lithium-ion batteries. Like oxygen removal, lithium
intercalation is a method to n-dope the material. Similar behaviour can often be observed from
charge doping and ion insertion, for example in Na,WO3 [80]. The H-NbyOs phase has been
studied extensively for lithium-ion battery applications and it is closely related to other shear
phases that have been examined for the same purpose [81, 13]. Inserting a single lithium per unit
cell into the middle of the 3 x 4 block results in a localised state similar to those present in the
niobium suboxides (Fig. 3.11b). Note that the electron is entirely localised within the 3 x 4 block,
with the 3 x 5 block remaining empty. Oxygen removal (as in the suboxides above) and lithium

intercalation (examined here) clearly result in similar electronic structure features.

3.4 Discussion

Our results establish that the presence of defect-like flat bands and metallic conduction states

is an innate feature of block-type structures. This coexistence arises due to the two different
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Figure 3.11: (a) Bandstructure of H-NboO5; (PBE). Valence and conduction bands are colored in
orange and blue, respectively. Flat and dispersive bands are present above the Fermi level (dashed
line) similar to those in NbgsOs54 and Nb12Oa9, but are unoccupied. (b) Spin density plot of lithiated
H-NbyOs5. A single lithium is located in the middle of the smaller block, inducing a localised state.

types of niobium sites present in the crystal structures; the central NbOg octahedra are purely
corner-shared, the distance between niobium atoms is larger and orbital overlap is reduced. This
isolation results in localised electronic states, while along the crystallographic shear planes, where
Nb-Nb distances are smaller and orbitals overlap more strongly, delocalised states are present.
Each block can host one localised electron that is, rather unusually, spread over multiple niobium
sites. This spread over multiple sites explains why single crystal X-ray diffraction studies on
Nbg20354 and 0-Nbj2029 do not show the presence of charge ordering [57], despite the detection
of localised electrons by magnetic measurements [24]°. As the electronic structure features are
ultimately a result of the blocks as structural units, the same principles are likely to apply to other

crystallographic shear phases in the WO3-NbyOs and TiO2-NboOp phase diagrams.

Regarding possible electronic conduction mechanisms in the niobium suboxides, the relevant
quantities are the filling fraction v (number of e~ per block), and the energy gap between the
flat and dispersive bands. For filling fractions of less than one, only localised states are filled
(NbgsOg2 and Nby7Oq16, Fig. 3.10) and electrons can hop from one filled block to another empty
one by a polaron hopping mechanism®. The hopping process will have an activation energy.
However, in NbaoOsy4 all localised states are filled and this hopping mechanism becomes impossible.
With no metallic conduction electrons present, thermal excitation from the defect-like flat bands
into the dispersive conduction bands might provide the dominant mechanism, as illustrated in
Fig. 3.12a. This mechanism is reminiscent of doped semiconductors, and the activation energy

associated with this process will depend on the separation between the flat and dispersive bands

3 A neutron diffraction study has reported charge ordering on one of the block-central sites in m-Nb12029 [82], but
only below the antiferromagnetic ordering temperature. As noted previously [57], this can not explain the presence
of local magnetic moments in niobium suboxides over wider temperature ranges.

“4In this case, polaron formation occurs when an electron self-traps in the block by structure deformations. This
is only strictly possible if the filling fraction is less than one.
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Figure 3.12: Schematic of bandstructure for (a) filling fraction v < 1 e~ /block and (b) v > 1
e~ /block. O 2p and Nb 4d dominated bands are colored in orange and blue, respectively. Fermi level
is indicated by a dashed line, k| designates reciprocal space vector associated with the real space
direction perpendicular to the block plane. The relative position of flat and dispersive bands changes
with the filling fraction v.

(cf. Figs 3.5, 3.12a). Thermal excitation from flat into dispersive bands is also possible in NbgsOg2
and Nby7O116, and could coexist with a polaron hopping mechanism. Finally, in the case of
Nbi12099, all localised states are filled, but metallic conduction states are also partially filled
(Fig. 3.12b). The result is metallic conductivity, which does not require thermal activation. Both
Riischer et al. [25] and Cava et al. [23, 24] have studied the conductivity of NbaO5_5 compounds
and observed that all phases except Nb12Oag exhibit thermally activated conductivity’. Riischer
et al. also noted the effectively one-dimensional electron transport properties along the block
columns [27], which are consistent with the calculated band dispersions and the effective masses
for NbooOs4. In addition, the experiments of Cava et al. show semiconducting electronic behaviour
for NbosOg2 from 4-300 K; Nby7O116 and NbgoOsy exhibit semiconducting (thermally activated)
conductivity from 0-250 K and from 0-100 K, respectively [24]. Beyond those temperatures,
there is a metallic-like range of temperatures in which conductivity decreases again. Given this
change in the temperature dependence of the conductivity from semiconducting to metallic, the
flat bands associated with localised electrons are likely shallow donor levels (Fig. 3.12). The
complex interplay between electron localisation and delocalisation in the suboxides is more similar
to phenomena occurring in semiconductors on n-type doping, but distinctly different from metal-
insulator transitions in transition metal oxides [83]. Our results suggest that a similar phenomenon
of crossover from localised to metallic conduction could occur on lithium doping of H-NbyOs,
which might be observed with electrochemical, spectroscopic, or magnetic measurements. The
fact that n-doping upon lithium insertion turns the wide bandgap insulating shear oxides into
good conductors has important ramifications for their use as battery electrodes; both high ionic
and electronic conductivity are required for a good electrode material. In the case of shear oxides,

the quasi one-dimensional electron transport occurs along the block columns, which is also the

5The resistivity of Nb12Oag is 4 X 1073 Q cm at 300 K, and 2 x 1072 Q cm at 50 K. For Nba20s4, the values are
1.5x 1072 Q cm at 300 K and 1.6 x 1072 Q cm at 50 K. [24].
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Figure 3.13: a) Possible spin-spin interactions .J; in monoclinic Nb150g9 along crystallographic a, b
and ¢ directions. b) Different spin arrangements in monoclinic Nb13029. AFM along ¢ (top left), fully
FM (top right), AFM along a (bottom left), AFM along b (bottom right). White and grey blocks are
offset by 0.5 b throughout.

dominant direction of ionic diffusion [81, 13].

Magnetic susceptibility measurements on the suboxides show that the number of localised
moments increases with the degree of reduction [26, 24]. However, under the assumption that
g = 2, the number of moments calculated from the measurements is smaller than the number of
introduced electrons [26, 24]. For Nb120ag, this is consistent with one delocalised and one localised
electron, but for the remaining suboxides this apparent reduction in the number of local moments is
unexpected. Our first-principles results are consistent with complete localisation of electrons until
a threshold is exceeded, and therefore all moments should be seen. Deviations in the g-value of
the electrons might explain the discrepancy. As the electrons in these suboxides are well-localised,
electron paramagnetic resonance (EPR) spectroscopy could provide some insight into the nature
of the electronic states and the g-values. For NbgoOsy4 in particular, the different shapes of the
magnetic orbitals could be used to detect electrons occupying specific blocks. Another possibility is
that localised electrons contributing magnetic moments coexist with magnetically inactive electrons
in all suboxides, not just Nbj2O99. However, we see no evidence for this in our calculations, and
the thermally activated conductivity of NbooOs4, Nbs7O116 and NbosOgo seems inconsistent with
the presence of magnetically inactive (Pauli-paramagnetic) metallic electrons. Finally, we note
that due to the small stoichiometric range of each suboxide, and the difficulty of synthesising these
materials, defects are certainly present and could contribute to the reduced number of magnetic

moments®.

Long-range antiferromagnetic order is observed only in the monoclinic Nbj2Og9 phase be-
low 12 K, all other niobium suboxides are paramagnetic [23, 24]. The Curie-Weiss constants of
NbyOs5_5 are in the range of 0-24 K (0-2meV), and indicate antiferromagnetic interactions that

become stronger with increasing degree of reduction [24]. In Nbe;Og2 and Nby70O116, some of the

SFor a discussion of the types of defects that can occur in these block-type structures, we refer to Refs [84, 85].
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localised states are empty (cf. Fig. 3.10), and the magnetic lattice is not fully filled. Independent
of the strength of interaction, if not all spins have neighbours to couple with, or there is some
randomness in the distribution of the spins, long-range magnetic order is unlikely to emerge. With
first-principles calculations it is very difficult to address the question of why only m-Nb120q9 or-
ders, but NbooOs4 and 0-Nb120O99 do not, since the energy differences between different magnetic
states are very small. However, we can discuss the possible spin-spin interactions simply based on
the shape and orientation of the magnetic orbital within the crystal structure. We will focus in
particular on monoclinic Nb1sOsg, but similar considerations apply to the other suboxides. The
magnetic orbital lies within the plane of the block. The two closest distances (two neighbours)
between spins (two nearest neighbours) are along the block columns, with a separation of about
3.8 A (J,, Fig. 3.13a bottom). By symmetry, the interaction with spins in the four next-nearest
neighbouring blocks along ¢, that are offset by 0.5 b, has to be the same (J., distance 10.6 A,
Fig. 3.13a bottom). In addition to that, each block is connected to two blocks on the same level
in monoclinic Nb;20g9 along the a direction (J,, distance 15.9 A, Fig. 3.13a top), and four others
offset by 0.5 b along a (distance 15.3 A, Fig. 3.13a top). Different spin arrangements are easily
obtained from DFT calculations (spin densities are shown in Fig. 3.13b), but the energy differences
between them are very small (few meV), and change significantly with the level of theory (PBE or
PBE+U). Energy differences of a few meV are consistent with the interaction strengths obtained
experimentally. The lowest energy magnetic ordering found in our calculations is antiferromagnetic
along the ¢ direction (Fig. 3.13b, top left).

3.5 Conclusion

We have shown that the electronic structure features common to n-doped crystallographic shear
phases include (1) effectively one-dimensional flat and dispersive bands corresponding to localised
and delocalised electronic states, (2) electron localisation in orbitals spanning the block planes,
and (3) the partition of localised and delocalised states between central and peripheral niobium
sites. Structural block units are also present in WO3-NbyOj5 [86] and TiO2-NboO5 [87, 88] phases,
and many of these mixed-metal shear phases have been explored as lithium-ion battery elec-
trodes [13, 89]. The principles laid out in this work are likely transferable to these compounds
(a recent example being PNbgOgs [90]), and are important for the interpretation of spectroscopic
and electrochemical data.

The niobium suboxides show a transition from localised to delocalised electrons, but it is much
smoother than commonly observed for metal-insulator transitions in transition metal oxides. In
fact, our results portray the suboxides to be closer to n-doped semiconductors, but with a limited
capacity for localised electrons. Once a filling threshold is exceeded, delocalised metallic electrons
are simply added to existing localised electrons. This process is likely to occur in heavily lithium-
doped shear phases during battery operation. Similarly, the experimentally observed crossover
from localised to delocalised electronic behaviour in WO3_, [91] might have the same underlying
mechanism, as WO3_, phases also exhibit some amount of crystallographic shear. More broadly,

the niobium suboxides are an elegant example of the interplay between crystal and electronic
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structure, and the balance between electron localisation and delocalisation in oxides of an early

transition metal.



Chapter 4

Cation Disorder and Lithium

Insertion Mechanism

This chapter is based on “Cation Disorder and Lithium Insertion Mechanism of Wadsley—Roth
Crystallographic Shear Phases from First Principles”, Can P. Kocger, Kent J. Griffith, Clare P.
Grey, Andrew J. Morris, J. Am. Chem. Soc., 141, 15121-34 (2019). Reproduced with permission

from the American Chemical Society.

Abstract

Wadsley—Roth crystallographic shear phases form a family of compounds that have attracted
attention due to their excellent performance as lithium-ion battery electrodes. The complex crys-
tallographic structure of these materials poses a challenge for first-principles computational mod-
elling and hinders the understanding of their structural, electronic and dynamic properties. In
this chapter, three different niobium tungsten oxide crystallographic shear phases (Nb1aWOs3s,
Nb14W3044, NbigW5055) are studied using an enumeration-based approach and first-principles
density-functional theory calculations. We report common principles governing the cation disorder,
lithium insertion mechanism, and electronic structure of these materials. Tungsten preferentially
occupies tetrahedral and block-central sites within the block-type crystal structures, and we find
that the local structure of the materials depends on the cation configuration. The lithium insertion
proceeds via a three-step mechanism, associated with an anisotropic evolution of the host lattice.
Our calculations reveal an important connection between long-range and local structural changes:
in the second step of the mechanism, the removal of local structural distortions leads to the contrac-
tion of the lattice along specific crystallographic directions, buffering the volume expansion of the
material. Niobium tungsten oxide shear structures host small amounts of localised electrons during
initial lithium insertion due to the confining effect of the blocks, but quickly become metallic upon
further lithiation. The combination of local, long-range, and electronic structural evolution over
the course of lithiation is beneficial to the performance of these materials as battery electrodes.
The mechanistic principles arise from the compound-independent crystallographic shear structure,

and therefore likely apply to Nb/Ti oxide or pure Nb oxide shear phases.
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4.1 Introduction

(c) Nb1gW50s;5

(d) (e)

Figure 4.1: Crystal structures of Wadsley—Roth phases studied in this work: (a) Nb1oWOs33 (space-
group C2), (b) Nb14W3044 (I4/m), (¢) NbigW5O0s55 (C2). Light and dark coloured blocks are offset
by half the lattice parameter perpendicular to the plane of the page. Note the increase in block size
from a) Nb1oWOs33 (3x4) to d) NbigW50s5 (4 x5). The blocks are framed by crystallographic shear
planes (edges of red squares in (b)), along which the metal-oxygen octahedra are strongly distorted
(d). The octahedra in the block centre (e) are much less distorted. Transition metal atoms shown in
blue and oxygen in orange.

(b) Nb1sW3044

There is a high demand for energy storage materials with improved performance in terms of
energy and power density, cycle life, and safety. High-rate electrode materials specifically are
needed to accelerate the adoption of electric vehicles by increasing power density and decreasing
charging times. While strategies like nanostructuring have been used extensively to improve high-
rate performance in materials like LTO [92] (Li4Ti5O12), this has many drawbacks, including
high cost, poor stability, and poor volumetric energy density [93]. However, nanostructuring is not
always necessary to obtain high rates. Recent work has shown that very high rates can be achieved
in micrometre-sized particles of complex oxides of niobium (T-NbgOj [81]), ternary Nb/W oxides
(Nb1gW50355 and NbigWi6093 [13]), and ternary Ti/Nb oxides (TiNbgsOgo [94] and TiNboO7).
In addition to the high-rate capability of these materials, their voltage range of +2.0 V to +1.0 V
vs. Li™ /Li minimises electrolyte degradation and SEI formation, and avoids safety issues such as

lithium dendrite formation.
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Crystallographically, these complex oxides fall into two structural families: compounds with
a tungsten bronze-type structure (T-NboOjs [51, 81] and NbijgWi093 [13]), and Wadsley—Roth
phases with block-type structures. The present work is concerned with the family of Wadsley—
Roth phases, which encompasses a large number of crystallographically similar compounds in
the NboO5-WO3 [17] and NbeO5-TiO4 [87] phase diagrams, in addition to pure NbeOs [52] and
NbyOs5_s [24] phases. The crystallographic principles were introduced in Chapter 1. The structures
show strongly distorted octahedra due to a combination of electrostatic repulsion between cations
and the second-order Jahn-Teller (SOJT) effect [54, 55]. NbOg octahedra at the block periphery
are more strongly distorted than those in the centre, resulting in zigzag-like patterns of metal
cations along the crystallographic shear planes (Fig. 4.1d). The block size depends in part on
the oxygen-to-metal ratio of the compound; a higher number of oxygens per metal allows more

corner-sharing connections between octahedra, and therefore larger blocks.

Lithium insertion into Wadsley—Roth phases was first studied systematically by Cava et al. in
1983 [21]. The authors examined 12 different niobium oxide-based shear structures and showed that
the crystallographic shear stabilises the structures against undesirable octahedral tilt distortions
of the host framework, which had previously been observed in ReOs [22]. The frustration of
distortions allows lithium diffusion pathways to be kept open. Since the initial report by Cava
et al., there have been articles detailing the electrochemical properties of many Wadsley—Roth
phases, including TiNbyO7 [95, 89], TiaNbigOa29 [96, 97], TiNbosOg2 [94], Nb1aWOs33 [98, 99],
Nb14W3044 [100, 101], NbigW50s55 [13], Nbj2Ogg9 [62, 102], H-NboO5 [81], and PNbgOga5 [103].
These studies have shown good performances of Wadsley—Roth phases as Li-ion battery electrodes,
with a remarkable high-rate capability [13, 89]. Ultrafast lithium diffusion was recently observed
in Nb1gW5055 with pulsed field gradient NMR spectroscopy and electrochemical techniques [13].
A strong similarity in the structural and phase evolution between different Wadsley—Roth phases
has been noted [21, 13]. The phase evolution and voltage profile up to 1.5 Li/TM (Li per transition
metal) can generally be divided into three regions; a first solid solution region with a sloping voltage
profile is followed by a two-phase-like region where the voltage profile slope is flatter. Depending
on the specific Wadsley—Roth phase, this second region of the voltage profile might be almost flat
(as in H-NboOs [81]), or have a small slope (NbjgW5055 [13]). Beyond the two-phase-like region,
another solid solution ensues. The similarity of their electrochemistry is highlighted by the fact
that most articles reporting properties of a single Wadsley—Roth phase draw comparisons to other
compounds of the family [94, 13, 103, 21, 98]. Cation ordering preferences (such as in the Ti/Nb
oxides [104]) and electronic structure features [24, 68| are also very similar.

Despite the rapidly growing number of experimental studies on Wadsley—Roth phases, reports
of computational modelling are almost absent. First-principles modelling of Wadsley—Roth phases
is both difficult and computationally expensive; the crystal structures are complex, have large
unit cells with a multitude of lithium sites, and, in Nb/Ti and Nb/W oxides, feature inherent
cation disorder. In this chapter, the cation disorder, lithium insertion mechanism, and electronic
structure of three different Wadsley—Roth phases (NbjaWOs33, NbjyW3044, and NbigW5055) are
examined using first-principles density-functional theory calculations. Their similarity in terms

of both structure (cf. Fig. 4.1) and composition calls for a combined study. Building on our
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previous work on the electronic structure of NbyOj_s crystallographic shear phases [68], this study
is motivated by the recent report of structural mechanisms in Li;Nb;gW5O0s55 [13], which we aim

to understand from first principles.

The chapter is structured as follows. We begin by studying the Nb/W cation disorder using
an enumeration approach. We establish cation ordering preferences and the lowest-energy cation
configurations, and discover a variability of the local structure caused by the cation disorder. Next,
we present a lithium insertion mechanism for Nb1oWOs33 in terms of the sequence of occupied
lithium sites, the voltage profile, and the local and long-range structural evolution. We show
that the mechanistic principles established for NbisWOQOs33 are transferable to Nbi4W3044 and
Nbi1gW5055. In fact, Nb1oWO33 and Nbi4W3044 can serve as model compounds to study the
more complex NbigW50O55. After investigating the electronic structure of the materials over the
course of lithium insertion, we go on to discuss common mechanistic principles for this structural
family, and their implications for battery performance. We conclude by suggesting new directions
for theory and experiment on structural, dynamic, and electrochemical properties of Wadsley—Roth

phases.

4.2 Methods

Structure enumeration. Symmetrically distinct cation configurations of Nb/W within the
(primitive, single block) unit cells of Nb;yW3044 and Nb1gW5055 were enumerated with a home-
made program using established techniques [105] based on a reduction of configurational space
by the space group symmetry of a parent structure. Overall, 172 cation configurations were enu-
merated for NbjyW3044', and 45 for NbjgW5Os5°. Further details can be found in the Results

section.

