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Abstract

Background: Animal studies have shown that nutritional exposures during pregnancy can modify epigenetic marks
regulating fetal development and susceptibility to later disease, providing a plausible mechanism to explain the
developmental origins of health and disease. Human observational studies have shown that maternal peri-conceptional
diet predicts DNA methylation in offspring. However, a causal pathway from maternal diet, through changes in DNA
methylation, to later health outcomes has yet to be established. The EMPHASIS study (Epigenetic Mechanisms linking
Pre-conceptional nutrition and Health Assessed in India and Sub-Saharan Africa, ISRCTN14266771) will investigate
epigenetically mediated links between peri-conceptional nutrition and health-related outcomes in children whose
mothers participated in two randomized controlled trials of micronutrient supplementation before and during pregnancy.

Methods: The original trials were the Mumbai Maternal Nutrition Project (MMNP, ISRCTN62811278) in which Indian
women were offered a daily snack made from micronutrient-rich foods or low-micronutrient foods (controls), and the
Peri-conceptional Multiple Micronutrient Supplementation Trial (PMMST, ISRCTN13687662) in rural Gambia, in which
women were offered a daily multiple micronutrient (UNIMMAP) tablet or placebo. In the EMPHASIS study, DNA
methylation will be analysed in the children of these women (~1100 children aged 5–7 y in MMNP and 298 children
aged 7–9 y in PMMST). Cohort-specific and cross-cohort effects will be explored. Differences in DNA methylation
between allocation groups will be identified using the Illumina Infinium MethylationEPIC array, and by pyrosequencing
top hits and selected candidate loci. Associations will be analysed between DNA methylation and health-related
phenotypic outcomes, including size at birth, and children’s post-natal growth, body composition, skeletal development,
cardio-metabolic risk markers (blood pressure, serum lipids, plasma glucose and insulin) and cognitive function. Pathways
analysis will be used to test for enrichment of nutrition-sensitive loci in biological pathways. Causal mechanisms for
nutrition-methylation-phenotype associations will be explored using Mendelian Randomization. Associations between
methylation unrelated to supplementation and phenotypes will also be analysed.
(Continued on next page)
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Conclusion: The study will increase understanding of the epigenetic mechanisms underpinning the long-term impact of
maternal nutrition on offspring health. It will potentially lead to better nutritional interventions for mothers preparing for
pregnancy, and to identification of early life biomarkers of later disease risk.

Keywords: Pre- and peri-conceptional nutrition, Epigenetics, DNA methylation, Children, Growth, Body composition,
Bone density, Non-communicable disease (NCD) risk markers, Cognitive function, Developmental origins of health and
disease (DOHaD)
Background
EMPHASIS (Epigenetic Mechanisms linking Pre-con-
ceptional nutrition and Health Assessed in India and
Sub-Saharan Africa, www.emphasisstudy.org) is a collab-
oration between investigators in the UK, India and The
Gambia designed to profile genome-wide DNA methyla-
tion in children whose mothers participated in two pre-
and peri-conceptional micronutrient supplementation
trials (the Mumbai Maternal Nutrition Project in India,
MMNP [1] and the Peri-conceptional Multiple Micronu-
trient Supplementation Trial, PMMST, in rural Gambia
[2]). The main objectives of the study are to identify
methylation differences associated with the interventions
and correlate these with health-related phenotypes in
the children, including size at birth, post-natal growth,
and childhood body composition, skeletal health, cardio-
metabolic risk markers and cognitive function. We hy-
pothesise that maternal nutritional supplementation
around the time of conception will result in altered
DNA methylation profiles in the children, and that the
distinct methylation patterns identified will show poten-
tially causal associations with phenotypic characteristics
in the children. We further expect to identify methyla-
tion differences unrelated to supplementation that are
associated with the measured phenotypes.

