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Abstract—The goal of psychometric scaling is the quantifi-
cation of perceptual experiences, understanding the relationship
between an external stimulus, the internal representation and the
response. In this paper, we propose a probabilistic framework to
fuse the outcome of different psychophysical experimental proto-
cols, namely rating and pairwise comparisons experiments. Such
a method can be used for merging existing datasets of subjective
nature and for experiments in which both measurements are
collected. We analyze and compare the outcomes of both types
of experimental protocols in terms of time and accuracy in a
set of simulations and experiments with benchmark and real-
world image quality assessment datasets, showing the necessity of
scaling and the advantages of each protocol and mixing. Although
most of our examples focus on image quality assessment, our
findings generalize to any other subjective quality-of-experience
task.

Index Terms—Psychometric scaling, pairwise comparisons,
rating, image and video quality assessment, dataset fusion

I. INTRODUCTION

A
UTOMATIC assessment of image quality is an impor-

tant problem for many image processing applications,

such as image/video compression or reconstruction. Those

applications drive the development of computational quality

metrics, which predict the level of impairment as perceived

by a human observer. Such metrics need to be trained on

ground truth data, which are collected in subjective quality

assessment experiments. However, it is not always widely

recognized that data coming from different quality assessment

experiments might be scaled differently, often resulting in

very different quality scores. For example, an image rated

4 on a 5-point scale in one experiment could be rated 2

in another experiment because of differences in the training,

range and type of considered distortions. Dealing with widely

different scales when training quality metrics is problematic,

often requires using rank-order correlation as a measure of

prediction accuracy, and makes difficult the use of multiple

datasets for training [1], [2].
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In this paper, we propose a probabilistic model and a scaling

procedure that can bring quality scores from different quality

assessment experiments into a unified and interpretable quality

scale in which a difference of 1 between two conditions

corresponds to 75% of observers selecting one condition over

another. We denote one unit of difference on this scale as a

just-objectionable-difference (JOD) and explain how it differs

from the more commonly known just-noticeable-difference

(JND). The proposed method builds on a well-established field

of psychophysics and sensory evaluation and scales together

results of two most commonly used experimental protocols:

rating and pairwise comparisons. Such scaling can be used

for merging existing datasets of subjective nature and for

experimental protocols in which both rating and pairwise com-

parisons are collected. We analyze the requirements necessary

for scaling, such as the need for cross-content and with-

reference comparisons. Existing quality datasets together with

newly collected data are used to justify the assumptions made

in the model, such as the linear relation between rating and

scaled pairwise comparison data. The utility of the method is

demonstrated by re-scaling two existing datasets: TID2013 [3]

and the HDR video compression dataset from [4] and mixing

TID2013 with LIVE dataset [5] into a unified IQA dataset.

The side-benefit of the joint scaling is that we can compare

and analyze sensitivity and time effort for both experimental

protocols. Findings from several analyzed real-world datasets

show that the standard deviation of the observer model for

rating and pairwise comparisons is dependent on the task and

dataset, although generally for image/video quality assessment

tasks observers confuse measured conditions more often in

rating experiments. This emphasizes the need for a pilot

study prior to deciding on these two experimental protocols.

Finally, we demonstrate using simulations that given the mean

times required to rate and compare image quality and the

standard deviations found for the observer model, pairwise

comparisons on average result in better estimates given the

same time effort. We also demonstrate that both protocols can

be used together to avoid the need for time-consuming cross-

content comparisons and to create larger datasets by means of

relatively low experimental effort.

This paper builds on results of our prior work on psy-

chometric scaling [6], cross-content comparisons in pairwise

comparison experiments [4] and the practical findings from

scaling the TID2013 dataset [7].
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Fig. 1. Examples of different subjective judgment experiments and graphic representation of scaling using pairwise comparisons.

II. RELATED WORK

A. Subjective quality assessment methods

Many recommendations were published as guidelines for

multimedia or video quality assessment [8]–[10]. These stan-

dards thoroughly describe the requirements for subjective

experiments, such as set-up, procedure and material selection.

Methodologies can be generally classified as rating and rank-

ing (or comparative judgment) methods. Fig. 1 shows some

examples of rating and comparative judgment experiments.

Rating methods can be single, double, or multi-stimulus,

depending on the presentation of the test stimuli. Users are

asked to rate the presented stimuli using either a categorical

or continuous interval scale. The most commonly used rating

methodologies are absolute category rating (ACR) [8] for

single-stimulus and double stimulus impairment scale (DSIS)

or double stimulus continuous quality scale (DSCQS) [9] for

double-stimulus cases. Rating methods generally work better

when stimuli are easily distinguishable from one another. In

contrast, comparison methods require observers to compare

two or more stimuli and rank them [11] and are more suitable

for cases in which the visual difference between two stimuli

is small. The most commonly used comparative approach is

referred to as pairwise comparison (PWC), when only two

stimuli are compared at a time. The main advantage of this

approach is its simplicity. The weaknesses and strengths of

these strategies were compared in several studies [12]–[15].

Essentially, rating has the advantage to provide an inter-

pretable, supra-threshold scale of quality or distortion impair-

ment, but it also requires a careful training of subjects, who

might have a different interpretation of the scale adjectives. As

a consequence, the rating scale is in general not universal. On

the other hand, pairwise comparison experiments have a lower

cognitive load, require little training and generally eliminate

the bias of the observer. However, the total number of possible

comparisons increase quadratically with the number of stimuli,

which makes a full comparison approach unfeasible. In prac-

tice, not all comparisons are equally useful, e.g., comparing

stimuli with too close or too distant impairment levels is

generally uninformative [16]. Pairs of stimuli to be compared

can be sampled iteratively based on the previously compared

stimuli, based on heuristics [3] or, information-theoretic cri-

teria [17]. Recently, Shah et al. [18] compared rating and

pairwise comparison experiments by conducting a series of

subjective experiments in which ground truth was available

– e.g. the correct radius of the presented circle or the word

count in a paragraph. Similar to [15], comparison experiments

were found to be more accurate in most cases and took less

time compared to rating. However, authors also found that

performance of rating and pairwise comparison experiments

depends on the measurement noise of each experiment.

