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Bootstrap Techniques in Flat Space and Cosmology

Jakub Supeł

Abstract

The scientific understanding of the Universe is evolving at a rapid pace. Each new experiment yields

more and more accurate measurements of its fundamental parameters. The standard cosmological

model postulates a very early period of fast expansion, but the details of its underlying mechanism

remain hidden behind a veil of high energies that we cannot access in particle accelerators. Physics

of the early Universe can instead be studied by identifying its effects on cosmological fluctuations

produced in the early Universe, which are responsible for the anisotropies of the Cosmic Microwave

Background and the development of cosmic structure we can observe today.

On the other hand, General Relativity, in its classical formulation, is not fully compatible with the

principles of quantum mechanics, and a theory connecting the two realms remains to be discovered.

Direct experimental verification of such a theory is challenging due to the extremely high energies

required. Therefore, cosmological perturbations provide an excellent window into the perturbative

regime of quantum gravity. Since the primordial perturbations were produced in the highly energetic

early Universe, they can in principle be used to distinguish between different quantum gravity models.

It is therefore essential to develop methods of deriving their statistics from specific features of the

models.

This thesis focuses on the cosmological bootstrap, a research program that attempts to derive

features of cosmological fluctuations from simple physical principles expected to be satisfied in the

early Universe. I study the effect of background curvature on standard soft theorems and its impact

on observables in the context of the Effective Field Theory of inflation. I extend flat spacetime

bootstrap methods to settings where the boost symmetry is violated. I also employ several well-known

cosmological bootstrap methods to constrain graviton correlators at the end of inflation.





But God made the earth by his power; he founded the world by his wisdom and stretched out the

heavens by his understanding.

Jeremiah 10:12, NIV
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be found at the end of Chapter 1.
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Chapter 1

Introduction

The long history of studying the Universe has been marked by a gradual rejection of the belief in our

planet’s unique location. This process began with the heliocentric model, first proposed by ancient

Greek philosophers and revived in the 16th century by Copernicus. According to heliocentrism, the

Earth is one of many bodies simultaneously orbiting the Sun, which remains at the centre of the

cosmos. Soon after, astronomers such as Iohannes Kepler formalized the laws of this orbital motion,

laying the groundwork for Newtonian dynamics and the law of universal gravity.

As the understanding of nature progressed, it has been accepted that the same laws that govern

everyday life also apply to heavenly bodies and that the Sun is not dissimilar from the so-called

fixed stars, which may accommodate their own planets. All stars visible with the naked eye are

gravitationally bound in the spiral structure of the Milky Way galaxy, which is again not unique but

one of many galaxies in the observable Universe. Therefore, the solar system is not in the centre of

the Universe, and our cosmic neighbourhood appears to be indistinguishable from other points in

space, in a sense that I will later make precise. This postulate is known as the Copernican principle.

While the Copernican principle concerning spatial dimensions conforms to the observations quite

well on large scales, the same cannot be said about its temporal version. On the contrary, based on

the expansion of the Universe demonstrated by Lemaitre and Hubble [5, 6], it has been suggested

that the Universe has not always been the same but used to be much denser and hotter in the past.

This hypothesis of a hot Big Bang has been since confirmed by multiple lines of evidence, from

Cosmic Microwave Background experiments to observed abundances of light elements that match the

predictions of Big Bang nucleosynthesis theory [7].
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At sufficiently early times, any massive particle known from the Standard Model was ultrarela-

tivistic, its energy far exceeding the rest mass. Simple thermodynamics dictates that as we go back

even further in time and the length scales become smaller, such radiation permeating the Universe is

blueshifted, and its energy increases. The energy scale of a hot Big Bang is the temperature of this

radiation. Beyond Tc ≈ 158MeV, our modelling of the physics becomes uncertain, as hadrons are

now unstable and are replaced by the quark-gluon plasma, which is poorly understood [8]. At present,

we also lack experimental access to energies beyond a couple of TeV. Thus, we do not know what

the correct description of the very early Universe is. However, there is growing evidence that if we

continued going back in time, we would eventually reach the era of cosmological inflation: a period

of accelerated expansion which occurred in the very early phase of cosmic history. I will discuss

inflation in Section 2.2, where I will show how the exponential growth of the scale factor can explain

the approximate flatness and homogeneity of the Universe.

The framework of inflation can also account for the spatial density fluctuations, which can be

observed in the Cosmic Microwave Background (CMB) maps (Fig. 1.1). Although the fluctuations

are fundamentally unpredictable due to their quantum origin, their statistical properties are tied to

the details of the theory. Thus, a free (scalar or spinning) field φ generates Gaussian primordial

fluctuations, for which the expectation value of the second power of fields ⟨φkφk′⟩ at the end of

inflation is non-zero, while the connected components of all higher powers vanish. An interacting field

would, in turn, generate primordial non-Gaussianities, which are higher moments of the distribution

function.

Hypothetical observation of non-Gaussianities would give us an unprecedented opportunity to

study the high energy physics of the very early Universe. The primordial quantum fluctuations - that

become classical on length scales beyond the cosmological horizon - seeded the nonuniformities

in the CMB and the large-scale structures that we observe today. In other words, short wavelength

fluctuations in the far past have been stretched to cosmological scales during inflation and are, in

principle, observable today as classical inhomogeneities. Therefore, the present observational data

may, in principle, be used to reconstruct the inflationary correlators, which originate from interactions

at energies much greater1 than anything we could ever hope to achieve in terrestrial accelerators such

as the Large Hadron Collider. Such a cosmological collider could probe the regime of perturbative

quantum gravity, and by measuring primordial gravitational waves, either directly or via the imprints

1The energy scale of inflation itself is the Hubble scale, which could be as large as 10−6Mpl; Mpl being the Planck mass.
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Figure 1.1: The anisotropy of the Cosmic Microwave Background observed by Planck is one of the
relicts of quantum field fluctuations during inflation [9]. Reproduced with permission, ©ESA and the
Planck Collaboration

they left on CMB polarization, we could constrain quantum corrections to the Einstein-Hilbert action.

For this reason, it is crucial to develop a good understanding of the phenomenology of inflation,

that is to say, the correspondence between inflationary theories and their predictions. A standard

method of deriving the statistics of primordial fluctuations (in perturbation theory) from a given

action is discussed in Section 2.3.2. However, there are almost innumerable models of inflation that

substantially differ from one another. To begin with, they might generate distinct background evolution,

which provides the first connection to observations. They may also differ in the field content (the type

and number of fields, and therefore particles, that describe the high energy physics of inflation), the

symmetry breaking patterns and the interactions that give rise to primordial non-Gaussianities.

The proliferation and diversity of inflationary models motivate us to seek universal or semi-

universal consistency relations that the observables are expected to obey and which are derived from

a simple set of assumptions. If a consistency relation is observed to be violated, at least one of the

assumptions would need to be rejected. For example, the violation of Maldacena’s soft theorem

(discussed in Section 3.6, Equation 3.132) would indicate that one of the following must hold: (a)

more than one field was relevant in the inflationary era, (b) the Equivalence Principle is false, (c)

inflation underwent a non-attractor phase [10] or (d) inflation was not slow-roll (see Section 2.2). Still,

the most recent observations are consistent with Maldacena’s relation and, therefore, with the listed
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assumptions [11]. This and other soft theorems are discussed in Section 3.6. Chapter 5 (published as

[1]) discusses soft theorems as well as leading order model-dependent corrections to correlators in the

context of a spatially curved Universe.

Soft theorems do not exhaust the methods available to us when constraining cosmological

observables. Indeed, there exist other rules based on simple principles that are extremely well-

tested or theoretically motivated so that they apply to large classes of models and can serve as input in

the cosmological bootstrap program. A major goal in recent years has been to find bootstrap rules

that represent, in particular, the unitary dynamics of quantum fields directly on the level observables.

Progress in this direction has been made by [12–14] (see Section 3.5).

An ambitious project is then to use bootstrap rules to find all possible non-Gaussianities consistent

with a given background evolution, field content and symmetry-breaking pattern. A simplified strategy

involves writing down an ansatz for a given observable whose form is dictated by a few simple rules

and then using the remaining rules to maximally constrain the solution. This method has been used

in [4], included as part of this thesis (Chapter 8), to construct tree-level graviton bispectra, with the

emphasis on parity-odd bispectra.

As late-time observers, all data we have access to are the observables at the end of inflation.

Current data suggests that the Hubble parameter was approximately constant during inflation (see

Section 2.3.1), which means that its background dynamics can be approximated by a de Sitter

spacetime. Thus, in this approximation, we can only observe the future spacelike infinity of de Sitter

space. Our situation is therefore reminiscent of the anti-de Sitter/conformal field theory (AdS/CFT)

correspondence [15, 16]. AdS/CFT stipulates that a theory with gravity in AdS spacetime of D + 1

dimensions is formally equivalent to a conformal field theory on the D-dimensional boundary of AdS.

A major task in this research program is to develop dictionaries that relate the AdS fields, whose

asymptotic behaviour is known, to boundary operators. Asymptotic AdS observables could then

be represented as CFT correlators. Strongly coupled physics in the bulk spacetime (AdS) can be

studied by computing operator expectation values in the weakly coupled regime of the boundary CFT,

allowing for significant progress in our understanding of AdS physics [16–21].

It is tempting to suggest a similar correspondence for the de Sitter spacetime, which would

potentially enable us to study inflation via a dynamical principle formulated on the future spacelike

boundary. Such a theory would have to be “without time”, as the future boundary has a Euclidean
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signature and would be non-unitary, despite encoding a unitary time evolution in the bulk. Early

attempts towards formulating such a de Sitter holography include [22–25]. It is well known that de

Sitter and AdS are related by the analytic continuation tdS 7→ irAdS . [26, 27] used holographic meth-

ods based on a more general correspondence between cosmological and the so-called domain-wall,

Euclidean spacetimes, to compute primordial inflationary correlators. All of these attempts constitute

an important part of the de Sitter bootstrap program.

In the 1960s, parallel to the developments in cosmology, particle physicists were invested in the

S-matrix theory, which attempted to give the S-matrix, rather than the action, a fundamental status.

In this theory, basic principles obeyed by the S-matrix serve as a starting point for constructing a

detailed description of observables (scattering amplitudes) without invoking the Lagrangian. These

basic principles include complex analyticity, the interpretation of poles in the complex plane as

representing exchanged particles, and branch cuts as exchanged massive particles or loops. While

this has not been sufficient to solve the conundrums of interactions and bound states observed in

particle accelerators, and the project has been superseded by quantum chromo-dynamics (QCD), it

inspired the later efforts associated with the S-matrix bootstrap. Among the most intriguing results

of this bootstrap programme is the proof that GR is the unique theory of massless spin 2 particles

whose interactions are second order in derivatives, along with the construction of tree-level graviton

amplitudes for any number of particles from the building block of the cubic interaction. Furthermore,

the gravitational coupling strength can be shown to be equal to the coupling strength of any massless

elementary particle with spin less than 2 to gravity, while those with spin 2 or more cannot minimally

couple to gravity [28–31]. A more complete introduction will be given in Section 3.2; an in-depth

review can be found in [32].

S-matrix methods have thus been extensively used to develop a deeper understanding of gravity

and other theories around Minkowski space, and it has been a major goal for theoretical cosmology to

find similar techniques for de Sitter space. Since the latter has different symmetries, causal structure

and asymptotics than flat space, the set of allowed interactions might be different, especially because

the spectra of free particles in both cases do not coincide. However, if the case of Minkowski is any

guide, we might hope to derive recursion relations for cosmological correlators in (quasi) de Sitter,

which would allow us to (i) use lower-point correlators to explicitly construct higher-point ones and,

more ambitiously, (ii) constrain the allowed lower-point interactions in de Sitter through consistency
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Figure 1.2: Penrose diagrams representing the causal structure of AdS, Minkowski and de Sitter space-
time. Each point on the Minkowski and de Sitter Penrose diagrams corresponds to a 2-dimensional
sphere. In AdS, the boundary I has a Lorentzian signature. In Minkowski, the boundary is comprised
of the past and future null infinity, denoted by I − and I +. In de Sitter, there is past and future
spacelike infinity I − and I + which have Euclidean signature. One of the four Poincaré patches of
de Sitter, described by the (η,x) coordinates of Section 2.2, is represented by the shaded region.

relations.

On the one hand, we do not know of any proof, beyond perturbation theory, of a correspondence

between specific physical processes and analytic properties of de Sitter observables. If we are presented

with an analytic expression for a correlator, we do not know how to identify in full generality the

physical processes that are responsible for it. On the other hand, in recent years, there has been some

progress in the understanding of this matter on the level of perturbation theory. Some of these methods

will be introduced in Chapter 3.

Chapters 5-8 of this thesis, based on collaborative work and published as [1–4] are part of the effort

outlined in this introduction and constitute a step towards answering the following important questions:

How can unitary and local physics in the bulk spacetime be encoded in full generality in the

boundary data, either in perturbation theory or beyond? Given a primordial correlator, how can we

ascertain whether it could be produced by a unitary and local theory in a quasi de Sitter spacetime?

How can we match specific features of the theory to specific properties of the boundary data?
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Given a theoretical model, how can we bypass the cumbersome bulk computations and calculate the

observables in the most efficient manner?

The remainder of this thesis is intended to provide a partial resolution to the above problems.

It is structured as follows. Chapter 2 consists of an introduction to the current cosmological and

inflationary paradigm, which a reader familiar with the field may skip. In Chapter 3, I present the

main methods used in this thesis. Chapter 4 consists of an original derivation of adiabatic modes in

a spatially flat Universe in the vector spherical harmonics basis. The remaining chapters have been

published as standalone articles, each constituting a collaborative effort. In Chapter 5 (published as

[1]), I discuss a violation of the leading order soft theorem in a curved Universe and determine the

leading order correction to the scalar power spectrum and bispectrum in the presence of curvature. In

Chapters 6-7 (published as [2, 3]), I constrain the flat space S-matrix for a certain class of Lagrangians,

in the absence of Lorentz boost invariance. Even though this constitutes a marked departure from

the de Sitter context, it contributes to the bootstrap project by deriving powerful constraints on the

Minkowski space boundary data while allowing for the violation of boost invariance - the de Sitter

analogue of Lorentz boosts being a symmetry that is strongly broken in inflation. In Chapter 8

(published as [4]), I bootstrap graviton non-Gaussianities (both parity-even and parity-odd) that can

be large enough to be observable, using the techniques developed in [33, 2].

Chapter 5 was published as [1] and coauthored by myself, Guus Avis, Sadra Jazayeri and Enrico

Pajer. Sections 5.2.4 and 5.3 are primarily my own work. Sections 5.4 and 5.5 were written in close

collaboration with Sadra Jazayeri. I verified all other sections and can attest to their accuracy as a

coauthor.

Chapter 6 was published as [2] in collaboration with David Stefanyszyn and Enrico Pajer. Section

6.2 is primarily my own work; I also derived all the results in Sections 6.3 and 6.4, cross-checking

my results with those of David Stefanyszyn. Appendices 6.7.1, 6.7.2, 6.7.3 and 6.7.4 are my own

contributions. I contributed to a lesser degree to other parts of the paper and take full responsibility

for any inaccuracies.

Section 7.3 is based on [3] which is a work completed in close collaboration with David Ste-

fanyszyn.

Chapter 8 published as [4] was coauthored by myself, Giovanni Cabass, Enrico Pajer and David

Stefanyszyn. The results of Sections 8.4 (except for the final subsection) and 8.5.3 are primarily
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my work, as are parts of Section 8.2, although other authors also made substantial contributions

and independently derived all results to provide a reliable verification. Section 8.5.5 results from

collaborative work. I am familiar with all the other sections that were primarily written by Giovanni

Cabass, Enrico Pajer and David Stefanyszyn.



Chapter 2

Standard cosmology and perturbation

theory

2.1 Background evolution

The cosmological principle is one of the fundamental postulates of modern cosmology. It states

that there exists a family of observers according to whom our Universe is spatially homogeneous

and isotropic. Although this assumption does not hold on all scales, it is a good approximation at

distances beyond a few hundred Mpc [34] and is confirmed by the nearly uniform temperature of the

Cosmic Microwave Background [11]. The evolution of the Universe on large scales can be therefore

approximated, to leading order, as an evolution of a spatially homogeneous and isotropic spacetime.

Assuming General Relativity [35] to be applicable on cosmological scales, dynamics can be described

by the Einstein equation:

Gµν = 8πTµν , (2.1)

where we assume the unit convention c = G = 1. It must be noted that many modifications have

been proposed to (2.1), mainly as an alternative to dark matter and dark energy or as a solution to the

Hubble tension problem [36, 37]. While some of these modifications are equivalent to merely adding

extra sources to the stress-energy tensor (for example, a cosmological constant term is equivalent

to TΛ
µν = − Λ

8πgµν), others modify the gravitational action itself, for example by introducing new

fields beyond gµν . In this thesis, I assume that (2.1) holds as presented for the average Einstein and
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energy-momentum tensors.

Spatially homogeneous and isotropic spacetimes can be described by the Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric

gµν =


−1 0 0 0

0 a2(t)f2(r) 0 0

0 0 a2(t)f2(r) 0

0 0 0 a2(t)f2(r)

 , (2.2)

where f(r) = 1
1+ 1

4
Kr2

and r2 = x2 + y2 + z2. The only function that is not constrained by

homogeneity and isotropy is the scale factor a(t). A constant parameter K corresponds to the spatial

curvature: K = −1 for a universe with negative curvature, K = 0 for a flat universe and K = +1 if

the curvature is positive.

Spatially homogeneous and isotropic stress-energy tensors must take the form

Tµν =


ρ̄ 0 0 0

0 a2(t)f2(r)P̄ 0 0

0 0 a2(t)f2(r)P̄ 0

0 0 0 a2(t)f2(r)P̄

 , (2.3)

where ρ̄ and P̄ are the background values of energy density and pressure, respectively. It is now

straightforward to express (2.1) in terms of background quantities and find the relationship between

matter and background spacetime. The nontrivial components of (2.1) are the 00 and the diagonal

components ii, giving a system of equations that describe the background dynamics, known as

Friedmann equations [35]

(
ȧ

a

)2

=
8π

3
ρ̄− K

a2
, (2.4)

ä

a
= −4π

3
(ρ̄+ 3P̄ ). (2.5)

From the two equations above, we can derive another one, which can be interpreted as the conservation

of energy:

˙̄ρ = −3
ȧ

a

(
ρ̄+ P̄

)
. (2.6)
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The ratio H ≡ ȧ/a is, of course, the Hubble parameter, which corresponds to the rate of the

homogeneous and isotropic expansion of the Universe. Next, it is convenient to define

Ωa =
8π

3H2
0

ρ̄a, (2.7)

Ωk = − K

H2
0

, (2.8)

where H0 is the present value of the Hubble parameter, and rewrite the first Friedmann equation (2.4)

as follows:

∑
a

Ωa +
Ωk
a2

=

(
H

H0

)2

. (2.9)

Here, the a index labels distinct contributions to the stress-energy tensor. Only three distinct contribu-

tions are sufficient to explain almost all of the cosmological data:

• Cold matter, also known as dust, which has negligible pressure (P̄D ≈ 0). This contribution

consists of ordinary (baryonic and leptonic) matter and dark matter.

• Radiation (P̄R = 1
3 ρ̄R). This includes massless particles such as photons and gravitons, but

also massive particles that are in the ultrarelativistic regime (v ≈ c).1

• Dark energy that behaves as a cosmological constant (P̄Λ = −ρ̄Λ).

In a simplified scenario of a spatially flat universe with only one significant contribution to the

stress-energy tensor, we can easily solve the Friedmann equations for a(t). The dynamics of the scale

factor then depends on whether the energy density is dominated by pressureless matter, radiation or

dark energy (cosmological constant).

• In the matter-dominated era (P̄ ≈ 0), we have a(t) ∝ t2/3.

• In the radiation-dominated era (P̄ ≈ 1
3 ρ̄), we have a(t) ∝ t1/2.

• In the era dominated by dark energy with the equation of state P̄Λ = −ρ̄Λ, we have a(t) ∝ eHt,

where H =
√

8π
3 ρ̄Λ = const. ρ̄Λ is related to the cosmological constant via ρ̄Λ = Λ

8π .

Current data, for example the Planck satellite observations of the Cosmic Microwave Background

[39], indicate that spatial curvature is at most of order 10−3 and is actually consistent with zero:

1The possibility that at least some species of the Big Bang neutrinos remain relativistic despite having been redshifted is
consistent with current constraints on neutrino masses [38].
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Pressureless matter, Ωm Radiation*, Ωr Dark energy, ΩΛ Spatial curvature, Ωk

0.3111± 0.0056 (9.2311± 0.0077)× 10−5 0.6847± 0.0073 0.0007± 0.0019

Table 2.1: Recent estimates of the main components of the Universe, with 68% confidence intervals
[39], [40]. The photon and the neutrino energy densities are included in radiation, assuming the
existence of exactly three neutrino species.

Ωk,0 = 0.0007± 0.0019 (68% CI, Planck + BAO). The relative energy densities of all components

are listed in Table 2.1.

The flatness problem

The physical value of spatial curvature is [1]

ΩK =
K

a2H2
. (2.10)

The first Friedmann equation (2.4) can be rewritten in terms of the values of Ωa at present, Ωa,0, as

Ωr,0
a2

+
Ωm,0
a

+ a2ΩΛ,0 −
K

H2
0

=

(
aH

H0

)2

. (2.11)

Now, if ΩΛ is negligible, as it has been for a significant part of the cosmic history, then the left-hand

side is decreasing as the Universe expands. Therefore, aH must decrease, while |ΩK | = |K|
a2H2 must

increase as the Universe expands. More precisely, if we assume |ΩK | has always been small, then

∣∣∣ΩK(tE)

ΩK,0

∣∣∣ ≈ a(tE)
2 1

Ωr,0
, (2.12)

where tE is some early time when radiation was the dominant component of the Universe. At the

time of neutron decoupling (a(tdec) ∼ 10−9), the physics of which is well understood, we have

∣∣∣ΩK(tdec)

ΩK,0

∣∣∣ ≈ 6.8× 10−15. (2.13)

During the hot Big Bang, the mean physical curvature ΩK was therefore many orders of magnitude

closer to zero than it is today. The fact that spatial curvature was equal to zero to such a great precision

requires an explanation. This apparent fine-tuning is known as the flatness problem, a more detailed
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discussion of which can be found in [41].

The horizon problem

Since at least the measurements by COBE [42], confirmed by many other experiments such as the

WMAP and Planck satellites [11, 39, 43–48], it has been known that the CMB temperature fluctuations

are very small. A typical amplitude of relative temperature fluctuations is (∆T/T ) ∼ 10−5 to 10−4,

depending on the angular scale [39]. The three-dimensional Large Scale Structure (LSS) of the

Universe has a similar property of being exceedingly uniform on the largest scales, i.e. those exceeding

about 100Mpc [49, 50]. This has long been interpreted as a problem for standard cosmology because

in a universe dominated by matter and radiation, the particle horizon - the largest comoving distance

an observer could receive any signals from - shrinks as we go into the past. The ratio of particle

horizon at the time when the CMB was emitted to the currently observed radius of the CMB sphere,

i.e. the sphere of last scattering (42 billion light years) is

rp(tCMB)

rCMB
≈ 0.063. (2.14)

This implies that the size of the particle horizon at the time of CMB emission corresponds to the angle

of about ∼ 1.2 degrees on the last scattering surface. If the assumptions behind this argument are

correct, then regions larger than about 1 degree on the last scattering surface could not have been in

causal contact before the CMB was emitted. Yet we know that the CMB is nearly uniform even on

the largest angular scales. Because such a uniform background would again represent a high degree

of inexplicable fine-tuning, a natural hypothesis is that distant regions of the CMB had been, in fact,

in causal contact before the Universe became transparent to photons, so those different regions had

reached approximate thermal equilibrium by then. Note that this argument does not assume, and is

not limited to, any specific physics responsible for energy exchange between neighbouring regions of

the Universe - the only assumption is that such physics is not superluminal.

Both the flatness and the horizon problems can be addressed by postulating a period of accelerated

expansion of the Universe, known as inflation. In the next section, I will discuss the fundamental

physics of inflation and demonstrate how it answers the problems presented above while simultane-

ously explaining features of cosmological perturbations (Fig. 2.1) that have been observed after the

theory of inflation was proposed (Section 2.3.1).
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2.2 Inflation

The hypothesis of cosmological inflation was originally put forward to address the magnetic monopole

problem [51], and it was soon realised that it would also solve the problems of standard cosmology

discussed in the previous section [52]. Inflation is defined as a sustained period during which the

background evolution satisfies the inequality ä > 0. Such an acceleration of the expansion rate can

be achieved in a simple theoretical model with a cosmological constant Λ that dominates over other

types of energy.

It is convenient to describe the kinematics of inflationary expansion using conformal time and

comoving coordinates. We define the conformal time by

dη =
dt

a(t)
. (2.15)

In terms of η, the background metric takes a simplified form. In the flat case (K = 0) we have

ds2 = a(η)2
(
−dη2 + dx2

)
. (2.16)

Note that light cones in these coordinates have a constant slope equal to one. In other words, radial

light rays travel along the lines of constant η ± r in the (η, r) spacetime diagram.

Given the new time coordinate, I should distinguish between time derivatives with respect to t

and those taken with respect to η. I will use the notation

ḟ ≡ df

dt
, (2.17)

f ′ ≡ df

dη
=
dt

dη
ḟ = aḟ . (2.18)

2.2.1 Motivation for the theory of inflation

Let us now see how a prolonged period of inflation solves the flatness and the horizon problem.

Suppose the cosmological constant and the curvature term are the only contributions to the Friedmann

equations, while K = ±1. The solutions are
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a(t) =


1
H∞

sinh (H∞t) if K = −1,

1
H∞

cosh (H∞t) if K = +1.

(2.19)

ΩK(t) =


− 1

cosh2(H∞t)
if K = −1,

1
sinh2(H∞t)

if K = +1.

(2.20)

where H∞ =
√
Λ/3 is the late-time limit of the Hubble parameter. In both the open and the closed

case, |ΩK | decays as exp (−2H∞t) for large t. In other words, the Universe is becoming flatter. The

fact that ΩK is very close to zero is then explained, provided that inflation lasts sufficiently long.

As for the horizon problem, it will suffice to compute the particle horizon rp near the end of

inflation. For K = −1, 0, we have

rp =

∫ a=af

a=ai

dt

a(t)
→ +∞ as ai → 0, (2.21)

while for K = 1, rp is also large provided that physical curvature at the end of inflation is sufficiently

small. Therefore, we see that for a sufficiently long period of inflation, any two regions currently in

the observable Universe could have exchanged signals before the CMB was emitted and therefore

could have reached thermal equilibrium. Deviations from uniform CMB temperature and matter

density can then be explained by invoking the theory of quantum fluctuations (Section 2.3).

Note that if the cosmological constant Λ were indeed exactly constant over time, then all matter

and radiation would soon be heavily diluted, and inflation would last forever into the future, with

the scale factor given by a(t) = exp(Ht), H =
√
Λ/3. Such an eternal, exponential expansion is

certainly not what we observe. Therefore, multiple models have been proposed to provide an end to

the inflationary era, either locally (through a spontaneous phase transition from an eternally inflating

background) or globally in space, albeit at slightly different times (as the inflaton field potential

naturally reaches the minimum). Such models usually entail a deviation from exponential expansion,

so H becomes dependent on time. For later convenience, let us investigate the basic kinematics of

inflation with weakly time-dependent Λ and H .

First, I define two slow-roll parameters (η̃ should not be confused with the conformal time η).
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ϵ = − Ḣ

H2
, (2.22)

η̃ =
d
dt (log ϵ)

H
. (2.23)

There are several important classes of inflationary kinematics, grouped according to the behaviour

of slow-roll parameters:

• Exact de Sitter. This corresponds to ϵ = η̃ = 0, so H is exactly constant. As remarked

above, such a scenario is eternal and not realistic. Nevertheless, it is still useful for computing

approximate values of those inflationary observables that are nonvanishing in the limit ϵ, η̃ → 0.

• Slow-roll inflation. This small deviation from de Sitter background is characterized by |ϵ|, |η̃| ≪
1. Because |η̃| ≪ 1, we can treat ϵ as approximately constant. In that case, we have

a(η) = − 1

H1η
1

1−ϵ
, (2.24)

H(η) =
H1

1− ϵ
η

ϵ
1−ϵ . (2.25)

Because the deviation from constant H is small, I often refer to this spacetime as quasi-de

Sitter.

• Ultra-slow-roll inflation. Characterized by |ϵ| ≪ 1, η̃ ≈ −6, which can be achieved by means

of a very flat inflaton potential [53].

This thesis focuses on field theoretical models of inflation. The existence of a Lagrangian de-

scription of the dynamics in terms of fields is generally assumed (usually one in which inflation is

driven only by a single scalar field). A UV cutoff at some energy scale Λc (not to be confused with

the cosmological constant Λ) is also introduced, even if implicitly, to reflect our ignorance of high

energy physics and prevent the rise of UV loop divergences. The description assumed throughout the

thesis is field theoretical in the sense that I remain agnostic about the fundamental realisation of the

physics that would require a qualitatively different description, such as vibrating strings, branes, spin

foams, etc.
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2.3 Inflationary perturbation theory

One of the main tasks of the theory of inflation is to connect a given model (or a class thereof) to

specific observational consequences. The statistics of primordial fluctuations, generated by quantum

effects during inflation, are the prime candidate to facilitate such a connection.

The remainder of this Chapter is organised as follows. In 2.3.1, I derive the power spectra of scalar

and tensor curvature perturbations under specific assumptions and compare the results with recent

data. In 2.3.2, I introduce the in-in method for computing higher order primordial correlators. Once

inflation ends, these primordial seed fluctuations evolve classically. Although this post-inflationary

evolution is not the main focus of this work, in 2.4 I briefly introduce the principles behind it.

2.3.1 Power spectra

Consider a field X with a vanishing expectation value,2 ⟨X⟩ = 0. The power spectrum PX(k) is

defined as the second moment of X:

⟨X(k)X(k′)⟩ = (2π)3δ(3)(k+ k′)PX(k). (2.26)

Note that in the presence of rotation symmetry, PX may only depend on k = |k|.

Power spectrum of ζ

A key observable is the scalar curvature perturbation and its power spectrum [54, 22]. First, note

that in a vacuum (in the absence of any inflaton field), the metric’s scalar perturbation modes can be

eliminated by a redefinition of the comoving coordinates xi, such that in the new coordinates, the

scalar curvature becomes exactly zero. However, in single-clock inflation, there also exists a scalar

field ϕ whose perturbations cannot be eliminated simultaneously with those of the scalar curvature.

This suggests that we can redefine the coordinates so that δϕ = 0, but then scalar curvature cannot be

made to vanish. This choice of gauge is called the comoving gauge and is convenient for deriving the

statistics of the ζ fluctuations.

Neglecting tensor modes and assuming the mean curvature K = 0, the metric may be represented

as

2This can always be ensured by subtracting off the vacuum expectation value from a field with a nonvanishing vev.
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ds2 = −N2dt2 + a2e2ζ(dxi +N idt)2. (2.27)

The inflaton field can be taken to be uniform due to our choice of gauge: ϕ(t,x) = ϕ̄(t). Now we

expand the action3

S =
1

8π

∫
d4x

√−g
(
1

2
R+ Lϕ

)
, (2.28)

to second order in perturbation ζ [22],

S(2) =M2
pl

∫
dtd3x a3ϵ

(
ζ̇2 − a−2(∂iζ)

2
)
. (2.29)

The equation of motion for ζ is

ζ̈ + 3H (1 + η̃) ζ̇ − a−2∇2ζ = 0, (2.30)

or, in conformal time,

ζ ′′ − 2

η

(
1 +

3

2
η̃

)
ζ ′ −∇2ζ = 0. (2.31)

In the late time limit, when - due to expansion - every mode becomes a superhorizon mode, the

dominant solution is ζ(t) ∼ const; the other solution decays approximately as η3, provided that |η̃|
is small. This means that once the scalar curvature perturbation has a wavelength larger than the

current Hubble horizon, its amplitude remains constant - we say that the mode is frozen.4 To find the

power spectrum of ζ, it is therefore sufficient to determine the statistics of quantum fluctuations at

horizon exit, i.e. at the moment when k = aH . From that point on, expanding fluctuations cannot

communicate and thus evolve classically, according to the free equation of motion.

To calculate the statistics of quantum fluctuations at the horizon exit, we decompose ζ in individual

modes:

ϕ(η;x) =

∫
d3k

(2π)3

(
a†(k)eik.xf+k (η) + a(k)e−ik.xf−k (η)

)
, (2.32)

3I take G = c = 1, hence M2
pl =

1
8π

. In the final result (2.39), one can reintroduce the physical value of Mpl in a
straightforward way.

4Note that if |η̃| > 1, the dominant mode grows with time. In ultra-slow-roll inflation, η̃ = −6, and ζ ∼ η−15.
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where a, a† are the usual creation-annihilation operators. There exists a vacuum state, which satisfies

a(k)|0⟩ = 0. (2.33)

The mode functions f±k both satisfy the free equation of motion for ζ. Specifying the vacuum state

|0⟩ is equivalent to choosing the boundary conditions for f±k , but in de Sitter space, there is some

ambiguity in this procedure. One option is to choose the following boundary conditions that are also

consistent with the canonical commutation relations:

f±k (η)e∓ikη ∼ ∓ iHη

2Mpl

√
ϵk

as η → −∞, (2.34)

lim
η→−∞(1+iϵ)

f−k (η) = 0, (2.35)

lim
η→−∞(1−iϵ)

f+k (η) = 0, (2.36)

which implies

f±k (η) =
H

2Mpl

√
ϵk3

(1∓ ikη) e±ikη. (2.37)

The mode function f+k (f−k ) is now interpreted as the negative (positive) frequency mode in the far

past. With this choice, |0⟩ is the Bunch-Davies vacuum, defined as the state annihilated by all the

negative frequency modes. Such an initial state can be motivated as follows. As we go back in time,

every particle is deep inside the Hubble horizon and does not experience the effects of expansion, so

it propagates as if it were in flat space. The Bunch-Davies vacuum condition then requires that in the

limit η → −∞, no particles are present in this (locally) flat space. I should note that this explanation

holds for a spatially flat universe, but if mean curvature is present, then particles would experience its

effects at arbitrarily early times and could never be described as propagating in approximately flat

space.

Assuming that the quantum field’s initial state was the Bunch-Davies vacuum |0⟩, we can compute

the power spectrum of ζ as follows.

Pζ(k) := ⟨0|ζk(η = 0)ζk′(η = 0)|0⟩′ = |f+k (0)|2 = H2

4ϵM2
plk

3
. (2.38)

In the above, I used the approximation of constant H . To account for the slow variation of the
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Hubble parameter, H in the above formula should be evaluated approximately at the time when a

given mode crossed the horizon. This is because once a mode becomes much longer than the horizon

scale, it stops evolving and is not affected by the variation of the Hubble parameter. The required H

is found by solving k = a(ηc)H(ηc), which leads to

Pζ(k) =
H(ηc)

2

4ϵM2
plk

3
∝ k−3kns−1, (2.39)

ns − 1 ≈ −2ϵ− η̃. (2.40)

Figure 2.1: The primordial power spectrum likeli-
hood reconstructed from the Planck CMB maps
[44]. The scalar tilt is nearly constant. N.
Aghanim et al., A&A 641 (2020) A1, p. 32, re-
produced with permission ©ESO.

The parameter ns−1 is called the scalar spec-

tral tilt. It quantifies the deviation of the power

spectrum from scale invariance,5 and in slow-roll

models it is predicted to be small, which is consis-

tent with observations (see Figure 2.1 and Table

2.2).

Power spectrum of γij

Linearised general relativity is a theory of a mass-

less tensor hµν accompanied by a diffeomorphism

symmetry. Quantum fluctuations of hµν during in-

flation have a tensor component which is physical

and thus cannot be eliminated by a gauge transfor-

mation. If the characteristic energy of inflation was sufficiently large, it should have generated tensor

perturbations of the metric - primordial gravitational waves. These are potentially observable, either

directly in gravitational wave detectors [55] or indirectly, by producing B-mode polarised waves in

5Consider

⟨ζ2(x)⟩ =
∫

d3k

(2π)3
Pζ(k) =

1

2π2

∫
d log(k)

(
k3Pζ(k)

)
. (2.41)

The contribution to the variance of ζ(x) from wavenumbers between k1 and k2 can be therefore estimated as

1

2π2

∫ log k2

log k1

d log(k)
(
k3Pζ(k)

)
. (2.42)

This depends only on the raio k2/k1, and is therefore independent of the scale, provided that k3Pζ(k) = const; hence
Pζ(k) ∝ k−3 is a scale invariant spectrum.
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the CMB [56].6

I will now calculate the power spectrum of primordial tensor fluctuations in slow-roll inflation,

assuming the Einstein-Hilbert action is a valid description of the linearised physics at inflationary

energy scales. The metric is of the form

ds2 = −dt2 + a2(eγ)ijdx
idxj . (2.43)

All degrees of freedom except for the two tensor modes are eliminated by imposing the conditions

γii = 0, γij = γji and ∂jγij = 0. I have already dropped the lapse N and shift Ni because they can

be solved for using constraint equations, and at leading (linear) order, they are independent of γij .

Similarly, the scalar perturbation ζ studied in the previous section (and equivalent to the trace of γij)

does not couple to γij at the quadratic level, so can also be ignored.7

Expanding the action (2.28) to second order in γij , we obtain

S(2) =
1

8
M2
pl

∫
dtd3xa3

(
γ̇2ij − a−2(∂kγij)

2
)
. (2.44)

I will call this action the canonical quadratic action for gravity. Recall that it was derived from the

Einstein-Hilbert action by perturbing the metric.

The tensor perturbations may be decomposed into two helicity components, γij(k) =
∑

λ e
λ
ij(k)γ

λ
k .

The polarisation tensors satisfy the following conditions:

ehii(k) = kiehij(k) = 0 (transverse and traceless) , (2.45)

ehij(k) = ehji(k) (symmetric) , (2.46)

ehij(k)e
h
jk(k) = 0 (lightlike) , (2.47)

ehij(k)e
h′
ij (k)

∗ = 2δhh′ (normalization) , (2.48)

ehij(k)
∗ = ehij(−k) (γij(x) is real) . (2.49)

Then

6It must be noted that primordial gravitational waves may also be generated, for example, by early phase transitions and
bubble collisions. This is, however, beyond the scope of this section.

7It is impossible to construct a nonvanishing scalar or a vector at linear order in perturbations, because γii, ∂i∂jγij = 0
and ∂iγij = 0.
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S(2) =
1

4
M2
pl

∫
dt

d3k

(2π)3
a3
∑
λ

(
γ̇λk γ̇

λ
−k − a−2k2γλkγ

λ
−k

)
. (2.50)

Following the same quantisation procedure as before, we find that the power spectrum is

P λλ
′

γ (k) = ⟨γλkγλ
′

−k⟩′ = δλλ′
H2

M2
plk

3
. (2.51)

Therefore, the total power spectrum (summed over the polarisations) is

Pγ(k) = ⟨γk,ijγ−k,ij⟩′ = 2× 2× H2

M2
plk

3
=

4H2

M2
plk

3
. (2.52)

(One factor of two arises because of two polarisations, while the second one is due to our normalisation

of eij .) As for the case of scalar perturbations, the Hubble parameter in the above power spectrum

should be evaluated at horizon exit because after that moment, fluctuations evolve classically and are

frozen. This will again lead to a slight deviation from a scale-invariant power spectrum:

k3Pγ(k) ∝ knt , (2.53)

nt ≈ −2ϵ, (2.54)

where nt is the tensor tilt.

There are several important assumptions in the above derivation:

• Absence of other tensor fields beside the graviton.

• Quantum corrections to the GR action do not modify the quadratic Lagrangian.

• Validity of perturbation theory around the background, quasi de Sitter solution and validity of

the tree-level approximation for the power spectrum (so that loop constributions to the PS can

be neglected).

• Approximate de Sitter spacetime.

Current constraints on the primordial power spectra

Let us summarise the predicted power spectra for scalar and tensor curvature fluctuations in a theory

of single-clock inflation with classical GR. We have
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Amplitude of Pζ ln(1010As) = 3.044± 0.014

Tensor-to-scalar ratio r0.002 < 0.056 (95% CL)

Scalar spectral tilt ns = 0.9649± 0.0042

Table 2.2: Current estimates of the power spectrum parameters [11, 57]. Constant ns is consistent
with the data at a 2σ level.

k3Pζ(k) = As

(
k

k∗

)ns−1

, (2.55)

k3Pγ(k) = At

(
k

k∗

)nt
, (2.56)

where As, At are the amplitudes of the scalar and tensor power spectra at k = k∗ and k∗ is the

reference scale (pivot scale), equal to 0.05Mpc−1. At is usually represented in terms of the tensor-to-

scalar ratio, r = Pγ(k)
Pζ(k)

. Neglecting the weak dependence on k, we should have r = −8nt = 16ϵ, as

can be seen by examining the power spectra.

Observations of the scalar spectrum are consistent with the above result, while tensor power spectra

have not been detected yet, so we only have an upper limit on r (see Table 2.2).

2.3.2 The in-in formalism

The standard method of deriving the statistics of primordial fluctuations is the in-in formalism [58, 59].

Since a late-time cosmological observer cannot perform scattering experiments but only has (indirect)

access to the late-time limit of the inflationary universe, observables are limited to the expectation

values ⟨Oi(η = 0)⟩ of operators on a late-time asymptotic state in (quasi) de Sitter spacetime. Let us

label the initial (early-time) state of the inflationary universe as | in⟩. This state can then be evolved

until the end of inflation. In the interaction picture, the evolved state is

T exp

−i
0∫

−∞

HI(η,x)d3xdη

 | in⟩, (2.57)

We should evaluate the operator of interest on this vacuum state or, equivalently, evaluate the interac-

tion picture operator on the evolved state:
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⟨in|Oi(η = 0)|in⟩ = ⟨in|T̄ exp

i 0∫
−∞

HI(η,x)d3xdη

 · (2.58)

· OI
i (η = 0)T exp

−i
0∫

−∞

HI(η,x)d3xdη

 |in⟩ , (2.59)

where T denotes the time-ordered product, and T̄ - the anti-time ordered product. To compute

the above integrals (either up to tree level or including loop corrections), we expand the operator

OI
i (η = 0) and HI in all relevant fields and use de Sitter mode expansion for these fields. For a scalar

ϕ (assuming a constant sound speed cs ⩽ 1),

ϕ(η;x) =

∫
d3k

(2π)3

(
a†(k)eik.xf+k (η) + a(k)e−ik.xf−k (η)

)
, (2.60)

where a, a† are the annihilation and creation operators, respectively. As before, we identify the initial

state with the Bunch-Davies vacuum. The corresponding mode functions for the massless case with

cs = 1 are given in (2.37). In a more general case considered here, the mode functions must satisfy

the free equation of motion for the scalar field,

ϕ′′(η)− 2

η
ϕ′(η) +

(
c2sk

2 +
m2

H2η2

)
ϕ(η) = 0, (2.61)

with boundary and asymptotic conditions (2.34) - (2.36). The solutions are

f+(k, η) =
i
√
π

2
He−

iπ
2
(ν+1/2) (−η)3/2H(2)

ν (−cskη), f−(k, η) =
(
f+(k, η)

)∗
, (2.62)

where ν =
√

9
4 − m2

H2 [12]. In most cases, these functions are too complicated to be useful, and as

a consequence, the final result of the in-in calculation cannot be expressed in terms of elementary

functions. However, in cases of special interest, f±(k, η) are simple. For a massless scalar, we have

f+(k, η) =
H√
2c3sk

3
(1− icskη)e

icskη, (2.63)

while for the special value of the mass, m2 = 2H2, and with cs = 1,

f+(k, η) = − iH√
2k
ηeikη. (2.64)
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This case is known as a conformally coupled (scalar) field.

2.4 Evolution of perturbations after inflation

The power spectra computed in Section 2.3.1 and the higher-point correlators, which can be computed

through the in-in method, describe the statistics of field fluctuations at the end of inflation. However,

two practical issues arise as one tries to connect such predictions to observations. First, the curvature

perturbation ζ is not observable directly but only through its effect on matter and radiation perturba-

tions. The latter can only be observed on the two-dimensional last scattering surface. Secondly, the

seed fluctuations undergo a nontrivial classical evolution once inflation ends. Initially, this evolution

is linear, but later it becomes nonlinear, with the nonlinearities becoming particularly strong as the

ratio of density fluctuation to average density becomes of order one.

In this short section, I briefly review the problem and present approximate solutions. A more

complete introduction can be found in [60].

2.4.1 Density perturbations in the early universe

To describe small density perturbations, it is convenient to define the density contrast δ(x, t) as

δ(x, t) ≡ δρ(x, t)

ρ̄(t)
, (2.65)

where ρ̄ is the mean mass density and δρ = ρ− ρ̄ is the absolute density perturbation. We can define

analogous quantities for each component of the universe separately, δa ≡ δρa/ρ̄a. We are especially

interested in the radiation density contrast δr, which is directly related to the temperature of CMB,

and the total matter density contrast δm, which is related to the galaxy density distribution.

Let us begin by studying the influence of gravity. Every particle experiences the same gauge-

invariant gravitational potential8 Φ. The evolution equation for the total density contrast δ is

8Writing the perturbed metric as

ds2 = a(η)2
(
−(1 + 2A)dη2 + 2∂iBdx

idη +

[
(1 + 2C)δij + 2(∂i∂j −

1

3
∇2)E

]
dxidxj

)
, (2.66)

the potential Φ is defined as

Φ = −C −H(B − E′) +
1

3
∇2E, (2.67)

where H = a′

a
.
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∇2Φ− 3H(Φ′ +HΦ) =
3

2
H2δ , (2.68)

where H = a−1(η)∂ηa(η) is the comoving Hubble parameter.

2.4.2 Scalar curvature and density contrasts

When inflation ended, the curvature power spectrum was given by (2.39), with higher moments of

scalar curvature perturbations given by the respective primordial correlators. As a first step, these

perturbations can be related to fluctuations of the potential Φ. On superhorizon scales, ζ is constant,

and we have [61, 54]

Φ =
3 + 3w

5 + 3w
ζ , (2.69)

where P = wρ. Thus, we have ΦRD = 2
3ζ, ΦMD = 3

5ζ. Taking (2.68) and neglecting all derivatives,

we find that the density contrast is

δ = −2Φ. (2.70)

At the end of inflation, the universe is radiation-dominated, and δ can be identified with δr. (For

adiabatic perturbations, it follows that δm = 3
4δr ≈ −3

2Φ.) We then need to evolve δr until

recombination, i.e. the moment of the last scattering. δr is constant on superhorizon scales, but

evolves as cos
(
kη/

√
3
)

on subhorizon scales. Under the approximations made here, the power

spectrum of radiation density contrast δr is given by [61]

Pr(k) ∝


kns−4 (k < k∗) ,

kns−4 cos2
(
kη∗√

3

)
(k < k∗) .

(2.71)

where k∗ = 1/η∗ is the wavenumber of the mode that entered the horizon at the time of matter-

radiation equality η∗. The temperature of radiation is related to δr via

δT

T
=

1

4
δr. (2.72)
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However, this is not the observed temperature of CMB since, after photons decoupled from matter,

they still underwent nontrivial dynamics, which we need to take into account. An important effect is

the redshift of photons emitted from a well of a gravitational potential Φ, and the related Sachs-Wolfe

effect [62, 54], which give

δTG+SW

T
=

1

3
Φ. (2.73)

Other effects that impact the statistics of the observed CMB include baryon acoustic oscillations [63]

(in the above treatment, I neglected the coupling of photons to baryons), the remaining Sachs-Wolfe

effect, which occurs due to the CMB photons passing through evolving density perturbations [64],

gravitational lensing [65] and Sunayev-Zel’dovich effect [66]. It must also be noted that the last

scattering surface is two-dimensional; temperature fluctuations on that surface are related to the

three-dimensional statistics via

⟨δTδT ⟩
T 2

=
∑
l

2l + 1

4π
ClPl(cos θ) , (2.74)

Cl = 16πT 2

∫
dk k2

〈(
1

3
Φk +

1

4
δr,k

)(
1

3
Φ−k +

1

4
δr,−k

)〉′
j2l (kr) . (2.75)

2.4.3 Linearised evolution of matter

In the first approximation - that of a linear evolution - the density contrast of each component at time

t will be related to the density contrast at the end of inflation tin through a function of the comoving

wavenumber k:

δi(k, t) = Ti(k; t, tin)δi(k, tin) . (2.76)

For example, if only one component dominates, then in the Newtonian approximation, the density

perturbation δ satisfies the linearised evolution equation

δ̈k + 2Hδ̇k + c2s

(
k2

a2
− 4πGρ̄/c2s

)
δk = 0 . (2.77)

where c2s =
δP
δρ . The transfer function should therefore satisfy
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∂2t Ti(k; t, tin) + 2H∂tTi(k; t, tin) + c2s

(
k2

a2
− 4πGρ̄/c2s

)
Ti(k; t, tin) = 0 . (2.78)

In a matter-dominated universe, taking cs = 0 (which corresponds to the case of pressureless dust),

the transfer function satisfies T (k) ∼ t2/3 ∼ a. The perturbations, therefore, grow proportionally to

the scale factor. This represents the leading order approximation for the evolution of matter density

perturbations, which is valid in the regime where such perturbations are small and where matter

pressure can be neglected, as is the case on all but the smallest length scales.

When the approximation δ ≪ 1 becomes violated in the late universe, nonlinear effects become

significant. Indeed, as matter coalesces into structures such as galaxies and galaxy groups, density

contrast becomes of order 1 or larger, especially on small scales. Thus, the distribution of matter and

galaxies in the late universe should not be expected to conform to the predictions of (2.76) on all scales.

Furthermore, the nonlinear evolution implies that even purely Gaussian primordial perturbations

will generate higher moments of density distribution over time, complicating the reconstruction of

higher-order primordial correlators from late time data.

There are generally two ways to improve the prediction of (2.76): extend perturbation theory

to include nonlinear effects order by order [67–72] or run computationally expensive gravitational

N-body simulations [73, 74]. Improving the accuracy of both methods constitutes an active area of

research, but a further review is beyond the scope of this thesis.



Chapter 3

Review of bootstrap methods

The purpose of this chapter is to introduce the main methods used in the remainder of this thesis. In

Section 3.1, I introduce the spinor-helicity formalism, a representation of massless particle kinematics

that has proven useful in bootstrapping elementary processes [75]. In Section 3.2, I discuss the flat

space S-matrix bootstrap which is employed and generalized in Chapters 6 and 7. In Sections 3.3, 3.4

and 3.5 I introduce the cosmological wavefunction formalism along with two recently formulated

methods of bootstrapping the wavefunction [33, 12]. Finally, in Section 3.6 I discuss adiabatic modes

and the related idea of cosmological soft theorems, which can also be used as a bootstrap method.

This chapter constitutes a review and does not include any original work.

3.1 Spinor-helicity formalism

Note: in this and the following section, I use the mostly-minus metric signature convention (+−−−),

which is widely used in particle physics. The same convention is used in Chapters 6 and 7. In

cosmology, the more common convention is (−+++) which is the one used in Chapter 8.

Spinor helicity formalism [75] is a convenient representation of a lightlike four-vector pµ = (p,p)

as a spinor pair (λ, λ̃). To that end, I begin by defining a 2× 2 matrix associated with pµ,

pαα̇ = (σµ)αα̇ pµ , (3.1)

where σµ = (1,σ), σ̄µ = (1,−σ); σi being the Pauli matrices,1

1The matrices σµαα̇ coincide with the identity and the Pauli matrices - note that the α, α̇ indices are down. The matrices
σ̄µ,αα̇ - with indices up - coincide with 1 and minus the Pauli matrices.
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σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1

 . (3.2)

Importantly, the matrix pαα̇ is degenerate,

det (pαα̇) = pµpµ = 0 , (3.3)

which implies that it can be written as a product of two vectors, known as spinors: pαα̇ = λαλ̃α̇. Each

spinor has 2 (complex) components, but a simultaneous rescaling of both leaves pµ invariant, so only

3 components are physical. Using the relation σ̄α̇αν σµαα̇ = 2δµν , we can invert (3.1) and write pµ as

pµ =
1

2
(σ̄µ)

αα̇ λαλ̃α̇ , (3.4)

λ and λ̃ are sometimes referred to as the holomorphic and anti-holomorphic spinors, respectively,

owing to their transformation properties under the Lorentz group: λ transforms in the (1/2, 0), while

λ̃ transforms in the (0, 1/2) representation of the SL(2,C).

Any scalar observable in a Lorentz symmetric theory must be a function of only Lorentz invariant

objects. If a set of such objects captures all asymptotic data of a scattering process (up to spacetime

symmetries), then this set includes all variables that a scattering amplitude can possibly depend on.

Certainly, the set of all spinor pairs, supplemented with particle spin and all the necessary quantum

numbers that identify particle species and carry information about their charges, is sufficient to

determine the amplitude. In fact, any Lorentz invariant can be constructed from just two basic objects,

known as spinor-helicity brackets [28, 29]. These are defined as

⟨λiλj⟩ ≡ ϵαβλi,αλj,β , (3.5)

[λ̃iλ̃j ] ≡ ϵα̇β̇λ̃i,α̇λ̃j,β̇ . (3.6)

The i, j indices label distinct particles, while the Greek letters refer to spinor indices. Usually, one

uses a shorthand notation, ⟨ij⟩ = ⟨λiλj⟩ and [ij] = [λ̃iλ̃j ]. The angle and square brackets are

antisymmetric,

⟨ji⟩ = −⟨ij⟩ , [ji] = −[ij] . (3.7)
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The scalar product of two four-vectors p1 and p2 can be written in terms of the brackets as

pµ1p2,µ =
1

4
(σ̄µ)aȧ (σ̄µ)

bḃ λ1,aλ̃1,ȧλ2,bλ̃2,ḃ (3.8)

=
1

2
ϵabϵȧḃλ1,aλ̃1,ȧλ2,bλ̃2,ḃ =

1

2
⟨12⟩[12] . (3.9)

In the above derivation I used the identity (σ̄µ)aȧ (σ̄µ)
bḃ = 2ϵabϵȧḃ [75].

Below I list other standard identities of spinor-helicity formalism [28]. Recall that in this section

I only discuss massless particles on Lorentz invariant backgrounds. In Chapter 8, we discuss a

generalization to a cosmological scenario where the zero component of particle momentum (the

“energy”) is not conserved.

∑
j

pj,µ = 0 ⇒
∑
j

⟨ij⟩[jk] = 0 . (3.10)

Schouten identity (for any three spinors λi, λj , λk),

⟨ij⟩λk + ⟨jk⟩λi + ⟨ki⟩λj = 0 , (3.11)

Similarly for λ̃i,j,k:

[ij]λ̃k + [jk]λ̃i + [ki]λ̃j = 0 . (3.12)

In the case of four-particle kinematics, Mandelstam variables can be expressed as follows:2

s = (p1 + p2)
µ(p1 + p2)µ = ⟨12⟩[12] = ⟨34⟩[34] , (3.13)

t = (p1 + p3)
µ(p1 + p3)µ = ⟨13⟩[13] = ⟨24⟩[24] , (3.14)

u = (p1 + p4)
µ(p1 + p4)µ = ⟨14⟩[14] = ⟨23⟩[23] . (3.15)

Note that

s+ t+ u = 0 . (3.16)

2In many texts, the definitions of t and u are interchanged. I follow the conventions of [76] and [77].
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The little group

The little group is a subgroup of the Lorentz symmetry group that leaves the four-momentum pµ

unchanged [78]. Suppose |p, σ⟩ is a quantum state of a single particle with a specific momentum p,

such that the index σ corresponds to all information about the particle beyond the momentum itself.

Then, any element of the little group acts linearly on single-particle states, moving them within the

space of states with the same momentum:

|p, σ⟩ 7→ D(σ, σ′)|p, σ′⟩. (3.17)

For massless particles, the little group is isomorphic to ISO(2), the isometry group of 2-dimensional

Euclidean space. In nature, all elementary particles are observed to transform trivially under the

translation component of this group - the presence of a continuous quantum number that would

correspond to the translation subgroup is simply inconsistent with experimental evidence. Thus,

once divided by the translation subgroup, the little group for massless particles reduces to SO(2).

We should then allow a state to be mapped to minus itself under a full rotation (one-particle states

are representations of the projective group), as is the case for particles with half-integer angular

momentum. The eigenvalue of a particle state under the little group transformation must therefore

be an integer or a half-integer, h = 0,±1
2 ,±1, . . .. This quantum number is known as helicity and is

equal to the projection of the spin onto the direction of spatial momentum:

h = S.p̂ . (3.18)

The little group transformation, also known as the helicity transformation, is thus simply a rotation of

a state around its momentum vector. It can be represented as a rescaling of the spinors, which does

not change the momentum but multiplies a one-particle state by a phase,

g(θ) : |ψ⟩ 7→ eihθ|ψ⟩, (3.19)

g(θ) : (λ, λ̃) 7→ (e−iθ/2λ, eiθ/2λ̃) . (3.20)

The generator of the helicity transformation, Ĥ , known as the helicity operator, has a simple form

when expressed in terms of the spinors:
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g(θ) = exp
(
iθĤ

)
, (3.21)

Ĥ =
1

2

(
λ̃
∂

∂λ̃
− λ

∂

∂λ

)
. (3.22)

The above property entails a powerful constraint on observables such as scattering amplitudes.3 These

will be discussed in the next section. Before we continue, we need to find expressions for the circular

polarization tensors in terms of spinor-helicity variables.

Polarization tensors

Polarization tensors of massless particles with helicity ±h ∈ Z have rank h and satisfy the

following definitional relations,

(eh)µµ...(k) = kµehµν...(k) = 0 (transverse and traceless) , (3.23)

ehµν...(k) = ehνµ...(k) (symmetric) , (3.24)

(eh)νµ...(k)e
h
νσ...(k) = 0 (lightlike) , (3.25)

(eh)µν...(k)e−h
′

µν...(k) = chδhh′ (normalization) , (3.26)

ehµν...(k)
∗ = (−1)|h|e−hµν...(k) (fields are real) . (3.27)

Polarization tensors of higher rank can be represented as tensor products of spin 1 polarizations,

(e+h)µ1...µh(k) =
√
che

+
µ1(k)e

+
µ2(k) . . . e

+
µh
(k) , (3.28)

(e−h)µ1...µh(k) =
√
che

−
µ1(k)e

−
µ2(k) . . . e

−
µh
(k) , (3.29)

where
√
ch is a numerical constant that depends on the chosen normalization condition for helicity

±h polarization tensors, which frequently differs between publications.

In terms of spinor helicity variables, the spin 1 vectors take the form

e+αα̇ =
√
2
ηαλ̃α̇
⟨ηλ⟩ , e−αα̇ =

√
2
λαη̃α̇

[λ̃η̃]
. (3.30)

The above form of polarization vectors can be justified by verifying the relations (3.23) - (3.27).

• First, I verify the transversality condition:

3Strictly speaking, it’s the differential cross sections that are observable. They are directly related to the absolute value
of the scattering amplitude, the complex phase of which is not observable.
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pµe+µ (p) =
1

2

√
2
⟨λη⟩[λ̃λ̃]
⟨ηλ⟩ = 0, (3.31)

pµe−µ (p) =
1

2

√
2
⟨λλ⟩[λ̃η̃]
[λ̃η̃]

= 0. (3.32)

• Higher helicity polarization tensors should be traceless. This is guaranteed by the following,

e+µ (p)e
+,µ(p) = 0 , (3.33)

and similarly for e−µ . This also ensures that these tensors are lightlike (3.25).

• Symmetry of polarization tensors follows directly from the definitions (3.28) - (3.29).

• Next, I check that polarization vectors are correctly normalized,

(e−(p))µe+µ (p) =
⟨λη⟩[η̃λ̃]
⟨ηλ⟩[λ̃η̃]

= 1 . (3.34)

• Finally, I check the condition (3.27),

(e+µ (k))
∗ =

√
2
η∗α(λ̃α̇)

∗

⟨η∗λ∗⟩ =
√
2
η∗αλα̇

[η∗λ̃]
(3.35)

Taking η∗ = λ w.l.o.g., we get

(e+µ (k))
∗ =

√
2
λαλα̇

[λλ̃]
(3.36)

which is exactly equal to −e−µ (k) with η̃ = λ.

I was free to choose η and η̄ in the last argument because these are not physically meaningful

objects. Rather, they are known as reference spinors and can be chosen freely as long as η is not

proportional to λ and η̃ is not proportional to λ̃. If we replace η with a linear combination aη + bλ,

then we have

e+αα̇ =
√
2
(aηα + bλα)λ̃α̇
⟨(aη + bλ), λ⟩ =

√
2
aηαλ̃α̇ + bλαλ̃α̇

a⟨ηλ⟩ =
√
2
ηαλ̃α̇ + bλαλ̃α̇

⟨ηλ⟩ +
√
2

b

a⟨ηλ⟩pαα̇ . (3.37)

The polarization tensor is thus modified by a term proportional to pµ. Such a term is equivalent to a

gauge transformation [78] and, in a consistent theory, should not affect observable quantities. It is

also easy to check that the relations (3.23) - (3.27) are still satisfied. The independence of a scattering
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Figure 3.1: A Feynman diagram representing one of the contributions to a 2 → 3 scattering amplitude.

amplitude on reference spinors is often a powerful constraint allowing us to bootstrap the amplitude

(see Appendix F of [2]).

3.2 S-matrix bootstrap

The primary way to connect particle theory to experiment is to calculate scattering amplitudes for

processes that can then be measured in the laboratory setting. In the Feynman approach, one obtains

scattering amplitudes by adding up the contributions from various Feynman diagrams, which are

calculated using Feynman rules. It must be noted that a Feynman diagram like the one shown in Fig.

3.1 does not represent on-shell particles travelling between interaction vertices.4 For this reason, the

contribution of a particular Feynman diagram to the amplitude is, in general, not gauge invariant and

cannot describe a measurable physical quantity. We obtain a gauge-invariant, physically meaningful

result only after the contributions of all Feynman diagrams are summed together.

The contributions of individual Feynman diagrams will often take the form of relatively compli-

cated mathematical expressions. However, after adding up all the Feynman diagrams, one tends to

obtain a simple result. All the gauge dependence of individual contributions must also be cancelled out,

suggesting that the gauge dependence introduced in the Feynman diagram calculation was avoidable.

Nowhere has this tendency been more apparent than in the case of strong interactions. A long

expression for the 6−gluon amplitude derived by Parke and Taylor [80] that had to be evaluated

4According to one interpretation, a Feynman diagram does not represent particles at all but is only a convenient way of
representing mathematical expressions [79].
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numerically led to a compact, one-line result [81], strongly suggesting that there must be a simpler

way of reaching it. Indeed, authors of [82] developed a recursive method that uses only on-shell data

and does not introduce any unphysical quantities. It allowed [82] to derive the result of [80, 81] much

more elegantly and generalize it to any n−gluon amplitude.

In this section, I will review the basics of this on-shell bootstrap, a method which has developed

into a significant research field [83]. I will show how the principles of symmetry, little group scaling,

unitarity and causality can be used to constrain the interactions in some simple cases. The section

serves as an introduction to techniques used in [2, 3]. While [2, 3] apply to boost-violating theories in

flat space, in this section I am concerned only with the fully Lorentz invariant scenario.