Context
Poor quality diets and the resulting micronutrient defi-
ciencies are major public health problems in low-and-
middle-income countries (LMICs). In pregnant women
they impair fetal development, and recent evidence sug-
gests that they are also associated with longer term
health problems in the offspring including stunting [3],
impaired neurodevelopment [4] and, through ‘metabolic
programming’, with increased vulnerability to adult
non-communicable chronic diseases (NCDs) such as
obesity, type 2 diabetes, cardiovascular disease and
osteoporosis [5–7].
Long-term effects of fetal nutrition on later health

would require mechanisms by which a ‘memory’ of the
early environment is retained into later life and influences
metabolism. Epigenetic signatures, including patterns of
DNA methylation that are modifiable by environmental
exposures, are leading candidate mechanisms [8, 9]. DNA
methylation is a mitotically heritable epigenetic mark that
plays a key role in the transcriptional regulation of cellular
processes, including cell differentiation, genomic imprint-
ing and X-chromosome inactivation. DNA methylation
depends on the supply of methyl groups through the 1-
carbon pathway, which requires vitamins B2, B6, B12,
folate, methionine, choline and betaine, and amino
acids serine and glycine, for normal function. The peri-
conceptional period is a critical window when the
process of establishing methylation marks is sensitive
to nutrition [8, 9].
The initial ‘proof of principle’ of nutritional program-

ming mediated by changes in DNA methylation came
from the Agouti mouse model, in which natural vari-
ation in methylation at the Agouti locus influences coat
colour, adult adiposity and glucose tolerance [8]. This
locus is a metastable epiallele (ME), a genomic region
characterised by inter-individual variation in methylation
patterns that are established in the early embryo before
gastrulation, and are therefore highly correlated across
tissues derived from all three germ layers. Feeding preg-
nant dams ‘methyl donor’ nutrients (vitamin B12, folic
acid, betaine and choline) increased methylation of the
agouti locus and reduced agouti gene expression, leading
to fewer obese yellow offspring and more lean brown
offspring, characteristics that persisted into adult life [8].
Dietary manipulations in pregnancy affect the methyla-
tion and expression of offspring genes other than MEs.
For example, in rats, maternal protein-restriction
reduces methylation of offspring peroxisome proliferator
activated receptor 1 alpha (PPARα) and glucocorticoid
and angiotensin receptor genes [10]. Maternal folic acid
supplementation prevents both the methylation and
phenotypic effects (e.g. high blood pressure) induced by
maternal protein restriction in the offspring.
There is evidence in humans that epigenetic changes

induced by the nutritional environment in early life alter
later phenotype, including body composition and cardio-
metabolic health. For example, DNA methylation at a
number of loci (insulin-like growth factor 2 (IGF2), retin-
oid X receptor alpha (RXRA), endothelial nitric oxide syn-
thase (eNOS), PGC1α, and cyclin-dependent kinase
inhibitor 2 (CDKN2a) genes in cord tissue, cord blood or
children’s leucocytes is associated with adiposity in later
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childhood [11–14]. Studies in The Gambia, where there is
marked seasonal variation in maternal nutrition, have
shown that season of conception is related to DNA
methylation of human infant MEs [15], and that methyla-
tion is predicted by elements of the mother’s methyl
donor metabolome at conception [16]. One implicated
gene is the maternally imprinted tumour suppressor and
immune function regulator vault RNA2–1 (VTRNA2–1)
[17], making it a promising candidate for exploring mech-
anisms linking season of conception and infectious disease
mortality in Gambians [18]. A methylation variant affect-
ing expression of the pro-opio-melanocortin (POMC)
gene has also been associated with child and adult obesity.
This locus is an ME, and in Gambian infants methylation
is associated with season of conception and maternal
1-carbon metabolites at conception [19].
Evidence for epigenetic programming in humans has

hitherto relied mainly on observational studies. Randomised
trials of peri-conceptional maternal nutritional inter-
ventions with follow-up of the children represent a
stronger study design in which to examine effects on
DNA methylation and health-related phenotypes,
reducing the problems of confounding and bias that
affect observational studies, thus providing stronger
evidence of causality. The EMPHASIS study will be
an important step towards understanding mechanisms
underpinning the developmental origins of health and
disease (DOHaD), identifying biomarkers of early life
exposures associated with later disease risk, and de-
signing more effective nutritional interventions for
mothers preparing for pregnancy.

Design and methods
EMPHASIS is a follow-up study of two cohorts of chil-
dren born to mothers who took part in separate
randomized controlled trials of nutritional supplementa-
tion before and during pregnancy.