B. Fusing rating and pairwise comparisons data

It is useful in practice to aggregate quality scores obtained

from different quality evaluation experiments, e.g., to create

larger annotated datasets. While this aggregation of subjective

quality scores is usually done for rating (i.e. mean opinion

scores) [1], [2], [19] or pairwise comparisons [20], [21]

individually, little has been done to study the fusion of scores

obtained by both these two methodologies. In this regard, Ye

and Doermann [17] proposed a unified probabilistic model,

aggregating rating and pairwise comparisons together. How-

ever, they used a categorical MOS test and cutoff values for

these categories. This makes the optimization procedure more

difficult, which needs to be extended to experiments using

a continuous interval scale rather than categories. Moreover,

they did not consider the relationship between both scales,

meaning that the final mixed scale could not be interpreted in

terms of probabilities.

Watson [16] studied the correlation between rating scales

and results of pairwise comparisons, in the context of psycho-

metric scaling of pairwise preference probabilities. He found

that the degree of agreement between two scales, for the

case of video compression, is relatively high, indicating that

quality scores obtained from comparisons experiment are at

least as valid as double-stimulus rating scores. Differently

from that work, which reports a quadratic relationship between

MOS and scaled PWC (although with a very small quadratic

coefficient), we assume in this work that this relationship is
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linear. Nevertheless, our results might easily generalized to

more complex functional forms, provided that this relation is

known.

III. TOWARDS A UNIFIED QUALITY SCALE

A. Observer model

In order to map data collected in experiments into a unified

quality scale, we need to make certain assumptions about how

observers respond. Such assumptions are encapsulated in the

observer model. It is often assumed in quality assessment

experiments that quality is a one-dimensional variable, i.e.,

observers assign a scalar quality value to each condition.

However, observers might vary in their notions of quality

among them (inter-observer variance), and their opinions are

also likely to change when they repeat the same experiment

(intra-observer variance). Thus, quality is not a deterministic

value, but a random variable, which accounts for the subjective

nature of these experiments.

In rating experiments the random variable associated with

the quality can be expressed using the following model of

observer rating behavior [22]:

πik = mi + δk + ξik, (1)

meaning that the rating πik for observer k and condition i
depends on: mi, the ground truth quality score; δk, the subject

bias; and ξik the subject inaccuracy and stimulus scoring

difficulty. All components in the model are assumed to be

independent random variables that are Normally distributed

and ξik is assumed to have a zero mean. This makes rating

πik also Normally distributed.

As for pairwise comparisons, the two most widely used

observer models are Thurstone [23] and Bradley-Terry [24]. In

practice, both lead to similar solutions. Within the Thurstone

model the perceived quality of condition i is modeled as a

random variable:

ωi ∼ N(qi, σi) (2)

where the mean of the distribution is assumed to be the true

quality score qi and the standard deviation σi accounts for

combined inter- and intra-observer variance. Individual quality

scores of compared conditions can be inferred from the relative

distances, calculated as:

ωj − ωi ∼ N(qij , σij) (3)

where σij is the standard deviation of a new distribution

obtained from the difference between two quality distributions

and qij = qi − qj .

Five cases of the original Thurstone model are distin-

guished, based on simplifying assumptions imposed on σij :

1) The original Thurstone model, referred to as Case I,

assumes that only one participant is performing the

experiment and the standard deviation of the differ-

ence between random variables ωi − ωj is σij =
√

σ2
i + σ2

j − 2ρσiσj , where ρ is the correlation between

individual scores. Despite being general, Thurstone Case

I is insolvable, as every new observation will introduce a

new unknown, making the number of unknowns always

greater than the number of equations [23].

2) Thurstone Case II assumes that the law of comparative

judgment can be applied to a group of participants,

i.e. the results of individual participants can be mixed

together.

3) Thurstone Case III assumes that σij =
√

σ2
i + σ2

j , that

is ρ = 0.

4) Thurstone case IV further assumes that σi and σj are

approximately equal, resulting in further simplification

σij =
σi+σj√

2
.

5) Thurstone Case V assumes σij to be constant across all

conditions.

If we compare Case V Thurstone, where ωi ∼ N(qi, σ), to

the rating model in Equation 1 we can see that it eliminates

the observer bias δi (since pairwise comparisons are relative)

and that it assumes the same standard deviation σ for different

comparisons. It is important to note that the standard deviation

σ describes the inherent inter- and intra-observer variations,

and it is not an estimate of the measurement noise due to

a limited sample size (standard error of the mean). As both

are often confused in the context of pairwise comparison

experiments, we will discuss these differences in detail in

Section V-D.

The main difference between Thurstone Case V and

Bradley-Terry models is that in the latter the difference be-

tween quality scores is expressed using a logistic distribution

instead of a normal distribution. This leads to a more efficient

numerical solution when optimizing quality scores. When a

logistic distribution describes the difference, individual quality

measurement can be described by the Gumbel distribution

[25], shown in Fig. 2. It can be seen in that figure that the

Bradley-Terry observer model is not symmetric. However, it

leads to a very similar description of the difference in quality

scores, as shown in Fig. 3. In this paper we focus on Thurstone

Case V, however our findings also generalize to Bradley-Terry

model.
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Fig. 2. Different observer models for quality assessment.

B. Pairwise comparisons and psychometric scaling

The results of a pairwise comparison experiment are usually

arranged in a matrix C, in which element cij counts the

number of times stimulus i was chosen as better than j. This
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subsection describes a way of converting such a matrix to an

interpretable quality scale.

Probabilities pij of ωi > ωj can be empirically estimated:

p̂ij =
cij

cij + cji
, i 6= j. (4)

In practice, when scaling pairwise comparison data, we can

only recover the distance qi − qj between underlying quality

scores qi and qj , since scores are relative. The difference of

two Gaussians ωi and ωj is also a Gaussian random variable

(for Gumbel distributions a logistic), as shown in Eq. 3.