The minority cation occupancy (i.e. tungsten occupancy) Pg for site S within the crystal

structure was obtained according to

1 NS,i _ B
Po= 72 g 9 T (4.1)
(2

where the symmetrically inequivalent cation configurations are labelled by 4, and their degeneracy
and energy above the ground state (per unit cell) are g; and Ej, respectively. Ng; denotes the

number of positions of type S that are occupied by tungsten in cation configuration ¢, and mg is

I The space group of Nbi4sW3Oyy is reported as either 14 or I4/m [19, 106]. The I4/m space group of Nb14W3O44
requires a partial occupancy of the tetrahedral site and is therefore unsuitable for modelling purposes. In addition,
the partial occupancy results in an unphysically small distance of less than 2 A between two neighbouring tetrahedral
positions. Removal of the mirror plane perpendicular to ¢ (cf. Fig. 4.1) allows full occupancy of the tetrahedral
site and changes its multiplicity, and we therefore adopt I4. The only difference between these two space group
choices is the full or partial occupancy of the tetrahedral site. In the space groups 74 and I4/m, it is impossible to
keep the full symmetry and distribute three tungsten atoms over 17 sites within the primitive unit cell. Instead, for
Nb14W30u44, 4 configurations in space group C2 and 168 configurations in space group P1 were generated.

2For Nb1gW50ss, the tetrahedral site was fixed to be occupied by tungsten, and the space group of the cation
configurations was restricted to be C2. The first constraint was imposed because tungsten preferentially occupies
the tetrahedral site (see main text). The restriction on the space group choice is necessary to reduce the complexity
of the problem. This leaves 10 symmetrically independent sites in the asymmetric unit (cf. Fig. 4.2) over which two

tungsten atoms are to be distributed, yielding % = 45 different cation configurations.
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the total number of positions of type S within the unit cell. The partition function is given by
Ei

Z =% ,gie *BT. Equation 4.1 can be understood as a thermodynamic average of the fraction of

positions of type S occupied by tungsten. The lowest energy cation configuration of each phase

was used as a starting point to generate structural models of lithiated phases.

Structures of lithiated phases were generated by enumerating all possible lithium-vacancy con-
figurations over sets of lithium sites in Nb1sWO33 and Nb14yW3044. The crystal symmetry was
kept during this enumeration. Overall, 2048 structures were enumerated for Nb1oWQOs3, and 256
for Nb14W3044. Due to the much larger number of possible lithium sites in NbigW50s55, a full
enumeration of lithium-vacancy configurations and subsequent DFT optimisation was computa-
tionally too expensive. Further details regarding the generation of lithiated structures can be found

in the Results section.

Computational details. All calculations were performed using the planewave pseudopo-
tential DFT code CASTEP [64] (version 18.1). The gradient-corrected Perdew-Burke-Ernzerhof
exchange-correlation functional for solids [107] (PBEsol) was used in the calculations presented
in this work, unless otherwise specified. Many of the results we report are structural, and the
PBEsol functional was therefore chosen because it provides better agreeement with experimental
lattice parameters than PBE or LDA [107]. However, all of the results presented in this article
show the same trends if computed with PBE instead. Structural optimisations were always per-
formed in two steps: an initial relaxation using efficient parameters, followed by re-optimisation
using very high accuracy parameters. For efficient parameters, core electrons were described using
Vanderbilt “ultrasoft” pseudopotentials [66], generated using the ‘efficient’ specifications listed in
Table 4.1. These require smaller planewave kinetic energy cutoffs than the ‘high accuracy’ ones.
The planewave basis set was truncated at an energy cutoff of 400 eV, and integration over recipro-
cal space was performed using a Monkhorst-Pack grid [47] with a spacing finer than 27 x 0.05 A-1
Higher accuracy was used to refine low-energy lithiated structures and all cation configurations.
Harder, more transferable ultrasoft pseudopotentials were generated using the CASTEP 18.1 “on-
the-fly” pseudopotential generator with the ‘high accuracy’ specifications listed in Table 4.1. The
planewave cutoff energy was set to 800 eV, and the Monkhorst-Pack grid spacing was chosen to
be 27 x 0.05 A~ for calculations on pristine NbjaWOss, Nbi4W3044 and NbjgW50s5 structures.
For the lithiated phases, the Monkhorst-Pack grid spacing was set to 27 x 0.03 A~! due to their
metallicity. Spin polarisation had a negligible effect on total energies, and structure optimisations
using PBEsol were therefore performed without spin polarisation. Atomic positions and lattice pa-
rameters of all structures were optimised until the force on each atom was smaller than 0.01 eV/A,

and the maximum displacement of any atom over two consecutive optimisation steps was smaller

than 1073 A.

DFT+U calculations (following the method of Ref. [69]) were performed to assess the impact
of a change in the level of theory on thermodynamics and electronic structure. A value of U =4
eV was chosen for the niobium and tungsten d-orbitals if not specified otherwise. This choice is in
line with previous work [68] on niobium oxides. We note (and later demonstrate) that the results

are mostly independent of the inclusion and exact value of the U parameter.

To further assess the impact of the DFT functional on our results, calculations using the
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Element ‘ Efficient ‘ High accuracy
Nb 3]1.9|8|9]10[40U:50:41:42(qc=5) 3]1.5|10]12[13[40U:50:41:42(qc=6)
% 3|2.3|8/9]10|50U:60:51:52:43(qc=5) | 3|2.4/9]|10|11|50U:60:51:52:43(qc=6)
o) 2|1.7|7|7|9|20: 21 (qc=5) 2|1.1|15/18|20]20: 21 (qc=7)
Li 1/1.3|8|9|10[/10U:20(qc=5) 1]1.0|14/16|18|10U: 20 (qc=7)

Table 4.1: CASTEP on-the-fly pseudopotentials used in this work. All pseudopotentials are from
standard internal libraries of CASTEP. The first number indicates the angular momentum channel [
that is local. The second number is the core radius, r.. ¢. is an optimisation parameter. Lower g,
values result in smoother pseudopotentials, requiring smaller planewave kinetic energy cutoffs. The
high accuracy pseudopotentials have a smaller core radius and are less optimised.

rSCAN functional [108] were performed with a development version of the CASTEP code (version
20.x), using ultrasoft pseudopotentials generated for rSCAN [109]. The rSCAN functional is a
version of the SCAN functional, modified to provide better numerical stability. The computational
parameters were the same as for the PBEsol calculations, only the grid_scale was changed from
the default value to 2.

Thermodynamics. The thermodynamic phase stability of lithiated niobium-tungsten oxide
phases was assessed by comparing the formation energy of different phases. For the pseudobinary

phases considered in this work, a formation energy is defined as

B(Li,Y) — 2E(Li) — E(Y)

E;= 4.2

f 14z (42)
for Y = Nb1oWOj33, Nb14W30y44, or NbigW5055. The formation energies were plotted as a function
of the Li number fraction c1; = 7. A pseudo-binary convex hull was constructed between the

Y and Li end members at (cri, Ef) = (0,0); (1,0). Thermodynamically stable phases at 0 K lie on

the convex hull tieline.

Voltages for transitions between phases lying on the convex hull were calculated from the DFT

total energies. For two phases on the hull, Li,, Y and Li,,Y, with 9 > z1, the voltage V for a

reaction

Lig, Y + (2 — x1) Li — Li,, Y (4.3)

is given by

AG AE
V= — ~
To — X1 T9 — T1
. . 4.4
_ B(LinY) - E(Lin,Y) | BL). (4.4)
9 — X1

where the Gibbs free energy is approximated by the internal energy, as the pV (pressure-volume)
contributions are negligible and thermal contributions are small [110] (an assumption which we
will check later).

Finite displacement phonon calculations were performed to assess the contribution of vibra-
tional free energies to the average insertion voltage of NbjoWOQOs33. The phonon calculations used
a 5 x 5 x 5 supercell of the primitive Li bee unit cell. For Nb1aWO33 and Li;sNb1sWO33 both the
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primitive cell and a supercell with twice the volume were used to check convergence. Free ener-
gies were computed for Li, NbjsWO33, and Li;3sNbi1sWOs33, and a temperature dependent average

insertion voltage was calculated as in Eqn. 4.4.

Electronic structure and postprocessing. Bandstructure calculations were performed for
high-symmetry Brillouin zone directions according to those obtained from the SeeK-path pack-
age [71], which relies on spglib [72]. A spacing between k-points of 27 x 0.025 A~! was used for the
bandstructures. Density of states calculations were performed with a grid spacing of 27 x 0.01 A=,
and the results were postprocessed with the OptaD0S package [73] using the linear extrapolative
scheme [74, 75]. The c2x [76] utility and VESTA [77] were used for visualisation of crystal struc-
tures and density data. Data analysis and visualisation was performed with the matador [111]

package.

4.3 Results

4.3.1 Cation Disorder

Neutron diffraction studies have established that the cation distribution in block-type structures
is disordered but not random [104, 106, 94]. Some amount of disorder is also suggested by single
crystal X-ray diffraction studies [87, 18]. Labelling conventions for the cation sites in the crystal
structures are shown in Figure 4.2, and abide by literature conventions as much as possible. To
derive fractional occupancies for the tungsten cations in Nb14W3044 and Nb1gW5055 we apply a
Boltzmann distribution (Eqn. 4.1) using the DFT total energies of the symmetrically inequivalent
cation configurations. The results are listed in Tables 4.2 and A.1 for temperatures of 1050—
1350 °C, which corresponds to the range of synthesis and annealing temperatures [17, 106, 13].
Cation occupancies in Nb14W3044 and NbigW5055 at 1200 °C are presented in Fig. 4.2 using a

colormap.
| Site | Expt.[106] | DFT (1050 °C) | DFT (1200 °C) | DFT (1350 °C) |
M1 [ 0.39+0.04 0.343 0.328 0.316
M2 | 0.23+0.07 0.084 0.093 0.101
M3 | 0.00£0.06 0.045 0.054 0.062
M4 | 0.00+0.05 0.058 0.068 0.076
M5 (tet.) | 0.5440.11 0.877 0.830 0.782

Table 4.2: Tungsten occupancies on cation sites in Nb14,W3044. All sites except M5 have a multiplicity
of four. Taking into account the degeneracies, the number of tungsten atoms in a single block (Fig. 4.2)
is three, as required. The synthesis temperature is reported as 1350 °C [17], or 1050 °C [106]. Note
that the refinement of fractional occupancies reported in Ref. [106] was performed in I4/m, while
the DFT predictions are for I4. The multiplicity of the tetrahedral site is different in these two
spacegroups, and the experimental occupancy has been adjusted accordingly. The experimental
data [106] includes estimated standard deviations.

If the cation distribution in Nbi4W30O44 were completely random, each site would have a
tungsten occupancy of % ~ 0.176. Instead, tungsten is predicted to favour the M5 tetrahedral
position and the M1 block-center position (Table 4.2). The preferential occupancy of tungsten on
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Figure 4.2: Symmetrically inequivalent transition metal cation sites and their occupancies in (a)
Nb14W3044, and (b) NbjgW5055. The labelling follows Cheetham and von Dreele [106] for
Nb14W3044, and Wadsley and Roth [18] for NbigW5055. A temperature of 1200 °C was used
to determine the cation occupancies. The positions of axes of fourfold symmetry (Nb;sW3044) and
twofold symmetry (Nb;gW5055) are indicated by circling arrows. In both structures, tungsten pref-
erentially occupies the tetrahedral and block-central sites.

the purely corner-shared M1 position is expected; the metal-metal distances are larger in the block
center, and the occupation of these sites by the more highly charged tungsten cations (assuming
WOt vs. Nb5t) reduces the overall electrostatic repulsion. Preferential occupation of tungsten on
the tetrahedral site is due to the shorter M-O distances, which, together with the higher charge of
the tungsten cations, lead to better covalency and stronger bonds. In fact, the 15 lowest energy
structures generated by enumeration and DFT optimisation all have tungsten on the tetrahedral
site. The two lowest energy cation configurations both have the tetrahedral site occupied by
tungsten, in addition to two M1 sites. The lowest energy configuration has spacegroup C'2, whereas
the second lowest configuration has spacegroup P1 (4123 meV/f.u. above groundstate). The
highest energy structure lies +1.29 eV /f.u. above the ground state.

The cation ordering in Nbj4W3044 has previously been investigated by Cheetham and Allen
using neutron powder diffraction [106]. DFT-derived fractional occupancies are in reasonable
agreement with experiment (Table 4.2). The overall sequence of site occupancy preferences is the
same. The occupancy of the tetrahedral site M5 is predicted to be larger, while the occupancy of
M2 is predicted to be much smaller. Those two site occupancies also have the largest estimated
experimental uncertainty (Table 4.2). Given the very similar local structures of M2, M3, and M4,
the large occupancy of M2 as compared to M3 and M4 seems inconsistent. Determining occupancies
in these large and complex structures is difficult, particularly when the neutron scattering lengths
are not very different (7.054 and 4.86 x 107> m for Nb and W, respectively) [112]. We suggest
that the cation distribution should be revisited, perhaps with a joint X-ray/neutron study, to help

constrain the occupancies.

X-ray diffraction studies suggest that the tungsten atom in Nb1oWQ33 is ordered on the tetra-
hedral site [18]. An enumeration within the primitive unit cell of NbjaWOs3 produces only 7
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structures, for the 7 symmetrically inequivalent sites. Placing the tungsten atom on the tetrahe-
dral site results in the lowest energy structure. The second lowest energy structure with tungsten
in the block-center lies 4364 meV /f.u. above the ground state, suggesting a strong preference for

the tetrahedral site even compared to the block-center position.

Experimental data regarding the cation ordering in NbjgW5Os5 is not available. However, the
structure of NbjgW50O55 is very similar to that of NbjsW3044, with only one additional row of
octahedra within each block. For our calculations, the tetrahedral site has been fully occupied by
tungsten given the preference of tungsten for the tetrahedral site in Nb14yW3044 and NbjoWOs3s.
We have also constrained ourselves to configurations in space group C2. The more highly charged
tungsten cations again prefer to occupy the purely corner-shared octahedral positions in the block
middle of NbigW50s55; occupancies of sites M5, M6, and M8 are by far the largest (Fig. 4.2,
Table A.1). The lowest energy cation configuration for NbjgW5Os55 has tungsten on sites M8 and
M5, while the second and third lowest energy configurations have tungsten on sites M8 and M6
(+11 meV/fu. vs. groundstate) and M5 and M6 (4147 meV/f.u. vs. groundstate). The highest

energy cation configuration lies +2.27 eV /f.u. above the groundstate.

There are several effects that are not taken into account by the DFT prediction; (1) the mod-
elling necessarily assumes that the material is in thermal equilibrium, but depending on synthesis
temperature and annealing time, the kinetics of solid state diffusion might play a role in deter-
mining the site occupancies, (2) only single-block cation configurations were studied, limiting the
length scale of interactions, (3) at the high synthesis temperature of the metal oxide, temperature
effects such as volume expansion, harmonic or even anharmonic vibrations certainly play a role
and the DFT energy is a good, but limited substitute for the full free energy. Nevertheless, the
lowest energy single-block cation configurations are the best choice to use in modelling the lithia-
tion mechanism. Crystallographic information files (CIF) for all PBEsol-optimised symmetrically
inequivalent cation configurations of Nb14W3044 and NbigW5Os55 are included in the Supporting
Information of the article on which this chapter is based [113], in addition to a table of their space

groups, relative energies, and degeneracies.

The individual cation configurations deviate from the idealised parent crystal structure by
different amounts. For both Nb14W3044 and Nb1gW5055, the distributions of lattice parameters
and unit cell volumes of the cation configurations show a spread of 1-2 % around the mean. In
addition to slight differences in lattice parameters, the MOg octahedra of both Nb;4W3044 and
Nb1W50s5 exhibit different distortions depending on the cation configuration. To analyse these
distortions, we introduce three distortion measures: a dimensionless bond angle variance A(fqct),
the quadratic elongation Ayct, and an off-centering distance do.t. The bond angle variance and
quadratic elongation are commonly used distortion measures [114] implemented, for example, in
VESTA [77]. The A(foct) measure is defined as the bond angle variance divided by the square of

the mean to make the quantity dimensionless:

Aboct) = kS i [G_W] 2 , (4.5)
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where the 12 O-M-O angles are denoted by 6;. Note that only angles which are 90° in an ideal

octahedron are included. The quadratic elongation Ayt is defined as

= by (b (49

where [; are the M-O bond lengths, and [y is the M-O bond length for an octahedron with Oy
symmetry whose volume is equal to that of the distorted octahedron [114]. The off-centering

distance is defined as the distance between the center of the Og polyhedron and the metal position

6
- 3
-

=1 6

ot = : (4.7)

where rjs is the metal position and rp; are the oxygen positions. Both A(6y¢t) and doct are zero
for an ideal octahedron, and Ayct is one. The three distortion measures are plotted in Fig. 4.3
for the M1-M4 sites in Nbj4W30y44 for all 172 cation configurations, but we note that not all

configurations will contribute equally due to their different Boltzmann weight.
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Figure 4.3: Distortion measures for octahedral positions M1-M4 (cf. Fig. 4.2) for all 172 cation con-
figurations of Nb1yW3044. The block-central M1 octahedra are more symmetric than the peripheral
M2-M4 octahedra. All sites show a significant spread in their octahedral distortion measures.
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The M1 block-center octahedron is, on average, less distorted than the the block-peripheral
M2, M3, and M4 octahedra. However, all octahedral positions show a significant spread in their
distortion measures, indicating a dependence of the local structure on the cation configuration.
To put these results into context, we note that quadratic elongation measures for octahedra in
inorganic compounds fall in the range of 1.00-1.07 [114]. Nb14W3044 exhibits this entire range
of distortions if all transition metal sites and cation configurations are considered together. The
off-center distances show a spread of approximately 0.15-0.2 A. Given the convergence tolerance
of 1073 A for the DFT geometry optimisation, this indicates a significant static disorder in the
atomic positions. Similar results are obtained for Nb;gW5055, also showing weaker distortions for
the block-central sites (M5, M6, M8) and a significant spread in the distortion measures for all
transition metal octahedra in the structure. Overall, these results indicate a variability of the local
structure at the unit cell level in mixed-metal shear phases that is not captured by a single cation
configuration. Each cation configuration has a different set of cation-cation neighbour patterns,
which can cause different local distortion directions and strengths. In this study, only cation
configurations within the primitive unit cell have been considered. Effects on a longer range can
be important, and would lead to a more continuous variation of the local structure. For example,
there are two sets within the distortion measures for tungsten on the M2 site (Fig. 4.3), separated
by a gap. The more distorted set corresponds to WOg octahedra edge-sharing with two other WOgq
octahedra along the crystallographic shear plane, while the less distorted set corresponds to WOg
edge-sharing with two NbOg octahedra. Configurations within a supercell along the ¢ direction (cf.
Fig. 4.1) would include WOg octahedra sharing edges with one NbOg and one WOg octahedron,
and likely close the gap.

Both niobium and tungsten are generally classified as intermediate SOJT distorters within
the group of d° cations [115]. In Nbj4W3044, niobium and tungsten show very similar distortion
strengths on the M1 positions, while the distortion for tungsten seems to be weaker for sites M2—
M4. Given the local structure variability in Nb/W oxide shear structures, it is very likely that the
Ti/Nb structures show the same properties, since d” titanium is also classified as an intermediate
distorter. Stronger distortions are generally exhibited by molybdenum, while zirconium shows only
very weak distortions [115]. It would be interesting to examine the effect of Mo/Zr doping on the

local structure in shear phases.