The original trials and the cohorts of children
Mumbai maternal nutrition project
MMNP (also known as Project SARAS [‘excellent’];
ISRCTN62811278) was a non-blinded individually ran-
domized trial among Indian women living in Mumbai
slums (2006–2012) [1]. The intervention was a daily
snack, eaten in addition to normal diet, made from nat-
urally micronutrient-rich local foods (green leafy vegeta-
bles, fruit and milk). Control snacks contained foods of
low micronutrient content (e.g. potato, onion). Intervention
snacks contained 10–23% of the WHO Reference Nutrient
Intake (RNI) for β-carotene, vitamins B2 and B12, folate,
calcium and iron, and 0.7 MJ of energy and 6 g of protein,
compared with 0–7% RNI for the micronutrients, 0.4 MJ of
energy and 2 g of protein in control snacks. At recruitment,
non-pregnant women had detailed anthropometry, and
data were collected on socio-economic status (Standard of
Living Index [20]) and habitual diet by food frequency
questionnaire. They received either intervention or control
snacks; intake was supervised and recorded daily. Women
who became pregnant continued supplementation until
delivery, and were supplied with routine iron (100 mg) and
folic acid (500 μg) supplements as per Indian government
recommendations. Fetal biometry was recorded three times
during pregnancy (at approximately 10, 20 and 29 weeks
gestation, estimated from last menstrual period date and
ultrasound measures) [21]. Plasma folate and vitamin B12
concentrations were measured in early pregnancy
(~10 weeks gestation). An oral glucose tolerance test
(WHO 1999 protocol) was performed at 28–32 weeks ges-
tation [22]. Main outcomes were newborn anthropometry
and gestational age at delivery. Of 6513 women recruited,
2291 became pregnant, leading to 1962 live singleton
deliveries.
In the intention to treat analysis, there were no differ-

ences in birth weight or other newborn measurements
between allocation groups [1]. In the per protocol ana-
lysis, limited to women who started supplementation at
least 3 months before conception, a period that was con-
sidered long enough to achieve the maximal effect on
maternal nutritional status, birth weight increased by a
mean 48 g (p = 0.05). In both analyses there was an
interaction between maternal BMI and the intervention,
with a larger birth weight effect in mothers of BMI
>18.5 kg/m2 (intention to treat: +63 g [95%CI 11, 115];
per protocol: +96 g [95%CI 35, 154]; p for interaction
0.001). The intervention reduced the prevalence of ges-
tational diabetes (intention to treat: 7.3% compared with
12.4% in controls; OR: 0.56; 95% CI: 0.36, 0.86;
P = 0.008) [22]. It had no effect on fetal size assessed
using standard ultrasound measures [21].
The children of mothers who participated in MMNP

are currently (2013–2018) being studied at 5–7 years of
age (“SARAS KIDS” study) to measure anthropometry,
body composition, skeletal development, cardio-metabolic
risk markers and cognitive function (Fig. 1, Tables 1 and
2). Venous blood samples and buccal swabs are collected
for DNA and RNA, and are stored in -80 °C freezers until
transportation in batches to the laboratory on dry ice. The
DNA samples and phenotype data will be used for the
EMPHASIS study, in which we will limit the sample to
the 1562 children born to mothers in the per protocol
group. Data collection will be completed by the end of
January 2018.

West kiang Peri-conceptional multiple micronutrient
supplementation trial
PMMST (ISRCTN13687662) was a double-blind indi-
vidually randomized trial among women living in rural
West Kiang, The Gambia (2006–2008) [2] (Fig. 2). The



Fig. 1 Flow diagram of the MMNP trial in Mumbai, India and children’s follow-up (SARAS KIDS)
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intervention was a daily multiple micronutrient tablet
(UNIMMAP) providing the RNI of vitamins A, B1, B2,
niacin, B6, folic acid, B12, C, D and E and iron, zinc,
copper, selenium and iodine [23]. Control women
received matching placebo tablets. At recruitment, non-
pregnant women had anthropometry. Compliance with
supplementation was assessed by fortnightly tablet
counts. Women stopped the supplement when they
became pregnant, confirmed either by pregnancy test or
by ultrasound at approximately 12 weeks gestation, and
then both groups were supplied with routine iron (60 mg)
and folic acid 250 μg) supplements and anti-malarial
prophylaxis. Serial ultrasound scans were performed and
newborn anthropometry was recorded. Primary outcomes
were mid-gestation indices of utero-placental vascular-
endothelial function (ratio of plasminogen-activator
inhibitor [PAI] 1 to PAI-2), mean uterine-artery resistance
index and fetal-to-maternal measles antibody ratio as an
index of placental active transport capacity at delivery.
Of 1156 women recruited, 376 had live singleton

