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Abstract

Integrated analysis of multiple genome-wide transcription factor (TF)-binding profiles will be vital to advance our under-
standing of the global impact of TF binding. However, existing methods for measuring similarity in large numbers of chro-
matin immunoprecipitation assays with sequencing (ChIP-seq), such as correlation, mutual information or enrichment
analysis, are limited in their ability to display functionally relevant TF relationships. In this study, we propose the use of
graphical models to determine conditional independence between TFs and showed that network visualization provides a
promising alternative to distinguish ‘direct’ versus ‘indirect’ TF interactions. We applied four algorithms to measure ‘direct’
dependence to a compendium of 367 mouse haematopoietic TF ChIP-seq samples and obtained a consensus network
known as a ‘TF association network’ where edges in the network corresponded to likely causal pairwise relationships be-
tween TFs. The ‘TF association network’ illustrates the role of TFs in developmental pathways, is reminiscent of combina-
torial TF regulation, corresponds to known protein–protein interactions and indicates substantial TF-binding reorganization
in leukemic cell types. With the rapid increase in TF ChIP-Seq data sets, the approach presented here will be a powerful tool
to study transcriptional programmes across a wide range of biological systems.
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Introduction

Transcription factors (TFs) are an important class of proteins that
bind to cis-regulatory elements and control the transcription of
nearby genes. They have long been recognized as important regu-
lators of haematopoietic cell-type identity and, therefore, have
been extensively studied to gain a better understanding of their
role in the differentiation of normal blood stem cells [1–7]. With
the advancement of chromatin immunoprecipitation assays with
sequencing (ChIP-seq) technology in recent years, both large-

scale consortium efforts and individual laboratories have contrib-
uted to an immense collection of public ChIP-seq data sets that
include samples from all stages of haematopoietic development
[8–11]. However, the precise mechanisms by which TFs influence
cell-type identity are still largely unknown, and analysis across
large numbers of ChIP-seq experiments is made difficult by an
even larger number of genome-wide binding sites. The binding of
distinct TFs in the same cell type is also known to be highly corre-
lated and, therefore, correlation or enrichment analysis alone is
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insufficient to identify relevant TF interactions. Few studies have
addressed the impact of global TF binding during blood cell devel-
opment in part because of a lack of suitable methods for integrat-
ing large-scale data sets. The development of alternative
approaches for the comparison of genome-wide binding sites
therefore has the potential to provide useful biological insights.

In this study, we used a graphical modelling approach to cre-
ate a network that displays the relationship between ChIP-seq
samples and TF combinations, whose correlated binding on regu-
latory elements is most likely causally linked. Graphical models
were used to infer the joint probability distribution of a set of
samples to distinguish ‘direct’ from ‘indirect’ dependence be-
tween TFs and, therefore, serve as a useful approach to under-
standing combinatorial regulatory interactions. In the past,
graphical models such as Bayesian networks and Gaussian
Graphical Models (GGMs) have been used to infer networks from
gene expression data such as microarray. However, these studies
have mainly focused on data from lower eukaryotes where data
sets are smaller and regulatory interactions are less complex [12–
14]. Here, we show that a similar approach can be applied to
genome-wide TF-binding profiles of a large-scale haematopoietic
ChIP-seq data set and demonstrate the usefulness of a network-
based visualization of ChIP-seq samples over existing methods
such as correlation heatmaps, mutual information or enrichment
analysis. In general, the network provides valuable insights into
TF interactions that are supported by known protein–protein
interactions in normal haematopoietic development as well as
the reorganization of TF binding in leukemic cells.

Materials and methods
HAEMCODE ChIP-seq data source and processing

Public mouse ChIP-seq data sets from blood-related cell types
were obtained from the NCBI Gene Expression Omnibus and the
EMBL-EBI European Nucleotide Archive (Supplementary Table
S1). Raw data were processed and peaks were discovered using
a standardized pipeline as described in Sanchez-Castillo et al.
[11]. Collectively, there were 501 163 genomic segments from
significant peaks (overlapping regions �1 bp merged) identified
in 367 ChIP-seq samples. We use the term ‘sample’ to refer to
one ChIP-seq profile. If multiple different TFs were immunopre-
cipitated in a single study, the individual TFs are therefore
counted as individual samples.

Multi-sampleTF-binding profile

Given a set of ChIP-seq samples P ¼ ½1; p� with N ¼ ½1;n� genomic
segments (peaks), a binary matrix of TF-binding profiles, X, was
constructed using the intersectBed function in BEDTools [15] and
consists of n rows of genomic segments and p columns of ChIP-seq
samples. Each element in the matrix, Xij ð1 � i � n; 1 � j � pÞ,
takes the value of ‘1’ if a peak was identified in the correspond-
ing sample and ‘0’ otherwise. In this study, n ¼ 501; 163 and
p ¼ 367.