4.3.2 Lithium Insertion Mechanism

Lithium sites in block-type structures divide into three sets; fivefold coordinated ‘pocket’ sites at
the edge of the block, fourfold coordinated horizontal ‘window’ positions, and fourfold coordinated
vertical ‘window’ positions (Fig. 4.4a). These sites have been deduced by neutron diffraction
studies for lithiated block-type structures TiNbaO7 and H-NbyOs [116, 117]. We will assume and
verify the presence of these sites for Nb1aWQOg33. The lithium site energies and local structures in
Nb12sWO33 are shown in Fig. 4.4b. Site energies and structures were obtained by placing a single
lithium atom into a (1 x 2 x 1) supercell of Nb;aWOs3 (cf. Fig. 4.1) and optimising the structure.
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Figure 4.4: (a) Types of lithium sites present in NbjoWOQO33. Window positions are fourfold coordi-
nated by oxygens, pocket positions fivefold. The circling arrow marks the twofold rotation axis of
the crystal structure. This symmetry element is kept for the enumeration of lithiated structures. (b)
Local structure of lithium sites and site energies in Nb;sWO3s3. Only one of each pair of equivalent
sites is shown. Insertion into fivefold coordinated sites is energetically more favourable. The vertical
window positions next to the crystallographic shear planes (sites 2, 3, 4) are too large for fourfold
coordination of lithium. Niobium shown in dark blue, lithium in purple, and oxygen in orange.

The site energies Ey; were calculated as

E;; = E; — Esc — E(Li), (4.8)

where FE; is the energy of the supercell with a lithium atom placed at site i, Fg¢ is the energy of
the supercell, and F(Li) is the energy of bulk lithium. A comparison of the site energies shows that
the insertion into fivefold coordinated sites is energetically more favourable. Horizontal window
positions have a symmetric arrangement of oxygen atoms, while vertical window positions and
some of the pocket sites are less symmetric. In the horizontal window position, the lithium ion sits
slightly above the plane formed by the four oxygen atoms. The vertical window positions (sites
2, 3, and 4) are too large for fourfold coordination of lithium by the oxygen atoms, and insertion
into these sites is energetically the least favourable. The resulting threefold coordinated lithium
ion moves far off the plane formed by the oxygens. The single site energies of around —2.1 eV
agree well with the starting point of the voltage profile at 2 V vs. Li* /Li [99].

In order to simulate the lithium insertion into NbioWOQO3s3 over the entire range of lithium
content, lithiated structures Li,NbisWOQOs33 were generated by enumerating all possible lithium-
vacancy configurations for the sites shown in Fig. 4.4. The special position in the center of the
block (site 1) was fixed to be occupied. Using the remaining 11 independent sites for NbjoWOs33,
211 = 2048 lithiated structures result, for stoichiometries of Li,Nb1aWOs3 with  ranging from
1 to 23 in steps of 2. This enumeration produces ‘snapshots’ of the structure and energetics

of LizNbi1aWOs33 at specific stoichiometries. The convex hull of the lowest energy LizNbjoWO33
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structures (Fig. A.la) shows stable or nearly stable phases for each of the stoichiometries examined,
indicating that no extended two-phase regions occur. To reliably capture the lithium insertion
mechanism, it is useful to include metastable structures (i.e. up to a certain cutoff energy above
the convex hull tieline) in the analysis. These metastable structures could be accessed at finite
temperatures. If only thermodynamically stable structures are considered, there is no simple
sequence of occupation of lithium sites (Fig. 4.5), although there is a slight initial preference for
occupation of fivefold coordinated sites and undistorted fourfold sites, especially if metastable
structures are included. Both site energies (Fig. 4.4) and Li-Li interactions are important for

determining the lithium insertion sequence.
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Figure 4.5: Occupation of lithium sites for each sampled stoichiometry. Lithium sites labelled and
coloured according to Fig. 4.4. Bold dots correspond to sites occupied in the structure on the convex
hull tieline, smaller dots mark sites that are occupied in structures up to 200 meV/f.u. above the
convex hull tieline. There is no simple sequence of lithium site occupation.

A comparison of the experimental [99] and DFT-predicted voltage profiles (calculated with
Eqn. 4.4) at the GGA and GGA+U levels of theory is shown in Figure 4.6. The DFT-predicted
voltage profiles are necessarily composed of abrupt step changes due to the discrete number of sto-
ichiometries, and only qualitative comparisons between experimental and DFT-predicted voltage
profiles should be made. We also note that the experimental voltage profile has not explicitly been
recorded under equilibrium conditions.

Compared to the experiment, PBEsol slightly underestimates the average insertion voltage;
the average experimental voltage up to 1 Li/TM is 1.65 V, whereas PBEsol predicts 1.44 V. The
average insertion voltages evaluated with PBE and LDA are 1.30 V and 1.70 V, respectively.
We note that the inclusion of a U value for the niobium 4d orbitals has a minor effect on the
average insertion voltage; for both U = 3 eV and U = 4 eV, the average insertion voltage up to
1 Li/TM is 1.45 V. It is well known that GGA functionals underestimate lithium insertion voltages
of transition metal oxides, but this can be corrected for late first-row elements (Fe/Mn/Co/Ni)
by DFT+U methods [3]. The case of niobium oxides seems to be closer to that of d° titanium
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Figure 4.6: Experimental voltage profile (orange, digitised from Ref. [99]) compared to DFT predic-
tions: PBEsol (blue), PBEsol4+U for U = 3 eV (green), and U = 4 eV (red). The predicted voltage
profiles are composed of steps due to the discrete sampling of stoichiometries, and are in qualitative
agreement with the experimental profile.

oxides, in that the use of DFT+U is ineffective [118]. In addition it is unclear what the value of
U should be for this case; the electronic structure and chemical bonding will change as a function
of lithium concentrations, possibly requiring different U values at different points to be described
accurately. However, total energies (and therefore phase stability) for sets of structures with
different U values cannot be compared. Since the difference between GGA and GGA+U results
is small, we will continue with a GGA treatment and defer discussion of the electronic structure
to a later section. We note that while hybrid functionals like HSE06 are able to provide better
agreement with experimental voltages, their use is computationally more expensive and errors of
+0.2 V are still common [3]. The voltage profile was also computed with the rSCAN functional,

which provided almost identical results to PBEsol.

Finite temperature effects, such as configurational entropy and vibrational free energy, were
neglected for the calculation of the voltage profiles shown in Fig. 4.6. The vibrational free energy
contribution to the average insertion voltage of Li;Nb;aWO33 up to 1.0 Li/TM was computed as
a function of temperature and is shown in Fig. 4.7. Surprisingly, the inclusion of the vibrational
free energy gives a room temperature average insertion voltage of 1.36 V, which is 0.1 V lower
than the estimate without vibrational contribution. This increases the discrepancy between exper-
iment and theory. Inspecting the phonon density-of-states of Li, Nb1oWQOs33, and LijsNbijsWOss3,
it is clear that the combination of Li and NbjoWQO3s3 has more phonon modes of lower frequen-
cies compared to LijsNbi1aWO33, which explains the trend in the average insertion voltage as a
function of temperature. The second finite temperature contribution to the insertion voltage, the
configurational entropy, can not be estimated easily for Li;Nb1osWQO3s, since we only have a set of
configurations that were generated by a constrained enumeration. However, a simple lattice gas

model [9] shows that the configurational entropy always shifts the average insertion voltage up:
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Figure 4.7: Average insertion voltage (PBEsol) up to 1.0 Li/TM with inclusion of vibrational free
energy effects. The average voltage was computed as in Eqn. 4.4 without neglecting the vibrational
free energy contributions for Nb1oWOs3, Li, and Li;3sNbjasWOs33. The black dashed line represent
the average insertion voltage without inclusion of vibrational effects, and the green and gold lines
represent the same calculation for different supercell sizes.

at 1.0 Li/TM, not all Li sites in Lij3sNb1oaWOs33 are filled, but Li and NbjsWOQOs3s are fully ordered
compounds. Thus, the configurational entropy will only lower the free energy of LijsNbioWOss3,
having no effect on Li or NbjsWOQOs33. Therefore, the average insertion voltage will increase. We
note that both vibrational and configurational contributions are small compared to the impact of

the exchange-correlation functional.

While the average insertion voltage is underestimated, the DFT-predicted profiles in Fig. 4.6
look similar to the experimental one; there seems to be a region with rather flat slope between
x = 3 and z = 11, which matches the flatter second region of the experimental profile. Despite the
shallow gradient of the electrochemical profile, this region does not correspond to a true two-phase
region. The similarity between the experiment and DFT prediction is present for both the PBEsol
and PBEsol+U results, and becomes clearer if the predicted profiles are shifted upwards by the
difference in the average insertion voltage, corresponding to an adjustment of the Li chemical
potential (Fig. A.1b).

The evolution of the lattice parameters of Nb1sWQgs3 as a function of lithium content is
anisotropic (Fig. 4.8a). Lattice parameter b, which is perpendicular to the plane of the block,
expands, and most of the expansion takes place between x = 5 and x = 11. Lattice parameters
a and c first expand until £ = 5, and then contract to a minimum at x = 11 that lies almost
0.3 A below the lattice parameters of the pristine structure. For z > 11, a and ¢ expand again.
The lattice contraction occurs in the same region as the flatter part of the voltage profile (shaded
blue in Figs. 4.6, 4.8a). The same evolution of the lattice parameters is also observed when phases
up to 200 meV/f.u. above the convex hull tieline are included in the analysis. These metastable
structures might be formed during cycling, or be partially accessible due to finite temperature

effects. However, the same lattice evolution would result.



64 CHAPTER 4. CATION DISORDER AND LITHIUM INSERTION

———p Lattice parameter
in block plane

(i) Nb12WOs33

0 5 10 15 20 o
x in LixNb;oWOs33 (i) Li;sNb1sWO33
(a) (b)

Figure 4.8: Structural evolution of Li;Nb;sWOs33 as a function of lithium content z. (a) The lattice
parameters evolve anisotropically; b expands over the entire x range, while a and c first expand until
x =5, contract, and then expand again beyond x = 13. The average octahedral distortion (A(fyct))
decreases, with most of the decrease between z = 5 and z = 11. (b) The local structure in (i)
Nb12WOs33 and (ii) LijsNb1aWOs33 along the second row of octahedra in the 3 x 4 block. Niobium
in dark blue, oxygen in orange, and lithium in purple. The interatomic distances demonstrate 1)
an expansion perpendicular to the block plane, 2) a contraction within the block plane, and 3) a
decrease of Nb-Nb distances along the shear planes. Compared to Nb1oWOs33, the NbOg octahedra
in Lij3Nb13WOs33 are more symmetric, corresponding to a smaller distortion measure (A(foct)).

Over the course of lithium insertion, the transition-metal oxygen octahedra become progres-
sively more symmetric, as shown by the evolution of the average distortion measure (A(fqct))

(Fig. 4.8a), obtained according to

1 Noct
Aj(Ooct) - 4.9
NZ; (Goct) (4.9)

<A(Goct)> =

Compared to the pristine NbijoWOj33, the distortions in both the MOg octahedra and the lithium
sites are largely removed in Li;3sNb1aWO3s (Fig. 4.8b). The evolution in the lattice parameters and
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the local structure is closely linked. Over the course of lithium insertion, the blocks of octahedra in
Nb12WO33 first expand and then contract within the ac plane (Fig. 4.8). Perpendicular to the ac
plane, they expand monotonically. An expansion is expected for lithium insertion, as an increase
of the number of atoms within the same volume should lead to an increase thereof. The decrease
in the lattice parameters within the block is associated with the MOg octahedra symmetrisation.
As the apical oxygens of the octahedra along the shear planes are pulled towards the block center,
the lattice shrinks within the block plane (Fig. 4.8b). The block height expands from 3.81 A to
4.09 A, and the Nb-Nb distance along the shear plane decreases by over 0.4 A.

The structural changes are closely connected to the occupation of specific lithium sites; the
thermodynamically stable phases of Li,NbjoWOs33 (Fig. 4.5) show occupation of undistorted sites
(1, 6, and 8) for x < 5. For = > 7, vertical window positions that were previously highly distorted

are occupied, and the distortions in both lithium sites and octahedra start to be removed.

Based on the predicted voltage profile, lattice evolution, and local structure changes, the overall
phase evolution of NbjsWOs33 through three regions can be rationalised. Taken together, and
compared to previous experiments, these results suggest two solid solution regions, with a two-
phase-like region in between. The two-phase-like region is marked by a block-plane contraction

and a removal of distortions in the transition metal-oxygen octahedra.

Nb14W3 044 and Nb16W5 055

Following on from Nb1oWO33, we now demonstrate that very similar lithium insertion mechanisms
apply to Nb14W3044 and NbigW50s55.

The crystal structures of Nb1oWOs33, Nb14W3044, and NbigW5055 are all are based on the
block principle and feature the same local structural distortions (cf. Fig. 4.1). This similarity leads
to the presence of the same types of lithium environments in all three structures. The classification
into pocket and window sites in Nb14W3044 and NbigW5055 follows the same principles as for
Nb12WOs33 (Fig. A.2). Notably, the vertical window positions next to the crystallographic shear
planes (sites 3 and 5 in NbjyW3044, and sites G, H, K in Nb1gW5055, Fig. A.3) are strongly
distorted due to the zigzag patterns of the octahedra (cf. Fig. 4.1). Lithium site energies for
Nb14W30y4 are in the range of -2.0 eV to -2.2 eV, while the site energies for NbigW5Os55 are
slightly lower (-2.2 eV to -2.4 eV), due to the higher concentration of tungsten (cf. Table A.2).

Insertion into fivefold coordinated sites is energetically favoured.

The enumeration for LizNb14W3044 was performed in the same way as for Li,Nb1sWOgs3. The
special position in the center of the block was fixed to be unoccupied. Given the remaining 8
lithium sites, 28 = 256 structures were enumerated. The number of lithiated structures generated
by enumeration for Nb14,W30,4 is much smaller compared to NbjaWQOg3. Structures with lithium
content between those covered by enumeration were ‘interpolated’ by using the low-energy enu-
merated structures as a starting point. For example, candidate structures of LigNb1yW3Oy4 were
generated by filling half of the lithium sites occupied in LisNb14W3044 and LigNb14W3044. Over-
all, the sampling of lithiated structures for Nb14, W30, is coarser than for Nb1oWOs33, due to the

higher computational cost of optimising the lithium configurations in a larger unit cell. A convex
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Figure 4.9: Local and long-range structural evolution of Nb14W30Oy4 during lithium insertion. The
anisotropic lattice evolution and the removal of the octahedral distortions ((A(6qct))) strongly resem-
bles Nb1osWOs33. (cf. Fig. 4.8). Compared to NbjyW3044, the transition metal-oxygen framework
(bottom) for the fully lithiated LijgNby;4W3QOyy structure shows significantly weaker octahedral dis-
tortions. Lithium ions have been omitted in Li;gNby4 W34y for clarity. The removal of the distortions
leads to a contraction of the lattice parameters within the block plane (perpendicular to c).

hull of the lowest energy LizNbi4W3044 phases shows thermodynamically stable phases at every
sampled stoichiometry. A full enumeration of lithium-vacancy configurations in Nb1gW5O55 is not
possible. The primitive unit cell contains 22 independent lithium sites, resulting in 222 = 4194304

possible lithium-vacancy configurations.

The structural evolution of NbjyW3QOy44 over the course of lithium insertion (Fig. 4.9) bears
a strong resemblance to that of NbjoaWOs3 (cf. Fig. 4.8). Lattice parameter ¢, perpendicular to
the block plane, expands monotonically, with most of the expansion taking place between x = 12
and z = 16 (Fig. 4.9). The parameter « first increases, then shrinks below its initial value with a
minimum at z = 16. Another expansion for x > 18 follows. Note that lattice parameter a (which
is equal to b in the I4 spacegroup of Nbyj4W3044) was extracted as a = \/Vic (cf. Fig. 4.1).
The same trend in the evolution of the lattice parameters is also observed when phases up to 100
meV /f.u. above the convex hull tieline are included in the analysis. The distortions of the MOg
octahedra are removed as demonstrated by the decrease in the (A(foct)) measure (Eqn. 4.9). The
contraction and distortion removal is associated with occupation of the distorted vertical window
positions, in direct analogy to NbioWQOs3. However, the extent of the structural regions differs
between Nb1sWO33 and Nbi4W3044. In Nb1osWOj33, the maximum expansion of the a and ¢
parameters occurs at 0.4 Li/TM, while in Nbj4W3QOy4 it occurs at 0.71 Li/TM. The contraction
region is also wider in NbjoWOs3s; it spans from 0.38 Li/TM to 1.0 Li/TM, while in NbjyW3O044,
the contraction occurs from 0.71 Li/TM to 1.06 Li/TM. It is difficult to decide whether this is

a physically significant difference, or simply due to the smaller number of lithium configurations
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that were sampled for Nb14W30O44 as compared to Nb1sWOs3.

Lithium insertion into Nbj4W30Oy4 initially proceeds via occupation of sites 1, 4, and 8 (cf.
Fig. S8), but overall there is no simple sequence for the filling of lithium sites. The lowest energy
structures for each stoichiometry are available as crystallographic information files (CIF) in the
Supporting Information of the article on which this chapter is based [113].

In complete analogy to NbjaWO33, the local and long-range structural changes in Nbj4 W30y
are linked. The removal of the distortions of the MOg octahedra along the shear planes pulls the

blocks closer together (Fig. 4.9). As a result, the lattice parameter in the block plane, a, decreases.
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Figure 4.10: Structure of the transition-metal oxygen framework in pristine and fully lithiated
Nb1gW5055. Lithium ions have been omitted in the lithiated structure for clarity. The transition
metal-oxygen framework in Lis;Nb1gW5055 shows significantly more symmetric MOg octahedra.
The removal of the distortions leads to a contraction of the lattice parameters within the block plane
(perpendicular to b).

While we cannot perform a thorough sampling of lithium-vacancy configurations for Nb1gW50Os55,
the strong structural similarity between these three niobium-tungsten oxides suggests that the same
trend of lattice and local structural evolution will apply to Nb1gW5055. As a proof-of-principle,
we have produced a structural model for Lia;Nb1gW5O55 by occupying sites E, I, J, L, N, M, and
G (cf. Fig. S8), which is shown in Fig. 4.10. Compared to the pristine structure, the lithiated
structure shows a contraction in the block plane (@ = 29.54 A vs. a = 29.34 A, ¢ = 23.10 A vs.
c = 2295 A, for Nb1gW50s55 and Lia;NbigW5055 respectively), and an expansion perpendicular
to the block plane (b = 3.81 Avs. b=406 A), in good quantitative agreement with experi-
mental findings [13]. The octahedral distortion measure (A(foct)) decreases from 10.25 x 10~3 for
NbigW50s55 to 0.86 x 1072 for Lis;Nb1gW5Os5. Clearly, lithium insertion causes the same overall
structural changes in all three niobium-tungsten oxides Nb1oWQO3s3, Nb14,W3044, and Nb1gW50s55.

4.3.3 Electronic Structure of Lithiated Phases

In this section, we briefly present key electronic structure features of niobium-tungsten oxide shear
phases. The electronic structure of the shear structures determines their electronic conductivity,
which is important for high-rate battery performance. Additionally, the results presented here
serve to explain the mixed-metal redox process and to justify the level of theory used in this study.
We will focus on Nb14W3Oy4, but the results are transferable to Nb1oaWO33 and NbigW50s55.