The probability of choosing condition i over j can be

computed using the cumulative distribution over the difference

ωi − ωj :

P (ωi > ωj) = F (qij , sij) ≈ p̂ij , (5)

where F is the cumulative distribution function associated to

the chosen observer model and sij the parameter associated to

the distribution (σij for the Normal distribution in Thurstone

model and sij for the logistic function in Bradley-Terry

model). P (ωi > ωj) is approximated using p̂ij . The inverse of

F is shown in Fig. 3. Note that the choice of sij determines

the relationship between distances in the quality scale and

probabilities of better perceived quality.
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Fig. 3. Different cumulative distributions mapping probabilities into distances
in the scale. Parameters for Thurstone and Bradley-Terry models were chosen
such that the difference in 1 unit correspond to 75% probability of one
condition being better than another.

Fig. 4 shows a graphic representation of different steps in

psychometric scaling via pairwise comparisons. Psychometric

scaling aims to find estimated scores q̂ such that distances

between scores closely resemble distances q̂i − q̂j .

The probability of observing pairwise comparisons cij given

latent quality scores qi is explained by the Binomial distribu-

tion:

P (C|q, σ) =
∏

i,j

(

nij

cij

)

F (qij , sij)
cij (1− F (qij , sij))

nij−cij ,

(6)

where nij = cij + cji and F is the cumulative distribution

from Eq. 5. Under Thurstone Case V assumptions, F is the

cumulative normal distribution and sij =
√
2σ, where σ is the

standard deviation of the observer model. σ is often selected

so that when conditions are 1 unit apart in the quality scale,

75% of observers select one condition over another. This

corresponds to σ = 1.0484 and sij = 1.4826 for normal

distribution. Given the posterior probability in Eq. 6, the latent

quality scores q can be found using the maximum likelihood

estimation. More information on this formulation can be found

in [6].

It should be noted that in some works the scaling of quality

scores is avoided and the quality estimates are computed

directly by summing up columns (or rows) of the comparison

matrix. For example, the quality scores for the TID2013

dataset were computed as the average number of votes (wins

in pairwise comparisons) that each condition received [3]. For

that reason, we will refer to this approach as vote counts (VC).

Such an approach works only if each condition was compared

the same number of times and it is unsuitable for imbalanced

experiment designs. We discuss shortcomings of vote counts

in [7] and in Section V-D.

Fig. 4. Examples of different subjective judgment experiments and graphic
representation of scaling using pairwise comparisons.

IV. PROPOSED UNIFIED QUALITY SCALE

A. Requirements for a unified quality scale

The vast majority of image quality assessment studies

employing pairwise comparisons compare only images de-

picting the same content, e.g. comparing different distortion

levels applied to the same original image. This “apple-to-

apple” comparison simplifies the observers’ task, but it comes

with some limitations. Firstly, assessing and scaling each

content independently makes it impossible to obtain scores

that correctly capture quality differences between conditions

across different contents on a common quality scale. Secondly,

pairwise comparisons capture only relative quality relations.

Therefore, in order to assign an absolute value to such relative

measurements, the experimenter needs to assume a fixed

quality for a certain condition which is then used as a reference

for the scaling. As a result, the scaling error accumulates as

conditions get farther from the reference on the quality scale.

Furthermore, pairwise comparison experiments can be

viewed as a graph, in which conditions represent nodes and

comparisons edges. To scale the quality scores for such a
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graph in a consistent manner all conditions must be con-

nected, i.e. there should be no disconnected components in

the graph of comparisons. However, when each content is

assessed individually, this forms a set of disconnected graphs,

each with its own relative quality scale. We could potentially

anchor each content by assuming that reference image for each

content has a fixed quality score, for example, 0. However,

we then suffer from the second mentioned problem, where

conditions far away in quality from the reference accumulate

large measurement error. Thus, connecting these disconnected

parts is an essential step for unifying quality scale.

To address these problems, cross-content pairs can be used

to connect the disconnected ‘nodes’ together and to eliminate

the error accumulation. Additionally, assuming that all the

undistorted reference stimuli are equivalent to each other (i.e.

having pristine quality with “0” quality score) this graph

can be connected at the reference ‘node’. All the distorted

images would then have negative quality values after scaling,

corresponding to the distortions compared to the undistorted

reference stimuli (unless enhancement is considered).

As a concept, this ‘distance’ to the undistorted reference

stimulus is very similar to the differential mean opinion

scores (DMOS) found after some rating experiments [8], [9].

Essentially, DMOS also represents the amount of impairment

from the reference stimulus, similar to the scaling results.

Therefore, we use DMOS in this study to compare rating

scores and pairwise comparisons scaling results together.

B. JNDs and JODs

Results of pairwise comparisons are typically scaled in Just-

Noticeable-Difference (JND) units [26]. Usually, the scale is

constructed such that two stimuli are 1 JND apart when 75% of

observers can see the difference between them. However, we

believe that considering measured differences as “noticeable”

leads to an incorrect interpretation of the experimental results.

Let us take as an example two distorted images shown in Fig.

5: one image is distorted by noise, another by blur. They are

definitely noticeably different and intuitively they should be

more than 1 JND apart. However, the question we ask in an

image quality experiment is not whether they are different, but

rather which one is closer to the perfect quality reference. Note

that a reference image does not need to be shown to answer

this question as we usually have a mental notion of how a

high quality image should look like. Therefore, the data we

collect is not related to noticeable differences between images,

but rather to image quality difference in relation to a perfect

quality reference. For that reason, we describe this quality

measure as Just-Objectionable-Differences (JODs) rather than

JNDs. Note that JOD is the measure of impairment and not

overall image aesthetics and, therefore, is related to DMOS

rather than to mean opinion score (MOS). Note also that

JOD does not replace JND, and the term JND is still more

appropriate for all the tasks that involve direct discrimination

between a pair of conditions.

The relation between JOD values and the probability of

selecting condition A over condition B is illustrated in Fig. 3.