Heatmap and hierarchical clustering of
ChIP-seq samples

Using the multi-sample TF-binding profile described above, we
calculated the Pearson correlation coefficient for all pairwise
comparison of samples. Hierarchical clustering was then
applied to the matrix of correlation values using the hclust func-
tion in R [16], and a clustered heatmap was generated using the
gplots package [17] in R.

Network inference algorithms for constructing a TF
association network

The multi-sample TF-binding profile described above was used
to generate a ‘TF association network’ G ¼ ðV; EÞ, where V is the
set of vertices (i.e. nodes) and E is the set of undirected vertex
pairs (i.e. edges). Each node corresponds to a single ChIP-seq
sample or TF, and an edge in the graph denotes a significant
‘direct’ dependence between the binding of a pair of TFs. Direct
dependence was determined using four algorithms—Bayesian
network, Gaussian graphical model, graphical lasso and linear
regression—using the bnlearn [18], GeneNet [19] and glasso [20] R
packages as well as the TIGRESS [13] MATLAB software. See
Supplementary Methods for more details.

To obtain a consensus network for further analysis, we con-
structed a new network based on the edges that were dis-
covered in any three or more algorithms, and the resulting
graph consists of 362 nodes and 1182 edges. Cytoscape version
3.2.1 was used to visualize the network [21]. Source code for
generating the consensus network in this study can be down-
loaded at (https://bitbucket.org/feliciang/publication_tf_associa
tion_network).

Protein–protein interaction data and performance
testing

Known and predicted protein–protein interactions were down-
loaded from the STRING website [22] (http://string-db.org/).
Performance of the ‘TF association network’ was compared
against the correlation graph and each of the individual net-
work inference algorithms by comparing the precision and re-
call rate of identifying mouse protein–protein interactions in
the database. In total, there were 56 unique TFs in our data set
that have evidence for protein–protein interactions in STRING.
Edges of the network were annotated with high-confidence pro-
tein actions (keyword ‘binding’) to highlight physical inter-
actions (thick black lines on network) rather than functional
interactions (thick grey lines). Interactions were considered
high-confidence links if the combined score was �500.

Results
Comparison of multiple genome-wide ChIP-seq binding
profiles demonstrates that improvement of the current
analysis methods is needed

Recent research on genome-wide TF-binding profiles increas-
ingly relies on larger sample sizes (some in the order of tens or
even hundreds of ChIP-seq samples) to uncover novel biological
insights. Bioinformatics analysis therefore often requires ana-
lysis of a data matrix that may include hundreds of thousands
of genomic regions and hundreds of ChIP-seq samples contain-
ing information about where each TF binds in the genome. This
information is commonly stored as a binary matrix where ‘1’
denotes the presence of TF binding and ‘0’ otherwise
(Figure 1A). Each row in the matrix corresponds to a genomic
segment bound by at least one sample in the compendium, and
each column corresponds to a sample. The term sample is used
here to refer to one ChIP-seq profile. Hence, the set of n genomic
segments is the union of all TF-bound sites in p samples. Using
this ‘multi-sample TF-binding profile’, one commonly used
technique to understand the relationship between ChIP-seq
samples is to calculate the correlation coefficient between all
pairs of samples, which are then displayed in a clustered heat-
map. This provides a measure of similarity between the global
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Figure 1. Multi-sample comparison of genome-wide TF-binding profiles. (A) Multi-sample TF-binding profile matrix. TF ChIP-seq peaks from multiple samples can be

represented in a binary matrix where rows are n collective genomic segments from peaks identified in p samples. Each element in the matrix can be either a ‘1’ denot-

ing a peak or ‘0’ denoting absence of a peak in that particular sample. (B) ChIP-seq samples used in this study (total¼367) encompass all major blood cell types as well

as other haematopoietic-related cell types/lines. Numbers of samples for each cell type are shown in brackets. (MegaK Prog—megakaryocyte progenitor, Ery Prog—

erythroid progenitor, Myeloid Prog—myeloid progenitor, Thymo—thymocytes, MegaK—megakaryocyte, Ery—erythroid, Mac—macrophage, Dend—dendritic cells,

ILC—innate lymphoid cells, ES-derived HSPC—embryonic stem cell-derived haematopoietic stem/progenitor cells) (C) Barchart indicates the number of peaks for each

sample grouped and coloured by cell type as in B. Line plot shows the cumulative number of unique peaks. (D) Heatmap and hierarchical clustering of 367 ChIP-seq

samples. Each element in the heatmap indicates the pairwise Pearson correlation coefficient between samples in the corresponding row and column. Colour bars indi-

cate the cell type as in B that each sample belongs to.
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binding profiles of one TF against all the other TFs in the study.
However, as the numbers of samples increase, the number of
nonoverlapping segments increases as well, especially with
increasing diversity in sample conditions. This can have unin-
tended consequences on the calculation of correlation coeffi-
cient because the vectors of zeroes (see red box in Figure 1A)
contribute to increased correlation, even though these binding
sites are often irrelevant to a comparison between two samples.
Discarding these entries, however, will give an inaccurate esti-
mate of the correlation between a pair of samples in compari-
son with all the other samples.