Consider an early time state |in⟩ that is an eigenstate of the free Hamiltonian. We might ask what

is the probability amplitude of measuring the system prepared in a state |in⟩ to be in a state |out⟩ at a

late time. This can be represented by the S-matrix, defined as a collection of elements

Sin→out = ⟨in|S|out⟩ . (3.38)

where S is the evolution operator. In the interaction picture, it can be written in terms of the interaction

Hamiltonian Hint(t) as

S = lim
t1→−∞

lim
t2→+∞

U(t1, t2) = lim
t1→−∞

lim
t2→+∞

T exp

(
−i
∫ t2

t1

Hint(t)dt

)
. (3.39)

Following the cluster decomposition principle [78], suppose the states |in⟩ and |out⟩ are both separable

into products of one-particle states. This is a valid assumption in most contexts, provided that at

early and late times the system can be described as a collection of individual, stable particles that are

sufficiently separated from each other and do not interact with one another. I define the scattering

amplitude - henceforth denoted as A - via

Sin→out = A(in → out)(2π)4δ(4)
(∑

a

pµa

)
. (3.40)

Let us return to our treatment of the little group and derive constraints on A of massless particles

from the action of the helicity operator. More concretely, consider Ĥ acting on one of the incoming

particles involved in a scattering process. Then we have
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Ĥi⟨in|out⟩ = hi⟨in|out⟩ , or: ĤiA = hiA . (3.41)

Therefore, we can derive the dependence of A on the spinors,

1

2

(
λ̃i

∂

∂λ̃i
− λi

∂

∂λi

)
A = hiA, (3.42)

Henceforth, I will treat all particles involved in a scattering process as incoming. This is possible

thanks to a general property known as crossing symmetry: an outgoing massless particle with energy

E and momentum p can be treated as an incoming anti-particle with opposite helicity, energy −E
and momentum −p ([84], p. 155). This is a simple consequence of the CPT symmetry. Equation

(3.42) enables us to fully constrain almost all three-particle amplitudes for massless particles, up to

an overall proportionality constant. The only additional ingredient is the requirement that the mass

dimension of such amplitude is non-negative, which is guaranteed for local three-particle vertices.

Under this assumption, a fully general solution to (3.42) is

A3({λ(i), λ̃(i);hi}) =


gH⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1 , h ≤ 0,

gAH [12]
h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , h ≥ 0.

(3.43)

As an instructive example, consider a massless spin 1 particle - i.e., a photon. Lorentz invariance and

little group scaling would require the three-particle amplitudes to take the following form,

A3(1
+, 2+, 3+) = g1[12][23][31] , (3.44)

A3(1
+, 2+, 3−) = g2

[12]3

[23][31]
. (3.45)

However, the particles involved are identical and therefore interchangeable. Since photons have

bosonic statistics, the all-plus amplitude should be symmetric under the interchange of any two

labels, while the ++− amplitude should be symmetric under the interchange of 1 and 2. Due to the

antisymmetry of [ij], neither of the amplitudes has this property unless, of course, g1 = g2 = 0. We

must therefore conclude that Lorentz invariance, together with little group scaling and the bosonic

properties of spin 1 particles, forces the cubic interactions of a massless photon to vanish. This can be

shown on the level of the Lagrangian as well by requiring gauge symmetry, which then precludes the

existence of any nontrivial cubic operator. However, the bootstrap approach becomes a much more
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practical tool in more complicated examples, as we will soon see.

In order to restore the consistency of three-particle massless amplitudes for spin 1 particles, one

could consider several different species of such particles. Let us add an extra label denoted by Latin

indices a, b, c, . . ., representing particle species. In general, cubic interactions involving such spin 1

particles will have the form

A3(1
+
a , 2

+
b , 3

+
c ) = fabc[12][23][31] , (3.46)

A3(1
+
a , 2

+
b , 3

−
c ) = gabc

[12]3

[23][31]
. (3.47)

Assuming even parity, the following also holds:

A3(1
−
a , 2

−
b , 3

−
c ) = fabc⟨12⟩⟨23⟩⟨31⟩ , (3.48)

A3(1
−
a , 2

−
b , 3

+
c ) = gabc

⟨12⟩3
⟨23⟩⟨31⟩ . (3.49)

The constants fabc, gabc can be referred to as structure constants and are not arbitrary. To begin with,

we can still interchange a pair of particles without affecting the amplitude, provided we preserve the

label of each. Thus, we have

A3(1
+
a , 2

+
b , 3

+
c ) = fabc[12][23][31] = fbac[21][13][32] = A3(2

+
b , 1

+
a , 3

+
c ) , (3.50)

along with analogous relations for other pairs, which implies that fabc must be completely antisym-

metric:

fabc = −fbac = −facb = −fcba. (3.51)

We also have

A3(1
+
a , 2

+
b , 3

−
c ) = gabc

[12]3

[23][31]
= gbac

[21]3

[13][32]
= A3(2

+
b , 1

+
a , 3

−
c ) . (3.52)

Implying that gabc must be antisymmetric at least in the first two indices. Unfortunately, an argument

of this kind is insufficient to show that gabc must be completely antisymmetric. Nonetheless, the

antisymmetry follows from the natural assumption that the + + − amplitude separates into a part
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dependent on a, b, c and the part that depends on the helicities. More precisely, writing

A3(1
h1
a , 2

h2
b , 3

h3
c ) = eh1µ (k1)e

h2
ν (k2)e

h3
σ (k3)A

µνσ
3,abc , (3.53)

and assuming that Aµνσ3,abc factorises,

Aµνσ3,abc = gabcB
µνσ , (3.54)

for some Bµνσ independent of a, b, c, we get

A3(1
+
a , 3

−
c , 2

+
b ) = gacb

[21]3

[13][32]
. (3.55)

Equating this to A3(1
+
a , 2

+
b , 3

−
c ), which represents the same amplitude, we conclude that gabc must

be completely antisymmetric [85].

3.2.1 Four-particle amplitudes

Scattering amplitudes involving four or more particles have an additional feature which is a source

of powerful constraints not only for many-particle amplitudes but also for three-particle ones. This

feature is the factorization property of amplitudes.

The factorization theorem states that when many-particle amplitudes are considered as complex

functions of the kinematic data, then all singularities can only be simple poles. Any such simple pole

is in a one-to-one correspondence with a factorization channel, a limit where an internal leg of a

Feynman diagram goes on-shell and can be interpreted as a physical particle travelling a macroscopic

distance in space [86]. In this limit, we have

lim
sI→0

(sIA) = ALAR. (3.56)

where sI =
(∑

i∈I pI
)2, while AL and AR are the constituent amplitudes of the two disconnected

diagrams created by replacing the internal line with two external lines (Fig. 3.2).

Condition (3.56) is a powerful constraint, especially when amplitudes are expressed in spinor-

helicity variables. Let us discuss some illustrative examples in the case of tree-level5 four-particle

5Since the constraint on three-particle amplitudes derived in this section is valid to all orders in perturbation theory, one
could work instead with a special class of diagrams with the property that cutting the exchange line separates the diagram



40 Review of bootstrap methods

Figure 3.2: In the limit in which the highlighted line is on-shell (p2I = 0), the four-particle amplitude
factorizes into a product of 1/p2I and the two constituent three-particle amplitudes.

amplitudes.

First, consider a spin 1 massless particle with an additional label a, b, c, . . ., as in the previous

subsection. To derive the constraints from factorization, I bootstrap the four-particle (+1,−1,+1,−1)

amplitude from the exchange of spin 1. Let {A4} be the bare mass dimension of such amplitude - i.e.,

the mass dimension without taking the coupling constants into account. For exchange diagrams con-

structed out of (+1,+1,−1) and (−1,−1,+1) vertices and the propagator (whose mass dimension

is −2), {A4} is

{A4(1
−
a , 2

−
b , 3

+
c , 4

+
d )} = 2{A3} − 2 = 0 . (3.57)

There can be at most three factorization channels for A4, each corresponding to the limit where one

of the three Mandelstam variables vanishes:

s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2. (3.58)

Therefore, the amplitude A4 must take the form

A4(1
−
a , 2

−
b , 3

+
c , 4

+
d ) = ⟨12⟩2[34]2

(cst
st

+
ctu
tu

+
cus
us

)
. (3.59)

In the s channel, the relation (3.56) entails

into two disconnected components.
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A4 ∼
∑
e

gabegecd
⟨12⟩2[34]2

t
= −

∑
e

gabegecd
⟨12⟩2[34]2

u
as s→ 0 . (3.60)

In the t and u channels, we have

A4 ∼
∑
e

gacegedb
⟨12⟩2[34]2

u
= −

∑
e

gacegedb
⟨12⟩2[34]2

s
as t→ 0 . (3.61)

A4 ∼
∑
e

gadegebc
⟨12⟩2[34]2

s
= −

∑
e

gadegebc
⟨12⟩2[34]2

t
as u→ 0 . (3.62)

Hence

cst − cus =
∑
e

gabegecd , (3.63)

ctu − cst =
∑
e

gacegedb , (3.64)

cus − ctu =
∑
e

gadegebc . (3.65)

This system of equations has a solution for {cxy} if and only if the sum of the right-hand sides is zero:

∑
e

gabegecd +
∑
e

gacegedb +
∑
e

gadegebc = 0 . (3.66)

Note that this condition is nothing else than Jacobi identity for a set of coefficients that could be

identified with the structure constants of some Lie algebra. I have thus shown, using bootstrap methods,

that (+1,+1,−1) amplitudes for massless spin 1 fields are consistent only if they arise from an

underlying Lie algebra, defined by the commutation relations of the generators, [T a, T b] = CgabcT
c

(for some constant C). If this Lie algebra is taken to be SU(N), we obtain the Yang-Mills theory of

strong interactions at cubic order.

The four-particle amplitude must take the form

A4(1
−
a , 2

−
b , 3

+
c , 4

+
d ) = ⟨12⟩2[34]2


∑
e
gabegecd

st
−

∑
e
gadegebc

tu

+A4,regular , (3.67)

where the final term represents the contribution that is regular in all the Mandelstam variables. Such a
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term can originate from a contact diagram via quartic interactions that I have not covered in the above

analysis. This contribution cannot have any poles but should still be proportional to ⟨12⟩2[34]2 to

give the correct helicity scaling of the amplitude. Thus, we conclude that A4,regular must be zero if its

bare mass dimension is at most 3 - meaning that we have fully bootstrapped A4(1
−
a , 2

−
b , 3

+
c , 4

+
d ) in

theories where quartic operators have at most 3 derivatives, finding only one consistent form of this

four-particle amplitude.

The consistent factorization technique that was covered in this section and the related technique

of BCFW deformations introduced and used in Chapter 7 have been used to derive other profound

results. In many cases, the IR properties of Lorentz invariant theories are simple consequences of

symmetries, unitarity and causality. For example, if two copies of a massless particle are coupled

to one graviton in the IR, the coupling strength must be the same as the strength of the graviton

self-interaction. This is, of course, the equivalence principle, and we generalize this result in Chapter

6. Other notable results include (i) an observation that (+S,+S,−S) amplitudes must vanish for

spin S ≥ 3, (ii) a derivation of GR as the unique low-energy theory of a massless spin-2 particle (see

Chapter 7), and (iii) a proof that the existence of massless spin-3/2 particles leads to supergravity.

Chapters 6 and 7 extend the S-matrix bootstrap presented here to a certain class of theories, defined

therein, that break Lorentz boost invariance. In Chapter 8, we apply the spinor-helicity formalism in

the context of cosmology, and by combining it with cosmological bootstrap techniques, we derive a

complete set of primordial graviton non-Gaussianities in the slow-roll approximation. Rather than

directly constraining the non-Gaussianities, Chapter 8 uses the cosmological wavefunction formalism

introduced in the next section.

3.3 The wavefunction formalism

The cosmological wavefunction formalism is a Schrodinger picture approach to cosmological correla-

tors that presents a convenient alternative to the in-in calculations presented in Section 2.3.2. Here

I give a basic introduction to this formalism, along the lines of Appendix A of [12], which may be

consulted by the reader for further details.

The quantum wavefunction is essentially a state vector6 describing a pure state of a quantum

system, represented in a specific basis of the Hilbert space. For example, a particle moving in

6Depending on one’s favoured interpretation of quantum mechanics, the wavefunction may describe the true state of a
system or merely represent an observer’s knowledge about the system [87].
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one dimension, described by a state |Ψ(t)⟩, has the corresponding spatial representation of the

wavefunction,

Ψ(t, x) = ⟨x|Ψ(t)⟩. (3.68)

Where |x⟩ is the (non-normalizable) quantum state which corresponds to a particle localized at

x, satisfying x̂|x⟩ = x|x⟩. In analogy with the standard quantum mechanics, the cosmological

wavefunction (more properly, the wavefunctional) is defined as the projection of the state vector

|Ψ(η)⟩ onto the basis of field configurations,

Ψ[φ, η] = ⟨φ, η|Ψ(η)⟩ (3.69)

where φ collectively denotes all degrees of freedom and |φ, η⟩ represents the field configuration ϕ at

time η. The states |φ, η⟩ and |Ψ(η)⟩ in the above relation are in the Heisenberg picture, meaning that

the time evolution has been absorbed into the operators. Note that in our notation |φ, η⟩ ≠ |φ, η0⟩ in

general, since the former is to be interpreted as the time-independent state corresponding to a field

configuration φ at time η, while the latter describes the same field configuration at η0.

Now, from (3.69), we have

Ψ[φ̄, η0] = ⟨φ̄, η0|Ψ(η0)⟩ = ⟨φ̄, η0|Ψ(η)⟩ (3.70)

=

∫
dφ⟨φ̄, η0|φ, η⟩⟨φ, η|Ψ(η)⟩ . (3.71)

It can then be shown (see Appendix A of [12]) that

⟨φ̄, η0|φ, η⟩ =
∫

φ(η)=φ,φ(η0)=φ̄

Dφ
∫ Dπ

(2π)n
exp

(
i

(∫ η0

η
φ′π −Hη,η0(φ, π)

))
. (3.72)

where π denotes all the momenta conjugate to the φ fields, and n is the number of degrees of freedom

(number of fields) at each point in space. The action Sη,η0 is evaluated between the times indicated in

the subscript. We wish to take the limit η → −∞(1− iϵ), and the early time vacuum is chosen such

that ⟨φ, η|Ψ(η)⟩ does not depend on φ in this limit, i.e. it is a constant. Then
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Ψ[φ̄, η0] = N lim
η→−∞(1−iϵ)

∫
φ(η0)=φ̄

Dφ
∫ Dπ

(2π)n
exp

(
i

(∫ η0

η
φ′π −Hη,η0(φ, π)

))
. (3.73)

Thus, we see that the cosmological wavefunction can be computed in terms of the path integral.

Ψ[φ̄, η0] can be written as a formal series expansion in powers of φ̄,

Ψ[φ̄, η0] = Ψ[0] exp

(
−
∑
n=2

1

n!

∫ n∏
i=1

(
d3ki
(2π)3

φ̄ki

)
(2π)3δ(3)

(∑
ki

)
ψn({ki}, {ki})

)
. (3.74)

Note that the ψn coefficients do not include the momentum-conserving delta function.

How can we calculate the ψn for a given theory? In perturbation theory, the expansion (3.74)

can be considered an expansion around the Gaussian state. Terms with n > 2 would then be treated

as small. A perturbative solution can then be formulated using Feynman rules for wavefunction

coefficients. We start by equating (3.73) to (3.74) and taking the semiclassical limit,

logΨ[0]−
∑
n=2

1

n!

∫ n∏
i=1

(
d3ki
(2π)3

)
δ̃(3)

(∑
ki

)
ψn({ki}, {ki})φ̄k1 . . . φ̄kn ≈ iS[φcl] , (3.75)

where δ̃(3)Σqi
= (2π)3δ(3)(Σqi), S[φ] =

∫ η0
η (φ′π(φ,φ′)−Hη,η0(φ, π(φ,φ

′))) and φcl is the solu-

tion to the full equations of motion with the boundary condition φcl(η0) = φ̄. The wavefunction

coefficients can be obtained by evaluating

ψn({ki}, {ki}) = −i δnS[φcl]

δφ̄k1 . . . δφ̄kn

. (3.76)

This expression can be evaluated perturbatively using a diagrammatic representation analogous to

flat space Feynman diagrams. There are two relevant types of propagators: the bulk-to-boundary

propagator K and the bulk-to-bulk propagator G, which satisfy

O(k, η)K(k, η) = 0, (3.77)

O(k, η)G(k; η, η′) = −δ(η − η′), (3.78)

where O(k, η) is a shorthand notation for the linearized equations of motion. For a scalar field φ,

O(k, η)φ =
∂

∂η

δL2

δφ′ −
δL2

δφ
. (3.79)
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The boundary conditions are

lim
η→η0

K(k, η) = 1 , lim
η→−∞(1−iϵ)

K(k, η) = 0 , (3.80)

lim
η,η′→η0

G(k; η, η′) = 0 , lim
η,η′→−∞(1−iϵ)

G(k; η, η′) = 0 . (3.81)

If f+k (η) is the positive-frequency mode function for the field under consideration, then the solutions

are

K(k, η) =
f+k (η)

f+k (η0)
, (3.82)

G(k; η, η′) = 2P (k)
[
ImK(k, η)K(k, η′)θ(η − η′) +K(k, η)ImK(k, η′)θ(η′ − η)

]
. (3.83)

By careful examination of the relevant formulas, we obtain the following Feynman rules for

wavefunction coefficients [14]:7

• Draw a diagram and assign momenta ka to each external line (flowing out of the diagram) and

momenta pb (in an arbitrary direction) to each internal line. Assign a conformal time ηA to

each vertex.

• For every external line: include a factor of K(ka, ηA) (the bulk-to-boundary propagator) for an

external line attached to the vertex A.

• For every internal line: include a factor of G(pb; ηA, ηB) (the bulk-to-bulk propagator) for an

internal line with momentum pb connecting vertices A and B.

• For every vertex: include a factor of +ipb,i for every spatial derivative acting on a leg with

momentum pb flowing out of the vertex, and a factor of −ipb,i if the momentum is flowing

into the vertex. For every conformal time derivative in the interaction operator, include ∂ηA

acting on the propagator of the appropriate line. Finally, include the coupling constant of the

operator, an appropriate power of a(ηA) and the momentum (but not energy) conserving delta

function δ(3) (
∑
σipi), where σi ∈ {−1, 1} account for the direction of momentum. Sum over

all permutations that are consistent with the structure of the diagram.
7Some authors use an alternative convention in which G(k; η, η′) is defined by

O(k, η)G(k; η, η′) = iδ(η − η′),

In this alternative convention, the Feynman rules are slightly modified: each vertex carries a factor of i, while every
bulk-to-bulk propagator includes an extra factor of −i. Since V − I = 1−L, both conventions give the same result for ψn.
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• Integrate over all internal momenta pb.

• Include a factor i1−L, where L is the number of loops in the diagram.

• Finally, integrate over all internal momenta pb and over all conformal times ηA.

Once wavefunction coefficients are known, they can be used to calculate the correlators at a given

conformal time η0. Let us define

Pn({ki}, {ki}) = ψn({ki}, {ki}) + ψn({ki}, {−ki})∗ . (3.84)

I will now temporarily suppress dependence on the energies, as these always have the same sign in the

expressions that follow and can be determined from the spatial momenta. I also continue to suppress

the extra indices that are normally used to label particle species and their spins - it should always

be understood that φ, ψn and Pn may carry such labels, and the expressions are summed over those

extra indices whenever they are repeated. Assuming a hierarchy ψn({ka}) ≫
∫
q
ψn+2({ka},q,−q)

ψ2(q)
for

all n and assuming, without loss of generality, the normalization Ψ[0] = 1, we have

〈 N∏
a=1

φka

〉
=

∫ (∏
p

dφp

)
|Ψ[γ, η0]|2

N∏
a

φka (3.85)

=

∫ (∏
p

dφp

)
exp

{
−
∑
n⩾2

1

n!

∫ (∏
i

d3qi
(2π)3

φqi

)
δ̃
(3)
Σqi

ψn({qi}) + c.c.

}
N∏
a=1

φka

=

∫ (∏
p

dφp

)
exp

{
−
∑
n⩾2

1

n!

∫ (∏
i

d3qi
(2π)3

φqi

)
δ̃
(3)
Σqi

(ψn({qi}) + ψn({−qi})∗)
}

N∏
a=1

φka

≈
∫ (∏

p

dφp

)
exp

{
−

N∑
n=2

1

n!

∫ (∏
i

d3qi
(2π)3

φqi

)
δ̃
(3)
Σqi

Pn({qi})
}

N∏
a=1

φka

=

∫ (∏
p

dφp

)
e
−

∫ d3q

2(2π)3
P2(q)|φq|2

exp

{
−

N∑
n=3

1

n!

∫ (∏
i

d3qi
(2π)3

φqi

)
δ̃
(3)
Σqi

Pn({qi})
}

N∏
a=1

φka .

In the above expressions, I used δ̃(3)Σqi
= (2π)3δ(3)(Σqi). The final line suggests a straightforward

algorithm for computing the N−point function
〈∏

φka

〉
from the wavefunction coefficients ψn. This

procedure can be formulated in terms of Feynman diagrams constructed for an abstract quantum field

theory with coupling constants
(
− 1

n!
Pn
)

. (Let me emphasize that the associated Feynman rules

are distinct from the ones we use to compute ψn.) In order to calculate the connected part of the

correlator
〈∏

φka

〉′, one should use the following rules:
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• Draw a connected diagram with N external lines. To each internal line, assign a momentum pi

and a particle label σi.

• For any n−point vertex, write down a factor of − 1

n!
Pnδ̃(3)(

∑
pi) and sum over all permuta-

tions consistent with the diagram structure (sometimes, this will amount to multiplication by a

combinatoric factor).

• For any line - internal or external - with momentum p write down a factor of (P2(p))
−1.

• Integrate over all internal momenta pi.

• Sum over all distinct diagrams.

Results for the lowest values of N in the tree level approximation, for the case of a scalar field ϕ, are

〈
ϕkϕ−k

〉′
=

1

P2(k)
, (3.86)〈

ϕk1ϕk2ϕk3

〉′
= − 1∏

a P2(ka)
P3({ka}) , (3.87)

〈
ϕk1ϕk2ϕk3ϕk4

〉′
= − 1∏

a P2(ka)

(
P4({ka}) (3.88)

−
(∑

σ

Pϕϕσ
3 (k1,k2,−s)Pϕϕσ

3 (k3,k4, s)

Pσ
2 (s)

+ (t, u channels)

))
,

where s = k1 + k2.

3.4 The Manifestly Local Test

Implementing the locality condition within the cosmological bootstrap principles has proven to be

a difficult task. Despite numerous efforts, we do not know of any general rule that a late-time

inflationary correlator or wavefunction coefficient must satisfy to be consistent with the fundamentally

local nature of an inflationary action.

One reason for the difficulty mentioned above is that a seemingly non-local lagrangian could

nonetheless describe local physics. Two massive scalar fields ϕ, ψ with a mixed quartic interaction

ϕ2ψ2 are often considered as a very simple example [88]. In a flat space, we have

S[ϕ, ψ] =

∫
d4x

(
1

2

(
ϕ̇2 − (∂iϕ)

2 −m2ϕ2
)
+

1

2

(
ψ̇2 − (∂iψ)

2 −M2ψ2
)
+

1

4
λϕ2ψ2

)
(3.89)
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Let us integrate out the ψ field and consider the effective action for ϕ, written as Sψ[ϕ]. This new

action will be a valid description on energy scales below the mass of ψ, M , and it is defined by

eiSψ [ϕ] =

∫
DψeiS[ϕ,ψ]. (3.90)

We calculate it as follows (we use the mostly-minus signature),

eiSψ [ϕ] =

(∏
x

∫
dψ(x)

)
exp

{
i

∫
d4x

(
1

2

(
(∂ϕ)2 −m2ϕ2

)
+

1

2

(
(∂ψ)2 −M2ψ2

)
+

1

4
λϕ2ψ2

)}

= ei
∫
d4x 1

2((∂ϕ)
2−m2ϕ2)

(∏
x

∫
dψ(x)

)
exp

{
i

∫
d4x

1

2
ψ

(
−∂2 −M2 +

1

2
λϕ2

)
ψ

}

= ei
∫
d4x 1

2((∂ϕ)
2−m2ϕ2)

(∏
x

√
iπ det

(
−∂2 −M2 +

1

2
λϕ2

)−1/2
)

(3.91)

where the functional determinant detA [89] satisfies

ln detA = tr lnA. (3.92)

Then

Sψ[ϕ] =

∫
d4x

1

2

[
−(−(∂ϕ)2 +m2ϕ2) + ln

(
π det

(
−∂2 −M2 +

1

2
λϕ2

)−1
)]

=

∫
d4x

1

2

[
−(−(∂ϕ)2 +m2ϕ2)− ln

(
π−1 det

(
−∂2 −M2 +

1

2
λϕ2

))]
. (3.93)

Dropping constant terms (independent of ϕ) from the action, we get

Sψ[ϕ] =

∫
d4x

1

2

[
((∂ϕ)2 −m2ϕ2)− tr ln

(
1 +

λ

2
(−∂2 −M2)−1ϕ2

)]
. (3.94)

The trace is taken with respect to the x coordinate. The inverse (−∂2 −M2)−1 should be understood

as the corresponding Green’s function, which satisfies

(−∂2x −M2)G(x, x′) = δ(x− x′). (3.95)

The presence of this Green’s function in (3.94) indicates that the Lagrangian is non-local: it is a

function evaluated at multiple distinct points. Even if we restrict attention to perturbation theory in
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the ϕ field (for example, to quartic order in ϕ), nontrivial Green’s function does arise, and the action

is non-local.

Since the original action (3.89) describing the system was a local one, its physics must be

consistent with predictions of locality. This means that although (3.94) has non-local terms, it does, in

fact, implicitly describe local physics. In other words, the apparently non-local Lagrangian in (3.94)

describes local physics since there exists an explicitly local Lagrangian which, on energy scales below

M , is equivalent to it.

Within the context of cosmology, a similar issue arises in ADM formalism. We write the metric

as [22]

ds2 = −Ndt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.96)

with lapse N and shift N i. We then impose the unitary gauge conditions,

δϕ = 0, hij = a(t)2 [(1 + 2ζ)δij + γij ] . (3.97)

Here, γij is a transverse and traceless tensor. Note that N and N i are not physical degrees of

freedom as they appear in the action without time derivatives, so they can be eliminated using the

Euler-Lagrange equations,

δL

δN
= 0,

δL

δN i
= 0. (3.98)

which take the form of the momentum and hamiltonian constraints of General Relativity [22],

∇i

[
N−1

(
Eij − δijE

)]
= 0, (3.99)

R(3) − 2V (ϕ)−N−2
(
EijE

ij − E2
)
−N−2ϕ̇2 = 0. (3.100)

where

Eij =
1

2

(
ḣij −∇iNj −∇jNi

)
. (3.101)

Due to the presence of spatial derivatives acting on N and N i, solutions for the lapse and shift

will be non-local functions of the physical fields ζ and γij . Let us see at what order such apparent
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nonlocalities play a role. To calculate the action up to cubic order in perturbations, it is sufficient to

solve the constraints (3.99) - (3.100) to first order in ζ and γij (see [22] and Appendix A of [90]). The

error introduced by truncating the expansion of N at linear order is equal to the quadratic error in N

itself, multiplied by δL
δN evaluated on the first order solution, which vanishes to linear order. Hence,

the error in the perturbative action will be fourth order in the fields.

Since the expression for N i includes an inverse Laplacian acting on ζ already at linear order

in perturbation theory, terms in the cubic action that include the scalar curvature ζ will, in general,

contain powers of ∇−2. However, first-order solutions for N and N i must be independent of γij

regardless of the details of the theory. Therefore, the cubic action for the tensor perturbation γij does

not contain inverse Laplacians.

One might ask if there is a general way to ascertain whether a given non-local description admits

a local one equivalent to the former in its regime of validity. Unfortunately, I do not know of such a

general method, and it is not very likely that an algorithm producing an answer to this question can be

easily constructed. It is most likely impossible to verify whether a given action that contains inverse

derivatives can be rewritten - for example, using field redefinitions - as a local one or whether it has a

local UV completion.

We call an action manifestly local if the Lagrangian is expressed in terms of the fields and a finite

number of field derivatives evaluated at one spacetime point. An action is not manifestly local if the

Lagrangian contains inverse derivative operators8 such as the inverse Laplacian ∇−2 or an infinite

tower of derivative terms. For a manifestly local action, there exists a simple way to encode this

locality on the wavefunction coefficients, first noticed in [33]. A massless field in de Sitter spacetime

has a bulk-to-boundary propagator

K(k, η) = (1− ikη)eikη , (3.102)

which satisfies

d

dk
(K(k, η))k=0 = (kη2eikη)k=0 = 0. (3.103)

Since the wavefunction coefficient can always be expressed as an integral over one of more conformal

times, such that the integrand contains factors of all the bulk-to-boundary propagators, we have

8These are to be interpreted as Green’s functions.
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∂

∂ka
(ψn({ka}, {ka}, {pb}, {pb}))ka=0 = 0. (3.104)

This is because the partial derivative with respect to ka with all other energies and momenta (both

external ones ka′ and internal ones pb), as well as ka, kept constant, will act nontrivially only on the

bulk-to-boundary propagator K(k, η) and we have already established that this derivative will yield

zero at ka = 0.

The fact that the cubic graviton action is manifestly local - as noted above - provides an excellent

opportunity to use the powerful condition (3.104) to bootstrap cubic wavefunction coefficients for

gravitons on a de Sitter background. This is done in Chapter 8, published as [4].

3.5 The Cosmological Optical Theorem

The optical theorem is a standard result in wave scattering theory. In its basic form, it relates the

scattering amplitude along the line of impact to the total cross-section of the scatterer. In quantum

field theory, it is common to invoke a generalized version of the optical theorem, which is essentially

a consequence of the unitarity of time evolution. This is, in turn, equivalent to conservation of

probability amplitude,

⟨ψ; t|ψ; t⟩ = ⟨ψ; 0|ψ; 0⟩ . (3.105)

I follow [85] for the remainder of the derivation. Since |ψ; t⟩ = S|ψ; 0⟩, unitarity implies that

∀ψ ⟨ψ; 0|ψ; 0⟩ = ⟨ψ; 0|S†S|ψ; 0⟩ ⇒ S†S = 1. (3.106)

In quantum field theory in Minkowski spacetime, the optical theorem is formulated in terms of

scattering amplitudes Ai→f . Let S = 1+ iT , where T is known as the transfer matrix. The scattering

amplitude is then defined via

⟨f |T |i⟩ = (2π)4δ(4)(pi − pf )Ai→f . (3.107)

S†S = 1 entails a series of relations,

i(T † − T ) = T †T, (3.108)
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i⟨f |(T † − T )|i⟩ = ⟨f |T †T |i⟩, (3.109)

i⟨i|T |f⟩∗ − i⟨f |T |i⟩ =
∑
I

∫
dΠI⟨f |T †|I⟩⟨I|T |i⟩, (3.110)

where we used the resolution of identity, integrating over all the elements of the Hilbert space basis

with an appropriate measure dΠI

1 =
∑
I

∫
dΠI |I⟩⟨I| . (3.111)

Then

iA∗
f→i − iAi→f = (2π)4

∑
I

∫
dΠIA∗

f→IAi→I , (3.112)

and finally, we have the generalized optical theorem,

Ai→f −A∗
f→i = i(2π)4

∑
I

∫
dΠIA∗

f→IAi→I . (3.113)

Since the above flat space result is a consequence of unitarity and we expect de Sitter time evolution

to be unitary as well, one could aim to derive an analogous theorem in the cosmological context. Such

a result - the Cosmological Optical Theorem (COT) - has indeed been obtained in [12–14]. It encodes

the unitarity of time evolution directly on the level of wavefunction coefficients introduced in Section

3.3. Let us review the statement and sketch the proof of this theorem.

The cosmological optical theorem holds under the following assumptions:

• The Bunch-Davies vacuum condition in the far past (η → −∞).

• Both external and exchanged particles can have an arbitrary spin, mass and effective speed.

• Interactions must be unitary, but aside from that requirement, they are fully general. In particular,

they may break the de Sitter boosts.

• Perturbation theory: the COT is valid perturbatively to any loop order.

We define the analytic continuation of ψn9 onto the complex plane by choosing the branch cut to

lie on the negative real axis. We also define

9Recall that ψn does not include the momentum-conserving δ function nor the factor of (2π)3.
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s = |k1 + k2|, t = |k1 + k3|, u = |k1 + k4| (3.114)

Then, we have

• For contact diagrams:

ψn(ka, k̂a.k̂b) +
[
ψn(−ka − iϵ, k̂a.k̂b)

]∗
= 0, (ka ∈ R+). (3.115)

• For four-point exchange diagrams:

ψ4(ka, s) +
[
ψ4(−ka − iϵ, s)

]∗
= (3.116)

= Pσ(s)
(
ψϕϕσ(k1, k2, s)− ψϕϕσ(k1, k2,−s)

)(
ψϕϕσ(k3, k4, s)− ψϕϕσ(k3, k4,−s)

)
+ (t, u).

where σ is the particle being exchanged and Pσ(s) is its power spectrum.

In the case of particles with spin, when we formally flip the sign of energies in (3.115) and (3.116),

we keep the momenta and, consequently, the polarization tensors unchanged.

Let us first write a non-perturbative analogue of (3.113) for cosmology. Writing the time evolution

operator as U = 1+ δU , we get

⟨{ka, αa}|δU|0⟩+ ⟨{ka, αa}|δU†|0⟩ = −
∫
dΠX⟨{ka, αa}|δU|X⟩⟨X|δU†|0⟩ , (3.117)

where
∫
dΠX |X⟩⟨X| ≡ 1 is the resolution of the identity.

I now proceed to the proof of the COT for contact diagrams (3.115). The wavefunction coefficient

for a contact diagram is of the form

ψn(ka) = −iF
η0∫

−∞

dηa(η)4−m
n∏
a=1

dsa

dηsa
K(ka, η), (3.118)

where I omitted contractions between momenta and polarization tensors, as well as O(1) factors and

the coupling constant, all of which are inconsequential to the argument; these are included in the real

factor F . I keep η0 general to allow for possible late time divergence of the integral. The integral

then converges for Im
∑
ka < 0, so analytic continuation of ψn(ka) in the region Im

∑
ka < 0 is

straightforward. To regularize the integral for ka ∈ R+, I use the iϵ prescription ka → ka − iϵ. The
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key to the proof of (3.115) is to use a simple property of bulk-to-boundary propagator

K(ka, η) = (K(−ka, η))∗ . (3.119)

Hence,

−(ψn(−ka))∗ = −iF
η0∫

−∞

dηa(η)4−m
n∏
a=1

dsa

dηsa
(K(−ka, η))∗ = ψn(ka) . (3.120)

Reinstating a proper iϵ prescription to guarantee the early time convergence for ka ∈ R, we get

(3.115).

Let us move on to a sketch of proof of (3.116). Rather than presenting the original proof of [12], I

use the method of [14]. The bulk-to-bulk propagator of the exchanged σ field is (Eq. (3.83))

G(k; η, η′) = i
(
f−σ (k, η)f+σ (k, η′)θ(η − η′) + f+σ (k, η)f−σ (k, η′)θ(η′ − η)

−f+σ (k, η)f+σ (k, η′)
f−σ (k, η0)

f+σ (k, η0)

)
. (3.121)

Importantly, this propagator satisfies

G(p; η, η′)−G∗(p; η, η′) ≡ 2iImG(p; η, η′) = 4iP (p)ImK(p, η)ImK(p, η′). (3.122)

The above equation can be easily applied in the case of a tree-level exchange contribution to

ψn ≡ ψn(ka, p). Recalling that K(k, η) = K(−k, η)∗, (3.122) entails

(∏
a

K(ka, ηi)

)
G(p; η, η′)−

((∏
a

K(−ka, ηi)
)
G(p; η, η′)

)∗

=

= 4iP (p)

(∏
a

K(ka, ηi)

)
ImK(p, η)ImK(p, η′) (3.123)

= −iP (p)
(∏

a

K(ka, ηi)

)
(K(p, η)−K(−p, η))

(
K(p, η′)−K(−p, η′)

)
.

For an exchange diagram with an L-particle vertex to the left and an R-particle vertex to the right of

the internal line, (3.123) directly implies
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ψn(ka, p) + ψn(−ka, p)∗ = P (p) (ψL(ka, p)− ψL(ka,−p)) (ψR(ka, p)− ψR(ka,−p)) . (3.124)

This gives an alternative proof of the Cosmological Optical Theorem for exchange diagrams (3.116).

The Cosmological Optical Theorem is related to a set of more general relations for cosmological

wavefunction coefficients, known as cutting rules, which can be derived by starting from (3.123)

[13, 14, 91, 92].

3.6 Adiabatic modes and soft theorems

In Section 3.2 we saw how simple consistency conditions that are a consequence of symmetries and

physical principles could be used to constrain the flat space S-matrix. There is yet another class of

consistency relations - known as soft theorems - that follow from the invariance of a theory under

generalized gauge transformations that also modify the boundary conditions.10 In this section, I

discuss analogous theorems in the context of inflation. Valid under wide assumptions, soft theorems

apply to large classes of models, effectively constraining the space of possible primordial correlators.

Generally speaking, a cosmological soft theorem is a functional relation between an (n+1)-point

correlator (or a linear combination of several such objects [93]), in the limit where the momentum of

one of the modes is small (soft), and the n-point correlator of the remaining fields. One can illustrate

the principle by considering the simplest of such theorems, which is the relation between the squeezed

bispectrum11 and the power spectrum of the scalar curvature perturbation ζ. For later convenience, I

use the following notation for the correlator evaluated with one of the modes fixed,

〈∏
ζki
〉
ζp=v

:= E
[∏

ζki |ζp = v
]
. (3.125)

We can usually use the notation ⟨∏ ζki⟩ζp without the risk of introducing any ambiguity. Fields

written as a lower index of the expectation value operator ⟨.⟩ should be understood as actual values

(real numbers), not random variables. Note that by Taylor expanding, we get

〈∏
ζki
〉
ζp

=
〈∏

ζki
〉
0
+ ζp

δ

δζp

(〈∏
ζki
〉
ζp

)
ζp=0

+O
(
ζ2p⟨
∏

ζki
〉)
. (3.126)

10See Chapter 13 of [78] for a basic introduction.
11That is, the bispectrum in the limit where one of the momenta becomes soft.
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3.6.1 Maldacena’s soft theorem

Let us apply the expansion (3.126) to the specific case of a squeezed bispectrum. I will treat all the

Fourier modes whose momentum is of order q ≪ k as part of the background. We have

⟨ζqζk1ζk2⟩ =
∫

d3q′

(2π)3
⟨ζqζq′⟩ δ

δζq′
⟨ζk1ζk2⟩ζq′ +O(ζ5). (3.127)

I will now use the fact that for small q′, the long mode ζq′ resembles the effect of a time-independent12

coordinate redefinition, i.e. a diffeomorphism. Even though this diffeomorphism does not vanish

for large x, the physics should remain invariant under such a transformation. Placing the fields

on a background of the long mode is therefore equivalent to acting on them with the associated

diffeomorphism ϵ,

⟨ζqζk1ζk2⟩ ≈ Pζ(q)
δ

δϵ
⟨ζk1ζk2⟩ϵ = Pζ(q)

(〈
δζk1

δϵ
ζk2

〉
+

〈
ζk1

δζk2

δϵ

〉)
. (3.128)

The leading error of the above approximation can be identified with the error introduced when

approximating the long mode

ζ(t,x) = αf(t)eiq.x , (3.129)

with the effect of the diffeomorphism

ϵi(t,x) = −αf(t0)xi , (3.130)

ζϵ(t,x) = −1

3
∂iϵ

i = αf(t0) . (3.131)

Once we compute the effects of ϵi on the short modes ζki [94], we obtain a soft theorem of the

form

⟨ζqζk−q/2ζ−k−q/2⟩′ ∼ −Pζ(q) (3 + k.∂k)Pζ(k) +O
(
q2/k2, q2/(a2(t)H2(t))

)
. (3.132)

Note that the error is estimated to be quadratic in q, which is a consequence of taking a symmetric

configuration with the large momenta k− q/2 and −k− q/2.

12The long mode ζq′ is indeed time-independent (frozen) in the superhorizon limit (k ≪ H) in common inflationary
scenarios such as ordinary slow-roll (ϵ, η̃ ≈ 0).
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In the above, we saw how an approximate equivalence between a physical perturbation ζ(t,x)

in the long wavelength limit and the effect of a diffeomorphism can be used to derive a nontrivial

relationship between an (n+1)−point function in the soft limit and the lower order n−point function.

Relations like these can be derived systematically, and all possible soft theorems can be constructed if

a complete set of large diffeomorphisms is found. In the following section, I discuss the theory of

adiabatic modes, which formalizes the conditions under which the diffeomorphisms can be used to

derive soft theorems.

3.6.2 Adiabatic modes

To understand adiabatic modes, one should note that not all perturbations of matter fields and the

metric are physical, as some are equivalent to, and can be removed by, a coordinate transformation.

The equivalence of two descriptions related by a gauge transformation is well known in physics.

Perhaps less known is the possibility of constructing a generalized gauge transformation that does not

vanish at spatial infinity. Even if we use local conditions to fix the gauge of a given field theory, there

usually remains a residual diffeomorphism (diff for short) that does not converge to zero at infinity

and keeps the local gauge conditions unaffected. This diff may also be referred to as a large gauge

transformation (LGT).

An LGT given by xµ 7→ xµ + ϵµ(x) generates a metric perturbation gµν = ∇µϵν +∇νϵµ, which

can be decomposed into scalar, vector and tensor parts. These modes, having been generated by a

pure diff, are unobservable (unphysical). Adiabatic modes are then defined as physical solutions

that, for large wavelengths, are locally equivalent to the effect of a residual diff.13 Of course, a

mode originating from a diffeomorphism cannot carry entropy, so perturbations that resemble LGTs

are indeed adiabatic in the usual sense of the word. Adiabatic modes can be seen as universal,

long-wavelength solutions since they are derived independently of the details of the matter or field

content.

It must be noted that not all LGTs give rise to adiabatic modes. If there exists a family of physical

solutions that mimic the effect of an LGT in the large wavelength limit, such LGT is said to satisfy

the adiabaticity condition. If, in addition, the effect of the LGT resembles that physical mode which

is dominant at late times, we say it satisfies the physicality condition [95]. To illustrate the relevance

13More precisely: A family of physical perturbations parameterized by α is adiabatic in the limit α→ 0 if and only if for
all x and t they converge pointwise to a residual diff as α→ 0.
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of the latter, consider the time evolution of a large wavelength perturbation δf . Since the evolution

equation is second order, there are two distinct asymptotic solutions for δf ,

δf(x, t) ≈ A(t)δf1(x) +B(t)δf2(x) . (3.133)

If A(t) grows faster than B(t), then the LGT satisfies the physicality condition provided its time

dependence matches A(t). We are especially interested in LGTs that satisfy the physicality condition

because they are the ones that are well approximated by the dominant physical solution.

Let us now make the presentation more concrete and consider the Newtonian gauge, which

eliminates all gauge freedom except for the LGTs. The metric in this gauge is given by

ds2 = −(1 + 2Φ)dt2 + a(t)Gidtdx
i + a(t)2(1− 2Ψ)δijdx

idxj + a(t)2γijdx
idxj . (3.134)

An LGT given by xµ 7→ xµ + ϵµ(x) preserves the Newtonian gauge if and only if

∇2ϵi = −1

3
∂i∂kϵ

k, (3.135)

∇2ϵ0 = −a2∂k ϵ̇k. (3.136)

Note that with the boundary conditions lim
|x|→∞

ϵµ(x) = 0, the only solution would be the trivial

one. This expresses the fact that (3.134) completely fixes the local gauge. Instead, we are interested

in solutions to (3.135)-(3.136) that do not vanish at infinity. The solution should also satisfy the

adiabaticity condition, i.e. it should be a large wavelength limit of a physical adiabatic mode. This

condition takes the form of a system of equations [96]

Φ = Ψ , (3.137)

Ḣδu = HΨ+ Ψ̇ , (3.138)

Ġi = 0 , (3.139)

−4ḢaδuVj = ∇2Gj . (3.140)

In fact, the second equation does not impose any condition on ϵµ, since we are always free to set

δu = 1
Ḣ
(HΨ+ Ψ̇). Moreover, for perfect fluids, the last equation is trivially satisfied at leading order

[96]. Writing all the nontrivial constraints in terms of ϵµ, we get
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∇2ϵi = −1

3
∂i∂kϵ

k , (3.141)

∇2ϵ0 = −a2∂iϵ̇i , (3.142)

ϵ̇0 +Hϵ0 =
1

3
∂kϵ

k , (3.143)

(∂t +H)
(
a2ϵ̇i + ∂iϵ0

)
= 0 . (3.144)

Equations (3.141)-(3.144) are often solved order by order in x, assuming the expansion

ϵµ(x) =
∑
n

aµα1α2...αnx
α1(t) . . . xαn . (3.145)

Once a particular solution is known, one should check that it satisfies the physicality condition, i.e.

that its time dependence matches the time dependence of the dominant superhorizon mode. This

generally depends on the background FLRW dynamics. For now, let us assume that the physicality

condition is satisfied and equations (3.141)-(3.144) are solved by ϵµ(x). This LGT generates the

following curvature perturbations14 [97],

δR = Hϵ0 −
1

3
∂iϵ

i +
1

2
∂iϵ0 (−∂iϵ0 + 2Hϵi − ϵ̇i)− ϵµ∂µR , (3.146)

δγij = −∂iϵj − ∂jϵi +
2

3
δij∂kϵk − ϵµ∂µγij . (3.147)

Note the first two terms in R and the first two in γij , which correspond to nonlinear shifts, indicating

that the symmetry of an LGT is non-linearly realized. The soft theorems can now be derived using the

background wave method introduced in the previous subsection. The background wave should now

be identified with the nonlinear parts of (3.146)-(3.147), while the linear part can be used to determine

the effect of the LGT on the correlator of n fields, δ
δϵ⟨O⟩ϵ. There are many alternative methods of

deriving soft theorems from adiabatic modes, such as Operator Product Expansion [98], calculating

the action of an LGT on the wavefunction [99], or writing a Ward identity (see [93] for details),

⟨[Q,O]⟩ = −i⟨δO⟩ , (3.148)

where Q is the Noether charge associated with the symmetry transformation (3.146)-(3.147), i.e.

[Q, ζ] = −iδζ, [Q, γij ] = −iδγij .

14Note that we are now using the comoving curvature perturbation R, defined as R ≡ −Ψ+Hδu, where δu = ∇−2∂iui
and ui is the fluid velocity.
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In this section, we saw how adiabatic modes can be used to derive soft theorems such as (3.132).

At the classical level, adiabatic modes constitute a general class of linear solutions to the equations of

motion and thus describe primordial perturbations in a model-independent way under a set of mild

assumptions (single field inflation, matching time dependence of the long wavelength modes and

for tensor adiabatic modes - the absence of anisotropic stress). Adiabatic modes produce general

solutions even in the presence of multiple fields or fluids, describing those perturbations of energy

densities of each fluid i that satisfy the conditions [100]

δρi
ρ̄i

=
δPi
P̄i

=
δρ

ρ̄
=
δP

P̄
, (3.149)

and are therefore locally equivalent to a time shift. However, in the presence of multiple fields, there

exist solutions that cannot be represented as adiabatic modes - even on the smallest scales - since they

can be always distinguished from a coordinate transformation. Such solutions are called isocurvature

perturbations and, remarkably, they have not been detected so far [11].

In Chapter 4, I present a derivation of all scalar and tensor adiabatic modes in a K = 015 universe

using the decomposition in terms of vector spherical harmonics [101]. This short, unpublished note is

an alternative derivation of the main results of [96], which found a complete set of adiabatic modes in

the polynomial basis (3.145).

15Recall that K is the background spatial curvature.
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Adiabatic modes in flat FLRW universe

In this chapter, I find explicit decomposition of adiabatic modes in a flat FLRW universe in terms of

vector spherical harmonics [101]. I find general solutions that have a much simpler form than those

derived in [96], where expansion in powers of x was used.

4.1 Vector spherical harmonics

Consider a large diffeomorphism ϵµ(t,x). The FLRW spacetime is isotropic and homogenous, so

it is a good idea to expand ϵi(t,x) in vector spherical harmonics, and ϵ0(t,x) in scalar spherical

harmonics. Vector spherical harmonics (VSH) constitute an orthonormal basis for vector fields on S2,

just as scalar spherical harmonics are a basis for scalar fields on S2. Thus, we can indeed expand a

generic field ϵi in VSH Y i
lm,Ψ

i
lm and Φilm:1

1Let’s make a brief detour and decompose a uniform (spatially constant) vector field bi in terms of VSH. The Cartesian
unit vectors can be easily constructed from the vector spherical harmonics Y i1m and Ψi1m,

x̂ =

√
2π

3
(−(Y11 +Ψ11) + (Y1,−1 +Ψ1,−1)) , (4.1)

ŷ = i

√
2π

3
((Y11 +Ψ11) + (Y1,−1 +Ψ1,−1)) , (4.2)

ẑ =

√
4π

3
(Y10 +Ψ10) . (4.3)

Thus, a generic uniform vector field can be represented as

bi(t) =
∑

m=0,±1

Cm(t)(Y1m +Ψ1m). (4.4)
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ϵi(t,x) =
∑
l,m

(
E0
lm(t, r)Y

i
lm(θ, φ) + E1

lm(t, r)Ψ
i
lm(θ, φ) + E2

lm(t, r)Φ
i
lm(θ, φ)

)
, (4.5)

ϵ0(t,x) =
∑
l,m

Flm(t, r)Ylm(θ, φ) . (4.6)

Now we have to impose the constraints satisfied by ϵµ. These come in three types. The first two

are the constraints necessary to preserve the Newtonian gauge (4.7) and the adiabaticity conditions

(ensuring that the large gauge transformation can be extended to a physical solution). If we require

the solution to be a pure scalar, vector or tensor mode, we may also impose the condition that the

remaining components must vanish. However, by necessity, most modes will be mixed, meaning that

they contain e.g. both a scalar and a tensor part.

4.2 The constraints

4.2.1 Gauge-preserving constraints

I work in the Newtonian gauge. The metric is given by

ds2 = −(1 + 2Φ)dt2 + a(t)Gidtdx
i + a(t)2(1− 2Ψ)δijdx

idxj + a(t)2γijdx
idxj , (4.7)

where ∂iGi = 0 and γij is traceless and transverse (γii = ∂iγij = 0). If we are to preserve these

conditions and remain in the Newtonian gauge after a gauge transformation, it needs to satisfy the

gauge-preserving constraints

∇2ϵi = −1

3
∂i∂kϵ

k , (4.8)

∇2ϵ0 = −a2∂k ϵ̇k . (4.9)

4.2.2 Adiabaticity conditions

The conditions for the large diffeomorphism to be continuously connected to a physical solution are

[96]

Φ = Ψ , (4.10)

Ḣδu = HΨ+ Ψ̇ , (4.11)
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Ġi = 0 , (4.12)

−4ḢaδuVj = ∇2Gj . (4.13)

In fact, the second equation does not impose any condition on ϵµ, since we are always free to set δu

(the scalar component of the velocity perturbation) to 1
Ḣ
(HΨ+ Ψ̇). Moreover, the last equation is

trivially satisfied at leading order (for perfect fluids) - see [96].

4.2.3 Perturbed quantities

Perturbed quantities can be expressed in terms of ϵµ as follows:

Ψ = −Hϵ0 +
1

3
∂kϵ

k , (4.14)

Φ = ϵ̇0 , (4.15)

δui = ∂iϵ0 , (4.16)
δρ

ρ̇
= ϵ0 , (4.17)

Gi = a
(
−∂iϵ0 − ϵ̇i

)
. (4.18)

4.2.4 Summary of the constraints

If we use the equations (4.14) - (4.18) to write the perturbed quantities in terms of the diffeomorphism

ϵµ, the gauge constraints and the adiabaticity conditions become

∇2ϵi = −1

3
∂i∂kϵ

k , (4.19)

∇2ϵ0 = −a2∂iϵ̇i , (4.20)

ϵ̇0 +Hϵ0 =
1

3
∂kϵ

k , (4.21)

(∂t +H)
(
a2ϵ̇i + ∂iϵ0

)
= 0 . (4.22)

These equations must be satisfied by any adiabatic mode. However, additional equations can be

imposed if we demand from our mode that:

• its scalar part vanishes:

ϵ0 = 0, (4.23)
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• its vector part vanishes:

a2ϵ̇i + ∂iϵ0 = 0, ∇2ϵ̇i = 0, (4.24)

• its tensor part vanishes:

∂iϵ
j + ∂jϵ

i =
2

3
δij∂kϵ

k. (4.25)

Thus, for example, for pure vector modes (4.23) and (4.25) must be satisfied. We will see that most

of solutions are not pure scalar/vector/tensor modes, but are mixed, e.g. composed of a scalar and a

tensor part.

4.3 Solutions

I will start by solving the equation (4.19). Because modes with distinct l,m decouple from each other,

it will suffice to look for solutions of the form

ϵi(t,x) = E0
lm(t, r)Y

i
lm(θ, φ) + E1

lm(t, r)Ψ
i
lm(θ, φ) + E2

lm(t, r)Φ
i
lm(θ, φ). (4.26)

The formulae for gradient, divergence and Laplacian in the vector spherical formalism are [101]

∇(f(r)Ylm) =
df

dr
Ylm +

f

r
Ψlm , (4.27)

∇kϵ
k =

(
dE0

lm

dr
+

2

r
E0
lm − l(l + 1)

r
E1
lm

)
Ylm , (4.28)

∇2ϵi =

(
1

r

d2

dr2
(rE0

lm)−
2 + l(l + 1)

r2
E0
lm +

2l(l + 1)

r2
E1
lm

)
Y i
lm

+

(
1

r

d2

dr2
(rE1

lm) +
2

r2
E0
lm − l(l + 1)

r2
E1
lm

)
Ψi
lm

+

(
1

r

d2

dr2
(rE2

lm)−
l(l + 1)

r2
E2
lm

)
Φilm . (4.29)

Using the first two formulae, we can compute ∂i∂kϵk:

∂i∂kϵk =
d

dr

(
dE0

lm

dr
+

2

r
E0
lm − l(l + 1)

r
E1
lm

)
Y i
lm +

1

r

(
dE0

lm

dr
+

2

r
E0
lm − l(l + 1)

r
E1
lm

)
Ψi
lm .

Equating each of the terms in ∇2ϵi = −1
3∂i∂kϵk, we get the following system of equations,
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1

r

d2

dr2
(
rE0

lm

)
− 2 + l(l + 1)

r2
E0
lm +

2l(l + 1)

r2
E1
lm = −1

3

d2

dr2
(
E0
lm

)
− 2

3

d

dr

(
E0
lm

r

)
+
l(l + 1)

3

d

dr

(
E1
lm

r

)
,

(4.30)

1

r

d2

dr2
(
rE1

lm

)
+

8

3

1

r2
E0
lm − 4

3

l(l + 1)

r2
E1
lm = −1

3

1

r

d

dr

(
E1
lm

)
, (4.31)

1

r

d2

dr2
(
rE2

lm

)
=
l(l + 1)

r2
E2
lm . (4.32)

The simplest family of solutions to the above equations is E2
lm = Zrl, E0

lm = E1
lm = 0. I will

call this the Z branch. Recall that the functions Eklm can be time dependent, so Z = Z(t).

The first two equations are slightly more complicated, since they both mix E0,1
lm . Nevertheless, this

is a system of equidimensional differential equations which can be solved by substituting monomials

in r for E0,1
lm . Subject to appropriate regularity conditions at r = 0, the general solution for fixed l,m

is

E0
lm = A1(t)r

l+1 + C1(t)r
l−1, (4.33)

E1
lm = A2(t)r

l+1 + C2(t)r
l−1, (4.34)

E2
lm = Z(t)rl. (4.35)

where Ci ̸= 0 only if l ⩾ 1, and the ratios A2/A1 and C2/C1 are fixed and independent of time:

A2/A1 =
l + 9

(l − 6)(l + 1)
, (4.36)

C2/C1 =
1

l
. (4.37)

Note that for l = 6 we must have A1 = 0.

For l = 1 the solution might appear singular at r = 0, because the term C1Y1m represents a radial

vector with length independent of r, thus suggesting a discontinuity at the origin. However, for l = 1

we have C1 = C2, which implies that Y1m and Ψ1m appear only in the combination Y1m +Ψ1m.

As I explained in footnote 1 at the beginning of this chapter, such combinations constitute a basis

for uniform vector fields which are regular at r = 0 and should be interpreted as translations in the

position space.

I conclude that for l = 1, a term with a quadratic dependence on r must accompanied by a
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translation. The explicit form of this translation (ie. the value of ϵi at r = 0) in terms of the

coefficients C1,m = C2,m is

bx =

√
2π

3
(−C1,1 + C1,−1), (4.38)

by =

√
2π

3
i(C1,1 + C1,−1), (4.39)

bz =

√
4π

3
C1,0. (4.40)

I have thus found a general solution to the first constraint equation, (4.19). The remaining

constraints are

∇2ϵ0 = −a2∂k ϵ̇k , (4.41)

ϵ̇0 +Hϵ0 =
1

3
∂kϵ

k , (4.42)

(∂t +H)
(
a2ϵ̇i + ∂iϵ0

)
= 0 . (4.43)

It can be shown that the above system of three equations is equivalent to

0 = ϵ̈i + 3Hϵ̇i − 1

a2
∇2ϵi , (4.44)

ϵ0 = −a2∂t∇−2∂kϵ
k +

4

3
(∂t +H)−1∂kϵ

k + α(t,x) , (4.45)

∇2α = 0 , (4.46)

α̇+Hα = 0 . (4.47)

Equation (4.45) can always be solved for ϵ0. We can treat the solution ϵ0 = α, ϵi = 0 as a new

family of modes (the time-shift branch) that are independent from all the others. I will discuss such

solutions later. We can substract a time-shift mode from any other solution, so that if ϵi ̸= 0, we will

assume α = 0 without loss of generality.

Thus, any mode given in (4.33)-(4.35) will be an adiabatic mode, provided it has the time

dependence specified in (4.44). The associated time shift is given by (4.45) with α = 0.

4.3.1 The AC branch

In this subsection, I consider the solutions
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E0
lm = A1r

l+1 + C1r
l−1,

E1
lm = A2r

l+1 + C2r
l−1,

E2
lm = 0. (4.48)

with A2/A1 =
l+9

(l−6)(l+1) , C2/C1 = 1/l. Note that different spherical harmonics decouple in (4.19)

and (4.44), so we can assume that Eklm ∝ δll′δmm′ . We have

∇2ϵi = A1 [(l + 2)(l + 1)− (2 + l(l + 1)) + 2l(l + 1)A2/A1] r
l−1Y i

lm

+A2 [(l + 2)(l + 1) + 2A1/A2 − l(l + 1)] rl−1Ψi
lm . (4.49)

Hence, (4.44) yields

(
Ä1 + 3HȦ1

)
rl+1 +

(
C̈1 + 3HĊ1 −

(
2l + 2l

l + 9

l − 6

)
A1a

−2

)
rl−1 = 0 (4.50)

A2

A1

(
Ä1 + 3HȦ1

)
rl+1 +

(
C̈2 + 3HĊ2 −

(
2
l + 9

l − 6
+ 2

)
A1a

−2

)
rl−1 = 0 . (4.51)

This is equivalent to

Ä2 + 3HȦ2 = 0 (4.52)

C̈2 + 3HĊ2 − 2(l + 1)

(
2l + 3

l + 9

)
A2(t)a(t)

−2 = 0 . (4.53)

The solutions for l > 0 are

A2(t) = k0 +

∫
k1

a(t′)3
dt′ , (4.54)

C2(t) = k2 +

∫
k3

a(t′)3
dt+ 2(l + 1)

(
2l + 3

l + 9

)∫ t
∫ t′

A2(t
′′)a(t′′)dt′′

a(t′)3
dt′ . (4.55)

Note that the part C̄2(t) = k2 +
∫

k3
a(t′)3dt is independent of A2, and therefore can be interpreted as

an independent solution which I will discuss in subsection 4.3.2.

The AC branch, l = 0

Since Y00 is constant, the Ψi
00 and Φi00 vector harmonics vanish identically. We are left with (up to a

constant of proportionality):
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ϵi = A(t)xi . (4.56)

The Laplacian vanishes, so the time dependence is given by

A(t) = λ+

∫ t C

a(t′)3
dt′ . (4.57)

The corresponding time shift is

ϵ0 =
λ

a

∫ t

a(t′)dt′ +
C

a

(∫ t

dt′a(t′)

∫ t′ dt′′

a(t′′)3
− 1

2
x2

)
. (4.58)

The first of these modes (λ ̸= 0, C = 0) is exactly the Weinberg first scalar mode; the second

(λ = 0, C ̸= 0) is the time-dependent scalar mode from [96].

The AC branch, l = 1

Recall that for l = 1, an O(r2) term is accompanied by a translation.

A1(t) = −k0 −
∫

k1
a(t′)3

dt′ , (4.59)

A2(t) = k0 +

∫
k1

a(t′)3
dt′ , (4.60)

C1(t) = C2(t) = −2

∫ t
∫ t′

A1(t
′′)a(t′′)dt′′

a(t′)3
dt′. (4.61)

Here I subtracted the part C̄1(t) = k2 +
∫

k3
a(t′)3dt, since it is an independent solution (a pure

translation, discussed in the next subsection).

4.3.2 The C branch

In the solution (4.54) - (4.55), we can take A1 = A2 = 0 and

C2(t) = k2 +

∫
k3

a(t′)3
dt , (4.62)

with C1(t) = l C2(t). I will call this the C branch. Let’s discuss some special cases.
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The C branch, l = 1 (the translations)

For l = 1, A1 = A2 = 0, we get uniform spatial shifts (translations):

ϵi(t) = Ci0 +
∫ Ci
a(t′)3

dt′. (4.63)

The time-independent translation Ci0 has no physical relevance, so we can henceforth set it equal to

zero. There are then infinitely many consistent choices of ϵ0. If we take ϵ0 = 0, we obtain a pure

vector mode - it corresponds to the new vector mode of [96]. If we take ϵ0 = − 1
aCixi, we get a pure

scalar mode - in [96], this is called the gradient of Weinberg second scalar mode.

The C branch, l = 2

I conjecture that this solution, when accompanied by an apprioprate dilation that cancels out the trace,

corresponds to Weinberg tensor mode (for the time-independent part) or the first mixed mode of [96]

(for the time-dependent part).

4.3.3 The Z branch

This branch exists only for l > 0 and is given by

E0
lm = 0,

E1
lm = 0,

E2
lm = Z(t)rl. (4.64)

On the Z branch, we automatically have ∇2ϵi = 0. Thus

Z̈(t) + 3HŻ(t) = 0 (4.65)

Z(t) = z1 +

∫ t z2
a(t′)3

dt′ (4.66)

For l = 1, these modes correspond to infinitesimal rotations (for example, l = 1,m = 0 corresponds

to the generator of rotations around the z axis). Time-independent rotation is a trivial solution, while

the time-dependent part corresponds to the gradient vector mode found in [96].



70 Adiabatic modes in flat FLRW universe

4.3.4 The time shift branch

The final case to consider is ϵi = 0, ϵ0 ̸= 0. Then there are infinitely many solutions, which must

satisfy

∇2ϵ0 = 0, ϵ̇0 +Hϵ0 = 0 . (4.67)

A general solution is

ϵ0 =
β(x)

a(t)
, ∇2β = 0 . (4.68)

Taking ϵ0 = c
a(t) , we get a pure scalar mode (Weinberg second scalar mode). If ϵ0 has spatial

dependence, we get a mixed (scalar + vector) mode.

4.4 Comparison with (Pajer and Jazayeri, 2018)

Using the VSH decomposition, I explicitly reproduced the following modes found in [96]:

• Weinberg first scalar mode = the time-independent, l = 0 A mode (dilation).

• Weinberg second scalar mode = the time shift branch, ϵ0 = c
a(t) .