deliveries. There were no differences in PAI-1/PAI-2 or
measles antibody ratio between trial arms, but there was a
0.02-unit reduction in uterine artery resistance index
between 18 and 32 weeks of gestation (95% CI: -0.03,
−0.00; P = 0.040) among women in the intervention group
[2]. There was no significant effect of supplementation on
birth weight. Two small pilot studies subsequently
identified preliminary evidence of intervention-associated
methylation differences in cord blood DNA, and in
peripheral blood at the age of 9 months [24, 25]; no
analyses were conducted relating DNA methylation to
phenotypes.
For EMPHASIS, we aimed to study as many as

possible of the 376 children; 356 were re-traced using
the West Kiang Demographic Surveillance System [26],
298 of these were studied during 2016–2017 at the age
of 7–9 years (Fig. 2). Similar outcomes were measured
as in MMNP, using harmonised methods (Table 2).
Blood samples and buccal swabs were collected for DNA
and RNA and stored at -80 °C; DNA was isolated in The
Gambia and DNA samples were transported to the
laboratory in India on dry ice.

DNA methylation profiling
DNA methylation profiling for both cohorts will be carried
out at the CSIR-Centre for Cellular and Molecular Biology,
Hyderabad, India. In a stage 1 ‘discovery’ analysis, genome-
wide DNA methylation will be measured at >850,000 CpG
methylation sites in ~700 Mumbai children and all the
Gambian children with available DNA (N = 293) using the



Table 1 Maternal, newborn and child characteristics for the
children in India and The Gambia who have participated in
the EMPHASIS study

MMNP, India PMMST,
The Gambia

Mothers

N 1562 376

Age at conception (y)a 24 (21, 27) 29 (29, 35)

Pre-pregnant BMI (kg/m2)a 19.7 (17.8, 22.4) 20.8 (19.3, 22.9)

Pre-pregnant height (cm) 151.4 (5.4) 161.0 (5.5)

Primiparous 489 (31) 26 (7)

Live singleton newborns

N 1562 376

Birth weight (g) 2606 (400) 3035 (417)

Birth length (cm) 47.6 (2.4) 49.8 (2.4)

SGA (N(%)) 732 (47) 46 (12)

Pre-term (N(%)) 205 (13) 33 (9)

Children at the time of DNA collection

N 709b 298

N with adequate
DNA sample

698 293

Age (y)a 5.8 (5.6, 6.0) 9.0 (8.6, 9.2)

Weight (kg) 16.2 (2.5) 23.0 (3.2)

Weight SD score
(WHO/CDC)

−1.7 (1.1) −1.4 (0.9)

Height (cm) 109.6 (4.9) 127.7 (5.4)

Height SD score
(WHO/CDC)

−1.0 (1.0) −0.7 (0.8)

BMI (kg/m2) 13.4 (1.4) 14.1 (1.2)

BMI SD score
(WHO/CDC)

−1.6 (1.1) −1.4 (1.0)

Abbreviations: BMI body mass index, SGA small for gestational age, SD score:
standard deviation score, WHO World Health Organization, CDC Centers for
Disease Control and Prevention
a Median (IQR); other figures shown are mean (SD), or N (%) where indicated
b Data collection is ongoing in the Mumbai study; figure given is up to 28th
February 2017
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Illumina Infinium MethylationEPIC array (EPIC) (Illumina
Inc., San Diego, USA), to identify differentially methylated
positions (DMPs), regions (DMRs), and variably methylated
positions and regions (VMPs and VMRs). Technical valid-
ation of significant DMPs and DMRs will be performed by
pyrosequencing a subset of samples spanning the range of
observed methylation values, using a Pyromark 96 pyrose-
quencer (Qiagen, Hilden, Germany). In addition, a small
number of selected candidate loci not present on the EPIC
array will also be assayed in both cohorts by pyrosequenc-
ing. These have been selected a priori following a literature
review (manuscript in preparation) of other studies in
which DNA methylation has been associated with maternal
nutritional exposures and/or health outcomes of interest
(Table 3). Replication of the technically validated loci will
be performed using pyrosequencing in an independent
sample of size n = 200–400 MMNP samples (sample
size will depend on the observed effect size in the dis-
covery analysis). In a cross-tissue analysis, technically
validated significant loci will be examined in buccal
DNA samples (n~50 from each cohort). All samples
from both cohorts will also be genotyped using the
Illumina Global Screening Array (GSA). Blood samples
collected into Paxgene tubes for RNA isolation will be
stored for later transcriptomic studies.
Data analysis
A detailed analysis plan can be found on the EMPHASIS
website (www.emphasisstudy.org).
Stage 1: Intervention-methylation associations (Fig. 3):