When equal number of observers vote for both conditions, the

1 JOD

2 JOD

1 JO
D 4

 JN
DReference image

Blur

Noise

1 JOD

Fig. 5. Illustration of the difference between just-objectionable-differences
(JODs) and just-noticeable-differences (JNDs). The images affected by blur
and noise may appear to be similarly degraded in comparison to the reference
image (the same JOD), but they are noticeably different and therefore several
JNDs apart. The mapping between JODs and JNDs can be very complex and
the relation shown in this plot is just for illustrative purposes.

probability is 0.5 and JOD difference between the conditions

is 0. The differences of 1 JOD, 2 JOD and 3 JOD correspond

to the probabilities P (A > B) of 0.75, 0.91, and 0.97. The

negative JOD values indicate that more observers preferred

B over A. In all our examples we assume that the reference

condition is at 0 JOD. Because of that most JOD scores we

report are negative (worse than the reference).

C. Combination of rating and pairwise comparisons

When results of both ranking and rating experiments are

available for the same set of contents, it may be desirable to

use all information when constructing the quality scale. In this

section we propose a simple way of combining both types of

measurements. As we will show, this is also another alternative

for constructing a unified quality scale.

We assume a linear relationship between random variables

ωi representing quality scores obtained from a pairwise com-

parison experiment (Eq. 2), and the random variables obtained

from a rating experiment πi:

ωi = a · πi + b. (7)

We could instead assume a more complex relationship between

the quality scores, for example quadratic [16]. However, we

found that a linear assumption is sufficient for large-scale

quality datasets (more details in Section V). We further assume

that the standard deviation of the observer model may differ

between both experimental protocols: people can confuse two

conditions more often in one protocol than the other. Given

that, the relationship is expanded to:

N(qi, σ) = a ·N(mik, c ·σ)+b = N(a ·mik+b, a ·c ·σ), (8)

where mik is the collected opinion score for the condition i
and observer k. qi is the latent quality score, which we want to

recover. a, b and c are the unknown parameters that control the

relationship between the rating and pairwise comparison data.

Our goal is to find the values of the latent variables given the

observed opinion scores mik and pairwise comparisons cij .
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Since opinion scores are generally continuous, we express

the probability of observing mik using the density function of

the Normal distribution:

f(mik|qi, a, b, c) =
1√

2πa2c2σ2
e−

((a·mik+b)−qi)
2

2a2c2σ2 . (9)

Assuming independence between observers, the likelihood of

observing the whole set of opinion scores M is:

P (M|q, σ, a, b, c) =
N
∏

i=1

J
∏

k=1

f(mik|qi, σ, a, b, c). (10)

Similarly, the likelihood of observing pairwise comparisons

P (C|q, σ) is given in Eq. 6. One advantage of this proba-

bilistic formulation is that missing data, for example when

observers rate only a portion of all conditions, can be simply

omitted from the above product.

To recover latent quality scores q from both measurements,

we use the maximum likelihood estimator with the posterior

probability:

arg max
q,a,b,c

P (q, a, b, c|C,M, σ), (11)

where P (q, a, b, c|C,M, σ) ∝ P (C|q, σ) ·P (M|q, σ, a, b, c) ·
P (q) and P (q) is a Gaussian prior included to enforce

convexity:

P (q) =

N
∏

i=1

1√
2πNσ2

e−
(µq−qi)

2

Nσ2 , (12)

µq being the mean of quality scores q.

Likelihood functions are scale-invariant, i.e. P (M|q, σ) =
P (M|tq, tσ) for a constant t 6= 0. Thus, without loss of

generality, we can fix σ to an arbitrary value. As before, since

scales are relative, we need to set an anchor, e.g. q1 = 0.

Note that if we wish to mix different datasets, e.g. several

datasets for which rating measurements have been collected,

we can do so by collecting pairwise comparisons that link

the data and running the optimization procedure previously

presented. In this case, different standard deviation of the

observer model and scaling parameters (a, b and c) should

be assumed for different datasets.

V. EXPERIMENTS: SCALING EXISTING DATASETS

In this section, we validate our assumptions using two real-

world image quality assessment datasets. We first test the

linear relationship between subjective quality scores coming

from pairwise comparisons and rating and estimate the time

effort and the standard deviation of the observer model in both

measurements. We also validate the use of Thurstone Case V

and summarize findings on an example.

To scale data, we use psychometric scaling with maximum

likelihood estimation using the Thurstone Case V model,

described in Section III, using the Matlab code1 given in [6].

The code for mixing both types of measurements is available

online2.

1https://github.com/mantiuk/pwcmp
2https://github.com/mantiuk/pwcmp

A. HDR video compression dataset

As the first real-world example, we use a high dynamic

range (HDR) video compression dataset3 collected in one of

our previous works [4]. This dataset contains 60 compressed

HDR videos. As it was created to analyse the relationship

between rating and PWC scaling, this dataset includes rating

(DSIS) and PWC experiments with and without cross-content

pairs.

In order to both have comparable quality PWC scaling

values across different contents and to improve the effec-

tiveness of the PWC scaling, we proposed to use additional

cross-content comparisons for PWC experiments and reported

the effects of having additional cross-content pairs [4]. For

this purpose, four different subjective quality assessment

experiments were conducted using compressed HDR video

sequences and the same experimental conditions. Three of

these subjective experiments were pairwise comparisons ex-

periments with incomplete design of pair selection, with or

without cross-content pairs. The results show that there is

a strong linear relationship between MOS and PWC scaling

results, and adding cross-content comparisons is beneficial on

three different aspects: i) It reduces the content dependency,

ii) increases the linear relationship between MOS values and

PWC scaling results, and iii) reduces error accumulation as it

reduces the confidence intervals.

Fig. 6 shows the relationship and correlation coefficients

between both scales: JOD PWC scale (using psychometric

scaling with pairwise comparisons) and DMOS (difference

mean opinion scores from rating), where it can be seen that

a linear relationship between both scales fits the data well.

We performed mixed scaling and estimated the value of the

parameter c from Equation (8), which we found to be 1.5 for

this HDR video dataset. This means that the standard deviation

of the observer model in rating experiments is 50% higher for

this problem than with pairwise comparisons. The relationship

between the JOD mixed scale, incorporating both rating and

ranking, and JOD PWC with only ranking is shown in Fig.