As the available data increase, improved methods are
needed to compare and discover relationships between ChIP-
seq studies, and here, we present a new approach to this prob-
lem. In particular, the joint probability distribution of the entire
data set is more informative than pairwise comparisons using
correlation coefficient. We applied our new technique to public
data sets in a previously reported ChIP-seq resource—the
HAEMCODE repository, now part of the CODEX compendium
[10, 11]—and at the start of this study, this consists of 367 uni-
formly processed ChIP-seq samples (a subset of which is data
published by our laboratory). These data sets encompass 86 dif-
ferent TFs covering all major haematopoietic or
haematopoietic-related cell types (Figure 1B). First, we con-
structed a ‘multi-sample TF binding profile’ matrix (see the
‘Materials and Methods’ section) to store information about TF-
binding locations in the genome for all 367 samples. Matrix
elements take the value of ‘1’ if a ChIP-seq peak was identified
by our data processing pipeline and ‘0’ otherwise. As shown in
Figure 1C, each sample contributes to increasing numbers of
genomic segments (additional rows in matrix), which sums up
to 501 163 unique TF-binding segments for 367 samples.
Importantly, this also increases the number of genomic seg-
ments that are not binding peaks in the majority of all other
samples and therefore increases the number of rows with
zeroes. Using these data, we found that the majority of samples,
even those from distantly related cell types, are (to some de-
gree) positively correlated with each other (Figure 1D), as the
minimum correlation coefficient observed between a pair of
samples was 0.129, and no negative correlation was observed in
any pairwise comparison. This limits the utility of correlation
heatmaps to provide valuable insight into the cooperative na-
ture of TF binding, as a threshold cannot be clearly defined from
the range of positive correlation values to distinguish ‘direct’
from ‘indirect’ interactions. Moreover, correlation heatmaps are
limited in their ability to show relationships between multiple
samples and are not designed to distinguish likely direct from
indirect links.

Graphical models are useful for comparing ChIP-seq
samples and understanding the mechanisms of
TF binding

We propose an alternative method to compare and discover re-
lationships between ChIP-seq samples using graphical model-
ling theory. In particular, we suggest that greater insights into
TF-binding mechanisms can be uncovered using graphical mod-
els because graphs can express likely causal relationships be-
tween multiple ChIP-seq data sets. We call this type of graph a
‘TF association network’, where components of a network are
nodes representing samples (i.e. TFs), and undirected edges rep-
resent causal pairwise relationships between any two TFs. The
motivation for this approach stems from its widespread adop-
tion in constructing gene regulatory networks (GRNs) from gene

expression data sets such as microarray, where several con-
cepts underlying GRN inference can be borrowed to construct a
network for ChIP-seq data sets. First, the notion of conditional
independence is useful for uncovering ‘direct’ interactions be-
tween TFs. Second, TF-binding networks are assumed to be
sparse (few TFs interact with each other) and have an organized
structure. Third, the discovery of important edges for each TF in
the network can be treated as a feature selection problem by
which only important TFs regulating its binding are identified.
By adapting GRN algorithms, therefore, we should obtain a con-
nected structure of TF-binding influences from a finite set of
TF-bound regions in the genome.

To construct a ‘TF association network’, our aim is to iden-
tify important edges that represent likely causal pairwise rela-
tionships between any two TFs. Starting with a ‘multi-sample
TF-binding profile’ (Figure 2A—I), we adapted several GRN infer-
ence algorithms to obtain a matrix of pairwise direct depend-
ence measure for all samples in the input data (Figure 2A—II).
Each element in the matrix, therefore, indicates the degree of
‘direct’ influence of the binding of one TF on the binding of an-
other TF. In contrast, observing a large degree of correlation is
not sufficient to indicate that two TFs have a ‘direct’ interaction
and instead only provide weak evidence for ‘direct’ dependence.
After all, in a regulatory network for haematopoiesis, we expect
that most TFs are somewhat correlated with each other. To il-
lustrate the notion of conditional independence, Figure 2B
shows an example of the importance of considering ‘direct’ de-
pendence when evaluating TF associations. In the absence of TF
C, observing a strong correlation between TF A and B does not
necessarily imply a ‘direct’ interaction between the two TFs, but
may instead suggest any of the following two scenarios: (i) TF A
and B independently compete with TF C for DNA binding, or
(ii) TF A and B are commonly regulated by TF C. In other words,
TF A and B are conditionally independent given C and, there-
fore, suggest an ‘indirect’ interaction between TF A and B, as
their correlation is already explained by another TF.
Furthermore, TF A and B may still be conditionally dependent
given C in the following two scenarios: (i) TF A regulates TF B,
which in turn regulates TF C; or (ii) TF A regulates both TF B and
C. It is therefore crucial for network inference algorithms to be
able to distinguish ‘direct’ interactions from ‘indirect’ inter-
actions by simultaneously comparing one TF-binding profile
against all other TFs. In a data set with more than three ChIP-
seq profiles, conditional dependence between TF A and B indi-
cates a likely ‘direct’ interaction between the two TFs given all
the samples in the data set. This can be useful when comparing
samples from multiple cell types because the joint probability
distribution provides a direct comparison across all samples.