• Time-dependent scalar mode = the time-dependent, l = 0 A mode (time dependent dilation).

• Gradient of Weinberg second scalar mode = the translation branch (time dependent translation

+ temporal diffeomorphism).

• Vector mode = the translation branch (time dependent translation with ϵ0 = 0).

• Gradient vector mode = the Z branch, l = 1.

In addition, I shall make the following conjectures:

• The Weinberg tensor mode = the time-independent, l = 2 C mode, accompanied by l = 0 A

mode.

• The first mixed mode = the time-dependent, l = 2 C mode, accompanied by l = 0 A mode.

• Gradient scalars and gradient tensors = the time-independent, l = 2 Z mode, accompanied by a

spatial shift (translation).

All of the adiabatic modes derived in this chapter can be used to derive soft theorems following

the background wave method presented in Section 3.6, or any other method mentioned therein. Since
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our decomposition is related to (3.145) by a linear map, the associated soft theorems will be linear

combinations of those derived using the polynomial basis.

As a lesson for the future, let me observe that the VSH decomposition significantly streamlines

the calculations. This should be expected, since the system has an intrinsic SO(3) symmetry. Vector

spherical harmonics are eigenfunctions of the symmetry generators and are thus more suitable than

the polynomial basis (3.145). Yet, VSH seem to be underused in similar applications. I hope that the

results of this chapter will convince the readers as to their usefulness.





Chapter 5

Spatial Curvature at Sound Horizon

Abstract

The effect of spatial curvature on primordial perturbations is controlled by ΩK,0/c
2
s, where ΩK,0 is

today’s fractional density of spatial curvature and cs is the speed of sound during inflation. Here we

study these effects in the limit cs ≪ 1. First, we show that the standard cosmological soft theorems in

flat universes are violated in curved universes and the soft limits of correlators can have non-universal

contributions even in single-clock inflation. This is a consequence of the fact that, in the presence of

spatial curvature, there is a gap between the spectrum of residual diffeomorphisms and that of physical

modes. Second, there are curvature corrections to primordial correlators, which are not scale invariant.

We provide explicit formulae for these corrections to the power spectrum and the bispectrum to linear

order in curvature in single-clock inflation. We show that the large-scale CMB anisotropies could

provide interesting new constraints on these curvature effects, and therefore on ΩK,0/c
2
s, but it is

necessary to go beyond our linear-order treatment.

5.1 Introduction and summary

The corroborated assumption that our universe is homogeneous and isotropic on large scales highly

restricts the form of the spacetime metric. The only unknowns are the scale factor, whose evolution is

dictated by Einstein equations, and the comoving spatial curvature K, which is fixed by the boundary

conditions. General relativity gives us no guidance in choosing a specific value of K and so it is

important to derive predictions for observables for generic values of K and confront them with
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cosmological data. Current bounds constrain spatial curvature today to be at the per mille level or

smaller [39]

ΩK,0 ≡
K

a20H
2
0

= 0.0007± 0.0019 (68%, Planck + BAO) . (5.1)

But our cosmological model gives us also an estimate for a lower bound on the absolute value of

ΩK . This comes from the local effect of superHubble curvature perturbations. More specifically, it

has been measured that subHubble curvature perturbations have an amplitude of about 2× 10−9 and

an approximate scale-invariant spectrum. It is natural to expect that these perturbations continue to

exist on superHubble scales. To leading order, the effect of these superHubble perturbations on our

Hubble patch is to induce spatial curvature and a tidal force on Hubble scales (this follows from using

Fermi normal coordinates [102, 103] or more conveniently their cosmological generalisation known

as conformal Fermi coordinates [104, 105]). An estimate for the local spatial curvature in our Hubble

patch due to superHubble fluctuations then is

|ΩK | ∼ ⟨Ω2
K⟩1/2 = 2

3H2
0

[∫ H0

0

d3k

(2π)3
d3k′

(2π)3
⟨k2ζ(k)k′2ζ(k′)⟩

]1/2
(5.2)

=
2

3H2
0

[∫ H0

0

dk

2π2
k6P (k)

]1/2
(5.3)

=
2

3H2
0

[∫ H0

0
dkk3∆2

ζ

]1/2
=

∆ζ

3
≃ 1.5× 10−5 , (5.4)

where we used the relation1 K = −(2/3)∇2ζ. An anisotropic tidal field is expected at a comparable

level. Even though the above explicit estimate assumes a scale invariant power spectrum on all

superHubble scales, the integral is dominated by scales that are around the current Hubble radius and

so is quite insensitive to changes in the spectral index for ultra-long wavelengths.

The effect of curvature on cosmological observables such as the Cosmic Microwave Background

(CMB) or Large Scale Structures (LSS) has been well studied in the literature and many existing

numerical Boltzmann codes already allow one to include spatial curvature in solving cosmological

perturbation theory. All effects of curvature during the hot big bang are controlled by the parameter

ΩK(t), evaluated at the relevant time for the given observable. As is well-known, ΩK(t) is an

1This relation is valid only at linear order. But in standard cosmological models |ΩK,0| ≪ 1 is actually an upper bound
on the value of ΩK at any time during the hot big bang. We are therefore entitled to account for the effect of curvature
during the hot big bang to linear order.
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Figure 5.1: The figure shows why primordial perturbations are sensitive to ΩK,0/c
2
s. Since the

fractional density of spatial curvature (green line) decreases during inflation, it is larger at sound-
horizon crossing (first green dot) than at the crossing of the Hubble radius (second green dot).

increasing function of time in decelerated cosmologies. As a consequence, what controls the effect of

curvature in the late universe is bounded by the value of curvature today ΩK(t) ≲ ΩK,0.

What motivated this work is the observation that the effect of curvature on primordial perturbations

from inflation is controlled instead by ΩK,0/c
2
s. Therefore, if primordial perturbations had a small

speed of sound, cs ≪ 1, then they could provide a very sensitive probe of spatial curvature. This

dependence on cs is easy to understand (see Fig. 6.1). During inflation, perturbations freeze out at the

so-called sound horizon, i.e. when the comoving wavenumber satisfies csk = aH . Consider now a

perturbation of size the Hubble radius today kH0 = a0H0 = H0. The value of ΩK at the time during

inflation when kH0 froze out is

ΩK

∣∣∣
freeze

=
K

a2H2

∣∣∣
freeze

=
K

c2sk
2
H0

=
ΩK,0
c2s

. (5.5)

So, if cs ≪ 1 primordial perturbations felt a much larger value of ΩK right before they stopped

evolving than any cosmological observable in the late universe. The current bound2 on cs is

2A more detail discussion of the bound on cs and the other EFT free parameter at the same order will be given in Sec.
5.5.1.
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cs ≥ 0.021 (95%, Planck T+E) . (5.6)

Therefore we expect that the factor c−2
s in (5.5) will give us a boost of up to a thousand in sensitivity to

spatial curvature. The explicit calculations in this chapter confirm this rough estimate and furthermore

show that the final observable effect also depends on the strength of interactions during inflation.

For a fair comparison with other probes of curvature, it should also be mentioned that the effects

of curvature on primordial correlators peak at the largest observable scales, where cosmic variance

is largest. While this heuristic argument applies also to multifield inflation, in this work we focus

exclusively on single-field inflation.

In this chapter, we take the observation that a small speed of sound enhances the sensitivity to

spatial curvature in two distinct but related directions. First we study how spatial curvature can affect

the soft theorems for cosmological correlators, which in a flat universe provide model-independent

consistency relations to test the assumption of a single clock during inflation. While theoretical

predictions for correlators are highly model dependent, in recent years it has become clear that

symmetries, shared by large classes of models, lead to specific predictions known as soft theorems,

which can be tested with current and upcoming data. Soft theorems constrain the squeezed limit of

correlators, in which one of the momenta of the correlator is much smaller than any relevant scale in

the problem. Cosmological soft theorems take the schematic form

lim
q→0

⟨O(q)O(k1) . . .O(kn)⟩′
⟨O(q)O(q)⟩′ =

n∑
a=1

La⟨O(k1) . . .O(kn)⟩′ , (5.7)

where O are some operators, a prime denotes that we have dropped the momentum-conserving

delta function and L = L(k, ∂k) is some linear operator consisting of powers of the momenta and

derivatives. The most famous soft theorem has been derived by Maldacena in [106] and fixes the

squeezed bispectrum in terms of the power spectrum and it applies to all attractor, single-field models

of inflation [107]. This first result has been extended to higher n-point functions for primordial scalar,

tensor and vector perturbations [93, 99, 108–117, 96, 95]. Soft theorems are conveniently interpreted

as the consequence of residual, non-linearly realized symmetries associated with adiabatic modes

[118, 93, 119, 96, 98], namely physical perturbations that are indistinguishable from a change of

coordinates in the neighborhood of a point in spacetime. In the presence of additional symmetries

beyond diffeomorphism invariance, new adiabatic modes and new soft theorems can be derived. One
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example are non-attractor models of inflation such as Ultra-Slow-Roll inflation [120] that are also

invariant under a shift symmetry. In this setup, new generalized adiabatic modes can be found, which

are locally indistinguishable from a change of coordinates and a symmetry transformation [98, 121].

The violation of Maldacena’s consistency relation in shift-symmetric Ultra-Slow-Roll inflation [122–

125], can be attributed to the fact that cosmological perturbations asymptote generalized adiabatic

modes, as opposed to the standard adiabatic modes [98, 126]. Adiabatic modes and their associated

soft theorems can also be derived [127, 128] in the presence of alternative spacetime symmetry

breaking patterns as in solid inflation [129, 130] and other generalizations [131–134]. All results so

far have been obtained in spatially-flat FLRW spacetimes3. In this work, we study adiabatic modes

and soft theorems in spatially-curved universes. A summary of our result can be found in the next

subsection.

A second direction in which we push our investigation is the explicit calculation of corrections to

the power spectrum and bispectrum of curvature perturbations that are induced by spatial curvature at

linear order in ΩK . To achieve this result we take advantage of the fact that, at linear order, the local

effect of spatial curvature is the same as that of a suitable isotropic long wavelength perturbation on a

spatially flat background. This equivalence allows us to use results in the literature for the bispectrum

and trispectrum in flat FLRW spacetime to deduce the linear order effect of curvature on the power

spectrum and bispectrum. The calculation simply amounts to extract a specific term from the squeezed

limit of the higher-point correlator. Our main findings are summarized in the next subsection.

The rest of the chapter is organized as follows. In the next subsection we give a brief summary of

our main results. In Sec. 5.2 we outline the procedure to derive adiabatic modes in curved FLRW

universes and discuss the difficulty in continuing these modes to physical momentum. In Sec. 5.3, after

reviewing the derivation of soft theorems in flat universes, we show that the standard “monochromatic”

soft theorems do not exist in the presence of spatial curvature. This holds both for soft scalar and soft

tensor modes. Here we also briefly mention some other non-standard and less phenomenologically

relevant ways to constrain the soft behavior of correlators. In Sec. 5.4 we calculate the theoretical

prediction for the effect of curvature on the power spectrum and bispectrum of curvature perturbations,

both for canonical single-field inflation and for the decoupling limit of the Effective Field Theory

of Inflation [136]. In Sec. 5.5, we show that, giving current constraints, the correction to the power

3The only exception known to us is [135], where the author studies soft theorems in a “toy” closed universe in 2+1
dimensions. The overall scaling of the violation of the consistency relation observed in that work in around Eq. (20) seems
to match our results in 3+1 dimensions.
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spectrum can be large enough to be measurable in the CMB, but this happens in a regime in which

one needs to go beyond our linear treatment of curvature. We also make some estimates of the how

large the non-scale invariant corrections to the bispectrum could be, given current constraints. Finally

we conclude in Sec. 6.6 with a discussion and an outlook.

Notation and conventions: We use a mostly positive signature. Greek indices from the middle

of the alphabet run over µ, ν = 0, 1, 2, 3 and latin indices from the middle of the alphabet over

i, j = 1, 2, 3. We define symmetrization of indices by a(ij) = 1
2(aij + aji). Our Fourier conventions

are

f(x) =

∫
d3k

(2π)3
eikxf(k) , f(k) =

∫
d3x e−ikxf(x) . (5.8)

Spatial 3-vectors are indicated in boldface, as for example in “x”, and a hat denotes a unit norm vector

q̂ · q̂ = 1.

5.1.1 Summary of the results

In the following we give a short summary of our main results for soft theorems and for the curvature

corrections to the power spectrum and bispectrum.

Soft theorems We find that the standard soft theorems that relate n-point to (n− 1)-point functions

in the squeezed limit are generally violated in curved universes. In particular the correlation in the

squeezed limit is not simply a change of coordinates and therefore does not have the same universal

character in a curved universe that it has in a flat universe. In attempting to reproduce the flat universe

derivation of soft theorems, we derived all residual diffeomorphisms (diffs) in Newtonian gauge.

Residual diffs, for both scalar and tensor modes do exist in curved universes and reduce to the

respective flat-universe adiabatic modes in the K → 0 limit. The main obstacle emerges when one

tries to connect residual diffs to physical modes. For both scalars and tensors and in both open and

closed universes the spectrum of physical modes (i.e. the eigenvalues of the Laplacian) is separated

from the spectrum of residual diffs by a discrete gap. As a consequence of this, the time evolution

of physical modes is different from that of residual diffs already at linear order in curvature. When

deriving soft theorems, one substitutes physical modes with diffs in some soft limit of a correlator.

This introduces an error already at linear order in curvature and so we conclude that soft theorems are

violated by curvature corrections. The violation is parameterized by ΩK,0/c
2
s but depends also on
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the strength of the interaction of perturbations, which are dictated by an explicit inflationary model

or parameterized by the EFT of inflation. For the EFT of Inflation our main result for the squeezed

bispectrum of curvature perturbations is the expression in (5.94), while for canonical single-field

inflation we find (5.102).

Power spectrum and bispectrum To linear order, the local effect of spatial curvature can be traded

for that of a long wavelength curvature perturbation (see e.g. [103, 112, 105]). This fact was used in

[112] to show that the terms at order k2L in the squeezed bispectrum (i.e. for kL → 0) are related to

the corrections of spatial curvature to the power spectrum. These corrections are not scale invariant

and peak on the largest scales, see (5.73) and (5.88)-(5.91). We confront the curvature-dependent

power spectrum prediction with data on the CMB temperature anisotropies. The signal-to-noise is

saturated by just the first few CTTl ’s. The bounds that we derive (see Figure 5.6) are slightly weaker

than the theoretical bounds we have from the validity of our linear treatment of curvature. This

means that the CMB can potentially improve current bounds on the {ΩK,0, cs} plane in the direction

ΩK,0/c
2
s, but this requires computing the correction to the power spectrum to all orders in K. We

also compute curvature corrections to the bispectrum from the squeezed trispectrum in canonical

single-field inflation (from [137, 138]), finding (5.102), and for the so-called P (X)-theories [139]

(equivalent to the leading terms in the EFT of inflation), finding (5.88)-(5.90). We show that the

signal-to-noise for this leading order curvature correction to the bispectrum is at most of order one for

the allowed values of parameters and always smaller than one within the regime of validity of our

analysis.

5.2 Residual diffeomorphism

In this section, we derive residual diffs in spatially-curved FLRW universes. Our main finding is that

residual diffs do exist, but their momenta are always separated from the spectrum of physical modes

by a discrete amount.

5.2.1 Gauge fixing

In this work, we consider curved FLRW universes with the following spacetime metric

ds2 = −dt2 + a2(t)g̃ij(x)dx
idxj ≡ ḡµνdx

µdxν , (5.9)



80 Spatial Curvature at Sound Horizon

where

g̃ij(x) = f2(Kx2)δij with f(Kx2) ≡ 1(
1 + 1

4Kx2
) , (5.10)

and we have defined x2 ≡ δij x
ixj . The universe is spatially flat, open or closed if K = 0,K < 0

and K > 0, respectively. In the open case, the radial coordinate satisfies x2 < 4/|K|, while in the

closed case 0 ≤ x ≤ +∞. The volume contained in an open universe is infinite, while it is finite in a

closed universe. Other useful properties of the FLRW metric can be found in Appendix 5.7.1.

For the perturbations around the FLRW background, we choose to use the Newtonian gauge,

which is defined through

ds2 = −(1 + 2Φ)dt2 + aGidtdx
i + a2 [(1− 2Ψ)g̃ij + γij ] dx

idxj , (5.11)

with

∇iG
i = ∇i γ

ij = γii = 0 . (5.12)

Here, ∇i is the covariant derivative with respect to the spatial metric g̃ij . We raise and lower spatial

indices with the g̃ij metric. Metric perturbations are denoted by hµν . We take the energy momentum

tensor to be that of a single perfect fluid, so a universe with a single scalar field is also included in our

study. To first order in perturbations, this implies

Tµν = (ρ+ p)uµuν + gµνp , (5.13)

ρ = ρ̄(t) + δρ ,

p = p̄(t) + δp ,

uµ = (−1 +
1

2
h00,∇i δu+ uVi ), g̃ij∇i u

V
j = 0.

Generally, there might be residual diffeomorphisms that are compatible with the gauge choice.4 Under

an infinitesimal change of coordinates xµ → xµ + ϵµ, metric perturbations transform as

∆h00 =2ϵ̇0 , (5.14)

4It should be possible to avoid such residual diffeomorphisms by an appropriate choice of coordinates. In flat space,
even in such coordinates, cancelations among scalar, vector and tensor perturbations in the zero momentum limit lead to a
set of adiabatic modes. See [128] for a related discussion in the context of Solid Cosmologies.
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∆h0i =∂iϵ
0 − a2f2ϵ̇i, (5.15)

∆hij =− 2Hϵ0ḡij +Kfxkϵkḡij − 2ḡk(i∂j)ϵ
k , (5.16)

which in turn yield

Φ = −ϵ̇0 , (5.17)

Ψ = Hϵ0 − 1

2
K f xkϵk +

1

3
∂kϵ

k ,

Gi = ∇iϵ
0 − a2 ϵ̇i ,

γij = 2∇(iϵj) −
1

3
∇kϵ

k g̃ij .

The variables parameterizing the perfect fluid on the other hand change as

∆δρ =− ˙̄ρϵ0, (5.18)

∆δp =− ˙̄pϵ0,

∆∂i δu+∆uVi =∂iϵ
0 .

To maintain the Newtonian gauge, we must impose (5.12), giving

∇iG
i = 0 ⇒ ∇2ϵ0 − a2∇iϵ̇

i = 0 , (5.19)

∇iγij = 0 ⇒ ∇i
(
2∇(iϵj) −

1

2
∇kϵ

k g̃ij

)
= 0 . (5.20)

For diffs that respect (5.19) and (5.20), general covariance guarantees that the perturbations in

(5.17) solve the linearized Einstein equations. However, just as for flat FLRW, for these diffs to have

a chance to approximate physical perturbations, additional conditions must be satisfied. To see this,

recall that physical perturbations in curved universes can be uniquely decomposed into scalars, vectors

and tensors (with appropriate fall-off conditions in the open case, see Appendix 5.7.1). Then let us

decompose the linearized Einstein equations, δµν = 0, in the following way,

δE00 = S(1) , (5.21)

δE0i = ∇i S
(2) + V

(1)
i ,

δEij = S(3)ḡij +∇i∇j S
(4) +∇(iV

(2)
j) + Tij ,



82 Spatial Curvature at Sound Horizon

where, S(i), V (i) and Tij are the scalar, transverse vector and transverse traceless tensor components,

respectively. For physical perturbations S(1,2,3,4) = V
(1,2)
i = Tij = 0. These equations are then

necessary conditions (but as we will see not sufficient) for any residual diffs to be able to approximate

physical perturbations. Since for residual diffs we already know that δEµν = 0, we need only to

further impose5

S(2) = S(4) = V (2) = 0 , (5.22)

where when we had the choice we set to zero those components with at most one time derivative. It is

easy to verify that the rest of the components, namely S(1), V (1), S(3), and T , must also vanish as

result of general covariance and rotational symmetry. In Newtonian gauge, (5.22) becomes

S(2) : Ψ̇ +HΦ =

(
Ḣ − K

a2

)
δu , S(4) : Φ = Ψ . (5.23)

We will refer to these equations as “adiabaticity conditions”. Notice that there are no adiabaticity

conditions for tensor residual diffs. Since vector modes decay in standard cosmologies, we set them

to zero (so that V (2) = 0) and ignore them in the rest of the chapter.

5.2.2 Scalar residual diffs

In this subsection, we investigate the existence of scalar residual diffs in an open or closed universe

that satisfy the adiabaticity conditions (5.23) and (5.23). Demanding γij to vanish restricts ϵi to

solutions of the following equation

∂iϵ
j + ∂jϵ

j =
2

3
δij ∂kϵ

k . (5.24)

This is nothing but the conformal Killing equation in Euclidean space. It has the following solutions

(Dilation) ϵid = λ(t)xi , (5.25)

(Special conformal transformation) ϵiSCT = b(t).xxi − 1

2
x2 bi(t) , (5.26)

(Translation) ϵiT = ci(t) , (5.27)

(Rotation) ϵiR = ωij(t)x
j . (5.28)

5Notice that after setting S(4) = 0, Einstein’s equations automatically imply S(3) = S(1) = 0.
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This is a good point to pause and discuss the spatial profiles of these residual diffs. Translations and

rotations are isometries of the background metric and so do not affect perturbations. Dilations and

special conformal transformations on the other hand do change perturbations. A common feature that

is true regardless of spatial curvature is that the residual diffs in (5.25) and (5.26) cannot be fixed by

imposing local conditions on the matter fields and metric components. Let discuss some additional

curvature-dependent properties:

• In flat space, these residual diffs do not fall off at spatial infinity (|x| → +∞) and are therefore

known as “large” diffs. This behavior should be contrasted with that of physical perturbations

that are required to vanish at spatial infinity (so as to justify neglecting total spatial derivatives).

• In open universes, spatial infinity coincides with |x| → 2/
√
|K|, and residual diffs do not

vanish there. In this sense these diffs could also be called “large” diffs. Again this should be

contrasted with physical perturbations that should vanish as |x| → 2/
√

|K|.

• In closed universes, the spatial maximally-symmetric manifold is compact and there is no

spatial infinity. In this case the above residual diffs are regular everywhere and they are square

integrable. In this sense they are not “large" gauge transformations. They are only residual in

the sense that they cannot be fixed by local gauge conditions.

In this work we focus on finding a counterpart to Weinberg’s first adiabatic mode [118], which

in flat space can be generated by a time-independent dilation, ϵid = λxi. Unlike for the flat case, in

curved universes the coefficient λ might have nontrivial time dependence, which is fixed by imposing

the adiabaticity conditions in (5.23) and (5.23).

The absence of vector modes means that Gi in (5.17) must vanish. This implies

ϵ0 = −2a2

K
fλ̇+D(t), (5.29)

where D is an integration “constant”. Inserting ϵ0 and ϵi into (5.18) and (5.17), and assuming no shift

symmetry on δu6 , we find the following solution

6For a perfect fluid, δu always has a shift symmetry. This simply reflects the equivalence between perfect fluids and
superfluids (P (X) theories) in the limit of no-vorticity. We are however interested in a generic single scalar field cosmology,
where the relation between δu and the scalar perturbation δϕ breaks the shift symmetry [96].
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Φ =
1

K

2∂t(a
2λ̇)

1 + 1
4Kx2

− Ḋ(t) , (5.30)

Ψ = HD − λ+
2(λ− H

K a
2λ̇)

1 + 1
4Kx2

,

δu = −2a2

K
fλ̇+D(t) .

So far, λ and D have been arbitrary time-dependent functions. They are fixed however by imposing

the adiabaticity conditions (5.23) and (5.23):

D =
a2λ̇

K
, (5.31)

λ̈+ 3Hλ̇− K

a2
λ = 0 . (5.32)

In summary, we have found the following seemingly adiabatic solution

Φ = Ψ =
1

K
∂t(a

2λ̇)

(
2

1 +Kx2/4
− 1

)
, (5.33)

δρ

ρ̇
=

δp

ṗ
= −δu =

a2λ̇

K

(
2

1 +Kx2/4
− 1

)
,

R ≡ −Ψ+Hδu = −λ
(

2

1 +Kx2/4
− 1

)
= −Ψ−H

δρ
˙̄ρ
≡ ζ .

In the last line, R and ζ are the curvature perturbations on comoving and constant-density slices,

respectively. In the flat-space limit, K → 0, both Weinberg’s first and second adiabatic modes are

obtained from the two independent λ(t) solutions to (5.32).

For future reference, notice that

∇2ζ = f−2

(
∂i∂i −

1

2
Kfxk∂k

)
ζ = −3Kζ . (5.34)

That is, our scalar residual diff has ∇2 = −3K (see Table 5.1).

As a consistency check, we note that the evolution equation for scalar perturbations R in curved

universe with a scalar inflaton field, as derived for example in [140], takes the form

(D2 −KE)R̈+

[(
H + 2

ż

z

)
D2 − 3KHE

]
Ṙ

+
1

a2

[
K

(
1 + E − 2

H

ż

z

)
D2 −D4 +K2E

]
R = 0, (5.35)
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where

D2 ≡ ∇2 + 3K, z =
aϕ̇

H
, E =

ϕ̇2

2H2
. (5.36)

The limit D2 → 0, which corresponds to the residual diffs, gives

R̈+ 3HṘ − K

a2
R = 0, (5.37)

confirming (5.32).

5.2.3 Tensor residual diffs

We switch now to tensor perturbations for which there is no adiabaticity condition. To remove scalar

modes we set δu = Φ = Ψ = 0. This results in ϵ0 = 0 and

∇iϵ
i = 0 . (5.38)

In addition, setting Gi = 0 enforces ϵi and, subsequently, γij to be time-independent. The spatial

diffs must further satisfy the gauge condition (5.20),

∇i
(
∇iϵj +∇jϵi

)
= 0 . (5.39)

It is straightforward to see that

∇2 ϵi = −2K ϵi ⇒ ∇2 γij = +2Kγij (tensor residual diffs) . (5.40)

Notice that (5.40) is compatible with Einstein’s equations for physical modes, which for tensors lead

to

γ̈ij + 3Hγ̇ij −
1

a2
(∇2 − 2K)γij = 0 (physical modes) . (5.41)

From this we see that a tensor residual diff, which must be constant in time, indeed satisfies

γ̈ij = γ̇ij = 0 ⇒ ∇2γij = +2Kγij . (5.42)
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Just like their analogues in flat space, equations (5.40) and (5.38) admit infinitely many solutions

[141]. These are easier to be written in spherical coordinates, where the solutions to (5.40) are either

of even (+) or odd (-) parity. They are found to be (see [141])

ϵ̄(+)lm
r = V l

1 (r)Ylm(θ, ϕ) , ϵ̄
(+)lm
θ = V l

2 (r)∂θYlm(θ, ϕ) , ϵ̄
(+)lm
ϕ = V l

2 (r)∂ϕYlm(θ, ϕ) , (5.43)

ϵ̄(−)lm
r = 0 , ϵ̄

(−)lm
θ = V l

3 (r)∂θYlm(θ, ϕ) , ϵ̄
(−)lm
ϕ = V l

3 (r)∂ϕYlm(θ, ϕ) .

Above, we have pedantically denoted the spatial diffs in the spherical coordinates with ϵ̄a (a = r, θ, ϕ)

to distinguish them from their Cartesian counterparts, and we have defined

V l
1 (r) =

1√
r3 f(Kr2)

P
−l−1/2
−5/2

(4−Kr2

4 +Kr2

)
, (5.44)

V l
2 (r) =

1

l(l + 1)

1

f(Kr2)
∂r

[√
r f(Kr2)P

−l−1/2
−5/2

(
4−Kr2

4 +Kr2

)]
,

V l
3 (r) =

√
r f(Kr2)P

−l−1/2
−5/2

(
4−Kr2

4 +Kr2

)
,

where Pµλ are associated Legendre functions. The resulting tensor modes can be computed by inserting

any of the above ϵ̄a’s in γ̄ab = 2∇(aϵ̄b).

5.2.4 From large diffs to physical modes

Now we would like to see if the residual diffs satisfying the adiabaticity conditions that we have found

in the previous sections can be smoothly connected to physical modes. In a flat universe this is the

case, as in the k → 0 limit physical perturbations become indistinguishable from (large) residual diffs,

for which k = 0. As we will see below, in spatially curved universes we find an obstruction in the

form of a discrete gap between the wavenumber of residual diffs and the spectrum of physical modes.

This is summarised in Table 5.1.

In both open and closed universes, the scalar and tensor residual diffs discussed in Sec. 5.2.2 and

Sec. 5.2.3 are eigenfunctions of the ∇2 operator, with eigenvalues

∇2S(x) = −3KS(x) (Scalar residual diffs) , (5.45)

∇2T (x) = +2KT (x) (Tensor residual diffs) . (5.46)

Let us compare this with the physical spectrum in open and closed universes. In an open universe
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Open (K < 0) Closed (K > 0)

Scalars
Res. diffs 3|K| > 0 −3K < 0

Physical −(1 + p2)|K| ⩽ −|K| −p(p+ 2)K < 0, p = 2, 3, . . .

Tensors
Res. diffs −2|K| < 0 2K > 0

Physical −(3 + p2)|K| ⩽ −3|K| −(p(p+ 2)− 2)K < 0, p = 2, 3, . . .

Table 5.1: This table summarises the eigenvalues of the 3D spatial Laplacian ∇2 for residual diffs
(“res. diffs”) and physical modes (“physical”) in open and closed universes.

(K < 0), monochromatic7 perturbations that provide a complete basis of square integrable functions

consist of the so-called subcurvature modes, all of which have negative eigenvalues [142, 143]:

∇2Splm(x) = −(1 + p2)|K|Splm(x), (physical Scalars for K < 0) , (5.47)

∇2Tplm,ij(x) = −(3 + p2)|K|Tplm,ij(x), (physical Tensors for K < 0) , (5.48)

where p > 0. Due to the existing gap between the momenta of the physical perturbations and the

residual diffs, namely

−(1 + p2)|K| < −|K| vs + 3|K| (scalar gap) , (5.49)

−(3 + p2)|K| < −3|K| vs − 2|K| (tensor gap) , (5.50)

monochromatic physical modes cannot capture the time dependence of the gauge modes in any

continuous limit - neither for the scalar nor for the tensor. (This is in contrast with flat space, where

eigenfunctions of ∇2 can have the eigenvalue −k2 arbitrarily close to zero and asymptote to the

behavior of the (large) residual diff in the long wavelength limit.)

In closed universes, K > 0, residual diffs have Laplacian eigenvalues again given by (5.45) and

(5.46). Normalizable modes on the other hand obey

∇2Splm(x) = −p(p+ 2)KSplm(x) with p = 0, 1, . . . , (5.51)

∇2Tplm,ij(x) = −(p(p+ 2)− 2)KTplm,ij(x) with p = 0, 1, . . . . (5.52)

However, all modes with p = 0, 1 are equivalent to diffs and physical modes only start at p = 2, so

7By a monochromatic mode, we mean any mode which is an eigenfunction of ∇2. Gradients ∇i do not commute with
each other and therefore cannot be simultaneously diagonalized.
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the modes we found still cannot be approached in any continuous way by monochromatic modes (see

Sec. 5.3 for more discussion).

The discussion so far has focused on monochromatic modes and as such we cannot preclude

the possibility of reaching an adiabatic mode as a limit of some other non-monochromatic physical

perturbation. We would like to find those perturbations that have the following property:

A family of physical perturbations parameterized by α is adiabatic in the limit α→ 0 if and only if

they converge pointwise in spacetime to a residual diff as α→ 0.

How can we take each element of the family to be normalizable yet have them converge to the

(non-normalizable) residual diff? The idea is to consider a class of perturbations that give a good

approximation of the residual diffeomorphism within some finite region of spacetime and send the

size of that region to infinity (in the open case) or to the size of the universe itself (in the closed case).

For concreteness, let us concentrate on the dilation residual diff (“Res. Diff”) in an open universe. We

can take

ζ(α)(t = 0,x) = ζRes. Diff(t = 0,x) exp (−αF (x)) , (5.53)

ζ̇(α)(t = 0,x) = ζ̇Res. Diff(t = 0,x) exp (−αF (x)) , (5.54)

where F (x) is a function that increases with x sufficiently fast for each perturbation to be normalizable.

Note that we need to specify the field as well as its time derivative, since the evolution equation for

scalars, (5.35), is second order in time. It is likely that such a non-monochromatic adiabatic mode

would not have the same relation between ζ(t = 0,x) and ζ̇(t = 0,x) as the physical pertubation

coming from a Bunch-Davies initial state, making these non-monochromatic modes less useful in

practice.

We make a technical assumption that the Cauchy problem for linear perturbations is well-posed

so that the solution must depend continuously on the initial conditions (although this assumption

is not strictly necessary if we take different physical field profiles). The physical modes converge

pointwise to the residual diff on the initial time slice, so by continuity of solutions they must also

converge pointwise to the gauge mode in the entire spacetime region for which solutions exist (a

natural assumption is that solutions do exist in the entire spacetime, ie. linear evolution of smooth

initial conditions doesn’t lead to singularities). This completes the construction of a family of scalar

physical modes that become adiabatic in the limit α → 0. The argument is similar in the case of
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tensor modes and is valid in both open and closed universes. We can also conclude that on any finite

(but otherwise arbitrary) patch of spacetime, convergence must be uniform.

5.3 Soft theorems

In this section, we start with a brief review of soft theorems in a flat universe to highlight the difficulties

in generalizing the usual derivation to a curved universe. We then point out that, due to a gap between

the Laplacian eigenvalues of residual diffeomorphisms and physical modes, the soft limit cannot be

constrained in the usual way at order O(K). We also briefly discuss some new non-standard soft

theorems of a more formal nature. Later on, in Sec. 5.4 and Sec. 5.5, we will directly compute

curvature corrections to correlators, which will confirm the findings of this section.

5.3.1 Flat universe

Residual diffs reflect the underlying symmetries of the gravitational theory and therefore can be used

to derive soft theorems for primordial correlators. A generic argument can be constructed as follows.

Consider an n + 1-point function where one of the modes is close to a residual diff, such that its

dominant time dependence matches that of the residual diff. We can write

⟨ζqζk1 . . . ζkn⟩ ∼
∫

d3q′

(2π)3
⟨ζqζq′⟩ δ

δζq′
⟨ζk1 . . . ζkn⟩ζq′ +O(ζ3q) (5.55)

= Pζ(q)
δ

δζGM
⟨ζk1 . . . ζkn⟩ζGM +O(ζ3q, q

2/k2, q2/(aH)2).

In the final step we used the conservation of momentum and the fact that the soft mode resembles

the residual diff (up to corrections of order q2/k2 and q2/(aH)2). The effect of a residual diff on the

short modes is precisely a change of coordinates xµ → xµ + ϵµ:

δζGM⟨ζk1 . . . ζkn⟩ζGM =

n∑
i=1

⟨ζk1 . . . (δϵζki) . . . ζkn⟩. (5.56)

Then the soft theorem takes the form

lim
q→0

⟨ζqζk1 . . . ζkn⟩ ∼ Pζ(q)

n∑
i=1

⟨ζk1 . . . (δϵζki) . . . ζkn⟩+O(q2/k2n, q
2/(aH)2) . (5.57)
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5.3.2 Absence of monochromatic soft theorems

In Section 5.2, we have established that in curved universes monochromatic physical modes are

always separated from residual diffs by some finite gap that is proportional to K. Thus, a consistency

relation in which the soft mode is monochromatic fails to capture the effect of a diff by a discrete

amount; a difference of order O(K/k2s) is always present between physical modes and residual diffs.

Of course this difference can be very small if curvature is very small, and that limit indeed reproduces

the flat space results. But already at linear order in K one finds violations of the flat-universe soft

theorems. We conclude that soft theorems of the usual form do not exist in curved universes. This

conclusion applies to both scalar and tensor soft theorems in both open and closed universes.

We can explicitly show where the O(K/k2s) errors originate in the derivation. Focusing (for

concreteness) on the open universe, scalar case, we obtain - in terms of open harmonics:

⟨ζq00ζkslmζk′sl′m′⟩ =
∫
dq′⟨ζq00ζq′00

δ

δζq′00
⟨ζkslmζk′sl′m′⟩ζ⟩

≈
∫
dq′⟨ζq00ζq′00⟩

δ

δϵ
⟨ζkslmζk′sl′m′⟩+O

(
q2 − 3K

k2s

)
⟨ζkslmζk′sl′m′⟩. (5.58)

The error in approximating a physical mode ζq′00 with a monochromatic residual diff as done in the

second line comes from two effects. First, even at some constant time we know that the eigenvalues

of the Laplacian must differ at order O
(
q2 − 3K

)
. Second, by the differential equation that each

perturbation satisfies, see for example (5.35), this difference in ∇2 leads to a time dependence that is

also different at order O(q2 − 3K), since this quantity vanishes for the residual scalar diff but it does

not for the physical mode. A short mode with momentum ks and associated length scale xs = k−1
s

feels this difference as its evolves before freezing out. The relevant dimensionless quantities that

estimate this error are then

O
(
(q2 − 3K)x2s

)
≃ O

(
q2 − 3K

k2s

)
≥ O

( |K|
k2s

)
. (5.59)

Note that the error does not contain an O(|K|/q2l ) term. Thus the leading order behaviour of a

model dependent effect in the squeezed bispectrum will be O(|K|/k2s), as we will show explicitly in

Sec. 5.4.
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5.3.3 Formal soft theorems and adiabatic modes

We know from the discussion around (5.53) that in curved universes physical perturbations can be

approximated arbitrarily well by residual diffs, even though such perturbations cannot be monochro-

matic and do not come from a Bunch-Davies initial condition. Consider then any family of physical

scalar perturbations ζ(α) that are adiabatic in the limit α→ 0. The strategy is to put the ζ(α) modes

on the left hand side of a consistency relation in place of the usual soft mode.

Let us assume that for each α, there exists a basis {ζn} (its elements labelled by n) of pairwise

uncorrelated modes containing ζ(α) itself. Then we have

⟨ζ(α)ζklmζk′l′m′⟩∼
∫
dn⟨ζ(α)ζn⟩

δ

δζn
⟨ζklmζk′l′m′⟩ζn ∼ ⟨ζ2(α)⟩′

δ

δζRes. diff
⟨ζklmζk′l′m′⟩ζRes. diff ,

(5.60)

up to corrections that vanish in the limit α→ 0, in which the soft perturbation approaches the residual

diff.

A few remarks are in place. The primed 2-pt function ⟨ζ2(α)⟩′ depends on the chosen basis {ζn}
and it will be generally difficult to compute. Similarly, we do not have a closed expression for the

action of a diff on the short modes. Finally, O(K) effects in the consistency relation are correctly

captured only when the soft mode ζ(α) resembles the adiabatic mode on scales comparable to the

curvature scale, in which case ⟨ζ2(α)⟩′ is a superhorizon quantity inaccessible to local observers.

Despite all these limitations, the above formulation of a soft theorem is formally valid to an arbitrary

accuracy in the limit α → 0, despite the existence of a gap in the momenta of residual diffs and

physical modes. We thus demonstrated the possibility of extending soft theorems to universes with

nonvanishing spatial curvature, albeit in a formal sense.

5.4 Curvature corrections to the power spectrum and bispectrum

The primary focus of this section is to investigate the dominant effect of curvature on the power

spectrum and the bispectrum

⟨ζk1ζk2⟩ = (2π)3P (k1)δ
(3) (k1 + k2) , (5.61)

⟨ζk1ζk2ζk3⟩ = (2π)3B(k1, k2, k3)δ
(3) (k1 + k2 + k3) . (5.62)
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Whenever the scale associated with curvature is much larger than length scales relevant to observations,

the physical effects of the former can be captured by an isotropic perturbation in a flat universe [103].

To see this, let expand the metric around the origin of coordinates, or equivalently to linear order in

K:

gij =
aK(t)2δij(
1 + 1

4Kx2
)2 ≃ a2Kδij

(
1− 1

2
Kx2

)
+O((Kx2)2) (5.63)

= a2δij

[
1 + 2

K

a

(
∂aK
∂K

)
K=0

− 1

2
Kx2

]
+O((Kx2)2 , (5.64)

where aK is the solution of the Friedmann equation in presence of spatial curvature while a is the

solution for a flat FLRW metric. We can re-interpret this metric in terms of the flat space metric with

a curvature perturbation

gij = a2flatδij(1 + 2ζ̃B) . (5.65)

There are two possible ways to do this8:

Option 1: aflat = aK ζ̃B = −1

4
Kx2 , (5.66)

Option 2: aflat = a ζ̃B = ζK(t)− 1

4
Kx2 , (5.67)

where we defined

ζK(t) ≡ K

a(t)

[
∂aK(t)

∂K

]
K=0

. (5.68)

Option 1 has the advantage that ζ̃B is simpler, but it has the awkward feature that the curvature effects

are partly in perturbations and partly in the background quantities, which mixes the perturbative

expansion with the K expansion. Option 2 instead has the advantage that ζ̃B is precisely a solution of

the Einstein equations in a flat universe, but the drawback is that it contains one more term. In the

following we will find it more convenient to work with Option 1. In words, it says that the spherical

perturbation in (5.66) is locally indistinguishable from a mean curvature K superimposed with a

change in the scale factor or equivalently in the Hubble parameter,9

8To avoid confusion, specific field configurations will be marked by a tilde, as in ζ̃B .
9H is the Hubble parameter in the absence of curvature, while HK is the Hubble parameter when curvature is present.
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HK → H

[
1 +

K

2a2(t)H2

]
. (5.69)

(This is valid for attractor scenarios, where superhorizon modes are approximately frozen.) Thus, if

we knew the (n + 1)-point function ⟨ζquζk1 . . . ζkn⟩ in the regime qu ≪ ki, we could recover the

leading order effect of curvature on the n-point function. We expect that order K corrections to the

power spectrum and to the bispectrum obtained through this method are in no way constrained by

soft theorems. This is because O(K) in the n-point function corresponds to O(q2u) in the (n+ 1)-pt

function, which is already a model-dependent effect. Hence, O(K) corrections will depend on the

details of inflationary theory, and might be enhanced even in single field scenarios.

In this section, we quote the result of [112] for the curvature correction to the power spectrum in

the framework of the EFT of inflation with small speed of sound. Then we study O(K) corrections

to the bispectrum in two cases: canonical, single field, slow roll inflation as well as the EFT of

inflation. Our argument follows closely the method of [112], and we compare our results to the O(K)

correction to the power spectrum derived therein. It must be noted that we work with Fourier modes

defined with respect to the coordinates and metric of the flat background, that is, when the curvature

is treated as a separate perturbation introduced on top of the flat reference space.

One caveat of our analysis is that we will be assuming a Bunch-Davies initial state in calculating

correlators. In a curved universe, the Euclidean vacuum instead gives a modified initial state (see for

example [144–146, 141]). The difference between these two initial states is non-perturbative in K

and therefore cannot be captured by the arguments in this section. We have performed a preliminary

investigation of the relative importance of the initial state modification in canonical inflation as

compared with the perturbative corrections using the analytical results of [143]. We found that the

non-perturbative terms give an effect that is numerically negligible in the final primordial power

spectrum for the parameters relevant to this work. This is to be expected as the deviation from

Bunch-Davies is non-perturbative in curvature, and consistency forces us to remain in the perturbative

regime. Because of this we will systematically neglect these corrections.

5.4.1 The power spectrum

The effect of spatial curvature to the power spectrum can be calculated at linear order in K by

summing up two physical effects: the presence of the ultra-long mode ζ̃B and a change in the Hubble

parameter.
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The effect of the ultra-long mode was computed to leading order in K in [112] by considering the

3-pt function (in the EFT of inflation) in the squeezed limit, as explained in the previous subsection.

The result is

∆ζ̃B
PK(k) = −Pflat(k)

19 + 6c3
8c2s

K

k2
, (5.70)

The effect of the change in Hubble parameter can be found from the familiar relation Pflat(k) =

H2
∗/(4ϵk

3). To leading order,

∆HPK(k) = Pflat(k)
K

k2
, (5.71)

so this effect is subdominant for small cs.

In addition to the above there is yet another effect of a more geometrical nature. When observations

of the sky are performed, some assumptions have to be made regarding the connection between position

space and Fourier space power spectra. While this correspondence is unambiguous in flat space (up to

constants of proportionality), in a spatially curved universe there exist multiple conventions that could

lead to slightly different Fourier space results.10 All the power spectra must give the same flat space

limit and their ratio is a purely geometrical quantity that can only depend on K and the momentum,

not on the physical quantities such as the EFT parameters and in particular cs. Thus, in general the

“geometrical” effects contribute

∆geom.PK(k) = Pflat(k)O(K/k2) , (5.72)

and are again subdominant for small cs. We will neglect both (5.71) and (5.72) in the analysis in Sec.

5.5.

In conclusion, to leading order in cs → 0 the only contributing term is δζ̃G . So to linear order in

K the power spectrum becomes

10As an example, consider flat Fourier modes, defined as the Fourier transform of perturbations on a flat reference
background:

ζflat
k =

∫
d3xe−ik·xζflat(x)

and compare this with the Fourier transform of perturbations on top of a curved background, with respect to the coordinate
system defined from the apparent distance to objects in a curved universe,

ζk =

∫
d3re−ik·rζ(r).

Because ζ(r) ̸≡ ζflat(x = r) (rather, there is a discrepancy of order Kx2), the two Fourier transforms are not equivalent.
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Figure 5.2: Three-point function diagrams for EFT of inflation. The ultra-long mode kU mocks the
effect of spatial curvature.

PK(k) = Ask
(ns−1)−3

(
1− 19 + 6c3

8c2s

K

k2

)
+O(Kc0s). (5.73)

5.4.2 Background curvature argument

Let us assume that K > 0, and later we can analytically continue our results to K < 0. Recall

from the discussion in the beginning of this section that we can trade curvature for the following

spherically-symmetric perturbation around flat space,

ζ̃B(t,x) = −1

4
Kx2 +O((Kx2)2) , (5.74)

plus a modification in the scale factor, i.e. aflat = aK . This implies that, for example, a three-point

function of ζ in a curved universe equals the same three-point function in the background of ζ̃B in a

flat universe (with a modified scale factor aK(t)). 11 , i.e.

⟨ζk1ζk2ζk3⟩K,HK = ⟨ζqζkζ−k⟩ζ̃B ,HK +O((Kx2)2), (5.75)

where correlators are assumed to be taken in flat space unless otherwise specified by the label “K”.

In the following we will keep implicit in all formulae that the scale factor should be aK and we will

come back to this issue at the end of this section. The configuration given by ζ̃B can be mimicked

by the long mode limit of the superposition of three orthonormal plane waves (all having the same

momentum magnitude |pa| =
√
K/2 for a = 1, 2, 3, and with p̂a.p̂b = δab) subtracted with an

inconsequential constant,

11Here we assume that the geometric effects stemming from the curvature of spatial slices are negligible with respect to
the enhanced effects originating from non-gaussianity, e.g. we still expand ζ in terms of plane waves and ignore that the
sum of spatial momenta does not vanish.
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ζ̃B(t,x) =

3∑
a=1

[cos(pa · x)− 1] +O((Kx2)2) . (5.76)

It can be easily seen that the expression on the RHS starts at order p2 and that it coincides with (5.74).

The three-point function on a slowly varying background ζB (inclusive of ζ̃B) is given by

⟨ζk1ζk2ζk3⟩ζB ∼= ⟨ζk1ζk2ζk3⟩+ ζB

[
∂

∂ζB
⟨ζk1ζk2ζk3⟩ζ̃B

]
ζB=0

(5.77)

+∂iζB

[
∂

∂(∂iζB)
⟨ζk1ζk2ζk3⟩ζB

]
ζB=0

+∂i∂jζB

[
∂

∂(∂i∂jζB)
⟨ζk1ζk2ζk3⟩ζB

]
ζB=0

+ . . . .

Therefore,

⟨ζk1ζk2ζk3⟩ζ̃B = ⟨ζk1ζk2ζk3⟩ −
3

2
Kδij

[
δ

δ(∂i∂jζB)
⟨ζk1ζk2ζk3⟩ζB

]
ζB=0

. (5.78)

For simplicity we drop [...]ζB=0 in the remainder. In order to find the last term in the expression above,

we consider the correlation between an ultra-long monochromatic mode, ζ̃p(t,x) = ζp(t) exp(ip · x),
and three short modes. Up to leading order in the gradients of the ultra-long mode, this trispectrum

can be simplified into

⟨ζpζ3⟩ = Pζ(p)

[
∂

∂ζB
⟨ζ3⟩ζB + ipi.

∂

∂(∂iζB)
⟨ζ3⟩ζB − pi pj

∂

∂(∂i∂j ζB)
⟨ζ3⟩ζB +O(p3)

]
(5.79)

= S.T. + Pζ(p)

[
−pi pj ∂

∂(∂i∂j ζB)
⟨ζ3⟩ζB +O(p3)

]
,

where “S.T.” stands for the O(p0) and O(p) parts of the correlator, which are fixed by soft theorems

[108]. Summing over three orthogonal p’s one finds 12

3∑
i=1

⟨ζpiζ3⟩ = S.T. + Pζ(p)δij

[
−p2 δ

δ(∂i∂j ζB)
⟨ζ3⟩ζB +O(p3)

]
. (5.80)

Equivalently, we can write

δij
δ

δ(∂i∂j ζB)
⟨ζ3⟩ζB = − lim

p→0

1

2

∂2

∂p2

3∑
i=1

[
P (p)−1⟨ζpiζ3⟩

]
. (5.81)

12Since we are interested in O(K) corrections, it is allowed to send p→ 0 although we had assumed p =
√
K/2.
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Finally, by putting together (5.75), (5.77) and (5.81) we find

⟨ζk1ζk2ζk3⟩K ∼= ⟨ζk1ζk2ζk3⟩0 +
3

2
K lim

p→0

1

2

∂2

∂p2

3∑
i=1

P (p)−1 [⟨ζpiζk1ζk2ζk3⟩] . (5.82)

5.4.3 Effects of curvature in the bispectrum: the EFT of inflation

The effective field theory (EFT) of inflation [147, 136] is the general theory of single-field fluctuations

around any FLRW spacetime. In place of the covariant scalar field ϕ, the action is expressed in terms

of the Goldstone mode of the broken time translation, defined through ϕ(t,x) = ϕ̄(t+ π) (where ϕ̄ is

the background of the scalar field). Asking π to non-linearly realize the temporal diffs and linearly

realize the spatial ones fixes the dynamics up to some arbitrary time dependent functions.

At sufficiently short distances, the physics of π decouples from the metric perturbations. In this

chapter, we will assume that the time dependence of all background quantities is sufficiently slow that

we can approximate them as constant13. The EFT action in the decoupling limit up to cubic order in

slow-roll corrections and up to quartic order in the field becomes

Sπ =

∫
d4x

√−g
ϵH2M2

p

c2s

[(
π̇2 − c2s

(∇π)2
a2

)
+ Cπ̇(∇π)2 π̇

(∇π)2
a2

(5.83)

+Cπ̇3 π̇
3 + C(∇π)4

1

a4
(∇π)4 + Cπ̇2(∇π)2

1

a2
π̇2(∇π)2 + Cπ̇4 π̇4

]
.

As for the cubic operators, the coefficient Cπ̇(∇π)2 is entirely determined by demanding the non-linear

realization of Lorentz boosts

Cπ̇(∇π)2 = c2s − 1 , (5.84)

while Cπ̇3 is a free time-dependent function and is conventionally parametrised as

Cπ̇3 = (1− c2s)

(
1 +

2

3

c3
c2s

)
. (5.85)

As for the quartic interactions, invariance under boosts relates two of the coefficients to the cubic

operators, namely

C(∇π)4 = −Cπ̇(∇π)2 , Cπ̇2(∇π)2 = −3

2
(Cπ̇(∇π)2 − Cπ̇3) , (5.86)

13Notice that this is not the same as assuming a shift symmetry, as discussed in details in [121].
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whereas, Cπ̇4 is a free coefficient. Inasmuch as the π̇4 operator is unconstrained by the constraints on

the bispectrum, it is allowed to be much bigger than π̇2(∂iπ)2 and (∂iπ)
4 [148] . For this reason, in

the remainder we only keep the contribution of π̇4 to the trispectrum.

Now we turn to computing the bispectrum of ζ in the EFT of inflation to leading order in K and

slow-roll corrections by using the method explained in 5.4.2. The trispectrum generated by operators

in (5.84) was calculated in [139]. The cubic operators contribute to the trispectrum via four types

of exchange diagrams depicted in Figure 5.3. Below, we separately give the bispectrum generated

by individual Feynmann diagrams in Figure 5.3, namely Bπ̇3 π̇3 , corresponding to the exchange

diagram with two π̇3 vertices, Bπ̇3 π̇(∇π)2 for the diagram with one π̇3 and one π̇(∇π)2 vertex, and

finally Bπ̇(∇π)2 π̇(∇π)2 representing the diagram with two π̇(∇π)2 vertices. Since the final answer

is symmetric under permutations of momenta, we give the expressions in terms of the elementary

symmetric polynomials, defined by

e1 =

3∑
i=1

ki , e2 =
∑
i<j

ki kj , e3 =

3∏
i=1

ki . (5.87)

We find

Bπ̇3 π̇3 = 18

(
H2

4ϵcsM2
p

)2
(

3∏
i=1

1

2k3i

)
K

c4s e
5
1

(−1 + c2s)
2(2c3 + 3c2s)

2 (5.88)

×
(
−2e3e

3
1 + e22e

2
1 + 3e2e3e1 + 76e23

)
,

Bπ̇3 π̇(∇π)2 =
3

2

(
H2

4ϵcsM2
p

)2
(

3∏
i=1

1

2k3i

)
K

c4s e
2
3 e

5
1

(−1 + c2s)
2(2c3 + 3c2s)× (5.89)[

6e3e
9
1 − 3e22e

8
1 − 18e2e3e

7
1 + 9

(
e32 + 5e23

)
e61 − 57e22e3e

5
1 − 1184e43

+12e2
(
e32 + e23

)
e41 +4

(
3e32e3 − 107e33

)
e31 + 232e22e

2
3e

2
1 + 672e2e

3
3e1
]
,

Bπ̇(∇π)2 π̇(∇π)2 =
3

2

(
H2

4ϵcsM2
p

)2
(

3∏
i=1

1

2k3i

)
K

c4s e
5
1 e

2
3

× (5.90)[
19
(
2e3e

4
1 − e22e

3
1 − 6e2e3e

2
1 + 3e32e1 − 19e22e3

)
e51 + 405e23e

6
1 − (44e2e

2
3 − 76e42)e

4
1

+4(19e3e
3
2 + 253e33)e

3
1 − 452e22e

2
3e

2
1 − 1508e2e

3
3e1 + 2256e43

]
.

The only contact term that we consider is generated via the operator π̇4, and the resulting bispectrum
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is 14

Bπ̇4 = 3× 36× 96

(
H2

4ϵcsM2
p

)2
(

3∏
i=1

1

2k3i

)
K

[
Cπ̇4 − 9

4

(
1 +

2

3

c3
c2s

)2
]
e23
e51
. (5.91)

Squeezed limit in the EFT of inflation

Let us compute the squeezed limit of the curvature corrections to the bispectrum in a curved universe,

in the framework of the EFT of inflation. In particular, we want to find the dominant O(K) corrections

to the bispectrum in the regime cs ≪ 1 in terms of the two EFT quantities cs and c3 that parameterize

the 3-point vertices. This can be done by taking the squeezed limit of (5.88)-(5.90). For a more

explicit derivation we can evaluate the trispectrum

⟨ζquζql
ζksζks′ ⟩ (5.92)

in the double squeezed limit

qu ≪ ql ≪ ks ∼ ks′ , (5.93)

and use the background curvature argument to find the O(K) term in the bispectrum. We leave the

details of the calculation to Appendix 5.7.3. In conclusion, we find the following curvature corrections

to the squeezed EFT bispectrum:

B(ql, |ks − 1
2ql|, |ks + 1

2ql|)
Pζ(ql)Pζ(ks)

∼ (1− ns) +
c2s − 1

c2s

[(
2 +

1

2
c3 +

3

4
c2s

)
− 5

4
(q̂l · k̂s)2

]
q2l
k2s

(5.94)

+
3

2
c−4
s

[(
3

4
c23 +

43

8
c3 +

19

2

)
−
(
15

8
c3 +

95

16

)
(q̂l · k̂s)2

]
K

k2s
,

where the first line is the flat-space result obeying Maldacena’s consistency relation and the second

line is the curvature correction. Notice that there is an interesting relation between the leading-order

curvature correction in the squeezed bispectrum and in the power spectrum. If we average the second

line of (5.94) over the angle θ between q̂l and k̂s, the term (q̂l · k̂s)2 reduces to a factor of 1/3 and

we find

14Notice that in the interaction Hamiltonian the coefficient of the π̇4 term differs from the one in the original Lagrangian
due to the correction that the conjugate momentum of π receives from the cubic term π̇3.
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∫
d cos θ∆ζ̃B

B = 2
(
∆ζ̃B

P
)2

, (5.95)

where ∆ζ̃B
P is the leading-order curvature correction to the power spectrum discussed around (5.70)

and ∆ζ̃B
B is the second line of (5.94). This can be understood in various ways. For example, recall

that from the wavefunction of the universe ψ, which takes the form

ψ = exp

[
−

∞∑
n=2

∫
1

n!
ψnζ

n

]
, (5.96)

we can derive the following expressions for the correlators

P (k) =
1

2Reψ2(k)
, (5.97)

B(qu, ks, ks′) = −1

4

Reψ3(qu, ks, ks′)

Reψ2(qu)Reψ2(ks)Reψ2(ks′)
, (5.98)

T (q⃗u, q⃗l, k⃗s, k⃗s′) = − 1

8Reψ2(qu)Reψ2(ql)Reψ2(ks)Reψ2(ks′)
×
[
Reψ4(q⃗u, q⃗l, k⃗s, k⃗s′)+ (5.99)

−Reψ3(qu, ql, kI)Reψ3(ks, ks′ , kI)

Reψ2(kI)
+ 2 perm’s

]
, (5.100)

where k⃗I = q⃗u + q⃗l. These expressions are valid for any momenta, but we have chosen the momenta

to match the derivation of curvature effects from flat-universe correlators. Because we found that the

flat-universe four-point interaction does not contribute to curvature effects in the squeezed bispectrum,

we can neglect ψ4 above and we see that T is related to B2. Also, only the permutation displayed

contributes in the relevant limit qu ≪ ql ≪ ks ∼ k′s and kI ≃ ql. Following the strategy outlined

earlier in this section, we can extract from the flat universe T the curvature correction to B in a curved

universe by averaging over the direction of q⃗u. Upon doing this, we see that one of the ψ3 on the

right-hand side of (5.100), which can be traded for B, gets also angle-averaged and becomes ∆ζ̃B
P .

To get to (5.95) we need to also angle average over q⃗l, which transforms the second ψ3 into a second

factor of ∆ζ̃B
P .

5.4.4 Effects of curvature in the bispectrum: canonical, single-field inflation

We now study Einstein gravity coupled to a single scalar inflaton field, which gives a simple action

S =
1

2

∫
d4x

√−g
(
R− (∇ϕ)2 − 2V (ϕ)

)
. (5.101)
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We would like to compute O(K) contributions to the bispectrum ⟨ζqlζksζ−ks−ql⟩′ in the soft limit

ql ≪ ks, working to leading order in the slow-roll parameters. According to (5.82), we need to find

the O(p2) term15 in P (p)−1⟨ζpζqζkζk′⟩ and sum over directions of p.

For the theory with the action (5.101), the following diagrams contribute to the scalar trispectrum:

• the contact interaction [137],

• the scalar-exchange diagram,

• the graviton-exchange diagram [138].

The scalar-exchange diagram is subleading in the slow-roll parameters [138]. In Appendix 5.7.2, we

show that the graviton exchange contribution vanishes identically after summing over the directions

of p. In the same appendix we show that the contact contribution starts at order p2 - hence we avoid

the ambiguities described in footnote 15 - and we compute the relevant coefficient.

The final result for small K, in the regime ql ≪ ks, to leading order in slow-roll parameters, is

⟨ζqlζksζ−ks⟩′K ∼= P (ql)P (ks)

[
(1− ns) +O(ql/ks) +

27

16
ϵ
K

k2s

(
14(k̂s · q̂l)2 − 13

)]
. (5.102)

The power spectra in the above expression are the flat power spectra, i.e. those evaluated in the

absence of curvature. The O(ql/ks) terms are fixed by the flat-space soft theorem and are not directly

affected by K. Note that in canonical single-field inflation, the O(K) correction to the squeezed

bispectrum is strongly suppressed by the slow-roll parameter ϵ.

It is arguably more elegant to express the right hand side in terms of curved universe quantities,

so rather than use the flat universe power spectrum, we should use PK(k) (the curved-universe

power spectrum evaluated for the canonical single-field scenario). The slow-roll parameter ϵ can be

neglected relative to the scalar tilt (1− ns) because current data already imposes the small hierarchy

ϵ/(1 − ns) < 1/6 (which in turn implies conformal invariance of all correlators [90]), we have

15Note that in general, Taylor expansion in p might be ambiguous, at least at first sight. On one hand, we can impose a
constraint k′ = −k− q− p and then write expansion coefficients as functions of q and k. On the other hand - just as an
example - we can define s := k+ 1

2
p, impose k′ = −s− q− 1

2
p and then write expansion coefficients as functions of q

and s. The two results will generically differ at order p2 provided that the lower order Taylor coefficients (namely, O(p0)
and O(p1)) do not vanish. Nonetheless, it turns out that in the case under consideration ambiguities can be neglected, as we
will show in Appendix 5.7.2.
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PK(k) = P (k)
(
1− K

k2

)
and

⟨ζql
ζksζ−ks⟩′K ∼= PK(ql)PK(ks)

[
(1− ns) +O(ql/ks) + (1− ns)

K

q2l

]
. (5.103)

5.4.5 An explanation of the scaling in the squeezed bispectrum

In this section, we give a heuristic derivation of the cs dependence in the squeezed bispectrum

B(ql, ks, k
′
s), ql ≪ ks ∼ k′s. We wish to compare the behaviour of the O(q2l /k

2
s) terms to that of the

leading curvature terms O(K/k2s), mainly to demonstrate how the latter effect is enhanced (relative

to the former) by the small speed of sound.

We begin by summarizing the size of the standard, flat-universe corrections of order q2l /k
2
s in the

EFT of inflation [112]:

⟨ζqlζks−ql/2ζks+ql/2⟩ ∼ P (ql)P (ks)
q2l
k2s

c2s − 1

c2s

[
(2 +

1

2
c3 +

3

4
c2s)−

5

4
(q̂l · k̂s)2

]
+ . . . . (5.104)

We note the c−2
s enhancement for cs → 0. This scaling can actually be understood without performing

the full calculation by tracking the powers of cs.

After re-introducing the term enforced by Maldacena’s consistency relation, we schematically

have for q ≪ k

⟨ζqlζks−ql/2ζks+ql/2⟩ ∼ PuPl

[
(1− ns) +O(1)c−2

s

q2u
q2l

]
. (5.105)

Let us now discuss the O(K) correction to the squeezed bispectrum, which might arise from the

double soft limit of the trispectrum according to formula (5.82). We are only concerned with the

double soft limit at 0th, 1st and 2nd order in the ultra-long momentum qu. We expect that for a small

speed of sound cs, the O(q2u/k
2
s) contribution to the double-squeezed trispectrum will be enhanced by

some negative powers of cs.

Here we give a transparent argument for the scaling of the O(q2u/k
2
s) term and reproduce that

scaling by tracing the origin of the term to concrete diagrams. At tree-level, the trispectrum receives

three contributions: scalar exchange, graviton exchange and contact interaction. Let us discuss them

in turn.