6. The relation shows that rating data has little influence on

the final mixed scale, which could be explained by the higher

standard deviation of the observer model in the rating data.

The decision times were recorded for each participant

during the subjective experiment. For HDR video compression

dataset, the subjects were not able to skip the presentation

of the stimuli, therefore the viewing time is the same for all

subjects (10 seconds). Average decision time for the rating

experiment is 6.1 seconds per rated conditions and 1.2 seconds

per pair for the pairwise comparison experiment.

B. TID image quality dataset

TID2013 is one of the largest subjective image quality

assessment dataset. The dataset contains over 3000 measured

conditions [3]. Although there are larger datasets, such as

Live Challenge [27] and KonIQ-10k [28] with over 10,000

images and natural distortions, they either do not contain

pristine reference images or lack a variety of distortion types

3https://scss.tcd.ie/∼zermane/docs/hdrVideoCompressionDB.zip
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Fig. 6. Constructed scales for the HDR video dataset and correlation coefficients: Spearman (SROCC) and Pearson (PCC). From left to right: JOD PWC
versus DMOS scale and JOD mixed versus JOD PWC scale.

and levels, which are both useful when establishing a ground

truth image quality scale. Because of that, we focused on

TID2013 in this paper. TID2013 dataset has also proven to

be a challenging test for objective quality metrics. Quality

scores in this dataset were obtained by collecting pairwise

comparison judgements using the Swiss tournament system. In

this method, all conditions are compared the same predefined

number of times. The first comparisons are chosen at random.

In later stages, conditions are sorted based on the number

of times they were previously selected by an observer, and

conditions having similar quality compete in pairs. The quality

scale can then be obtained by averaging votes of observers

(vote counts). However, this approach differs from the usual

analysis of multiple pairwise comparisons, which involves

psychometric scaling of the comparison data using either

Thurstone or Bradley-Terry models. Because the initial matrix

of comparisons had disconnected components and the data

could not be scaled, we extended TID2013 with additional

15.000 cross-content and with-reference comparisons [7]. Fur-

thermore, for this work we conducted an additional subjective

experiment to complement the original pairwise comparison

data with rating in order to analyze the relation between rating

and rating protocols. Details of this experiment can be found

in the Appendix.

We first compare in Fig. 7a the quality values obtained

from scaling using only pairwise comparisons (JOD PWC

scale) and those obtained from the rating experiment (DMOS

scale). To obtain DMOS scores, the MOS scores given to

the distorted images were subtracted from the scores given to

the corresponding reference images. The plot shows that the

relation between DMOS and JOD values can be well explained

by a linear function with the exception of a few values

at the extreme end of the quality scale. For those extreme

points, JOD scale predicts stronger quality degradation than

the DMOS scale. However, we do not have sufficient evidence

to justify a non-linear relationship even though TID2013 is one

of the largest quality datasets.

We performed mixed scaling and estimated the value of the

parameter c from Equation 8, which we found to be 1.24. This

suggest that in a typical image quality assessment experiment,

the pairwise comparison protocol results in less confusion

between observers. Fig. 7b shows that adding rating data (JOD

mixed scale) has little impact on the final scale, maybe because

the rating experiment contains much less measurements than

the original set of pairwise comparisons.

Fig. 7c shows the relationship between JOD and vote-

count (VC) scale. It demonstrates that psychometric scaling

and additional cross-content and with-reference comparisons

result in substantially different scores than those reported in

the original TID2013 paper [3]. In our previous work [7]

we demonstrated that the JOD scale indeed produces more

consistent quality estimates and made the re-scaled TID2013

available4.

The additional experiment let us also estimate the time effort

needed for each protocol. We measured an average response

time for the rating experiment to be 7.7 ± 0.9 seconds per

rated condition and 3.4±1.8 seconds per pair for the pairwise

comparison experiment (combined viewing and decision time).

C. Validation of Thurstone Case III vs. V

In Section III-A we stated that the most commonly used

assumption for the observer model, Thurstone Case V, stip-

ulates that the standard deviation for each pair of measured

conditions is the same. This would imply that the difficulty of

assessing each pair of conditions and the level of confusion

is the same. However, cross-content comparisons are clearly

more difficult for observers to perform than within-content

comparisons. It is thus reasonable to expect that more difficult

types of comparisons will have a higher variability in human

judgments and Case V model assumption is no longer valid.

In order to determine whether Thurstone Case V assumption

is valid for cross-content and within content comparisons, we

run an additional experiment on ten groups of six conditions

each coming from two contents in the TID2013 dataset. Each

group, shown in Fig. 8, consisted of all possible compar-

isons: with-reference, within-content, cross-content, within-

distortions and cross-distortions. Distortions and distortion

levels were the same across two contents. In the experiment,

each of ten participants performed ten comparisons: six within-

content comparisons and four cross-content comparisons, on

every group of six conditions as illustrated in Fig. 8.

To validate whether the type of comparisons has an effect on

the level of confusion (sij in Eq. 6), we performed MLE-based

scaling in which shard for all ”hard” comparisons (shown

4TID2013 scaled in JOD units: https://doi.org/10.17863/CAM.21517
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Fig. 8. Example of different comparisons types for images selected from the
TID2013 dataset.

as solid lines in Fig. 8) was a free parameter. The standard

deviation for all ”easy” comparisons was fixed to the usual

value of seasy = 1.4826. The estimated value of shard for all

ten groups is shown in Fig. 9a. The result of t-test (t(1)=-1.0,

p0.05 = 0.5) indicates that we do not have evidence to suggest

that the comparisons of different difficulty result in a different

standard deviation sij . Therefore, contrary to our expectations,

we cannot reject the assumptions of the Thurstone Case V

model.
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Fig. 9. (a) The estimated standard deviation of the ”hard” comparisons
(shard) for ten groups of conditions. The blue line represents the fixed
standard deviation of the ”easy” comparisons. (b) Time to complete each
comparison for both difficulty levels.

Fig. 10. The comparison of three quality scales (JOD, DMOS, VC),
underlying observer model distributions (lines) and estimate distributions
(filled shapes). Colors used in scales correspond to the underlines below
each image. The top row shows reference images, which correspond to (ref)
condition on the scale.