We chose one algorithm from each of the following catego-
ries to obtain the conditional dependence measures: GGM,
graphical lasso, linear regression and Bayesian network. These
algorithms were selected based on their performance in the
DREAM5 challenge [23], reasonable computational time for our
data set and for which implementation of the algorithms is
readily available. Moreover, they were selected because valid-
ation and testing on gold standard data sets had been carried
out to demonstrate the robustness in gene network reconstruc-
tion [23–26]. The following packages (R or MATLAB) were used
to calculate the direct dependence matrix from the ‘multi-sam-
ple TF-binding profile’: GeneNet [19], glasso [20], TIGRESS [13] and
bnlearn [18]. A significance threshold is then applied to the ma-
trix, and entries that pass this threshold are given a score of ‘1’
in the adjacency matrix and ‘0’ otherwise (Figure 2A—III), with
the following rules: (i) the influence of TF A on TF B is equivalent

4 | Ng et al.

 at C
am

bridge U
niversity L

ibrary on N
ovem

ber 18, 2016
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: -
Deleted Text: actually 
Deleted Text: s
Deleted Text: to 
Deleted Text: s
Deleted Text:  - 
Deleted Text:  - 
Deleted Text: ,
Deleted Text: TF 
Deleted Text: ,
Deleted Text: TF 
Deleted Text: this 
Deleted Text: since 
Deleted Text: -
Deleted Text: since 
Deleted Text: TF 
Deleted Text: TF 
Deleted Text: TF 
Deleted Text: TF 
Deleted Text: since 
Deleted Text: ,
Deleted Text: TF 
Deleted Text: Gaussian Graphical Model (
Deleted Text: )
Deleted Text: ,
Deleted Text: are 
Deleted Text: TF 
Deleted Text: ,
Deleted Text: The 
http://bib.oxfordjournals.org/


Figure 2. Schematic of the generation of a TF association network. (A) A ‘multi-sample TF-binding profile’ was used to compute conditional dependence between all

pairs of samples (i.e. TFs). This produces a p � p matrix, where each element indicates the conditional dependence between the two corresponding TFs. A stronger

value denotes stronger dependence between the binding profiles of the two ChIP-seq samples. Applying a threshold to the conditional dependence measure yields an

adjacency matrix of the most significant ‘direct’ TF interactions, which can be displayed as edges in a network diagram. Directionality of the edges was ignored.

(B) Example of a network involving three TFs and the difference between ‘direct’ from ‘indirect’ TF interactions. Observing strong correlation coefficients between TF A

and B (top graph) does not necessarily imply ‘direct’ interactions as illustrated by the alternative scenarios (bottom four graphs).

A graphical model for ChIP-seq data | 5
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to the influence of TF B on TF A; (ii) if the direct dependence ma-
trix is non-symmetrical, the direct dependence measure for a
pair of TFs A and B is taken as the average between the influ-
ence of variable A on B and variable B on A; (iii) self-edges that
denote influence of a TF on itself are ignored. Therefore, each
non-zero off-diagonal element in the upper (or lower) triangle
of the adjacency matrix denotes an undirected and unweighted
edge between the corresponding TFs. Self-regulations were not
considered because we do not assume that the binding of a par-
ticular TF induces more of the same TFs to bind. Finally, the sig-
nificant edges are displayed in a graph to perform further
analysis on the conditional dependence structure of TF binding
(Figure 2A—IV).