Scalar exchange This diagram can have poles in the total “energy” kt =
∑4

a=1 ka and in the

momentum kI of the exchanged scalar. The largest contribution comes from exchanging the softest
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Figure 5.3: The scalar exchange and contact diagrams for the four-point function in the EFT of
inflation. kU corresponds to the ultra-long mode that mimics the effect of spatial curvature.

possible particles, corresponding to the s-channel with qu, ql coming in, merging into a scalar

propagator kI ∼ ql and coming out as k⃗s ∼ −k⃗′s. There are two cubic interactions within the diagram,

and for each one we get

qu + ql → kI ∼ ql ⇒ PuPl

[
(1− ns) +

1− c2s
c2s

q2u
q2l

]
, (5.106)

ks + ks → kI ∼ ql ⇒ PsPl

[
(1− ns) +

1− c2s
c2s

q2l
k2s

]
. (5.107)

The resulting trispectrum is (notice that Pl comes only once as it is in the internal “propagator” that

connects the two vertices)

T ∼ PuPlPs

[
(1− ns)

2 +

(
1− c2s

)
(1− ns)

c2s

(
q2u
q2l

+
q2l
k2s

)
+

1− c2s
c4s

q2u
k2s

]
. (5.108)

Graviton exchange While in general graviton exchange does contribute to the squeezed bispectrum,

we will show that the contribution always vanishes if we sum over the directions of ku, as we need to

do if we want to interpret the ultra-long mode as a spatial curvature.

We have already seen that the graviton exchange contribution to the trispectrum vanishes after

summing over directions of the ultra-long mode in the case of canonical single-field inflation, but this

fact holds more generally. Consider the cubic vertex in the graviton-exchange diagram. This vertex

is of the form π2γ, possibly with some derivatives. Now, π is a scalar, but γ ≡ γij is a transverse

traceless tensor. We need to contract the i, j indices with derivatives ∂i, ∂j , and since γij is transverse,

the only lowest order self-consistent operator, up to total derivatives, is (∂iπ)(∂jπ)γij . (Higher-order
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operators can be constructed by acting with additional time derivatives or pairs of spatial derivatives.)

The γij field operator gives rise to a polarization tensor ϵsij(k) in the correlator and ∂i gives rise to

momentum ki. The vertex factor of our lowest-order operator when one of the π legs is the ultra-long

mode will be thus proportional to

qikjϵ
s
ij(q+ k) = −qiqjϵsij(q+ k) , (5.109)

which can be shown to always vanish after summing over three orthogonal directions of q.

Contact interaction The contact interaction has only poles in kt, which goes as kt ∼ ks + k′s in the

double squeezed limit. One cannot have any 1/ql enhancement, i.e. the contact interaction can never

give any O(K/q2l ) contribution to the squeezed bispectrum.

This interaction might be universal or model dependent, as in the EFT of inflation. The universal

part must obey a soft theorem

T grav ∼ PuPlPs(1− ns)

[
1 +

q2u
k2s

]
. . . (5.110)

where (1 − ns) is a proxy for slow-roll suppressed terms that arise when performing a scaling

transformation on the bispectrum. Note the absence of q2u/q
2
l terms, due to the fact that there can be

no poles in the long momentum ql.

The model-dependent part on the other hand, can contribute to the squeezed limit

TEFT ∼ CPuPlPs
q2u
k2s
, (5.111)

with some overall amplitude C that can be large (C ≫ (1− ns)). In the squeezed bispectrum, this

leads to

B ∼ CPlPs
q2uζu
k2s

∼ CPlPs
K

k2s
. (5.112)

While this is the general expectation, single field inflation is an exception. In this case, as we

mentioned before, it is only the operator π̇4 that can give a large trispectrum, and the result is

T ∼= 1

q1q2q3q4k5t
, (5.113)
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which does not have the form in (5.111), but rather in the double squeezed limit it behaves as

TEFT ∼ CPuPlPs
q2u
k2s

q2l
k2s
. (5.114)

We quote a more explicit result [139] in Appendix 5.7.3. The effect on the bispectrum is then to

give a very small correction in the soft limit:

B ∼ CPlPs
K

k2s

q2l
k2s
, (5.115)

which does not violate Maldacena’s consistency relation.

5.5 Observational constraints on curvature

In this section, we discuss the possibility of constraining or detecting spatial curvature through

measurements of the O(K/c2s) corrections to the primordial power spectrum and bispectrum. In

the case of slow-roll, canonical single-field inflation, the corrections are O(K/k2s) and suppressed

by a factor of (1− ns); it is very unlikely that we could detect this signal in the conceivable future.

However, in the EFT of inflation with a small speed of sound, cs ≪ 1, curvature effects can potentially

be observable. We will estimate how large curvature corrections can be given the current separate

constraints on curvature and primordial non-Gaussianity.

Our treatment of curvature corrections is valid at linear order in K. When curvature corrections

become large, we can no longer neglect higher-order effects in K/c2s . We will find that current bounds

allow for a large magnitude of the O(K) corrections. This means that the curvature effects might

be significant and their comparison with observation could provide further constraints on curvature

and the speed of sound. On the other hand, we will find that for the power spectrum one needs to go

beyond the analysis in this chapter and perform a non-perturbative calculation in K/c2s.

5.5.1 Constraints from the power spectrum

As we saw in Sec. 5.4.1, the curvature corrections to the power spectrum are enhanced in the presence

of large non-Gaussianity. Before putting bounds on these corrections, we derive here the current

bounds coming from the CMB bispectrum on non-Gaussian parameters and the related coefficients in

the EFT of inflation. The EFT of inflation (in a flat universe) predicts the following equilateral and
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Figure 5.4: 68%, 95%, and 99.7% con-
fidence regions in the parameter space
(fequilNL , forthNL ).

Figure 5.5: 68%, 95%, and 99.7% confi-
dence regions in the single-field inflation
parameter space (cs, c3), obtained from
Figure 5.4 via the change of variables
in Eq. (5.116) - (5.117), while allowing
cs > 1.

orthogonal non-Gaussianities in the bispectrum [149]:

fequilNL =
(
c−2
s − 1

) [
−0.275− 0.0780

(
c2s + 2/3c3

)]
, (5.116)

forthNL =
(
c−2
s − 1

) [
0.0159 + 0.0167

(
c2s + 2/3c3

)]
. (5.117)

The Planck collaboration [149] found (for T+E channels, with lensing not substracted):

fequilNL = −25± 47, forthNL = −47± 24. (5.118)

We use this observational data to find and plot the 68%, 95% and 99.7% confidence regions for fequilNL

and forthNL under a simplifying assumption that the fNL covariance matrix is diagonal, which is a

good approximation (Figure 5.4). Next, we use (5.116) - (5.117) to map the confidence regions to

the c ≡ (cs, c3) parameter space (Figure 5.5), by noting that for any region A in the parameter space,

P(c(fNL) ∈ c(A)) = P(fNL ∈ A) (we allow cs > 1 for sake of simplicity; in fact, most of the

relevant confidence regions do lie within cs < 1). We see that the bispectrum likelihood peaks in the

region 0.02 < cs < 0.1, c3 ∼ O(1).

Then we would like to constrain the curvature-induced modification of the power spectrum, given
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Figure 5.6: The red, circular areas represent the 68%, 95% and 99.7% probability regions of the joint
PDF of ΩK and the non-gaussianity parameter (19 + 6c3)/(8c

2
s), derived from the Planck 2018 data.

The green, hyperbolic areas show the 68%, 95% and 99.7% probability regions constrained by the
measurements of Cl=2,3,4. Finally, the black contour in the centre of the plot shows the approximate
region of validity of the linear theory used in this work.

in (5.73), based on the measurements of the CMB temperature angular power spectrum. Let us begin

by estimating the signal-to-noise ratio in CTT
l ’s,

(S/N)2 ≡

√√√√∑
l

(C th
l − Cfid

l )2

(∆Cl)2
, (5.119)

where C th
l and Cfid

l are the temperature angular power spectrum derived from (5.73) for K ̸= 0 and

K = 0, respectively, and ∆Cl is the cosmic variance in Cl.

As could be anticipated from the scaling of (5.73), (S/N)2 is dominated by the low-ℓ multipoles,

where we can use the Sachs-Wolfe transfer function to estimate C th
l .16 We find

(S/N)2 ∼ 3.2× ΩK

(
19 + 6cs

8cs

) √∑
ℓ>1

4l + 2

9(l2 + l − 2)2
∼ ΩK

(
19 + 6cs

8cs

)
. (5.120)

16Since the dipole (ℓ = 1) is degenerate with the Earth peculiar motion, we discard it. We also neglect slow-roll
suppressed terms in our estimation of the signal-to-noise ratio.
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Since more than 90% of signal-to-noise ratio is contained in l = 2, 3 and 4, we use the latest

measurements17 of C2,3,4 [150] and find

ΩK(19 + 6c3)

8c2s
= −0.78 +1.9

−0.6 . (5.121)

In Figure 5.6 we compare this result (green shaded regions) with Planck’s latest bounds on ΩK

and non-Gaussianities18 (red shaded region, where we combined the two independent constraints).

Naively, this plot seems to show that within the red confidence region allowed by Planck, there are

regions that are excluded by the power spectrum constraints on curvature corrections. However, we

should notice that the curvature corrections to the power spectrum in (5.73) are derived only at linear

order in K and so they should be trusted as long as

|ΩK(19 + 6c3)|
8c2s

≪ 1 . (5.122)

To guide the eye, in Figure 5.6 we plot a black line where this parameter takes the value 1/2. From

the plot it is clear that the validity of our theoretical calculation is slightly more constraining than

the CMB temperature power spectrum. In other words, current power spectrum data allows for a

curvature correction that goes beyond the linear regime. In order to improve upon Planck’s limits on

the combination of parameters in (5.121), one would need to compute the power spectrum to higher

order in K/c2s . This is beyond the scope of this work but it is certainly interesting for future research.

5.5.2 Forecast of constraints from the bispectrum

In this subsection, we revisit the results of Section 5.4 and estimate the magnitude of the dominant

O(K) corrections to the bispectrum given the current constraints on cs and c3.

Squeezed limit

Recall the leading-order behaviour of the bispectrum expressed in terms of flat Fourier modes, (5.94),

in the regime ql ≪ ks, cs ≪ 1 and to linear order in K:

17Notice that we use the flat universe prediction for the transfer functions used to compute Cl as opposed to the transfer
functions in a curved universe. The difference is only of order ΩK , much smaller than the ΩK/c

2
s effect that we are after

here.
18For cs ≪ 1, the linear combination αfeqNL + βforthNL is an unbiased estimator for z = 3.2(19+6c3)

8c2s
(for α =

−20.78, β = 118.5).
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B(ql, |ks − 1
2ql|, |ks + 1

2ql|)
Pζ(ql)Pζ(ks)

∼ (1− ns) +
c2s − 1

c2s

[
(2 +

1

2
c3 +

3

4
c2s)−

5

4
(q̂l · k̂s)2

]
q2l
k2s

+
[
BK1 +BK2(q̂l · k̂s)2

] K
k2s
, (5.123)

where

BK1 ≡ 3

16

(
6c23 + 43c3 + 76

)
c−4
s =

3

16
(6c3 + 19) (c3 + 4) c−4

s , (5.124)

BK2 ≡ −15

32
(6c3 + 19) c−4

s . (5.125)

to leading order in slow-roll coefficients and in cs. The presence of an overall factor of (6c3 + 19)

in each of the terms is expected, since it arises from the left-hand vertices (those connected to the

ultralong mode) in Figure 5.3. In the above formula, we neglected contributions due to the contact

interactions, originating from terms of the form π̇4 in the EFT action, because they contribute at

subleading order, namely O(Kq2l /k
4
s).

The magnitude of the dominant O(K) correction depends only on the values of the EFT coeffi-

cients cs and c3, which have been partially constrained (see Figure 5.5 and 5.6). We would like to

answer two questions:

• Are the coefficients BK1 and BK2 sufficiently large for the associated O(K) effect to have a

significant signal-to-noise ratio?

• Are the coefficients BK1 and BK2 sufficiently large for the curvature term (O(K/k2s)) to be at

least comparable to the flat space correction (O(q2l /k
2
s))?

To answer the first question, we consider the ratios between the curvature signal and the flat space

O(q2l /k
2
s) contribution to the squeezed limit:

R1 :=
K

q2l

BK1(
1− c−2

s

) (
2 + 1

2c3 +
3
4c

2
s

) , (5.126)

R2 := −K
q2l

BK2
5
4

(
1− c−2

s

) . (5.127)

In fact, to leading order in c−1
s we have

R1 = R2 =
3

8

6c3 + 19

c2s

K

q2l
, (5.128)
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Figure 5.7: 68%, 95%, and 99.7% confidence regions for (BK1, BK2), obtained from
Figure 5.5 via change of variables (log scale). Both axes have been snipped so as to show
the entire region of interest in a single plot.

so the ratios are identical to the power spectrum effect. We conclude that, within the validity of

linear-order treatment of curvature, the curvature corrections cannot be larger than the flat-space

corrections (O(q2l /k
2
s)) to the squeezed limit. It should also be noted that these two corrections have

different scaling and so they are in principle distinguishable.

To answer the second question, we map the constraints (confidence regions) for cs and c3 obtained

from Planck bispectrum data to the constraints (confidence regions) for BK1 and BK2.19 Figure

5.7 shows the approximate 68%, 95% and 99.7% confidence regions for (BK1, BK2), obtained by

mapping the confidence region from the (cs, c3) parameter space. We see that the magnitude of the

coefficients is bounded, and an order-of-magnitude estimate is |BK1,2| ≲ 106 ∼ 107. We can then

give an upper bound to the signal-to-noise ratio of the squeezed component of the O(K) correction

to the bispectrum. For the estimate, we will take the maximal value consistent with the constraints,

BK1,2 = 107, and |ΩK | = 10−3. We obtain

(
S

N

)
squeezed

≃

√√√√∫ ∞

H0

dql ql

∫ ∞

kmin
s

dks

∫ 1

−1
d cos θ

B2
K1,K2P

2
ζ (ql)P

2
ζ (ks)

Pζ(ql)P
2
ζ (ks)

( |K|
k2s

)2

(5.129)

19It is convenient that the map is one-to-one.
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Figure 5.8: The posterior probability distribution function (unnormalized) of the
sign(bK,equil) log10(|bK,equil|) parameter, derived from the Planck bispectrum data, assuming
a flat prior on (f

equil
NL , f

orth
NL ). Blue line shows the pdf for bK,equil > 0 while the red line shows the pdf

for bK,equil < 0.

∼ |BK1,K2ΩK,0|∆ζ

(
H0

kmin
s

)3/2

≪ 107 · 10−3 · 10−5 ∼ 0.1, (5.130)

where kmin
s is the smallest ks we want to allow in the squeezed limit kmin

s ≫ ql ≥ H0. Notice that

we didn’t impose the requirement that the linear term in K is smaller than the zeroth order term. We

conclude that, accounting for current bounds, the curvature corrections to the squeezed bispectrum

are too small to be detected, even if we were able to extrapolate the leading-order corrections beyond

its regime of validity.

Equilateral configuration

Linear curvature correction to the bispectrum is suppressed by k−2
s in the squeezed limit, so we may

hope to obtain a larger signature if we consider an equilateral configuration of the momenta. We use

the same background-curvature argument as in Section 5.4. We need to consider the trispectrum in

the limit where one of the modes becomes very long, while the other three form an equilateral shape,

qu ≪ k2 = k3 = k4 ≡ k:

⟨ζquζk2ζk3ζk4⟩ = ⟨ζquζk2ζk3ζk4⟩ SE + ⟨ζquζk2ζk3ζk4⟩GE + ⟨ζquζk2ζk3ζk4⟩ CI . (5.131)
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The graviton exchange does not contribute to the bispectrum correction. The scalar exchange and

contact interaction diagrams will generically both lead to a significant O(K/k2) effect.

The scalar-exchange diagrams give, to leading order in cs:

B(k, k, k)K,SE = Pζ(k)
2

[
65

6

(
1 +

2

3

c3
c2s

)2

+
5321

432

(
1 +

2

3

c3
c2s

)
c−2
s +

4747

216
c−4
s

]
× K

k2
.

(5.132)

The contact interactions give, to leading order in cs:

B(k, k, k)K,CI =
16K

3k2
Pζ(k)

2

[
Cπ̇4 − 9

4

(
1 +

2

3

c3
c2s

)2
]
. (5.133)

We first focus on the enhancement that cubic interactions induce by neglecting the Cπ̇4 coefficient.

In this case, the curvature correction to the bispectrum in the equilateral configuration becomes

B(k, k, k)K ≈ Pζ(k)
2
(
−0.519c23 + 16.42c3 + 21.98

)
c−4
s × K

k2
. (5.134)

Let

bK,equil :=
(
−0.519c23 + 16.42c3 + 21.98

)
c−4
s . (5.135)

Assuming a uniform prior for the equilateral and orthogonal non-Gaussianities f equil
NL and forthNL in the

flat-universe approximation and working in the limit cs ≪ 1, we find the posterior pdf for bK,equil by

mapping the corresponding pdf for the non-Gaussianities and marginalizing over c3. The posterior pdf

for bK,equil is shown on Figure 5.8. We see that bK,equil ∼ 108 is still allowed by current constraints.

Let us switch off the cubic terms and consider the contribution of the quartic term π̇4 to the

equilateral bispectrum,

BK,CI(k, k, k)

P 2
ζ (k)

∼ 16Cπ̇4

3

K

k2
. (5.136)

The Planck observational constraint on the trispectrum [149] implies the following rough upper bound

on the coefficient in front of K/k2s ,

16

3
|Cπ̇4 | < 107 . (5.137)
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This is slightly weaker than the maximum size allowed for bK,equil and so it can be neglected for an

order of magnitude estimate. Let us now derive a rough upper bound on the signal-to-noise ratio for

measuring spatial curvature in the 3D bispectrum of ζ as follows:

(
S

N

)
equil.

≃

√√√√∫ ∞

H0

dk k2
b2K,equilP

4
ζ (k)

P 3
ζ (k)

( |K|
k2

)2

(5.138)

∼ |bK,equilΩK,0|∆ζ . (5.139)

Notice that the integral in dk is strongly supported on the largest observable scales, k = H0, and so it

is insensitive to the UV cutoff in k, which we have taken to infinity for simplicity. If we naively used

|bK,equil| = 108, a proxy for the largest value allowed by the current constraints depicted in Figure

5.8, and |ΩK,0| = 10−3, we would get that the signal is barely detectable S/N ∼ 108−3−5 = 1.

From this estimate we conclude that the corrections to the equilateral configurations are unlikely to

be detectable even if we extrapolate beyond the validity of the linear-order treatment in K. On the

other hand, if we insist that the curvature correction is smaller than the K0 term, then we can at most

take |bK,equilΩK,0| ∼ f
eq,ort
NL ∼ 102. We then find a very small signal-to-noise ratio, S/N ∼ 10−3.

The intuitive reason why the curvature corrections are so hard to detect is that, although they can

be very large for the largest observable scales, the non-scale invariant signal drops very quickly

on shorter scales and the signal-to-noise ratio saturates with just a few multipoles. Conversely, the

traditional non-Gaussianity such as equilateral and orthogonal shapes are scale invariant and they can

be constrained by all Bl1,l2,l3 .

5.6 Discussion and conclusion

In this work, we have discussed the effects that spatial curvature induces in primordial correlators, at

linear order. As explained in Figure 6.1, these effects are parameterised by ΩK/c
2
s and so could be

large if cs was small during inflation or equivalently if perturbations interacted more strongly. We have

shown that in the presence of curvature, the soft limit of the bispectrum acquires model-dependent

corrections that deviate from Maldacena’s consistency relation in flat space. More generally, we

have argued that residual diffeomorphisms are separated from the spectrum of physical perturbations

by a gap of order |K| and so standard soft theorems should be violated at linear order in curvature.

We have furthermore studied how large these corrections can be both in the power spectrum and in
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the bispectrum, also going beyond the squeezed limit. We have found that in the power spectrum,

constraints from the CMB are close to but slightly weaker than the validity of our linear order treatment

of curvature. For the bispectrum on the other hand, the signal-to-noise for these corrections is always

smaller than one, even assuming we had access to a full 3D map of the primordial correlators to the

cosmic variance limit.

There are a few avenues for future research. First, as discussed in Sec. 5.5.1, we could not harvest

the full constraining power of the CMB because our theoretical prediction was limited to linear-order

in K/c2s, in which regime the corrections to the temperature angular power spectrum are slightly

smaller than the experimental bound. It would therefore be very interesting to compute the power

spectrum of primordial perturbations with small cs in a curved universe to all orders in K and then

compare the prediction again with the lowest CMB multipoles. Such calculation was performed for

cs = 1 in [145, 146, 143]. In that work, the authors also accounted for the initial state dictated by the

Euclidean continuation for a bubble nucleation event, that is different from the Bunch-Davies state we

have used in this work. The difference is non perturbative in K and our preliminary analysis shows

that it might be safe to neglect this effect, but a more detailed study should be performed. Second, it

would also be interesting to use the polarisation of the CMB and analyse CEEl and CTEl to improve

the constraints on curvature corrections to the power spectrum. Because polarisation is so small on

Hubble scales, we do not expect a large improvement from this additional data. In fact, it seems likely

that CEEl will give a negligible improvement because the error bars on the first few l’s are so large,

while CTEl might improve the bounds by a few tens of percent, after the covariance has been taken

into account. Third, one might extend our analysis of the CMB power spectrum to the bispectrum,

including both temperature and polarisation but one should be aware that our rough estimate for the

signal-to-noise ratio in the bispectrum is much smaller than one within the regime of validity of the

linear theory; even going beyond this regime, the ratio is at most O(1) for the largest allowed values

of parameters. Finally, in this work we have focussed on single-field inflation because of our interest

in discussing the squeezed limit consistency relation. But one could investigate curvature effects in

multifield inflation, where there is more room for producing a large signal.
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5.7 Appendices

5.7.1 Perturbations around FLRW

Here we collect useful formulas on the kinematics of FLRW spacetimes. The non-vanishing Christoffel

symbols in the coordinates used in (5.9) are

Γ0
ij = aȧg̃ij , (5.140)

Γi0i = H δij ,

Γkij =
1

2
Kf

(
xkδij − 2x(iδj)k

)
.

On spatial sections, the Laplacian operator acting on scalars is

∇2 S =
1

f2

(
∂i∂i S − 1

2
K f xi∂i S

)
. (5.141)

The isometry group of a curved FLRW spacetime is SO(3,1) if it is open, and SO(4) if it is closed.

The Killing vectors are

Ti = f(2f − 1)ci +
K

2
f2 cjx

j xi , (5.142)

Ri = f2ωijx
j , ω(ij) = 0 .

Sometimes the Ti’s are called quasi-translations, i.e. they become ordinary spatial translations in flat

space, while the Ri’s form rotations.

The Scalar-Vector-Tensor Decomposition

The scalar-vector-tensor decomposition of a tensor field living on a constant curvature manifold with

the metric

ds2 = f2(Kx2) dx · dx = f2(Kr2)(dr2 + r2dΩ2), (5.143)

is an old topic of interest in differential geometry. Here we briefly review the decomposition of a

tensor on a sphere or a hyperboloid, along the lines of [151]. We would like to determine under what

condition the Poisson equation,
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∇2Φ = J(x) , (5.144)

admits a unique solution Φ for any given J . If two solutions existed, their difference would solve the

Laplace equation, namely

∇2Φ = 0 . (5.145)

Multiplying both sides with Φ and integrating over the whole space, one finds

−
∫
M

√
g d3x (∇iΦ)

2 +

∫
∂M

√
h dθ dϕΦni∇iΦ = 0 , (5.146)

where gij is the metric of the curved space, g is its determinant, ∂M is empty for a sphere and is a

2-sphere for a hyperboloid. For the latter, ni is the unit vector normal to the boundary 2-sphere and

hab (a, b = θ, ϕ) is the induced metric on the boundary 2-sphere. Therefore, on a 3-sphere, (5.146)

implies that ∇iΦ = 0 everywhere, giving as only solution Φ = const. Let us move to the hyperboloid.

If Φ decays rapidly enough towards the boundary, namely

f Φ ∂r Φ → 0 for r → 2√
|K|

, (5.147)

then the only solution of the Laplace equation is Φ = const, and therefore the solution of the Poisson

equation is unique up to a constant. This in turn implies that the splitting of a vector into a longitudinal

and a transverse part, i.e.

Ai = ∇iϕ+ATi , ∇iATi = 0 , (5.148)

is unique iff
∫ √

gd3x∇iA
i is finite.

Rank-2 objects should be dealt with more carefully because the non-commutation of covariant

derivatives brings about some complication. Consider the following decomposition

Hij = H
(1)
S gij +∇i∇j H

(2)
S + 2∇(iH

V
j) +HT

ij , (5.149)

in which
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gijHT
ij = ∇iHT

ij = ∇iHV
i = 0 . (5.150)

It is easy to check that

H i
i = 3H

(1)
S +∇2H

(2)
S , (5.151)

∇−2∇i∇j Hij = H
(1)
S + (∇2 + 2K)H

(2)
S .

Assuming a proper asymptotic decay of Hij , H
(1,2)
S can be uniquely fixed up to

H
(2)
S → H

(2)
S + χ , H

(1)
S → H

(1)
S +Kχ , (5.152)

where χ is any solution of

(∇2 + 3K)χ = 0 . (5.153)

It remains to solve for HV
i by taking the divergence of Hij ,

2∇i∇(iH
V
j) = ∇iHij −∇j

(
∇−2∇k∇lHkl

)
. (5.154)

However, the homogeneous equation, i.e. ∇i∇(iH
V
j) = 0, could admit non-trivial solutions. Multi-

plying the latter with HV
j and integrating over the space yields

∫ √
g d3xHV i∇j∇(iH

V
j) =

∫
∂M

√
hdθdϕHV i∇(iH

V
j) −

1

2

∫ √
gd3x (∇(iH

V
j))

2 = 0 .

Therefore, for both a hyperboloid—assuming that HV
i vanishes quickly enough near the boundary—

-and a sphere, the boundary term vanishes, and as a result the solutions consist only of the Killing

vectors. However, Killing vectors of a hyperboloid are not bounded, hence we must discard them. In

conclusion, the SVT decomposition of Hij is unique up to (5.152) and separately

HV
i → HV

i + ξi , ∇(i ξj) = 0 . (5.155)

Notice that for all ξi’s we have∇2ξi = −2K ξi. Thus, as long as one works with eigenfunctions

of the ∇2 operator with eigenvalues unequal to −3K (for scalars) and −2K (for vectors), the SVT
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decomposition is unique and well defined.

The Spectrum of The Laplacian Operator

For K < 0 the eigenfunctions of the Laplacian operator for scalars, defined through

∇2 Yplm = (1 + p2)K Yplm , (5.156)

are given by (see e.g.[144])

Yplm =
Γ(ip+ l + 1)

Γ(ip+ 1)

p√
|K|r f(Kr2)

P
−l−1/2
ip−1/2

(√
1 +K2r2f2(Kr2)

)
Ylm(θ, ϕ),

where Pµν (x) are Associated Legendre functions of the first kind, and Γ(x) is the Euler Gamma

function. Only mode functions with p > 0 (−∇2 > |K|) are square integrable and in this sense

physical. They are also normalized and orthogonal, i.e.

∫
r2 f3 drdΩYplmY

∗
p′l′m′ = δ(p− p′)δmm′δll′ . (5.157)

For K > 0 the spectrum of scalar harmonics is ([152])

∇2 Yplm = −p(p+ 2)K Yplm , p = 0, 1, .. , and l = 0, .., p . (5.158)

and they are given by

Yplm =

√
(p+ 1)Γ(p+ l + 2)

Γ(p− l + 1)

p√
Kr f(|K|r2)

P
−l−1/2
p−1/2

(√
1−K2r2f2(Kr2)

)
Ylm(θ, ϕ) ,

with the same property as (5.157) except that δpp′ replaces δ(p− p′).

5.7.2 Canonical Trispectrum in the soft limit

In this appendix, our goal is to compute the O(q2u) term in the pure scalar 4-point function

⟨ζquζql
ζksζk′

s
⟩ . (5.159)

[137, 138] give explicit formulas for this 4-point function derived under the following assumptions:
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• Inflation is described by a single field with Lagrangian L = −1
2(∇ϕ)2 − V (ϕ).

• All interactions are that of the inflaton minimally coupled to Einstein gravity.

• Terms that are suppressed by higher powers of slow-roll parameters can be neglected, ie. we

work to leading order in ϵ and η.20

The 4-point function has a contribution due to the contact interaction [137] as well as due to

graviton exchange [138]:

⟨ζk1ζk2ζk3ζk4⟩ = ⟨ζk1ζk2ζk3ζk4⟩CI + ⟨ζk1ζk2ζk3ζk4⟩GE . (5.160)

We are interested in the double squeezed limit, and we will take qu ≡ k1, qu ≡ k2, ks ≡ k3,

k′
s ≡ k4. We have to compute the term proportional to q2u.

The graviton exchange

The contribution to the trispectrum from the graviton exchange is given by

⟨ζk1ζk2ζk3ζk4⟩GE = (2π)3δ(
∑
a

ka)
H6

∗
ϵ2
∏
a(2k

3
a)
k21 (5.161)

×
[
k23
k312

[1− (k̂1 · k̂12)
2][1− (k̂3 · k̂12)

2] cos 2χ12,34 · (I1234 + I3412)

+
k22
k313

[1− (k̂1 · k̂13)
2][1− (k̂2 · k̂13)

2] cos 2χ13,24 · (I1324 + I2413)

+
k22
k314

[1− (k̂1 · k̂14)
2][1− (k̂2 · k̂14)

2] cos 2χ14,23 · (I1423 + I2314)
]

where Iabcd + Icdab are given below, and χ12,34 is the angle between the plane defined by the

vectors k1, k2 and the plane defined by the vectors k3 and k4. Although the above formula may

not look manifestly invariant under relabelling of the momenta, we verified it to be unaffected by

permutations.

20In particular, the tree diagram involving an exchange of a scalar is suppressed by additional power of slow-roll
parameters. Thus, at tree level we only need to consider the contact interaction and the graviton-exchange diagram.
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I1234 + I3412 =
k1 + k2
a234

[
1

2
(a34 + k12)(a

2
34 − 2b34) + k212(k3 + k4)

]
+ (1, 2 ↔ 3, 4) (5.162)

+
k1k2
kt

[
b34
a34

− k12 +
k12
a12

(
k−1
t + a−1

12

)]
+ (1, 2 ↔ 3, 4)

− k12
a12a34kt

[
b12b34 + 2k212(

∏
a

ka)

(
1

k2t
+

1

a12a34
+

k12
kta12a34

)]
,

where aab ≡ ka + kb + kab and bab ≡ (ka + kb)kab + kakb.

The presence of an overall factor k21 = q2u in each of the terms in (5.161) is very convenient,

allowing us to divide the entire expression by q2u and then evaluate the remaining part in the limit

qu → 0. The result will in general depend on the direction from which qu = quq̂u approaches zero.

Let’s assume that q̂0 is fixed as qu → 0. As explained in Section 5.4, we need to take the sum of

the GE contribution over any three21 mutually orthogonal directions of q̂u. Since lim
qu→0

(Iabcd + Icdab)
does not depend on q̂u and the same holds true for k21i, k̂3 · k̂12, k̂2 · k̂13 and k̂2 · k̂14 (since in each

of these instances we can use k1i → ki), all the dependence on q̂u is in the following factor:

lim
qu→0

[(
1− (q̂u · k̂12)

2
)
cos 2χ12,34

]
(5.163)

and its permutations. This is equal to

(
1− (q̂u · k̂2)

2
)
cos 2χ12,34 , (5.164)

which can be easily shown to vanish when averaged over any three orthogonal directions of qu. The

same applies to the other two terms in the correlation function.

In conclusion, the contribution of the graviton exchange to the O(q2u) term vanishes completely

due to averaging over angles.

21The final answer would better not depend on which three directions we choose! Otherwise we cannot avoid a major
inconsistency.
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The contact interaction

The contribution from the contact (4-vertex) interaction reads

⟨ζk1ζk2ζk3ζk4⟩′CI =
H6

∗
4ϵ2
∏
a(2k

3
a)

∑
24 perms

M4(k1,k2,k3,k4). (5.165)

where

M4(k1,k2,k3,k4) = −2
k21k

2
3

k212k
2
34

W24

kt

(
−(k1 · k4)(k2 · k3) + (k1 · k3)(k2 · k4) +

3

4
σ12σ34

)
−1

2

k23
k234

σ34

(
k1 · k2

kt
W124 + 2

k21k
2
2

k3t
+ 6

k21k
2
2k4
k4t

)

and

σab = ka · kb + k2b ,

Wab = 1 +
ka + kb
kt

+
2kakb
k2t

,

Wabc = 1 +
ka + kb + kc

kt
+

2(kakb + kbkc + kcka)

k2t
+

6kakbkc
k3t

.

Using P (k) = H2
∗

4ϵk3
, (5.165) can be written as

⟨ζk1ζk2ζk3ζk4⟩′CI = ϵP (k1)P (k2)P (k3)k
−3
4

∑
24 perms

M4(k1,k2,k3,k4). (5.166)

Our goal is to compute 1
2
∂2

∂q2u
P (qu)

−1⟨ζquζqlζksζk′
s
⟩′CI , so P (qu) is cancelled out, and the only factor

dependent on qu is now
∑

24 perms
M4(k1,k2,k3,k4). We have thus reduced the problem to finding

 ∂2

∂q2u

∑
24 perms

M4(k1,k2,k3,k4)


qu=0

. (5.167)

We will find it easier to deal with the M4(k1,k2,k3,k4) permutation only, and instead consider all

the 24 different bijections between (qu,ql,ks,k
′
s) and (k1,k2,k3,k4).

Terms O(q0u), O(q1u) Using symbolic manipulation in Mathematica, we verified that O(q0u) and

O(q1u) terms in M4 vanish.

The contribution from qu ≡ k1 Let us first consider the six terms in which qu is the first entry.
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Note that in the limit qu → 0 we can use k2 + k3 + k4 = 0.

∂

∂q2u

∑
6 perms

M4(qu,k2,k3,k4) =
∑

6 perms

[
−2

k23
k22k

2
34

W24

kt
· 3
4
k22(k3 + k4) · k4

−1

2

k23
k234

(k3 + k4) · k4

(
∂

∂q2u
(
qu · k2

kt
Wqu,24)qu=0 + 2

k22
k3t

(1 + 3
k4
kt

)

)]
= −

∑
6 perms

k23
k234

(k3 + k4) · k4

[
3

2

W24

kt
+
k22
k3t

(1 + 3
k4
kt

) +
1

4

(
∂2

∂q2u
(
qu · k2

kt
Wqu,24)

)
qu=0

]
.

(5.168)

Now, we have ∂
∂qu

(Wqu,24/kt)qu=0 = 0, so the last term vanishes. We get

∂

∂q2u

∑
6 perms

M4(qu,k2,k3,k4) =
∑

6 perms

k23
k234

k2 · k4

[
3

2

W24

kt
+
k22
k3t

(
1 + 3

k4
kt

)]
. (5.169)

After some more transformations,

∂

∂q2u

∑
6 perms

M4(qu,k2,k3,k4) =
∑

6 perms

k23
k3t

k2 · k4

[
1 + 3

k4
kt

+ 3k−2
2 (k2t −

1

2
k3kt)

]
. (5.170)

Let’s evaluate the dominant term of the above expression for ql ≪ ks ∼ k′s. If it is nonvanishing in

the limit ql/ks → 0 (we will shortly see that it is), then due to the presence of ql in the prefactor, the

1 + 3k4kt part gives a zero contribution in this limit. The other term survives as ql/ks → 0 only if

ql ≡ k2. We are therefore left with

3q−2
l k−2

t

(
k2s(ql · k′

s)(kt −
1

2
ks) + k

′2
s ql · ks(kt −

1

2
k′s)

)
= −3

8
ks(k̂s · q̂l)2 +O(ql). (5.171)

The contribution from qu ≡ k3 Derivation is analogous to that of the previous section, only

much simpler. The contribution is
3

8
ks[5(k̂s · q̂l)2 − 7]. (5.172)

The contribution from qu ≡ k2 Using symbolic manipulation in Mathematica, we found

∂2

∂q2u
M4(q,qu,k,K)qu=0 =

k2s
q2l k

4
t

ql · k′
s

[
3k2t (kt + k′s) + 2q2l (kt + 3k′s)

]
. (5.173)

The only other permutation giving a comparable contribution is the one in which ks and k′
s are
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swapped. The remaining 4 permutations of ql, ks, k′s lead to subdominant contributions, which we

can ignore. We have

q−2
l k−4

t

(
k2s(ql · k′

s)3k
2
t (kt + k′s) + 2q2l (kt + 3k′s)

+k2sql · ks3k2t (kt + ks) + 2q2l (kt + 3ks)
)
=

3

4
ks(5(k̂s · q̂l)2 − 3) +O(ql). (5.174)

The contribution from qu ≡ k4 Again, using symbolic manipulation in Mathematica, we found

∂2

∂q2u
M4(ql,ks,k

′
s,qu)qu=0 = 3

q2l
k′2
s k

2
t

(kt + ks)ks · k′
s. (5.175)

The dominant contributions when qu ≡ k4 will actually arise from another two permutations:

(ks, k
′
s, ql) and (k′s, ks, ql). We have

3k−2
t q−2

l (k
′2
s (kt + ks)ks · ql + k2s(kt + k′s)k

′
s · ql) =

3

4
ks(5(k̂s · q̂l)2 − 3) +O(ql). (5.176)

Summary

After summing up all the permutations, we get ∂

∂q2u

∑
24 perms

M4(k1,k2,k3,k4)


qu=0

∼ 3

8
ks(14(k̂s · q̂l)2 − 13) (5.177)

for ql ≪ ks, k
′
s.

Result - the trispectrum contribution

Using (5.82), we get

⟨ζqlζksζ−ks⟩K ∼ P (ql)P (ks)

[
(1− ns) +O(ql/ks) +

27

16
ϵ
K

k2s

(
14(k̂s · q̂l)2 − 13

)]
. (5.178)

5.7.3 EFT Trispectrum in the soft limit

Following [139], we define the trispectrum form factor T as

⟨ζ4⟩ = 8× (2π)3δ(3)

(
4∑
i=1

ki

)
Pζ(k1)Pζ(k2)Pζ(k3)

1

k34
T (k1,k2,k3,k4) , (5.179)
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where Pζ(k) = ⟨ζkζ−k⟩′. We will use the results of [139]; the parameters λ and Σ from [139] are

related to cs and c3 in the following way:

λ =
1

2
Σ

(
1 +

2

3

c3
c2s

)
, (5.180)

Σ =
ϵH2

c2s
. (5.181)

Throughout, we assume that cs ≪ 1, while c3 ∼ O(1), so that λ ∼ O(c−4
s ), Σ ∼ O(c−2

s ).

The EFT power spectrum

For models with small speed of sound, we have

Pζ(k) =
H2

∗
4ϵM2

plcsk
3
. (5.182)

Scalar-exchange diagram

The scalar exchange contributes to the trispectrum at order c−4
s q2uksP

4
ζ . In particular, there are no

terms at 0th or 1st order in the ultralong momentum qu, as has been verified by our Mathematica

scripts. In the computations we outline in this subsection, all contributions that are subleading in the

regime qu ≪ kl ≪ ks are neglected.

The dominant contributions come from the diagrams in which the exchanged momentum is

qu+kl, corresponding to the choices (qu,kl) ≡ (k3,k4) or (qu,kl) ≡ (k1,k2), where (a, b) stands

for an unordered pair. Hence, we only have to sum over 8, rather than 24, permutations of the

momenta.

We also perform a summation over three22 directions of qu that are mutually orthogonal, but

otherwise arbitrary.

There are three types of scalar-exchange diagrams that differ by the type of vertices, shown on

Fig. 5.3. For the sake of transparency, we consider each of the three cases in a separate subsection,

writing out the partial contributions before presenting the final result.

The π̇3 × π̇3 diagrams

These diagrams are given by (B.3) - (B.4) in [139]. It is straighforward to show that the leading-

order contribution to T is
22Of course, the O(q2u) terms are even in ku, so we do not need to average over two opposite directions.
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T1 =
9

32

(
λ

Σ

)2

q2uks =
9

128

(
1 +

2

3

c3
c2s

)2

q2uks. (5.183)

After summing over three orthogonal directions of qu,

∑
q̂u

T1 =
27

128

(
1 +

2

3

c3
c2s

)2

q2uks. (5.184)

The π̇3 × π̇(∂iπ)
2 and π̇(∂iπ)2 × π̇3 diagrams

These are given by (B.5) - (B.10) in [139]. By computing ∂2/∂q2u of the sum of the eight relevant

permutations, we can deduce the q2u term. We find, to leading order in ks/kl,

∑
q̂u

T2 =
3

128

(
1 +

2

3

c3
c2s

)(
1

c2s
− 1

)
q2uks

(
43− 15(k̂l · k̂s)2

)
. (5.185)

The π̇(∂iπ)2 × π̇(∂iπ)
2 diagrams

These diagrams correspond to equations (B.11) - (B.17) from [139]. Again, after summing over

the eight permutations, computing the ∂2/∂q2u derivative, summing over the three directions and

keeping only the terms that are leading order in ks/kl, we get

∑
q̂u

T3 =
19

128

(
1

c2s
− 1

)2

q2uks

(
8− 5(k̂l · k̂s)2

)
. (5.186)

Summary for the scalar exchange The total form factor due to scalar exchange is, after summing

over angles,23

TSE =
1

8
q2uks

(
α1 + α2(k̂l · k̂s)2

)
, (5.187)

with α1 and α2 that can be expressed in terms of cs, c3. If we keep only the c−4
s terms, we have

α1 =

(
3

4
c23 +

43

8
c3 +

19

2

)
c−4
s , (5.188)

α2 = −
(
15

8
c3 +

95

16

)
c−4
s . (5.189)

Then

23The factor of 1/8 is introduced in order to cancel out the factor of 8 in front of T in (5.179).
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∑
q̂u

⟨ζ4⟩SE ∼ (2π)3δ(3)

(
4∑
i=1

ki

)
Pζ(qu)Pζ(kl)Pζ(ks)

q2u
k2s

(
α1 + α2(k̂l · k̂s)2

)
. (5.190)

The corresponding contribution to the bispectrum on a curved background is

⟨ζklζksζ−ks⟩′K,SE ∼ 3

2
Pζ(kl)Pζ(ks)

(
α1 + α2(k̂l · k̂s)2

) K
k2s
. (5.191)

The above power spectra are evaluated on a flat background. But αi scale as c−4
s while the correction

to the power spectrum scales as c−2
s , so it might be neglected in the regime cs ≪ 1. Then in (5.191)

we are allowed to use the curved power spectrum.

Graviton exchange

Another tree-level contribution to the scalar 4−pt function is the graviton exchange. However, as we

have shown in Section 5.4, the contribution of the lowest-order operators to the final O(K) terms in

the bispectrum is always exactly zero.

Contact interaction

There is yet another contribution to the trispectrum that cannot be accounted for in the cubic action,

since it originates from the contact diagram corresponding to the 4−vertex scalar interaction. The

contact diagram is evaluated in [139]. In the limit cs → 0, the result is dominated by

Tc1 = 36

(
Cπ̇4 − 9

(
λ

Σ

)2
) ∏4

i=1 k
2
i

k5t
. (5.192)

In the double squeezed limit, this gives

⟨ζ4⟩ c1 ∝
(
Cπ̇4 − 9

(
λ

Σ

)2
)
Pζ(qu)Pζ(kl)Pζ(ks)

q2uk
2
l

k4s
. (5.193)

Recall that (λ/Σ)2 ∼ O(c−4
s ). For the particular case of DBI inflation, Cπ̇4 also scales as c−4

s ; we

assume, for simplicity, that the scaling of the above contribution is always c−4
s . There are also other

terms that scale as c−2
s and are subdominant in the limit cs → 0. These are the only contributions

to the trispectrum that are linear in qu for small qu (it has been verified in [111] that these terms

reproduce the conformal consistency relation for the 4−pt function).
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Summing up everything, we have (schematically)

⟨ζ4⟩ c ∼ P 3
ζ

[
c−2
s

(
qukl
k2s

+
q2u
k2s

)
+ c−4

s

q2uk
2
l

k4s

]
. (5.194)

Due to the nonvanishing O(qu) terms, redefinitions of the momenta will influence the O(q2u) terms;

but only at order c−2
s , not c−4

s :

⟨ζ4⟩ (q2u)c ∼ P 3
ζ

[
c−2
s

q2u
k2s

+ c−4
s

q2uk
2
l

k4s

]
. (5.195)

The first term in the brackets is subdominant in the limit cs → 0 relative to the scalar-exchange

diagram. The second term is also subdominant, having a different momentum dependence than the

leading-order scalar exchange contribution.

In conclusion, the contact interaction gives a negligible contribution to the O(K) correction to the

squeezed bispectrum. The final result for the squeezed limit of the bispectrum in a curved universe is

given by (5.191).





Chapter 6

The Boostless Bootstrap: Amplitudes

without Lorentz boosts

Abstract

Poincaré invariance is a well-tested symmetry of nature and sits at the core of our description of

relativistic particles and gravity. At the same time, in most systems Poincaré invariance is not a

symmetry of the ground state and is hence broken spontaneously. This phenomenon is ubiquitous in

cosmology where Lorentz boosts are spontaneously broken by the existence of a preferred reference

frame in which the universe is homogeneous and isotropic. This motivates us to study scattering

amplitudes without requiring invariance of the interactions under Lorentz boosts. In particular, using

on-shell methods we show that the allowed interactions around Minkowski spacetime are severely

constrained by unitarity and locality in the form of consistent factorization. Our analysis assumes

massless, relativistic and luminal particles of any spin, and a restricted ansatz for the four-particle

amplitude, which can be shown to be equivalent to having Lorentz covariant fields in the Lagrangian

description. We find that the existence of an interacting massless spin-2 particle enforces (analytically

continued) three-particle amplitudes to be Lorentz invariant, even those that do not involve a graviton,

such as cubic scalar couplings. We conjecture this to be true for all n-particle amplitudes. Also,

particles of spin S > 2 cannot self-interact nor can be minimally coupled to gravity, while particles

of spin S > 1 cannot have electric charge. Given the growing evidence that free gravitons are well

described by massless, luminal relativistic particles, our results imply that cubic graviton interactions

in Minkowski must be those of general relativity up to a unique Lorentz-invariant higher-derivative
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correction of mass dimension 9. Finally, we point out that consistent factorization for massless

particles is highly IR sensitive and therefore our powerful flat-space results do not straightforwardly

apply to curved spacetime.

6.1 Introduction and summary

Symmetry is a physicist’s compass and Poincaré invariance is perhaps the most precisely tested

symmetry in nature [153–156]. Empirically, we observe it everywhere: from electromagnetism to

the reign of subatomic particles and the expanse of the cosmos. But just as importantly, Poincaré

invariance sits at the heart of our description of the laws of nature. On the one hand, it provides

us with the organizing principle to model the interactions of subatomic particles through Quantum

Field Theory (QFT), and constitutes one of the pillars of the standard model of particle physics. On

the other hand, Poincaré symmetry is so powerful and rigid that it makes our theoretical description

inevitable. We can appreciate this from two complementary points of view.

Weinberg argues in [157] that Poincaré invariance, combined with quantum mechanics and locality

(in the form of cluster decomposition), uniquely selects QFT as the necessary language of nature,

at least at low energies. Moreover, from this standpoint, microscopic causality and the analyticity

of the S-matrix follow from the above assumptions rather than being invoked as general principles.

But fields come at a cost: the spectrum of massless particles cannot fit inside a set of Poincaré

covariant fields and we are obliged to invoke unobservable “gauge” symmetries. Also, the scattering

of particles cannot be uniquely mapped into the interactions of fields, as is evident in perturbative field

redefinitions. These observations have motivated physicists to look for an alternative description of

scattering that does not invoke fields or gauge redundancies. Modern on-shell methods for amplitudes,

an intellectual descendant of the S-matrix program of the 60’s (see e.g. [158]), have made tremendous

progress towards precisely this goal (reviews include [30, 31, 28]). It is from this complementary

point of view that the rigidity imposed by Poincaré invariance becomes once again manifest. All

(analytically continued) non-perturbative three-particle amplitudes for massless fields of any spin

are uniquely fixed by symmetry, and in theories such as Yang-Mills [159, 160] and general relativity

[161] all higher tree-level amplitudes are uniquely determined in terms of these building blocks.

In the discussion so far we have implicitly assumed that Poincaré invariance is a symmetry of the

ground state of the theory. While this is a good approximation for some particle physics applications,
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the vast majority of physical systems are not Poincaré invariant in their ground state. Indeed, the

specific way in which Poincaré is thus spontaneously broken determines much of the behavior of a

given system. While all possibilities have been classified [162], a particularly simple and interesting

case arises when the “vacuum” consists of a static, homogeneous and isotropic medium that permeates

spacetime. Observers at rest with respect to this medium are special, as they observe a more symmetric

configuration, hence Lorentz boosts are spontaneously broken. This is the case for many condensed

matter systems but also for cosmological models as we will discuss in detail shortly. Some even go a

step further and speculate about possible explicit breaking of Poincaré invariance, perhaps arising in a

UV-complete theory of gravity.

The above considerations beg the question of what happens to the rigidity of the laws of nature

when Poincaré invariance is not respected by the ground state, as it is for example the case in our

universe at cosmological distances. If the free theory is Poincaré invariant, what can we say about

interactions? In particular, we will focus on the following formulation of this question:

What boost-breaking interactions are allowed for massless, relativistic spinning particles?

This question is not just academic. Rather it’s motivated by practical considerations. For example,

we have recently observed that the free propagation of gravitational waves is extremely well described

by the relativistic theory of a (classical) massless spin-2 particle [163]. What does this imply for

the interactions that gravitons can have in a consistent theory? More precisely, in this work we will

derive all possible on-shell three-particle amplitudes, and the allowed singularities of four-particle

amplitudes, for relativistic, massless, luminal particles, while allowing for boost-breaking interactions.

Whether Lorentz boosts are broken explicitly, or more likely only spontaneously, will be irrelevant for

our discussion (see [164] for a recent discussion of Goldstone theorem for boosts). Our assumption

that the free theory is Poincaré invariant leads us to a particular ansatz for four-particle amplitudes,

which can be shown to be equivalent to assuming that the underlying Lagrangian is constructed out of

Lorentz covariant fields with the breaking of boosts due to the freedom to add time derivatives at will.

Although this does not capture the most general set of boost-breaking theories, it provides us with

an excellent testing ground and already produces some surprising results. Indeed, we will find that

internal consistency severely restricts the allowed set of interactions, especially in the presence of a

massless spin-2 particle. We summarise our results in Section 6.1.2.
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6.1.1 Motivations

Because of the very general methodology that we adopt, our results can be approached and interpreted

from a variety of perspectives. In the following, we motivate our analysis from three points of view.

Cosmology The expansion of the universe spontaneously breaks time translations and boosts1.

Both breakings are manifest in many cosmological phenomena. For example, the breaking of time

translations can be thought of as the root cause of the redshift of light as it travels freely across the

cosmos: in the absence of time translation invariance, energy is not conserved and the energy of a

free photon can change with time. The breaking of boost invariance is evident in the existence of the

Cosmic Microwave Background (CMB) or the cosmic neutrino background. The CMB picks out a

preferred reference frame in which the universe looks homogeneous and isotropic. The Earth moves

with respect to this preferred frame and so we observe the CMB to be anisotropic to one part in a

thousand. Measurements of this CMB dipole by the Planck satellite are shown in Figure 6.1 [165].

A priori, it is impossible to compare the breaking of time translations with that of boosts because

the respective parameters have different dimensions2: the breaking of time translations is characterized

by a certain time scale tb, while that of boosts by a certain velocity vb. Since in this work we will

study the time-translation invariant dynamics of massless particles with broken boosts, it is important

to understand under what conditions our results have a chance to be relevant for cosmology.

First, we notice that for the scattering of particles at energy E, the breaking of time translation

should be parameterized by 1/(Etb), which is negligible at sufficiently high energies. So in cosmology,

where the characteristic time scale is the Hubble parameter, t−1
b ∼ H , time-translation invariance is

often a good approximate symmetry at energies E ≫ H . Conversely, for the scattering of massless

luminal particles, which are the focus of our study, the typical center of mass velocity is always of

order the speed of light. Hence, in cosmology, where the speed of light is often the characteristic

speed vb ∼ c, the breaking of boosts can be a large effect.

Second, in many models of the very early universe and of dark energy, additional symmetries are

invoked to suppress the breaking of time translations. The archetypal example is that of a so-called

1Everywhere in this chapter we assume invariance under spacetime translations and rotations, but for conciseness we
will avoid stating this repeatedly.

2This is evident in the examples above. In observing the CMB, we see the breaking of boosts in the presence of a dipole,
but we can safely neglect the breaking of time translations because observations are conducted over tens of years while the
CMB changes in time over 105 years. Conversely, the redshift of photons from distant sources is mostly caused by the
breaking of time translations, while the effect of peculiar motion, which is evident in redshift space distortions, is much
smaller.
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+ ~β

−~β − ~β

+ ~β

+ ~β×− ~β×

Figure 6.1: The figure shows CMB dipole at the level of 3 mK align with the ±β∥ direction. The two
perpendicular directions ±β× and ±β⊥ are also shown for reference. This observation highlights the
existence of a preferred frame in our universe and hence implies the spontaneous breaking of boost
invariance.

superfluid or P -of-X theory, namely a shift-symmetric scalar field whose evolution is assumed to be

approximately linear in time3. In this case, while time-translations, which are generated by T 0µ, and

shifts, which are generated by jµ, are separately broken spontaneously, an (approximate) unbroken

diagonal linear combination tµ exists

tµ = T 0µ + jµ ⇒ ∇µt
µ = 0 . (6.1)

In inflationary models this unbroken diagonal symmetry is eventually responsible for the (approximate)

scale invariance of primordial perturbations that we have observed in the data. One might ask whether

a similar mechanism can be developed to suppress or eliminate the breaking of boosts. As pointed out

recently in [168] (see also [169]), this is problematic because one would need to invoke a higher-spin

symmetry, which in flat space is forbidden by the Coleman-Mandula theorem [170]. Indeed, it was

proven in [168] that if one insists on having unbroken boost invariance for cosmological correlators in

single-clock inflation, all interactions are forbidden and the theory must be free. Thus, the breaking of

boosts cannot be eliminated and in principle it could always affect the interactions.

The discussion above highlights the importance for cosmology of time-translation invariant

3In general, the existence of a shift symmetry is not sufficient to ensure time-translation invariance. Rather, its general
consequences are new cosmological soft theorems [98] and recursive relations for the time-dependence of the low-energy
coupling constants [121]. It is only when one further assumes a linear evolution for the shift-symmetric scalar that a
diagonal symmetry emerges, which plays the role of time-translation invariance, a general mechanism that goes under the
name of spontaneous symmetry probing [166]. See [167] for a recent discussion on using a constant shift symmetry, and
other symmetries, to realise a diagonal form of unbroken translations in the presence of additional non-linearly realised
symmetries.
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theories that (spontaneously) break boosts. In this work we study some of these theories in the context

of scattering amplitudes. It will turn out that the application of our results to cosmology shows an

unexpected and very interesting twist. We will discuss this in Section 6.5.

Cosmological correlators The calculation of primordial initial conditions from models of the early

universe provides a major motivation for the study of boost-breaking amplitudes. The key observation

is that the correlators of n fields of momenta k⃗a with a = 1, . . . , n in an expanding universe encode

the information of n-particle scattering amplitudes in Minkowski in the residue of the highest kT

pole (see [171, 172]), where kT =
∑ |⃗ka| is sometimes called the “total energy”. Schematically, the

relation takes the form4

lim
kT→0

⟨
n∏
a=1

ϕa⟩′ ∼
ReAn

(
∏n
a=1 ka)

2 kpT
+ . . . (6.2)

where the dots represent subleading terms in kT → 0, ϕa are fields (not necessary scalars), An is the

flat space amplitude for the scattering of the particles created by the ϕa’s, and a prime denotes that we

are dropping the momentum conserving delta function. The value of the positive exponent p depends

on the interactions included in the theory, with larger p’s corresponding to the inclusion of operators

of higher and higher dimension [173]. This relation gives us a handle to leverage our knowledge of

amplitudes to better understand cosmological correlators.

The idea to constrain cosmological correlators from symmetries has been pursued from vari-

ous angles over the years. In [171] it was shown that the graviton bispectrum is completely fixed

non-perturbatively by the isometries of de Sitter to be a linear combination of only two shapes, one

corresponding to the Einstein-Hilbert term and the other to a higher-derivative term. In [174], de

Sitter isometries were used to fixed the bispectrum of a spectator scalar. In [175], it was shown

how an approximate version of de Sitter isometries constrains the leading-order scalar-scalar-tensor

bispectrum. In [176, 115, 116] the study was extended to the scalar bispectrum and trispectrum. In

[90], it was shown that the ζ bispectrum in the de Sitter-invariant limit of single-field inflation is fully

fixed by approximate de Sitter isometries. More recently, in [177–181] an ambitious program has

been proposed to systematically use not only symmetries but also general principles such as unitarity
4There are many exceptions to this result. For example, when the amplitude vanishes, this relation should be modified

since the leading pole disappears. This is what happens in the DBI theory, due to the increased symmetry in the flat
space-limit, as recently noticed in [167].
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and locality to “bootstrap” correlators, in analogy with the on-shell methods for amplitudes. In the

current incarnation of this cosmological bootstrap, the isometries of de Sitter spacetime still play an

essential role, analogously to the role Poincaré invariance plays for amplitudes. On the one hand, it

is clear from the above literature that de Sitter isometries are so constraining that many correlators

are uniquely specified by them. On the other hand, we know that most observationally interesting

correlators, such as for example equilateral and orthogonal non-Gaussianity, are not de Sitter invariant,

and so cannot be studied directly with these methods. More generally, in [168] it was proven that in

single-field inflation, the only theory whose ζ correlators are invariant under de Sitter isometries is

the free theory. It is therefore very important to extend the cosmological bootstrap to less symmetric

cases. In particular, it is the invariance under de Sitter boosts that should be relaxed, as this has not

been observed in the data and indeed is not present in many models, for example those with a reduced

speed of sound, cs < 1. Much insight can already be gained by perturbative calculations [182–187].

The amplitudes that emerge on the total energy pole in (6.2) when de Sitter boosts are broken are

not Lorentz invariant, rather they break Lorentz boosts. So one crucial step to extend the cosmological

bootstrap to correlators with broken de Sitter boosts is to understand boost-breaking amplitudes. This

is one of our primary motivations for this work.

Gravitational waves The recent detection of gravitational waves has ushered a new era in astronomy.

But the detection of this 100 year old prediction of general relativity (GR) has implications well

beyond the study of binary compact objects. It provides strong constraints on modified gravity (see

e.g. [188–191]) and on the properties of the graviton. In particular, the concurrent observation of

GW170817 [192] and the gamma-ray burst GRB170817A [193] has put extremely strong constraints

on the difference ∆v between the speed of gravity and the speed of light [163]

−3× 10−15 < ∆v/c < 7× 10−16 . (6.3)

More general Lorentz-breaking modifications of the graviton dispersion relation were classified and

severely constrained in [194] using gravitational Cerenkov radiation by cosmic rays, and the con-

straints are even stronger when the GW170817 and GRB170817A data is included [163]. In particular,

Lorentz-breaking deviations from a relativistic dispersion relation E2 = c2p2 have to be smaller than

a part in 10−13, and some specific modifications must be as small as a part in 10−45. The mass of
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the graviton is also strongly constrained by a variety of measurements. Largely model-independent

bounds on the graviton mass mg can be as strong as mg < 10−22 eV from observations such as

Yukawa-like corrections to Newton’s law [195] or gravitational waves from binary mergers [196] (see

[197] for a recent summary and more details). More model-dependent bounds can be as strong as

mg < 10−32 eV from observations of gravitational lensing [198] or of the earth-moon precession

[199]. All of these bounds strengthen our confidence that GR provides a good description of free

gravitons.5

It is then natural to ask: what gravitational interactions are compatible with the observation that

the graviton is a relativistic, massless spin two particle? Any theoretical guidance in answering this

question is of particular relevance also because it is much harder to directly probe the non-linear

dynamics of gravitons, due to the weakness of gravity. It has been known for half a century that

Lorentz invariance forces the self-interaction of a massless spin-2 particle, as well as the interactions

with any other particle, to be universal in the infra-red around Minkowski spacetime and to correspond

to the interactions of GR [201, 202]. More generally, from a purely on-shell perspective, there are

only three possible cubic (analytically continued) amplitudes for three gravitons, which reduce to

two if one assumes parity [29]. These are the interactions of GR, coming from the Ricci scalar R,

and higher derivative interactions from the (dimension 9) Riemann cubed terms, which are highly

suppressed at low energies. Self-interactions with broken Lorentz boosts have received less attention.

In [203], it is argued that the explicit breaking of Lorentz symmetry is inconsistent with dynamical

gravity, while this obstruction may be absent if the breaking is spontaneous. In [204], the authors

show that assuming only spatial covariance, the leading order couplings of the graviton must display

Lorentz invariance, which from this perspective appears as an emergent symmetry.

In this work we will take a complementary approach. We will only discuss physical on-shell

(massless) particles, thus avoiding any mention of gauge symmetries such as general covariance.

General principles such as unitarity and locality will then enforce Lorentz invariance and agreement

with GR, within the assumptions that we make about the form of our four-particle amplitudes. Our

results are summarized below in Section 6.1.2.

5Finally, from a more theoretical perspective, [200] argues that the special relativistic energy-momentum relation is a
consequence of locality and of the existence of massless gravitons mediating long range forces.
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6.1.2 Summary of the main results

The main body of this chapter consists of a detailed derivation of our results. We attempted to make

our derivation pedagogical and the presentation self-contained, so that this chapter can be approached

without much familiarity with on-shell methods and the spinor helicity formalism. While many of our

derivations are technical in nature, our final results can be stated in simple terms. For the reader who

is not interested in the details, we therefore outline our main findings here. All the statements below

are valid under the following assumptions:

• The spacetime is Minkowski.

• All particles are relativistic, massless and luminal, i.e. they all propagate at the same speed,

which we set to one and call the “speed of light”, even when no photons are present in the

spectrum.

• All interactions respect spacetime translations and rotations, but we allow for interactions that

are not invariant under Lorentz boosts. Whether Lorentz boosts are non-linearly realized or

explicitly broken plays no role in our analysis.

• While our results for three-particle amplitudes are non-perturbative in nature, our factorization

constraints on the four-particle amplitudes ignore loop contributions.

• The helicity scaling of four-particle amplitudes is fixed in terms of “angle" and “square" spinor

helicity brackets only. This assumption amounts to assuming that the underlying Lagrangian

is a function of Lorentz covariant fields with the breaking of Lorentz boost induced by time

derivatives, which can appear at will. This assumption means that our results do not apply to

theories that are written in terms of SO(3) covariant fields such as the Framid and the Solid of

[162]. We will explain in Section 6.4 why the amplitudes of these theories are not captured by

our ansatz.

From these assumptions and demanding unitarity and locality through the consistent factorizations

of four-particle amplitudes, we are able to show that the set of consistent interactions is severely

restricted. In more detail:

• We derive all possible boost-breaking cubic amplitudes for relativistic massless particles of

any spin. Unlike in the Lorentz-invariant case, there are always infinitely many possibilities,

which are characterized by a generic function of the particles’ energies (see (6.48)). This result

is completely non-perturbative.
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• If interactions with a massless spin-2 particle are allowed, three-particle amplitudes must be

Lorentz invariant, even those that do not involve a graviton (see Section 6.4.3). For example,

amplitudes corresponding to boost-breaking cubic scalar interactions such as ϕ̇3, ϕ̇(∂ϕ)2 and

all other higher-derivative ones are forbidden. We conjecture this to be true for all other

higher-particle amplitudes. This is strong evidence that Lorentz invariance follows from having

consistent interactions involving a massless spin-2 particle, at least as long as the Lagrangian is

written in terms of covariant fields as we stated in the above assumptions.