Fig. 9b shows the average time spent on easy and hard com-

parisons. Although the results for 10 groups do not indicate a

statistically significant difference (t(18) = -0.92, p0.05 = 0.36),

we noted that the observers spend on average 3.9s on hard and

3.3s on easy comparisons.

We do not have sufficient evidence that harder difficulty

of comparisons results in higher level of confusion. It may

be impractical to collect sufficient data to estimate sigmas

individually for each difficulty level. Therefore, even though

the sigmas could potentially be different, Case V is a good

simplifying assumption and a pragmatic choice.

D. Comparison of quality scales

To summarize our findings, we show the differences be-

tween the JOD, DMOS and vote count (VC) quality scales in

an example in Fig. 10. The figure shows three images from

the TID2013 dataset and their corresponding quality scores in

each scale. We plot above each scale the distribution associated

with the observer model as a solid line and one associated with

the distribution of the estimate of the mean as a filled area.
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The observer distribution explains how the quality estimates

vary across the population and it combines inter- and intra-

observer variations. The standard deviation of this distribution

is fixed for the JOD scale so that the difference of 1 unit

corresponds to 75% of the population selecting one condition

over another. Since DMOS scale is approximately linearly

related to the JOD scale (as we show in Fig. 6 and 7), the

observer model distribution for DMOS has also approximately

constant standard deviation across all conditions, but its value

is larger than for the JOD scale (c = 1.24 found for TID2013

in Section V-B). This means that the observer model and its

distribution differs between experimental procedures and that

observers are more likely to confuse image quality in a rating

experiments than in a pairwise comparison experiment. The

main difference between JOD and DMOS scales is that the

distances in the JOD scale are well defined and directly related

to the standard deviation of the observer model. In contrast,

such distances are arbitrary for DMOS scale and vary between

experiments. This is because there is no strict definition of

quality ratings such as ”poor” or ”excellent” used in those

experiments and their interpretation depends on the type of

distortions that are considered, training of the participants and

other factors.

The filled-shape distributions in Fig. 10 tell us how confi-

dent we are in the estimate of the mean quality score associated

with our observer model. If we were to run the experiment

multiple times with the same number of observers, the mean

quality values across all repetitions would be distributed ac-

cording to the filled shapes. Such estimate distribution can be

readily calculated for DMOS scale as the standard error of the

mean. Finding such distribution for JOD scale is more complex

and can be obtained, for example, by bootstrapping [6]. As

we collect more data, the standard deviation of that estimate

distribution decreases, while the standard deviation of the

observer model converges to the same constant value of σ. The

estimation distribution is typically used to determine whether

we have enough data to say that the quality means are different

from each other (statistical significance). The observer model

distribution can explain a practical significance: tell what

portion of the population will make a particular judgment.

Fig. 10 also shows limitations of vote counts used as a

quality measure. Firstly, there is no associated observer model

that could explain quality values on a continuous quality

scale. Secondly, the scale does not have the absolute 0 point

assigned to reference images. Finally, the lack of cross-content

comparisons makes the absolute quality estimate inaccurate

when more than one content is considered.

E. On the choice of the protocol

Authors in [17] have developed a probabilistic framework

for choosing either a pairwise comparison or a rating protocol,

based on the information gain. The method relies on heavy

computations and is not feasible for large scale datasets. Our

model can be used for large scale experiments, however does

not allow for a dynamic choice of the protocol. We believe,

however, that our proposed approach can be very useful when

combined with pilot studies. More specifically, the value of

c given the results of the pilot study can guide the choice.

This is, both pairwise comparisons and rating scores can be

obtained for a subset of conditions and the estimation of the

value of c can suggest which experiment to use, i.e. for c < 1
it is recommended to use rating and for c > 1 pairwise

comparisons, and provide an estimation of the ranking of

conditions so that more informed experimental designs in the

case of pairwise comparisons could be used.

VI. EXPERIMENTS: VALIDATION

In this section we analyze the effect of combining rating

and pairwise comparison through a set of experiments on

benchmark datasets and simulations, for which ground truth

is available. We use two measures for evaluating the errors:

1) Spearman Rank Order Correlation Coefficient (SROCC),

which accounts for the ranking and 2) Root Mean Squared

Error (RMSE), which takes the distance between conditions

into account. For some experiments we also report Pearson’s

Linear Correlation Coefficient (PLCC).

A. Berkeley datasets

In order to find the relationship between rating scores and

estimations from PWC, Shah et al. [18] conducted seven

different experiments for various tasks. The tasks were esti-

mating areas of circles, age of people from photos, distances

between cities, number of spelling mistakes in text, finding the

frequency of piano sounds, rating tag-lines for a product and

rating the relevance of image search results. Some of these

datasets include ground truth, we use those for our analysis.

The measurements from each dataset were used to estimate

scores for a) rating data alone, b) pairwise comparison data

alone using the scaling procedure from Section III and c)

mixed measurements, combining both rating and pairwise

comparison data using the scaling method from Section IV-C.

When both protocols were combined, we could also esti-

mate factor c, explaining how much observer variance differs

between rating and pairwise comparisons (Equation 8). We

also include the total time effort spent collecting each type

of experimental measurement. Note that since time effort

differs, we can not directly compare both protocols in terms

of accuracy. However, note that variance decreases as sample

size increases, which means that estimated parameter c not

only takes into account observer variance but also number of

measurements.

It should be noted that we could not scale pairwise compar-

ison results for the Age dataset as it contained disconnected

components. However, we could use pairwise comparisons

when the data from both protocols was combined. This il-

lustrates one of the benefits of mixing both types of data:

It allows to have disconnected components in the graph of

comparisons, as long as conditions from both components are

rated.

Results of scaling all four datasets are shown in TABLE I,

together with the total time needed to collect the data. Several

conclusions can be drawn from these results. Firstly, we can

see that SROCC and PLCC are similar for both rating and

pairwise comparisons. This indicates that both protocols are
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capable of estimating the ranking between conditions correctly.