Data from the two cohorts will be analysed separately. In a
‘hypothesis-free’, genome-wide analysis, the raw intensity
data from the EPIC arrays will undergo pre-processing,
quality control and normalization. Intervention-methylation
associations will be identified at DMRs and DMPs using
appropriate methods, and controlling for the false discovery
rate (FDR). Loci and regions showing differences in methy-
lation variance (VMPs and VMRs) will be identified, both
genome wide and in an analysis targeted to MEs and
imprinting control regions (ICRs). The candidate gene data
will be analysed in parallel, using a similar strategy to the
one outlined above to identify methylation differences asso-
ciated with nutritional intervention. Technical validation
will be carried out in a sub-set (10%) of samples using pyro-
sequencing. Significant hits will be those with p value <0.05
after correction for multiple testing. For the cross-tissue
analysis, correlations of blood versus buccal methylation
will be assessed using Pearson correlations.
Statistical power is estimated based on a sample size

of 700 in the Indian cohort and 293 in The Gambia, to
detect DMPs at a single locus using two-sample t-tests
with alpha = 0.05, using a conservative assumption that
tested loci have a methylation standard deviation at the
95th percentile of those observed (ie. within the 5%
most variable probes). Significance thresholds were
Bonferroni-adjusted assuming 800,000 independent tests,
allowing for some filtering of probes. We estimate that
we will be able to detect mean methylation differences
between intervention and control groups, with 80%
power, of 3 and 5% in the Indian and Gambian cohorts
respectively. For the replication study using pyrose-
quencing in independent samples from the Indian co-
hort, and in the candidate loci studies in both cohorts,
we estimate 80% power to detect a 2% difference in the
Indian cohort and 3% in the Gambian cohort.
Stage 2: Methylation-outcome associations (Figs. 4 and

5, Table 4): Significant loci associated with the nutri-
tional intervention in either cohort from the EPIC array

http://www.emphasisstudy.org


Table 2 Data collected among the Indian and Gambian children

Measurements SARAS KIDS children
India

PMMST children The Gambia

Anthropometry Weight, standing and sitting height; mid-upper-arm circumference; head, chest and abdominal circumferences, skinfolds (triceps,
biceps, sub-scapular and supra-iliac) using standardised protocols.

Blood pressure After 5 min seated at rest. Mean of 3 readings of systolic and diastolic pressure from left upper arm. Instrument: OMRON HEM7080.

Biochemistry Plasma glucose concentrations after an overnight fast of ≥8 h and 30 and 120 min after a 1.75 g/kg oral anhydrous glucose load.
Measured by standard enzymic methods on an autoanalyzer (India: Hitachi 902, Roche Diagnostics, Mannheim, Germany; The
Gambia: Cobas Integra 400 Plus Biochemistry Analyzer, Roche Diagnostics).

Plasma insulin fasting and 30 mins after the glucose load Measured by a Mercodia ELISA assay on a Victor 2 analyzer, Turku,
Finland, in India and by an SM-chemiluminescence method on an Architect i1000 Plus analyzer, Abbott in The Gambia.
Plasma fasting total, LDL- and HDL-cholesterol and triglycerides by standard enzymic methods (India: Hitachi 902; The Gambia:
Cobas Integra 400 Plus).

Body
composition

Total and regional (arms, legs, trunk, android and gynoid) fat mass, lean mass and body fat % using dual-energy x-ray absorptiometry
(DXA, Lunar Prodigy in India and Lunar iDXA in The Gambia, GE Medical Systems, GE Lunar Corporation, Madison USA).

Skeletal
development

Bone area (BA), bone mineral content (BMC), and bone mineral density (BMD) measured using dual-energy x-ray absorptiometry
(DXA; Lunar Prodigy in India and Lunar iDXA in The Gambia).

– Tibial total and trabecular volumetric bone mineral density (vBMD), and BA; and diaphysial BA, cortical area,
thickness, BMC, cortical vBMD and strength (cross-sectional moment of inertia) measured using peripheral
quantitative computed tomography (pQCT; Stratec XCT 2000, Stratec Ltd., Pforzheim, Germany).