• The cubic graviton amplitudes must be those of GR at low energies (corresponding to dimension-

5 operators). As for the Lorentz-invariant case, the only other graviton amplitudes correspond

to the two possible Riemann3 couplings (dimension-9 operators).

• Particles with spin S > 1 cannot have an electric charge (see Section 6.4.2). Particles with spin

S > 2 cannot have cubic self-interactions of dimensionality lower than 3S. They also cannot

interact gravitationally via the GR vertex (see Section 6.4.1 and 6.4.3). Lower spin particles

(S < 2) can indeed be minimally coupled to the graviton and these couplings are fixed by the

coupling of the GR vertex. This is the on-shell manifestation of the equivalence principle.

• Unlike for the Lorentz-invariant case, cubic self-interactions of a single massless spin-1 particle

do exist (dimension-6 operators) when boosts are broken (see Section 6.4.1). All lower

dimension operators are forbidden.

• We find large classes of self-consistent, boost-breaking interactions among scalars, photons and

spin-1/2 fermions, already at leading order in spatial derivatives. In other words, QED, scalar

QED and scalar theories allow for the breaking of boosts at the cubic level (see Section 6.4.2).

• We point out that the four-particle test for massless particles is highly IR sensitive (see Section

6.5). As a consequence, the results that follow from it cannot be straightforwardly applied to

cosmology, where the Hubble parameter that characterizes the curvature of spacetime constitutes

an IR modification of Minkowski spacetime. Conversely, all those results that are exclusively

based on symmetries, such as for example the form of the three-particle amplitude (see Section

6.3) are robust and do apply to curved spacetime as well.

Notation and conventions Since we will be dealing with boost-breaking theories, for dimensional

analysis we will have to separate units of length from units of time. Working with ℏ = 1 = c, we

will indicate by “dim . . .” the scaling of an object with spatial momentum, which has units of inverse

length, excluding the dimension of all coupling constants. For Lorentz-invariant theories this gives to
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the standard energy/mass dimension, as e.g. in [28]. For example,

dim (ii) = 0 , dim [ij] = dim ⟨ij⟩ = 1 . (6.4)

We will work with the mostly minus metric signature ηµν = diag(+1,−1,−1,−1) and follow [205]

for spinor conventions. We use the beginning of the Greek alphabet for SU(2) indices (α, β, γ, . . .),

and the middle of the alphabet for SO(1, 3) indices (µ, ν, ρ, σ, . . .). Our basis for the Pauli matrices

σµαα̇ and (σ̄µ)α̇α is

(σ0)αα̇ = (σ̄0)αα̇ =

 1 0

0 1

 , (σ1)αα̇ = −(σ̄1)αα̇ =

 0 1

1 0

 , (6.5)

(σ2)αα̇ = −(σ̄2)αα̇ =

 0 −i
i 0

 , (σ3)αα̇ = −(σ̄3)αα̇ =

 1 0

0 −1

 , (6.6)

and amongst the many useful identities these matrices satisfy

σµαα̇σ̄
β̇β
µ = 2δα

βδβ̇ α̇ , (6.7)

σµαα̇(σµ)ββ̇ = 2ϵαβϵα̇β̇ , (6.8)

(σ̄µ)α̇ασ̄β̇βµ = 2ϵαβϵα̇β̇ , (6.9)

where the components of the epsilon and delta tensors are

ϵ12 = −ϵ21 = ϵ21 = −ϵ12 = 1 , δα
β =

 1 0

0 1

 . (6.10)

We use these epsilon tensors to raise and lower the dotted and undotted SU(2) indices as

ψα = ϵαβψ
β, ψα = ϵαβψβ, ψ̄α̇ = ϵα̇β̇ψ̄

β̄, ψ̄α̇ = ϵα̇β̇ψ̄β̇. (6.11)

Note added During the completion of this work a paper appeared [206] that argues that the consistent

description of a massless spin-2 particle requires certain tree-exchange diagram to be Lorentz invariant.

One of our main results in this work is in complete agreement with this finding, while other results

for gravitons are new. In a similar vein, [207] recovers the central tenets of electromagnetism, such



140 The Boostless Bootstrap: Amplitudes without Lorentz boosts

as charge conservation, without imposing boost invariance. Our point of view and methodology are

complementary to that in [206], [207] since we only use on-shell methods and make no use of the

field theory apparatus.

6.2 On-shell methods: symmetries and bootstrap techniques

The aim of the S-matrix bootstrap program is to construct, directly at the level of the S-matrix,

consistent scattering amplitudes exhibiting a given set of (linearly realised) symmetries. This on-shell

technique bypasses the usual Lagrangian formalism of effective field theories, thereby avoiding

redundancies such as field redefinitions and gauge transformations. In this section we introduce the

basic principles of this bootstrap program.

6.2.1 Symmetries and on-shell conditions for free particles

We begin by discussing the symmetries we are assuming so that we can clearly compare and contrast

our results with those in the literature [29, 31, 28, 208–210]. Up to now, on-shell methods and

the four-particle test of [29] have been applied to theories for which the vacuum is assumed to

be invariant under the full Poincaré group ISO(1, 3), consisting of spacetime translations, spatial

rotations and Lorentz boosts. In this work we relax the assumption that Lorentz boosts leave the

vacuum unchanged, while assuming that spacetime translations and spatial rotations remain good

linearly realised symmetries. We will be agnostic about whether boosts are explicitly broken or

spontaneously broken and non-linearly realized. In four spacetime dimensions our symmetry group is

therefore R4 ⋊ SO(3). Throughout the chapter, we will use the following terminology:

Boost-invariant theories: unbroken ISO(1, 3) (6.12)

Boost-breaking theories: unbroken R4 ⋊ SO(3). (6.13)

In the bootstrap program one has to provide the on-shell data which includes the on-shell conditions

relating the energy and spatial momentum of each free particle. In boost-invariant theories massless

particles satisfy the usual on-shell condition E2 − p2 = 0, while in boost-breaking theories many

other on-shell conditions are allowed due the reduced symmetry. Below we classify these possibilities:
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• Relativistic: each free particle satisfies E2 − c2sp
2 = 0 with the speed of sound cs being the

same for each particle. Without loss of generality, in this case we can choose to work in units

such that cs = c = 1 and we will do this in the rest of the chapter.

• Linear: each free particle satisfies E2 − c2sp
2 = 0, where at least two particles have a different

cs.

• General: the on-shell condition for each particle is S(E, p) = 0 and is not captured by the two

cases above.

In this chapter we consider the relativistic case where each particle has a Lorentz invariant

propagator and leave generalisations to other on-shell conditions for future work. So, we focus on

theories where all boosts are broken at the level of the interactions only which will lead us to a natural

ansatz for four-particle amplitudes. We therefore combine the energy and spatial momentum into the

usual 4-vector pµ satisfying pµpµ = 0 for each particle.

6.2.2 Little group scaling and the spinor helicity formalism

Let us now emphasise that the usual classification of massless particles in terms of helicity remains

valid for boost-breaking theories. In this subsection we also present the spinor helicity formalism,

which for boost-invariant theories has been reviewed in many cases e.g. [30, 28, 31, 211, 210], and

for boost-breaking theories was introduced in [171] (see also Appendix C of [181]).

Spacetime translation symmetry alone entails that there exists a basis of one particle states |p, E⟩,
which are the eigenstates of the momentum and energy operators:

p̂i|p, E⟩ = pi|p, E⟩, Ê|p, E⟩ = E|p, E⟩. (6.14)

States with the same p and E may be degenerate and additional quantum numbers are collectively

indicated by an index σ i.e. |p, E;σ⟩. An important subgroup of the full Lorentz group is the

little group which is the group of transformations that leave the 4-momentum pµ invariant. Such

transformations map

|p, E;σ⟩ 7→ D σ′
σ |p, E;σ′⟩. (6.15)

Single particle states can then be further classified according to their eigenvalues under the little
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group. In both boost-invariant and boost-breaking theories, this is the projective SO(2)6, and the

states |p, E⟩ carry a label corresponding to helicity h = 0,±1
2 ,±1, . . .. Clearly the relevant symmetry

here is spatial rotations, rather than Lorentz boosts. The helicity of a particle is the same in all frames

related by a rotation and changes sign under a spatial reflection. For that reason, we may consider the

allowed helicity states for a massless particle of spin S > 0 to be +S and −S.

Throughout this work we will make use of spinor helicity formalism as a powerful tool to

present amplitudes in a compact form. This formalism, introduced below, provides a compact way

of expressing amplitudes and its simplicity is beautifully captured by the Parke-Taylor formula for

gluon scattering [213]. Here we extend these methods along the lines of [171] for application in

boost-breaking theories.

We start by using the Pauli matrices (we follow the conventions of [205]) to map the momentum

4-vector pµ into a 2× 2 matrix7

pαα̇ = σµαα̇pµ =

 p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

 , (6.16)

where σµ = (1, σi). The dotted and undotted indices transform in the fundamental and anti-

fundamental representation of SL(2,C)8 respectively, such that pαα̇ transforms in the (1/2, 1/2)

representation. The dotted and undotted indices run over two values, e.g. α = 1, 2, and in a boost-

invariant theory dotted and undotted indices are contracted with the epsilon tensors ϵα̇β̇, ϵαβ . Using

pαα̇ alone, the only Lorentz invariant quantity we can construct is pαα̇pαα̇ = 2det(p) = 2pµpµ = 0.

It follows that pαα̇ is at most rank one thereby allowing us to write

pαα̇ = λαλ̃α̇, (6.17)

where λ and λ̃ are two-component spinors. Note that these objects are not Grassmanian, rather they

are complex numbers satisfying λαλ̃α̇ = λ̃α̇λα. We also note that these spinors are not unique and

6In the boost-invariant case, the little group for massless particles is ISO(2), but we recover SO(2) if we make the
reasonable assumption that the fields transform trivially under the noncompact subgroup representing the translations in
ISO(2). (See [212], Chapter 2 for more details.) Once boosts are broken, the little group becomes SO(2) straight away.

7Since σµαα̇σ̄
β̇β
µ = 2δα

βδβ̇ α̇ we have pµ = 1
2
σ̄α̇αµ pαα̇

8In 4 dimensions, the group of proper Lorentz transformations is SO(1, 3) ≃ SL(2,C)/Z2. Thus, projective represen-
tations of the Lorentz group can be identified with representations of SL(2,C).
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are only defined up to a little group, or helicity, transformation. Indeed the transformation

(λα, λ̃α̇) 7→ (t−1λα, tλ̃α̇), (6.18)

where t is a nonzero complex number, leaves pαα̇ invariant. For physical processes, the external

momenta are always real and therefore the spinors can be chosen to satisfy the reality condition

λ̃α̇ = ±(λ∗)α̇ and we can restrict the transformation parameter t to a phase. However, to study the

analytic structure of the S-matrix we must keep the momenta complex, and therefore the spinors are

in general independent.

What scalar quantities can we construct from these spinors? In boost-invariant theories we have

the following two inner products

⟨ij⟩ = ϵαβλ(i)α λ
(j)
β , [ij] = ϵα̇β̇λ̃

(i)
α̇ λ̃

(j)

β̇
, (6.19)

defined for two particles i and j. We refer to these products as angle and square brackets, respectively.

Since the epsilon tensors are anti-symmetric and the spinors are not Grassmanian, these brackets

are anti-symmetric i.e. ⟨ij⟩ = −⟨ji⟩ and [ij] = −[ji], which of course implies ⟨ii⟩ = [ii] = 0.

From these brackets we can construct the familiar Mandelstam variables for four-particle scattering

amplitudes. Taking all particles as incoming, we have

s = (p1 + p2)
2 = (p3 + p4)

2 = ⟨12⟩[12] = ⟨34⟩[34], (6.20)

t = (p1 + p3)
2 = (p2 + p4)

2 = ⟨13⟩[13] = ⟨24⟩[24], (6.21)

u = (p1 + p4)
2 = (p2 + p3)

2 = ⟨14⟩[14] = ⟨23⟩[23]. (6.22)

For our interests, however, we have a reduced set of symmetries and therefore additional scalar

quantities are allowed. Indeed, in boost-breaking theories we can mix the dotted and undotted indices

by contracting the spinors with (σ̄0)αα̇. We therefore have an additional inner product which we

denote as

(ij) = (σ̄0)αα̇λ(i)α λ̃
(j)
α̇ , (6.23)

and refer to as round brackets. As will be explained in section 6.3, for three-particle kinematics only

the diagonal components of this new bracket i.e. (ii) are independent objects, while for four-particle



144 The Boostless Bootstrap: Amplitudes without Lorentz boosts

kinematics one of the off-diagonal brackets is independent. For the relativistic on-shell condition,

the 0-component of the momentum 4-vector for each particle is the energy of the particle, which we

denote by E. The diagonal round brackets pick out precisely this component: (ii) = 2Ei.

For spinning particles there is a key piece of on-shell data which we haven’t yet discussed: the

polarisation tensors. These form non-trivial representations of the little group and therefore encode

the helicity of the particle in question. For a spin-S particle we write the rank-S polarisation tensor as

a product of S polarisation vectors which in the spinor helicity variables take the form

e+αα̇ =
ηαλ̃α̇
⟨ηλ⟩ , e−αα̇ =

λαη̃α̇

[η̃λ̃]
, (6.24)

for +1 and −1 helicity respectively. The form of the polarisation vectors follows from the fact that

they should be orthogonal to the corresponding momentum. Indeed,

pαα̇e+αα̇ = [λ̃λ̃] = 0 = pαα̇e−αα̇ = ⟨λλ⟩. (6.25)

For each particle, the reference spinors η and η̃ are linearly independent from λ and λ̃ respectively, but

are otherwise arbitrary. Different choices for the reference spinors can alter the polarisation vectors,

but only by a gauge transformation, which leaves the amplitude unchanged. We have seen above that

for boost-breaking theories we can mix dotted and undotted indices using (σ̄0)αα̇. This allows us

to make choices for the reference spinors for which the zero-component of the polarisation vectors

vanishes [171]. In a gauge invariant theory this choice is as good as any other, but if the underlying

Lagrangian is constructed out of SO(3) covariant fields only, then this choice is forced upon us since

the fields do not have time components. In this chapter we are assuming that the fields are Lorentz

covariant and so we are not restricted to this choice for the reference spinors.

For an n-particle scattering amplitude, we have n distinct momenta and therefore n distinct helicity

transformation generators Ĥi, corresponding to rotations of a particle around its momentum vector. If

we treat all particles as incoming and represent the initial state as |p;h⟩ = |p1;h1⟩⊗. . .⊗|pn;hn⟩, then

the ith helicity generator is represented on the space of initial states as Ĥi = id⊗id⊗ . . .⊗Ĥi⊗ . . . id,

and we have Ĥi|p;h⟩ = hi|p;h⟩. The amplitude itself must transform under Ĥi in the same way the

initial state does, i.e.
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ĤiAn(p;h) = hiAn(p;h), (6.26)

which in turn implies that under {λ(i), λ̃(i)} 7→ {t−1
i λ(i), tiλ̃

(i)} the amplitude transforms as

An({λ(i), λ̃(i);hi}) 7→ An({t−1
i λ(i), tiλ̃

(i);hi}) =
∏

t2hii An({λ(i), λ̃(i);hi}). (6.27)

This little group scaling of the amplitude can very powerfully constrain the allowed structure of the

amplitude, see e.g. [30, 28]. For boost-invariant theories it completely fixes the non-perturbative form

of the three-particle amplitudes, while in boost-breaking theories it completely fixes the amplitude up

to an arbitrary function of the energies of the three particles, as we shall see in section 6.3.

6.2.3 Unitarity, analyticity and the four-particle test

Analytic properties of the S-matrix have been extensively studied in boost-invariant theories. Analyt-

icity, the singularity structure and crossing symmetry of amplitudes are very important aspects of the

S-matrix bootstrap. In this chapter we rely on the possibility of extending these essential S-matrix

properties to a more general setting and so here we outline why these properties do not require the

theory to be invariant under the full Poincaré group.

Let us start with analyticity of the S-matrix. By analyticity, we mean that once the S-matrix

is stripped of the momentum conserving delta function, the remaining factor, when continued into

the complex space, is an analytic function of the kinematic variables, except for a finite number of

singularities and (possibly) branch cuts. In this chapter we will be considering tree level exchange

for four-particle amplitudes and so will not encounter any branch cuts. Our three-particle amplitudes

are however non-perturbative and are almost completely fixed by symmetry. An argument for ana-

lyticity (away from singularities, which are going to be discussed shortly), which does not rely on

the invariance of physics under boosts was presented in [214] and so we will take it for granted that

scattering amplitudes are (locally) analytic functions of the kinematic variables discussed above. Our

amplitudes will also be crossing symmetric. Crossing symmetry [215] is a symmetry of the S-matrix

under the following transformation: for a given particle of momentum pµ in the final state, consider

instead its own antiparticle with momentum −pµ in the initial state. The S-matrix, understood as an

analytic function of the complex energies and momenta, must not change under such a transforma-

tion. Thus, without loss of generality, we will consider all particles participating in a given process
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as incoming (an incoming particle with negative energy is to be interpreted as an outgoing antiparticle).

The most powerful constraint on effective theories and their interactions will come from the

singularity structure of the S-matrix. The factorisation theorem, following from locality and unitarity,

states that

Theorem 6.2.1. (Factorization Theorem) Singularities of codimension 1 in 4-particle amplitudes

may appear at vanishing energies (Ei = 0) or else are at most simple poles in the momenta. Each

singularity of the latter type is in one-to-one correspondence with an exchange diagram (Fig. 6.2),

in the limit when the exchanged particle I goes on-shell. The residue of each pole factorises into a

product of three-particle amplitudes:

lim
s=0

(sA4) = A3(1, 2,−I)×A3(3, 4, I) (6.28)

where s is the propagator of the intermediate particle, and s → 0 corresponds to the intermediate

particle going on-shell.

While the above result is almost trivial in perturbation theory and its intuitive physical meaning

is not hard to grasp, it can also be demonstrated with mathematical rigour. Starting from the Weak

Causality Postulate (If initial state consists of wave packets colliding at time t1 and the final state

consists of wave packets colliding at time t2, and t1 − t2 is much larger than the typical spatial width

of the wave packets, then the scattering amplitude should be small9) and by considering wave packets

sharply localized in momentum space, Peres [86] has shown that the existence of an interacting particle

of mass M ̸= 0 leads to a contribution A1A2/(E
2
I − p2I −M2 + iϵ), which is to be identified with

processes that involve two collisions of the wave packets (with amplitudes A1 and A2 respectively)

separated by a macroscopic time interval. Conversely, if the amplitude in the vicinity of a pole takes

the form A1A2/(E
2
I − p2I −M2 + iϵ)+ regular terms, then the first term represents the amplitude for

scattering of wave packets through two or more subsequent collisions, which will be non-negligible

provided that the 4-vector connecting the collisions is approximately parallel to the 4-momentum

(EI , pI). This is then interpreted as a propagating particle of mass M . The argument of [86] does not

rely on invariance under boosts10 and can be easily generalized to on-shell conditions of the form
9More rigorously [216]: scattering amplitude should decay faster than any power of ∆t = t1 − t2 as ∆t→ ∞.

10Although the author does fix Lorentz frame to the center of mass frame, this convenient trick serves illustrative and
pedagogical purposes only and can be eliminated altogether.
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E2 − ω2(p) = 0, provided there is a mass gap. Other derivations of factorisation, which do not rely

on invariance under Lorentz boosts and emphasise the important role of unitarity, can be found in

[217] and Section 10.2 of [212]. See also [211] for further discussions11.

None of the above proofs can on its own exclude the possibility that the poles corresponding

to an intermediate particle going on-shell have order higher than 1. For this we need an additional

argument: consider an exchange channel which, according to the Factorization Theorem, leads to a

contribution A1A2/(E
2
I − p2I −M2 + iϵ)+ regular terms to the amplitude. We want to show that

the first term contains only first order pole in (E2
I − p2I −M2 + iϵ). The essential observation is

that if it contained a higher order pole, then one of the three-particle amplitudes, A1 or A2, would

have to be singular on some large subset of the s = 0 hypersurface. But A1 and A2 are three-particle

amplitudes in a physical configuration (because the original amplitude could be taken to be in the

physical configuration and the intermediate particle is on-shell), so they cannot be singular anywhere.

This last statement is also confirmed by an explicit calculation starting from (6.48) - this quantity is

finite in a generic configuration.

Let us now comment on S-matrix singularities at Ei = 0. These do not appear in Lorentz invariant

theories, as they would clearly violate Lorentz invariance. More generally, such singularities cannot

appear if the Lagrangian is local and can be written solely in terms of Xµ1µ2..., ηµν , ϵµνσρ, ∂µ and

∂t (where Xµ1µ2... collectively denotes Lorentz covariant fields). This is because the factor 1/Ei is

generated only when some of the tensor field indices are spatial indices. In that case the associated

polarization tensor e±S has a vanishing temporal component, so it must have a predetermined reference

spinor as we eluded to above:

e+Sαiα̇i(k) =
S∏
i=1

(ϵ.λ̃)αi λ̃α̇i
2k

, e−Sαiα̇i(k) =
S∏
i=1

λ̃αi(ϵ.λ)α̇i
2k

. (6.29)

We see that e±s(k) has a singularity at Ek ≡ k = 0, which might therefore appear also in the helicity

amplitude by virtue of the relation

A4 = eh1,µ1eh2,µ2eh3,µ3eh4,µ4A4,µ1µ2µ3µ4 , (6.30)

11While, strictly speaking, there is no rigorous proof of the Factorization Theorem for massless particles, Feynman
rules entail that tree-level diagrams in perturbation theory retain the stipulated property. Moreover, there is no known
counterexample to the Factorization Theorem for massless particles. With this in mind, we will follow the many papers we
have mentioned previously in the context of this theorem and assume that the theorem holds for massless theories.
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where A4,µ1µ2µ3µ4 is the covariant amplitude, which only has singularities when an exchanged parti-

cle goes on-shell. As we have explained above, we will be assuming that the Lagrangian is written in

terms of Lorentz covariant fields so we don’t expect such inverse powers of the energies to arise, but

in many cases we see that allowing for these inverse powers does not affect our results.

Summarizing, four-particle scattering amplitudes in boost-invariant or boost-violating theories

have the following singularity structure:

• The amplitude has only simple poles in the Mandelstam variables s, t and u, as well as poles in

the individual energies Ei.

• On the s, t and u poles the amplitude factorises into a product of three-particle amplitudes.

These properties form the basis of the four-particle test [29]. This test requires the singularity

structure of four-particle amplitudes to satisfy these two conditions, and for each pole in s, t or u to be

interpreted as the propagation of a physical particle. Ensuring consistency in all three channels (s,t and

u) is highly non-trivial and rules out almost all interactions for massless particles in boost-invariant

theories, see [29, 28, 208–210, 218]12. The reason why the test is non-trivial is that the residue on say

the s-channel pole can contain inverse powers of t and u, as we shall see. In this chapter we will see

that the four-particle test is also very constraining when we allow for boost-breaking interactions.

We will use the factorization theorem to constrain the constructible part of the tree-level four-

particle amplitudes. For this application, it will be sufficient that the tree-level propagator corresponds

to a relativistic on-shell condition. If one made the stronger assumption that this is the case also for the

full non-perturbative propagator, then one might be able to use our results to derive some constraints

on non-perturbative four-particle amplitudes.

It should be noted that for massless particles, the s → 0 limit of the amplitude makes perfect

sense in Minkowski spacetime but this is not the case in curved spacetime. For example, in an FLRW

spacetime this limit always takes us outside the validity of the flat-space approximation. Hence, the

constraints imposed by Theorem 2.1 apply to flat spacetime but care is required when considering

cosmological spacetimes. We discuss this in detail in Section 6.5.

12The test was originally formulated using BCFW momentum shifts [160]. Indeed, the authors of [29] demanded that
two different BCFW shifts gave rise to the same answer for the four-particle amplitudes. As discussed in [28, 209], the test
can actually be formulated as above where only complex factorisation is required.
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Figure 6.2: Exchange diagram. Circles represent non-perturbative, exact 3-particle amplitudes.

6.3 Three-particle amplitudes

In this section we construct general on-shell three-particle amplitudes using the spinor helicity

techniques outlined in Section 6.2. Then, as an example, we discuss the cases where all three particles

are identical.

6.3.1 Non-perturbative structure for all spins

We assume that every particle is massless, has a definite helicity, and satisfies the relativistic on-shell

condition pµpµ = 0. We take all particles as incoming and therefore by momentum conservation we

have

pµ1 + pµ2 + pµ3 = 0, (6.31)

where 1, 2, 3 label the external particles. The amplitudes only depend on the observable quantities

that can be defined on the asymptotic states and these in turn can be fully recovered from the spinors

and helicities hi. The amplitudes are then only a function of λ(i), λ̃(i) and hi. Indeed, written in terms

of the spinor helicity variables, (6.31) becomes

λ(1)α λ̃
(1)
α̇ + λ(2)α λ̃

(2)
α̇ + λ(3)α λ̃

(3)
α̇ = 0. (6.32)

The simple form of this equation is the main reason why computations are considerably simpler when

dealing with relativistic on-shell conditions. For any other on-shell condition, such as linear or general,

(6.32) does not hold and the following analysis needs to be modified.

As explained in Section 6.2, the quantities from which we should construct amplitudes are the
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three inner products: ⟨ij⟩, [ij], (ij). However, momentum conservation and the fact that each particle

is on-shell ensures that any contraction of two distinct momenta is zero. Indeed,

(p1 + p2)
2 = 2p1 · p2 = p23 = 0, (6.33)

(p2 + p3)
2 = 2p2 · p3 = p21 = 0, (6.34)

(p1 + p3)
2 = 2p1 · p3 = p22 = 0. (6.35)

In the spinor helicity variables this translates into

⟨12⟩[12] = ⟨13⟩[13] = ⟨23⟩[23] = 0. (6.36)

It follows that if ⟨12⟩ ≠ 0, we have [12] = 0 but by momentum conservation we have

⟨12⟩[23] = −⟨11⟩[13]− ⟨13⟩[33] = 0, (6.37)

and therefore [23] = 0 too. We also have ⟨12⟩[13] = 0 which requires [13] = 0. So having one

angle bracket non-zero requires the three square brackets to vanish and vice versa. This tells us that

three-particles amplitudes split up into holomorphic and anti-holomorphic configurations:

Holomorphic kinematics : [12] = [13] = [23] = 0, (6.38)

Anti-holomorphic kinematics : ⟨12⟩ = ⟨13⟩ = ⟨23⟩ = 0. (6.39)

Furthermore, the off-diagonal components of (ij) are degenerate with other brackets. Indeed for

i ̸= j we can write

(ij)⟨jk⟩ = −(ii)⟨ik⟩, (ij)[ik] = −(jj)[jk], (6.40)

which allows us to solve for the off-diagonal components of (ij) for both the holomorphic and

anti-holomorphic configurations. The brackets we can use to construct amplitudes are therefore

⟨ij⟩, [ij] for i ̸= j and (ii). Recalling that for the relativistic on-shell condition (ii) = 2Ei, we

therefore write the amplitudes as a sum of holomorphic and anti-holomorphic pieces as

A3({λ(i), λ̃(i);hi}) =MH(⟨ij⟩, Ei;hi) +MAH([ij], Ei;hi). (6.41)
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We are now in a position to constrain the amplitude by demanding it scales in the correct way

under a helicity transformation (λ(i), λ̃(i)) 7→ (t−1
i λ(i), tiλ̃

(i)). As explained in Section 6.2, under

this transformation the amplitude scales as

A3({t−1
i λ(i), tiλ̃

(i);hi}) =
3∏
j=1

t
2hj
j A3({λ(i), λ̃(i);hi}), (6.42)

which constrains the dependence of the angle and square brackets. Note that the diagonal round

brackets, or the energies, are invariant under this helicity transformation and so this symmetry does

not constrain how they enter the amplitude. First consider MH , which we can write as

MH(⟨ij⟩, Ei;hi) = ⟨12⟩d3⟨23⟩d1⟨31⟩d2FHh1,h2,h3(E1, E2, E3). (6.43)

Demanding the correct scaling of the amplitudes fixes

d1 = h1 − h2 − h3, (6.44)

d2 = h2 − h3 − h1, (6.45)

d3 = h3 − h1 − h2. (6.46)

Likewise, for MAH we have

MAH([ij], Ei;hi) = [12]−d3 [23]−d1 [31]−d2FAHh1,h2,h3(E1, E2, E3). (6.47)

Now consider the three cases h > 0, h < 0 and h = 0 where h = h1 + h2 + h3 is the sum of

the three helicities. If h > 0, we have d1 + d2 + d3 < 0 meaning that the MH part of the amplitude

would become singular in the entire region defined by ⟨ij⟩ = 0 (as long as FH ̸= 0 in that region).

Three-particle amplitudes cannot have such singularities, so we require FH = 0 whenever ⟨ij⟩ = 0.

But FH is just a function of energies, not of the ⟨ij⟩ brackets, and it is impossible to generate these

brackets from the energies alone. So in fact when h > 0 we require FH = MH = 0 everywhere.

A similar analysis for h < 0 shows that we require FAH = MAH = 0 everywhere. For the third

possibility, h = 0, both contributions to the amplitude can be non-zero.

We can also argue this by locality of the interactions. Let us define the mass dimension of an

object A by dimA where we do not include the functions of energy in the mass dimension. Now since
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each angle and square bracket has mass dimension 1, we have dimMH = −h and dimMAH = h.

The helicity part of the amplitudes cannot have a negative mass dimension as that would require

inverse powers of Lorentzian derivatives in the interactions which cannot occur in a local theory.

We therefore require h ≤ 0 for the holomorphic configuration and h ≥ 0 for the anti-holomorphic one.

In conclusion, three-particle amplitudes for boost-breaking theories take the general form

A3({λ(i), λ̃(i);hi}) =


⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1FHh1,h2,h3(E1, E2, E3), h ≤ 0,

[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2FAHh1,h2,h3(E1, E2, E3), h ≥ 0.

(6.48)

Note that in our convention particles are arranged cyclically in the order 123, and energy conservation∑
Ei = 0 ensures that FH and FAH can be reduced to functions of two variables only. Thus we will

sometimes write

F (E1, E2) ≡ F (E1, E2, E3 = −E1 − E2) . (6.49)

We will also drop the H/AH index unless it is necessary. Qualitatively, therefore, the only difference

between the boost-invariant (see [30, 28]) and boost-breaking amplitudes is an arbitrary function of

the energies that we can add to the latter thanks to the reduced set of symmetries. Our task in Section

6.4 will be to constrain these functions using the four-particle test. To recover the boost-invariant

amplitudes one can simply set FH,AH to a constant.

Before going on to discuss some examples, we first show that the functions FH and FAH are

not independent. They are related by a parity transformation (space inversion) P , which does not

belong to the connected component of the identity of the Lorentz group. The amplitude can either

stay the same (scalar) or inherit a minus sign (pseudoscalar) under P . The transformation of all the

4-momenta (E,p) 7→ (E,−p) can be represented in spinor-helicity formalism by transforming the

spinors according to13

λα 7→ λ′α = (−iλ̃2, iλ̃1) , λ̃α̇ 7→ λ̃′α̇ = (iλ2,−iλ1) , (6.50)

13The presence of a factor of i is due to the requirement that the (+) polarization tensor should be transformed exactly
into the (-) polarization tensor under spatial reflection.
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which leads to [ij] 7→ −⟨ij⟩ and ⟨ij⟩ 7→ −[ij]. The helicities also change sign under P and so the

helicity dependent part of the amplitude transforms as

[12]−d3 [23]−d1 [31]−d2 7→ (−1)d⟨12⟩d3⟨23⟩d1⟨31⟩d2 , (6.51)

where d = d1 + d2 + d3 = −h, and vice versa. Therefore requiring the amplitude to transform as

scalar or psuedoscalar under P fixes

FHh1,h2,h3(E1, E2, E3) = ±(−1)hFAH−h1,−h2,−h3(E1, E2, E3), (6.52)

with + for a scalar transformation and − for the pseudoscalar. We will therefore often quote results

for FH or FAH only.

Let us finally emphasise that we have not assumed anything here other than the symmetries of

the theory and locality. These amplitudes hold completely non-perturbatively and for any external

particles, both bosonic and fermionic14.

6.3.2 Identical particles: symmetric and alternating polynomials

As an example, in this subsection we discuss the three-particle amplitudes for identical spin-S parti-

cles. Note that the spin-statistic theorem implies that S must be an integer in this case i.e. the particles

are bosons. This is clear from (6.48) since for fermions each of the brackets has a fractional exponent

and therefore when we exchange two fermions the amplitude does not transform into minus itself as it

should by Fermi statistics. At the Lagrangian level there is no way to contract the SU(2) indices of

three fermions to create a scalar quantity. This is the case for both boost-invariant and boost-breaking

theories.

There are two fundamentally distinct helicity configurations with either two or three identical

helicities. The corresponding amplitudes have mass dimension S and 3S respectively and so come

from different operators. We can read off the amplitudes from (6.48). First consider the lowest

dimension amplitudes (±S,±S,∓S) which take the form

14Fermions always come in pairs and so the exponents are always integers.
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A3(1
+S2+S3−S) =

(
[12]3

[23][31]

)S
FAH+S,+S,−S(E1, E2), (6.53)

A3(1
−S2−S3+S) =

( ⟨12⟩3
⟨23⟩⟨31⟩

)S
FH−S,−S,+S(E1, E2), (6.54)

where we have eliminated E3 by energy conservation. Now, since particles 1 and 2 have the same

helicity and they are bosons, the amplitudes must be invariant under their exchange. The spinor

helicity part of these amplitudes inherits a factor of (−1)S under this transformation and so the

functions of energy must be symmetric if the particles have even spin and anti-symmetric if they have

odd spin:

FAH+S,+S,−S(E1, E2) = (−1)SFAH+S,+S,−S(E2, E1), (6.55)

FH−S,−S,+S(E1, E2) = (−1)SFH−S,−S,+S(E2, E1). (6.56)

To make further progress, we will assume that the functions F are polynomials divided by powers of

E1, E2 and E1 + E2
15:

F (E1, E2) =
f(E1, E2)

Ea1E
b
2(E1 + E2)c

, (6.57)

It is easy to see that symmetry implies a = b for any spin16.

Now let us restrict to the case of even S where the functions f are required to be symmetric

polynomials. By the fundamental theorem of symmetric polynomials, f can be written purely in

terms of elementary symmetric polynomials. For n variables, there is a single elementary symmetric

polynomial of degree m for all non-negative integers m ≤ n. If we label the n variables as x1 . . . xn

then the degree-m elementary symmetric polynomial is

em(x1, . . . xn) =
∑

1≤j1<j2<...<jm≤n
xj1 . . . xjm . (6.58)

For example, for n = 2 we have

15The factorisation constraints we derive in Section 6.4 will actually hold for more general functions of the energies too.
In local theories with covariant fields we would expect no inverse powers of the energies but our results do indeed apply to
more general scenarios.

16We can naturally assume that a, b and c are minimal. If a > b, then we would have Ea−b2 f(E1, E2) =
±Ea−b1 f(E2, E1) and thus f(E1, E2) would be divisible by E1, contradicting the assumption that n was minimal.
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{1, x1 + x2, x1x2}. (6.59)

On the other hand, if S is odd, the functions of energy in the numerators should be alternating

polynomials. An alternating polynomial17 is defined by the property

Poly(xσ(1), . . . , xσ(n)) = sign(σ)Poly(x1, . . . , xn) , (6.60)

for any permutation σ of the n variables. All alternating polynomials can be written as the Vander-

monde polynomial vn multiplied by sums and products of any number of elementary symmetric

polynomials and numerical coefficients (it’s an ideal on the ring of polynomials). The Vandermonde

polynomial is defined as

Vn(x1, . . . , xn) ≡
∏

1≤i<j≤n
(xj − xi) , (6.61)

and it is an alternating polynomial of order n(n− 1)/2. In the case at hand the functions are of two

variables (n = 2) and therefore the relevant Vandermonde polynomial is V2 = E1 − E2. For the

above amplitudes we therefore have

f+S,+S,−S =

 Poly(E1 + E2, E1E2) for S even,

(E1 − E2)Poly(E1 + E2, E1E2) for S odd,
(6.62)

and similarly for f−S,−S,+S .

The remaining two three-particle amplitudes have mass dimension 3S and take the form

A3(1
+S2+S3+S) = ([12][23][31])S FAH+S,+S,+S(E1, E2, E3), (6.63)

A3(1
−S2−S3−S) = (⟨12⟩⟨23⟩⟨31⟩)S FH−S,−S,−S(E1, E2, E3). (6.64)

Now the amplitudes need to be invariant under the exchange of any two external particles as they

all have the same helicity. Thus, in 6.57 we require a = b = c. For even S the functions f must

be symmetric polynomials, meaning that they are constructed out of the elementary symmetric

polynomials with n = 3, namely

17Notice that the only object that is anti-symmetric under all possible permutations is zero. That’s why anti-symmetric
polynomials don’t exist. The non-trivial objects are alternating polynomials, which are symmetric or anti-symmetric
depending on the sign of the permutation.
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{1, x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3}. (6.65)

For odd S the functions are constructed from these elementary symmetric polynomials multiplied by

the order 3 alternating polynomial V3. We therefore have

f+S,+S,+S =

 Poly(E1E2 + E1E3 + E2E3, E1E2E3) for S even,

V3 (E1, E2, E3)Poly(E1E2 + E1E3 + E2E3, E1E2E3) for S odd,
(6.66)

and similarly for f−S,−S,−S . Note that for n = 3 we haveE1+E2+E3 = 0 since we are constructing

on-shell amplitudes. So there are only two non-trivial elementary symmetric polynomials. Here we

did not eliminate E3 using energy conservation, so as to ensure that the permutation invariance of

F+S,+S,+S remains manifest.

Scalar

If the identical particles are three scalars, i.e. S = 0, then the amplitude is simply a function of the

energies:

A3(1
02030) = F0,0,0(E1, E2, E3). (6.67)

The helicity part of the amplitude disappears because scalars transform in a trivial way. In the

boost-invariant case the amplitude is just a constant F0,0,0 = const.

Photon

For identical S = 1 particles, each of the four amplitudes presented above requires the functions

of energy F±1,±1,∓1 and F±1,±1,±1 to be alternating polynomials, possibly divided by powers of

E1E2 and (E1 + E2). This rules out the possibility of three-particle amplitudes for a photon in a

boost-invariant theory, since a constant polynomial cannot be alternating. More generally any odd

number of photons cannot self-interact. This well-known fact can be understood at the level of a

Lagrangian where three-particle interactions for a single massless vector should be invariant under

the U(1) gauge symmetry Aµ → Aµ + ∂µΛ(x). The building block of invariant Lagrangians is

the field strength Fµν = ∂µAν − ∂νAµ with the indices contracted with ηµν or ϵµνρσ to produce a

Lorentz scalar. Three-particle vertices therefore contain at least three derivatives and so the mass
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dimension of the three-particle amplitudes is dimA3 ≥ 3. This is the Lagrangian reason why the

(±1,±1,∓1) amplitudes vanish since they have mass dimension 1. For the (±1,±1,±1) amplitudes

we can try to contract three powers of the field strength. However, all Lorentz scalars cubic in the

fields, e.g. FµνF νρF ρµ, ϵµνρσFµνFρκFσκ, vanish by symmetry18. This Lagrangian interpretation

requires us to jump through a few hoops, most notably the introduction of a gauge redundancy to

remove the additional degrees of freedom required to write down a manifestly Lorentz invariant and

local Lagrangian. The on-shell approach where such redundancies are not required is clearly more

efficient and elegant.

In a boost-breaking theory, we can use alternating polynomials in energies to ensure that each of

the four three-particle amplitudes have the correct Bose symmetry. It is interesting that we can write

down an amplitude of this form even though it has no boost-invariant counterpart. But one must first

check if these amplitudes pass the four-particle test before declaring that such a theory is consistent

(within our assumptions).

Graviton and higher spins

For identical particles with S ≥ 2 and S even, we can write down three-particle amplitudes in both

boost-invariant and boost-breaking theories, while for particles with S odd we can only write down

such amplitudes in a boost-breaking theory, just like for S = 1. Note that the graviton helicity

amplitudes are literally the square of the photon amplitudes. When we allow for multiple spin-1

particles, where Bose symmetry in boost-invariant theories is satisfied thanks to the anti-symmetric

couplings (the structure constants), the structure of the amplitude is unchanged up to the addition

of some colour indices. This simple observation is one of the reasons for the symbolic expression

“GR = YM2” [219].

6.4 Four-particle amplitudes and the four-particle test

Having constructed general, non-perturbative three-particle amplitudes, we are now in the position to

constrain the almost arbitrary functions of energy using the four-particle test. As explained in Section

6.2, tree-level four-particle amplitudes contain poles and regular pieces. The latter correspond to

18We can write down non-zero gauge invariant operators at quartic or higher order in the field strength, which describe the
interaction of an even number of photons. Such terms appear in the Euler-Heisenberg Lagrangian, an effective description
of QED below the mass of the electron.
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contact diagrams while the former come from particle exchange illustrated in Figure 6.2. When the

exchanged particle is taken on-shell, the amplitude approaches a singularity whose residue should

factorise into a product of three-particle amplitudes. We use this feature to bootstrap consistent

four-particle amplitudes due to exchange diagrams in boost-breaking theories. This bootstrap does not

constrain the regular parts of the four-particle amplitude; we are constraining the singularity structure

of four-particle amplitudes and therefore the cubic couplings in the process.

Figure 6.3: s, t and u-channel exchange diagrams, respectively.

To illustrate the idea behind this approach, we may first consider a naive attempt at writing down

a four-particle amplitude that factorises into three-particle amplitudes. We have three channels, shown

in figure 6.3, and so one could initially allow for three separate terms with an order one pole in s, t or

u as follows19

A4
?
=

A3(1, 2,−I)×A3(3, 4, I)

s
+

A3(1, 3,−I)×A3(2, 4, I)

t
+

A3(1, 4,−I)×A3(2, 3, I)

u
(6.68)

where I and −I label the exchanged particle outgoing from the vertex involving particle 1, or incom-

ing into that vertex respectively20. All external particles are incoming. If more than one intermediate

particle is allowed, we need to sum over all the species of I . Now it would appear that this amplitude

has the residues required by Theorem 6.2.1. However, it is possible that A3(1, 2,−I)×A3(3, 4, I),

19We remind the reader that we are working with relativistic dispersion relations for each particle meaning that we only
encounter poles in the usual boost-invariant Mandelstam variables.

20Throughout our analysis in the spinor helicity variables we send pI → −pI by λ(I) → λ(I), λ̃(I) → −λ̃(I). See
Appendix 6.7.1 for a justification of this method.
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when analytically continued beyond the loci of s = 0, has a pole at t = 0 or u = 0. In this case,

the first term contributes to the t = 0 or u = 0 residue and the formula 6.68 could give an incorrect

residue at t = 0. Finding a four-particle amplitude with the correct residues in all three channels is

therefore a non-trivial matter. This is known as the four-particle test [29, 209], and as we shall see, it

allows us to constrain, or altogether eliminate, certain types of cubic interactions in boost-breaking

theories.

Before we begin, we must identify a set of SO(3)-invariant variables that are sufficient to fully

determine the on-shell data for the scattering of four particles. In addition to the four external helicities,

we must use some of the brackets ⟨ij⟩, [ij] and (ij), which constitute a complete list of invariants

of mass dimension 1. However, not all of these are independent: all but one of the off-diagonal

(ij) brackets can be determined in terms of the other brackets and the energies by using momentum

conservation.21 Therefore, any SO(3) invariant can be written in terms of ⟨ij⟩, [ij], Ei and just one

of the off-diagonal (ij). These variables are still not all independent, but this won’t present a problem

for us. On the other hand, it must be emphasized that without at least one (ij) bracket we would be

unable to fully determine the kinematic data in the general case. This means that in boost-breaking

theories, four-particle amplitudes could depend on one of the (ij)’s and this dependence cannot be

eliminated by application of bracket identities.

There is a special class of Lagrangians for which four-particle amplitudes are functions of ⟨ij⟩,
[ij] and Ei only. These Lagrangians take the form

L = L [Xµ1µ2..., ηµν , ϵµνσρ, ∂µ, ∂t] , (6.69)

where Xµ1µ2... collectively denotes Lorentz covariant fields. If a physical four-particle amplitude

can be written solely in terms of ⟨ij⟩, [ij] and Ei, then there exists a Lagrangian of the form (6.69)

which generates this amplitude. Such a Lagrangian can be constructed as follows: first, write down a

Lorentz-invariant Lagrangian that generates the four-particle amplitude with the energy dependence

stripped off, and then insert time derivatives acting on appropriate fields to reinstate the desired energy

dependence of the amplitude. Suppose, on the other hand, that a four-particle amplitude in some

theory cannot be written without at least one round bracket (ij) (which, as we remarked, cannot be

21We verified this via algebraic manipulation in Mathematica.
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determined solely in terms of the ⟨ij⟩, [ij] and Ei). Then the corresponding Lagrangian must depend

on some objects other than the ones listed in (6.69). For example, the Larangian could be constructed

out of SO(3) covariant fields rather than Lorentz covariant ones.

As an example of the latter kind of theory, let us consider the Framid EFT [162] which arises

from the spontaneous breaking of Poincaré symmetry to an unbroken subgroup of translations and

rotations. Indeed, the Framid degrees of freedom are the Goldstone modes of broken Lorentz boosts.

With respect to the unbroken SO(3) symmetry, the Framid consistents of three degrees of freedom: a

massless tranverse vector and a massless longitudinal scalar with speeds cT and cL. Taking cL = cT ,

in which the scalar and vector modes have identical propagation speeds as we have been assuming in

this work, the Framid Lagrangian up to cubic order in fields takes the form [162]

L =
M2

1

2

(
η̇2i − c2L∂iηj∂iηj

)
+M2

1

(
c2L − 1

)
ηi∂iηj η̇j +O

(
η4
)
. (6.70)

After defining rescaled fields χi = cLM1ηi and replacing twith the rescaled time coordinate t′ = t/cL,

we obtain

L =
1

2

(
˙⃗χ2 − ∂iχj∂iχj

)
+

(
c2L − 1

c2LM1

)
χi∂iχjχ̇j +O

(
χ4
)
. (6.71)

Using the above Lagrangian (and rescaled coordinates), we computed the four-particle amplitude

A4(1
02+304−) from tree-level exchange to verify and illustrate that it has an explicit dependence on

one of the off-diagonal (ij), which cannot be eliminated. The result is the simplest, albeit still quite

lengthy, if we allow for the dependence on (42), in which case the amplitude reads as follows:

A4(1
02+304−) =

1

4e4

(
c2L − 1

c2LM1

)2

×

×
{1
s

[
F(1,a)(E1, E2, E3, E4; s, t)(42)

2

+F(1,b)(E1, E2, E3, E4; s, t)[23]⟨34⟩(42)

+F(1,c)(E1, E2, E3, E4; s, t)[23]
2⟨34⟩2

]
+
1

t

[
F(2,a)(E1, E2, E3, E4; s, t)(42)

2

+F(2,b)(E1, E2, E3, E4; s, t)[23]⟨34⟩(42)
]

+
1

u

[
F(1,a)(E3, E2, E1, E4;u, t)(42)

2

−F(1,b)(E3, E2, E1, E4;u, t)[23]⟨34⟩(42)
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+F(1,c)(E3, E2, E1, E4;u, t)[23]
2⟨34⟩2

] }
, (6.72)

where functions F(i,x) are defined in Appendix 6.7.2 and e4 ≡ E1E2E3E4.

Since an ansatz that depends on round brackets would be too general to be constrained effectively,

to make progress we will assume that four-particle amplitudes take the form

A4 = A4 (⟨ij⟩, [ij], s, t, u, Ei) , (6.73)

meaning that the underlying Lagrangians take the form of (6.69). For more general Lagrangians, we

would have to allow for the presence of (42) (or some other off-diagonal (ij)) in the four-particle

amplitude. We plan to come back to this in the future.

6.4.1 Single spin-S particle

We begin by constraining the lowest dimension three-particle amplitudes for identical spin-S bosons

presented in (6.53), namely the (±S,±S,∓S) amplitudes. Consider the four-particle amplitude

A4(1
−S2+S3−S4+S) due to exchange of the spin-S particle. By little group scaling we can fix the

helicity part of the amplitude leaving only the dependence on the little group invariants (s, t, u, Ei)

left to fix by the four-particle test. The amplitude takes the general form

A4(1
−S2+S3−S4+S) = ⟨13⟩2S [24]2SG(s, t, u, Ei), (6.74)

and its mass dimension (recall that we don’t count the explicit energy dependence in the mass

dimension) is

dimA4 = 4S + dimG. (6.75)

Now for exchanges in the s and u channels both constituent three-particle amplitudes have mass

dimension S and this can also be achieved in the t channel for one of the two possible helicity

configurations of the exchanged particle. Since factorisation requires lims→0(sA4) = A3 ×A3, for

the case at hand the mass dimension of the four-particle amplitude is

dimA4 = 2S − 2. (6.76)
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By equating (6.75) and (6.76) we find that the mass dimension of G satisfies

dimG = −2S − 2. (6.77)

However, locality dictates that the amplitude can only contain simple poles in s, t and u and so we

require dimG ≥ −6 yielding the constraint

S ≤ 2. (6.78)

This tell us that the above four-particle amplitude is inconsistent for bosonic particles with S ≥ 3,

even in boost-breaking theories. We require the corresponding (±S,±S,∓S) amplitudes to vanish,

so we set F−S,−S,+S = F+S,+S,−S = 0 for S ≥ 3. This very simple argument leads to a profound

result: massless, higher spinning particles cannot have low-energy cubic self-interactions (under the

assumption that the underlying Lagrangian is written in terms of covariant fields).

Let us consider this amplitude in more detail for S = 0, 1, 2 where dimensional analysis did

not exclude the possibility of consistent factorization. In the s and u channels there are two distinct

diagrams since we have two choices for the helicity configuration of the exchanged particle (see Figure

6.4 for the two s-channel possibilities). In the t channel there is only one diagram. We therefore have

two residues to compute in the s and u channels and we label these as R−+
s , R+−

s and R−+
u , R+−

u .

Using the three-particle amplitudes (6.53) the residue on the s = 0 pole is

Figure 6.4: Two choices for the helicity configuration of the exchanged particle.

Rs = R−+
s +R+−

s (6.79)

=

( ⟨I1⟩3
⟨12⟩⟨2I⟩

)S (
[4I]3

[I3][34]

)S
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)
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+

(
[2I]3

[I1][12]

)S ( ⟨I3⟩3
⟨34⟩⟨4I⟩

)S
F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3),

where we have used energy conservation to eliminate EI . Now in the spinor helicity variables there is

not a unique way to approach s = 0. We have s = ⟨12⟩[12] = ⟨34⟩[34] = 0 and this has two main

solutions. If [12] = 0, then by momentum conservation we have 0 = [12]⟨23⟩ = [14]⟨34⟩ and so to

avoid imposing additional constraints on the kinematics we have to choose ⟨34⟩ = 0. Similarly, if

⟨12⟩ = 0, then [34] = 0 too.

For [12] = ⟨34⟩ = 0, the second term in (6.79) vanishes22 leaving

Rs = R−+
s =

( ⟨I1⟩3
⟨12⟩⟨2I⟩

)S (
[4I]3

[I3][34]

)S
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)

=
(⟨13⟩2[24]2)S

tS
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4), (6.80)

where using conservation of momentum at each vertex we eliminated all factors of I , for example,

⟨1I⟩[I4] = ⟨12⟩[24]. For ⟨12⟩ = [34] = 0 the first term vanishes leaving

Rs = R+−
s =

(
[2I]3

[I1][12]

)S ( ⟨I3⟩3
⟨34⟩⟨4I⟩

)S
F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3)

=
(⟨13⟩2[24]2)S

tS
F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3). (6.81)

Again we see how S ≥ 3 amplitudes are ruled out: for S ≥ 3, the s-channel residue contains higher

order poles when t = 0 and so the corresponding amplitude is inconsistent. One may also think that

S = 2 is problematic since the denominator is quadratic in t. However, when s = 0 we can write

t2 = −tu. Before moving on to the other channels, we note that the residue in the s-channel should

not differ if we approach the pole in two different ways and so we match the two different expressions

for Rs yielding our first constraint on the three-particle amplitudes23:

F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4)

= F+S,+S,−S(E2,−E1 − E2)F−S,−S,+S(−E3 − E4, E3). (6.82)

22Once we eliminate I from all brackets, one sees that the numerator vanishes faster than the denominator.
23Here is a brief justification. Near s = 0, the schematic form of the amplitude isA ∼ s−1(f1(λ)F1(E)+f2(λ)F2(E)),

where fi are functions of the Lorentz invariants and Fi are functions of the energies only. The amplitude has the same
dependence on the Lorentz invariants in the two limits, which can then differ only by a function of energies. Hence, we can
write A ∼ s−1f(λ)F (E). Since we can take either of the limits ⟨12⟩ → 0 or [12] → 0 while keeping the energies fixed,
we must get the same F (E), which is to be identified with the energy-dependent functions in the main text.
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In the boost-invariant limit the two residues are trivially the same.

The u-channel also contains two diagrams and the corresponding residues can easily be obtained

from the s-channel ones by interchanging particles 2 and 4. With (6.82) imposed the two residues are

equivalent. We have, for example,

Ru = R−+
u =

(⟨13⟩2[24]2)S
tS

F+S,+S,−S(E4,−E1 − E4)F−S,−S,+S(−E3 − E2, E3). (6.83)

Finally, the t-channel is qualitatively different since it involves two particles of the same helicity on

each side of the diagram. There is therefore only a single choice for the exchange particle’s helicity

if this contribution to the amplitude is to have the same mass dimension as the other channels. The

residue is

Rt =

( ⟨13⟩3
⟨3I⟩⟨I1⟩

)S (
[24]3

[4I][I2]

)S
F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4)

=
(⟨13⟩2[24]2)S

sS
F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4). (6.84)

In summary, the residues are

Rs =
(⟨13⟩2[24]2)S

tS
F−S,−S,+S(−E1 − E2, E1)F+S,+S,−S(E4,−E3 − E4), (6.85)

Rt =
(⟨13⟩2[24]2)S

sS
F−S,−S,+S(E1, E3)F+S,+S,−S(E2, E4), (6.86)

Ru =
(⟨13⟩2[24]2)S

tS
F+S,+S,−S(E4,−E1 − E4)F−S,−S,+S(−E3 − E2, E3), (6.87)

and are subject to (6.82). Let us now zoom in on the three different allowed values for S.

Scalar

For a single scalar, S = 0, consistent factorisation is trivial. Indeed, each residue is simply a function

of the energies and does not contain spurious poles. The consistent four-particle amplitude is

A4(1
0, 20, 30, 40) =

F (−E1 − E2, E1)F (E4,−E3 − E4)

s

+
F (E1, E3)F (E2, E4)

t

+
F (E4,−E1 − E4)F (−E3 − E2, E3)

u
, (6.88)
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where F ≡ F0,0,0. The only constraint we have on the function of energy is that it should be a

symmetric function as explained in Section 6.2.

We can understand this result from a Lagrangian point of view. In the boost-invariant case the

three-particle amplitude is a constant with consistent factorisation of the four-particle amplitude for

scalar scattering. One may wonder about cubic vertices with derivatives. It is easy to contract the

indices in a Lorentz invariant way but these vertices always involve, up to integration by parts, the

2 = ∂µ∂µ operator acting on at least one of the fields and therefore it vanishes on-shell and can be

removed by a field redefinition in favour of four-point vertices which only contribute to the regular

part of the four-particle amplitude.

In the boost-breaking case we write operators using the usual Lorentzian derivative ∂µ, but also

have the freedom to add extra time derivatives. Because any terms with Lorentzian derivatives can

be removed by a field redefinition, the only non-trivial three scalar vertices have zero derivatives,

corresponding to a constant amplitude, or contain time derivatives only giving rise to functions

of energy in the amplitude. A well-known example is the ϕ̇3 vertex appearing in the flat space,

decoupling limit of the EFT of single-field inflation. Generalisations with more derivatives are easy to

write down.

Photon

For a photon, S = 1, consistent factorisation becomes a nontrivial problem: Rs has a pole when

t = 0, Rt has a pole when u = 0, and Ru has a pole when s = 0. Therefore the full amplitude must

take the form

A4(1
−12+13−14+1) = ⟨13⟩2[24]2

(
A

st
+
B

tu
+
C

us

)
, (6.89)

where A,B and C are constrained by

Rs = ⟨13⟩2[24]2
(
C −A

u

)
, (6.90)

Rt = ⟨13⟩2[24]2
(
A−B

s

)
, (6.91)

Ru = ⟨13⟩2[24]2
(
B − C

t

)
, (6.92)
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where again we have used s+ t+ u = 0. As explained in Section 6.3, F−1,−1,+1 and F+1,+1,−1 are

proportional with the proportionality factor ± for parity odd and even theories respectively. Since

only their product appears in each residue the following analysis is the same in both cases, so without

loss of generality let us take F = F−1,−1,+1 = F+1,+1,−1. Matching our two expressions for the

residues yields

C −A = −F (E2,−E1 − E2)F (−E3 − E4, E3), (6.93)

A−B = F (E1, E3)F (E2, E4), (6.94)

B − C = F (E4,−E1 − E4)F (−E2 − E3, E3), (6.95)

with

F (−E1 − E2, E1)F (E4,−E3 − E4) = F (E2,−E1 − E2)F (−E3 − E4, E3), (6.96)

such that the residues in the s and u channels are the same regardless of how we approach the pole.

Taking the sum of (6.93), (6.94) and (6.95) yields the main S = 1 factorisation constraint

F (E2,−E1 − E2)F (−E3 − E4, E3)

− F (E1, E3)F (E2, E4)

− F (E4,−E1 − E4)F (−E2 − E3, E3) = 0, (6.97)

which must be satisfied for all Ei subject to E1 + E2 + E3 + E4 = 0.

Recall from Section 6.3 that F must be an alternating polynomial (possibly divided by some

powers of energies) such that the three-particle amplitudes have the correct Bose symmetry. Since F

is an alternating function of two variables, we can write

F (x, y) =
(x− y)P [x+ y, xy]

xmym(x+ y)k
, (6.98)

with xy ∤ P [x + y, xy] if m > 0 and (x + y) ∤ P [x + y, xy] if k > 0 (∤ means “does not divide”).

Writing the factorisation constraint (6.97) in terms of P , we can prove that it requires P ≡ 0. The rea-

son for this is that P , as we show in Appendix 6.7.3, has to satisfy infinitely many distinct constraints

of the form P [x, akx
2] = 0 ∀x and thus we need (akx

2 − y) to divide P [x, y] for all the ak, which is
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impossible if P is a nonzero polynomial. We therefore conclude that the four-particle test requires the

(±1,±1,∓1) three-particle amplitudes for a single photon in a boost-breaking theory (formulated in

terms of covariant fields) to vanish: even when boosts are broken there are no consistent three-point

vertices for a single photon giving rise to these lowest dimension amplitudes. Note that this result

did not require us to impose the additional constraint (6.96) from matching the residues. One may

wonder if consistent amplitudes are possible if we include additional particles, but we will show in

Section 6.4.2 that additional exchanges do not change this result.

In a theory with only a single photon the four-particle test cannot constrain the other three-particle

amplitudes, namely those with (±1,±1,±1) helicities since these amplitudes do not contain inverse

powers of brackets and therefore residues constructed out of these amplitudes cannot contain poles.

These three-particle amplitudes are therefore only constrained by Bose symmetry which for S = 1

tells us that F−1,−1,−1 and F+1,+1,+1 are alternating functions in the three energies. Amplitudes of

the lowest possible dimension are24

A3(1
−12−13−1) = g⟨12⟩⟨23⟩⟨31⟩(E1 − E2)(E2 − E3)(E1 − E3)

E1E2E3
, (6.99)

A3(1
+12+13+1) = ±g[12][23][31](E1 − E2)(E2 − E3)(E1 − E3)

E1E2E3
, (6.100)

while the first amplitudes arising from a U(1) gauge invariant theory are

A3(1
−12−13−1) = g′⟨12⟩⟨23⟩⟨31⟩(E1 − E2)(E2 − E3)(E1 − E3), (6.101)

A3(1
+12+13+1) = ±g′[12][23][31](E1 − E2)(E2 − E3)(E1 − E3), (6.102)

where we allow for parity-even and parity odd possibilities and g, g′ are coupling constants. All of

these amplitudes are consistent since the four-particle test for photon scattering does not impose any

conditions on (+1,+1,+1) and (−1,−1,−1) interactions.

Let us briefly comment on the Lagrangian approach to all-plus (and all-minus) amplitudes. Despite

the fact that (6.99) - (6.100) are allowed by symmetry and the 4p test, they cannot arise from a gauge

invariant cubic term. This is because gauge invariance requires us to construct interactions out of the

24We acknowledge Maria Alegria Gutierrez’s findings on the possible structures of F±1,±1,±1.
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field strength Fµν , which already contains three derivatives, but FµνF νρF
ρ
µ vanishes identically. In

contrast, for (6.101) - (6.102) there exists an underlying local Lagrangian which is gauge invariant.

By taking boost-invariant interactions and adding time derivatives we find both a parity-even and

parity-odd possibility given by

F̈µνḞ
ν
ρF

ρ
µ, ϵµνρσF̈µνḞρκFσ

κ. (6.103)

In Appendix 6.7.4 we show that the latter interaction does indeed give rise to the purported amplitudes

(6.101) - (6.102). The calculation for the first interaction is similar.

In conclusion, boost-breaking theories of a single photon do exist but any gauge invariant cubic

interactions require at least 6 derivatives meaning that its low energy consequences are heavily

suppressed. In addition, in Section 6.4.3 we will show that in the presence of gravity these interactions

do not pass the four-particle test!

Graviton

The graviton, S = 2, is the final case to consider. Here we see that each residue contains a pole in

the other two Mandelstam variables and so consistent factorisation is non-trivial. This tells us that a

four-particle amplitude with consistent factorisation must take the form

A4(1
−22+23−24+2) = ⟨13⟩4[24]4 A

stu
, (6.104)

with the function A constrained by matching to each residue. Our S = 2 factorisation conditions are

−A = F (−E1 − E2, E1)F (E4,−E3 − E4) (6.105)

= F (E1, E3)F (E2, E4), (6.106)

= F (E4,−E1 − E4)F (−E3 − E2, E3), (6.107)

where again we have dropped the subscripts denoting the helicities, and cover both parity even and

parity odd cases. We also need to satisfy (6.82).

In Appendix 6.7.3 we show that the only solution to this set of equations, given that F is now a
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symmetric polynomial multiplied by inverse energies, is F = const. This reduces the (±2,±2,∓2)

three-particle amplitudes, and the four-particle amplitude due to these vertices, to the boost-invariant

limit. The four-particle amplitude is then what one finds in General Relativity (GR). Indeed, in

this boost-invariant limit the three-particle amplitudes have mass dimension 2 which is due to the

two-derivative nature of the Einstein-Hilbert action. Note that the minus sign in the overall amplitude

is because gravity is an attractive force. We denote the magnitude of the three-gravity coupling as κ.

As with the photon case, we may have anticipated this result from a Lagrangian point of view.