However, with pairwise comparisons these ranking results

are achieved with less time effort. Secondly, when RMSE

is considered, the performance of both protocols depends

on the standard deviation of the observer model associated

with each protocol, as suggested in [18]. Note that if the

c parameter is larger than 1, the rating protocol results in

a larger standard deviation of the observer model than the

pairwise comparison protocol. For example, since c is larger

than 1 in the Piano dataset, pairwise comparisons result in

the smaller RMSE. In the rest of the cases, c was lower

than 1, which meant that rating had better results. Finally,

concerning the mixing of both protocols we can see that in

most cases this approach has better performance or achieves

a good trade-off between both measures. This is expected, as

the total amount of measurements is significantly increased

when mixing both sources. However, it can also be seen that

the result of the mixing highly depends on the accuracy of

both types of measurement, achieving the mixing worse results

in cases in which one of the protocols achieved significantly

worse result than the other (e.g. case of Spelling for RMSE).

B. Combining LIVE and TID datasets

We further validate our method by merging two of the

largest IQA datasets, i.e. TID2013 [3] and LIVE [5] datasets.

LIVE contains 779 distorted images, with the scores obtained

using rating. For such rating-based datasets, we need to collect

two types of pairwise comparison measurements: within and

cross-dataset. Within-dataset comparisons help to set the rela-

tionship between JODs and rating. Cross-dataset comparisons

are necessary to put all datasets in a common unified scale.

Thus, to supplement the rating data obtained for the original

LIVE dataset we collected additional pairwise comparisons

and re-used the data collected from the study in [17], where

authors collected a total of 35700 pairwise comparisons for

7140 pairs of conditions. In our additional experiment we

collected a set of 1158 pairwise comparisons for 193 pairs

of images of similar quality within LIVE. We also collected

cross-dataset comparisons in a similar way, where images

similar in quality from the TID2013 and LIVE datasets were

compared together. We collected a total of 946 comparisons

for 158 pairs of conditions.

The new scale is plotted in Figure 11 versus the original

scores. The plot shows substantial changes in the quality scores

resulting from jointly scaling both datasets. A value of c = 0.8
for the LIVE dataset indicates that the rating was a more

accurate protocol than pairwise comparisons. However, the

opposite could be observed for TID2013 (c = 1.24), where

pairwise comparisons resulted in more accurate measurements.

Distances in the new scale have a 0.764 correlation (in

terms of SROCC) with the measured cross-dataset pairwise

probabilities, meaning that the mixing is able of representing

the collected information properly. Fig. 12 shows a visual

example to appreciate how the final mixed scale group together

images of similar quality (images at the top row are 0.004 apart

in the scale, images at the bottom row are 0.041 apart.
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Fig. 11. Original scores of TID and LIVE datasets versus JOD values after
scaling the datasets together.
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Fig. 12. Two examples of images from distinct datasets that are close in
the new mixed scale. The top row shows two images with associated quality
close to the reference image (-0.013 and -0.009 respectively). The bottom row
shows two images with quality of -5.954 and -5.913.

C. Simulations

Our goal now is to analyze which measurement is more

appropriate given the same time budget. In this section we

rely on Monte Carlo simulations, which assume ground truth

quality scores and can be used to easily test a range of

experimental strategies. For every method the simulation was

set to run 100 times. We found this number of Monte Carlo

iterations sufficient due to the stability of the results. The first

30 conditions of TID2013 (i.e. associated to content 1) were

used as underlining true quality scores for the simulation. We

use Thurstone case V observer model, described in Section

III-A, to generate simulated pairwise comparison data. Swiss

system was used to guide the search for the pairs to compare

using 9 rounds, as done in TID2013 [3]. This means that

each observer of pairwise comparison experiments measured

9 · (N/2) comparisons in total. To generate simulated ratings

we add Gaussian-distributed noise to ground truth data, i.e.

assuming that the same observer model is used for both

pairwise comparisons and rating. Each observer measured N
conditions for rating. The same experimental procedure is used

for all simulations in this paper. In our simulation we test how

the standard deviation of the observer model for each protocol

(related to c in our model) affects the results.

We simulated pairwise comparison, rating and mixed exper-
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TABLE I
RESULTS OBTAINED BY RATING, PAIRWISE COMPARISONS AND MIXED EXPERIMENTS IN FOUR PUBLICLY AVAILABLE DATASETS. THE TABLE SHOWS

PLCC, SROCC AND RMSE MEASURES AND THE FITTED C PARAMETER EXPLOITING THE RELATION BETWEEN THE STANDARD DEVIATION OF THE

OBSERVER MODEL FOR BOTH PROTOCOLS. TOTAL TIME FOR DATA COLLECTION FOR EACH TYPE OF EXPERIMENTS IS ALSO SHOWN.

PLCC SROCC RMSE c Total time (secs.)

Dataset Rating Pairw. comp. Mix Rating Pairw. comp. Mix Rating Pairw. comp. Mix Mix Rating Pairw. comp.

Distances 0.982 0.951 0.981 0.982 0.977 0.979 0.258 0.304 0.189 0.911 15176 12844
Age 0.886 - 0.913 0.805 - 0.875 0.442 - 0.388 0.762 6462 2790

Piano 0.889 0.944 0.938 0.830 0.927 0.939 0.602 0.316 0.334 1.737 7431 5218
Spelling 0.568 0.481 0.546 0.667 0.667 0.667 0.785 0.953 0.892 0.810 9706 17505

iments with varying number of measurements. In the case of

the mixed scale, half of the observers performed a pairwise

comparison experiment and the other half performed rating.

In our simulations, we tested i) c = 0.5 (rating results in less

confusion than PWC), ii) c = 1 (both measurements result in

the same confusion), iii) c = 1.24 (the ratio found in TID2013)

and iv) c = 2 (rating has double the standard deviation of

PWC). The error measures are plotted according to the total

time effort needed in Fig. 13, where time effort corresponds to

the number of measurements multiplied by the average time

required per measurement found with TID2013.