TF association networks uncover the conditional
dependence structure of TF binding and provide
insights into haematopoietic transcriptional regulation

As all of the algorithms mentioned above are known to be af-
fected by distinct strengths and weaknesses, we decided to gen-
erate a more robust network from the consensus across the four
algorithms by considering only edges discovered in any three or
more algorithms (Supplementary Figure S1). This resulted in a
network containing 362 nodes and 1182 edges (Figure 3). Each
node in the network represents a single ChIP-seq sample (i.e.
TF) and is coloured by the cell type it belongs to. An edge be-
tween two nodes denotes a significant conditional dependence
between the samples suggesting that interaction is likely be-
tween the two TFs. By considering only edges discovered by
three or more algorithms, we obtained a list of high-confidence
TF influences, as these edges are more likely to be associated
with a stronger direct dependence measure (Supplementary
Figure S2). Furthermore, this generates a network that connects
all nodes in the graph, thus facilitating the comparison across
all cell types. The graphical lasso method appeared to be an out-
lier because it identified many edges not present in the remain-
ing three algorithms (Supplementary Figure S1). In comparison
to GRNs, ‘TF association networks’ have properties that are dis-
tinct from scale-free networks. First, a majority of the nodes do
not have a preference for the number of neighbours, but instead
node degrees can take a wide range of values (Supplementary
Figure S3A). In other words, its distribution does not follow the
power law as often seen in a scale-free network. Second, the
average clustering coefficient for all nodes in the network does
not follow a particular pattern and, therefore, suggests that the
graph connectivity is not influenced by the number of neigh-
bouring nodes (Supplementary Figure S3B). Third, nodes tend to
be connected to other nodes of similar degree unlike GRNs
where hubs tend to avoid each other (Supplementary Figure
S3C). Taken together, these features indicate that a ‘TF associ-
ation network’ can capture aspects of the combinatorial nature
of TF regulatory interaction that are missed by correlation coef-
ficient measures. Of note, the organization of TFs in this net-
work shows a strong arrangement according to cell type rather
than by TF (i.e. nodes of the same colour are grouped together),
indicating that different TFs in the same cell type are more
similar to each other than the same TFs in different cell types.
An exception to this pattern is the observation that the CTCF TF
forms a cluster on its own (bottom right subnetwork of Figure
3), consistent with the cell-type invariant function of CTCF [6,
27, 28]. Furthermore, the network also shows the strong de-
pendence of CTCF on the cohesin complex (which includes
Rad21 and Smc3) as reported previously [29].

We also found that TFs naturally organize into small clusters
(Supplementary Figure S4), thereby emphasizing groups of simi-
lar TFs in a much clearer visualization than a heatmap of correl-
ation coefficients. The network also provides a useful
visualization for known interactions between seven TFs (Erg,
Fli1, Lmo2, Gata2, Tal1, Lyl1 and Runx1) in haematopoietic stem/
progenitor cells (HSPC) [7] as shown by the subnetwork on the
top right of Figure 3. To gain more mechanistic insights from
this network, we annotated the edges in the network with pro-
tein–protein interaction data obtained from the STRING data-
base [22]. We chose this data set as the gold standard because it
is one of the most comprehensive databases of protein–protein
interaction that is derived from multiple primary databases, has
a large coverage of different proteins and consists of physical
and functional interactions that are experimentally verified or
computationally predicted. As this database contains known as
well as predicted protein–protein interactions and includes both
physical and functional associations, we decided to focus on
high-confidence and physical interactions. Cooperative regula-
tion by TF pairs is commonly associated with direct protein–
protein interaction. As edges in our network represent likely dir-
ect interactions between two proteins that are commonly co-
localized across the genome, we would expect a substantial pro-
portion of these edges to be supported by evidence from the
STRING protein–protein interaction database. In total, 222 edges
were identified as high-confidence links in STRING and, of
these, 46 edges are supported by evidence of physical inter-
actions. However, evidence for interaction is not likely to be
associated with a stronger partial correlation (GGM and graph-
ical lasso) or normalized importance score (linear regression) of
the edges in our network (Supplementary Figure S5). In Figure 3,
thick grey edges represent high-confidence functional protein–
protein interactions, whereas thick black edges indicate re-
ported evidence of physical interactions between the proteins.
For example, LMO2 and Gata2 as well as Fli1 and Runx1 have
been shown to physically interact with each other (top right).
Other examples of subnetworks show the strong dependence
between mast cell TFs (middle right) [6] and the combination of
three TFs—Stat5, Irf4 and Batf—to be important for T-cell devel-
opment (bottom left) [30, 31]. Overall, edges in our network rep-
resented known protein–protein interactions, but many edges
are not supported by data from STRING. This is most likely be-
cause the STRING database has not included all protein–protein
interactions published to date. It is also formally possible that a
TF may influence DNA binding of another TF without the need
for direct protein–protein interaction. Compared with the cor-
relation method, however, our network is better at recovering
known protein–protein interaction. We generated a correlation
graph with similar number of edges as our ‘TF association net-
work’ (1089 edges with correlation coefficient� 0.55) and com-
pared the number of known STRING records that were
identified by both networks. Although both networks have simi-
lar precision rate (correlation graph—15%, TF association net-
work—18%), the ‘TF association network’ had a better recall rate
(correlation graph—14%, TF association network—31%) (Table
1). Moreover, the ‘TF association network’ had the highest preci-
sion rate (18%) compared with using any of the individual net-
work inference methods alone. In other words, the fraction of
network edges that are true protein–protein interactions is
highest when using the consensus network approach. In terms
of recall rate, however, the Bayesian network and GGM achieved
>45% recall, while our ‘TF association network’ appeared to be
limited by the interactions identified by the graphical lasso
method (31%). As stated above, the graphical lasso method
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Figure 3. TF association network generated from 367 ChIP-seq samples. In total, there are 362 nodes (corresponding to 88 TFs and 16 cell types) in the network, each