In GR the required gauge redundancy is diffeomorphism invariance under which the spacetime

coordinates transform. Furthermore, the quantum effective theory of GR is best understood by

expanding the Einstein-Hilbert action around the vacuum solution gµν = ηµν + hµν . One finds

a tower of two-derivative terms with each coupling fixed by diffeomorphisms relating operators

at different orders in hµν . Given that in this work the two-derivative kinetic term is assumed to

be of the boost-invariant form, adding time derivatives to the cubic vertex would break the (lin-

earised) diffeomorphsim symmetry and one would therefore expect issues to arise. However, let us

again emphasise that although this Lagrangian interpretation can yield some intuition, the on-shell

analysis presented here is preferable given that it is independent of gauge redundancies and field redef-

initions. As we shall see in Section 6.4.3, the analysis is also robust against adding additional particles.

Now in contrast to the photon case, here we can constrain the other three-particle amplitudes

(±2,±2,±2) thanks to the non-vanishing GR amplitudes. The dimension 6 amplitudes are

A3(1
−22−23−2) = (⟨12⟩⟨23⟩⟨31⟩)2 F−2,−2,−2(E1, E2, E3), (6.108)

A3(1
+22+23+2) = ([12][23][31])2 F+2,+2,+2(E1, E2, E3), (6.109)

where F−2,−2,−2 and F+2,+2,+2 are symmetric polynomials. Now consider the four-particle amplitude

A4(1
+2, 2+2, 3+2, 4−2). We can arrange the helicities of the exchanged particle such that each residue

has mass dimension 8 and going through an analysis mirroring those above we see that the amplitude

takes the form

A4(1
+2, 2+2, 3+2, 4−2) = [12]4[23]4⟨24⟩4 B

stu
, (6.110)

and consistent factorisation requires
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−B =κF+2,+2,+2(E1, E2,−E1 − E2) (6.111)

=κF+2,+2,+2(E1, E3,−E1 − E3) (6.112)

=κF+2,+2,+2(E2, E3,−E2 − E3). (6.113)

It is clear that the only solution to this system, for generic energies, is F+2,+2,+2 = const. We therefore

also have F−2,−2,−2 = const by parity and so the amplitudes are reduced to their boost-invariant

limits.

At the Lagrangian level, these mass dimension 6 three-particle amplitudes are due to terms cubic

in the Riemann tensor. Note that there are no three-particle amplitudes with mass dimension 4.

One may expect terms quadratic in curvature, R2, R2
µν and R2

µνρσ, to give rise to mass dimension 4

amplitudes. However, in 4D the Riemann squared term is degenerate with the other two up to the

Gauss-Bonnet total derivative and both of these can be removed by a field redefinition since they

are proportional to Rµν which vanishes on-shell. One may also wonder about terms with four or

more powers of curvature, but these do not contribute to three-particle amplitudes since at cubic order

in fluctuations at least one curvature would need to be evaluated on the flat background where it

vanishes.

Brief Summary

Let us briefly summarise our results for a single spin-S particle:

• For S = 0 factorisation is trivial with each residue a function of the external energies.

• For S = 1 the four-particle test forces the leading order three-particle amplitudes to vanish.

This result assumes that the functions of energies are polynomials divided by some powers of

the energies, but does not rely on any specific truncation of such polynomials. The highest

dimension three-particle amplitudes are unconstrained by the four-particle test and at the level

of a Lagrangian, the leading order gauge invariant vertices are (6.103).

• For S = 2 all three-particle amplitudes are forced to their boost-invariant limit. These are

the amplitudes in GR with the addition of a term cubic in curvature. Again we assume that

the functions of energies are polynomials divided by some powers of energies and our result

does not rely on a truncation of the numerator. Lorentz violation in graviton cubic vertices is

therefore impossible for a relativistic on-shell condition, in contrast to the photon.
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• For S ≥ 3 the four-particle test cannot be passed and there cannot be any cubic self-interactions

for these particles, at least to leading order in derivatives. This is potentially tricky to understand

at the level of a Lagrangian, but here simple dimensional analysis and the four-particle test

ruled out these vertices.

In the following sections we will see that these results are robust against including additional massless

particles.

6.4.2 Couplings to a photon: Compton scattering and beyond

We now move to couplings between spin-S particles and a photon. We take S ̸= 1 as we will consider

multiple spin-1 particles in Section 6.4.4. Apart from this restriction, we allow for both bosonic and

fermionic particles. We initially consider Compton scattering A4(1
−S
a , 2+1, 3+Sb , 4−1) to constrain

the (+S,−S,±1) amplitudes, allowing for multiple spin-S particles since in the boost-invariant limit

a single copy cannot have a U(1) charge. These amplitudes have mass dimension 1 and so correspond

to the familiar cubic couplings of a charged particle. We then present a complete analysis, i.e. we

constrain all amplitudes that can be constrained, for a theory of a single scalar coupled to a photon.

Couplings to a graviton are studied in Section 6.4.3.

Compton scattering

Consider the amplitude A4(1
−S
a , 2+1, 3+Sb , 4−1) with dimA4 = 0. Each residue must have mass

dimension 2 which in turn must come from two mass dimension 1 three-particle amplitudes25. First

consider the s-channel where there are two possibilities for the spin of the exchanged particle. We

can exchange a spin-S particle or a spin-|S − 2| particle. However, we find that the latter case yields

spurious poles for all S and so consistency demands that the (∓S,±(S − 2),±1) amplitudes vanish.

For the former case we use the three-particle amplitudes

A3(1
−S
a , 2+Sb , 3−1) = ⟨12⟩−1⟨23⟩1−2S⟨31⟩2S+1FHab (E1, E2), (6.114)

A3(1
−S
a , 2+Sb , 3+1) = [12]−1[23]2S+1[31]1−2SFAHab (E1, E2), (6.115)

25It is not possible to exchange a particle such that one three-particle amplitude is dimensionless and the other has mass
dimension 2.
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where we have dropped the helicity subscripts on the F ’s in favour of the internal indices (a, b)

labelling the external spin-S particles, and have used energy conservation to eliminate E3. Computing

the s-channel residue we find

(Rs)ab =
(⟨14⟩[23])2S(⟨34⟩[23])2−2S

u

∑
e

FAHae (E1,−E1 − E2)F
H
eb (−E3 − E4, E3), (6.116)

where we have summed over the possible spin-S exchanged particles.

Moving to the t-channel, we see that we must exchange a photon to realise the desired mass

dimension. A non-zero residue then requires non-zero three-photon amplitudes (−1,+1,±1). In

Section 6.4.1 we showed that in the absence of other particles these amplitudes must vanish but since

we have now included additional particles, we have to check if this result still holds. Going back to

the amplitude A4(1
−1, 2+1, 3−1, 4+1), we see that in the s and u channels only photon exchange can

yield a dimensionless amplitude while in the t-channel we can exchange a photon, as we considered

in Section 6.4.1, but can also exchange a spin-3 particle. The required three-particle amplitudes are

(±1,±1,∓3) but we find that such a residue induces spurious poles in t and therefore consistency

requires these three-particle amplitudes to vanish. So our result in Section 6.4.1 on the absence of a

consistent mass dimension 1 three-particle amplitude for photons is unchanged when we allow for

additional exchanges. It follows that there is no t-channel contribution for Compton scattering.

Finally, for u-channel exchange we again find two possibilities for the exchanged particle: we

can exchange a spin-S particle or a spin-(S + 2) particle. As in the s-channel we find that the latter

choice yields spurious poles for all S and so the (∓S,±(S + 2),∓1) amplitudes must vanish. For

the former case we find that the residue is

(Ru)ab =
(⟨14⟩[23])2S(⟨34⟩[23])2−2S

s

∑
e

FHae(E1,−E1 − E4)F
AH
eb (−E3 − E2, E3), (6.117)

where again we have summed over the possible spin-S exchanged particles. Now we see a fundamental

difference between the two cases S < 1 and S > 1. For S > 1, each residue contains a spurious

pole in (⟨34⟩[23]) meaning that no consistent four-particle amplitude is possible. The four-particle

test therefore requires the (+S,−S,±1) three-particle amplitudes to vanish for S > 1, implying that

such a particle cannot have a U(1) charge. This result is known in the boost-invariant limit and here

we see that it is unchanged when we allow for the breaking of Lorentz boosts. Compton scattering is

therefore only possible for low spins with S = 0, 1/2. The test is still non-trivial in these cases, since
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consistent factorisation yields the constraints

∑
e

FAHae (E1,−E1 − E2)F
H
eb (−E3 − E4, E3)

=
∑
e

FHae(E1,−E1 − E4)F
AH
eb (−E3 − E2, E3), (6.118)

which needs to be satisfied for all Ei subject to E1 +E2 +E3 +E4 = 0. Again these constraints are

the same for parity even and parity odd amplitudes so we will drop the H/AH labels in the following.

These factorisation constraints are solved by Fab = fabF (E1 + E2) where fab is a constant matrix,

and F is an arbitrary function of the sum E1 + E2
26. For bosons, fab needs to be anti-symmetric by

Bose symmetry (given the form of (6.114) and (6.115)), and therefore consistent factorisation is not

possible for a single scalar which in the boost-invariant limit is the well known fact that a single scalar

cannot have a U(1) charge. For two scalars, a consistent boost-breaking amplitude is possible with

Fab = ϵabF (E1 + E2), and similarly a consistent amplitude exists for a charged S = 1/2 particle. In

Appendix 6.7.5 we provide a Lagrangian description of these boost-breaking versions of massless

QED with unbroken U(1) gauge symmetry.

Scalar-photon couplings

We now provide a full analysis for a theory of a single scalar coupled to a photon. Many of the possible

three-particle amplitudes have already been constrained and our goal in this part is to constrain the

others where possible. There are five three-particle amplitudes arising from couplings between the

scalar and the photon: (±1,±1, 0), (−1,+1, 0) and (±1, 0, 0). However, we have already considered

the (±1, 0, 0) amplitude above and we find that there are no solutions to (6.118) for a single scalar

and therefore this amplitude must vanish. In addition, there are two amplitudes involving only the

photon: (±1,±1,±1). Finally, there is a single amplitude involving only the scalar: (0, 0, 0).

Let’s start by constraining the (−1,+1, 0) amplitude. Consider the four-particle amplitude

A4(1
−12+13−14+1) between four photons. By little group scaling this amplitude takes the general

form

A4(1
−12+13−14+1) = ⟨13⟩2[24]2G(s, t, u, Ei). (6.119)

26We haven’t shown that there are no other solutions.
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Now in the s-channel we can exchange a scalar particle, meaning that this residue will have a vanishing

mass dimension. This can also be arranged for in the u-channel by exchanging a scalar. If these

residues are dimensionless, the four-particle amplitude has dimA4 = −2 which in turn requires

dimG = −6 and so the amplitude must take the form

A4(1
−12+13−14+1) = ⟨13⟩2[24]2F(Ei)

stu
, (6.120)

meaning that we require exchanges in all channels. In the t-channel we would need to exchange a

graviton to realise the same mass dimension for the amplitude. However, even in the presence of a

graviton the test cannot be passed, since the necessary (±1,±1,∓2) amplitudes are forced to vanish

by a different test, as we will show in section 6.4.3. Thus, the (−1,+1, 0) three-particle amplitude

must vanish.

Helicities Amplitude A3 Constraint
(−1,−1,+1) ⟨12⟩3/(⟨23⟩⟨31⟩)F F = 0
(−1,−1,−1) ⟨12⟩⟨23⟩⟨31⟩F alternating F in (1, 2, 3)
(−1,−1, 0) ⟨12⟩2F symmetric F in (1, 2)
(−1,+1, 0) ⟨13⟩2/⟨23⟩2F F = 0
(−1, 0, 0) (⟨12⟩⟨31⟩)/⟨23⟩F F = 0
(0, 0, 0) F symmetric F in (1, 2, 3)

Table 6.1: Constrains on the three-particle amplitudes in a theory of a scalar coupled to a photon

We are therefore left with three distinct three-particle amplitudes and their parity counterparts.

The others are forced to vanish. This is summarised in Table 6.1 and one can see that the non-zero

amplitudes do not contain inverse powers of the brackets and therefore cannot give rise to spurious

poles in four-particle amplitudes. For a theory of a single scalar coupled to a photon, there are

therefore no further constraints from the four-particle test. The symmetry constraints on F tell us the

minimum number of time derivatives required to write down a consistent boost-breaking interaction.

As we discussed above, for the (±1,±1,±1) amplitudes we need at least three time derivatives. For

the (±1,±1, 0) and (0, 0, 0) vertices we need at least one and two respectively. The leading order

Lagrangian giving rise to these amplitudes is (assuming parity-even interactions only)

L =
1

2
(∂π)2 +

1

4
FµνF

µν + (a1π
3 + a2π

2π̈ + a3π̇
3 + . . .)
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+ (b1π + b2π̇ + b3π̈ + . . .)FµνF
µν + (c1F̈

µ
νḞ

ν
ρF

ρ
µ + . . .), (6.121)

where ai etc are dimensionful Wilson coefficients.

Brief summary

Let us briefly summarise our results for a spin-S particle coupled to a photon:

• Compton scattering is not possible for S > 1, while for S = 0, 1/2 consistent boost-breaking

theories of massless scalar and fermionic QED with U(1) gauge symmetry exist. We can

write down Lagrangians in each case with generalised boost-breaking gauge symmetries

(see Appendix 6.7.5). Along the way we also showed that the absence of (−1,+1,±1)

vertices is robust against adding additional particles and that the (∓S,±(S − 2),±1) and

(∓S,±(S + 2),∓1) amplitudes must vanish for S ̸= 1.

• A consistent boost-breaking theory of a single scalar coupled to a photon does exist. Self-

interactions for both particles are possible and so are πγγ vertices. The leading Lagrangian is

presented in (6.121).

6.4.3 Couplings to a graviton: gravitational Compton scattering and beyond

We now move onto couplings between spin-S particles and gravity. This section contains:

• constraints on the (±2,+S,−S) vertices due to gravitational Compton scattering

• a full analysis of all possible three-particle amplitudes in a theory of a single scalar coupled to

gravity

• a full analysis of all possible three-particle amplitudes in a theory of a photon coupled to gravity

• an analysis for theory of a massless S = 3/2 particle coupled to gravity a.k.a N = 1 super-

gravity.

Gravitational Compton scattering

We begin by constraining the leading, mass dimension 2, three-particle amplitudes for spin-S particles

coupled to gravity, namely the (±2,+S,−S) amplitudes. We take S ̸= 2. Consider the four-particle

amplitude A4(1
−S , 2+2, 3−2, 4+S) with dimA4 = 2. As with the photon case above, there are two

ways to achieve the required dimension of the residues in s and t channels and a unique way in the
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u-channel. In the s-channel we can exchange a spin-S particle or a spin-|S − 4| particle. In the latter

case we find spurious poles in the residue and so we set the (∓S,±2,±(S − 4)) amplitudes to zero

for all S ̸= 2. For spin-S exchange, we need the following three-particle amplitudes

A3(1
−2, 2−S , 3+S) =

⟨12⟩2S+2⟨31⟩2−2S

⟨23⟩2 FH−2,−S,+S(E1, E2), (6.122)

A3(1
+2, 2+S , 3−S) =

[12]2S+2[31]2−2S

[23]2
FAH+2,+S,−S(E1, E2). (6.123)

Computing the residue we find (for both integer and half-integer S)

Rs = −⟨13⟩2S⟨34⟩4−2S [24]4

tu
FAH+2,+S,−S(E2,−E1 − E2)F

H
−2,−S,+S(E3,−E3 − E4).

The ordering of particles is especially important in the fermionic case, where changing the order of

two fermions gives rise to a minus sign. Here and in the remaining equations we take particle 1 to

always appear before particle 4.

In the t-channel, dimensional analysis allows for exchange of a spin-S particle and a spin-(S + 4)

particle. However in the latter case spurious poles are unavoidable for all S. We therefore require the

(∓S,∓2,±(S + 4)) amplitudes to vanish. For spin-S exchange we find the residue (for both integer

and half-integer S)

Rt = −⟨13⟩2S⟨34⟩4−2S [24]4

su
FH−2,−S,+S(E3, E1)F

AH
+2,+S,−S(E2, E4). (6.124)

Finally, for u-channel exchange there is only a single choice for the spin of the exchanged particle

that yields a residue with the desired mass dimension; that particle must be the graviton. The residue

therefore depends on the lowest dimension three-graviton amplitude which in Section 6.4.1 we

concluded must be reduced to the boost-invariant GR amplitude. However, now that we have included

additional particles we must check if that result is robust against allowing for additional exchanges.

Going back to the A4(1
−2, 2+2, 3−2, 4+2) amplitude, we see that if the amplitude has dimA4 = 2

we can only exchange a graviton in the s and u channels, but in the t-channel dimensional analysis

allows for S = 2 and S = 6 exchange. In the latter case, however, we find a spurious pole in t and so

only graviton exchange can yield a consistent amplitude - consistency demands that the (±2,±2,∓6)

amplitudes are zero. Our result of 6.4.1, i.e. the (+2,−2,±2) amplitudes must be boost-invariant



6.4 Four-particle amplitudes and the four-particle test 177

and correspond to those of GR, is robust against including additional massless particles.

We can now go back to gravitational Compton scattering. To compute the u-channel residue, we

now need the lowest dimension three-graviton amplitudes. As shown above, these take the form

A3(1
−2, 2−2, 3+2) =

( ⟨12⟩3
⟨23⟩⟨31⟩

)2

κ, (6.125)

A3(1
+2, 2+2, 3−2) =

(
[12]3

[23][31]

)2

κ, (6.126)

where κ is related to the Planck mass in GR and we have used the fact that GR is a parity-even theory.

Now as we have seen a number of times before, there are two choices for the helicity configuration

of the exchanged graviton. The total residue is a sum of the two, Ru = R+−
u + R−+

u , but one of

these always vanishes once we declare how we approach the u-channel pole. We first consider the

case of bosons, meaning we can swap the order of any two particles without introducing minus signs,

but we keep factors of (−1)2S to make the formulae easy to generalise to the fermionic case. When

[14] = ⟨23⟩ = 0 we have R+−
u = 0 and

R−+
u =− ⟨13⟩2S⟨34⟩4−2S [24]4

st
κFH−2,−S,+S(−E1 − E4, E1), (6.127)

and when ⟨14⟩ = [23] = 0 we have R−+
u = 0 and (for bosons)

R+−
u = (−1)2S+1 ⟨13⟩2S⟨34⟩4−2S [24]4

st
κFAH+2,+S,−S(−E1 − E4, E4). (6.128)

If the spin-S particles are fermions, then the expression for R+−
u inherits an overall minus sign (due to

the necessity of swapping the order of particles 1 and 4), which conveniently cancels out the (−1)2S

factor while R−+ is unchanged. The u-channel residue for both integer and half-integer S is therefore

Ru = −⟨13⟩2S⟨34⟩4−2S [24]4

st
κFH−2,−S,+S(−E1 − E4, E1), (6.129)

subject to

FH−2,−S,+S(−E1 − E4, E1) = FAH+2,+S,−S(−E1 − E4, E4), (6.130)

ensuring that the residue is the same regardless of how we approach the pole. This matching condition
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ensures that operators generating the amplitudes (6.122) and (6.123) are parity-even.

Now we see from each residue that when 4 − 2S < 0, i.e. S ≥ 5/2, a consistent four-particle

amplitude cannot be constructed due to the additional poles in s. Hence we conclude that the above

three-particle amplitudes for a massless particle with S ≥ 5/2 coupled to gravity are inconsistent and

must vanish. In a boost-invariant theory this is the well-known statement that a massless particle with

S ≥ 5/2 cannot couple to gravity, and we see that this statement is unchanged for boost-breaking

theories. This is indeed consistent with some recent study in the light-cone formalism in which the

only explicitly constructed cubic coupling of higher-spin particles to gravity is non-unitary [220].

For S < 5/2 we can construct a consistent amplitude for gravitational Compton scattering. It

takes the form

A4(1
−S2+23−24+S) = ⟨13⟩2S⟨34⟩4−2S [24]4

A

stu
, (6.131)

and consistent factorisation requires

−A = FAH+2,+S,−S(E2,−E1 − E2)F
H
−2,−S,+S(E3,−E3 − E4)

= FH−2,−S,+S(E3, E1)F
AH
+2,+S,−S(E2, E4)

= κFAH+2,+S,−S(−E1 − E4, E4). (6.132)

The F -functions are related by (6.130) and therefore both can be written as the same F . If F contained

any inverse powers of energies, then the singularities of the three expressions wouldn’t match, so

F must be a polynomial of a degree which we denote as p. The above equations then imply that

2p = 2p = p, and therefore p = 0. So only constant solutions are possible: the four-particle test has

reduced the amplitudes to their boost-invariant limits! Furthermore, the coupling constants of the

(±2,+S,−S) amplitudes are not arbitrary. The equations tell us that they are fixed in terms of the

pure gravitational coupling κ: FH−2,−S,+S = FAH+2,+S,−S = κ. This is the on-shell derivation of the

universality of gravity for elementary massless particles with S ≤ 2: all particles couple to gravity

with the same strength.

Compared to photon Compton scattering considered above, we see some important differences
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for gravity. Here boost-breaking interactions are not permitted whereas for a photon coupled to

S = 0, 1/2 particles such a breaking is permitted. Here we also see the emergence of the equivalence

principle, and allowed couplings to S = 3/2 particles. We attribute these differences to the presence

of a three-particle amplitude for three gravitons which does not exist for three photons. The case of a

S = 3/2 particle coupled to gravity is particularly interesting. The amplitudes we have considered

are those appearing in N = 1 supergravity and here we have seen that boost-breaking versions,

with relativistic on-shell conditions, do not exist. We refer the reader to [208] for some very nice

results using factorisation when a massless S = 3/2 particle is in the spectrum. These results include:

the necessity of gravity, the derivation of super-multiplets, and a proof that having N > 8 requires

the presence of a S = 5/2 particle and therefore the test cannot be passed if there is too much

supersymmetry. Most of these results come from pole counting and we would therefore expect them

to hold for boost-breaking theories with relativistic on-shell conditions too.

Scalar-graviton couplings

We now turn our attention to the boost-breaking theory of a single scalar coupled to gravity. Here we

show that for relativistic on-shell conditions the four-particle test requires all three-particle amplitudes

for a scalar coupled to a graviton to be boost-invariant. We have already seen that the pure graviton

three-particle amplitudes are forced to be boost-invariant and so are the (±2, 0, 0) amplitudes. The

remaining amplitudes to be discussed are (±2,±2, 0), (+2,−2, 0) and (0, 0, 0).

First consider the (+2,−2, 0) amplitude, which we can easily show is inconsistent in both

boost-invariant and boost-breaking theories. This vertex can contribute to s-channel exchange in the

four-particle graviton amplitude A4(1
−2, 2+2, 3−2, 4+2). This s-channel contribution to the amplitude

has mass dimension −2 since the residue is dimensionless. However, the scaling of this amplitude

under a little group transformation requires it to take the form

A4(1
−2, 2+2, 3−2, 4+2) = ⟨13⟩4[24]4G(s, t, u, Ei), (6.133)

and so if dimA4 = −2 the amplitude cannot be consistent, since simple poles require dimG ≥ −6,

while dim{⟨13⟩4[24]4} = 8.
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We now constrain the (±2,±2, 0) amplitudes using A4(1
+2, 2+2, 3−2, 40) with scalar exchange

in the s-channel. The contribution to the amplitude from this diagram has mass dimension27 4. The

same mass dimension can be realised in the t and u channels by exchanging a graviton and using the

leading (mass dimension 2) three-graviton amplitudes28. Given that

A3(1
+2, 2+2, 30) = [12]4FAH+2,+2,0(E1, E2), (6.134)

the three residues are given by

Rs = − [12]6⟨13⟩2⟨23⟩2
tu

κFAH+2,+2,0(E1, E2), (6.135)

Rt = − [12]6⟨13⟩2⟨23⟩2
su

κFAH+2,+2,0(E2,−E2 − E4), (6.136)

Ru = − [12]6⟨13⟩2⟨23⟩2
st

κFAH+2,+2,0(E1,−E1 − E4). (6.137)

Here we have written FAH+2,+2,0 as a function of two energies only and it must be a symmetric function

by Bose symmetry. Furthermore, we have used the fact that the (−2, 0, 0) amplitude is boost-invariant

with its coupling identical to the graviton self-coupling κ. A consistent amplitude must therefore take

the form

A4(1
+2, 2+2, 3−2, 40) = [12]6⟨13⟩2⟨23⟩2 B

stu
, (6.138)

with

−B = κFAH+2,+2,0(E1, E2) (6.139)

= κFAH+2,+2,0(E2,−E2 − E4) (6.140)

= κFAH+2,+2,0(E1,−E1 − E4), (6.141)

which can only be solved if FAH+2,+2,0 = const, thereby reducing the (±2,±2, 0) amplitudes to their

boost-invariant limits. Note that the coupling constant for these amplitudes is not fixed in terms of κ.

Finally, we can constrain the pure scalar amplitude (0, 0, 0) using the four-particle amplitude

27This mass dimension can also be achieved by exchanging a spin-6 particle but such a residue contains spurious poles.
28Another possibility is to exchange a spin-4 particle but in this case the residues again have spurious poles.
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A4(1
0, 20, 30, 4+2). If we exchange a scalar in each channel with

A3(1
0, 20, 30) = F0,0,0(E1, E2), (6.142)

the three residues are

Rs = − [34]2[24]2⟨23⟩2
tu

κF0,0,0(E1, E2), (6.143)

Rt = − [34]2[24]2⟨23⟩2
su

κF0,0,0(E1, E3), (6.144)

Ru = − [34]2[24]2⟨23⟩2
st

κF0,0,0(E2, E3), (6.145)

and so the consistent amplitude is

A4(1
0, 20, 30, 4+2) = [34]2[24]2⟨23⟩2 C

stu
, (6.146)

with

−C = κF0,0,0(E1, E2) (6.147)

= κF0,0,0(E1, E3) (6.148)

= κF0,0,0(E2, E3). (6.149)

Again, the only solution to these factorisation constraints for generic energies is F0,0,0 = const,

thereby reducing the three-scalar amplitude to its boost-invariant form, which is simply a constant.

We have therefore seen that all three-particle amplitudes, and therefore all three-point vertices,

in a theory of a graviton coupled to a scalar (if the Lagrangian depends on covariant fields only)

must reduce to their boost-invariant limits. Let us discuss the allowed boost-invariant interactions

in more detail. We have discussed the pure gravity vertices at the level of a Lagrangian earlier on.

The only allowed pure scalar amplitude is a constant and so the cubic vertex is simply ϕ3. The other

two allowed interactions mix the scalar and the graviton and have mass dimension 2 and 4. The

coupling of the former is the same as the three graviton coupling κ, while the coupling of the latter is

independent of κ and is therefore a new Wilson coefficient in the effective action. At the level of a

Lagrangian they come from the (∂ϕ)2 = gµν∂µϕ∂νϕ and ϕRµνρσRµνρσ terms respectively, expanded



182 The Boostless Bootstrap: Amplitudes without Lorentz boosts

around the boost-invariant vacuum gµν = ηµν , ϕ = 0. Note that there is no ϕ2R coupling as this can

be removed by a field redefinition going from Jordan to Einstein frame. We can also write down a

parity-odd vertex ϕϵµνρσRµνκλRκλρσ. In appendix 6.7.6, we provide further clarifications on why a

simple ϕ̇3 self-interaction for a scalar coupled to hµν in Minkowski space is inconsistent.

In [221] it was conjectured that in the flat space, decoupling and slow-roll limit of the EFT

of inflation, if the scalar Goldstone has a boost-invariant kinetic term, then the only possible UV

completion is a free theory. In this language, the decoupling limit boils down to neglecting all

interactions with the metric fluctuations and the slow-roll limit corresponds to neglecting all Lorentz-

invariant interactions, such as for example a potential V (ϕ). In other words, the conjecture is that any

scalar EFT with cs = 1 and boost-breaking interactions cannot be UV completed. The relation of this

conjecture to our results is tantalizing but not straightforward. On the one hand, we also found that

for cs = 1 boost-breaking interactions are forbidden, but we crucially needed to assume (i) that the

scalar is coupled to gravity, (ii) the theory is in Minkowski and (iii) assume a restricted form of the

four-particle amplitude. Also, we did not use any constraints coming from a putative UV completion.

All our analysis is based on the low-energy EFT. This is to be contrasted with the discussion in [221]

where the coupling to gravity does not seem to play a role, while all the constraining power comes

from demanding a consistent UV completion. Furthermore, the application of our results to the

flat-space limit of FLRW spacetimes clashes with the IR sensitivity of the four-particle test. We will

discuss this in Section 6.5.

Photon-graviton couplings

We have seen that when a scalar is coupled to hµν , all three-particle amplitudes and therefore all

three-point vertices are required to be boost-invariant by the four-particle test. One may therefore

expect the presence of the graviton is forcing boost-invariance upon us when free particles satisfy

relativistic on-shell conditions. Here we provide more evidence of this by showing that when a photon

is coupled to hµν , all three-point vertices involving this photon have to be boost-invariant. This result

can be derived because of the existence of a (boost-invariant) three-point (++−) vertex for gravitons,

which is absent for photons.

Let us recap the relevant results we have derived so far. We have shown that the pure graviton
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three-particle amplitudes are boost-invariant. The lowest dimension photon amplitudes are forced to

vanish by the test, while boost-breaking possibilities have not yet been ruled out for the (+ + +) and

(−−−) three photon interaction. Now, for mixed amplitudes, we have four possibilities (plus their

parity counterparts) left to consider:

(+2,+2,+1), (+2,+2,−1), (+1,+1,+2), (+1,+1,−2). (6.150)

First consider the dimensionless choice (+1,+1,−2). These amplitudes have both holomorphic

and anti-holomorphic parts, and contribute to e.g. u-channel diagram for the A4(1
+1, 2−1, 3+2, 4−2)

amplitude via a photon exchange. The dimensionality of this amplitude is

dim{A4} = 0 + 0− 2 = −2. (6.151)

On the other hand, to achieve correct helicity scalings, we need,

A4 ∼ [13]2[23]2⟨24⟩4G(s, t, u, Ei), (6.152)

but then dim{G(s, t, u, Ei)} = −10 < −6, which yields a contradiction. We therefore fail the test,

which means these amplitudes must vanish. Note that this is the case for both boost-invariant and

boost-breaking theories. In [208] it was argued that all dimensionless amplitudes, other than the pure

scalar one, must vanish by virtue of the test. This result is based on pole counting so we expect those

general results to be valid in our case too.

Now consider pure graviton scattering via the amplitude A4(1
−22−23+24+2) which by the little

group scaling takes the form

A4(1
−22−23+24+2) = ⟨12⟩4[34]4G(s, t, u, Ei). (6.153)

Now if we allow for a photon to be exchanged in the s-channel, the residue can have mass dimension

6 if we use the (+2,+2,−1) amplitudes and their parity counterparts. This contribution to the

amplitude therefore has mass dimension 4 and by comparing to (6.153) we see that we need a t

or u channel exchange to construct a consistently factorising amplitude. However, to achieve the

required same mass dimension in either the t or u would require the exchange of a spin 3 particle with



184 The Boostless Bootstrap: Amplitudes without Lorentz boosts

non-zero (+2,−2,±3) amplitudes. But such amplitudes are not permitted29. It is therefore impossi-

ble to achieve mass dimension 6 residues in the t and u channels of A4(1
−22−23+24+2) and so the

(±2,±2,∓1) amplitudes must vanish. This is the case for both boost-invariant and boost-breaking

theories considered here.

Now consider the A4(1
+1, 2+1, 3+1, 4−2) amplitude which we can use to constrain the (+1,+1,+1)

interactions. The process is very similar to what we have seen a number of times. If we exchange

a photon in the s-channel, we can construct a residue using the (+1,+1,+1) and (+1,−1,−2)

amplitudes. The former has not yet been constrained beyond Bose symmetry, while the latter is

required to be boost-invariant. By exchanging a photon in the other channels too we find a non-trivial

factorisation constraint which fixes F+1,+1,+1 = 030. So in the presence of gravity, under the assump-

tions we made, all three-particle amplitudes involving three photons must vanish: there are no cubic

self-interactions for a gravitationally coupled photon in a boost-breaking theory with hµν and Aµ

fields, just as is the case for a boost-invariant one.

We have two more sets of amplitudes to constrain: (+1,+1,+2) and (+2,+2,+1) (and their

parity counterparts). We find that both are forced to their boost-invariant limit using the four-particle

test applied to A4(1
+1, 2+1, 3+2, 4−2) and A4(1

+1, 2+2, 3+2, 4−2) respectively. In both cases we

include all possible exchanges allowed by dimensional analysis and find that any amplitudes involving

higher spin (S > 2) particles are inconsistent. The coupling of (+1,+1,+2) corresponds to a new

Wilson coefficient unrelated to the gravitational coupling κ. Meanwhile, the (+2,+2,+1) amplitudes

are forced to vanish by Bose symmetry.

In conclusion, all three-particle amplitudes, in theories formulated in terms of covariant fields,

are forced to their boost-invariant limits when we have a photon and a graviton in the spectrum.

Pure photon vertices are constrained to vanish. The only allowed amplitudes that mix the photon

and the graviton are (+1,−1,±2), (±1,±1,±2). At the level of a Lagrangian, the parity even

operators are the Maxwell kinetic term FµνFµν = gµνgρσFµρFνσ, and the non-minimal coupling

29Indeed, if we allow for graviton exchange in the s-channel of the A4(1
−3, 2+2, 3−2, 4+3), we see that the residue

contains a 1/t3 piece and therefore the (+2,−2,±3) amplitudes are forced to vanish.
30We could also exchange a S = 4 particle to find residues with the same mass dimension, but these additional exchanges

lead to spurious poles.
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term FµνF ρσRµνρσ expanded around the vacuum gµν = ηµν , Aµ = 0. Parity-odd amplitudes come

from ϵµνρσFµνFρσ and ϵµνλκFλκF ρσRµνρσ.

Brief summary

• We have seen that massless particles with S ≥ 5/2 cannot couple to gravity under our assump-

tions, while particles with S < 5/2 can consistently couple to gravity, in which case the test

yields universality of the gravitational couplings. No boost-breaking interactions are permitted.

Along the way we also showed that allowing for additional particles does not change the fact

that the lowest dimension vertices containing three gravitons must be boost-invariant and given

by GR. We also saw that the (∓S,±(S− 4),±2), (∓S,±(S+4),∓2) amplitudes must vanish

since for all S ̸= 2 they yield spurious poles in gravitational Compton scattering.

• We have perfomed a full analysis for the cases of a graviton coupled to a scalar or a photon. In

each case we find that all three-point vertices, including the self-interactions of the scalar or

photon are forced to their boost-invariant limits.

6.4.4 Multiple S = 1 particles

We now move on to considering multiple particles of the same spin. Consistent factorisation is trivial

for multiple scalar particles since the three-particle amplitudes remain only functions of the energies

and therefore products of these amplitudes cannot yield singularities. In this section we will focus

on multiple S = 1 particles which we take to come in multiplets and therefore carry an additional

colour index, a = 1, 2, . . . , N . Our goal is to constrain the interactions between these particles in

a boost-breaking theory formulated in terms of covariant fields. Recall that for a single particle

(N = 1), the (±1,±1,∓1) amplitudes are excluded by the four-particle test, whereas boost-breaking

(±1,±1,±1) amplitudes are allowed (as long as gravity is decoupled).

The lowest mass dimension three-particle amplitudes are

A3(1
+1
a 2+1

b 3−1
c ) =

[12]3

[23][31]
FAHabc (E1, E2), (6.154)

A3(1
−1
a 2−1

b 3+1
c ) =

⟨12⟩3
⟨23⟩⟨31⟩F

H
abc(E1, E2), (6.155)
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where we have eliminated E3 by energy conservation and have dropped the helicity subscripts on

FH/AH in favour of the colour indices. The relationship between FH and FAH is31

FHabc(E1, E2) = ±FAHabc (E1, E2), (6.156)

with the −/+ sign corresponding to parity even/parity odd amplitudes respectively, by (6.52). In

addition, Bose symmetry constrains the functions to satisfy

FHabc(E1, E2) = −FHbac(E2, E1), (6.157)

FAHabc (E1, E2) = −FAHbac (E2, E1). (6.158)

Now consider the amplitude A4(1
−1
a 2+1

b 3−1
c 4+1

d ) with S = 1 exchange in each channel. If the

amplitude has mass dimension 2, then there are two choices for the helicity in the s and u channels,

and a unique choice for the t-channel. Remembering to take proper care of the ordering of indices

and energies, we find the two residues to be

R+−
s =

∑
e

⟨13⟩2[24]2
t

FAHbea (E2,−E1 − E2)F
H
ecd(−E3 − E4, E3), (6.159)

R−+
s =

∑
e

⟨13⟩2[24]2
t

FHeab(−E1 − E2, E1)F
AH
dec (E4,−E3 − E4), (6.160)

summing over the exchanged particle colour e. Matching these two residues yields our first constraint

on the three-particle amplitudes:

∑
e

FAHbea (E2,−E1 − E2)F
H
ecd(−E3 − E4, E3)

=
∑
e

FHeab(−E1 − E2, E1)F
AH
dec (E4,−E3 − E4). (6.161)

Next consider the u-channel. The two residues are

R+−
u = −

∑
e

⟨13⟩2[24]2
s

FAHdea (E4,−E1 − E4), F
H
ecb(−E3 − E2, E3) (6.162)

R−+
u = −

∑
e

⟨13⟩2[24]2
s

FHead(−E1 − E4, E1)F
AH
bec (E2,−E2 − E3), (6.163)

31We assume that the parity transformation commutes with the internal symmetry group, so that particle a is mapped to
particle a under P .
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and these are equivalent thanks to (6.161). Finally, the t-channel residue is

Rt = −
∑
e

⟨13⟩2[24]2
u

FHace(E1, E3)F
AH
bde (E2, E4). (6.164)

The full amplitude must therefore take the form

A4(1
−1
a , 2+1

b , 3−1
c , 4+1

d ) = ⟨13⟩2[24]2
(
Aabcd
st

+
Babcd
su

+
Cabcd
tu

)
, (6.165)

with consistent factorisation fixing

Aabcd −Babcd =
∑
e

FAHbea (E2,−E1 − E2)F
H
ecd(−E3 − E4, E3),

Cabcd −Aabcd = −
∑
e

FHace(E1, E3)F
AH
bde (E2, E4),

Babcd − Cabcd = −
∑
e

FAHdea (E4,−E1 − E4)F
H
ecb(−E3 − E2, E3). (6.166)

Taking the sum of these equations yields

∑
e

FAHbea (E2,−E1 − E2)F
H
ecd(−E3 − E4, E3)

−
∑
e

FHace(E1, E3)F
AH
bde (E2, E4) (6.167)

−
∑
e

FAHdea (E4,−E1 − E4)F
H
ecb(−E2 − E3, E3) = 0, (6.168)

which is our main factorisation constraint and must be satisfied with (6.161) subject to E1 + E2 +

E3 + E4 = 0.

Now in the boost-invariant limit we have FHabc = fabc = const, FAHabc = ∓fabc = const. Under

the assumption of complete antisymmetry of fabc, matching the residues is trivial, but the primary

factorisation constraint yields

∑
e

fabefecd +
∑
e

facefedb +
∑
e

fadefebc = 0. (6.169)

The amplitudes in this case are those of Yang-Mills and we see that consistent factorisation of the

four-particle amplitude forces the coupling constants to satisfy the familiar Jacobi identity. Note that
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we have made no reference to an underlying Lie-algebra; this result follows from the basic physical

principles of unitarity and locality.

Coming back to the boost-breaking case, the system of equations is very difficult to solve in general.

To make progress, we make the assumption that FHabc = fabcF (E1, E2), FAHabc = ∓fabcF (E1, E2)

with fabc the usual couplings of Yang-Mills theory. Our three-particle amplitudes are therefore of the

Yang-Mills form multiplied by a function of the energies. Bose symmetry requires these functions

to be symmetric in the exchange of their two arguments, since fabc are fully antisymmetric. Our

factorisation constraint now becomes

∑
e

fbeafecdF (E2,−E1 − E2)F (−E3 − E4, E3)

−
∑
e

facefbdeF (E1, E3)F (E2, E4)

−
∑
e

fdeafecbF (E4,−E1 − E4)F (−E2 − E3, E3) = 0. (6.170)

Now if we don’t want to impose additional constraints on fabc, consistent factorisation requires

F (E1, E3)F (E4, E2) (6.171)

=F (E2,−E1 − E2)F (−E3 − E4, E3) (6.172)

=F (E4,−E1 − E4)F (E3,−E2 − E3). (6.173)

Upon using (6.161), we see that this constraint is exactly the same as the constraint on the graviton

three-particle amplitude (6.105). As shown in Appendix 6.7.3, the only solution is F = const and

therefore consistent factorisation requires the three-particle amplitudes to take their boost-invariant,

Yang-Mills form. One may have expected the constraints for multiple S = 1 particles to be equivalent

to a single S = 2 particle due to the kinematic-colour duality relating these amplitudes [219].

6.5 Mind the gap: amplitudes and the flat-space limit of cosmology

In this section, we discuss the connection of our results to cosmology. Instead of considering the most

general scenario, for concreteness we focus on theories of a single scalar field minimally coupled to

gravity, as they are both simple and relevant for models of inflation and dark energy. For so-called

P (X)-theories, to be defined below, we will confirm our findings that in Minkowski all interactions
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must be Lorentz invariant if we impose that the scalar speed of propagation cs is the same as that of

the graviton, c = 1, and require that the graviton be described in terms of a covariant Lagrangian

(at least on the level of the free theory). Then, we consider the case in which the background is an

FLRW spacetime with non-vanishing Hubble parameter, H ̸= 0, and we study the sub-Hubble limit,

i.e. we imagine performing a scattering experiment in a small laboratory of size L ≪ H−1, and

describe the results in terms of flat-space amplitudes. Our main observation is that for arbitrarily

small but non-vanishing H , it is always possible to find amplitudes that break boosts by any amount,

within the validity of the Effective Field Theory (EFT), and no violations of unitarity or locality

seem to arise. We argue that, despite the appearance, this observation does not imply any pesky

physical discontinuity. Rather, we interpret this finding as the fact that the constraining power of

unitarity and locality through consistent factorization for massless theories is extremely fragile to

IR modifications. An analogous principle has already been established in Lorentz invariant contexts,

where many interactions prohibited in flat space have consistent counterparts in AdS, regardless of

the AdS radius - see [222] and references therein. Nonetheless, we decided to illuminate this issue

further by discussing FLRW backgrounds which are more closely related to cosmology.

Sensitivity to IR modifications in cosmological scenarios is to be expected on the following

grounds. Factorization happens when s, t or u go to zero and that’s where all the constraining power

of the four-particle test comes from. But this regime cannot be reached within the validity of the

sub-Hubble limit. Indeed, for a flat-space approximation of FLRW spacetime to make sense, we need

to require that the quantum uncertainty ∆x on the spacetime position of the scattering particles is

well within a Hubble volume ∆x≪ H−1. But then by the uncertainty principle

∆p ≥ 1

2∆x
≫ H ⇒ ∆s,∆t,∆u≫ H2 , (6.174)

and therefore we always have an uncertainty in the Mandelstam variables of order H2. In FLRW

spacetime, we cannot meaningfully distinguish, say, a pole at s = 0 from one at s = H2. In more

physical terms, as long asH ̸= 0, we cannot experimentally reach the poles corresponding to massless

on-shell particles while neglecting the expansion of the universe. Our finding that in the presence of

an interacting spin-2 particle boost-breaking interactions cannot satisfy consistent factorization on

s, t, u = 0, respectively, does not seem to matter in FLRW spacetime where this kinematic regime
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cannot be reached in the flat-space limit.

The suspicious reader might complain that our results suggest the presence of an unphysical

discontinuity as H → 0, but this is not the case. In the deep IR of the theory, a background with

H ̸= 0 is always very different from one with H = 0 because of the presence of a Hubble “horizon”.

So it is to be expected that any IR property of the theory for H → 0 might be different from the

corresponding one at H = 0. In other words, one cannot engineer a continuous series of physical

thought experiments that give a discontinuous set of results and so there is no problem with our claims

in this section.

Before proceeding, let’s stress that there might be other obstructions to Lorentz breaking inter-

actions when cs = 1, which we don’t capture in our analysis. For example, [221] conjectured that

for the theory to have a local and unitary Lorentz invariant UV-completion, all Lorentz-breaking

interactions for a single scalar with non-linear boosts must vanish as cs → 1. Also, recently [223]

found some related obstructions considering perturbative unitarity in the sub-Hubble limit, where they

showed that the window of validity of an EFT description for amplitudes shrinks to zero when cs → 1

in the presence of ϕ̇3 interactions.

6.5.1 The absence of boost-breaking interactions in Minkowski

For concreteness, consider so-called P (X) theories minimally coupled to gravity with action

S = −
∫
d4x

√−g
[
M2

P
2
R+ P (X)

]
, X ≡ 1

2
gµν∂µϕ∂νϕ , (6.175)

which is a good toy model to study the spontaneous breaking of boosts while preserving time

translations. The homogeneous equations of motion for the background ϕ(t) and the scale factor a(t)

are

3M2
PH

2 − 2XPX + P = 0, −M2
P Ḣ = XPX , ϕ̈ (PX + 2XPXX) + 3Hϕ̇PX = 0 . (6.176)

The Lagrangian for perturbations φ(t, x⃗) is

=
1

2
(PX + 2XPXX)φ̇

2 − 1

2
PX∂iφ∂

iφ+
1

6
PXXX ϕ̇

3φ̇3 + . . . , (6.177)
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where the dots stand for higher derivatives of P (X) with respect of X , which will not be relevant for

this discussion (they could be chosen to vanish if desired). The speed of sound is found to be

c2s =
PX

PX + 2XPXX
. (6.178)

In this class of theories, it is only possible to have a well-defined solution in Minkowski spacetime

with cs = 1 if X = 0, in which case all interactions are Lorentz invariant. To see why, note that the

following three assumptions cannot all be satisfied at the same time:

• Spontaneously broken boosts: This implies X ̸= 0. From the equations of motion, setting

H = 0 and PX = 0 as appropriate for Minkowski, we get

ϕ̈ (PX + 2XPXX) = 0 ⇒ ϕ̈ = 0 or PX + 2XPXX = 0 . (6.179)

The second option is the cuscuton [224], which is non-dynamical and so not relevant for the

present discussion. From ϕ̈ = 0 we deduce that X is constant, and so if it is non-vanishing it

remains so for all times.

• Luminal propagation: This implies cs = 1 and so

c2s =
PX

PX + 2XPXX

!
= 1 ⇒ PX ̸= 0& (PXX = 0 or X = 0) . (6.180)

• Minkowski spacetime with dynamical gravity: This implies gµν = ηµν and so

 3M2
PH

2 = 2XPX − P
!
= 0

−M2
P Ḣ = XPX

!
= 0

⇒ P = 0& (PX = 0 or X = 0) . (6.181)

Combining the above requirements we arrive at a contradiction: if we insist that X ̸= 0, so that a

Lorentz violation is in principle possible, then the luminality and Minkowski requirements are incom-

patible because the former leads to PX ̸= 0, while the latter entails PX = 0. While we don’t discuss

it here in detail, the above result also applies to theories with higher derivatives. Intuitively, this stems

from the fact that the higher derivative terms vanish when evaluated on the linearly time-dependent

background we considered above.
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This discussion confirms and complements our result that coupling to gravity (i.e. the covariant

hµν) in Minkowski enforces Lorentz invariance. On the one hand, our amplitude discussion is

more general as it does not assume a P (X) Lagrangian. On the other hand, the above discussion

generalized our findings in that it shows, for P (X) theories, that all n-particle amplitudes must

be Lorentz invariant if the scalar propagates at the same speed as the graviton. In appendix 6.7.6,

we provide further clarifications on why a simple ϕ̇3 theory coupled to gravity is inconsistent in

Minkowski space.

6.5.2 Boost-breaking interactions in the sub-Hubble limit

The attentive reader will have noticed that when PX = 0 = PXX , the speed of sound is ill defined,

cs
?
= 0/0. In particular, the order of taking the limits matters: if we first impose Minkowski by setting

PX = 0, then cs = 0 for any finite PXX ; while if we first impose cs = 1 by setting PXX = 0, then

we can take the Minkowski limit of FLRW, PX → 0, without changing the value of cs. In this section,

we discuss in detail this second possibility and find that in this case, Lorentz-breaking interactions are

allowed within the regime of validity of the EFT. Let us now study how the Minkowski and c2s = 1

solutions are approached from an FLRW solution.

Let us first assume the value X̄ of X(t) at some time is such that

PXX(X̄) = 0 but PX(X̄) ̸= 0 . (6.182)

Expanding around it, we find

PXX(X) = PXX(X̄) + (X − X̄)PXXX(X̄) +O((X − X̄)2) , (6.183)

= (X − X̄)PXXX(X̄) +O((X − X̄)2) . (6.184)

The background equations of motion to zeroth order in X − X̄ are

PX(X̄)
(
ϕ̈+ 3Hϕ̇

)
+O

(
X − X̄

)
= 0 , (6.185)

ϕ̇
(
ϕ̈+ 3Hϕ̇

)
≃ O

(
X − X̄

)
, (6.186)

Ẋ + 6HX ≃ O
(
X − X̄

)
, (6.187)
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and so are solved by X ∝ a−6. More usefully, for a small time interval ∆t≪ H−1, we can write

X = X̄ + ˙̄X∆t+O((X − X̄)2) (6.188)

⇒ X − X̄

X̄
≃ −6H∆t+O

((
X − X̄

)2)
. (6.189)

So we find that, unlike in Minkowski where a constant X is always a solution, in FLRW we have to

take into account that X evolves with time at some rate set by H .

Consider now the theory of perturbations in (6.177). Since X depends on time and we don’t want

to assume P (X) is just linear in X , which corresponds to the free theory, we cannot set c2s = 1 at all

times, but only at the time corresponding to X = X̄ where PXX happens to vanish. We can Taylor

expand around cs − 1 → 0 and re-write cs as

c2s =
PX

PX + 2XPXX
(6.190)

= 1− 2XPXX
PX

+O
((

2XPXX
PX

)2
)

(6.191)

= 1− 2X̄(X − X̄)PXXX(X̄)

PX(X̄)
+O

((
X − X̄

)2)
. (6.192)

Using (6.189) for the time evolution of X , this becomes

1− c2s = −12H∆tX̄2PXXX(X̄)

PX(X̄)
+O

((
X − X̄

)2)
. (6.193)

Now we want to ask whether we can keep 1 − c2s arbitrary small while performing a subHubble

scattering experiment in which some φ particles interact via the (spontaneously) boost-breaking

coupling φ̇3 in the Lagrangian (6.177). We canonically normalize φ to φc and extract the cutoff scale

Λ of the φ̇3
c operator

2 =
1

2

[
1

c2s
φ̇2
c −

1

2
∂iφc∂

iφc

]
+

√
2

3

X3PXXX
(XPX)3/2

φ̇3
c (6.194)

≡ 1

2

[
1

c2s
φ̇2
c −

1

2
∂iφc∂

iφc

]
+
φ̇3
c

Λ2
. (6.195)

Since we rescaled by PX , which is time dependent, we also pick up additional terms proportional to
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∂tPX , such as a mass term. We have neglected writing these terms because, around X = X̄ ,

∂tPX(X) = PXX(X)Ẋ (6.196)

≃ −6H∆tX̄(X − X̄)PXXX(X̄) + . . . , (6.197)

≃ 36 (H∆t)2 X̄2PXXX(X̄) + . . . , (6.198)

which is suppressed by at least two powers of H∆t. As long as we can neglect the expansion of the

universe for some time ∆t≪ H−1, we can also neglect these additional terms.

Since PXXX sets both the scale for the time evolution of 1− c2s and the strength of the interaction

we re-write

1− c2s = − 36√
2

H∆t
√
XPX

Λ2
+O

((
X − X̄

)2) (6.199)

= − 36√
2

(
E2

Λ2

)
√
−ḢM2

P

E2

 (H∆t) +O
((
X − X̄

)2)
, (6.200)

where we introduced the dummy factor E to represent the energy scale of the scattering process. For

the scattering to happen effectively in flat space we need E2 ≫ H2, |Ḣ|. To resolve energies of

order E while being able to neglect the expansion of the universe during the experiment, we need the

experiment to last a time H−1 ≫ ∆t≫ E−1. Finally, perturbativity requires E ≪ Λ. Then

1− c2s ≫ − 36√
2

(
E

Λ

)2
(√

−Ḣ
E

)(
H

E

)(
MP

E

)
+O

((
X − X̄

)2)
. (6.201)

The first three factors must be much smaller than one while MP/E must be much larger than one.

Summarizing, we want the hierarchy of scales

H,
√
−Ḣ ≪ E ≪ Λ ≪MP , (6.202)

while keeping 1− c2s arbitrary small. This is always possible to achieve for any desired E/Λ, which

parameterizes the strength of the cubic interaction), and Λ/MP simply by takingH,
√
−Ḣ sufficiently

small.

The upshot of this discussion is that we can find solutions for which a scattering experiment in a
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small lab in an FLRW spacetime gives Lorentz-breaking amplitudes for massless particles that all

move at the same speed to arbitrary but finite precision. Given the assumptions we have made about

four-particle amplitudes, our results have shown that if this happened in Minkowski spacetime, there

would be a violation of unitarity and/or locality for the amplitudes. But in FLRW those configurations

cannot be reached while still neglecting corrections due to the expansion of the universe.

6.6 Discussion and conclusion

In this chapter we studied scattering amplitudes for massless, luminal, relativistic particles of any

spin without demanding Lorentz invariance of the interactions. This is relevant for many systems

that break Lorentz boosts spontaneously, as in cosmology or condensed matter physics. We focussed

exclusively on on-shell particles and discussed (analytically continued) amplitudes without refer-

ence to unphysical structures such as gauge invariance or off-shell particles. The on-shell approach

considerably simplifies the treatment of spinning particles, and our conclusions are independent of

perturbative field redefinitions.

We systematically derived all possible massless three-particle amplitudes consistent with space-

time translations and rotations and constrained them using unitarity and causality via the requirement

that four-particle amplitudes consistently factorize on simple poles into the product of two three-

particle amplitudes, a.k.a. the four-particle test [29]. We found that a large number of three-particle

amplitudes fail the test and therefore cannot arise in any local, unitary perturbative theory around

Minkowski spacetime. One result that stands out is that the existence of an interacting graviton,

namely a massless spin-2 particle, enforces all cubic interactions involving particles coupled to it

to be Lorentz invariant, including those interactions that do not involve the graviton. This is quite

remarkable because, in the absence of a graviton, there could be infinitely many Lorentz-breaking

interactions. As a concrete and simple example, consider the theory of a single scalar, for which we

can write down infinitely many local interactions of the form (∂n1
t ϕ)(∂n2

t ϕ)(∂n3
t ϕ) for any positive

integers n1,2,3. These interactions are not equivalent on-shell, generically giving different amplitudes,

yet they are all allowed by the four-particle test. Our results show that in Minkowski, none of these

Lorentz-breaking interactions can be consistently coupled to gravity!
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Although the form of the three-particle amplitudes that we have derived are completely general, in

order to make progress we assumed that the helicity scaling of four-particle amplitudes are fixed by

angle and square brackets rather than round ones. As we explained in Section 6.4, this amounts to

assuming that the underlying Lagrangian is a function of Lorentz covariant fields with the breaking of

boosts driven solely by time derivatives. It would be very interesting to work with a more general

ansatz for the four-particle amplitudes such that we can constrain theories constructed out of SO(3)

covariant fields.

Finally, we have discussed the relation of our analysis to cosmological models, in which spacetime

can be approximated as flat only locally, but is never flat asymptotically. We found that, contrary to

what happens in Minkowski, one can find models of a massless luminal scalar coupled to dynam-

ical gravity in which sub-Hubble scattering is boost-breaking while no violations of unitarity and

locality arise in the IR within the validity of the required approximations. We interpreted this as the

observation that the four-particle test is IR-sensitive and the expansion of the universe provides an

IR modification of the on-shell conditions. This finding mirrors the analogous findings for Lorentz

invariant theories, where the four-particle test is not applicable if one deviates ever so slightly from

asymptotically flat space [222].

One of our main motivations for studying boostless amplitudes was to use the results to constrain

and perhaps fully bootstrap cosmological correlators when de Sitter boosts are not a symmetry of

the theory. Our findings shows yet another reason why several clarifications need to be added to

the simplistic slogan that the residue of the kT pole of cosmological correlators is the Minkowski

amplitude. In particular, we have shown that consistent factorization (Theorem 2.1) imposes severe

constraints on Minkowski amplitudes, but these constraints don’t necessary apply to the residue of the

total-energy pole of correlators in (6.2). This issue will be discussed in detail elsewhere.

There are several ways in which our results could be extended.

• We used the consistent factorization of four-particle amplitudes to constrain three-particle

amplitudes. It would be desirable to extend our analysis to higher n-particle amplitudes. For

example, we expect that the coupling to a massless graviton will enforce all interactions to be

Lorentz invariant. While the pedestrian methods we used in this chapter are probably ill-suited
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to prove this more general result, one would probably want to harvest the power of on-shell

recursion relations.

• It would be interesting to study how unitarity and locality constrains scattering experiments in

the sub-Hubble limit of FLRW spacetime. This requires modification of the standard on-shell

methods and an analysis will appear elsewhere.

• It would be interesting to extend our analysis to more general on-shell conditions where different

particles can have different speeds, and to allow for a more general form of the four-particle

amplitudes such that we capture the type of theories derived in [162].

6.7 Appendices

6.7.1 Spinor variables and discrete transformations

In this appendix we prove two important results for spinor representations of lightlike momenta,

namely their transformation law under spatial reflection and the prescription for transforming the

spinors so as to flip the sign of the exchanged particle’s energy and momentum, which is necessary to

compute the residues correctly.

Spatial reflection

Under the spatial reflection with respect to the origin, lightlike momentum pµ tranforms as

(E,p) 7→ (E,−p). (6.203)

To the original momentum pµ we associate a pair of spinors (λα, λ̃α̇). One choice is

λ =

(√
p0 + p3,

p1 + ip2√
p0 + p3

)T
, λ̃ =

(√
p0 + p3,

p1 − ip2√
p0 + p3

)
. (6.204)

Spinor helicity variables corresponding to the new momentum must be of the form

λ′α = aϵ β̇α λ̃β̇, λ̃
′
α̇ = a−1ϵ βα̇ , λβ (6.205)
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i.e.

λ′ = a(λ̃2,−λ̃1)T , λ̃′ = a−1(λ2,−λ1). (6.206)

It is easy to check that these new variables do indeed give p′µ = (E,−p). Now we must fix the

coefficient a. To do this, we have to take a look at polarization tensors.

Consider an exchange diagram with an exchanged particle of spin-1. Suppose at the left-hand side

vertex, there is an outgoing particle of helicity +1 (equivalent to an incoming antiparticle of helicity

−1). Then the same particle (with helicity +1) is incoming at the right-hand side vertex. The +1

polarization vector ξ+ of the exchanged particle is mapped to Pξ+ under spatial reflection P . But

we also require, for consistency, that it be mapped to the −1 polarization vector of the particle with

reversed momentum. The spatial reflection of ξ+ is, in terms of spinor variables,

Pξ+αα̇(p) =
ϵ β̇α ϵ

β
α̇ µβλ̃β̇
⟨µ, λ⟩ , (6.207)

where we used (6.205), and µ is a reference spinor. Now, the −1 polarization vector relative to −p

momentum is

ξ−αα̇(−p) =
λ′αζ̃

′
α̇

[λ̃′, ζ̃ ′]
= −a2

ϵ β̇α ϵ
β
α̇ ζβλ̃β̇

⟨ζ, λ⟩ . (6.208)

Setting ζ = µ and comparing the two expressions, we conclude that a2 = −1, i.e. a = ±i. Thus, the

prescription for mapping (E,p) 7→ (E,−p) is (for example),

λ′ = (−iλ̃2, iλ̃1)T , λ̃′ = (iλ2,−iλ1). (6.209)

Under spatial reflection, the two inner products then transform as, e.g,

[12] 7→ [1′2′] = ⟨21⟩ = −⟨12⟩, (6.210)

⟨12⟩ 7→ ⟨1′2′⟩ = [21] = −[12]. (6.211)

This transformation law leads to consistent results for various 3p amplitudes - see, for example,

Appendix 6.7.4.
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The pI 7→ −pI prescription

Consider again a diagram in which a particle with helicity +1 is being exchanged. Let’s transform

this diagram under TP . Then the polarization 4-vector of the intermediate particle flips its sign:

ξµ 7→ −ξµ. On the other hand, this new 4-vector must be precisely the +1 polarization vector

relative to −pI (helicity of the exchanged particle doesn’t change under TP ). Schematically, the

±1 polarization vector is proportional to
(
λ̃/λ

)±1
. Thus, if pI ↔ (λ, λ̃), then we must have

−pI ↔ (λ,−λ̃) (or (−λ, λ̃)) to give consistent polarization vectors. We extrapolate this conclusion

to spins other than 1. This convention produces the correct relative signs in the amplitudes - see, for

example, the discussion in Section 6.4.3.

6.7.2 Formulas for the framid amplitude

Here we list the functions we used in (6.72) to write down the framid exchange four-particle amplitude

A4(1
0, 2+, 30, 4−):

F(1,a)(E1, E2, E3, E4; s, t) = −4e4E
2
12 − 2sE12E23f

+ s2(E1 − E2)(E3 − E4)−
s2

t
g, (6.212)

F(1,b)(E1, E2, E3, E4; s, t) = 12e4E12 +
2s

t
(E2 − E4)g + 3sE24f, (6.213)

F(1,c)(E1, E2, E3, E4; s, t) = −9e4 +
4E2E4

t
g, (6.214)

F(2,a)(E1, E2, E3, E4; s, t) = 4e4(E
2
1 + E1E3 + E2

3) + t2f − st(E1 − E3)(E2 − E4)

+ sE1E3(E1 − E3)(E2 − E4) (6.215)

− tE1E3

(
−E2

13 + E2E3

(
1 +

2E4

E1

)
+ E1E4

(
1 +

2E2

E3

))
,

F(2,b)(E1, E2, E3, E4; s, t) = 2(E1 − E3)(E
2
2 + E2E4 + E2

4)(t− E1E3), (6.216)

where we used

f = E1E4 + E2E3, (6.217)

g = 4e4 +
1

2
E1E3(2E1 + E2)(2E3 + E4) + sf, (6.218)

Eij = Ei + Ej , (6.219)

e4 = E1E2E3E4. (6.220)
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For completeness, we also list all on-shell, three-particle amplitudes for the framid, in the case of

equal speeds cL = cT . We find

A3(1
+2+3+) = 0, (6.221)

A3(1
+2+3−) =

√
2g (E1 − E2)

[12]3

[23][31]
, (6.222)

A3(1
+2+30) = g[12]2, (6.223)

A3(1
+2−30) =

1

2
g(21)2, (6.224)

A3(1
+2030) = − 1√

2
g (E1 + 2E2)

[12][31]

[23]
, (6.225)

A3(1
02030) = 2g (E1E2 + E2E3 + E3E1) . (6.226)

where

g =
c2L − 1

c2LM1
. (6.227)

6.7.3 Solutions to constraints on F (Ei)

In this appendix we provide proofs that the only rational functions of the form

F (x, y) =
f(x, y)

xnym(x+ y)k
(6.228)

that solve (6.97) and (6.105) are F = 0 and F = const respectively.