The pristine shear phases are wide bandgap insulators (Fig. 4.11). The metal cations are fully

oxidised and formally have a d° configuration. The valence and conduction bands (Fig. 4.11) are
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Figure 4.11: Bandstructure and electronic densities of states for Nbj4W3Oy4, calculated with (a)
PBEsol and (b) rSCAN. Oxygen 2p dominated valence band is coloured in orange, while the Nb 4d/W
5d conduction band is shown in blue. Both flat and dispersive conduction bands are present. The
long band structure path segments involve changes in wavevector k along the direction reciprocal to
the lattice parameter perpendicular to the block plane (c¢* for Nb14W3044). The Fermi level (dashed
line) sits on top of the valence band. The PBEsol bandgap is 2.0 eV, and the rSCAN bandgap is 2.4
eV. Except for the difference in the bandgap, the two functional give very similar results.

of O 2p and Nb 4d/W 5d character, respectively. The experimental bandgap value has not been
reported; PBEsol and rSCAN give values of 2.0 eV and 2.4 eV for the bandgap of Nb14W3044,
respectively. As expected, the bandgap for the rSCAN functional is larger [119], and likely closer to
the true value. Lithium intercalation leads to n-type doping of the material, introducing electrons
into the previously empty conduction band. To understand the electronic structure of the mixed-
metal shear phases, it is useful to draw comparisons to the niobium suboxides NbsOj5_ 5, which
also feature block-type crystal structures [24]. These compounds are formed by n-type doping of
H-NboOs5, and show interesting properties: magnetism, which is rare in niobium oxides, flat bands
around the Fermi energy, and an ability to host both localised and delocalised electrons [26, 24, 61,
68]. We have previously shown that these features are fundamentally associated with the block-
type crystal structure [68] and therefore also occur in Nb1aWO33, NbjyW3044, and NbjgW5055 on
n-doping. In fact, the bandstructures of the niobium-tungsten oxides show a strong similarity to
those of the suboxides and H-NbyOj5 [68], with both flat and dispersive conduction bands present
(Fig. 4.11).

Insertion of a single lithium into the block of Nb14W3044 leads to the formation of a localised
electronic state (Fig. 4.12). This localised state is spread over multiple (predominantly block-
central) sites and lies in the plane of the block. The localised state forms as the Fermi level
is moved into the conduction band by n-doping, specifically by the occupation of the flat band
(corresponding to the peak in the DOS, cf. Fig. 4.11). A small gap is opened up between the
localised state and the remainder of the conduction bands (cf. Fig. 4.12a,b). Remarkably, this

localisation is independent of the inclusion of a U value on the Nb or W d-orbitals. The localisation
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Figure 4.12: Li;Nb14W3044 density of states of an antiferromagnetic spin arrangement between
blocks computed with (a) PBEsol, (b) PBEsol+U (U = 4 ¢V), and (c) rSCAN. A localised state

(marked by the arrow) is present in all three. Spin density plots (isosurface value 0.012 e~/ Ag) for
structures with lithium positioned (d) in the center of the block, and (e) at the edge of the block .
The spin density distribution is due to the localised state, and is independent of the lithium position.

is shown even at the GGA level, even though the gap is very small (35 meV), and increases with the
introduction of a U value for the metal d-orbitals (270 meV for U = 4 eV). The same localisation is
also shown by the rSCAN results, with a gap value of approx. 100 meV. The spin and charge density
distribution is the same for all three functionals. Additionally, the spin and charge distribution
is also independent of whether the lithium ion is positioned in the block center or periphery (cf.
Fig. 4.12¢,d). This indicates that there is no strong coupling between the lithium ion and electron.
A similar formation of localised electrons is also observed in Nb1sWO33 and Nb1gW5055. It would
be interesting to determine experimentally the position of the localised dopant state relative to the
bottom of the conduction band. Given that the charge associated with the localised electronic state
resides predominantly on block-central sites (M1 in Nb14W30Oy4, cf. Fig. 4.2), the block interiors are
reduced first upon lithium insertion into niobium-tungsten shear oxides. Since the metal positions
in the block center are mostly occupied by tungsten in Nbj4W3044 and NbigW5055, tungsten
reduction is slightly favoured initially. In fact, this preference has been observed in NbigW50s55
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by X-ray absorption spectroscopy [13].

Further n-doping/lithium insertion up to LizNbj4W30Oy4 fully fills the flat band, but also
partially fills the remaining dispersive conduction bands, resulting in metallicity (Fig. 4.13). In
contrast to the flat band, the dispersive conduction bands are predominantly hosted on block edge
sites [68] (M2-M4 in Nb14W30y44, cf. Fig. 4.13). Reduction of the block edge sites takes place by
filling these dispersive conduction bands. For even larger lithium concentrations, the structures
are strongly metallic (cf. Fig. A.4 for LijgNb1sW30y4). At the GGA level, we observe no spin
polarisation for either LisNb14W3044 or LijgNb14W3044. We do not observe the opening of a band
gap by the introduction of U value (U = 4 eV) for either stoichiometry, and the compounds remain
strongly metallic (Fig. S16). The same is true for fully lithiated Nb1oWO33 and NbjgW50s55.
Besides the slight initial preference for tungsten reduction, niobium and tungsten show similar
redox activity in NbjgW5Os5 (Nb?T /Nb*t and W6 /W>* | with multielectron reduction possible
beyond 1.0 Li/TM) [13].
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Figure 4.13: Bandstructure and density of states of LigNbj4sW3044. Relative to NbiyW304y
(Fig. 4.11), the n-doping by lithium insertion has moved the Fermi level (dashed line) into the
conduction band.

Overall, we conclude that while lithiated shear phases can show electron localisation, it is of a
different type than for typical transition metal oxides. The block-structure with its orthogonal crys-
tallographic shear planes seems to have a confinement effect such that the electron localises within
the block plane, but is not confined to a single d-orbital on a single transition metal site. These
electronic structure features are exactly the same as those observed in NbyOj5_5 [68]. Compared
to the strong localisation of small polarons in systems like Li; TiO9 [120, 121] and Li,FePOy4 [122],
the localisation in shear oxides is weaker, and easily overcome by further doping; the materials
quickly become metallic on lithium insertion. The strong d-orbital overlap along the shear planes
gives rise to large bandwidths, and in fact, the delocalised states are hosted on transition metal
sites at the block periphery [68]. The preferred electron transport direction is expected to be
perpendicular to the block plane, based both on experimental results on similar compounds and
the calculated band dispersions [27, 68]. The good electronic conductivity suggested by these
calculations is beneficial for high-rate battery performance. In addition to a good conductivity

upon lithium insertion, there will be a change in the colour of the materials from white-ish to
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blue/black [62, 24]. Given the facile lithiation and high-rate performance, this naturally opens up

the possibility of electrochromic applications of niobium-tungsten oxides.

4.4 Discussion

4.4.1 Common Mechanistic Principles

The three niobium-tungsten oxides Nb1s WO33, Nb14W3044, and Nb1gW5Os55 are strikingly similar
in their cation ordering preferences, lithium insertion mechanisms, and electronic structure. This
is expected given their close chemical and structural relationship. Regarding the lithium insertion

mechanism, a set of common mechanistic principles emerge from our DFT results:

e Lithium is initially inserted into fivefold coordinated sites and undistorted fourfold coordi-

nated sites

e Between 0-1.5 Li/TM, the lattice evolves through three regions; the lattice parameter per-
pendicular to the plane of the block expands monotonically, while in the block plane, the

lattice parameters expand, contract, and then expand again

e Distortions of the MOg octahedra are removed over the course of lithium insertion; this

symmetrisation makes previously highly distorted sites available for lithium occupation

e A DFT-predicted voltage profile of Nb1o W33 suggests that the lattice changes are associated
with different regions of the voltage profile; during the block-plane contraction the voltage

is almost constant

e Local and long-range structural evolution are closely linked; removal of octahedral distortions
along the shear planes allows neighbouring blocks to slide closer together, causing the lattice

contraction

Experimentally, the three-region voltage profile and phase evolution is the most well-established
feature of the lithiation mechanism [98, 99, 21, 89, 101, 100, 94, 13]. The three-stage anisotropic
host-lattice response has been observed in NbigW5Os55 by Griffith et al. [13] using operando syn-
chrotron XRD, and correlates with the regions of the electrochemical profile. Lattice parameters
of Li;Nb;aWO33 phases have been reported by Cava et al. [21] and Yan et al. [99]. Both authors
observed an anisotropic lattice change after full lithiation (Lijg7Nb1aWOs33 and LijsNbijaWOs33,
respectively), with an a-c plane contraction and expansion along b. However, the lattice changes
between the two studies are not consistent, with Cava et al. reporting an expansion of +8.2 %
along b, while Yan et al. report +3.5 %. The study of Yan et al. was performed on nanosized
material, making it not directly comparable to previous reports or DFT results.

Lattice parameters of Li;Nb14W3044 phases have been reported by Cava et al. [21], Fuentes et
al. [100], and Yan et al. [101] While the results of Cava et al. again agree with our DFT prediction,
and suggest an anisotropic evolution of the lattice parameters, the results obtained by Fuentes et

al. (chemically lithiated material) and Yan et al. (nanosized material) are at variance with the
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Figure 4.14: Cavity types found in Wadsley—Roth phases according to Cava et al. [21]. The tetrahe-
dral site is denoted by a black dot.

DFT prediction and differ strongly from the structural evolution of the related oxides Nb1oWO33
and Nb1gW5055. We suggest that the structural evolution of NbjaWOgs3 and Nb1y,W30,4 is closer
to that of NbigW50s55 and should be re-examined. There is strong reason to believe that the
similar three-region voltage profiles of NbjsWO33, Nb1yW3044 and NbigW50s55 are associated

with a similar lattice evolution.

Regarding the local structure evolution, only results on Nb1gW5Os55 are available, which clearly
show that the MOg octahedra become progressively more symmetric as lithium is inserted [13]. The
local structure evolution was observed through X-ray absorption spectrocopy (XAS) measurements
at the Nb K-edge and W Li-edge, which show a decrease of pre-edge intensity over the course of
lithium insertion. Pristine block-type crystal structures always feature strongly distorted metal-
oxygen octahedra. The pre-edge arises from the dipole-forbidden s — d transition, which is absent
for a metal in perfectly octahedral coordination. Removal of octahedral distortions therefore results
in a decrease of intensity in this transition. Based on the DFT results, this is expected to be a
universal feature of the lithium insertion mechanism of shear structures. XAS experiments on shear
phase TiNbyO7 also observe such a symmetrisation in the transition metal-oxygen octahedra [89],
suggesting that our results are transferable to the Ti/Nb shear oxides. The reduction of d° cations
prone to second-order Jahn-Teller (SOJT) distortions usually leads to a removal of the distortion
(e.g. Li;WO3 and Na;WOg3 phases [123, 80]). In shear oxides, the reduction can alleviate both
the SOJT distortions as well as the electrostatic repulsion between cations along the shear planes,

inducing symmetrisation.

Most previous attempts to explain the lithium insertion mechanism of block-type phases have
referred to the types of cavities that are found in shear structures, which were first identified
by Cava et al [21]. For example, the insertion mechanism for NbjoWOs3 has been proposed to
proceed via insertion into type II, type III, and then type IV cavities [99, 98] (Figure 4.14). Similar
mechanisms have been proposed for other block-type structures [103, 100]. Our DFT calculations
do not support this kind of mechanism; each cavity contains multiple lithium sites of different types
(window, pocket). Instead of resorting to cavity types, it is more accurate to describe the lithium
insertion mechanism by the type of site that is being filled, and what structural changes this lithium

occupation causes. The cavity types are very useful, however, for the structural understanding of
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pristine shear oxide phases.

4.4.2 Implications for Battery Performance

We have shown that cation disorder has a significant effect on the local structure in niobium-
tungsten oxide shear phases. Compared to a hypothetical ordered structure, a lithium ion within
a disordered niobium tungsten oxide shear structure experiences different local environments from
one unit cell to the next. The same type of lithium site will be framed by different patterns
of niobium and tungsten ions, with different octahedral distortions, and different local electronic
structures. This randomness in the potential energy landscape of the lithium ions in a disordered
structure suppresses lithium ordering and makes a larger number of sites available for occupation.
While an examination of the strength of coupling between the configurations of cations and lithium

ions is beyond the scope of this study, it is expected to have a beneficial effect on performance.

Given that cation disorder can be a favourable attribute to enhance electrochemical perfor-
mance [13, 124], it is important to be able to control the degree of disorder. Our results suggest
that tungsten energetically strongly prefers the tetrahedral site. Due to the site multiplicity and
composition, Nb1osWOss can fully order with tungsten on the tetrahedral site and niobium on the
block sites. However, it could be advantageous to quench from high temperatures during synthesis
to lock in some degree of disorder. Nb14W3044 and NbigW5055 have far more tungsten atoms
than tetrahedral sites, but octahedral tungsten prefers the centre of the blocks. It would be inter-
esting to examine the electrochemical behaviour as a function of cation disorder, controlled by the
cooling rate during the synthesis of the material. Another way to increase the degree of disorder
would be to introduce a third cation into the material. Within the group of d° cations titanium
would be the obvious choice, since it is present in Ti/Nb crystallographic shear structures (such

as TiNbgO7). Molybdenum and zirconium would be other interesting choices.

The correlation between local and long-range structure evolution in the crystallographic shear
phases directly affects the battery performance. As lithium intercalates, the total volume expansion
is mitigated by the contraction within the block plane. The presence and subsequent relaxation of
the octahedral distortions provides a mechanism to realise smaller volume changes in this structural
family. Volume changes have an impact on long-term cycling stability; large expansion and con-
traction are associated with microstructural fracture, loss of particle contact within the electrode,
and SEI degradation/reformation as fresh surfaces are exposed. The tempered volume changes
in shear oxides thus likely contribute to their observed stability over 1000 cycles [13], even with
micrometer-dimension particles that are generally more susceptible to cracking than nanoparticles.

Many of the performance-critical properties of the niobium-tungsten oxides are intimately re-
lated to the crystal structure; the simultaneous presence of crystallographic shear planes and the
ReOs-like block interiors is key to the electrochemical performance. As previously described by
other authors [21, 13], the shear planes frustrate octahedral unit modes that clamp up diffusion
pathways. In addition, the shear planes serve at least two other purposes: removal of local struc-
tural distortions along the shear planes buffers volume expansion, and the smaller metal-metal

distances of edge-shared octahedra provide good orbital overlap and therefore enhanced electronic
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conductivity. The ReOgs-like block interiors, on the other hand, feature open tunnels allowing
rapid lithium-ion diffusion. It seems that only when the crystal structure reaches a certain level
of complexity can all of these elements be present simultaneously. The structural motifs providing

each different function require structural complexity and a large unit cell size.

4.5 Conclusion

In this work, we have used an enumeration-based approach in combination with density-functional
theory calculations to reveal common principles governing the cation disorder, lithium insertion
mechanism, and electronic structure of the niobium-tungsten oxides Nb1sWO33, Nb14,W3044, and
Nb1gW50s55. The cross-compound transferability of our results is due to the crystallographic shear
structure common to all three materials. Our results shed light on the experimentally observed
three-stage lithium insertion mechanism, and reveal an important connection between the long-
range and local structural changes: the removal of octahedral distortions provides a mechanism to
contract the lattice in the block plane during the second stage of lithium insertion, thereby buffer-
ing the overall volume expansion. Regarding the cation disorder, we find that there is a strong
preference for tungsten occupation on the tetrahedral and block-central sites of the structures.
The cation disorder also has a strong influence on the local structure of the materials; different
Nb/W cation arrangements produce different local octahedral distortions. Electronic structure
calculations of n-doped/lithiated structures suggest only weak localisation of electrons upon ini-
tial lithium insertion, and the materials quickly become metallic on further lithium intercalation.
Overall, our calculations suggest that the changes in local, long-range, and electronic structure on

lithiation are beneficial to the battery electrode performance of the niobium-tungsten shear oxides.

Our approach of studying multiple members of one structural family has allowed us to draw
compound-independent conclusions, and to use smaller model structures to represent more complex
ones. The principles we have established for the niobium-tungsten shear oxides likely apply in a
similar fashion to Ti/Nb oxide shear structures as well. Future computational work will focus on
the extension of the mechanistic principles described here to the Ti/Nb oxide shear structures, and

on modelling the diffusion process within niobium-tungsten oxide shear structures.



Chapter 5

Lithium Diffusion in Niobium

Tungsten Oxide Shear Structures

This chapter is based on “Lithium Diffusion in Niobium Tungsten Oxide Shear Structures”, Can P.
Koger, Kent J. Griffith, Clare P. Grey, Andrew J. Morris, Chemistry of Materials, 32, 3980-3989

(2020). Reproduced with permission from the American Chemical Society.

Abstract

Niobium tungsten oxides with crystallographic shear structures are a promising class of high-rate
lithium-ion anode materials. Lithium diffusion within these materials is studied in this chapter
using density-functional theory calculations, specifically nudged elastic band (NEB) calculations
and ab initio molecular dynamics (AIMD) simulations. Lithium diffusion is found to occur through
jumps between fourfold coordinated window sites with low activation barriers (80-300 meV), and is
constrained to be effectively one-dimensional by the crystallographic shear planes of the structures.
A number of other processes are identified, including rattling motions with barriers on the order
of the thermal energy at room temperature, and intermediate barrier hops between fourfold and
fivefold coordinated lithium sites. We demonstrate that cavities of distinct types host different
diffusion pathways; within the ReOs-like block units of the structures, cavities at the corners and
edges host more isolated diffusion tunnels than those in the interior. Diffusion coefficients are
found to be in the range of 10712-10~ m?s~! for lithium concentrations of 0.5 Li/TM. Overall,
the results provide a complete picture of the diffusion mechanism in niobium tungsten oxide shear
structures, and the structure—property relationships identified in this work can be generalised to

the entire family of crystallographic shear phases.

5.1 Introduction

Lithium-ion batteries with short charge times and high power density are required to accelerate

consumer adoption of electric vehicles and relieve intermittency of renewable energy resources [125,

75
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Figure 5.1: Crystal structure of NbjsW3044 (space group I4/m). Light and dark blocks are offset
by %c. The 4 x 4 block is framed by crystallographic shear planes (edges of red square). Four types
of cavities (Cava classification [21], bottom, view along ¢) occur in Nb14W30.44, and a single type II
cavity is framed by the yellow square.

126]. While there are many factors determining the charge/discharge rate of a device [125], and
not all materials with high-rate capability are suited for each application, the ionic and electronic
conduction within the active materials represent fundamental limits to the achievable rate. Lithium
diffusion in electrode materials, quantified by a diffusion coefficient D, is usually much slower than
in the electrolyte (liquid or solid). To achieve high rates, the slower diffusion can be compensated
by nanostructuring the electrode material, decreasing the diffusion length L, and thereby reducing
the time 7 = L2/D required to lithiate a particle. However, nanostructuring, as commonly applied
to LigTisO12 and TiO9, has disadvantages in terms of cost and stability, and can be avoided if the

electrode material has intrinsically fast lithium diffusion.

A number of niobium-based complex oxides with open framework structures show very fast
lithium diffusion, and are promising for applications as high-rate, high-voltage anodes. These in-
clude T-NboOs5 [81], TiNbyO7 [29], and the recently discovered niobium tungsten oxides NbjgW5Os55
and NbigWi6093 [13], among others. This chapter focuses on niobium tungsten oxides with
Wadsley—Roth crystallographic shear structures, specifically Nb1oWO33, Nb14W3044, Nb1gW50s55,
and Nbi1gWgOgg. These materials feature crystal structures comprised of ReOs-like blocks of n xm
corner-sharing octahedra (light and dark blue in Fig. 5.1). Blocks are connected to each other along
crystallographic shear planes (Fig. 5.1, red square), and tetrahedral sites are present at the corners
of the blocks to fill voids. Along the direction perpendicular to the plane of the block, the blocks
connect to form columns (¢ direction in Fig. 5.1). The niobium tungsten oxides differ in the size of
the blocks; NbjaWO3s features blocks of size 3 x4, Nb14W3044 size 4 x4 (Fig. 5.1), Nb1gW5055 size
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4 x 5, and Nb;gWgQgg size 5 x 5. The blocks feature different types of cavities/tunnels (Fig. 5.1),
first categorised by Cava et al. [21]. Niobium tungsten oxide shear structures feature cavities of
types I, II, III and VI, except for Nb1sWOs33 which does not contain a type I cavity due to its
smaller block size. Cavities of type IV and V are present in other shear structures (e.g. TiNbsO7),
but not in the materials studied here. The type VI cavity is special because in comparison to the

others, the open space within it is blocked by the tetrahedral site.