representing a single ChIP-seq sample and are coloured by the cell type it belongs to (five samples were not connected with edges to any samples in this network). The

haematopoietic development tree shows the number of samples for each cell type that are included in this network. There are 1182 edges connecting the nodes, each

representing a consensus edge that were discovered in at least three algorithms of four. Thick edges (black and grey) indicate high-confidence protein–protein inter-

action (confidence score �500). Evidence for physical interactions is indicated by thick black lines. (MegaK Prog—megakaryocyte progenitor, Ery Prog—erythroid pro-

genitor, Myeloid Prog—myeloid progenitor, Thymo—thymocytes, MegaK—megakaryocyte, Ery—erythroid, Mac—macrophage, Dend—dendritic cells, ILC—innate

lymphoid cells, ES-derived HSPC—embryonic stem cell-derived haematopoietic stem/progenitor cells)
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identified more unique edges that are nonoverlapping with the
other methods (Supplementary Figure S1). Furthermore, many
of the proteins in the graphical lasso method are not found in
the STRING data set and, in total, 30 proteins that are in our
data set have no evidence for protein–protein interaction in the
STRING database. This suggests that many novel protein–pro-
tein interactions that control blood cell development are yet to
be discovered.

Having shown that the ‘TF association network’ can illus-
trate conditional dependence relationships between ChIP-seq
samples, we performed further network analysis to examine
specific features of cell-type-specific TF binding. For each node
in the network, we obtained all its first-neighbour nodes as well
as the cell type each neighbour belongs to. By examining the
first neighbours of each node in the network, we discovered
that not only do TFs in the same cell type have similar binding
but these TFs are more likely to associate with other TFs from a
closely related haematopoietic cell type within the same lineage
(Figure 4A). Moreover, HSPC derived from embryonic stem cells
are closely related to haematopoietic progenitor samples, while
samples from mouse erythroleukaemia and leukaemia are less
biased to a subgroup of cell types, but instead show similarity to
TF binding across all cell types. Figure 4B shows a subnetwork
obtained by extracting only GATA TFs from the ‘TF association
network’. In this subnetwork, we observed the utilization of
specific GATA factors in distinct blood lineages—Gata1 and
Gata2 in the myeloid lineage and Gata3 in T cells, and Gata3 TFs
are independent of the binding of myeloid Gata1 and Gata2 TFs.

The study of TFs under diseased conditions is increasingly
important for gaining mechanistic insights to transcriptional
regulation during disease progression. It is also well known that
genes encoding TFs account for many of the translocations
observed in leukaemia patients. In this study, ChIP-seq samples
from leukaemia studies (i.e. acute myeloid leukaemia, T-cell
acute lymphoblastic leukaemia and the MLL–AF9 translocation)
were incorporated into the ‘TF association network’ together
with other samples of normal cell types. To investigate the TF-
binding relationship between these two conditions, we plotted
a subnetwork (Figure 4C) to display all the TFs from leukaemia
studies together with their closest neighbour. Of note, this sub-
network shows the similarity of TFs in leukaemia to many pro-
genitor samples (haematopoietic progenitor, megakaryocyte
progenitor and myeloid progenitor). Although one might have
expected that leukemic TFs would resemble the binding of the
same TF in one of the normal cell types, we found that the
genome-wide binding of these TFs can in fact change

dramatically during cancer progression to resemble the binding
of a completely different TF.