Photon constraint

We begin with the constraint (6.97). We allow F to take the form (6.228) and we have already

shown that the antisymmetry in the first two arguments of F requires n = m. Thus F (x, y) =

(xy)−m(x+ y)−kf(x, y), where the function f must be alternating in its two variables. We therefore

write f(x, y) = (x − y)P [x + y, xy] where P is another polynomial. Our factorisation constraint

(6.97) is then

0 = (−1)k
(E1 − E3)(E2 − E4)

Em1 E
m
2 E

m
4 (E1 + E3)2k

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

+(−1)m
(E1 + 2E2)(2E3 + E4)

Ek1E
m
2 E

k
4 (E1 + E2)2m

P [−E1,−E2(E1 + E2)]P [−E4,−E3(E3 + E4)]

−(−1)m
(E1 + 2E4)(E2 + 2E3)

Ek1E
k
2E

m
4 (E1 + E4)2m

P [−E1,−E4(E1 + E4)]P [−E2,−E3(E2 + E3)]. (6.229)
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First, we are going to assume that P is non-zero and, by examining the singularities, deduce that

m = k = 0. By assumption, P [x, y] is not divisible by x or y, so the first term in (6.229) is singular

at E1 + E3 = 0 for k > 0 while neither the second nor the third term are singular there. Thus, we

must have k = 0. By a similar argument, we also have m = 0. Our main equation thus simplifies to

(E1 − E3)(E2 − E4)P [E1 + E3, E1E3]P [E2 + E4, E2E4]

+(E1 + 2E2)(2E3 + E4)P [−E1,−E2(E1 + E2)]P [−E4,−E3(E3 + E4)]

−(E1 + 2E4)(E2 + 2E3)P [−E1,−E4(E1 + E4)]P [−E2,−E3(E2 + E3)] = 0, (6.230)

and this equation must be satisfied for all energies subject to E1 + E2 + E3 + E4 = 0. Now we will

aim to show

(
P

[
x,

(3 · 2n+1 − 2)

(3 · 2n+1 − 1)2
x2
]
= 0 ∀x OR P

[
x, 3 · 2n · 3 · 2n − 1

(3 · 2n+1 − 1)2
x2
]
= 0 ∀x

)
∀n ∈ Z≥0,

(6.231)

which entails P ≡ 0. The reason for this is that P would have to satisfy infinitely many distinct

constraints of the form P [x, akx
2] = 0 ∀x (it is easy to check that ak are indeed distinct) and thus

we would need (akx
2 − y) | P [x, y] for all the ak, which is impossible if P is a nonzero polynomial.

To prove (6.231), let

E
(n)
1 = (3 · 2n+1 − 2)x,

E
(n)
2 = −(3 · 2n)x,

E
(n)
3 = x,

E
(n)
4 = −(3 · 2n − 1)x, (6.232)

for n = 0, 1, 2, . . .. Note that E1 = −2E4 for any n, in which case the third term in (6.230) vanishes

and the main equation becomes

(E3 + 2E4)P [E3 − 2E4,−2E3E4]P [E2 + E4, E2E4]

= 2(2E3 + E4)P [2E4,−E2(E2 − 2E4)]P [−E4,−E3(E3 + E4)]. (6.233)

Taking n = 0, we get
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− 3xP [5x, 4x2]P [−5x, 6x2] = 0, (6.234)

so

P [5x, 4x2] = 0 ∀x OR P [−5x, 6x2] = 0 ∀x, (6.235)

or equivalently,

P [x,
4

25
x2] = 0 ∀x OR P [−x, 6

25
x2] = 0 ∀x, (6.236)

which is precisely the condition from (6.231) for n = 0. Now we will prove (6.231) for any n > 0 by

induction. Suppose (6.231) is true for some n− 1. Then set Ei to the values specified in (6.232). We

get

(3− 3 · 2n+1)xP [(3 · 2n+1 − 1)x, (3 · 2n+1 − 2)x2]P [−(3 · 2n+1 − 1)x, 3 · 2n(3 · 2n − 1)x2] =

= 2(3− 3 · 2n)xP [(3 · 2n − 1)x, (3 · 2n − 2)x2]P [−(3 · 2n+1 − 2)x, 3 · 2n · (3 · 2n − 2)x2].

(6.237)

The right hand side is zero by virtue of the previous induction step. Thus, the left hand side is also

zero, which entails

P [x,
(3 · 2n+1 − 2)

(3 · 2n+1 − 1)2
x2] = 0 ∀x OR P [x, 3 · 2n · 3 · 2n − 1

(3 · 2n+1 − 1)2
x2] = 0 ∀x, (6.238)

thereby completing the proof. This proves that there are no consistent (+1,−1± 1) amplitudes under

the assumption made in (6.69) and discussed in that section.

Graviton constraint

We now show that the only solution to the system of equations32 (6.105) is F = const thereby

reducing the (+2,−2,±2) amplitudes to their boost-invariant limits.

Here F must be of the form

F (x, y) =
f(x, y)

xmym(x+ y)k
(6.239)

32In fact, we need only 2 equations - those relating the second, third and fifth expression in (6.105) - and we can drop the
condition that the residue must be the same regardless of how the pole is approached.
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where f is a symmetric polynomial, so f(x, y) = P [x+ y, xy] for some polynomial P . Thus (6.105)

takes the form

(−1)k+m

Em2 E
m
3 E

m
4 (E1 + E3)2k

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

=
1

Ek2E
k
3E

m
4 (E1 + E2)2m

P [−E2,−E1(E1 + E2)]P [−E3,−E4(E3 + E4)]

=
1

Em2 E
k
3E

k
4 (E1 + E4)2m

P [−E4,−E1(E1 + E4)]P [−E3,−E2(E2 + E3)]. (6.240)

As in the case of the photon, we see that singularities generally don’t match. If k > 0, then the first

line contains a singularity at E1 + E3 = 0 which does not appear in the other two expressions. If

m > 0, then the second line has a singularity at E1 + E2 = 0 which does not correspond to the

behaviour of the other two functions. Thus, we must have m = k = 0 and the equations become

P [E1 + E3, E1E3]P [E2 + E4, E2E4]

= P [−E2,−E1(E1 + E2)]P [−E3,−E4(E3 + E4)]

= P [−E4,−E1(E1 + E4)]P [−E3,−E2(E2 + E3)]. (6.241)

This must hold for any Ei that satisfy
∑

iEi = 0. Now if we let E1 = E2 = 0, E3 = −E4 = E, our

constraint becomes

P [E, 0]P [−E, 0] = P [0, 0]P [−E, 0] = P [E, 0]P [−E, 0], (6.242)

and so P [−E, 0](P [E, 0] − P [0, 0]) = 0. This implies that P [−E, 0] = 0 for all E or P [E, 0] =

P [0, 0] for all E. But the first alternative entails the latter, so we can just assume

P [E, 0] = P [0, 0] := P0 ∀E. (6.243)

Now let E1 + E2 = E3 + E4 = 0. Our factorisation constraint is then

P [E1 + E3, E1E3]P [−(E1 + E3), E1E3] (6.244)

=P [E1, 0]P [−E3, 0] (6.245)

=P [E3,−E1(E1 − E3)]P [−E3,−E1(E1 − E3)]. (6.246)
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Because E1 and E3 are effectively independent variables, we can write x = E1 +E3, y = E1E3 and

find that the following equation must hold for all x, y:

P [x, y]P [−x, y] = P 2
0 . (6.247)

It is then easy to show (e.g. by observing that any zero of P [x, y] would correspond to a singularity

of P [−x, y], which a polynomial cannot have) that the only polynomial solution to this equation is

P [x, y] = P0.

6.7.4 Tree level three-point amplitudes for broken Maxwell theory

Maxwell theory of electromagnetism is a Lorentz invariant theory of a massless spin-1 particle, with

just two degrees of freedom corresponding to the two helicities ±1 of the photon. The quadratic

Lagrangian is

L2 =
1

4
FµνF

µν , (6.248)

where Fµν = ∂µAν − ∂νAµ. By counting first class and second class constraints, one can show that

the free theory indeed has two degrees of freedom. This is because A0 is non-dynamical and we also

have a one-dimensional gauge freedom. In the boost-invariant theory, there are no cubic interactions,

as we have shown in Section 6.3. Interactions can only start at quartic order in the fields.

As for the boost-breaking amplitudes in a theory of a single photon, we have shown that they are

allowed: they are the (±1,±1,±1) amplitudes with at least three powers of energy as dictated by

Bose symmetry. The simplest such amplitudes are

A3(1
−12−13−1) = g⟨12⟩⟨23⟩⟨31⟩(E1 − E2)(E2 − E3)(E1 − E3), (6.249)

A3(1
+12+13+1) = ±g[12][23][31](E1 − E2)(E2 − E3)(E1 − E3), (6.250)

and in Section 6.4.1 we suggested that such amplitudes arise from

F̈µνḞ
ν
ρF

ρ
µ, ϵµνρσF̈µνḞρκFσ

κ, (6.251)

operators in the Lagrangian. In this Appendix we consider the second of these operators showing that
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it does indeed give rise to the parity-odd form of the above amplitudes. Extending the following to the

first of these operators is straightforward and yields the parity-even form of the above amplitudes.

We will use the following, elegant identity:

ϵµνρσp1µp
2
νp

3
ρp

4
σ = −4i (⟨12⟩[23]⟨34⟩[41]− [12]⟨23⟩[34]⟨41⟩) , (6.252)

which is valid for any four, null 4-momenta (not necessarily conserved). The identity can be proven

efficiently using symbolic manipulation in Mathematica. The tree-level, (+1,+1,+1), S-matrix

element S+
3→0 due to ϵµνρσF̈µνḞρκFσκ is

S+
3→0 = ⟨0|(−i)

∫
d3xdtHint(x, t)

[
3∏
i=1

√
2Eia

+†
pi

]
|0⟩

= ig′
∫
d3q1d

3q2d
3q3δ

(4)
(∑

qµi

)
×
∑
Λ1,2,3

ϵµνρσE
2
q1

(
qµ1 ξ

Λ1,ν
1 − qν1ξ

Λ1,µ
1

)
Eq2

(
qρ2ξ

Λ2,α
2 − qα2 ξ

Λ2,ρ
2

)(
qσ3 ξ

Λ3
3,α − q3,αξ

Λ3,σ
3

)
×
∑
σ∈S3

(
δ(pσ(1) − q1)δ(pσ(2) − q2)δ(pσ(3) − q3)δ+,Λ1δ+,Λ2δ+,Λ3

)
= ig′δ(4)

(∑
pµi

)
ϵµνρσE

2
1E2

×
(
pµ1ξ

+,ν
1 − pν1ξ

+,µ
1

)(
pρ2ξ

+,α
2 − pα2 ξ

+,ρ
2

)(
pσ3ξ

+
3,α − p3,αξ

+,σ
3

)
+ 5 perms

= 2ig′δ(4)
(∑

pµi

)
ϵµνρσE

2
1E2p

µ
1ξ

+,ν
1

(
pρ2ξ

+,α
2 − pα2 ξ

+,ρ
2

)(
pσ3ξ

+
3,α − p3,αξ

+,σ
3

)
+ 5 perms.

Once we expand the product of two brackets into a sum, each permutation seems to include four

terms, but one of these trivially vanishes as it involves a factor p2 · p3 = 0. We therefore have

S+
3→0 = 2ig′δ(4)

(∑
pµi

)
ϵµνρσE

2
1E2p

µ
1ξ

+,ν
1

×
(
pρ2p

σ
3 (ξ

+
2 · ξ+3 )− ξ+,ρ2 pσ3 (p2 · ξ+3 )− pρ2ξ

+,σ
3 (p3 · ξ+2 )

)
+ 5 perms. (6.253)

Using (6.252), we get

S+
3→0 = 2ig′δ(4)

(∑
pµi

)
(−4i)E2

1E2

{
(⟨1ξ1⟩[ξ12]⟨23⟩[31]− [1ξ1]⟨ξ12⟩[23]⟨31⟩) (ξ+2 · ξ+3 )

− (⟨1ξ1⟩[ξ1ξ2]⟨ξ23⟩[31]− [1ξ1]⟨ξ1ξ2⟩[ξ23]⟨31⟩) (p2 · ξ+3 )

− (⟨1ξ1⟩[ξ12]⟨2ξ3⟩[ξ31]− [1ξ1]⟨ξ12⟩[2ξ3]⟨ξ31⟩) (p3 · ξ+2 )
}
+ 5 perms. (6.254)
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(Spinors constructed from the momenta are written as numbers 1, 2, 3; spinors constructed from the

polarization vectors are written as ξi.) Recall that for three-particle, on-shell interactions, we have

⟨ij⟩ = 0 for all i, j or [ij] = 0 for all i, j; so the first line vanishes. We also have [1ξ1] = 0, so all

terms involving this factor vanish as well. Thus,

S3→0 = −8g′δ(4)
(∑

pµi

)
E2

1E2

{
(⟨1ξ1⟩[ξ1ξ2]⟨ξ23⟩[31]) (p2 · ξ+3 )

+ (⟨1ξ1⟩[ξ12]⟨2ξ3⟩[ξ31]) (p3 · ξ+2 )
}
+ 5 perms. (6.255)

To make further progress, we have to choose a concrete spinor representation of the polarization

vectors ξi. Recall that

ξ+aȧ(p) =
ηaλ̃ȧ
⟨η, λ⟩ ,

with an almost arbitrary reference spinor η. At this point, we are free to make a choice that breaks the

Lorentz symmetry and we do so such that

ξ+i =
(ϵ.λ̃Ti )λ̃i

(ii)
. (6.256)

So ηi,1 = λ̃i,2 and ηi,2 = −λ̃i,1. Then, we have the following identities:

⟨iξ+j ⟩ = −(ij), (6.257)

[iξ+j ] =
[ij]

(jj)
, (6.258)

[ξ+i , ξ
+
j ] =

[ij]

(ii)(jj)
, (6.259)

pi · ξ+j =
1

2
⟨iξj⟩[iξj ] = −1

2

(ij)[ij]

(jj)
. (6.260)

Now we can simplify (6.255). The first line (dropping the prefactor −8g′δ) gives:
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∑
perms

E2
1

(
E2⟨1ξ1⟩[ξ1ξ2]⟨ξ23⟩[31](p2 · ξ+3 )

)
=

1

8E1E2E3

∑
perms

E2
1

(
E2(−(11))[12](32)[31]

(
−1

2
(23)[23]

))
=

1

8E1E2E3

∑
perms

E3
1E2[12](32)[31](23)[23]

=
1

2

∑
perms

E2
1E2[12][23][31] =

1

2
[12][23][31]

∑
cyc

E2
1 (E2 − E3) .

Meanwhile, the second line of (6.255) (again dropping the prefactor −8g′δ) gives:

∑
perms

E2
1

(
E2⟨1ξ1⟩[ξ12]⟨2ξ3⟩[ξ31](p3 · ξ+2 )

)
=

1

2

1

8E1E2E3

∑
perms

E2
1 (E2(−(11))[12](−(23))[31](−(32))[32])

=
1

8E1E2E3

∑
perms

E3
1E2[12](23)[31](32)[23]

=
1

2

∑
perms

E2
1E2[12][23][31] =

1

2
[12][23][31]

∑
cyc

E2
1 (E2 − E3) .

We see that the two contributions are exactly the same. In conclusion, we get

S+
3→0 = −8g′δ(4)

(∑
pµi

)
[12][23][31]

∑
cyc

E2
1 (E2 − E3)

= 8g′δ(4)
(∑

pµi

)
[12][23][31](E1 − E2)(E2 − E3)(E3 − E1). (6.261)

The analogue of (6.255) for all-minus helicities is

S−
3→0 = 8g′δ(4)

(∑
pµi

)
E2

1E2

{
([1ξ1]⟨ξ1ξ2⟩[ξ23]⟨31⟩) (p2 · ξ−3 ) (6.262)

+([1ξ1]⟨ξ12⟩[2ξ3]⟨ξ31⟩) (p3 · ξ−2 )
}
+ 5 perm-s.

We choose reference spinors similarly as before,

ξ−i =
λi(ϵ.λ

T
i )

(ii)
. (6.263)

Then
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⟨iξ−j ⟩ = ⟨ij⟩, (6.264)

[iξ−j ] = − (ji)

(jj)
, (6.265)

⟨ξ−i , ξ−j ⟩ = ⟨ij⟩, (6.266)

pi · ξ−j =
1

2
⟨iξj⟩[iξj ] = −1

2

⟨ij⟩(ji)
(jj)

. (6.267)

The first line of (6.262), after dropping the prefactor 8g′δ, gives

∑
perms

E2
1

(
E2[1ξ1]⟨ξ1ξ2⟩[ξ23]⟨31⟩(p2 · ξ−3 )

)
=

1

2

∑
perms

E2
1

(
E2 · (−1) · ⟨12⟩

(
−(23)

(22)

)
⟨31⟩−⟨23⟩(32)

(33)

)

=
1

2

∑
perms

E2
1E2

4E2E3
⟨12⟩⟨23⟩⟨31⟩ (−(23)) (32) = −1

2
⟨12⟩⟨23⟩⟨31⟩

∑
cyc

E2
1(E2 − E3).

The second line of (6.262) yields

∑
perms

E2
1

(
E2[1ξ1]⟨ξ12⟩[2ξ3]⟨ξ31⟩(p3 · ξ−2 )

)
=

1

2

∑
perms

E2
1

(
E2 · (−1) · ⟨12⟩(32)

(33)
⟨31⟩−⟨32⟩(23)

(22)

)

= −1

2

∑
perms

E2
1E2

4E2E3
⟨12⟩⟨23⟩⟨31⟩(23)(32) = −1

2
⟨12⟩⟨23⟩⟨31⟩

∑
cyc

E2
1(E2 − E3).

So

S−
3→0 = −8g′δ(4)

(∑
pµi

)
⟨12⟩⟨23⟩⟨31⟩

∑
cyc

E2
1(E2 − E3)

= 8g′δ(4)
(∑

pµi

)
⟨12⟩⟨23⟩⟨31⟩(E1 − E2)(E2 − E3)(E3 − E1). (6.268)

Comparing (6.261) and (6.268) with (6.52), we see that the amplitude due to ϵµνρσF̈µνḞραF α
σ is

parity-odd, as expected from the presence of the ϵ tensor.

6.7.5 Boost-breaking massless QED

In this Appendix we provide Lagrangians for the boost-breaking versions of massless QED we derived

using the four-particle test in Section 6.4.2. In the boost-invariant limit massless scalar QED is

described by the Lagrangian



6.7 Appendices 209

L =
1

4
F 2
µν +

1

2
DµϕDµϕ

∗ (6.269)

where the covariant derivative is as usual Dµϕ = ∂µϕ− ieϕAµ. This gives rise to the standard kinetic

terms plus cubic and quartic vertices. The Lagrangian is invariant under the gauge symmetry

ϕ→ eieα(x)ϕ, Aµ → Aµ + ∂µα(x). (6.270)

By choosing the basis ϕ = ϕ1 + iϕ2 the anti-symmetric nature of the cubic vertices is manifest and

the three-particle amplitude has Fab = ϵab in (6.114) and (6.115). Now to realise the function of

energy in the amplitude we need to add time derivatives to (6.269). We saw that in the boost-breaking

case we have Fab = ϵabF (E1 + E2) and since E1 + E2 = −E3 we can add time derivatives to the

vector only, and we find that the correct Lagrangian is given by

L =
1

4
F 2
µν +

1

2
D̂µϕD̂µϕ

∗ (6.271)

where we have defined the new boost-breaking covariant derivative

D̂µϕ = ∂µϕ− ieϕ∂̂tAµ, (6.272)

in terms of the derivative operator

∂̂t = a1∂t + a2∂
2
t + a3∂

3
t + . . . . (6.273)

In comparison to the boost-invariant theory, this theory also has a gauge symmetry given by

ϕ→ eie∂̂tβ(x)ϕ, Aµ → Aµ + ∂µβ(x). (6.274)

If we again write ϕ = ϕ1 + iϕ2 we see that

L ⊃ ieϵabϕ
a∂µϕb∂̂tAµ, (6.275)

and these cubic vertices give rise to our three-particle amplitudes. We therefore have a consistent

boost-breaking theory of massless scalar QED.
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For S = 1/2 the story is a simple generalisation of the above discussion. In the boost-invariant

limit, massless fermionic QED is described by the Lagrangian

L =
1

4
FµνF

µν + iψ̄γµDµψ, (6.276)

where ψ is a four-component Dirac spinor33, γµ are the gamma matrices and Dµ = ∂µ + ieAµ. This

Lagrangian is invariant under the U(1) gauge symmetry

ψ → e−ieα(x)ψ, Aµ → Aµ + ∂µα(x). (6.277)

Guided by the scalar case, we can instead define a new covariant derivative as

D̂µ = ∂µ + ie∂̂tAµ, (6.278)

and if we replace Dµ by D̂µ in (6.276) then we find a consistent boost-breaking theory of massless

fermionic QED invariant under the gauge symmetry

ψ → e−ie∂̂tβ(x)ψ, Aµ → Aµ + ∂µβ(x). (6.279)

Again this theory gives rise to our boost-breaking amplitudes derived in Section 6.4.2.

6.7.6 More details on the inconsistency of ϕ̇3 coupled to gravity

In this appendix we consider a self-interacting scalar minimally coupled to hµν in Minkowski space

and directly compute the A4(1
0, 20, 30, 4+2) amplitude due to scalar exchange, showing that the final

result is gauge invariant only in the absence of Lorentz-violating interactions. Thus the aim is to

provide further clarity on why an interaction of the form ϕ̇3 is inconsistent. We take the graviton

self-interactions and the minimal coupling between the scalar and the graviton to be Poincaré invariant

and consider a Lagrangian of the form

L = LEH +
1

2
(∂ϕ)2 − 1√

2Mpl
hµν∂µϕ∂νϕ+ Lϕ, (6.280)

33Recall that a Dirac spinor is not a irreducible respresentation of the Lorentz group. It is really comprised of two
2-component spinors reflecting the fact that we need two S = 1/2 particles each with ±1/2 helicities.
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where LEH contains the quadratic and cubic terms in the canonically normalised graviton fluctuation

hµν arising from expanding
√−gR around Minkowski space and Lϕ contains cubic self-interactions

for the scalar with an unspecified number of time derivatives (all Lorentzian derivatives can be removed

by field redefinitions). The results of this appendix will therefore capture ϕ̇3 but also a more general

class of self-interactions where the on-shell three-scalar amplitude is A3(1
0, 20, 30) = F (E1, E2, E3)

where F is a symmetric polynomial.

First consider the s-channel of the A4(1
0, 20, 30, 4+2) amplitude. Up to unimportant O(1) factors

and inverse powers of Mpl, we have

As
4(1

0, 20, 30, 4+2) =
F (E1, E2)

s
ϵ+µν(p4)p

µ
3 (p

ν
3 + pν4) =

F (E1, E2)

s
ϵ+µν(p4)p

µ
3p

ν
3 , (6.281)

where we have used the fact that the graviton’s on-shell polarisation tensor is transverse and have used

energy conservation to eliminate the energy of the exchanged scalar particle. The t and u channel

expressions are

As
4(1

0, 20, 30, 4+2) =
F (E1, E3)

t
ϵ+µν(p4)p

µ
2p

ν
2 , (6.282)

As
4(1

0, 20, 30, 4+2) =
F (E2, E3)

u
ϵ+µν(p4)p

µ
1p

ν
1 . (6.283)

Now we can write these expressions in the spinor helicity formalism using

4ϵ+µν(p4)p
µ
i p

µ
i = e+αα̇(p4)e

+

ββ̇
(p4)λ

α
i λ̃

α̇
i λ

β
i α̃

β̇
i =

(⟨ηi⟩[4i]
⟨η4⟩

)2

. (6.284)

Now we have infinitely many choices for the reference spinor η, but it is sufficient to consider only

three options, η = 1, 2, 3, so that η corresponds to a spinor of one of the particles other than the

graviton. The three choices for each channel yield (again dropping unimportant common factors)

As4(1
0, 20, 30, 4+2) = F12 (⟨12⟩[14][24])2 ×



1
su2

η = 1

1
st2

η = 2

0 η = 3

(6.285)
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At4(1
0, 20, 30, 4+2) = F13 (⟨12⟩[14][24])2 ×



1
tu2

η = 1

0 η = 2

1
ts2

η = 3

(6.286)

Au4(1
0, 20, 30, 4+2) = F23 (⟨12⟩[14][24])2 ×


0 η = 1

1
ut2

η = 2

1
us2

η = 3

(6.287)

where we have introduced the shorthand F (Ei, Ej) = Fij . Using s+ t+ u = 0, we can therefore

write the full amplitude as

A4(1
0, 20, 30, 4+2) = − (⟨12⟩[14][24])2 ×



F12
stu + F12−F13

tu2
η = 1

F23
stu + F23−F12

st2
η = 2

F13
stu + F13−F23

us2
η = 3.

(6.288)

For general boost-breaking scalar self-interactions, F12 ̸= F13 and so on. Hence we see that the

above amplitude could change as different choices for the unphysical reference spinor are made. This

certainly indicates an inconsistency. Demanding that the amplitude is the same for each choice of

reference spinor leads to the constraints

F12 = F13 = F23 . (6.289)

This is only solved by F = constant for generic energies, and so the three-particle amplitude for a

scalar coupled to gravity must be Poincaré invariant.



Chapter 7

Bootstrap via BCFW Momentum Shifts

7.1 The Britto-Cachazo-Feng-Witten (BCFW) method

As we have seen above, in the consistent factorization approach we have to write down an ansatz

that is guided by the helicity scaling and the expected mass dimension of the four-particle amplitude.

While this process can be generalized and applied to other cases, in this subsection I will describe

an alternative method, reviewed in [32, 83], which automates the process of bootstrapping three-

particle amplitudes and constructing higher-point ones. This method also relies on a purely on-shell

description and is known, after the names of its authors [159, 160], as the Britto-Cachazo-Feng-Witten

(BCFW) recursion.

In the simplest implementation of the BCFW recursion, one considers a deformation of two

spinors λ(i) and λ̃(j), promoting them both to functions of a complex variable z:

λ(i)(z) = λ(i) + zλ(j) , (7.1)

λ̃(j)(z) = λ̃(j) − zλ̃(i) . (7.2)

The deformed spinors induce a change on the amplitude:

A 7→ A(i,j)(z) . (7.3)

The deformation is consistent with the on-shell kinematics and with the conservation of momentum,
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δ

(∑
a

pa,αα̇

)
= zλ(j)α λ̃

(i)
α̇ − zλ(j)α λ̃

(i)
α̇ = 0 , (7.4)

so the amplitude A(i,j)(z) is still a valid physical amplitude. We will now restrict attention to the

tree-level amplitude, which is a rational function of the kinematic variables so that A(i,j)(z) is a

meromorphic function with no branch cuts. We can use Cauchy’s Theorem to write

A(0) = Res
[
A(z)

z
, z = 0

]
= −

∑
I

Res
[
A(z)

z
, z = zI

]
−
∑
I

Res
[
A(z)

z
, z = ∞

]
, (7.5)

where we can define

−Res
[A(z)

z
, z = ∞

]
= B∞ . (7.6)

Note that B∞ = 0 if A(z) → 0 as |z| → ∞.

Each of the residues at finite zI ̸= 0 corresponds to a physical pole of the amplitude A(z), i.e. a

factorization channel. Let us determine the location of these residues. Consider a single exchange

channel such that cutting the exchange leg would separate a diagram into a subset I of the set of

external particles and its complement Ic. The process can thus be written as (pa)a∈I → (pa)a/∈I . If

PI(z) is the momentum of the exchanged virtual particle, then

PI(z) =
∑
a∈I

pa(z). (7.7)

By definition, the exchanged particle is on-shell when z = zI ,

P 2
I (zI) = 0 . (7.8)

If the deformation is applied to λ(i) and λ̃(j) (we denote this deformation as (i, j)), there are two

distinct cases to consider:

• If particles i and j are on the same side of the exchange diagram (i, j ∈ I or i, j /∈ I), then

PI(z) is independent of z and P 2
I (zI) = 0 has no solutions (or else it is trivial, but we can

arrange the external kinematics in such a way as to eliminate this possibility).

• If particles i and j are on opposite sides of the exchange diagram (i ∈ I, j /∈ I or i /∈ I, j ∈ I),

then P 2
I (zI) = 0 will have exactly one solution. Let’s focus on the case i ∈ I, j /∈ I and let qµ
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be the four-vector with spinors (λ(j), λ̃(i)). We have

P 2
I (z) = (PI(0) + zq)2 = P 2

I (0) + 2z

(∑
k∈I

pk

)µ
qµ = P 2

I (0) + z

(∑
k∈I

⟨kj⟩[ki]
)
. (7.9)

Hence

zI = − P 2
I (0)∑

k∈I
⟨kj⟩[ki] . (7.10)

We can now compute the residues on the right-hand side of (7.5). The residue of A(z)/z at z = zI

can be obtained by noting that

lim
z→zI

P 2
I (z)A(z) = AL(zI)AR(zI) , (7.11)

where AL, AR are the constituent sub-amplitudes. Hence

Res
[
A(z)

z
, z = zI

]
= Res

[
AL(z)AR(z)

zP 2
I (z)

, z = zI

]
=
AL(zI)AR(zI)

zI
Res

[
1

P 2
I (z)

, z = zI

]
=
AL(zI)AR(zI)

zI

(
dP 2

I (zI)

dzI

)−1

=
AL(zI)AR(zI)

zI
∑
k∈I

⟨kj⟩[ki] = −AL(zI)AR(zI)
P 2
I (0)

.

(7.12)

Therefore, we obtain a recursion relation for the amplitude,

A(i,j)(0) =
∑
I

AL(zI)AR(zI)

P 2
I

+B∞ (7.13)

where zI are given by (7.10). This relation can be used to construct tree-level, n−particle amplitudes

from basic building blocks, such as the three-particle amplitudes [29, 159, 160]. In this brief review, I

will focus on the simplest case n = 4.

7.2 Lorentz-invariant four-particle amplitudes

We will now restrict the analysis to four-particle amplitudes. In this case, (7.10) takes a simple form.

For example, for the (1, 3) deformation, the s−channel residue is located at
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z{1,2} = − s

⟨23⟩[21] =
⟨12⟩
⟨23⟩ . (7.14)

The sum over residues in the equation

A(i,j)(0) =
∑
I

AL(zI)AR(zI)

P 2
I

+B(i,j)
∞ , (7.15)

will generally receive contributions from two distinct channels. Note that there is no contribution

from the channel in which particles i and j are on the same side of the exchange diagram.

Let us consider the interactions of a unique spin S massless particle. We will need the three-

particle amplitudes for helicity configurations (+S,+S,−S),

A3(1
+S , 2+Sb , 3−Sc ) = g

(
[12]3

[23][31]

)S
(7.16)

We take the interactions to be parity even, so the mostly-minus amplitudes are

A3(1
−S , 2−S , 3+S) = g

( ⟨12⟩3
⟨23⟩⟨31⟩

)S
. (7.17)

We shall proceed as follows:

1. Consider a specific four-particle amplitude A4(1
h1
a , 2

h2
b , 3

h3
c , 4

h4
d ).

2. Choose an appropriate deformation (i, j) acting on the spinors λ(i) and λ̃(j).

3. Find the locations of all the poles, zI .

4. Check that B(i,j)
∞ in (7.15) vanishes.

5. Use (7.15) to calculate A(i,j)(z = 0) ≡ A4.

6. Choose another pair of spinors i′ and j′ and repeat the steps 2− 5 to find an alternative formula

for A4. Ideally, equating this formula with the previous one will yield constraints on the

three-particle amplitudes and allow us to construct A4.

Consider, therefore, the amplitude A4(1
+S , 2+S , 3−S , 4−S). Generally speaking, and as we will

later see, in order keep the behaviour of A(z) under control as z → ∞ (and thus make B∞ = 0), it is

a good idea to deform the holomorphic spinor λ of a positive helicity particle and the anti-holomorphic

spinor λ̃ of a negative helicity particle. First, we choose i = 1, j = 3. Two factorization channels (s

and u, see Fig. 7.1), with residues located at zs and zu, contribute to the right hand side of (7.15),
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s channel t channel u channel

Figure 7.1: The three factorization channels of the tree-level amplitude A4(1
+S , 2+S , 3−S , 4−S).

A(1,3)(0) =
1

s

(
g

[12]3S

[2Is]S [Is1]S

)(
g

⟨34⟩3S
⟨4I ′s⟩S⟨I ′s3⟩S

)
+

1

u

(
g

[1Iu]
3S

[Iu4]S [41]S

)(
g

⟨3I ′u⟩3S
⟨I ′u2⟩S⟨23⟩S

)
+B∞.(7.18)

In the above, we have written Is, Iu for the intermediate particle, which is treated as incoming into

the left-hand side vertex,

pIs = −(p1(zs) + p2) , (7.19)

while I ′ is assumed to be the conjugate particle incoming into the right-hand side vertex,

pI′s = −(p3(zs) + p4) = p1(zs) + p2 . (7.20)

Note that pI′s = −pIs . The spinors of I and I ′ momenta can be related by [2]

|I ′⟩ = |I⟩, |I ′] = −|I]. (7.21)

Given this, we can rewrite (7.18) in terms of Is and Iu alone:

A(1,3)(0) =
1

s
g2

[12]3S⟨34⟩3S
[2Is]S [Is1]S⟨4Is⟩S⟨Is3⟩S

+
1

u
g2

[1Iu]
3S⟨3Iu⟩3S

[Iu4]S [41]S⟨Iu2⟩S⟨23⟩S
+B∞. (7.22)

Using pIs = −(p1(zs) + p2) = p3(zs) + p4 and pIu = −(p1(zu) + p4) = p2 + p3(zu), we get

A(1,3)(0) =
1

s
g2

(
− [12]3⟨34⟩3
[21̂]

(
⟨3|(1̂ + 2)|1]

)
⟨41̂⟩

)S
+

1

u
g2

(
([1|(1̂ + 4)|3⟩)3
[1̂4][41]⟨1̂2⟩⟨23⟩

)S
+B(1,3)

∞

=
1

s
g2

 [12]3⟨34⟩3

t ⟨34⟩⟨23⟩ [12]⟨23⟩

S

+
1

u
g2

 (⟨34⟩[41])3

t ⟨23⟩⟨34⟩ [41]⟨23⟩

S

+B(1,3)
∞
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= g2
1

tS

(
1

s
+

1

u

)
[12]2S⟨34⟩2S +B(1,3)

∞

= g2
1

tS

(−t
su

)
[12]2S⟨34⟩2S +B(1,3)

∞

= −g2 [12]
2S⟨34⟩2S
stS−1u

+B(1,3)
∞ . (7.23)

Let us now calculate A4(1
+S , 2+S , 3−S , 4−S) using the deformation of spinors λ1 and λ̃4. This

time, the two residues on the right hand side of (7.15) correspond to s and t channels (Fig. 7.1). We

have

A(1,4)(0) =
1

s

(
g

[12]3S

[2Is]S [Is1]S

)(
g

⟨34⟩3S
⟨4I ′s⟩S⟨I ′s3⟩S

)
+

1

t

(
g

[1It]
3S

[3It]S [31]S

)(
g

⟨I ′t4⟩3S
⟨42⟩S⟨4I ′t⟩S

)
+B(1,4)

∞

(7.24)

=
1

s
g2

1

uS
[12]2S⟨34⟩2S +

1

t
g2

1

uS
[12]2S⟨34⟩2S +B(1,4)

∞ (7.25)

= g2
(
s+ t

uS

)
[12]2S⟨34⟩2S

st
+B(1,4)

∞ (7.26)

= −g2 [12]
2S⟨34⟩2S
stuS−1

+B(1,4)
∞ . (7.27)

Since A(1,3)(0) and A(1,4)(0) should both be equal to the same, undeformed amplitude A4, we can

now equate (7.23) with (7.27),

−g2 [12]
2S⟨34⟩2S
stS−1u

+B(1,3)
∞ = −g2 [12]

2S⟨34⟩2S
stuS−1

+B(1,4)
∞ . (7.28)

The boundary terms B(i,j)
∞ can be constrained by estimating the large z behaviour of the deformed

amplitudes. As z → ∞, the tree-level Feynman diagram contribution to A(1,3)(z) can be estimated as

follows. First, note that the exchange diagram contains two powers of three-particle amplitudes A3,

each of which has bare mass dimension S. Each three-particle amplitude is therefore quadratic in

the momenta and proportional to the product of all polarization tensors of the external particles. In

the case of the (1, 3) deformation, the polarization tensors e+2(k1) and e−2(k3) are proportional to

(λ1)
−S ∼ z−S and (λ̃3)

−S ∼ z−S , while all others are independent of z. The four-particle amplitude

also contains a factor of 1/P 2
ab (the propagator) which is proportional to z0 or to z−1 as z → ∞.

Collecting all the factors of z together, we get, in the s and u channels,

(
z2S from the momenta

)
×
(
z−2S from the pol. tensors

)
×
(
z−1 from the propagator

)
∼ z−1.
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While in the t channel, one of the constituent three-particle amplitudes will be independent of z and

so will be the propagator,

(
zS from the momenta

)
×
(
z−2S from the pol. tensors

)
×
(
z0 from the propagator

)
∼ z−S .

Therefore, the contribution from an exchange diagram will behave as z−1 or z−S as z → ∞. This

contribution to A(1,3)(z) will vanish as |z| → ∞ provided that S > 0.

Let us now consider the contact contribution. This will again be proportional to e+2(k1) and

e−2(k3), which will contribute an overall factor of z−2S . If the quartic vertex has bare mass dimension

(the number of derivatives) not greater than 2S−1, the amplitude is under control as z → ∞. However,

if the number of derivatives in that vertex is greater than 2S − 1, then the boundary term B
(1,3)
∞ can

be non-zero and the four-particle amplitude cannot be fully known just from three-particle amplitudes.

The situation here is similar to that of the previous subsection: the four-particle amplitude can be

constructed from the three-particle ones provided that the number of derivatives in the quartic vertex

does not exceed 2S − 1.

An analogous argument for the (1, 4) deformation shows that B(1,4)
∞ also vanishes if the number

of derivatives in the quartic vertex does not exceed 3. Thus, we have

−g2 [12]
2S⟨34⟩2S
stS−1u

= −g2 [12]
2S⟨34⟩2S
stuS−1

. (7.29)

So (assuming g ̸= 0),

tS−2 = uS−2 . (7.30)

This equation is satisfied if and only if S = 2. Therefore, we can now conclude that the S−derivative

interaction (which dominates in the IR) between spin S > 0 particles may only exist if S = 2,

i.e. only if the particles are equivalent to gravitons. In that case we can construct the four-particle

amplitude A4(1
+2, 2+2, 3−2, 4−2) (under the assumption that the quartic interaction has at most 3

derivatives),

A4(1
+2, 2+2, 3−2, 4−2) = −g2 [12]

4⟨34⟩4
stu

. (7.31)

This construction can then be extended to higher-point amplitudes. Therefore, under the assumption
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that GR is a two-derivative theory, all tree-level amplitudes can be constructed in a straightforward

manner from the three-particle amplitudes and depend only on one coupling g = 1
MPl

. On the level

of the action, this is a consequence of the diffeomorphism symmetry of GR, which allows for only

one two-derivative, gauge invariant scalar, namely
√−gR. We note, however, that the Lagrangian

description, unlike the on-shell techniques, does not allow for an easy derivation of n−particle

amplitudes.

As we saw in this section, the BCFW method heavily relies on controlled behaviour of the

amplitude in the limit of large momentum. Asymptotic behaviour A(z) ∼ ≀(z0) guarantees that the

boundary term vanishes, thus allowing for derivation of a four-particle amplitude from a three-particle

one. It is interesting how the dependence of the deformed amplitude on z can be controlled in the

case of boost-violating theories. This is the subject of the next section, published as [3].

7.3 The Boostless Bootstrap and BCFW Momentum Shifts

In this section, we show that the BCFW method can be applied in a boost-violating setting, despite

possible divergence of the deformed amplitude at large z. The section is based on [3].

7.3.1 Constructibility criterion

In its original formulation, the above described method is reserved for constructible theories for

which B(i,j)(z) vanishes. In this case the singular parts of undeformed amplitudes can be compared

with one another and the full four-particle amplitude is determined by the three-particle ones. Since

B(i,j)(z) is regular, it is sufficient to prove that the amplitude tends to zero as z → ∞. This is usually

a non-trivial matter, necessitating a reference to the Lagrangian and a detailed counting of powers of

momenta. Fortunately, many theories describing nature are constructible including, most notably, YM

[159, 160] and GR [161] (scalar field theories are not constructible in the sense described above. This

has lead to new, interesting momentum shifts and on-shell recursion relations being derived for scalar

theories with non-linearly realised symmetries [225, 226]).

However, for the boost-breaking amplitudes of interest here, it is unlikely that B(i,j)(z) would

vanish, since the unknown functions of energies will in general contribute positive powers of z to the

tree-level amplitude. Indeed, for both particles i and j, the deformation of their energies is linear in z
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and so the divergence at large z gets worse as additional powers of energy are included:

Ei(z) = Ei(0) +
z

2
(σ̄0)α̇αλ(j)α λ̃

(i)
α̇ , (7.32)

Ej(z) = Ej(0)−
z

2
(σ̄0)α̇αλ(j)α λ̃

(i)
α̇ . (7.33)

The BCFW method can still be useful for non-constructible theories, however. One possibility is

to introduce a distinction between accessible and inaccessible singularities of A(i,j)
4 (z), along the lines

of [227]. We say a singularity is accessible via a deformation of momenta i and j if this singularity is

approached as z → z∗ for some z∗. Otherwise we say it is inaccessible. The regular term B(i,j)(z),

by definition, cannot have any singularities in the z−plane and therefore cannot contribute to any

residues of the accessible singularities of A(i,j)
4 (z). But it may exhibit inaccessible singularities. As an

illustration of this distinction, consider a single scalar theory which is famously non-constructible. In

the absence of additional global charges, the three-particle amplitude is a non-zero constant, A3 = g,

and so we have

A(1,2)
4 (0) = g2

(
1

t
+

1

u

)
+B(1,2)(0), (7.34)

A(1,4)
4 (0) = g2

(
1

s
+

1

t

)
+B(1,4)(0). (7.35)

The consistency condition A(1,2)
4 (0) = A(1,4)

4 (0) can be satisfied by choosing B(1,2)(z) = g2

s and

B(1,4)(z) = g2

u , since these two functions do not have any accessible singularities with regards to

their own deformations.

In the following section we will constrain boost-breaking amplitudes using the fact that the regular

term B(i,j)(z) does not have any accessible singularities. We will see that for spinning particles, we

can derive the highly non-trivial constraints first found in [2] (Chapter 6).

7.3.2 Constraining three-particle interactions

In this section we will constrain three-particle interactions for theories of a single spin-S particle with

integer S. We will derive the constraints first presented in [2] (Chapter 6). We also checked that the

BCFW techniques allow us to recover other results in of Chapter 6, namely those of (gravitational)

Compton scattering and the full analysis for a scalar or a photon coupled to gravity. Those calculations
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contain only minor differences compared with what is presented below so we omit the details in

favour of brevity. We remind the reader that we do not impose boost invariance, but only demand that

the free theory is Poincaré invariant, with the on-shell condition E2 − p2 = 0 for each particle, and

that boost violations enter the action only through time derivatives.

Consider the amplitude A4(1
+S2−S3+S4−S), where superscripts denote the helicities of in-

coming particles of some integer spin S. We will impose matching conditions between deforma-

tions (1, 2) and (1, 4). First consider (1, 2). Using the expressions for1 A3(1
+S , 2+S , 3−S) and

A3(1
−S , 2−S , 3+S) given in (6.48), and2

p1(zt) + p3 =
[13]

[14]
λ(3)λ̃(4), (7.36)

p1(zu) + p4 =
[14]

[13]
λ(4)λ̃(3), (7.37)

to eliminate all copies of λ(I) and λ̃(I), which are the spinors associated with the exchanged particle3,

we find

A(1,2)
4 (0) = B(1,2)(0) +(
1

t
F1̂,3F2̂,4 +

1

u
F1̂,−1̂−4F2̂,−2̂−3

)(
[13]2⟨24⟩2

s

)S
. (7.38)

In the u-channel we have summed over the two possibilities for the helicity configuration of the

exchanged particle but given (7.37), only one of these is non-zero. To keep formulae compact,

here we have introduced subscripts to the F ’s to denote their arguments e.g. F (Ei, Ej) ≡ Fi,j and

F (Ei, Ej + Ek) ≡ Fi,j+k. Again, hats denote deformed objects evaluated at the appropriate points

e.g. in the 1/t coefficient, F1̂,3 ≡ F (Ê1(zt), E3) where Ê1(zt) is the deformed energy of particle 1

evaluated at z = zt. Likewise, in the 1/u coefficient, hatted energies are evaluated at z = zu. We

have also removed the H/AH superscripts since the functions are identical, due to parity, up to an

inconsequential overall sign (see Chapter 6).

1These amplitudes arise from the leading order couplings. Higher-dimension operators give rise to the
A3(1

+S , 2+S , 3+S), A3(1
−S , 2−S , 3−S) amplitudes but we don’t consider these here. We refer the reader to [2] for

a discussion on these amplitudes.
2Here we have assumed [13] and [14] are non-zero, and therefore t = 0 and u = 0 are approached as ⟨13⟩ = 0 and

⟨14⟩ = 0 respectively (or as [24] = 0 and [23] = 0 respectively, by momentum conservation).
3For example, in the t-channel we set λ(I) = αλ(3) and λ̃(I) = βλ̃4 with αβ = [13]

[14]
. When computing the residue, α

and β only appear in the product αβ.
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Now, we can also write

A(1,2)
4 (0) = B̃(1,2)(0) +(
1

t
F1,3F2,4 +

1

u
F1,−1−4F2,−2−3

)(
[13]2⟨24⟩2

s

)S
, (7.39)

where here we dropped the hat above all the energies, which indicates that the expression is evaluated

at their undeformed values. This can be justified as follows. We assume that the F ’s can be Taylor

expanded around the undeformed energies. The deformed energies are

Ê1(zt) = E1 −
t

2⟨23⟩[13](σ̄
0)α̇αλ(2)α λ̃

(1)
α̇ , (7.40)

Ê2(zt) = E2 +
t

2⟨23⟩[13](σ̄
0)α̇αλ(2)α λ̃

(1)
α̇ , (7.41)

with similar expressions evaluated at z = zu. For the class of Lagrangians considered in this paper,

energies appear in Fa,b only with non-negative powers, and each factor of an energy is generated by

a time derivative acting on the field. In the above, we see that potential new singularities generated

by the deformed energies are all inaccessible, as they correspond to the vanishing of ⟨23⟩ or [13],

but these do not depend on z. Moreover, only the leading term in the Taylor expansion will exhibit

accessible singularities, since in all subleading terms t and u will be cancelled out. We can therefore

simply absorb all subleading terms into B(1,2), thus introducing B̃(1,2) that still does not contain

any terms singular in t or u. Although it could become singular in some kinematic configurations,

especially at s = 0, that is not a problem, because this singularity is inaccessible and we only demand

that B̃(1,2), for those configurations for which it can be defined, does not have any singularities as a

function of z.

We now play the same game for the (1, 4) deformation which amounts to interchanging particles

2 and 4. We have

A(1,4)
4 (0) = B̃(1,4)(0) +(
1

t
F1,3F4,2 +

1

s
F1,−1−2F4,−4−3

)(
[13]2⟨24⟩2

u

)S
. (7.42)

We discussed the S = 0 case earlier where we showed that equating A(1,2)
4 (0) and A(1,4)

4 (0) requires

us to make certain choices for the boundary terms. Let us now consider S > 0 with S an integer.
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We see that A(1,2)
4 (0) in (7.39) contains terms proportional to 1/(tsS) and 1/(usS) which are both

singular in more than one Mandelstam variable and thus cannot be accounted for or modified by

B̃(1,2)(0) nor B̃(1,4)(0). A similar observation applies to A(1,4)
4 (0) in (7.42). Thus, by matching the

amplitudes we find the necessary condition

a

sSt
+

b

sSu
=

c

uSt
+

d

uSs
, (7.43)

where

a = F1,3F2,4, (7.44)

b = F1,−1−4F2,−2−3, (7.45)

c = F1,3F4,2, (7.46)

d = F1,−1−2F4,−4−3. (7.47)

Recalling that s+ t+u = 0, this constraint, given that it must be valid for all kinematics, is equivalent

to

auS − b(s+ u)uS−1 − csS + d(s+ u)sS−1 = 0. (7.48)

For S = 1 we therefore have a = (b− d) = −c, or equivalently,

F1,3F2,4 − F1,−1−4F2,−2−3 + F1,−1−2F4,−4−3 = 0, (7.49)

which is simply an alternative form of (6.97). Assuming that the F ’s are polynomials, in Chapter 6

we showed that the only solution to this system is F ≡ 0 once we impose that the S = 1 functions

are alternating polynomials as dictated by Bose symmetry4. We therefore see that the leading order

three-particle interactions for three-photons must vanish, as is the case for Poincaré invariant theories.

For S = 2 we require a = b = c = d, or equivalently,

F1,3F2,4 = F1,−1−4F2,−2−3 = F1,−1−2F4,−4−3, (7.50)

4The spinor helicity parts of the S = 1 three-particle amplitudes are odd under the exchange of identical particles so if
the amplitudes are to be even by Bose symmetry, the F ’s must be alternating.
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which gives rise to the constraints (6.105) - (6.107) once we use the fact that the S = 2 functions

are symmetric in their arguments by Bose symmetry5 (this also makes the a = c constraint trival).

In Chapter 6 that the only solution to this system is F = constant and so again the three-particle

interactions are reduced to their Poincaré invariant form, but this time the amplitudes are non-zero

and are those of GR. Finally, for S > 2, it is simple to see that a = b = c = d = 0 is required and

therefore there are no consistent three-particle interactions for these massless, higher-spin particles

even when boosts are broken, as we also concluded in the previous chapter.

7.3.3 Summary

In Chapter 6 (published as [2]), the singular parts of four-particle amplitudes were bootstrapped by

demanding that they factorise into a product of on-shell three-particle amplitudes on simple poles. In

that work, consistent factorisation was implemented directly without making use of BCFW momentum

shifts. In this short section, we have shown that the same results can be derived by using BCFW

shifts to automate consistent factorisation. We presented full details for the illustrative cases of single

spin-S particle amplitudes but have also checked that the procedure produces the expected results for

Compton scattering, and its gravitational analogue, as well as for scalars or photons coupled minimally

to gravity. For single spin-S particles, the boostless bootstrap teaches us that the leading three-particle

couplings for a photon must vanish, the leading three-particle couplings for a graviton must be those

of GR, while massless higher-spinning particles do not self-interact. For photon Compton scattering,

boost-breaking interactions between the photon, scalars and spin-1/2 fermions are allowed and can

be described by Lagrangians with generalised boost-breaking gauge redundancies. For gravitational

Compton scattering, all couplings must reduce to their boost-invariant counter-parts with universal

couplings of all particles to gravity. Finally, scalars and photons that are minimally coupled to gravity

are forced to have Poincaré invariant self-interactions (constant or vanishing, respectively for the

scalar and the photon). For full details see [2].

Although the theories we have considered are not a priori constructible, in the sense that the

boundary terms do not necessarily vanish at large z, we have still been able to use BCFW shifts to

constrain the three-particle couplings contributing to particle exchange. This does mean, of course,

5For S = 2, the spinor parts of the three-particle amplitudes are even under the exchange of identical particles and so
the F ’s are symmetric polynomials.
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that the three-particle amplitudes themselves do not fully fix the four-particle ones. Indeed, all of

the four-particle amplitudes we have constructed are defined up to the presence of “contact" terms

that are regular for all kinematic configurations. It would be very interesting to investigate the

possibility of using generalised momentum shifts, possibly along the lines of [228], to recursively

derive exact higher-point amplitudes even if only for a subset of boost-breaking theories. It would

also be very interesting to investigate the generalised on-shell recursion relations introduced in [229],

where boundary terms are fixed with additional knowledge of a subset of the zeros of the deformed

amplitude, in our boost-breaking setting.



Chapter 8

Bootstrapping Large Graviton

non-Gaussianities

Abstract

Gravitational interferometers and cosmological observations of the cosmic microwave background

offer us the prospect to probe the laws of gravity in the primordial universe. To study and interpret

these datasets we need to know the possible graviton non-Gaussianities. To this end, we derive

the most general tree-level three-point functions (bispectra) for a massless graviton to all orders

in derivatives, assuming scale invariance. Instead of working with explicit Lagrangians, we take

a bootstrap approach and obtain our results using the recently derived constraints from unitarity,

locality and the choice of vacuum. Since we make no assumptions about de Sitter boosts, our results

capture the phenomenology of large classes of models such as the effective field theory of inflation

and solid inflation. We present formulae for the infinite number of parity-even bispectra. Remarkably,

for parity-odd bispectra, we show that unitarity allows for only a handful of possible shapes: three

for graviton-graviton-graviton, three for scalar-graviton-graviton and one for scalar-scalar-graviton,

which we bootstrap explicitly. These parity-odd non-Gaussianities can be large, for example in solid

inflation, and therefore constitute a concrete and well-motivated target for future observations.
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8.1 Introduction

Being the only force that stubbornly refuses to be described at arbitrarily high energies within the

dominant framework of quantum field theory, gravity is a prominent testing ground for our under-

standing of fundamental physics. Ideas from string theory, the study of black holes and gauge-gravity

duality suggest that the field-theoretic gravitons that appear to describe low-energy phenomena very

well, most likely don’t provide the right language to discuss non-perturbative and high-energy aspects

of quantum gravity. Given how difficult it is to establish what gravity is, a useful approach to the

problem is to ask the related question: What can gravity be? For example, given the framework of

quantum mechanics as we know it, what different descriptions of gravity can be formulated that are

mathematically and physically consistent?

Concrete and quantitative progress in this direction has been achieved for quantum fields on flat

spacetime, e.g. via the derivation of positivity bounds that constrain effective field theories admitting

standard and consistent UV-completions. To understand and model cosmology, and in particular

inflation, dark energy and dark matter, we would like to use these bounds as a compass pointing us

in the direction of the most promising consistent theories. However, the set of consistent theories

of dynamical gravity is different in flat and cosmological spacetimes. Concrete examples of this

difference include a theory of interacting massless spin 3/2 particles, which is given by supergravity

in flat space, but is not known in de Sitter; or the theory of a scalar coupled to gravity with boost-

breaking interactions, which is easily written down in cosmological spacetimes, as in many realistic

models of inflation and dark energy, but which is inconsistent in flat spacetime as can be shown by

examining amplitude factorization [2]. At the same time, new probes of gravity have just become

available through the observation of gravitational waves at interferometers, and there is a substantial

international effort and a well-kindled hope to detect a cosmological background of gravitational

waves from the primordial universe. In light of these considerations, it is highly desirable to study the

consistency of effective field theories of gravity directly on the cosmological spacetimes where we

want to use them for phenomenology.

In this work, we are interested in constraining the possible phenomenological descriptions of

gravity around a (quasi) de Sitter spacetime, with an eye towards applications to inflation. To this end,
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we focus on the natural observables of this system: cosmological correlators, namely the expectation

values of the product of fields in the space-like asymptotic future, which we will call the (conformal)

boundary. Given a concrete model, such observables can be computed in perturbation theory using

the in-in formalism. However, since we don’t know what the “right” model is, we will follow a

different approach, which is inspired by parallel progress in the study of amplitudes [30, 31, 28]. In

particular, we aim to derive all possible correlators that are compatible with fundamental principles

such as symmetry, unitarity and locality. This model-independent approach goes under the name of the

cosmological bootstrap and has received growing attention in recent years [12–14, 33, 92, 168, 177–

186, 230–239].

We will focus on the simplest non-trivial correlators of massless spin-2 fields, a.k.a. gravitons,

and massless scalars, namely three-point functions or bispectra. An important previous result is that

of [171], where, assuming invariance under the full isometry group of de Sitter, it was shown that for

gravitons only three cubic cosmological wavefunctions are allowed, and of those only the two parity-

even ones can lead to a non-vanishing bispectrum [240]. Several additional results can be derived in

this setup using conformal Ward identities, as done for example in [171, 175, 241, 115, 116, 90], and

parity-odd correlators in CFT’s were recently discussed in [242, 243]. While some of these results

are remarkable because they are non-perturbative in nature, we are faced with the issue that de Sitter

boosts are actually broken in all cosmological models and, in particular, during inflation. Unlike the

breaking of scale-invariance, the breaking of boosts is in general not slow-roll suppressed and may be

large, as for example in so-called P-of-X models (a.k.a. “k-inflation” [244]), where the Lagrangian is

an arbitrary function of the kinetic term, or more general models captured by the effective field theory

of inflation [147, 136]. In fact, as emphasized in [168], the breaking of de Sitter boosts is a necessary

condition to have phenomenologically large non-Gaussianities.

Therefore, to make contact with cosmological observations, in this work we will weaken the

assumption of full de Sitter invariance and instead assume only the symmetries that have been

observed in primordial perturbations, namely statistical homogeneity, isotropy and (approximate)

scale invariance. In particular, we will allow for arbitrary breaking of de Sitter boosts. The price to

pay for this smaller set of isometries is that we have to work in perturbation theory and we will restrict

ourselves to tree-level.

Progress in understanding boost-breaking gravitational interactions has been achieved using effec-

tive field theories and the Lagrangian approach in a series of recent papers [245–250]. This approach is
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quite general and intuitive but its computational complexity grows quickly as one considers operators

with an increasing number of derivatives. To overcome this difficulty, here we will instead follow

the “boostless” cosmological bootstrap approach proposed in [231, 33], which partially builds upon

results in [171, 183, 177, 2, 12] and is reviewed in Section 8.2. Our approach leverages the powerful

constraints of fundamental principles such as unitarity, locality and the choice of vacuum and allows

us to bootstrap all tree-level graviton bispectra to any order in derivatives, as well as all parity-odd

mixed bispectra. At the end of our derivation we will see how the bootstrap results can be understood

in the familiar Lagrangian language (see Section 8.5).

Our main results are summarized below:

• Unitarity and the choice of the Bunch-Davies vacuum highly restrict the allowed set of parity-

odd correlators. In particular, for massless scalars and gravitons and to all orders in derivatives,

there is only a finite number of tree-level correlators. In contrast, the number of possible

wavefunction coefficients and Lagrangian interactions grows without bound as one increases

the number of derivatives in the effective field theory expansion. In more detail, a contact

parity-odd correlator can only arise when there is a logarithmic IR-divergence in the associated

wavefunction coefficient. In turn this may only happen when 2n∂η + n∂i ≤ 3, where n∂η and

n∂i are respectively the number of time and space derivatives in the parity-odd interaction1.

This explains on general grounds why parity-odd correlators where found to vanish in the

scale-invariant limit in a number of explicit calculations [240, 251, 249].

• We computed all tree-level graviton bispectra to any order in derivatives, assuming in particular

scale-invariance and massless gravitons. There are infinitely many parity-even graviton bispectra

B3. For example, for the choice of all plus helicities these are given by the symmetrized products

of three factors

e33B
+++
3 (k1,k2,k3) = SH+++

∑
permutations

hα(k1, k2, k3)ψ
trimmed
3 (k1, k2, k3) . (8.1)

The first factor SH+++ includes the spinor helicities and provides the correct little-group

scaling. It is given by
1This is valid for any contract n-point function and assumes that there is at most one time derivative per field. Interactions

with more than one time derivative can always be re-written in terms of those with at most one time derivative using the
equations of motion.



8.1 Introduction 231

SH+++ =
[12]2[23]2[31]2

e23
= −8e+ij(k1)e

+
jk(k2)e

+
ik(k3) (8.2)

= −k
3
T

(
8e3 − 4kT e2 + k3T

)
e23

, (8.3)

where [ij] is the square-bracket product of helicity spinors, eij are polarization tensors, and kT ,

e2 and e3 are the elementary symmetric polynomials defined in (8.12). The second factor hα

roughly accounts for the contractions between spatial derivatives and polarization tensors and

can be any one of the following four possibilities

h0 = 1, h2 = k2k3, h4 = I21I2I3, h6 = I21I
2
2I

2
3 , (8.4)

where

Ia ≡ (kT − 2ka) = kb + kc − ka a ̸= b ̸= c . (8.5)

For parity-odd interactions there are a further five possibilities for hα. Finally, the third factor

is the “trimmed” wavefunction ψtrimmed
3 , which roughly accounts for the conformal time

integrals of mode functions, time derivatives and spatial derivatives contracted with each other.

This can be any of the infinitely-many rational-function solutions of the manifestly local test,

∂kaψ
trimmed
3 = 0 at ka = 0 (see (8.39)), which are conveniently organized in terms of the

increasing order of the polynomial in the numerator, roughly corresponding to the derivative

expansion of an effective field theory. For concreteness, the first few explicit bispectra are given

in (8.156) through (8.174). The bispectra corresponding to other helicity choices can be derived

from the all-plus bispectrum as discussed in Section 8.4.2.

• Remarkably, there are only three parity-odd graviton bispectra at tree level to all orders in

derivatives. These are explicitly found to be

B+++
3 =

g1,1
e33

SH+++kT
(
k2T − 2e2

)
,

B++−
3 =

g1,1
e33

SH++−I3
(
k2T − 2e2

)
,

B+++
3 =

g1,2
e33

SH+++ (−3e3 + kT e2) ,
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B++−
3 =

g1,2
e33

SH++−
[
(k1 + k2)

(
k1k2 + k23

)
− (k21 + k22)k3

]
,

B+++
3 =

g3,3
e33

SH+++I1I2I3 ,

B++−
3 =

g3,3
e33

SH++−I1I2kT ,

where the gα,p are arbitrary real coupling constants whose indices denote respectively the

number α of spatial momenta contracted with polarization tensors and the total number of

derivatives p in the associated interaction. The remaining two helicity configurations, namely

− − − and − − +, can be obtained via a parity transformation, while keeping in mind the

odd-parity of the above bispectra. In the effective field theory of inflation only one specific

combination of these three shapes can appear and it must be accompanied by a parity-odd

correction to the free theory. In this case, the final parity-odd graviton bispectrum must be

small, and in particular much smaller than the standard parity-even contribution from General

Relativity (GR) computed in [106]. By contrast, all three shapes above can appear in a general

model of solid inflation [130], without any modification to the free theory and with arbitrarily

large amplitudes. Hence, these three parity-odd graviton bispectra are an important target for

non-Gaussian searches in the graviton sector. Their shapes are plotted in Figure 8.5. In solid

inflation they should be accompanied by correlated scalar-scalar-graviton and scalar-graviton-

graviton bispectra with larger signal-to-noise ratios (see Section 8.5.4).

• We show that there are only three parity-odd scalar-graviton-graviton bispectra and one scalar-

scalar-graviton bispectrum at tree level to all orders in derivatives, assuming scale invariance

and manifest locality. These are given by

B00+
3 =

h3,3
e33

[13]2[23]2

k23[12]
2
I23k3 , (8.6)

B0++
3 =

[23]4

k22k
2
3e

3
3

[q1,1(k2 + k3)k
2
1 + q1,2,a(k

3
2 + k33) + q1,2,b(k2k

2
3 + k3k

2
2)] , (8.7)

where h3,3 and qα,p are arbitrary coupling constants. Notice, however, that for scalars non-

manifestly local interactions do arise in GR. We show in Section 8.5 that the above scalar-

scalar-graviton bispectrum can be large in solid inflation, but not in the effective field theory of

inflation, and can be the leading observational signal.

The rest of this work is organized as follows. In Section 8.2, we review the framework and tools
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used to bootstrap correlators in general scale-invariant and boost-breaking theories, and in particular

the boostless bootstrap rules, the constraints of unitarity in the form of the Cosmological Optical

Theorem and associated cutting rules, the constraints from locality on massless fields in the form

of the Manifestly Local Test, and finally the spinor helicity formalism for spinning cosmological

correlators. The expert reader might skip directly to Section 8.3, where we derive a very general

consequence of unitarity for tree-level contact correlators that implies that to all orders in derivatives

there is only a small and finite number of non-vanishing parity-odd correlators. Then in Section 8.4

we present formulae for all graviton bispectra to any order in the derivative expansion and show that

there are only three non-vanishing parity-odd bispectra, and infinitely many parity-even ones. In

Section 8.5, we show that the parity-odd bispectra can indeed arise in realistic models such as solid

inflation, and study how they are constrained in the effective field theory of inflation. We also discuss

their detectability by studying the associated signal-to-noise ratio. We conclude in Section 8.6 with an

outlook on future research directions.