Lithium intercalation into niobium tungsten oxides has been studied both experimentally [13,
98, 99, 100, 101] and computationally [113]. Recent mechanistic studies have highlighted the
role of local and long-range structural changes during lithium insertion. Experimental [24] and
computational [68, 113] studies on shear structures observe good electronic conductivity, suggest-
ing that electronic conduction is not rate-limiting. Lithium diffusion in NbijgW5Os55 has been
studied by pulsed-field-gradient NMR spectroscopy, observing large diffusion coefficients of 10712~
10713 m?s~! at room temperature, and low activation energies of 0.1-0.2 eV [13]. Diffusivities
for Nb;gWgOgg, measured using the same technique, are slightly larger [127]. Measurements of
diffusion coefficients and activation energies for lithium diffusion in Nb;aWO33 and NbisW3044
are currently not available but are expected to be in the same range. Regarding the mechanism,
bond valence sum maps [13, 127] and computational results for structurally similar compounds

(e.g. TiNb2O7, Ref. [128]) suggest one-dimensional diffusion down the block tunnels.

In this chapter, lithium diffusion within the niobium tungsten oxide shear structures Nb;s WOs33
and Nb14W30y4 is studied using first-principles density-functional theory calculations. Building
on the results regarding the lithium insertion mechanism of these materials [113], the aim of this
chapter is to understand the lithium diffusion mechanism of niobium tungsten oxides. In keeping
with the approach from the previous chapter, structures with smaller block sizes are studied
explicitly, and the results are extrapolated to the whole family. Due to their use as electrode
materials, the lithium concentration in the niobium tungsten oxides varies as the battery operates,
and this requires an analysis of the diffusion as a function of lithium concentration. To piece
together the diffusion mechanism of niobium tungsten oxide shear structures over a range of lithium
concentrations, this work uses two different methods: nudged elastic band (NEB) calculations, and

ab initio molecular dynamics (AIMD) simulations.

NEB calculations [129] are used to find minimum energy paths over the potential energy surface
connecting local minima of lithium sites, and to provide the activation energy for hopping between
them. Activation energies can be related to hopping rates via transition state theory. NEB
calculations are computationally more efficient than AIMD simulations and provide insight into
lithium diffusion at low lithium concentrations. At higher lithium concentrations, the dependence
of the activation energy on the local lithium arrangement becomes important. For the niobium
tungsten oxides, the complexity of the crystal structures and the structural changes during lithium
intercalation make it cumbersome to probe all barriers at all states of charge, so another method is
required. AIMD simulations probe the lithium dynamics at a given temperature directly, and take
into account both temperature effects and Li—Li interactions. Diffusion coefficients and lithium
probability distributions at any concentration can be determined, and AIMD simulations are thus

the method of choice for higher lithium concentrations.
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The chapter is structured as follows. We begin by studying lithium diffusion in the dilute limit
in Nb1oWO33 and Nbj4,W3044 using NEB calculations, establishing activation barriers, diffusion
dimensionality, and the impact of structural features on diffusion. AIMD simulation results are
presented next, providing a clear picture of diffusion pathways and estimates of diffusivities. We
then discuss how these results extrapolate to the other niobium tungsten oxide structures and
how they relate to experimental measurements. Conclusions and directions for future work are

presented in the final section.

5.2 Methods

DFT calculations were performed with the VASP code [130], using projector augmented-wave
potentials [131] to describe the interaction between core and valence electrons. The following
atomic states were treated as valence: Li 1s and 2s, O 2s, and 2p, Nb 4s, 4p, 4d, 5s, and 5p, W 5s,
5p, bd, 6s, and 6p. The PBEsol [107] functional was used for all calculations. Previous work has
demonstrated that magnetism and electron localisation in n-doped crystallographic shear phases is
weak, and that the materials quickly become metallic or very good semiconductors during lithium
intercalation [68, 24, 113, 128]. All calculations were therefore performed without spin-polarisation

or Hubbard U corrections for the transition metal d-orbitals.

Structure models for Nb1oWO33 and Nb14,W30,44 were obtained from the work presented in
Chapter 4, published in Ref. [113]. For each structure, the lowest energy cation configuration was
used. Lattice parameters and atomic positions of NbjoWO33 and Nb14W3044 were optimised using
a planewave kinetic energy cutoff of 700 eV and a k-point grid spacing of 0.2 A~!, until the force
on each atom was smaller than 0.01 eV/ A. Input structures for AIMD simulations were optimised
using the same parameters. In the case of input structures for NEB calculations, only the atomic

positions were optimised to keep the cell fixed during the transition state search.

Supercell construction. For the NEB and AIMD calculations, nondiagonal supercells of the

conventional unit cells were constructed according to

!/

a a
b =S5|b
c c
with the following supercell matrices for Nb;aWO3s:
11 11
7 320 7 3 0
Sxep= |0 2 0|, Sanap= |0 3 0
11 11
7 3 1 7 3 1

and similarly for Nb14W3044. The transformation matrices include a reduction to the primitive
cell (hence the fractions), a basis change, and a diagonal supercell construction. These supercells

are close to orthorhombic and reduce periodic image effects more than the conventional cells, which
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are rather short along one direction and extended in the other two. The NEB cells contain two
blocks stacked along the direction perpendicular to the block plane, while the AIMD cells contain

three stacked blocks. Structure files are available in supporting datasets at [132].

Nudged Elastic Band Calculations. Nudged elastic band [129] calculations were performed
in supercells of Nb1oWO33 and Nb14W30Oy4, containing 92 and 122 non-Li atoms, respectively. All
NEB calculations were performed using the VTST tools code plugin (Ref. [133]), with a planewave
kinetic energy cutoff of 700 €V and a k-point grid spacing of 0.2 A~! to sample the Brillouin zone.
Initial Li positions were obtained from the results in Chapter 4 [113]. A single Li atom was inserted
into the supercell at each position and the structure was optimised with a fixed lattice until the force
on each atom was smaller than 0.01 eV/ A. Sites in close proximity were used as initial guesses for
endpoints of minimum energy paths. Between 5-9 images were used to resolve the paths. In cases
where an intermediate minimum was found between two endpoints, the intermediate was optimised
and added as a new endpoint. The NEB calculations were stopped once the force on each image
was smaller than 0.01 eV /A. For very low-energy barriers (E, < 0.1 eV), the convergence of the

barrier value was verified with a smaller force tolerance of 0.005 eV /A.

As the energies of the states before and after a lithium-ion hop may differ, kinetically-resolved

activation barriers [15] AFkra are reported throughout:

1
AEkrA = E1s — i(Ez + Ey) (5.1)

where E; and Ey are the energies of the initial and final states, and Etg is the energy of the
transition state (obtained from a spline interpolation of the energy profile). This removes the

direction dependence of the activation barrier.

Ab initio molecular dynamics. Structure models for lithiated phases were obtained from
Ref. [113] and optimised as described above. Supercells of Li;NbjoWO33 (x = 5,8,17) and
LigNb14W3044, containing 138 and 183 non-Li atoms, respectively, were constructed (also de-
scribed above). To ensure a reasonable computational cost for the MD simulations, the planewave
kinetic energy cutoff was reduced to 450 eV, k-point grids of 2 x 2 x 1 and 2 x 1 x 1 were used for
the supercells of Nb1oWO33 and Nb14W3044.

The parameters used for AIMD were validated as follows. The barriers obtained from NEB
calculations with fully converged parameters were recalculated with the coarser AIMD parameters.
Three different barriers for lithium hopping were recalculated for the NbjoWO33 structure: A—B,
B—C, and C—D. These hopping processes are described in detail later. The results are shown in
Figure 5.2. The differences between the kinetically resolved activation energies computed with the
two different parameter sets are small (within 0.01 eV), and it is therefore reasonable to conclude
that the potential energy surface is sufficiently well-described with the coarser parameter set to
perform molecular dynamics calculations. However, the relative energies of the lithium sites change
slightly. For example, for the converged parameters (Fig. 5.2a), site A is the most stable site, while
for the coarser parameters (Fig. 5.2b), site D is most stable. In addition to the validation of the
energy barriers, an MD simulation in the NVE ensemble was performed for an average temperature

of 924 K over 4 ps and energy conservation was monitored. As shown in Figure 5.3, both short-
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Figure 5.2: Comparison of NEB energy profiles for (a) fully converged parameters, (b) coarser pa-
rameter set used for AIMD. Energies are referenced against the energy of site A. Parameters are
described in detail in the main text. Kinetically resolved activation barriers differ by less than 10
meV for the two parameter sets. There are, however, small changes in the lithium site energies.

term and long-term energy conservation is excellent. Based on these tests, the coarser parameter

set is sufficient to perform meaningful AIMD simulations.

Production runs were performed in the NVT ensemble, using a Nosé—Hoover thermostat. The
timestep was set to 1.5 fs. Simulations were performed for temperatures of 600-1500 K, depending
on the stoichiometry. FElevated temperatures are needed to be able to observe diffusion events
within the system size and time constraints of AIMD simulations [3, 4]. The systems were heated
to the final temperature over a period of 2 ps, with velocity scaling at each timestep. After an
equilibration time of 6 ps, the simulations were run for at least 150 ps. Final configurations of
AIMD runs were optimised and inspected to verify that the host framework had not changed.
Simulations were performed for stoichiometries LisNb1o W33, LisgNb1oWOs33, Lij7Nb1oWO33, and
LigNb14W3044, but various problems were encountered during the AIMD simulations, and a de-

tailed description is given in the Results section.

The tracer (or self-) diffusion coefficient D* is defined as

N
D ﬁg@ogﬁz Iri(t +to) — ri(to)>)s, (5.2)
1 d
ﬁtll?go £<Ar (t)) (5.3)

where N is the number of diffusing particles, and d is the dimensionality of the diffusion (d = 1
for the Nb/W oxides, see below). Averaging over initial times ¢y is essential to obtain well-
converged results. The tracer diffusion coefficient was determined by a linear regression of 2dt
against (Ar?(t)). Plots of the mean squared displacement as a function of time are available in
the Supporting Information of Ref. [132] Assuming a temperature dependence of the diffusion

_ _Eq_
coefficient of D*(T') = Dy e *sT, Arrhenius plots were constructed to determine the activation
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Figure 5.3: AIMD simulation of LisNbjoWO33 (3 f.u. supercell), in the NVE ensemble with an
average temperature of 924 K, using the AIMD parameters described in the main text. The total and
potential energy are shifted such that the average total energy is zero. The total energy is conserved
well, exhibiting only very small oscillation on a short time scale and little drift (—0.3 eV/ps = —2
meV /(atom-ps)) over longer times.

energy F,. The diffusion coefficients at room temperature were obtained by extrapolating the
Arrhenius expression, as AIMD simulations at room temperature are not feasible [3, 4].

The probability density distribution [134] of lithium ions in the structure, P(r), was extracted
from simulations at 900 K for all stoichiometries. P(r) was obtained by counting the number of
Li ions at each point on a uniform grid over the unit cell, and averaging over the simulation time.
Resulting structures were visualised with VESTA [77].

5.3 Results

5.3.1 Lithium Hopping in Nb;2WO33

Due to the large unit cell and low symmetry (space group C2) of NbjaWOs3s, there are many
inequivalent lithium positions. Each cavity contains multiple lithium positions, e.g. cavity II
contains positions A, B, C, and D. These positions were previously described in Ref. [113], and are
relabelled as compared to previous work for ease of presentation (Fig. 5.4a). Despite the fact that
they are symmetrically inequivalent, they can be clustered based on their local structure. Fivefold
coordinated ‘pocket’ sites (A, B, H, I) are found along the shear planes at the periphery of the
block (red rectangle, Fig. 5.4). The other sites (C, D, E, F, G) are fourfold coordinated ‘windows’,
described as ‘horizontal’” or ‘vertical’ depending on the orientation of the window relative to the
plane of the block [113]. We note two subtleties about their local structure: (1) the vertical window
positions next to the shear planes (F, F’) more strongly resemble threefold coordinated sites, and
(2) in all window positions, the lithium ions sit above the plane formed by the oxygen atoms.

A split position is present on the other side of the window. For example, Li ions in D and D’
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Figure 5.4: Minimum energy paths and activation barriers (NEB) for lithium ion motion in
Nb12WOs35. (a) Lithium sites (A-I) and hops between them. A 3 x 4 block is framed by the red
rectangle representing the shear planes. Cavities are labelled by type. (b) Hops and energy pro-
files/activation barriers in Cavity II (c) Cavities III and VI. (d) Energy profile along the paths with
very low barriers. Local rattling processes (D+D’, G<+G’) show the lowest activation barriers (15—
35 meV), followed by hops faciliating long-range diffusion down the b axis (C+~D, E&F, GoF,
70-140 meV). These b-axis hops percolate the structure through a chain of effectively equivalent
jumps shown by the red arrows in (b) and (c). Cross-block motion (A«+B, H«I) has very high
activation barriers and is therefore slow. Niobium shown in dark blue, oxygen in orange, lithium in
off-white, and tungsten in grey.
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(Fig. 5.4a) are 0.5 A above the plane formed by the four oxygens.
A continuous path (with a few branches) through the cavities in NbjoWOs3s is shown in Fig. 5.4.

This path does not include all possible barriers, even in the dilute limit, but all transitions between
the different types of sites. Note that there is a twofold rotation axis running through the center
of the block, so that the unlabelled part is equivalent by symmetry. The two type III cavities
in Fig. 5.4 are structurally very similar but not equivalent by symmetry, and are therefore both
included in the path.

Results presented in Figure 5.4 show a clear hierarchy of activation barriers, and therefore
lithium motion, in Nb1oWOQO3s3. Very high barriers are found for motion from one block to another,
either by crossing the shear plane (hop A<+B, AEkra = 0.80 eV, Fig. 5.4b), or by moving through
cavity VI (H<>H’<1, Fig. 5.4c) next to the tetrahedral site occupied by tungsten. The motion
through cavity VI goes via a high energy intermediate H’ site with an energy 0.6 eV above the
most stable lithium site. The sequence of hops H<>H’+1 encounters a barrier of at least 1.0 eV.
Due to the high activation barriers, lithium motion from one block to another in the ac plane will

be very slow.

Hops from fivefold coordinated pocket sites at the block edges into the block center (B«C,
H+F’, Fig. 5.4b,c) present the next-largest barriers with values of 0.44 eV. This value is rather
large compared to the barriers of other processes within the structure (see below). It suggests that
hopping between the sites at the block edges and the sites in the block interior is slow, and the
block-peripheral pocket sites are therefore somewhat isolated. The oxygen atoms that coordinate
the lithium ions in the pocket sites are rigid because they belong to edges shared between octahedra.
While moving out of the pocket site, the Li ion loses the local bonding interaction with the oxygens,
which cannot bend towards the Li to support it. This leads to the relatively high activation barriers.
The resulting minimum energy paths for B+>C and H+F’ hops involve Li almost ‘floating’ through
the cavity (Fig. 5.4b,c). Note that there is no direct G<+H hop; an attempted NEB calculation for

this hop goes via an intermediate F site.

Within the ac plane, Li can jump between cavities that belong to the same block with inter-
mediate activation barriers (D<F E, = 0.36 eV, F&F E, = 0.2 eV, Fig. 5.4b,c). Most of the
hops within or out of cavity III are faciliated by the interstitial-like F' and F’ sites. As shown
in Ref. [113] and by the AIMD simulations (see below), these F and F’ sites disappear at higher

lithium concentrations as the distortions of the framing octahedra are removed.

The most important hops are those that facilitate long-range diffusion along the b axis, specif-
ically C+»D in cavity II, and E<F and F’<+G in cavities III. These processes have low barriers
of 70-140 meV, and cover jump distances of 1.9 A, half the b lattice parameter. Note that these

hops form percolating chains along the b axis, shown by the red arrows in Fig. 5.4b,c.

In addition, there are processes with ultra-low barriers that are associated with ‘rattling’ in the
fourfold coordinated window positions (D<>D’, G<+G’). As described above, the Li ion sits slightly
above the plane formed by the four coordinating oxygen atoms of the window. An equivalent
position is found on the other side of the plane. Barriers for these local rattling processes are in the

range of 15-35 meV, on the order of the thermal energy at room temperature (k7' = 25 meV). For
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these ultra-low barrier processes, the coordination of the Li ion barely changes during the motion,
explaining the very low activation energies. The transition states are also fourfold coordinated Li
ions, sitting within the window formed by the framing oxygen atoms, rather than slightly above
or below. Due to the low barriers and small distances it is more accurate to describe this motion

as an anharmonic vibration, rather than a Li ion jump.

5.3.2 Lithium Hopping in Nb;4,W3044

The 4x4 blocks of Nb14,W3044 feature a type I cavity in the middle of the block, which is not
present in NbjaWO33. In our structure model tungsten occupies the tetrahedral site and two of
the block-central transition metal sites (Fig. 5.5). The parent structure has a fourfold rotation
axis through the middle of the block. Note that Nb;4sW3044 has a different axis system than
Nb1aWOs33; the blocks lie in the ac plane in NbjoWOs3, but in the ab plane in Nbj4W30y4, due
to the different space group.
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Figure 5.5: Minimum energy paths and activation barriers (NEB) for lithium ion motion in
Nb14W3044. (a) View of the hopping pathways within the block and within individual cavities.
(b) Activation barriers for lithium motion. Barriers are especially low for motion within cavity I.
Long-range diffusion occurs almost exclusively along the ¢ axis, but Li ion motion in the ab plane is
possible within a single block (red rectangle). Niobium shown in dark blue, oxygen in orange, lithium
in off-white, and tungsten in grey.

The lithium diffusion paths and associated activation barriers for Nb1oWO33 and Nb14W30O44
are very similar: the barrier for crossing from one block to another through the crystallographic
shear plane is again very high (A<B, AExra = 0.82 €V). The hop from the pocket site at the
edge of the block to a window site (B«+C) has the next-largest activation barrier of 0.42 eV.

The cross-cavity motion from type II to III has a high barrier (D<F, 0.28 V) compared to the
IT to I motion (C+>D«+D’«++G, max. barrier 0.11 eV). The D—F hop takes place next to octahedra
at the shear plane, which share edges and are strongly distorted. The octahedra framing the path

from cavity II to I on the other hand are exclusively corner-sharing and do not show these strong
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distortions. One of the oxygen atoms of the window next to the shear plane is part of a shared
edge, therefore less flexible and less effective at supporting the Li ion during the D<F hop, which
leads to the higher activation barrier. This rigidity of the oxygen atoms that are part of shared
edges between octahedra is also responsible for the absence of stable lithium positions within the
distorted windows (cf. F sites), and the high barrier for hops between pocket sites and the block
interior (see above). A similar pattern is also found in NbjaWOs33 (Fig. 5.4), where the motion
between the type II cavities through the central window shows a much lower activation barrier

than the hops next to the shear planes. AIMD simulations (see below) confirm this pattern.

Cavities of type I are approximately cubic and show the least distorted octahedra in the struc-
ture (Fig. 5.5a,b). Li motion within cavity I is facile with low activation barriers for hopping
between the window sites (80 meV, Fig. 5.5b), and even lower barriers for the rattling process
within window sites (e.g. G+G’, 30 meV). Cavity I is connected to four type II cavities via low
barrier hops, which suggests that it facilitates Li motion within the block plane to a much greater

extent than the cavities next to the shear planes.

The lowest energy barriers are found for motion along the ¢ axis in NbjyW30y4 (C+D in
cavity II, G<»D’, G<»H in cavity I), with values between 80-110 meV. These hops can occur in
Cavities I, IT and III, even though hops within III were not explicitly calculated for Nb14W3O44.
The dominant diffusion pathway will therefore be along the ¢ axis (cf. b axis in NbjaWOs33).