Cognitive
function

Three core tests from the Kaufman Assessment Battery for children, 2nd edition, 2004 (KABC II) – Atlantis (learning ability, long-term
storage and retrieval, associative memory); Word order (memory span, short-term memory, working memory); Pattern reasoning
(reasoning ability, induction, deduction, fluid reasoning) [38].
Additional tests from the Wechsler Intelligence Scale for Children (WISC): Kohs block design (visuo-spatial problem-solving, visual
perception and organisation); Coding-Wisc III (visual-motor processing speed and co-ordination, short-term memory, visual perception,
visual scanning, cognitive flexibility, attention); Verbal fluency (a) animals, (b) names (broad retrieval ability, speed and flexibility of verbal
thought processes, neuropsychological test of language production) [39–41].

DNA and RNA Whole blood collected into EDTA tubes and DNA isolated using Qiagen DNA Blood Midi Kit. DNA methylation measured in a
single laboratory (CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India) using (genome wide) Illumina Infinium
MethylationEPIC arrays and (locus-specific) bisulfite sequencing on Pyromark96 (see main text for more details). High-resolution
genotype data generated using Illumina Global Screening Array. Buccal DNA obtained using Isohelix buccal swabs in India and
Mawi iSwab kits in The Gambia. Whole blood samples collected into Paxgene tubes for later RNA isolation.

Full blood
count

Hemoglobin, red cell count and indices, differential white blood cell count (India: Pentra XL Retic analyzer, Horiba Medical,
Montpellier, France; The Gambia: Medonic hematology analyzer, Spanga, Sweden).

Fig. 2 Flow diagram of the PMMST trial in The Gambia, and the children’s follow-up
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Table 3 Genes not on the EPIC array with previous evidence of associations with nutritional exposures and/or phenotypes

Locus Genomic location Associated exposures / outcomes Refs

PAX8 chr2:113,992,866–113,993,036 Peri-conceptional nutrition exposure [15]

POMC chr2:25,384,508–25,384,832 Peri-conceptional nutrition exposure
+ phenotypic effect

[19]

HES1 chr3:193,849,141–193,849,361 Phenotypic effect [42]

PPARGC1A chr4: 23,892,404-23,892,571 Maternal BMI exposure [13]

RBM46 chr4:155,702,818–155,703,110 Peri-conceptional nutrition exposure [16]

NOS3 chr7:150,684,570–150,684,745 Phenotypic effect [12, 43]

VIPR2 chr7:158,905,218–158,905,477 Famine exposure + phenotypic effect [44, 45]

RXRA chr9:137,215,689–137,215,826;
chr9:137,215,979–137,216,126

Late gestation nutrition exposure +
phenotypic effect

[12, 46]

H19 chr11:2,024,197–2,024,341 Peri-conceptional nutrition exposure [47]

IGF2 chr11:2,169,457–2,169,541;
chr11:2,169,617–2,169,751

Peri-conceptional nutrition exposure [24, 48, 49]

MEG3 (GTL2) chr14:101,294,220–101,294,391 Peri-conceptional nutrition exposure
+ phenotypic effect

[50]
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analysis, and all candidate loci, will be tested for associa-
tions with phenotype data measured in the children at
the time of DNA collection, and also with birth out-
comes (newborn anthropometry and gestation) (Table 4,
Fig. 4). Loci identified in a separate meta-analysis of
Stage 1 associations across both cohorts will also be con-
sidered. We will additionally carry out a ‘hypothesis-free’
analysis to identify loci where methylation is associated
with outcomes, irrespective of intervention-methylation
associations (Fig. 5).
Fig. 3 Stage 1 analysis of the impact of the nutritional interventions on DN
Other analyses
To gain insights into underlying mechanisms, gene path-
ways analysis will be performed for the intervention-
methylation-outcome genome wide association analysis.
We will compare results from the intervention-
methylation, methylation-outcome, and pathways ana-
lyses between the cohorts to identify commonalities and
differences and explore further opportunities for meta-
analysis. We will examine potential single nucleotide
polymorphism (SNP) effects on methylation through
A methylation



Fig. 4 Stage 2 Associations of intervention-associated DMRs and loci with health outcomes
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methylation Quantitative Trait Loci (mQTL) analysis
using the genome-wide genotype data on the children.
We will also consider options for performing causal ana-
lysis with generated genotype data using Mendelian
Randomisation (MR) [27–29].
DNA methylation assays for the discovery sample of