Discussion

As a result of the advancements in ChIP-seq technology and its
widespread uptake by individual laboratories as well as large-
scale consortium efforts, it is now possible to integrate publicly
available ChIP-seq experiments to perform large-scale quantita-
tive and qualitative meta-analysis of genome-wide TF-binding
profiles. For example, various bioinformatics approaches have
been used to uncover protein–protein interactions from a collec-
tion of ChIP-seq data to gain a global understanding of com-
binatorial TF binding and interaction networks in the regulation
of cell fate decisions [33, 34]. In a recent study, our group also
showed that the integration of disparate public TF ChIP-seq ex-
periments of blood-related samples can form a coherent picture
of constrained sequence-specific TF pair interaction with the
DNA [35]. Here, we demonstrate that correlation coefficient as a
measure for TF relationships has limitations given the large
numbers of cell-type-specific binding regions in a compendium
of samples coming from a broad range of haematopoietic cell
types. We further showed that graphical modelling theory has
the added advantage of joint network modelling, provides the
fundamentals for constructing conditional dependence graphs
to detect likely direct dependence between TFs and the result-
ing ‘TF association network’ provides an intuitive data visual-
ization technique for understanding regulatory relationships
between TF ChIP-seq samples. The notion of conditional
independence enabled the discovery of ‘direct’ TF interactions
that are consistent with our knowledge of TF function because
(i) TFs bind to the DNA with differing affinity, (ii) different TFs
can compete for the same set of binding sites and (iii) TFs coop-
erate to form synergistic interactions. In contrast, correlation
networks applied to this type of data would only uncover the
marginal dependence structure among TFs. Using four different
algorithms to obtain conditional dependence measures of TF
binding on all regulatory elements bound in haematopoietic
cells, we were able to (i) construct a ‘TF association network’
that is suggestive of the causal structure underlying the
observed dependencies, (ii) visualize the relationships between
ChIP-seq samples of not only normal haematopoietic cell types
but also leukemic cells, (iii) uncover likely mechanisms of TF
binding including combinatorial regulation, cell-type-specific
regulators and binding site reorganization during haematopoi-
etic differentiation and (iv) identify cell-type-specific as well as
shared TFs.

By treating the ‘TF association network’ inference algo-
rithms as a sparse feature selection problem, the most import-
ant edges in the network can be discovered. Controlling the
network sparsity, therefore, will produce a network where few
TFs interact with each other. Although the algorithms used in
this study were initially developed for high-dimensional data
(i.e. small n, large p), they provide quick computation of the con-
ditional dependence measures for TF-binding data (i.e. very
large n, large p) and, more importantly, the simultaneous selec-
tion of the most important TF variables directly impacting on
each TF. In this study, we did not use any tree-based network
inference algorithms (such as random forest) because the com-
putation time was too long for several hundred samples, but
would have been feasible for a smaller data set. Edges in the
network were supported by experimental evidence of known
protein–protein interactions in the STRING database. Many
edges that were not supported by STRING are in fact known

Table 1. Performance comparison between the ‘TF association net-
work’, the individual network inference algorithms and the correl-
ation graph

Network inference
method

TP FP TN FN Precision
(%)

Recall
(%)

Correlation graph 14 78 1366 82 15.22 14.58
GGM 44 248 1196 52 15.06 45.83
Graphical lasso 30 166 1278 66 15.31 31.25
Linear regression 35 252 1192 61 12.19 36.45
Bayesian network 47 268 1176 49 14.92 48.95
TF association network 30 131 1313 66 18.63 31.25

Note: Prediction rates (precision and recall) refer to the percentages of STRING

protein–protein interactions identified by each network inference method. TP,

true positive, FP, false positive, TN, true negative, FN, false negative.
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Figure 4. Analysis of TF association network. (A) First neighbour analysis. Bar chart shows the number of samples, which are first neighbour nodes and the cell type it

belongs to. Barchart was plotted in R using the ggplot2 package [32]. (B) Subnetwork of all GATA ChIP-seq samples and its closest neighbour nodes. Nodes are coloured

by the cell type they belong to (Figure 4A). (C) Subnetwork of all leukaemia ChIP-seq samples and its closest neighbour nodes. Nodes are coloured by the cell type they

belong to (Figure 4A).
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interactions that have not been added to the database. For ex-
ample, Gata2/Fli1/Tal1 is an important regulatory circuit, and
Ldb1 is known to interact with Tal1 as part of a specific complex
involving Lmo2, Tcf3, Gata1, Tal1 and Ldb1 during haematopoi-
etic development (Supplementary Figure S6) [36, 37]. Consistent
with observations from several independent studies, we found
that TFs undergo substantial binding site reorganization during
development [1, 6, 9, 38] and are differentially recruited in dif-
ferent blood cell types [5, 39]. However, it is important to note
that direct interactions in a ‘TF association network’ may or
may not be associated with cell-type-specific gene expression
or the hierarchy of TF recruitment, although these are known to
have an important influence on cell fates [40, 41]. To do this, we
suggest that additional data such as gene expression are incor-
porated into the network analysis. Moreover, the algorithms
used in this study only assume an average binding effect be-
tween two TFs, but make no inference about the different
modes of interaction (activation, repression or both).