There are a number of subtleties regarding the interpretation of the NEB results for both
Nb1osWO33 and Nbj4W3044 that are worth mentioning. The barriers are reported as kinetically
resolved barriers (cf. Methods) to remove the direction dependence for hops that have endpoints
with different energies. In terms of the activation barrier for diffusion, it is the larger of the two
barriers that will be relevant (e.g. the D—C hop has a larger barrier than C—D for NbjoWO33,
Fig. 5.4). Another point to note is that not all lithium sites have the same energy, and the first
lithium ions that are inserted into the structure will predominantly occupy the lower energy pocket
sites at the block edges. However, the other lithium sites in the block interior are well within an
accessible energy range of less than 100 meV for Nb1oWOs3, and are entropically favoured due to
the fact that the potential energy landscape is inherently flatter in the block interior than at the
block edges, resulting in softer vibrational modes. Furthermore, lithium ions in the lower energy
sites do not inhibit transport as they are tucked away in pockets at the block periphery. For
Nb14W30.44, there is the additional complication of appreciable Nb/W cation disorder, which will
modify both the site energies and activation barriers for lithium motion. All of these considerations
suggest that even at very dilute lithium concentrations, there is a population of lithium ions within

the block interior that can diffuse with activation barriers of 0.1-0.2 eV.

5.3.3 Li Probability Density

AIMD simulations were performed to study the lithium dynamics explicitly over a range of lithium

concentrations. Isosurfaces of the lithium ion probability density of LisNbisWOQOgs3 are shown in

Fig. 5.6. The lithium probability density P(r) (sampled through AIMD) is related to an effective
E

_E@)
free energy landscape for lithium ions, E(r), via P(r) oc e *sT. Stable sites (purple isosurface
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in Fig. 5.6) are in agreement with those seen in the NEB calculations. The dominant diffusion
paths run along the b axis in one-dimensional channels within each cavity (light blue isosurface
in Fig. 5.6). Interestingly, the movement in the ac plane is dominated by hops between the two
type II cavities in the center, which are connected by a bridge. Movement between the remaining
diffusion channels in type III cavities, and hops between the fivefold coordinated sites and the 1D
channels, is much less probable. This is consistent with the results obtained from nudged elastic
band calculations: hops through the windows next to the shear planes, and hops between fivefold
coordinated sites and those in the block centre, have much higher activation energies than the

movement down the tunnels, or the rattling within the central window.

The Li probability density isosurface for LigNb14W3044 (Fig. 5.7) shows the same patterns: a
connected diffusion network between cavities of type I and II, which is not connected to channels
in cavities III. LigNb1aWO33 and LigNb14W3044 share these patterns because cavities of the same
type are structurally very similar, even if they are found in blocks of different sizes.

At higher lithium concentrations, the transition metal-oxygen framework of the structure
changes; distortions of octahedra next to the crystallographic shear planes are removed and the

window sites next to the shear planes become stable sites for lithium occupation. This is linked to
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Figure 5.6: Li-ion probability density distribution within LisNb;osWQOg33, obtained from AIMD simu-
lations. Views parallel to the b axis (top) and perpendicular to the b axis (bottom). Isosurface values
are P = Ppay/30 (light blue) and P = Ppax/5 (purple). The network of connected sites participating
in diffusion along the b axis is restricted to the block interior. While the tunnels in cavities IT (bottom
left) are connected to each other via a bridge, the tunnels in cavities of type III (bottom right) are

isolated. Diffusion channels and stable lithium sites are in very good agreement with NEB results
(cf. Fig. 5.4b,c and Fig. S5).




5.3. RESULTS 87

Figure 5.7: Li-ion probability density isosurface (P = Ppax/30) for LigNb14,W3044. The red square
outlines a block, and specific cavities of types I, IT and IIT are marked. The single block features nine
parallel tunnels, but only tunnels in cavities of type I and II are connected to each other. Cavities
of types I and II share undistorted windows (bottom left), through which diffusion is easier than
through the distorted windows (bottom right).

a contraction of the lattice parameters in the block plane [113]. The structural change is a function
of lithium concentration, and is not present in LisNbi;oWO3s3, partly in LigNbi1oWOs3, and fully
in Li;7Nb1aWO33. Stable lithium positions appear in the previously unstable distorted window
sites forming bridges between type III cavities in LigNbjaWOgs (Fig. S7). The diffusion remains

one-dimensional within tunnels running along the b axis.

5.3.4 AIMD - Quantitative Analysis

Various problems were encountered during the AIMD simulations. The temperatures of AIMD sim-
ulations have to be high enough to see lithium motion on the timescale that is accessible, but above
900 K, defect formation was observed in the host structure (see below). This limited the available
temperature range to 600-900 K. In terms of the stoichiometries, a large number of lithium ions
are required for sufficient statistics. However, if the concentration of Li ions is too large, the dy-
namics becomes very sluggish. These problems led to only two stoichiometries (LigNb;aWO33 and
LigNb14W3044) having enough data to do a quantitative analysis of the diffusion coefficients. The
analysis of the lithium probability density distributions above was performed for AIMD simulations

at a single temperature, for which sufficient data was available for all stoichiometries.
Diffusion coefficients over the temperature range 600-900 K for LigNb1oWO33 and LigNb14,W3044
are plotted in Fig. 5.8 together with an Arrhenius fit. The resulting room temperature diffusion

coefficients and activation energies are listed in Table 5.1. Only the component of the MSD per-
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Figure 5.8: Arrhenius plot of AIMD simulation results for LigNb1oWOg33 (red) and LigNbi4W3044
(blue). The shaded region corresponds to extrapolation including standard errors of the activation
energies.

pendicular to the block plane is used in the fit, which corresponds to the b axis in NbjoWOs3s,
and to the ¢ axis in NbjyW3044. The diffusion coefficients are denoted D+ to make this clear.
Within the block plane the MSD is not even linear due to the hard boundary formed by the shear
planes. LigNb14W3044 shows faster diffusion than LigNbioWO33 and the data for this compound

is a better fit to the Arrhenius expression, with a lower error on the estimate of the activation

energy.
Stoichiometry Li/TM D;g’gK (m?s~1) E, (eV)
LigNbjasWOs3s 0.615 1.8-10712 0.31 +0.05
LigNb14W3044 0.471 3.2-10711 0.23+0.03

Table 5.1: Diffusion coefficients and activation energies obtained from AIMD simulations. The dif-
fusion is highly anisotropic and only the value along the direction perpendicular to the block plane
D is reported (b axis in Nb1oWOss, ¢ axis in Nb1sW3044).

The activation energies for LigNbjoWO33 and LigNb;4W3044 are between 0.2-0.3 eV, slightly
larger than those obtained from NEB results (0.1-0.2 eV). The increase in the activation energy
is attributed to the much larger lithium concentrations that are probed in the AIMD simulations
(roughly 0.5 Li/TM), which result in repulsive Li-Li interactions, increasing the activation ener-
gies for Li-ion hops. The extrapolated room temperature diffusion coefficients are high (10712~
1071 m2s7!), comparable with values for solid electrolytes [135, 13]. The activation barrier is
lower, and the diffusion coefficient higher, for LigNbi4W30O44 than for LigNb;oWOg33. Both the
lower lithium content and the structural framework with more and better connected tunnels likely

are responsible for this.
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5.3.5 Tungsten Interstitial Defects

For AIMD simulations above 900 K, tetrahedrally coordinated tungsten atoms within the type VI
cavities were observed to migrate into adjacent octahedral positions (Fig. 5.9). These interstitial
defects were observed for both LigNbjsWO33 and Lij7Nb1oWOss, and occurred more frequently
with increasing temperature and lithium content. This indicates that the activation barrier for
the migration of tungsten decreases with increasing lithium concentration. The decrease in the
activation barrier might be due to the reduction of the transition metal ions and the removal of
distortions within transition metal-oxygen octahedra, both of which are known to occur as the
lithium concentration increases [113, 13]. Activation barriers for this tungsten migration cannot
be obtained directly from the AIMD simulations. However, given that the formation of the defects
occurred only above 900 K, and Li-ions are already observed to be mobile below that temperature,
we can conclude that the tungsten migration barrier is significantly larger than that for Li-ion
migration. Meaningful lithium diffusion coefficients were not extracted from simulations exhibiting
these defects because the host framework had changed, with new lithium positions and diffusion
pathways within the type VI cavities. This limited the temperature range for AIMD simulations
to 600-900 K. Interstitial defects of this type were previously observed experimentally, and were
suggested to explain off-stoichiometry in block-type niobium oxide structures [85]. It could also
be present in small concentrations in the niobium tungsten oxides after synthesis. A detailed

investigation of these defects is left to future work.

Figure 5.9: Interstitial defect observed to form in type VI cavities by migration of tungsten from a
tetrahedral site into an adjacent octahedral site.

5.4 Discussion

Overall, the diffusion mechanism in niobium tungsten oxides with crystallographic shear structures
is strongly anisotropic, effectively one-dimensional down the tunnels, in agreement with previous
suggestions [13, 128, 127]. Hops within the block plane are facile but eventually hit the shear plane
boundaries which prevent long-range motion perpendicular to the tunnels. The Li-ion dynamics
within the structures is constrained to occur within blocks. NEB calculations show activation
barriers of 0.1-0.2 eV in the dilute limit, and AIMD simulations suggest activation barriers of 0.2—
0.3 eV at concentrations around 0.5 Li/TM. At those concentrations, AIMD simulations predict

2571, on par with the best

room temperature diffusion coefficients in the range of 10712107 m
known solid electrolytes.

In addition to the overall mechanism, a number of structure-specific details are worth dis-
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cussing. The diffusion of lithium ions in the structure occurs mostly through hops between fourfold
coordinated window sites, which are located in the block interior. Hops into or out of fivefold coor-
dinated pocket sites occur much less frequently, because these hops have large activation barriers.
The pocket sites are also connected to fewer neighbouring Li positions than the window sites. If
the parallel 1D diffusion channels are a ‘multi-lane highway’ [13], the pocket sites are essentially
parking spots.

We can expand on the role of the pocket sites at the block edges a little more: at dilute lithium
concentrations, there is a question as to whether lithium ions are trapped in those sites or not.
There is a notable asymmetry between lithium intercalation and deintercalation here: starting
with an empty Nb/W oxide structure, the lithium ions have to enter the structure through one of
the channels, which will be exposed at surfaces of the particles. In contrast, there is no direct way

to enter one of the pocket sites.

Once in the channels, ions are much more likely to diffuse down the channels than move into
the fivefold coordinated pocket sites, due to the difference in the activation energies. The relative
probability can be estimated by the ratio of the rates. Assuming activation energies of 0.14 eV for
down-tunnel motion (cf. Fig. 5.4, CHED), 0.44 eV for a transition into a pocket site (cf. Fig. 5.4,

B«C), and a rate expression I" e_’ﬂTaT, the down-tunnel motion is faster by a factor of

o—0.14eV /kpT

_ ~ . 10°
T ¢—0.44eV/kpT 1.6-10

I‘inftunnel

Itunnel—spocket
for T' = 293 K. Hence, once an ion is in the channel, down-tunnel transport is overwhelmingly
likely, and lithium ions therefore move down the tunnels rapidly before finally making a transition
into a pocket site. Now consider the reverse process of deintercalation: to pull lithium ions in
pocket sites out, they first have to make a transition into the channels. But this is a slow process,
and lithium ions in the pocket sites could remain trapped during high-rate deintercalation. Based
on these considerations, and the fact that there will likely be partial occupation of many sites at
low lithium concentrations (cf. Results), the pocket sites only significantly inhibit fast lithium
ion motion during high-rate deintercalation. The practical implication for full battery cells with
niobium tungsten oxide anodes is that the charging process may be faster than discharge, which
is compatible with most applications such as regenerative braking, fast charging electronics, and
others, that can utilise high input power densities.

The different types of cavities contain different stable lithium positions and diffusion chan-
nels, but these are remarkably transferable between different compounds (i.e. NbjsWO33 and
Nb14W3044). Most notably, the type III cavities at the block corners present more isolated dif-
fusion channels compared to the type I and II cavities. As mentioned previously, this is due to
the fact that motion from a type III cavity into any neighbouring cavity in the block plane must
proceed via a distorted window, which does not feature a stable intermediate lithium position.
On the other hand, moving out of type I or II cavities through an undistorted window is easier
due to an intermediate stable Li position and hence a lower overall activation energy. Given the
cross-compound transferability of the properties of the different cavity types, one can easily ex-

trapolate what the lithium motion will look like in shear structures Nb1gW5055 and Nb1gWgOgg,
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even though they were not studied explicitly in this work. Overall, the shear structures of niobium
tungsten oxides present a complex energy landscape for lithium motion, with very different barrier
sizes: a flat landscape in the interior giving rise to fast lithium diffusion, high barriers for pocket

sites, and very high barriers for moving between blocks.

Due to these differences between cavity types, it seems that structures with the maximum
number of type I and II cavities show the most interconnected diffusion network and the fastest
lithium diffusion. These would also be the structures with the largest block sizes. Considering the
four known niobium tungsten oxide single block structures (NbjaWO33, Nb14W3044, NbigW50s55,
and NbijgWgOgg), it is therefore likely that the diffusion is fastest in NbigWgOgg, although it is
questionable whether these differences can be accurately measured. Of course, this argument is
based on structural considerations and neglects the impact of a changing ratio between niobium
and tungsten. The niobium tungsten oxides are also partially disordered [113, 106], and while we

have not explored the effect of the cation disorder on the diffusion, it could be important.

True one-dimensional diffusion is special because the diffusing particles cannot pass each other.
In fact, the tracer diffusion coefficient for pure 1D diffusion is zero, due to the fact that the
mean-square displacement grows as the square root of the time, rather than linearly [16]. In the
niobium tungsten oxides, jumps between the one-dimensional channels are therefore required to
obtain a non-zero tracer diffusion coefficient. It would be interesting to examine to what extent
the constrained, effectively one-dimensional ionic motion is correlated, especially within the more
isolated tunnels at the block corners. We stress that this applies only to tracer diffusion, not to
chemical diffusion in 1D, which is still well defined. The tracer diffusion coefficient describes motion
of a single (tagged) particle, whereas the chemical diffusion coefficient is related to collective (mass)
transport [16, 4]. While the transport coefficient is relevant for rate performance, it is the tracer
diffusion coefficient that has been measured by pulsed-field-gradient (PFG) NMR spectroscopy
measurements on lithiated niobium tungsten oxide phases. The PFG NMR experiments should

therefore be sensitive to the correlation effects, especially in shear phases with smaller blocks.

The PFG NMR measurements on Li,NbigW5Os5 show room temperature diffusivities of 10713~
1072 m2s~! and activation energies of 0.1-0.2 eV [13], while LizNbigWgOgg shows even higher
diffusivities of 10712-1071% m?s~! [127]. These measurements were performed for lithium con-
centrations up to 0.4 Li/TM, and probe long-range lithium transport. Measurements on the two
phases studied in this work, Nb1sWOg33 and Nbi4W3044, are not currently available. However,
given the cross-compound transferability demonstrated in this work, we can tentatively compare
values: both activation energies and the magnitude of the diffusion coefficients are comparable,
although lithium concentrations in this work are either much lower (NEB) or higher (AIMD) than
in the experiments. The results presented in this work place the experimentally derived values
into context and offer a detailed structural understanding of the mechanism. PFG NMR exper-
iments only measure long-range lithium motion that contributes to diffusion. NMR relaxometry
experiments, on the other hand, probe all types of lithium motion (including local motion) and
provide estimates of barriers. Relaxometry experiments would therefore be very useful to under-
stand the hopping motion and associated barriers in more detail. It is unfortunate that the high

computational cost of AIMD simulations prevents a more detailed study of the diffusion coeffi-
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cients and activation barriers as a function of concentration at this time. Classical MD studies

with appropriate potentials would be very useful as an avenue for future work in this direction.

5.5 Conclusion

In this chapter, the lithium diffusion mechanism in niobium tungsten oxide shear structures was
studied using density-functional theory. Lithium diffusion takes place in parallel tunnels, but
is constrained to be effectively one-dimensional by the crystallographic shear planes. The Li-
ion jumps that contribute to long-range diffusion have activation energies of 0.1-0.2 eV in the
dilute limit, and slightly larger barriers at higher lithium concentrations (around 0.5 Li/TM).
The low activation barriers lead to high room temperature diffusivities (1072-1071* m2s~! for
stoichiometries probed in this work), and are responsible for the excellent high-rate capability of

the niobium tungsten oxides in lithium ion batteries.

While the Li-ion motion that contributes to long range diffusion takes place by jumps between
window sites in the block interior, there are a number of other processes occuring within the
structure: local rattling motions, and jumps between window and pocket sites. In addition, the
lithium motion is different depending on the cavity type. The activation barriers for jumps between
different types of sites are transferable between different niobium tungsten oxides, due to their
strong structural similarity. Overall, these results paint a clear picture of the diffusion mechanism
in niobium tungsten oxide shear structures, and illustrate the relationship between the diffusion
mechanism and the atomic structure of the materials. The same relationships should hold in other

crystallographic shear phases as well.



Chapter 6

Lattice Dynamics Calculations with
DFT+DMEFT

This chapter is based on “Efficient lattice dynamics calculations for correlated materials using
DFT4+DMEFT”, Can P. Kocger, Kristjan Haule, G. Lucian Pascut, Bartomeu Monserrat, Phys.
Rev. B, 102, 245104 (2020). Reproduced with permission from the American Physical Society.

Abstract

Phonons are fundamentally important for many materials properties, including thermal and elec-
tronic transport, superconductivity, and structural stability. This chapter describes a method to
compute phonons in correlated materials using state-of-the-art DFT+DMFT calculations. The ap-
proach combines a robust DFT4+DMFT implementation to calculate forces with the direct method
for lattice dynamics using non-diagonal supercells. The use of non-diagonal instead of diagonal
supercells drastically reduces the computational expense associated with the DFT+DMFT calcula-
tions. The method is benchmarked for typical correlated systems (Fe, NiO, MnO, SrVOs3), includ-
ing tests for gq-point grid convergence and different computational parameters of the DFT+DMFT
calculations. The efficiency of the non-diagonal supercell method allows us to access g-point grids
of up to 6 x 6 x 6. In addition, we discover that for the small displacements that atoms are subject
to in the lattice dynamics calculation, fixing the self-energy to that of the equilibrium configuration
is in many cases an excellent approximation that further reduces the cost of the DFT4+DMFT cal-
culations. This fixed self-energy approximation is expected to hold for materials that are not close
to a phase transition. By providing an efficient and general method for the calculation of phonons
using DFT+DMFT, this work opens up many possibilities for the study of lattice dynamics and

associated phenomena in correlated materials.
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6.1 Introduction

First-principles calculations of phonons in real materials play an important role in explaining ex-
perimental observations and in predicting novel materials phenomena. Apart from standalone
calculations, lattice dynamics often form the input for a wide variety of follow-up calculations of
materials properties, including thermodynamics, superconductivity, thermal and electronic trans-

port, and finite temperature optical response.

The overwhelming majority of lattice dynamics calculations of materials employ density func-
tional theory (DFT). However, commonly employed exchange-correlation functionals such as LDA
and PBE have severe shortcomings when applied to materials with strongly correlated d or f elec-
trons. While these problems can be partially remedied by DFT+U methods or hybrid functionals,
dynamical mean field theory (DMFT) in combination with DFT generally leads to a better descrip-
tion of the electronic structure of correlated materials [136]. It is therefore desirable to extend the
range of applicability of DFT+DMFT calculations to study structural and vibrational properties
of correlated materials. To this end, DFT4+DMFT implementations for total energies and forces
have been developed recently [137, 138, 139, 140].