From the figures, we can conclude that the measurement

with the lowest standard deviation of the observer model

obviously achieves better performance and is preferred in all

scenarios, although most measurements converge with enough

time effort. When measurement noise is unknown, mixing rep-

resents a suitable approach, achieving reasonable performance

and a trade-off between both experimental protocols. Mixing

also behaves well when data coming from rating is much more

noisy, achieving performance close to PWC. We can also see

that for the case of c = 1.24 (found with TID2013) pairwise

comparisons are more efficient, supporting the use of such

pairwise comparisons for image quality assessment.

Next, we study the case of disconnected components in the

graph of comparisons and missing rating data when mixing

both scales. Here we do not assume the same budget of

comparisons, but rather use fixed number of observers. The

same configuration for the simulation, explained at the begin-

ning of this subsection, is used. TABLE II shows the case of

three approaches: Rating, rating with data missing at random

(20% of the rating data is missing), pairwise comparisons with

connected components (PWC) and mixing with data missing

at random (again, same 20%) and disconnected components

(here we break the graph of comparisons so that there is

always two disconnected components). We perform 100 runs

for each method and test it with 10, 20 and 30 observers. We

report RMSE, SROCC and total time effort. The same standard

deviation of the observer model as in TID2013 (c=1.24) is

assumed. Analyzing these results, we can conclude that mixing

is possible even when dealing with disconnected components

and missing rating data, showing similar performance to

the sole use of pairwise comparisons at similar time cost.

Being able to handle such experimental designs is a highly

desirable feature, given that this can simplify the pairwise

comparison experimental procedure for large-scale datasets or

when mixing different quality assessment datasets, for which

missing rating data is common.

VII. CONCLUSIONS

In this work we propose a probabilistic model that can bring

the results of pairwise comparison and rating experiments into

a unified quality scale. The model is based on the Thurstone

Model V assumptions and our observation that the relation

between DMOS ratings and scaled pairwise comparison qual-

ity scores is approximately linear. The units in that scale,

which we denote as just-objectionable-differences (JODs), are

scaled accordingly to the combined inter- and intra-observer

variations so that 1 unit corresponds to 75% of observers

selecting one condition over another. Our model can be used to

estimate observer variation for each experimental protocol and

bring measurements to the scale determined by the variation

in a side-by-side pairwise comparison experiment. We use the

pairwise comparison protocol as a base-line, as we found it to

result in a lower standard deviation of the observer model and

also lower RMSE given the same time effort to collect data.

We test our model on several real datasets and in a

number of simulations. Tests have confirmed our assumption

and further revealed interesting observations about the two

experimental protocols. Given the same time effort there is

no clear conclusion what experimental protocol to use. The

decision should rely on the noise of both scales, measured

by parameter c in our model. We also found that mixing

both protocols can be beneficial i) to mix datasets that use

either rating or pairwise comparisons, ii) to avoid disconnected

components in pairwise comparison experiments, iii) if cross-

content comparisons must be avoided and iv) if both types of

measurements were previously collected.

APPENDIX

COLLECTED DATA FOR TID2013

A. MOS experiment

In order to obtain mean opinion scores, an experiment was

conducted using the absolute category rating with hidden refer-

ence (ACR-HR) methodology [8]. In this experiment, a subset

of color images from TID2013 color image dataset [3] were

presented with a mid-grey background on a standard display

in a dark room, following the ITU recommentations [9]. The

participants were seated at the distance equal of 3 display

heights (∼1m). The stimuli were shown for 5 seconds and the

observers were allowed to confirm their answer either during

or after displaying the stimulus. The participants were then

asked to rate the quality of the color image presented on the

display using a continuous scale ([0,100], 100 corresponding

to the best quality). ACR-HR was selected to take also

the reference images and some quality enhancements (e.g.
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Fig. 13. Simulation of mixed scale for different values of standard deviation of the observer model (parameter c).

TABLE II
RESULTS FOR THE EXPERIMENT WITH DATA MISSING (DM) AND DISCONNECTED COMPONENTS (DC) FOR RMSE, SROCC AND TOTAL TIME EFFORT (IN

SECS).

Obs = 10 Obs = 20 Obs=30

Type of measurement RMSE SROCC Time effort RMSE SROCC Time effort RMSE SROCC Time effort

Rating 0.367 0.926 2310 0.277 0.958 4620 0.220 0.973 6930
Rating with DM 0.415 0.908 1848 0.311 0.947 3696 0.249 0.966 5544

PWC 0.200 0.978 4590 0.143 0.988 9180 0.116 0.991 13770
Mix with DM and DC 0.207 0.976 4677 0.151 0.987 9333 0.126 0.990 13956

increase in the contrast for ‘contrast change’ distortion type).

The participants spent on average 3.9±1.5 seconds on viewing

an image and 3.8±2.3 seconds on assigning a score.

In order to avoid fatigue and to keep the experiment under

30 minutes, a subset of images was used. Two distortion types

were selected for each content through random permutation

of the 24 different distortion types. A total of 175 images (25

contents × 2 distortion types × 3 distortion levels + 25 original

images) were voted during the experiment. Looking at the

quality values provided with TID2013 color dataset, we notice

that some of the distortion types (e.g. non-eccentricity pattern

noise and contrast change) have different behavior compared

to the other compression types. In order to capture the un-

common behavior of these distortion methods, distortion levels

of {2, 4, 5} were used for non-eccentricity pattern noise and

contrast change distortion type, as well as JPEG compression

to have a more varying quality values. For the rest of the

distortion types, distortion levels of {1, 3, 5} were selected. To

minimize context effects, the images were ordered randomly

for each subject, and consequent images were selected from

different contents.

Before the experiment, participants were screened for visual

acuity and correct color vision using Snellen and Ishihara

charts, respectively. A training session was conducted prior

to the experiment to familiarize the subjects with the test

procedure and distortion levels. Images used for training were

not used in the experiment. Subjects were asked to rate

“the overall quality of the presented image”. In total, 22

people (4 female and 18 male) with the average age of 30.6

participated in the experiment. After outlier detection [29], 1

of the 22 subjects was removed. MOS, standard deviation,

and confidence intervals are calculated for each stimulus as

described in ITU-T Rec. P.1401 [29].
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