Mumbai children and all of the Gambian children are
scheduled to be completed in late 2017. Assays for the
replication sample of Mumbai children will be com-
pleted in early 2018. The full EMPHASIS analysis
(Stages 1 and 2) will be completed by mid-late 2018.
Fig. 5 Associations of methylation and outcomes
Discussion
EMPHASIS is the first study in humans to examine the ef-
fects of maternal pre- and peri-conceptional nutrition on
genome wide DNA methylation in children in a random-
ized controlled trial setting and to relate nutrition-related
DNA methylation to a range of health outcomes. Recent
technical advances offer the ability to study the methy-
lome at high resolution and affordable cost. This gives us
an unprecedented opportunity to investigate the effects
of nutrition on methylation at a critical period (peri-
conception), when the epigenome undergoes extensive



Table 4 Phenotypic outcomes in the children in both cohorts

Domain Primary outcomes Secondary outcomes

Birth outcomes Measured: Measured:

Birth weight (g)
Birth length (cm)

Head, chest, abdomen and mid-upper arm circumferences (cm)
Triceps and subscapular skinfolds (mm)

Derived:
Small for gestational age (SGA, N [%])a

Derived:
Gestational age (weeks)
Low birth weight (<2500 g) (N [%])
Pre-term (<37 completed weeks’ gestation) N [%])

At follow-up in childhood

Anthropometry Measured: Measured:

Standing height (cm) Weight (kg)
Sitting height (cm)
Head, chest, waist, hip and mid-upper arm circumferences (cm)
Biceps, triceps, subscapular, supra-iliac skinfolds (mm)

Derived: Derived:

Body mass index (BMI) (kg/m2)
Weight-, height- and BMI-for-age Z-scoresb (SD)

Stunted, wasted, underweightb (N [%])
Leg length (cm)
Sitting height/leg length ratio
Head circumference-for-age Z-scoreb (SD)
Sum of skinfolds (mm)
Waist/hip ratio
Longitudinal growth measures

Body composition
(DXA)

Measured: Measured:

Total lean mass (kg)
Total fat mass (kg)

Android fat (kg)
Gynoid fat (kg)

Derived:
Lean mass index (kg/m2)
Fat mass index (kg/m2)

Derived:
Body fat %

Bone (DXA and pQCT) Measured: Measured:

DXA:
Total and spine bone area (BA) (cm2)
Total and spine bone mineral content (BMC) (g)
Derived:
DXA:
Spine bone mineral apparent density (BMAD; (g/
cm3)

DXA:
Total and spine bone mineral density (BMD) (g/cm2)
pQCT (Gambia only):
Metaphyseal (8%) and diaphyseal (50%) tibia. Measurements taken
using voxel size 0.5 mm, slice thickness 2 mm.
Tibial total and trabecular BA (mm2) and volumetric BMD (vBMD)
(mg/mm3).
Diaphysial BA (mm2), BMC (mg/mm), vBMD (mg/mm3), cortical area
(mm2) and thickness (mm), and strength (cross-sectional moment of
inertia) (mm4).

Cardio-metabolic risk
markers

Measured: Measured:

Systolic blood pressure (mmHg)
Fasting glucose (mmol/l)
30- &120-min glucose (mmol/l)
LDL-cholesterol (mmol/l)
HDL-cholesterol (mmol/l)
Triglycerides (mmol/l)

Diastolic blood pressure (mmHg)
Fasting insulin (pmol/l)
30-min insulin (pmol/l)

Derived: Derived:

Insulin resistance (HOMA-IR)c

Disposition indexd
High blood pressure (mmHg)e

Insulinogenic indexf

Metabolic syndrome N [%])g

Cognitive function Measured:

Scores from Atlantis, Pattern reasoning, Kohs block
design, Word order, Verbal fluency and Coding tests
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Table 4 Phenotypic outcomes in the children in both cohorts (Continued)

Domain Primary outcomes Secondary outcomes

Derived:

Mental processing indexh (SD)