Phonon calculations are usually performed by one of three methods: linear response, frozen
phonons, or the direct method. In the context of DMFT, early work by Savrasov and Kotliar [141]
described a linear response method to calculate phonon spectra of MnO and NiO. The authors
used the simple Hubbard-I solver and neglected the change of the self-energy with displacement,
a term that involves the derivative of the self-energy 3 with respect to the Green’s function G,
0% /0G. This term is very difficult to compute by the current generation of impurity solvers. The
frozen phonon method was used in the work of Leonov et al. [142] to calculate lattice dynamics of
paramagnetic iron and more recently by Appelt et al. to compute the phonons of palladium [143].
Frozen phonon calculations rely on a priori knowledge of the phonon eigenvectors so that phonon
frequencies are easily calculated from total energy differences without the need to evaluate forces.
As such, the method only applies to simple, highly symmetric structures. The direct method is
both simple and general, requiring only the forces on atoms, and given the recent advances in
force implementations of DFT4+DMET, should be the method of choice. A recent example of this
is the study of phonons in iron by Han et al. [144]. However, as it relies on the construction of
supercells to access phonons at points other than I', the computational cost can quickly become

unmanageable for an already expensive electronic structure method such as DMFT.

In this chapter, a method to compute vibrational properties of correlated materials from
DFT+DMFT is described and benchmarked. The method combines two ingredients: (1) Forces
from DFT+DMEFT, efficiently obtained from a robust implementation based on the free-energy
Luttinger-Ward functional [138], and (2) the direct method for phonon calculations, using non-
diagonal rather than diagonal supercells for significant savings in computational expense [145]. In
addition, we discover that using a fixed self-energy obtained from the equilibrium configuration for
the configurations with atomic displacements is an excellent approximation. Since the solution of
the impurity problems is the most expensive step of the calculations, this approximation results

in additional large savings of computing time.
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The chapter is organised as follows: The next section describes the background theory and
implementation of the DFT+DMFT method, and lattice dynamics calculations with non-diagonal
supercells. In Sec. 6.3, results of the calculations for Fe, NiO, MnO and SrVOj are described and
discussed in turn, including tests for g-point grid convergence, use of fixed self-energies, and other

computational parameters. We draw conclusions and outline future work in Sec. 6.4.

6.2 Methods

6.2.1 DFT+DMEFT

The DFT+DMFT calculations are based on the method and implementation of Haule et al. [146,
147, 137, 35|, often referred to as DFT + embedded DMFT (DFT+eDMFT). In this method,
the DFT+DMFT free energy is expressed in the form of a Luttinger-Ward functional, which is
stationary. Stationarity in this context means that when the DFT+DMFT Dyson equation for the
Green’s function is satisfied, the solution is a stationary point of the Luttinger-Ward functional.
This is important as it allows reliable evaluation of free energies and forces [138]. To connect
the correlated subspaces to the rest of the solid, projection operators PR are defined such that
GEC = PRG, where G and GEC are the Green’s function of the solid and the local Green’s function
of the correlated atom at site R, respectively. On-site correlations of d or f orbitals are treated
exactly while more itinerant degrees of freedom are treated on the DFT level. The projectors
are fixed and consist of a set of quasi-atomic orbitals gblffn(r) that are solution to the Schrodinger
equation inside the muffin-tin sphere. The projection and embedding with fixed projectors is
required to preserve the stationary nature of the functional. The DFT4+DMEFT calculation proceeds
as follows: (1) the Green’s function of the lattice G is projected onto the local orbital basis (d
or f orbitals) to calculate the local Green’s functions Glfgc for each independent correlated atom
at sites {R}, (2) the impurity problem for each independent correlated atom is solved using the
continuous time quantum monte carlo [148, 149] (CTQMC) solver to obtain the self-energy in the

local orbital basis ¥X,5(w), (3) the self-energy is embedded into real space according to

SR (e, w) =Y (rda) Sap(w) (dslr) (6.1)
a,B

and is nonzero only within the muffin-tin spheres of the correlated atoms. The self energy then
enters the Dyson equation of the solid to obtain the lattice Green’s function. Self-consistency is

achieved when the local Green’s functions obtained from lattice and impurity match.

The forces on atoms are defined as the derivatives of the Luttinger-Ward free energy func-
tional with respect to the atomic positions, which includes the effects of electronic and magnetic
entropy [138]. Importantly, they are easily and reliably evaluated in this implementation, being
even more numerically precise to compute than the free energy. Accurate forces are essential for
calculating phonons from finite differences. Other implementations of forces within DFT+DMFT
exist; for example the work of Leonov et al. (Ref. [140]). In contrast to the force implementation

used in this work, the method in Ref. [140] uses a Wannier function basis and does not define
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the force as the derivative of a stationary free energy functional. Despite these difference, the
implementation of Ref. [140] should in principle also be suited for lattice dynamics calculations
with the direct method.

All DET+DMFT calculations were performed using the code available at [147]. The DFT part
of the calculation is based on the WIEN2K code [150], using an all-electron LAPW basis set. The
LDA is used throughout as the exchange-correlation functional for the DFT part. A window of
20 eV around the Fermi level is used for the hybridisation. The DMFT calculations were performed
using the exact double counting [50]. Experimental lattice parameters were obtained from Ref. [151]
for Fe, Ref. [152] for MnO and NiO, and Ref. [153] for SrVOg3. The interaction parameters for Fe
were obtained from a previous study that performed constrained DMFT calculations (U = 5.5 eV,
J =0.84 V) [144]. For both MnO and NiO, U = 9.0 eV was chosen for the correlated d-orbitals
with Jym = 1.14 eV and Jy; = 1.3 eV. For SrVOg3, U = 6.0 €V and J = 1.0 eV were used. Fine
tuning of the parameters is avoided in this study. Calculations for the primitive cells of Fe, MnO,
and NiO used k-point grids of size 12 x 12 x 12, and for SrVO3 a 10 x 10 x 10 grid was used.

Equally dense grids were used for all supercell calculations.

6.2.2 Lattice Dynamics

The objective of lattice dynamics calculations in the harmonic approximation is to determine the
dynamical matrix at a given g-point in the irreducible Brilouin zone. For a crystal with a primitive

cell of i =1,..., N atoms at positions {7;}, the dynamical matrix at point q is defined as

L S g, Ry BT (6.2

Dia js(q) = N
? j R

where «, 8 label cartesian coordinates and i, j label the atoms within a primitive cell. The masses

of the atoms are given by m; and m;, and

’E OF;
D0 gs(R-R) = - =12

e 6.3
Ouinr/ OUjBR, OUuiaRy (6.3)

is the matrix of interatomic force constants, which is a function of R — R’ only, due to the
translational invariance of the solid. The Born-Oppenheimer potential energy surface F is in this
case given by the free energy as obtained from the Luttinger-Ward functional of DFT+DMFT,
while u;,rs corresponds to the displacement of atom 4 in the primitive cell at positions R’ along
cartesian direction a. In practice ®;, g is computed row by row through the derivatives of the
forces Fjgr. The phonon frequencies and eigenvectors are found by diagonalising the dynamical
matrix. We have used atomic displacements of 0.02 Bohr throughout, but tests with 0.01-0.04 Bohr

show almost identical results for Fe and NiO.

In the direct method of lattice dynamics calculations, the force constant matrix is determined
by constructing a supercell. Conventionally, to determine phonon frequencies and eigenvectors on
a N1 x No x N3 g-point grid, a supercell of dimensions N1 X No X N3 would be constructed. In

this work, the non-diagonal supercell method of Monserrat et al. [145] is used, which allows a more
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efficient determination of the force constant and dynamical matrices than the use of a diagonal
supercell. The method relies on the fact that a perturbation of the atomic positions that has a
wavevector  is commensurate with a supercell for which q is a reciprocal lattice vector. It can
then be shown that for a N1 x Na x N3 g-point grid, a set of supercells, each of which contains
at most a number of primitive cells equal to the least common multiple of Ny, No, and N3, are
sufficient to determine the dynamical matrix at every q-point in the grid. In particular, the method
allows the sampling of vibrational Brillouin zones with a uniform grid of size N x N x N using
supercells that contain at most N primitive cells. In contrast, using only diagonal supercells, the
largest of these contains N2 primitive cells. Non-diagonal supercells are solutions to the “minimum
supercell problem” for computing phonons as recently described by Fu et al. [154], and are the
most efficient method (in terms of system size) to compute phonons at a given g-point. The ideas
can be generalised to interactions between phonons, as described in Ref. [154].

The true force constant matrix satisfies certain sum rules [155]. In particular, Newton’s third
law requires that the sum of the forces on the atoms is zero for every calculation (), F; = 0). In

terms of the force constant matrix, this means that every row and column must sum to zero:
> B s = 0. (6.4)
J

Stated differently, ®;, ;3 must be given by

Dinis =— > Piajs (6.5)

J#i
The difference between ®;, ;3 as obtained from the calculation, and calculated by Eq. 6.5 can be
used as a measure to judge the accuracy or numerical precision of the force evaluations in the ab
initio calculation [156]. This is particularly relevant for DFT+DMFT calculations as the forces
are affected by statistical noise. We have also observed that the sum rule and symmetry violations
tend to be larger with DF'T+DMFT derived forces than for pure DFT calculations. The sum rule

and the point group symmetry are therefore applied to the force constant matrices.

In polar insulators, the longitudinal optical (LO) and transverse optical (T'O) phonon modes are
split close to the I' point due to the interaction between LO phonons and macroscopic electric fields.
This LO-TO splitting needs to be taken into account to accurately model the phonon spectra of
MnO and NiO. In DFT calculations, LO-TO splitting is included by separately calculating the Born
effective charge tensors Z and the macroscopic dielectric tensor €, and adding a non-analytic
correction to the dynamical matrix [157]. Unfortunately, for Green’s function based methods like
DMFT, the calculations of polarisation (and hence Born effective charges) is still an unsolved
theoretical problem. In the limit q — 0, the frequencies of the LO and TO phonon modes wr,o
and wro are related to Z* and ey, according to

2 2
2 2 _ € |Z|

WLO u)To—(_:WQ c
[e.0]

(6.6)

where e is the elementary charge, 2 is the volume of the primitive unit cell, ¢y is the vacuum
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permittivity, and p is the reduced mass of the two atoms in the unit cell. The phonon frequencies
wr,o and wpo can be obtained from a non-diagonal supercell representing a g-point close to I', and

the resulting value of | Z*|? /e is used for the non-analytic correction to the dynamical matrix.

6.3 Results and Discussion

6.3.1 Fe

At ambient pressure, iron crystallises in three different polymorphs: the bee-a phase (stable below
1185 K), the fcc-y phase (stable between 1185-1670 K), and the bce-d phase (stable up to the
melting point of 1811 K). The bec-a phase is ferromagnetic below the Curie temperature of 1043 K.
DFT+DMFT calculations are well suited for the ab initio simulation of the interplay between
metallicity and local moments in iron [158]. Importantly, DEFT+DMFT is able to capture both
the paramagnetic regime and the temperature-dependent change in the local moment. Within
DFT, describing these temperature effects requires much additional work starting from the actual
first-principles calculations [159, 160, 161].

The temperature dependence of the phonon spectra of elemental iron has been studied previ-
ously both experimentally [162, 163] and computationally [144, 142]. In the ferromagnetic bee a-
phase, a pronounced softening of the phonon modes is observed as the temperature increases. The
phonon softening can be captured with a number of different simulation methods [159, 160, 161].
A recent DFT+DMFT study by Han et al. clearly attributed the phonon softening to the melting

of the ferromagnetic order [144].
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Figure 6.1: Convergence of the phonon dispersion of paramagnetic bee §-Fe (T = 1740 K) with
g-point grid size. The grey dots correspond to the experimental data from Ref. [163].
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Here we compute the phonons for iron at temperatures of 1160 K and 1740 K at the ex-
perimental equilibrium volumes. The convergence of the phonon dispersion of paramagnetic 6-Fe
(T = 1740 K) is shown in Fig. 6.1. While previous work used a minimal 2 x 2 x 2 g-point grid [144],
there are small but visible differences between the results of a 2 x 2 x 2 and a 4 x 4 x 4 grid. The
phonon dispersion is effectively converged with a 4 x 4 x 4 grid, because the differences with the
6 x 6 x 6 result are small. The advantage of non-diagonal supercells is clear with the largest grid;
while for non-diagonal supercells, only supercells of up to six atoms are needed (scaling linearly
with grid size N), the diagonal supercell would contain 216 atoms (scaling as N3). For the case of
iron the DFT4+DMEFT force calculations are remarkably robust; the difference between the force
computed directly by DFT+DMFT (F;) and that required by the acoustic sum rule (=3, ; F;)
is smaller than 0.1% (cf. Methods).

The agreement between the experimental data (grey dots in Fig. 6.1, Ref. [163]) and the
calculations is very good, although there are small differences in the frequencies at certain q-

points, and the splitting of the branches along I' — H is much smaller than in the experiment.

The phonon dispersion of the ferromagnetic a-phase is shown in Fig. 6.2 for a temperature
of 1160 K. While the experimental Curie temperature T¢ is 1043 K, it is overestimated by
DFT+4+DMEFT calculations. This due to the fact that DMFT is a mean field theory and as such
overestimates phase transition temperatures. Within DFT+DMFT, the transition temperature
depends on the choice of Coulomb interaction in the impurity solver [164, 165]. The two options
are the density-density only (‘Ising’) and rotationally invariant (‘Full’) Coulomb interaction. In
the case of Fe, the choice of Coulomb interaction has an effect on the magnetic properties; while
the Curie temperature with the Ising Coulomb interaction is 2500 K, using the Full interaction,
the T is 1550 K [144]. As a consequence, the magnetic moment for the same physical temperature
of 1160 K is larger for Ising (2.38 up) than for Full (1.7 up). A comparison of the phonon disper-
sions at 1160 K calculated with Ising and Full Coulomb interactions demonstrates that the phonon
frequencies with Ising are larger (Fig. 6.2). This difference is expected given the larger magnetic
moment with Ising and the fact that the phonons in Fe soften with decreasing ferromagnetic order,
as observed previously [144, 163]. For the paramagnetic case, no such difference between Ising and
Full is observed and the phonon dispersions computed with the two methods are identical (not
shown). This illustrates two important points: (1) it is consistent with the interpretation that the
phonon softening is largely due to melting of the ferromagnetic order [144], and (2) it suggests that
phonons can be sensitive to the choice of Coulomb interaction. If this is the case, the approach

used in Ref. [144] of scaling the physical temperature with respect to T is appropriate.

While the use of non-diagonal supercells significantly speeds up the DFT+DMFT lattice dy-
namics calculations, it is still very expensive compared with DFT. The cost of the DFT+DMFT
calculations increases with the number of atoms N, in the unit cell as alVyt + bNgt. The linear
term is due to the solution of the quantum impurity problems, which dominates the cost of the
DFT calculation (cubic term, small b) for reasonably sized systems [166]. The lattice dynamics
calculations use very small atomic displacements (0.02 bohr) and it is worth checking how much
the solution of the impurity problem is affected by the small changes in atomic positions. Fig. 6.3

shows the difference between phonon dispersions obtained by (1) solving the impurity problem
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Figure 6.2: Phonon dispersion of ferromagnetic bee a-Fe (T' = 1160 K) computed with a 2 x 2 x 2
g-point grid. The phonon dispersion shows clear differences between density-density (‘Ising’) and
rotationally invariant (‘Full’) Coulomb interactions used in the impurity solver. With ‘Ising’; the
magnetic moment is larger than with ‘Full’, and the phonons are consequently harder.

separately for each correlated atom in the unit cell [variable ¥(w)], and 2) a calculation in which
the self-energy for each correlated Fe atom is fixed to be equal to that of an Fe atom in the undis-
placed equilibrium configuration [fixed ¥(w)]. The differences are very small; for example, at the
N point the phonon frequencies differ by at most 0.1 THz. Based on these results, it seems that
fixing the self-energy is an excellent approximation for the case of iron. These differences are of the
same magnitude as those that would be deemed acceptable when carrying out a convergence test
of the phonon frequencies with respect to the basis set size (RKpax), or the number of k-points
in the calculation. This suggests that the hybridisation and the impurity levels are not sensitive
to the small displacements that are involved in the lattice dynamics calculation, and the impurity
problem is hardly affected. Performing the calculations with a fixed self-energy offers a massive
benefit: a single DFT4+DMFT calculation in the high-symmetry equilibrium configuration is suf-
ficient to obtain ¥ (w). After that, the forces for structures with various displacements of atoms
can be calculated at the cost of a DFT calculation, since all that is required is the calculation of
the lattice Green’s function with a fixed ¥(w). Timing information shows that for the calculation
of the 2 x 2 x 2 g-point grid shown in Fig. 6.3, performing the calculations with a fixed self-energy
is ten times faster. In general, the speedup depends on the ratio of the amount of time spent in
the impurity solver to the time spent in other steps of the calculation.

It is important to examine the validity of fixing the self-energy in each individual case. As
shown in the following sections, for the materials studied in this work, a fixed self-energy is an
excellent approximation. Put differently, this means that the change in the self-energy with respect
to position is small and therefore the two-particle vertex function is not important for computing
forces. However, one might expect that this approximation breaks down when the material is close
to a phase transition. At present, we recommend testing this approximation in particular cases
that are under consideration. In the following, we have tested it by comparing at least the I'-point

phonon frequencies with a fixed self-energy to those of a non-approximated calculation.
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Figure 6.3: Phonon dispersion of paramagnetic bee 0-Fe (T = 1740 K, 2 x 2 x 2 g-point grid) with
fixed and variable self-energy (see text). The results match to within 0.1 THz.

6.3.2 NiO and MnO

NiO and MnO are antiferromagnetic insulators with Neel temperatures T of 525 K and 116 K
respectively. Above Ty, the compounds are paramagnetic insulators. Magnetic ordering in NiO
and MnO induces a change in crystal symmetry; while the high temperature phases are cubic, the
low temperature AFM phases are rhombohedral. The phonon spectra of both NiO and MnO do
not depend sensitively on the presence of long-range magnetic order [167], but the change in crystal
symmetry leads to small changes in the phonon frequencies due to magnetic anisotropy [168, 169,
170]. One of the advantages of using DFT+DMFT over DFT for lattice dynamics calculations
of NiO and MnO is the ability to simulate the paramagnetic regime directly. We therefore chose
to perform the calculations for the paramagnetic regime at room temperature. MnO is in fact

paramagnetic at room temperature, and for NiO this is a commonly used simplification.

The cubic phase is also convenient because it simplifies including LO-TO splitting for MnO and
NiOQ. Since it is currently not possible to calculate Born effective charge tensors with DFT+DMFT,
the LO-TO splitting has to be calculated using elongated supercells that represent g-points close
to I'. It is much easier to do this for the cubic paramagnetic phases than for the AFM phases.
Unfortunately, elongated supercells [e.g. corresponding to q = (0,0, %)] led to problems with the
DFT+DMFT force calculations. Specifically for the binary crystal structures NiO and MnO, the
non-diagonal supercells showed non-zero forces on atoms even in the high-symmetry equilibrium
configuration. The problems became more severe with larger cell sizes, increasingly unequal lattice
parameters, and large deviations of unit cell angles from 90°. While the computational expense
of a6 x6x6or8x8x8 g-point grid would have been manageable, the systematic issues with
the forces prevented the use of larger grids. We note that these issues were not due to statistical
noise in the impurity solver and seem to leave room for improvement of the implementation. These
problems were not encountered in the case of Fe, and therefore seem to be related to having two
atomic species present in the cell, one of which is being treated as correlated while the other
is not. While these issues affect the lattice dynamics calculations, which involve small atomic
displacements, the force implementation works very well for structural optimisation of correlated

materials [139, 172, 173]. Since we were unable to extract the LO and TO mode frequencies, we
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Figure 6.4: Convergence of the phonon dispersion of NiO with the size of the g-point grid. The
grey dots correspond to the data of Reichardt et al. [167], and the green crosses to the data of
Coy et al. [171].

instead use values of Z* and €, from Ref. [141] or experiment [174, 175] for the LO-TO splitting.
While unsatisfactory, there is currently no other method of including the LO-TO splitting using
finite differences.