Unlike GRNs where highly connected nodes (hubs) are sur-
rounded by low-degree nodes and hubs tend to avoid each
other, nodes in our TF association network have a preference
for attaching to other nodes of similar degree, which in itself is
highly suggestive of combinatorial TF binding. Interestingly, the
network not only provides a global view of TFs that are import-
ant for haematopoiesis including a global view of lineage-
specific factors but also the current state of knowledge of
known TFs that are important for the function of haematopoi-
etic cell types. Using this network, investigators may choose to
prioritize certain experiments or define a hypothesis for further
testing. The nearest neighbour analysis, in contrast, suggests
potential factors for TF-mediated cellular reprogramming and
may provide an indication of the shortest path in which somatic
cell reprogramming of cell-type-specific enhancers may take
place. The overexpression of a set of defined factors whose
binding is most similar and possibly acting as co-factors is likely
to be more efficient in remodelling the genome to a pluripotent
state than the overexpression of factors whose binding are dif-
ferent. Our network also allowed comparison of TFs in normal
cell types with leukemic samples and showed the relationships
between TF binding and the leukaemia phenotype. In particular,
TFs in leukemic samples undergo substantial binding reorgan-
ization and are similar to many factors in progenitor cell types,
although similarity to some mature cell types was also
observed. Our network also uncovered potential co-factors that
may be recruited to these new binding sites in leukaemia. This
is consistent with observations where dysregulated TFs in leu-
kaemia can lead to a differentiation block through changes in
TF-binding ability and impaired recruitment of co-factors [42].

Compared with recent studies using large-scale ChIP-seq
data sets, our method provides a more intuitive comparison of
all samples from multiple cell types and how they are related to
each other. Moreover, it serves as a framework for generating
new hypothesis on potential TF partners. Self-organizing maps,
non-negative matrix factorization and probabilistic itemset
mining are among some of the computational methodologies
that have been used to infer TF co-localization patterns from
TF-binding profiles [34, 43, 44]. Important protein complexes are
then selected from commonly occurring co-localization pat-
terns if they influence cell-type-specific gene expression.
Graphical models, on the other hand, have been applied to
ChIP-seq data sets in Drosophila melanogaster, but in a much
smaller data set [45], while Gaussian graphical models have
been shown to be a stable solution for uncovering reactions in a
metabolic pathway [46]. Our method differs from these studies

because a ‘TF association’ network facilitates the direct com-
parison of TFs in multiple cell types within a single visualiza-
tion, as the joint probability distribution was calculated on all
samples. Moreover, the uniformly processed data in CODEX fa-
cilitate the comparison of data from different laboratories.
Using standard techniques to analyse our network, we were
able to also uncover the cell-type-specific and shared relation-
ships between TFs across haematopoietic development. Nodes
that do not seem to cluster with the cell type or TF they belong
to can also serve as a proxy for a missing TF in the input data
set. A recent study took a similar approach to generate a graph-
ical model for ENCODE TF and histone modification ChIP-seq
data and showed that conditional dependence measures can
easily scale up to large data sets as well as discover known pro-
tein–protein interactions [47]. Indeed, the interplay between TF
binding and epigenetic state is crucial for determining cell fate,
and therefore, may influence the topology of the TF association
network. Cell-type-specific epigenetic profiles, however, have
been shown to be largely driven by the expression of lineage-
restricted TFs, and the relationship between epigenetic state
and TF binding is tightly linked and mutually impact each other
[4, 41, 48, 49]. Instead of directly incorporating chromatin data
into our model, however, we believe a better approach would be
to create a directional network with hierarchical organization of
chromatin and TF influence. In such a network, the conditional
dependence relationship is imposed by the hierarchy, and the
combined chromatin and TF model would, therefore, consist of
directional edges with causal interpretation between epigenetic
states and TF binding.

Taken together, the TF association network is a flexible form
of graphical representation and may be adapted further to suit
different analysis requirements. For example, the conditional
dependence measures may be calculated from peak height val-
ues instead, or weighted edges may be inferred from the partial
correlation coefficient values. DNA methylation, epigenetic
mechanisms and DNA accessibility are all known to influence
TF binding [50–52], but have not been investigated here. Future
integration of such data sets (e.g. MNAse-seq, DNAse-seq,
FAIRE-seq, ATAC-seq, etc.) will provide greater insight into
how these additional layers of gene regulation influence
the conditional dependence structure of a ‘TF association
network’.

Key Points

• Commonly used methods for the comparison of mul-
tiple TF-binding maps are not adapted to visualizing
transcriptional regulation across diverse developmen-
tal stages.

• Here, we report an alternative visualization approach
using graphical modelling theory that not only dis-
covers functionally relevant regulatory relationships
but illustrates TF influences of a diverse set of TFs
across the spectrum of mouse blood cell development.

• The notion of conditional independence and simultan-
eous variable selection of TF influences represents an
intuitive approach to discovering ‘direct’ dependence
between TFs.

• The resulting network illustrates key features of TF
function including combinatorial TF regulation, cell-
type-specific regulators, protein–protein interaction
and TF-binding reorganization in leukemic cells.
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Supplementary data are available online at http://bib.oxford
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