Legend: a SGA defined as below the 10th percentile for birth weight for gestational age using INTERGROWTH data [51]
b according to WHO/CDC growth reference: http://www.who.int/growthref/en/
c Insulin resistance according to Homeostasis Model Assessment: https://www.dtu.ox.ac.uk/homacalculator/
d Disposition index: an estimate of insulin secretion taking into account insulin resistance, to be calculated as insulinogenic index/HOMA-IR [52]
e High blood pressure defined as >99th percentile according to an international reference:
https://www.nhlbi.nih.gov/health-pro/guidelines/current/hypertension-pediatric-jnc-4/blood-pressure-tables
f Insulinogenic index: an estimate of first-phase insulin secretion, calculated as (insulin at 30 min – fasting insulin)/(glucose at 30 min – fasting glucose) [53]
g Metabolic Syndrome: There is no accepted definition of metabolic syndrome in children of this age; a binary variable will be created, where 1 represents
children who are above the highest sex-specific within-cohort quartiles for android fat on DXA, systolic blood pressure, plasma triglyceride concentration and
HOMA-IR, and below the lower quartile for HDL-cholesterol
h a composite score of cognitive function, calculated as the mean of the standardised scores from the 6 individual cognitive tests
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remodelling. Most previous studies investigating these
effects in humans have been observational, with limited
scope for causal inference due to issues of confounding
and reverse causality, or are quasi-experimental (eg
famine studies) with imprecise exposure measures and/
or large losses to follow-up. EMPHASIS is a unique op-
portunity to test the developmental origins of health and
disease (DOHaD) hypothesis [5, 6, 9] and its underlying
mechanisms.
The two-country design has strong advantages. Findings

replicated in both cohorts will provide persuasive evidence
for globally-relevant mechanisms with implications for
policy. Differences between the cohorts will delineate
some of the complex interrelationships between ethnicity,
environment, nutrition and epigenetics, highlighting
important context-specific factors. The two trials have
commonalities and differences. The intervention com-
prised multiple micronutrients in both (from foods in
MMNP and tablets in PMMST); the quantities of micro-
nutrients were about fourfold higher in PMMST, while
the MMNP food-based supplements provided some nutri-
ents not present in the tablets used in PMMST (e.g. fatty
acids). The timing of the intervention differed (continued
throughout pregnancy in MMNP, stopped in early preg-
nancy in PMMST). The baseline nutritional status of the
populations differed (the mothers in India were thinner
and shorter, and the babies more growth restricted, than
in PMMST (Table 2)). Vitamin B12 deficiency is common
in India but not in The Gambia; and seasonal variation in
diets is more marked in West Kiang than in Mumbai. We
therefore expect the findings to reflect these commonal-
ities and differences, revealing both shared and cohort-
specific effects.
Evidence of cross-tissue, genotype-independent stochas-

tic variation in DNA methylation at nutrition-associated
loci will provide strong evidence that these loci are MEs,
programmed in the early embryo. Evidence of nutrition-
related epigenetic programming at peri-conception with
the potential to influence gene expression in multiple tis-
sue types would be an important finding. Methylation data
from two tissues of different developmental origin will
give further information about their stability across popu-
lations. The potential utility of buccal cells to measure epi-
genetic changes will in future allow non-invasive testing at
multiple points in the lifecourse and relationships with
disease progression to be followed.
High resolution genomic data will enable the investiga-

tion of potential confounding effects due to mQTL, gen-
etic variants that influence methylation [30–34]. This
may be particularly relevant for cross-cohort replication
where differences in genetic background between co-
horts should be taken into account. The mQTL can also
be used as genetic instruments for causal analysis using
MR [27–29]. Our study design is particularly well suited
for ‘two-sample’ MR where instruments (mQTL) are
identified in one sample, and analysed for their associ-
ation with phenotype in the other. A related and particu-
larly powerful approach is to use existing large genome
wide association study (GWAS) datasets with relevant
phenotypes and a similar genetic background as the sec-
ond cohort in a two-sample MR analysis.
A limitation of EMPHASIS is the relatively small size

of the Gambian sample, reducing the power to detect
small methylation changes. The lack of perinatal DNA
samples, in both cohorts, for methylation assays makes
it more difficult to establish evidence for the direction of
causality when correlating methylation with birth out-
comes, although causal analysis would be expected to
help to in this respect.
South Asian and sub-Saharan African countries stand

out on the world map of maternal undernutrition and
micronutrient deficiencies, low birth weight and child-
hood stunting [35]. Despite large investment in supple-
mentation programmes for pregnant women there has
been slow progress in reducing intra-uterine growth
restriction and stunting. The evidence that adult non-
communicable disease (NCD) risk is increased by fetal
and infant under-nutrition suggests that these persistent
problems contribute to the high and rising burden of
NCDs in these countries [36, 37]. EMPHASIS will

http://www.who.int/growthref/en/
https://www.dtu.ox.ac.uk/homacalculator/
https://www.nhlbi.nih.gov/health-pro/guidelines/current/hypertension-pediatric-jnc-4/blood-pressure-tables
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improve understanding of the biology linking maternal
nutrition to fetal development and later health, poten-
tially leading to better interventions.
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