Phonon dispersions for NiO with different g-point grid sizes are compared in Fig. 6.4. The
differences between the 2 x 2 x 2 and 4 x 4 x 4 g-point grids are larger than for the case of Fe,
which can be attributed to the stronger screening in the metal. For NiO, non-diagonal supercells
allow us to access a grid of 4 x 4 x 4 with supercells that contain at most 4 primitive cells (8
atoms). A diagonal supercell would contain 64 primitive cells (128 atoms), which would be much
more computationally expensive. The DFT+DMFT phonon dispersions are compared to two sets
of experimental data from Refs. [167, 171] in Fig. 6.4. The agreement between experiment and
calculation is good, especially given the differences between the two sets of experimental data. The
acoustic branches show a better agreement with the experimental data than the optical branches.
Using the self-energy of the equilibrium configuration for the lattice dynamics calculation is also
an excellent approximation for NiO; for example, the TO mode frequency at I' changes by less
than 0.01 THz. Depending on the shape of the non-diagonal supercell the differences between the
results obtained from a fixed vs variable self-energy can be larger, but this is likely due to the
issues with the DFT+DMFT force calculations discussed above.

Phonon dispersions for MnO with grids of sizes 2 x 2 x 2 and 4 x 4 x 4 are shown in Fig. 6.5. As
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Figure 6.5: Convergence of the phonon dispersion of MnO with the size of the q-point grid. The grey
dots correspond to the data of Wagner et al. [176].

for NiO, there are significant differences in the phonon dispersions obtained with a larger q-point
grid. The DFT+DMEFT results for the 4 x 4 x 4 grid are compared to the experimental data of
Wagner et al. [176]. For MnO, the agreement with experiment is not as good as for NiO. This is
mostly due to a difference of 2.3 THz between the experimental and calculated TO phonon mode

frequency at I'.

The vibrational properties of MnO and NiO have been studied previously by DFT with different
functionals, including DFT+U and hybrid functionals [177, 178, 179]. The study by Linnera et
al. [179] used hybrid functionals and obtained good agreement with the experimental phonon
spectrum of NiO, but a strong underestimation of the optical phonons at I' for MnO. DFT+U
was used in Refs. [177, 178], obtaining good agreement with experimental phonon frequencies for
MnO when choosing an appropriate U value. We have tested U values in the range 8-10 eV in
DFT+DMFT calculations for MnQO, but this did not improve agreement with the experimental
phonon frequencies (although tuning to much lower U values might). Given the charge-transfer

insulating nature of MnO an insensitivity to the precise U value is expected.

6.3.3 SrVO;

The perovskite SrVOs is often cited as a textbook example of a strongly correlated metal. The

vanadium atom nominally has a d' configuration with a single electron in its tog subshell. The
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SrVOs3 spectral function shows a well-established three-peak structure, with a quasiparticle peak
around the Fermi level, and pronounced lower and upper Hubbard bands below and above [180,
181]. We have calculated the phonons of SrVO3 at T' = 293 K with DFT+DMFT to assess the
effect of strong correlations on the vibrational properties of the material. Note that due to the

metallic nature of the material there is no LO-TO splitting.

For SrVOQOj;, the violation of the acoustic sum rule is much more severe than for Fe, NiO, or
MnO. The condition of Eqn. 6.5 is satisfied only to within 5-7% in the worst cases, which is a
significantly larger violation than for the previous materials. For displacements that involve the
correlated vanadium atom and its nearest neighbours the violation of the acoustic sum rule is
worse than for displacements that only involve Sr. This issue likely arises due to contributions
to the forces from terms that depend on the correlated subspace. In the case of Fe, all atoms
are equivalent and this term cancels, while for NiO, MnO, and SrVOj3 these terms cannot cancel
because of the presence of different atomic species. Enforcing the sum rule is essential to obtain

useful results.

As for the other materials, reusing the self-energy of the equilibrium configuration for the lattice
dynamics calculation is an excellent approximation. For the modes at I', the frequencies computed
with a fixed vs variable self-energy differ by less than 0.01 THz. We therefore performed the
calculations of a 2x2x2 g-point grid for SrVO3 with a fixed self-energy. The resulting LDA+DMFT
phonon dispersion is shown in Fig. 6.6 and compared to the LDA I'-point phonon frequencies, since

experimental data for the vibrational properties of SrVOs is not available. The results confirm
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Figure 6.6: Phonon dispersion of SrVO3 (T = 293 K) computed with a 2 x 2 x 2 g-point grid, at
the LDA+DMEFET level of theory. Frequencies of I' point phonons calculated with LDA are marked
in red.
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the dynamical stability of the SrVOj perovskite structure at the LDA+DMFT level of theory.
Focusing on the I' point, there are five threefold degenerate phonon modes. The frequencies of
the modes are renormalised by correlation effects by different amounts. The frequency of the
highest mode changes the most, while the frequency of the lowest mode, dominated by Sr moving
against an almost rigid VOg octahedron, is the same for LDA and LDA+DMFT. This is expected
since the correlated atom and its nearest neighbours do not change their relative positions, and
confirms the internal consistency of the LDA+DMFT phonon calculations; if a phonon mode does
not involve the motion of the correlated atoms or their direct neighbors, the frequency should
be unchanged from the DFT value. On the other hand, if a mode features large changes in the
relative positions of a correlated atom and its nearest neighbors, correlation effects can be expected
to strongly impact the frequency of that mode. This is the case for the highest frequency I'-point
phonon, which is more strongly affected by correlation effects because the vanadium and oxygen
atoms move relative to each other. These observations indicate the most useful applications of
DMEFT phonon calculations: phonon effects that depend on correlations and temperature due to

the involvement of correlated atoms in the atomic motion.

6.4 Conclusion

This chapter described a method to efficiently compute phonons in correlated materials using a
DFT+DMFT approach. The method combines a robust DEFT+DMFT force implementation with
the use of non-diagonal supercells for finite difference lattice dynamics calculations. We have
calculated phonons of multiple different correlated materials, including metals and insulators,
elemental, binary and ternary crystals. The efficiency of the method allowed us to access q-point
grids of very large size. The agreement between the calculations and available experimental data
is generally good. Based on our tests, the self-energy obtained from a DFT+DMFT calculation of
the equilibrium configuration is accurate enough for lattice dynamics calculations, which eliminates
the need to solve a large number of impurities for configurations with displaced atoms. Finally,
we have discussed some issues with the DFT+DMFT force implementation that should be solved

to make the calculation of phonons using finite differences more robust.

There are many problems in condensed matter physics involving strongly correlated materials
that would benefit from an elucidation of the phonons with DFT+DMFT. Cases that come to
mind are the phase diagram of f-elements such as cerium and uranium, and the metal-insulator
transitions in vanadate materials. The method should be especially useful for evaluating phonons
close to phase transitions to clarify the role they play in correlated materials and for the interpre-
tation of temperature dependent diffuse scattering across structural phase transitions [182, 183].
More generally, finite difference approaches for lattice dynamics will also be useful for calculations
of electron-phonon coupling and a variety of other phenomena in strongly correlated materials that

depend on atomic vibrations.
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Chapter 7

Conclusion and Outlook

In this thesis, a range of first-principles methods have been used to study complex phenomena
in oxide materials. The first part of the thesis was concerned with the Wadsley—Roth phases.
Compounds in this family of niobium-based oxides share a distinct “block-type” crystal structure,
giving rise to similar properties across the family. Different aspects of the Wadsley—Roth phases
were studied carefully to understand their fundamental properties and their excellent performance
as lithium-ion battery electrode materials. The second part of the thesis left the Wadsley—Roth
phases behind to develop a method to calculate vibrational properties of correlated materials with

DFT+DMFT, and apply it to a selection of typical correlated materials.

In Chapter 3, the electronic structure and magnetic properties of the niobium suboxides
NboOs5_, were investigated using first-principles calculations at different levels of theory. The
motivation for this study was twofold: 1) the niobium suboxides form an interesting group of
compounds on their own, and 2) establishing an understanding of the electronic structure of
Wadsley—Roth phases and the appropriate level of theory was crucial for the work in the following
two chapters. By investigating the electronic bandstructures and density-of-states of five different
compounds we conclusively established the coexistence of flat and dispersive energy bands, corre-
sponding to localised and delocalised electronic states. Localised electrons occupy large orbitals
that span multiple niobium sites in the plane of the blocks. Localised and delocalised electronic
states were both found to be effectively one-dimensional and were partitioned between different
types of niobium sites. Flat bands associated with localised electrons were present even at the
GGA level, but a correct description of the localisation requires the use of GGA+U or hybrid
functionals. Our computational results allowed us to explain the experimentally observed elec-
trical and magnetic properties of niobium suboxides, whose behaviour turns out to be similar
to n-doped semiconductors. However, there is a limited capacity for localised electrons: when a
threshold of one electron per block is exceeded, metallic electrons are added to existing localised
electrons. This behaviour was found to be general for any type of n-doping, and also occurs when
these materials are n-doped by alkali metal (lithium) ions during operation of niobium oxide-based
battery electrodes.

Following this, the cation disorder and lithium insertion mechanism of Wadsley—Roth phases,

specifically niobium tungsten oxides, was studied in Chapter 4. By examining three different Nb/W
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oxides we sought to discover common principles governing the cation disorder, lithium insertion
mechanism, and electronic structure of these materials. Using an enumeration-based approach, we
generated a complete set of cation configurations and obtained their relative energies. We found
that tungsten preferentially occupies tetrahedral and block-central sites within the block-type
crystal structures. By examining the individual cation configurations we discovered that the local
structure of the materials depends on the cation configuration, which implies that both lithium
site energies and hopping barriers could vary according to the local cation arrangement. To study
the lithium insertion mechanism, we again used enumeration to generate a complete set of lithium-
vacancy configurations over the lithium sites of the crystal structure. This allowed us to follow
the evolution of the materials over the course of lithium insertion in detail. We found that the
lithium insertion proceeds via a three-step mechanism, associated with an anisotropic evolution of
the host lattice. The calculations revealed an important connection between long-range and local
structural changes: in the second step of the mechanism, the removal of local structural distortions
leads to the contraction of the lattice along specific crystallographic directions, buffering the volume
expansion of the material. The electronic structure evolution of the materials over the course of
lithium insertion follows the general principles introduced in Chapter 3: they host small amounts
of localised electrons during initial lithium insertion due to the confining effect of the blocks,
but quickly become metallic upon further lithiation. The combination of local, long-range, and
electronic structural evolution over the course of lithiation is beneficial to the performance of these
materials as battery electrodes. The principles we established are fundamentally linked to the
crystallographic structure of the materials, and therefore transferable to niobium titanium oxide

or pure niobium oxide crystallographic shear phases.

Building on the results of the previous two chapters, Chapter 5 examined the lithium diffusion
mechanism of niobium tungsten oxides. To study the lithium diffusion nudged elastic band (NEB)
calculations and ab initio molecular dynamics (AIMD) simulations were used. Lithium diffusion
was found to occur through jumps between fourfold coordinated window sites with low activation
barriers (80-300 meV). The crystallographic shear planes of the structures constrain the lithium
motion to be effectively one-dimensional. A number of other processes were identified, including
rattling motions with barriers on the order of the thermal energy at room temperature, and
intermediate barrier hops between fourfold and fivefold coordinated lithium sites. We found that
cavities of distinct types host different diffusion pathways: within the block units of the structures,
cavities at the corners and edges host more isolated diffusion tunnels than those in the interior.
Diffusion coefficients were found to be in the range of 10712-10~!" m?s~! for lithium concentrations
of 0.5 Li/TM. We also identified a curious type of tungsten interstitial defect, formed when a
tungsten ion moves out of the tetrahedral site into an adjacent octahedral site. The structure—
property relationships regarding diffusion that were identified are transferable to to the entire
family of Wadsley—Roth phases, much like the principles regarding electronic structure and lithium
insertion studied in the previous two chapters. This is again due to the crystallographic similarity
between Wadsley—Roth phases, and the distinct structural features of their block-type crystal

structures.
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Chapter 6 opened a new direction of research by developing a method to compute phonons
in correlated materials. A robust DFT+DMFT force implementation was combined with the
direct method for lattice dynamics. The use of non-diagonal rather than diagonal supercells
drastically reduces the computational expense associated with the DFT+DMFT calculations. We
benchmarked the method for typical correlated materials, and due to the efficiency of non-diagonal
supercells we were able to access large phonon g-point grids. To further reduce the cost of the
DFT+DMFT calculations, we introduced a fixed self-energy approximation, which is expected to

hold for materials that are not close to a phase transition.

There are a number of directions along which the work presented in this thesis can be extended
and built upon. I believe the niobium suboxides are a very interesting class of compounds and their
electronic structure warrants further study. Unfortunately, they are also rather difficult to prepare
as single phases, which has probably contributed to the fact that they have not been studied in
detail experimentally since the 1990s. There are still open questions: even with first-principles
calculations it is not possible to explain satisfactorily why monoclinic NbjaOg9 shows magnetic
order but orthorhombic Nb12Osg does not. It would also be interesting to examine the electronic
structure of lithiated Wadsley—Roth phases using the same experimental techniques that were
used for the niobium suboxides to link the electronic structure to the battery performance. One
experiment I would personally like to see is angle-resolved inverse photoemission spectroscopy on
any of the pure Wadsley—Roth phases along the dominant BZ direction. I think this would nicely
demonstrate the coexistence of the different electronic states within the structures. In regards to
future computational work, the interesting interplay between localised and delocalised electrons
calls for further studies using beyond-DFT methods such as DMFT or GW.

From an experimental point of view, the Wadsley—Roth phases present a huge design space,
and this will probably one of the most promising directions for future work in the field. A large
number of cations could be doped into existing phases, replacing the Ti/Nb/W with Zr/Mo/Hf or
other elements. Initial work in this direction has already been reported [184], but detailed char-
acterisation studies are still missing. Going a step further, the mix of cations could be expanded
even further and their ratios equalised. One could envision block-type structures including Ti, Nb,
W and other cations mixing at the atomic level to create ‘high-entropy’ mixed-metal oxides with
block-type structures. The feasibility of this depends of course on the detailed thermodynamics,
but I believe it is worth trying. High-entropy alloys have attracted attention in the metallur-
gical space [185], while high-entropy oxides in the battery cathode space have shown promising

performance [186].

There are also a number of fundamental questions that deserve further investigation. How
do the details of the local cation configuration impact the lithium diffusion and site energetics?
Is there any benefit to a disordered crystal structure? Future studies of diffusion could make
use of the recent developments in machine learning potentials to simulate larger system sizes and
longer timescales, possibly even disordered systems. Can we detect features of the constrained 1D
dynamics in any of the experimental measurements, and measure the hopping barriers for lithium
more accurately? The role of defects in Wadsley—Roth phases is another, currently unexplored,

area of research. While we have observed one interesting type of defect formation, and there is
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preliminary evidence that it might play a role in cycling, a lot more work in this direction is

required.

The final chapter developed a method for the calculation of phonons using DFT+DMFT, and
this opens up many possibilities for the study of lattice dynamics and associated phenomena in
correlated materials. The next direction of research should be a reexamination of the role of
phonons in phase transitions of correlated materials, e.g. close to metal-insulator transitions. Do
phonons play a role? Are the electronic and structural transitions coupled? Another very promising
second direction that is now open is the development of electron-phonon coupling methods using
DFT+DMFT, built on available finite-difference approaches [187].

While I have outlined some my own thoughts for further research, I am sure there are many
other directions of future scientific research into the Wadsley—Roth phases and lattice dynamics of

correlated materials. The coming years should see great progress in both areas.



Appendix A

Supporting Information for Chapter 4

This appendix contains additional figures and tables relevant to the study of the cation disorder

and lithium insertion mechanism of niobium tungsten oxides in Chapter 4.

Site DFT (1050 °C) [ DFT (1200 °C) [ DFT (1350 °C) |
M1 0.023 0.030 0.037
M2 0.020 0.026 0.033
M3 0.016 0.022 0.028
M4 0.024 0.031 0.038
M5 0.563 0.557 0.549
M6 0.506 0.505 0.503
M7 0.086 0.100 0.110
M8 0.686 0.637 0.594
M9 0.058 0.068 0.076
M10 0.018 0.024 0.031
MI1 (tet.) 1.0 1.0 1.0

Table A.1: Tungsten occupancies on cation sites in Nb;gW5055. The occupancy of the tetrahedral
M11 site was fixed to one during the enumeration. All sites except M11 have a multiplicity of two.
Taking into account the degeneracies, the total W occupancy in a single block is five, as required.
The synthesis temperature is reported as 1350 °C [17] or 1200 °C [13].
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Figure A.1: (a) Convex hull of lowest energy Li,NbiaWOgss structures. At every stoichiometry,
structures on the convex hull tieline or very close to it can be found. (b) Comparison of DFT
predicted voltage profiles to an experimental profile (Ref. [99]). The DFT predicted profiles have
been shifted so that experimental and DFT predictions for the average insertion voltages agree.

(a) Nb14W3044 (b) Nb15W5055

Figure A.2: Labelling convention for lithium positions in Nb14W3044 and Nb1gW5055. Lithium sites
in single blocks of (a) Nb;4W3044, and (b) Nb;gW50s55 that were included in this study. Horizontal
and vertical window positions (yellow and blue) are fourfold coordinated by oxygens, pocket positions
(green) fivefold. Circling arrows mark the twofold (Nb1gW5Os5) or fourfold (Nb14W3044) rotation
axes of the parent crystal structures, which are perpendicular to the block plane.
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” Site in Nb1oWO33 | Ey || || Site in Nb14W3044 | Ey || || Site in Nb1gW50s5 | Ey ||
1 -2.10 eV 1 -2.19 eV A -2.27 eV
2 -2.06 eV 2 -2.05 eV B -2.35 eV
3 -2.06 eV 3 -2.05 eV C1 -2.26 eV
3 -2.06 eV 4 -2.14 eV C2 -2.33 eV
4 -2.06 eV 5 -2.05 eV D1 -2.39 eV
5 -2.07 eV 6 -2.13 eV D2 -2.30 eV
6 -2.10 eV 7 -2.12 eV E1 -2.22 eV
7 -2.09 eV 8 -2.16 eV E2 -2.28 eV
8 -2.15 eV 9 -2.18 eV F1 -2.40 eV
9 -2.11 eV F2 -2.36 eV
10 -2.12 eV G1 -2.30 eV
11 -2.06 eV G2 -2.08 eV
12 -2.17 eV H1 -2.10 eV

H2 -2.28 eV
11 -2.45 eV
12 -2.45 eV
J1 -2.25 eV
J2 -2.39 eV
K -1.85 eV
L -2.41 eV
M -2.41 eV
N -2.09 eV

Table A.2: Lithium site energies in Nb12W033, Nb14W3044, and Nb16W5055. The Ef values for
Nb12WOs33 were obtained as described in the main text. The E values for positions 1-8 in Nbj4W3044
and A-M in Nbi;gW50Os55 were obtained by placing two lithium ions in the primitive cell under con-
straints of the crystal symmetry. For the special positions 9 and N, a single lithium ion was used.

R
¥ H#

(a) Nb14aW3044 (b) Nb1gW50s55

Figure A.3: Examples of local structure of lithium sites in (a) Nb;yW3044 and (b) Nb;gW5055. Note
the strong similarity between all three niobium-tungsten oxides (cf. Fig. 4, main text).
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Figure A.4: Electronic structure of LijgNb14W3044. At the GGA level (a) no spin polarisation is
observed. Inclusion of a U value on the metal d orbitals (b) does not lead to the opening of a bandgap.
The multitude of strongly dispersive bands suggests a good electronic conductivity of the material.
Red and blue correspond to spin up and down bands.
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