Notation and conventions Throughout we will work with the mostly positive metric signature

(−+++) and we define the three-dimensional Fourier transformation as

f(x) =

∫
d3k

(2π)3
f(k) exp(ik · x) ≡

∫
k
f(k) exp(ik · x) , (8.8)

f(k) =

∫
d3x f(x) exp(−ik · x) ≡

∫
x
f(x) exp(−ik · x) . (8.9)

We use bold letters to refer to vectors, e.g. x for spatial co-ordinates and k for spatial momenta, and

we write the magnitude of a vector as k ≡ |k|. We will sometimes refer to these objects as “energies"

even though there is no time-translation symmetry in cosmology. We will use i, j, k, . . . = 1, 2, 3

to label the components of SO(3) vectors, and a, b, c = 1, . . . , n to label the n external fields. For

wavefunction coefficients and cosmological correlators we use ψn and Bn respectively:

ψn(k1, . . . ,kn) ≡ ψ′
n(k1, . . . ,kn)(2π)

3δ3
(∑

ka

)
, (8.10)

⟨O(k1) . . .O(kn)⟩ ≡ ⟨O(k1) . . .O(kn)⟩′(2π)3δ3
(∑

ka

)
≡ Bn(k1, ...,kn) (2π)

3δ3
(∑

ka

)
, (8.11)
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and we will drop the primes on ψn when no confusion arises. We will also use a prime to denote a

derivative with respect to the conformal time e.g. ϕ′ = ∂ηϕ. We will often encounter polynomials

that are symmetric in three variables, for example, for the +++ correlator. We write these in terms

of the elementary symmetric polynomials (ESP):

kT = k1 + k2 + k3 , (8.12)

e2 = k1k2 + k1k3 + k2k3 , (8.13)

e3 = k1k2k3 . (8.14)

8.2 Bootstrap techniques from symmetries, locality and unitarity

In this section, we define the objects that we will be bootstrapping, namely wavefunction coefficients

appearing in the wavefunction of the universe and the associated cosmological correlators. In this

part of the chapter we also review bootstrap techniques that have been recently developed in the

context of boost-breaking interactions. We outline how symmetries, locality and unitarity can be

directly imposed on cosmological observables thanks to a set of Boostless Bootstrap Rules [231], a

Manifestly Local Test [33] and the Cosmological Optical Theorem [12–14, 238]. Finally, we review

the cosmological spinor helicity formalism that we will use to succinctly present graviton bispectra.

8.2.1 The wavefunction of the universe and cosmological correlators

Let’s start by reviewing the computation of the wavefunction of the universe Ψ and defining wave-

function coefficients ψn which will be our primary objects of interest. We will also remind the reader

how correlation functions are extracted from knowledge of the wavefunction.

We take the background geometry to be that of rigid de Sitter (dS) spacetime which we write as2

ds2 = a2(η)(−dη2 + dx2) , a(η) = − 1

ηH
, (8.15)

where the conformal time coordinate η ∈ (−∞, 0) and H is the constant Hubble parameter which we

will often set to unity. This background geometry is an excellent approximation of an inflationary

solution, and considering quantum fields fluctuating on this rigid background allows us to compute

2These are the so-called Poincaré or flat-slicing coordinates and cover half of the maximally extended de Sitter spacetime.
This spacetime is the one relevant for the discussion of cosmological observations.
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the leading contributions to inflationary non-Gaussianities, up to small slow-roll corrections [106].

Our methods in this chapter will apply to general quantum field theories, but we will primarily

be interested in the two massless modes that appear in all inflationary models: a massless scalar

ϕ(η,x) and the transverse, traceless massless graviton γij(η,x). When our results apply to both

scalars and graviton, especially in Section 8.3, we will use φ(η,x) with any SO(3) indices suppressed.

The free action of a massless scalar is

Sϕ,free =

∫
dηd3x a2(η)

1

2

[
ϕ′2 − c2s∂iϕ∂iϕ

]
, (8.16)

where we have allowed for an arbitrary, constant speed of sound cs which signals the fact we are

allowing for dS boosts to be spontaneously or explicitly broken3. Working in momentum space, we

write the quantum free field operator as

ϕ̂(η,k) = ϕ−(η, k)ak + ϕ+(η, k)a†−k , (8.17)

where the mode functions ϕ±(η, k) correspond to solutions of the free classical equation of motion

and are given by

ϕ±(η, k) =
H√
2c3sk

3
(1∓ icskη)e

±icskη . (8.18)

The mode functions for graviton fluctuations take the same form as (8.18) (with cs = 1) with the

addition of polarisation tensors ehij(k), with h = ±2, as required by little group scaling. This is

because for each polarisation mode the equation of motion is that of a massless scalar. The polarisation

tensors satisfy the following conditions:

ehii(k) = kiehij(k) = 0 (transverse and traceless) , (8.19)

ehij(k) = ehji(k) (symmetric) , (8.20)

ehij(k)e
h
jk(k) = 0 (lightlike) , (8.21)

ehij(k)e
h′
ij (k)

∗ = 4δhh′ (normalization) , (8.22)

3When the speed of sound differs from the speed of light appearing in the metric, cs ̸= 1, the sound cone is not invariant
under de Sitter boosts, a fact which can be simply seen in the flat-space limit, where de Sitter boosts reduce to Lorentz
boosts.
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ehij(k)
∗ = ehij(−k) (γij(x) is real) . (8.23)

As we explained in the introduction, we are interested in scenarios where dS boosts are broken

since we know that these symmetries could not have been exact in the early universe, and large non-

Gaussianities are associated with a large breaking of boosts [168]. We take the remaining symmetries

of the dS group to be exact: spatial translations, spatial rotations and dilations. A general interaction

vertex with n fields, scalars and gravitons, therefore takes the schematic form

Sint =

∫
dηd3x a(η)4−Nderiv∂Nderivφn , (8.24)

where ∂ stands for either time derivatives ∂η or spatial derivatives ∂i, and Nderiv is the total number

of derivatives. Spatial derivatives and the graviton’s indices are contracted with the SO(3) invariant

objects δij and ϵijk and the overall number of scale factors is dictated by scale invariance.

We now turn to the wavefunction of the universe which we denote as Ψ. We are interested in this

wavefunction evaluated at the end of inflation or alternatively on the late-time boundary of dS space,

at a conformal time which we denote as η0. Ultimately we will take η0 → 0. To illustrate the

wavefunction of the universe method, let us focus on a single massless scalar ϕ. The generalisation

to gravitons simply requires the addition of SO(3) indices where appropriate. We refer the reader

to [12, 252–254, 181] for further details. At late-times, the wavefunction has an expansion in the

late-time value of the scalar, ϕ(k) ≡ ϕ(η0,k), given by

Ψ[η0, ϕ(k)] = exp

[
−

∞∑
n=2

1

n!

∫
k1,...,kn

ψn(k1 . . .kn)ϕ(k1) . . . ϕ(kn)

]
, (8.25)

where we have written the exponent as an expansion in powers of the field multiplied by the wave-

function coefficients ψn(k1 . . .kn) which contain the dynamical information about the bulk processes.

Invariance of the theory under spatial translations ensures that the ψn(k1 . . .kn) always contain a

momentum conserving delta function and so we can write

ψn(k1 . . .kn) = ψ′
n(k1 . . .kn)(2π)

3δ3(k1 + . . .+ kn). (8.26)

We will often drop the prime even when we do not explicitly include the delta function. At weak
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coupling, we can compute the leading contribution to the wavefunction using the saddle-point

approximation where the wavefunction is completely fixed by the value of the action evaluated on

classical solutions:

Ψ[η0, ϕ(k)] ≈ eiScl[ϕ(k)]. (8.27)

Traditionally, one computes Scl[ϕ(k)] in perturbation theory using Feynman diagrams which involve

bulk interaction vertices, bulk-boundary propagators K(η, k) and bulk-bulk propagators G(η, η′, k).

If we denote the scalar’s free equation of motion as O(η, k)ϕ = 0, then these propagators satisfy

O(η, k)K(η, k) = 0, (8.28)

O(η, k)G(η, η′, k) = −δ(η − η′), (8.29)

with boundary conditions

lim
η→η0

K(η, k) = 1, lim
η→−∞(1−iϵ)

K(η, k) = 0 (8.30)

lim
η,η′→η0

G(η, η′, k) = 0, lim
η,η′→−∞(1−iϵ)

G(η, η′, k) = 0. (8.31)

We can then write both propagators in terms of the positive and negative frequency mode functions as

K(k, η) =
ϕ+k (η)

ϕ+k (η0)
, (8.32)

G(p, η, η′) = i

[
θ(η − η′)

(
ϕ+p (η

′)ϕ−p (η)−
ϕ−p (η0)

ϕ+p (η0)
ϕ+p (η)ϕ

+
p (η

′)

)
+ (η ↔ η′)

]

= iP (p)

[
θ(η − η′)

ϕ+p (η
′)

ϕ+p (η0)

(
ϕ−p (η)

ϕ−p (η0)
−

ϕ+p (η)

ϕ+p (η0)

)
+ (η ↔ η′)

]
, (8.33)

where P (p) is the power spectrum of ϕ and we have introduced the notation ϕk(η) ≡ ϕ(η, k) to

shorten the expressions. In deriving these expressions we have imposed the Bunch-Davies vacuum

state as an initial condition which is the assumption that at very early times the mode functions are

those of the flat-space theory. Physically this is because at very high energies the modes do not feel

the expansion of the universe.

Now to extract the wavefunction coefficients one follows the following Feynman rules. For a
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Figure 8.1: Contact diagram for n external fields

contact diagram like the one shown in Figure 8.1, we insert an overall factor of (−i) and perform a

single time integral where the integrand is a product of the coupling parameter, the n bulk-boundary

propagators and their derivatives (as dictated by the interaction vertex), and an appropriate number

of scale factors (as dictated by scale invariance). Time derivatives act on the bulk-boundary prop-

agators whereas spatial derivatives simply bring down a factor of iki, as is the case for scattering

amplitudes. We integrate from the far past at η = −∞(1 − iϵ) to the future boundary at η = η0.

This iϵ prescription ensures that there is a short period of evolution in Euclidean time rather than

Lorentzian time that dampens the exponential factors appearing in the integral, thereby projecting the

theory onto the vacuum state [255, 106]. In analogy to scattering amplitudes, we finally sum over

all possible permutations. For an exchange diagram like the one shown in Figure 8.2 we now have

two time integrals, one for each vertex. The vertices contribute n and m powers of the bulk-boundary

propagators, possibly time-differentiated as dictated by the interaction vertices, while the internal line

requires us to include one bulk-bulk propagator, which may also be differentiated with respect to time.

The number of scale factors is fixed by scale invariance and as for contact diagrams we sum over all

possible permutations. The generalisation of these rules to more complicated tree diagrams is simple,

with a time integral for each local vertex. See Appendix A of [33] for more details and examples.

As an example, for a massless scalar with a a(η)
3! ϕ

′3 self-interaction in the bulk, the three-point

wavefunction coefficient is given by
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Figure 8.2: Single exchange diagram for n+m external fields

ψϕ′3(k1, k2, k3) = −i
∫
dη a(η)K ′(k1, η)K

′(k2, η)K
′(k3, η) , (8.34)

while the s-channel four-point exchange diagram is given by

ψsϕ′3×ϕ′3 = −i
∫
dη′ dη

(
a(η)K ′(k1, η)K

′(k2, η)
)
∂η∂

′
ηG(s, η, η

′)
(
a(η′)K ′(k3, η

′)K ′(k4, η
′)
)
,

(8.35)

where s = |k1 + k2| is the “energy" of the internal line and we have suppressed the integration limits.

This traditional computational process can be complicated due to the (nested) time integrals that have

to be performed, which may obscure the origin of analytic properties of the final answer. In this

chapter we will usually avoid computing time integrals altogether and instead fix the final form of

the wavefunction coefficients using symmetries, locality and unitarity, only computing explicit time

integrals to verify that all parity-odd bispectra can be generated in solid inflation (Section 8.5.2). In

general, the wavefunction is a complex function of the kinematics and η0, since we are evaluating the

action on complex field configurations, and we will use our bootstrap methods to construct both the

real and imaginary parts.

With the wavefunction in hand, one can extract equal-time (late-time) expectation values using the

usual quantum mechanics formula. We have
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⟨ϕ(k1) . . . ϕ(kn)⟩ =
∫
Dϕ ΨΨ∗ ϕ(k1) . . . ϕ(kn)∫

Dϕ ΨΨ∗ , (8.36)

for an n-point function of scalars. Here Dϕ is the functional measure on a fixed time slice. Correlators

are therefore fixed via the bulk dynamics through the probability distribution ΨΨ∗. We will use

this equation in Section 8.3 to derive some general results for cosmological correlators arising from

unitary time evolution in the bulk.

8.2.2 Boostless Bootstrap Rules

We now turn to reviewing bootstrap techniques for efficient computation of late-time wavefunc-

tions/correlators. In [231] a set of Boostless Bootstrap Rules was introduced that enables one to write

down general structures for the three-point functions of massless scalars and gravitons without assum-

ing full dS symmetries. In total, six rules were introduced, each based on the following principles:

• Rule 1: Spatial translations, spatial rotations and scale invariance,

• Rule 2: Tree-level approximation for wavefunctions and correlators in dS,

• Rule 3: High-energy boundary condition in the form of an amplitude limit,

• Rule 4: Bose statistics for wavefunctions/correlators of external bosons,

• Rule 5: Bunch-Davies initial vacuum state,

• Rule 6: Soft theorems.

For the curvature perturbation in inflation each of these six rules are necessary to bootstrap the

bispectrum [231], however for gravitons and spectator scalars that are the primary interest in this

chapter, rules 3 and 6 are not required and are replaced by the Manifestly Local Test of [33] which we

will review in the following subsection. Before doing so let us first review the other rules (1, 2, 4, 5)

and refer the reader to [231] for further details on all rules.

• Rule 1: Spatial translations, spatial rotations and scale invariance. These symmetries ensure

that wavefunction coefficients can be written as a product of a polarisation factor, which is an

SO(3) invariant function of polarisation tensors and spatial momenta, multiplied by a trimmed

wavefunction coefficient which is only a function of the energies:

ψn =
∑

contractions

(polarization factor) × (trimmed wavefunction coefficient) . (8.37)
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We take all coefficients appearing in the polarisation factor to be real and therefore include any

factors of i that might appear when converting to momentum space, or simply as part of the

Feynman rules, in the trimmed part which we will denote as ψ̃n. We denote the total number

of spatial momenta appearing in the polarisation factor as α. For the bispectrum of massless

gravitons which is our primary interest in this chapter, we have

ψ3 =
∑

contractions

[
eh1(k1)e

h2(k2)e
h3(k3)k

α1
1 kα2

2 kα3
3

]
ψtrimmed
3 , (8.38)

with α1 + α2 + α3 = α. Here we have already stripped off the ever-present momentum

conserving delta function that is a consequence of spatial momentum conservation. Furthermore,

scale invariance ensures that for all n we have ψn ∼ k3 which cancels the scaling of the three-

dimensional delta function thereby ensuring invariance of Ψ. If one also includes dS boosts as

a symmetry, the trimmed wavefunction coefficients for gravitons are very constrained [171]. In

this chapter we are interested in boost-breaking scenarios and so will not impose invariance

under dS boosts.

• Rule 2: Tree-level approximation for wavefunctions/correlators in dS. This rule simply imposes

that the bispectrum is a rational function of the external kinematics up to possible logarithmic

terms. Such logs will indeed be captured by our bootstrap analysis. Our focus in this chapter

will be at tree-level but progress is now also being made on using bootstrap techniques at

loop-level [14, 233, 235].

• Rule 4: Bose statistics for wavefunctions/correlators of external bosons. This rule enforces

invariance under permutations of the momenta of identical fields.

• Rule 5: Bunch-Davies initial vacuum state. The assumption of a Bunch-Davies initial state

enforces that the only allowed poles for contact diagrams are in the total energy kT =
∑n

a=1 ka.

The degree of the leading kT pole is given by p = 1 +
∑

A(∆A − 4) where the sum is over

all vertices appearing in a given diagram and ∆A is their mass dimension [231]. We only

have one type of pole since the integrands appearing in the bulk formalism only depend on

the positive frequency modes. For excited initial states both positive and negative frequency

modes can contribute leading to so-called flattened singularities, see e.g. [256, 257] for the

phenomenology of such poles. It is also interesting to note that the residue of the leading order
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kT poles contain the flat-space scattering amplitude for the same process [171, 12, 172].

These four rules will play an important role in our ability to bootstrap graviton bispectra in Section

8.4.

8.2.3 Manifestly Local Test

In [33] a condition, referred to as the Manifestly Local Test (MLT), was introduced that must be

satisfied by both contact and exchange n-point wavefunction coefficients of massless scalars and

gravitons with manifestly local interactions. Manifestly local interactions are those with only positive

powers of derivatives, i.e. without inverse Laplacians; this is a natural locality condition for gravitons

and spectator scalars in dS at cubic order in perturbations [231]. Manifest locality can be violated

upon integrating out the non-dynamical modes in a gravitational theory, so such a violation is a feature

of the self-interactions of the inflationary curvature perturbation [106] as well as gravitons at quartic

and higher order in the fields. The MLT was used in [33] to bootstrap bispectra of the Goldstone mode

in the Effective Field Theory of Inflation [136] to all orders in derivatives, and used in conjunction

with partial energy recursion relations to bootstrap inflationary trispectra (see also [183] for a use of

energy shifts for the flat-space wavefunction). The MLT was also recently employed in [243]. The

MLT offers a conceptually simple yet very powerful bootstrap technique and will be a central feature

of this work.

The MLT takes the form

∂

∂kc
ψn(k1, ..., kn; {p}; {k})

∣∣∣
kc=0

= 0 , ∀ c = 1, . . . , n , (8.39)

where ka are the energies of the external fields, {p} collectively denotes the energies of possible

exchange fields while {k} collectively denotes a possible dependence of n-point functions on spatial

momenta and polarisation tensors. We will also often also use {k} to collectively denote the external

energies. The derivative with respect to one of the external energies is taken while keeping all other

variables fixed and this condition must be met for all external energies if they are those of a massless

scalar or a graviton in de Sitter. Two complementary derivations of the MLT were given in [33].

The first arises from demanding that exchange diagrams have the appropriate singularities while the
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second comes directly from the bulk representation of such n-point functions. We refer the reader to

[33] for details of the first method while reviewing the second here.

The computation of tree-level diagrams in the bulk formalism reduces to nested time integrals of

the following schematic form

ψn({k}; {p}; {k}) ∼
∫ ( V∏

A

dηAFA

)(
n∏
a

∂#η Kϕ(ka)

)(
I∏
m

∂#η G(pm)

)
, (8.40)

where the FA’s denote the momentum dependence due to the spatial derivatives and polarisation

tensors in the V vertices, each vertex representing a contact interaction placed at the conformal time

ηA. We have included a bulk-boundary propagator for each external field and have allowed for an

arbitrary number of time derivatives acting on these propagators. Finally, we have allowed for I

internal bulk-bulk propagators G, possibly with time derivatives. Now we differentiate the above

expression with respect to one of the external energies. This derivative acts only on the bulk-boundary

propagator associated to this energy, because FA depend only on the spatial momenta and polarisations

while G(pm) depend only on energies of internal legs. Assuming that η integrals and ∂
∂kc

commute,

we have

∂

∂kc
ψn

∣∣∣
kc=0

∼
∫ ( V∏

A

dηAFA

)∏
a̸=c

∂#η Kϕ(ka)

(∂#η ( ∂

∂kc
Kϕ(kc)

) ∣∣∣
kc=0

)( I∏
m

∂#η G(pm)

)
.

(8.41)

The bulk-boundary propagator for a massless graviton is the same as for a massless scalar up to the

presence of a polarisation tensor. In both cases, we have

d

dk
K(η, k) =

d

dk

(
(1− ikη)eikη

)
= kη2eikη , (8.42)

which vanishes at k = 0. It follows that (8.41) must vanish. We emphasise that we have not assumed

anything about the form of the ψn, so the MLT holds for contact and exchange diagrams, even those

with IR-divergences: it follows from a simple property of the bulk-boundary propagators, namely that
d
dkK(η, k) vanishes at k = 0. In fact, this property also holds in slow roll inflation, for both massless

gravitons and massless scalars, and therefore the MLT (8.39) is applicable in that case as well. The

main obstacle to extending all of our results beyond exact scale invariance is therefore not the MLT
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itself, but the assumption of scale invariance (Rule 1), which allows us to write down a simple ansatz

for the wavefunction coefficient before applying the MLT (as will be shown in detail in Section 8.4).

We will return to the prospect of employing the MLT to construct slow-roll corrections in the future.

The MLT, in conjuction with the bootstrap rules from the previous section, can be used to find

all consistent, tree-level, contact wavefunction coefficients for massless scalars and gravitons in de

Sitter. Let us present a constructive proof of this claim. As a first step, we find an exhaustive list of

polarization factors (see (8.37)), which covers all possible contractions of tensor indices. Then we

write down an ansatz for ψtrimmed
n , consistent with rules 2 and 5 (rule 4 is automatically satisfied once

we sum over the permutations). Any such ansatz can be written in the form of a bulk integral

ψtrimmed
n ∼

∫
dηf(ka,ka.kb; η)e

ikT η, (8.43)

where f(ka,ka.kb; η) is a polynomial in the energies ka and the scalar products ka.kb, with appropri-

ate factors of η as required by scale invariance. The exponential factor contributes the needed poles in

kT , and these are the only possible poles, as dictated by rules 2 and 5. The IR divergences, which

are of the form η−m0 or log(−kT η0), are fully accounted for by those terms in f that have negative

powers of η.

The final ingredient is the MLT, which imposes the following constraints on f :

∂f

∂ka

∣∣∣
ka=0

+ iηf |ka=0 = 0. (8.44)

It is easy to see that any such polynomial (assuming scale invariance) can be written as

f(ka,ka.kb; η) = (1− ik1η)g(k2, . . . , kn,ka.kb; η) + k21h(ka,ka.kb; η) , (8.45)

where g, h are polynomials satisfying

∂g

∂ka

∣∣∣
ka=0

+ iηg|ka=0 = 0, a ̸= 1, (8.46)

∂h

∂ka

∣∣∣
ka=0

+ iηh|ka=0 = 0, a ̸= 1. (8.47)

Then, we can repeat the decomposition (8.45), albeit now for g and h. By iterating over a =

1, 2, . . . , n, we can arrive at a general form of f(ka,ka.kb; η):
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f(ka,ka.kb; η) =
∑
S⊂Zn

∏
j /∈S

(1− ikjη)
∏
j∈S

(
k2j
)
hS (ka∈S ,ka.kb; η)

 , (8.48)

where hS are polynomials in the ka ∈ S and the scalar products ka.kb. The sum is taken over all

subsets S of the set Zn := {1, 2, . . . , n}. It will now be sufficient to show that any term of the

above sum can be produced by some linear combination of functions constructed from bulk-boundary

propagators. In fact, we can focus on the case where hS is a monomial, since any polynomial is just a

linear combination of those. If this monomial includes factors of ka.kb, we can generate them from

the Lagrangian by writing pairs of spatial derivatives contracted with each other, so from now on, let

us assume for simplicity that hS is a monomial that does not include such factors. Reinstating powers

of η as required by scale invariance, we are thus looking for a functional of bulk propagators that

would generate

ψtrimmed
n ∼

∫
dη
∏
j /∈S

(1− ikjη)
∏
j∈S

(
k
2+nj
j

)
ηα+

∑
j∈S nj+2|S|−4eikT η , (8.49)

for some arbitrary nj ⩾ 0; α is the energy dimension of the polarization factor. The linear combination

we are looking for is, up to an overall constant,

ηα−4
∏
j /∈S

K(kj , η)
∏
j∈S

(
K2+nj (kj , η)

)
, (8.50)

where K(kj , η) is the usual bulk-boundary propagator, and

K2(k, η) ≡ η∂ηK(k, η) = k2η2eikη, (8.51)

K3(k, η) ≡ −i
(
η2∂2ηK(k, η)− η∂ηK(k, η)

)
= k3η3eikη, (8.52)

Kn+2(k, η) ≡ k2η2Kn(k, η) for n ⩾ 2. (8.53)

Each of these functions can be obtained from the massless bulk-boundary propagators by applying

time derivatives, Laplacians (k2 ↔ −∇2) and taking linear combinations. Recall that we can

introduce the dependence on ka.kb by introducing pairs of spatial derivatives, followed by taking

linear combinations again to account for terms with distinct dependencies on ka.kb. Therefore, any

integral of the form (8.45) can be generated by a linear combination of products of bulk-boundary

propagators, their time derivatives, factors of a(η)2k2a and by pairs of spatial derivatives contracted
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with each another. This entails that any solution to the MLT corresponds to a combination of some

manifestly local operators.

8.2.4 Cosmological Optical Theorem

The final bootstrap tool we are going to review is the Cosmological Optical Theorem (COT) [12] which

is a consequence of unitary time evolution in the bulk. It was shown in [12] that if the wavefunction of

the universe is normalised at time η then it only remains normalised at time η′ if contact and exchange

wavefunction coefficients satisfy some simple yet powerful relations. Assuming a Bunch-Davies

initial condition, the bulk-boundary propagator of fields of general mass and spin on any FLRW

spacetime satisfies (see [13] for a proof and a discussion of the related technical assumptions)

K∗(−k∗, η) = K(k, η) , k ∈ C , (8.54)

from which one can derive the COT for contact diagrams [12]

Disc [iψn(k1, ..., kn; {k})] = i [ψn(k1, ..., kn; {k}) + ψ∗
n(−k∗1, ...,−k∗n; {−k})] = 0 , (8.55)

which must be satisfied by any contact n-point function arising from unitary evolution in the bulk

spacetime. Note that all spatial momenta in the second term get a minus sign, k → −k, and all

energies are analytically continued. One is usually interested in real values of the energies k, and

so in the following we will drop the complex conjugation. This notation is unambiguous as long as

one adopts the prescription that all negative energies are approached from the lower-half complex

plane. For scalars it is clear from (8.55) how the second term should be computed but for spinning

fields the presence of polarisation tensors introduces slight complications which were addressed

in [13]. Ultimately any polarisation factors appear as a common factor in this contact COT since

e.g. ehij(k)
∗ = ehij(−k). The COT is therefore not constraining the polarisation factor (which is

constrained by symmetry), rather it is constraining the trimmed part of the wavefunction that in the

bulk representation arises from performing the bulk time integrals. This of course makes sense as

the COT is indeed a consequence of unitary time evolution. For our purposes in this chapter the

COT for contact diagrams is enough and we will use it in Section 8.3 to derive some general results

about cosmological correlators, but the consequences of unitarity for exchange diagrams are also

known [12, 13] and were used extensively in [33] to bootstrap inflationary trispectra. The COT for
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exchange diagrams relates the discontinuity of an exchange diagram to products of the contributing

sub-diagrams, multiplied by the power spectrum of the exchanged field. It is reminiscent of the

factorisation theorem for scattering amplitudes. A complementary derivation of the COT was given

in [238] where the consequences of excited initial states were also considered. The COT was also

extended to general FLRW spacetimes in [13] and to loop level in the form of cutting rules in [14],

see also [92] for a recent discussion of cosmological cuts. Unitarity constraints on cosmological

observables were also recently studied in [233, 236, 235]. See [258–260] for analogous statements in

anti-de Sitter (AdS) space.

8.2.5 Cosmological spinor helicity formalism

In this chapter we are primarily concerned with bootstrapping graviton bispectra and just as is the case

for scattering amplitudes, wavefunctions/correlators of spinning fields are most compactly presented

using spinors rather than polarisation tensors. We end this section by reviewing the cosmological

spinor helicity formalism and refer to the reader to [171, 181] for other presentations.

The spinor helicity formalism is most useful when we have null momenta as is the case for massless

on-shell particles in flat-space and has been used extensively in that setting. In our cosmological setting

the spatial momentum k is not null, but we can define a null four-component object kµ = (k,k), with

k = |k|, which we can express as the outer product of two spinors via

kαα̇ = σµαα̇kµ = λαλ̃α̇ , (8.56)

where σµ = (1,σ) and σ are the Pauli matrices. Using the relation σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇ (we follow the

conventions used in [205]), where σ̄µ = (1,−σ), the inverse of (8.56) is

kµ =
1

2
σ̄α̇αµ kαα̇ . (8.57)

A little group transformation by definition should leave this four-momentum invariant, so we can

model this transformation as λ→ tλ, λ̃→ t−1λ̃ where each external field transforms with a different

constant t ∈ C. These very simple helicity transformations allow us to easily extract an overall

dependence of a wavefunction/correlator on the spinors given some helicity configuration for the

external fields, and is one of the primary virtues of the spinor helicity formalism. As usual, dotted and
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un-dotted indices are raised and lowered by ϵα̇β̇ and ϵαβ respectively e.g. λ̃α̇ = ϵα̇β̇λ̃
β̇ , λα = ϵαβλ

β .

Now for objects with three external fields, conservation of spatial momentum k1 +k2 +k3 = 0 leads

to

3∑
a=1

λ(a)α λ̃
(a)
α̇ = kT (σ0)αα̇ and ⟨ab⟩[ab] = kT (kT − 2kc) ≡ kT Ic for a ̸= b ̸= c , (8.58)

where we have introduced

Ia ≡ (kT − 2ka) , (8.59)

and we recall that

⟨ab⟩ = ϵαβλ(a)α λ
(b)
β , [ab] = ϵα̇β̇λ̃

(a)
α̇ λ̃

(b)

β̇
. (8.60)

We remind the reader that the above spinors are not Grassmanian, so these angle and square brackets

are anti-symmetric due to the anti-symmetric nature of the epsilon tensors. For scattering amplitudes

one also has time translation invariance, which implies kT = 0. In this case the above relations reduce

to the usual flat-space ones, see e.g. [28]. Now to construct SO(3) invariant objects we can use (8.60)

but can also contract dotted and un-dotted indices using (σ̄0)α̇α [171, 2]:

(ab) = (σ0)αα̇λ
(a)
α λ̃

(b)
α̇ , (8.61)

with (aa) = 2ka. We can use (8.58) to obtain an expression for (ab) with a ̸= b i.e. the off-diagonal

components. We have

(ab)[ac] = Ib[bc] for a ̸= b ̸= c , (8.62)

(ab)⟨bc⟩ = Ia⟨ac⟩ for a ̸= b ̸= c , (8.63)

and therefore a general three-point function is a function of the angle brackets, the square brackets

and the energies.

For spinning fields, we will find it necessary to write polarisation tensors in terms of spinors.

The transverse and traceless graviton polarisation tensors e±µν are given by e±µ e
±
ν , where e±µ is the
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polarisation vector for a spin-1 particle of the same momentum. We therefore only need an expression

for e±µ in the spinor helicity formalism. The form of the polarisation vectors follows from the fact that

they must be lightlike, orthogonal to the corresponding momentum, and carry the appropriate helicity

weight. We have (see e.g. [28, 2])

e+αα̇ = 2
µαλ̃α̇
⟨µλ⟩ , e−αα̇ = 2

λαµ̃α̇
[µλ]

, (8.64)

for generic reference spinors µα and µ̃α̇. For scattering amplitudes in flat-space these reference spinors

represent the redundancy in defining massless spinning fields as a representation of the Lorentz group,

but for cosmology we can make a choice to eliminate this redundancy [171]. Indeed, we can use our

freedom to mix dotted and undotted indices to choose

µα = (σ0)αα̇λ̃
α̇ , µ̃α̇ = (σ0)αα̇λ

α , (8.65)

which makes the zero component of the polarisation vectors vanish. We can therefore write

e+αα̇ =
(σ0)αβ̇λ̃

β̇λ̃α̇

k
, e−αα̇ =

(σ0)βα̇λ
βλα

k
, (8.66)

which has the correct normalisation. Under a helicity transformation we have e+ → t−2e+ and

e− → t2e−, as expected.

With these relations at hand, we can easily convert any SO(3) invariant object containing spatial

momenta and polarisation vectors into the spinor helicity formalism using the necessary σ and ϵ

identities which are given in [205]. We present a complete list of distinct contractions of SO(3)

indices for a massless graviton in Appendix 8.7.1. We will use these relations extensively in Section

8.4.1 where we study the tensor structures for the graviton bispectrum.

8.3 Unitarity constraints on n-point cosmological correlators

In this section we are going to use the Cosmological Optical Theorem (COT) for contact diagrams

to derive some general results about the form of cosmological correlators. Recall that with the

wavefunction of the universe at hand, one can compute expectation values via Eq. (8.36), i.e.
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⟨φ(k1) . . . φ(kn)⟩ =
∫
Dφ ΨΨ∗ φ(k1) . . . φ(kn)∫

Dφ ΨΨ∗ , (8.67)

where in the weak coupling approximation we are using here, the late-time wavefunction is given by

Ψ[η0, φ(k)] = exp

[
−

∞∑
n=2

1

n!

∫
k1,...,kn

ψn({k}; {k})φ(k1) . . . φ(kn)

]
. (8.68)

Here we have made a distinction between the dependence of the wavefunction coefficients on the set

of spatial momenta {k} and their norms {k}, since in general we will work away from the physical

configuration and treat {k} and {k} as independent objects, for reasons that will become clear. We

have not included a possible dependence on internal energies {p} since our focus in this section is on

contact diagrams. We are going to use the COT to constrain the form of the probability distribution

ΨΨ∗. Here and throughout this section we use φ(k) to schematically denote scalars and gravitons,

with SO(3) indices suppressed, and each of these fields satisfies φ(k) = φ(−k)∗ which follows

directly from (8.17), (8.18) and (8.23). Now from this perturbative expression for the wavefunction,

we have

− log(ΨΨ∗) =

( ∞∑
n=2

1

n!

∫
k1,...,kn

ψn({k}; {k})φ(k1) . . . φ(kn)

)

+

( ∞∑
n=2

1

n!

∫
k1,...,kn

ψn({k}; {k})φ(k1) . . . φ(kn)

)∗

(8.69)

=

( ∞∑
n=2

1

n!

∫
k1,...,kn

ψn({k}; {k})φ(k1) . . . φ(kn)

)

+

( ∞∑
n=2

1

n!

∫
k1,...,kn

ψ∗
n({k}; {k})φ(−k1) . . . φ(−kn)

)
. (8.70)

If we change the integration variables on the final line by sending {k} → {−k} we have

− log(ΨΨ∗) =
∞∑
n=2

1

n!

∫
k1,...,kn

[ψn({k}; {k}) + ψ∗
n({k}; {−k})]φ(k1) . . . φ(kn) . (8.71)

It follows from Gaussian integral formulae that the resulting correlators arising from these contact

diagrams, in perturbation theory, are given by

Bcontact
n ({k}; {k}) = −ψ

′
n({k}; {k}) + ψ′∗

n ({k};−{k})∏n
a=1 2 Re ψ′

2(ka)
, (8.72)
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where in deriving this expression we kept only terms linear in the coupling constants. For parity-even

interactions of scalars and gravitons, the numerator is simply 2Re ψ′
n in which case our expression

matches the one that usually appears in the literature.

Let’s now use the contact COT to constrain Bcontact
n . As we reviewed above, unitary time evolution

in the bulk inflationary spacetime and the choice of the Bunch-Davies vacuum imply that [12]

ψn({k}; {k}) + ψ∗
n({−k};−{k}) = 0 . (8.73)

By directly comparing (8.72) and (8.73), we conclude that

Any contribution to the wavefunction of the universe that is invariant under {k} → {−k}, which is a

flip in the sign of all external energies, does not contribute to the contact correlator.

What are the implications of this observation? To answer this question we need to look more closely

at the form of ψn. After stripping away the polarization factor in ψ, see (8.38), the remaining trimmed

wavefunction ψtrimmed for a contact interaction can have the following structures:

1. The trimmed wavefunction may be a rational functions of {k},

ψtrimmed
n ⊃

Poly3−α+q({k})
Polyq({k})

, (8.74)

where the subscripts indicate the degrees of the polynomials and the combination 3− α+ q is

fixed by scale invariance such that ψn ∼ k3. If we further impose locality and the Bunch-Davies

vacuum as in the bootstrap Rule 5 then the denominator must be kT to some power, but we will

not use this fact in the following.

If α is even, this trimmed wavefunction contains an overall odd number of energies and therefore

is not invariant under {k} → {−k}, whereas if α is odd, the trimmed wavefunction contains

an overall even number of energies and so is invariant under {k} → {−k}. So rational terms

in the wavefunction can only contribute to the correlator if the polarisation factor has an even

number of spatial momenta, which for scalars and gravitons implies parity-even. Conversely,

parity-odd interactions of scalars and gravitons have an odd number of derivatives, which are

contracted with a Levi-Civita tensor, and the contribution of their rational part to the correlator
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must vanish. This observation explains why kT poles were never found in the in-in computation

of parity-odd graviton bispectra in the effective theory of inflation performed in [247]: they are

simply incompatible with unitarity.

2. The trimmed wavefunction may have logarithmic IR-divergences,

ψtrimmed
n ⊃ Poly3−α({k}) log(−kT η0) 3− α ≥ 0 , (8.75)

where again the degree of the polynomial that multiplies the log is fixed by scale invariance. We

cannot have any poles multiplying the log and so we need 3−α ≥ 04. Such logs can arise from

relevant operators in the bulk at tree-level but are also a common feature of loop corrections

[261, 262].

These logs break the {k} → {−k} symmetry for both even and odd α, so they can in principle

contribute to the correlator. Unitarity in the form of the contact COT tells us that these logs do

not appear on their own but rather always appear in the combination [12]

log(−kT η0) +
iπ

2
, (8.76)

multiplied by a real function of {k}, and possibly a polarisation factor (which also has real

coefficients). Indeed, if we consider a wavefunction coefficient of the schematic form

ψtrimmed
n ∼ kαeβ(k)[A log(−kT η0) +B] , (8.77)

where we have allowed for β polarisation structures, a complex polynomial A and a complex

rational function B, then the COT (8.73) tells us that (recall that the polarisation factor becomes

a common factor on the LHS of the COT)

A log(−kT η0) +B −A∗[log(−kT η0) + iπ]−B∗ = 0 . (8.78)

We therefore conclude that Im(A) = 0, Im(B) = Aπ
2 while Re(B) is unconstrained and would

actually contribute to the rational part of the wavefunction covered above in point 1. It then

4This fact can be quite easily seen from the bulk representation and the corresponding time integrals one must perform.
We don’t have a better “bootstrap" reason but it would be interesting to find one. We note that if the interactions violate
manifest locality, there can be poles multiplying the log as they can come from inverse Laplacians.
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follows from (8.72) that for even α only the log contributes to the correlator and not the iπ

piece, whereas for odd α the iπ piece contributes to the correlator but the log does not. For

parity-odd interactions of scalars and gravitons, which necessarily have an odd α, we therefore

conclude again that the singular part of the wavefunction does not contribute to the correlator.

Indeed the parity-odd contributions to the graviton bispectrum computed in [247] come from

this iπ
2 part of the wavefunction.

3. The trimmed wavefunction may have a polynomial IR-divergence 1/ηq0 with q ⩾ 1 as η0 → 0.

These terms may not have any singularity as kT → 0 because there we recover scattering

amplitudes which, by time translation invariance, must be time independent. Scale invariance

then tells us that

ψtrimmed
n ⊃

3∑
q=1

Poly3−α−q({k})
ηq0

3− α− q ≥ 0 . (8.79)

Now we observe that we need α+ q to be even in order to break the {k} → {−k} symmetry,

while the MLT can only be satisfied if 3− α− q ⩾ 2 or 3− α− q = 0. These two conditions

imply that 3 − α − q ⩾ 3, which contradicts the fact that q ⩾ 1. Thus, a combination of

the COT and MLT leads us to conclude that η0 = 0 poles cannot contribute to cosmological

correlators arising from manifestly-local bulk interactions5.

We have therefore seen that parity-odd contact correlators of scalars and gravitons do not contain any

total-energy singularities: the only part of the trimmed wavefunction that survives when we compute

parity-odd correlators is finite or vanishing as kT → 0. These contributions arise from the polynomial

function of {k} that multiplies log(−kT η0) + iπ/2 in the wavefunction and can only appear when

the overall number of derivatives in bulk interactions is relatively small, which we will make precise

in Section 8.4. This is consistent with the observation that the parity-odd Weyl-cubed vertex yields a

vanishing bispectrum in dS space [171, 240, 251]. In this case there are too many derivatives for a

logarithm to appear in the wavefunction. Related observations about the consequences of unitarity

cuts were recently made in [92]. We summarise these results in Table 8.1 and remind the reader that

the above discussion applies to contact diagrams, as relevant for this work. In Section 8.4 we provide

5Although here our proof was outlined in D = 4 spacetime dimensions, a generalised version of the MLT [263] applies
in all other dimensions and with this generalised MLT and the COT, one can show that η0 = 0 poles never appear in
correlators. We thank Harry Goodhew for discussions on this point.
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a full analysis of the form of the wavefunction for graviton cubic interactions and one can then use

the results of this section to extract the contributions to the bispectra.

Before proceeding we would like to comment on what happens for tree-level contributions to the

wavefunction that are not contact but include some exchange interaction (a bulk-bulk propagator in

the bulk representation). In that case, two things change: (i) the expression for the correlator in terms

of wavefunction coefficients in (8.72) acquires additional contributions and (ii) the right-hand side of

the Cosmological Optical Theorem (COT) does not vanish anymore [12]. Notice that both of these

additional contributions are not singular as kT → 0. Hence, one can still conclude that any term in the

wavefunction that is invariant under {k} → {−k} cannot contribute to the part of the correlator that

is singular as kT → 0. Unfortunately, the wavefunction coefficients can become quite complicated for

general exchange diagrams and we did not find a simple rule to establish when ψtrimmed
n is invariant

under {k} → {−k}.

kT poles log(−kT η0) + iπ
2 η0 poles

even α ✓ ✓ (only the log) ✗

odd α ✗ ✓ (only the iπ) ✗

Table 8.1: In this table we indicate which parts of the trimmed wavefunction, arising from contact
diagrams, can contribute to cosmological correlators and which cannot. Here α is the number of
spatial derivatives contracted with polarizations tensors, as defined in (8.38), and these results apply
for three spatial dimensions, d = 3.

8.4 Bootstrapping all graviton bispectra

In this section we bootstrap boost-breaking graviton bispectra at tree-level. We detail the general

method that allows one to extract bispectra for any helicity configuration, and up to any desired order

in derivatives. Throughout we employ the Boostless Bootstrap Rules and Manifestly Local Test,

which were both reviewed in Section 8.2.

8.4.1 Polarisation factors

It is the presence of spin-2 polarization tensors that distinguishes graviton bispectra from any other.

As we reviewed in Section 8.2, we write a general three-point wavefunction coefficient in terms of a
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polarisation factor multiplied by a “trimmed” wavefunction coefficient ψtrimmed
3 which is an SO(3)

scalar. We have [231]

ψh1,h2,h33 (k1,k2,k3) =
∑

contractions

[
eh1(k1)e

h2(k2)e
h3(k3)k

α1
1 kα2

2 kα3
3

]
ψtrimmed
3 (k1, k2, k3) ,

(8.80)

where ha = ±2 are the helicities of the external fields, and we remind the reader that we define the

total number of spatial momenta as α = α1+α2+α3. Here index contractions between the momenta

and polarization tensors are left implicit, and indeed our first goal is to construct all of the possible

polarisation factors. As we explained in Section 8.2, the trimmed wavefunction is constrained by the

Manifestly Local Test (MLT) [33] and the Cosmological Optical Theorem (COT) [12], and so with

the polarisation factors at hand, we will solve the MLT and obtain the complete three-point functions.

We first note that we can restrict our attention to α ⩽ 7. This is because in order to construct an

SO(3)-invariant object, we need to contract momenta with one of

eh1i1i2e
h2
i3i4

eh3i5i6 or ϵi1i2i3e
h1
i4i5

eh2i6i7e
h3
i8i9

, (8.81)

where the presence of a Levi-Civita tensor tells us that the resulting graviton bispectrum will violate

parity. All remaining contractions are made with δij and from now on we omit the dependence of

polarization tensors on momenta for simplicity of notation. Now, it is straightforward to see that α

can be at most 6 in the parity-even case, with all six polarisation indices contracted with momenta,

and 7 in the parity-odd case since we can have at most two spatial momenta contracted with the

Levi-Civita tensor due to momentum conservation. We will deal with the parity-even and parity-odd

cases separately.

As is the case for scattering amplitudes, graviton bispectra are most compactly presented using the

spinor helicity formalism rather than polarisation tensors. Indeed, this was the view advocated in

[171] and is the route we will follow in this chapterȦ virtue of the spinor helicity formalism is that

it can easily highlight possible degeneracies that could be hidden when using polarization tensors.

Unfortunately, we do not have the means to construct the full structure of all allowed polarisation

factors directly using spinors, so the approach we will take is to write down all possible polarisation
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factors in terms of polarisation tensors, with potential degeneracies still present, and to then convert

these expressions into the spinor helicity formalism, where all degeneracies are manifest and can be

easily eliminated.

We initially focus on the +++ helicity configuration, and in the following subsection we will

show how to easily obtain the polarisation factors for all the other helicity configurations (+ + −,

−−+ and −−−) from this +++ building block. The helicity scaling of the external fields tells us

that all +++ polarisation factors must contain

[12]2[23]2[31]2 , (8.82)

as an overall factor. This is the same factor that appears in three-point scattering amplitudes of

massless gravitons [28, 2] and is unique for this helicity configuration. The symmetries of the

wavefunction then ensure that this can only be multiplied by SO(3) invariant quantities that are

simply functions of the three external energies. As explained in Section 8.2.5, whenever we convert a

polarisation tensor into an expression with spinor brackets, we gain two powers of the corresponding

energy in the denominator of the wavefunction. It is therefore not merely (8.82) that appears as an

overall factor, but actually the dimensionless quantity

SH+++ =
[12]2[23]2[31]2

e23
, (8.83)

where e3 = k1k2k3 is the third elementary symmetric polynomial. The above factor is ever-present.

The information about the specific contraction is contained in an additional factor which is a function

of the energies and which we denote as hα(k1, k2, k3). This is always a polynomial of degree α.

Finally, this product can be multiplied by the trimmed wavefunction, which in the bulk representation

arises from bulk time integrals. This general form is true before we sum over all possible permutations,

so the final form of the three-point function is

ψ+++
3 (k1,k2,k3) =

[12]2[23]2[31]2

e23

∑
permutations

hα(k1, k2, k3)ψ
trimmed
3 (k1, k2, k3) , (8.84)

where the sum over permutations ensures that the final expression is invariant under the exchange

of any two external fields and their momenta, as dictated by Bose symmetry. In Appendix 8.7.1 we
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construct all possible polarisation factors using polarisation tensors. With repeated use of (8.62), and

recalling the definition of Ia = kT − 2ka, we find the following general structures for the + + +

polarisation factors:

h0 = 1 , (8.85)

h1 = ik1 and perms , (8.86)

h2 = k21 and perms, k1k2 and perms , (8.87)

h3 = ik31 and perms, ik21k2 and perms , ik1k2k3, (8.88)

h4 = I21I2I3 and perms , (8.89)

h5 = iI31I2I3 and perms, iI21I
2
2I3 and perms , (8.90)

h6 = I21I
2
2I

2
3 , (8.91)

h7 = iI31I
2
2I

2
3 and perms , (8.92)

where in some cases we have only presented one of the possible permutations, but we should keep in

mind that one needs to sum over permutations in the final expression. For odd α we have included

overall factors of i which arise from the Levi-Civita tensor as shown in Appendix 8.7.1. Note that,

if we only use spinor helicity variables, we do not have the means to derive the full form of the

polarisation factors: for example, we did not find a good reason why a term like I71 would be prohibited

in the case of α = 7. This was the main rationale for invoking polarization tensors in our argument,

although it would be very interesting to derive the above list of structures, and to understand why

some terms are not permitted, directly using spinors.

As we have explained in Sections 8.2 and 8.3, the general form of the trimmed wavefunction can

be fixed by a set of Boostless Bootstrap Rules [231]. A combination of symmetries (including scale

invariance), a weak-coupling approximation and Bunch-Davies initial conditions, ensures that the

trimmed part of the wavefunction takes the form

ψtrimmed
3 (k1, k2, k3) =

Poly3+p−α(k1, k2, k3)
kpT

+ Poly3−α(k1, k2, k3) log (−kT η0)

+
Poly2−α(k1, k2, k3)

η0
+

Poly1−α(k1, k2, k3)
η20

+
Poly−α(k1, k2, k3)

η30
,

(8.93)
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where we remind the reader that the degree of these complex polynomials is indicated by the subscripts.

For those terms that diverge as η0 → 0, we have strong restrictions on the allowed values of α: a 1/ηq0

singularity can only arise for α ⩽ 3− q, which also justifies truncating the expansion at q = 3. The

above general form of the trimmed wavefunction is then further constrained by the MLT, which must

be satisfied for all external energies. Note that we impose the MLT before we sum over permutations

in (8.84), and so in that formula, each ψtrimmed
3 (k1, k2, k3) is a solution to the MLT. The general

recipe for constructing a +++ wavefunction coefficient is therefore the following:

1. Write down the spinor helicity factor SH+++ and multiply it by one of the above choices for

hα(k1, k2, k3).

2. Multiply this polarisation factor by a trimmed wavefunction coefficient of the form (8.93)

where the polynomials in this ansatz have been constrained by the MLT (8.39). Note that

for computational purposes it is useful to choose the permutation symmetry of this trimmed

part to be the same as that of the polarisation factor. For example, if the polarisation factor

is symmetric in the exchange of k2 and k3 then the trimmed part should be too, while if the

polarisation factor has no symmetry then the trimmed part shouldn’t either.

3. Use the COT (8.55) to deduce if unitarity demands real or imaginary coefficients.

4. Finally, sum over the remaining permutations such that the final wavefunction coefficient is

fully symmetric, as dictated by Bose symmetry (Rule 4 of [231]).

5. To extract the corresponding three-point correlators, we use the results of Section 8.3. For

even α we take the rational and log terms, with real coefficients, and divide by the appropriate

powers of the power spectrum. For odd α, we take the log part and simply replace the log with

iπ/2 such that we have some polynomial multiplied by a polarisation factor. Finally, we divide

by the appropriate powers of the power spectrum. In both cases the result is real since for even

α the polarisation factor is real, and is multiplied by a real function of the energies, while for

odd α the polarisation factor is imaginary but it is multiplied by an imaginary function of the

energies.
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8.4.2 +++ to rule them all

Before we constrain these + + + wavefunctions further, let us first show how we can obtain the

++−, −−+ and −−− helicity configurations if hα(k1, k2, k3) and ψtrimmed
3 (k1, k2, k3) are known.

It might be tempting to go back to the beginning, i.e. to the polarization tensors, and derive the

spinor helicity form of tensor structures independently for each configuration. However, this is not

necessary as the spinor variables can do most of the work for us. Let us first construct the + + −
tensor structures in spinor helicity variables directly from the +++ ones. Flipping the helicity of the

third graviton is equivalent to sending its energy from k3 to −k3 while keeping its momentum fixed.

Under this transformation, the spinors transform according to [2]

λ̃ 7→ i(λ2,−λ1) , λ 7→ i(−λ̃2, λ̃1) . (8.94)

Using the definitions of the various brackets given in Section 8.2.5, we then have

[13] 7→ −i(31) , (8.95)

[23] 7→ −i(32) , (8.96)

from which it follows that

SH+++ 7→ [12]2

e23
(31)2(32)2 =

[12]6

[23]2[31]2
I21I

2
2

e23
≡ SH++− . (8.97)

So all ++− wavefunction coefficients are multiplied by this common factor of SH++−. Note the

square brackets are completely fixed by the helicities of the external fields and are the same as for

amplitudes [2, 28], while the ever-present I21I
2
2 factor in the numerator is required for the absence

of divergences. Indeed, consider the following argument: with the help of (8.58), the spinor helicity

factor [12]6

[23]2[31]2
can be rewritten as

[12]6⟨23⟩2⟨31⟩2
k4T I

2
1I

2
2

. (8.98)

If the momenta are allowed to be complex, then I1 can be taken to zero while keeping kT , I2 and the

numerator finite. Such a divergence is forbidden and therefore we should include two factors of I1 in

the numerator to cancel it out. The absence of a divergence as I2 is taken to zero similarly demands
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that we should include two factors of I2. This argument can be easily generalised to other helicities to

show that in general the bispectrum of any three fields with helicities ha for a = 1, 2, 3 has to contain

the following factor (for H ≡ h1 + h2 + h3 ≥ 0)

SHh1,h2,h3 =
[12]d3 [23]d1 [31]d2∏3

a=1 k
|ha|
a

3∏
b=1

I
max[0,−db]
b , (8.99)

where

da ≡ hb + hc − ha = H − 2ha (a ̸= b ̸= c) . (8.100)

The scaling dimension of the spinor helicity factor SHh1,h2,h3 is max{0,−d1,−d2,−d3}. The

wavefunction coefficient then takes the form

ψh1,h2,h33 (k1,k2,k3) = SHh1,h2,h3 × Pm(k1, k2, k3) (8.101)

where Pm is a rational function of the energies (possibly also including log(−kT η0) multiplied by a

polynomial) and m is its scaling dimension.

To extract the ++− wavefunction, then, we take SH++− and multiply it by hα(k1, k2,−k3) and

by ψtrimmed
3 (k1, k2, k3). Note that only in hα is the sign of k3 flipped. Indeed, the structure of hα

is fixed by the form of the polarisation factor which certainly depends on the helicity configuration,

whereas ψtrimmed
3 (k1, k2, k3) is a product of time integrals in the bulk formalism and is therefore

independent of the helicity configuration of the external fields. Therefore, the ++− wavefunction

coefficients are given by

ψ++−
3 (k1,k2,k3) =

[12]6

[23]2[31]2
I21I

2
2

e23

∑
permutations

hα(k1, k2,−k3)ψtrimmed
3 (k1, k2, k3) . (8.102)

The recipe we outlined above for the +++ configuration is then easily applied to this ++− case,

with the symmetries of ψtrimmed
3 (k1, k2, k3) fixed by hα(k1, k2,−k3) and with the final sum over

permutations ensuring that the final wavefunction is symmetric under the exchange of k1 and k2, as

dictated by Bose symmetry.

Finally, the −−+ and −−− wavefunction coefficients are then obtained directly from the ++−
and +++ ones respectively, by sending ka 7→ −ka for a = 1, 2, 3. This corresponds to all square
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brackets changing into (minus) angle brackets, such that

SH+++ 7→ ⟨12⟩2⟨23⟩2⟨31⟩2
e23

≡ SH−−− , (8.103a)

SH++− 7→ ⟨12⟩6
⟨23⟩2⟨31⟩2

I21I
2
2

e23
≡ SH−−+ . (8.103b)

Under ka 7→ −ka, we have hα(k1, k2, k3) 7→ (−1)αh(k1, k2, k3), while ψtrimmed
3 (k1, k2, k3) is again

taken to be unchanged.

In conclusion, with knowledge of the building blocks of the +++ wavefunction coefficients, one

can easily compute wavefunction coefficients for other helicity configurations. We note that our ability

to do this is due to fact that time translations are no longer a symmetry in cosmology and therefore

square, angle and round brackets are related as shown in Section 8.2.5. For scattering amplitudes,

where time translations are a symmetry, one cannot simply map between different configurations in

this way. As a very non-trivial check of this procedure, we verified that the + + + wavefunction

coefficient arising from a parity-even Weyl3 vertex in the bulk gives rise to a vanishing + + −
coefficient, as it should [171].

8.4.3 A further simplification of the polarisation factors

Now given that hα(k1, k2, k3) must be multiplied by a solution to the MLT, we can actually further

simplify the structures given in (8.85) to (8.92). The general hα in (8.84) is given by an arbitrary

linear combination of polynomials listed in (8.85)-(8.92), as well as all their permutations, for each α.

However, now we will show that we may consider only a few special hα and still obtain fully general

wavefunction coefficients. We give an explicit argument for α = 2, but a closely analogous argument

works for any α.

We have already established that h2(k1, k2, k3) =
∑

a nak
2
a +

∑
amakaka+1, where na,mb are

arbitrary numerical coefficients. We then have (recall that ψ̃3 is a shorthand notation for ψtrimmed
3 ):
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ψ+++
3 (k1,k2,k3)

SH+++
=
∑
σ∈S3

∑
a

(
nak

2
σ(a) +makσ(a)kσ(a+1)

)
(ψ̃3 ◦ σ)(k1,2,3)

=
∑
a

∑
σ∈S3

(
nσ−1(a)k

2
a +mσ−1(a)kaka+1

)
(ψ̃3 ◦ σ)(k1,2,3)

=
∑
a

k2a ∑
σ∈S3

nσ−1(a)(ψ̃3 ◦ σ)(k1,2,3) + kaka+1

∑
σ∈S3

mσ−1(a)(ψ̃3 ◦ σ)(k1,2,3)


=
∑
cyclic

k21f(23)(k1, k2, k3) +
∑
cyclic

k1k2g(12)(k1, k2, k3) ,

(8.104)

where f(23) and g(12) are linear combinations of trimmed wavefunction coefficients, and therefore

they must take the form given in (8.93) and satisfy the MLT. Moreover, we employ the notation that

a function of the three external energies is symmetric under the exchange of energies indicated in

a subscript e.g. f(23) is symmetric under the exchange of k2 and k3, while f(123) would be fully

symmetric. An analogous argument can be used to show that ψ++−
3 (k1,k2,k3) can be simplified in

the same way. More precisely, we have

ψ++−
3 (k1,k2,k3)

SH++−
=
∑
cyclic

k21f(23)(k1, k2, k3) + k1k2g(12)(k1, k2, k3)

− k2k3g(23)(k2, k3, k1)− k3k1g(31)(k3, k1, k2). (8.105)

Thus, we see that we can take h2(ka) to be a linear combination of k21 and k1k2 and still get a fully

general α = 2 solution. Moreover, we note that all solutions constructed from h2(ka) = k21 can also

be constructed using the α = 0 polarization factor h0(ka) = 1. This is because, if f(23)(k1, k2, k3)

satisfies the MLT, then k21f(23)(k1, k2, k3) must satisfy it too, so wavefunction coefficients of the form

ψ+++
3 (k1,k2,k3)

SH+++
=
∑
cyclic

k21f(23)(k1, k2, k3) , (8.106)

ψ++−
3 (k1,k2,k3)

SH++−
=
∑
cyclic

k21f(23)(k1, k2, k3) , (8.107)

are already accounted for and contained in the MLT solutions for polarisation factors with α = 0.

Assuming we construct solutions iteratively with increasing α, so that α = 0 wavefunction coefficients

have already been constructed, for α = 2 we only need to consider h2(k1, k2, k3) = k1k2 to derive a

complete set of such coefficients.
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One can proceed in a similar manner at each order in α by studying the different allowed hα and

asking if the resulting wavefunction coefficients have already been captured by lower order solutions

in α. We find that to construct fully general wavefunction coefficients, it is sufficient to consider the

following polarisation factors for the +++ helicity configuration:

h0 = 1 , (8.108)

h1 = ik1 , (8.109)

h2 = k2k3 , (8.110)

h3 = iI1I2I3 , (8.111)

h4 = I21I2I3 , (8.112)

h5a,b = iI31I2I3, iI1I
2
2I

2
3 , (8.113)

h6 = I21I
2
2I

2
3 , (8.114)

h7 = iI31I
2
2I

2
3 . (8.115)

Therefore, at each order in α we have to consider a single polarisation factor, apart from α = 5 where

there are two possible structures. Note that in all cases we can write the polarisation factor in such a

way that it is symmetric in the kinematical data of two out of the three external fields, which we take

to be fields 2 and 3. We can now follow the recipe outlined above, and constrain the remaining part of

the wavefunction coefficients with the MLT.

8.4.4 Constraining the trimmed wavefunction

We now turn to the final piece of the puzzle, which requires us to solve the MLT (8.39) to constrain

(8.93) and therefore construct the trimmed part of the wavefunction coefficients. By writing out the

allowed form of the polynomials in this ansatz we have

ψtrimmed(k1, k2, k3) =
1

kpT

∑
l+m+n=3+p−α

clmnk
l
1k
m
2 k

n
3 + log (−kT η0)

∑
l+m+n=3−α

dlmnk
l
1k
m
2 k

n
3

+
1

η0

∑
l+m+n=2−α

elmnk
l
1k
m
2 k

n
3 +

1

η20

∑
l+m+n=1−α

flmnk
l
1k
m
2 k

n
3 +

1

η30

∑
l+m+n=−α

glmnk
l
1k
m
2 k

n
3 ,

(8.116)
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where l,m, n ≥ 0 and we remind the reader that the sums are fixed by scale invariance. The following

conditions are then necessary for the above ansatz to pass the MLT:

d1,n,r−1 = 0 , (8.117)∑
m

(
p

n−m

)
d0,m,3−α−m = p c0,n,p+r − c1,n−1,p+r − c1,n,p+r−1 , (8.118)

e1,n,r−2 = f1,n,r−3 = g1,n,r−4 = 0 , (8.119)

with r ≡ 3− α− n; along with analogous conditions for all other permutations of indices. Note that

the conditions that arise from the terms in the first line of (8.116) decouple from those in the second

line.

Whenever a polynomial hα has a symmetry under interchange of external labels, the trimmed

wavefunction coefficient may also be assumed to have such a symmetry without loss of generality.

This is because any non-symmetric part will be cancelled out after summing over all permutations

indicated in (8.84), as we saw explicitly in the previous section in the α = 2 case. Therefore, if

hα(k1, k2, k3) = hα(k1, k3, k2), then we have

clmn = clnm , (8.120)

dlmn = dlnm , (8.121)
...

Moreover, if hα(k1, k2, k3) is completely symmetric, then we have

clmn = clnm = cmln , (8.122)

dlmn = dlnm = dmln , (8.123)
...

As we saw above, in all cases hα is symmetric in at least two external labels. We will now present the

first few solutions for each α, considering even and odd α separately.

Parity-even interactions We begin with parity-even interactions which have even α.
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α = 0 In this case we have h0 = 1 and so the solution to the MLT must be fully symmetric. This

case is actually exactly the same as the situation for three identical scalars which was covered in [33].

The following solutions are therefore the same as those found in that work. Given the symmetry, we

present the results using the three elementary symmetric polynomials kT , e2, e3. Up to p = 3 we have

η−1
0 :

i(k2T − e2)

η0
, (8.124)

η−3
0 :

i

η30
, (8.125)

p = 0 : 4e3 − e2kT + (k3T − 3kT e2 + 3e3) log(−kT η0), k3T − 3kT e2 + 3e3 , (8.126)

p = 2 :
e2e3 + e22kT − 2e3k

2
T

k2T
, (8.127)

p = 3 :
e23
k3T

, (8.128)

...

where, as indicated, there are two possible solutions for p = 0.

Unitarity places the following additional constraints. The coefficients of 1/η0 and 1/η30 must be

imaginary as consequence of the Cosmological Optical Theorem (COT), see Section 8.3. This has a

nice interpretation in terms of the holographic language of (A)dS/CFT, along the lines of [106]. These

two terms are bulk IR divergences and should be holographically renormalized as described in [264].

For the associated renormalization group flow to be unitary, these divergences should be imaginary,

which is precisely what the COT ensures. Conversely, the COT says that the coefficient of the 1/η20

divergence must be real. This would correspond to a counterterm with imaginary coupling constant. It

is quite intriguing that the MLT forbids precisely these terms and we will discuss this elsewhere. For

p = 0 the MLT admits two solutions. The second one does not have a log and can satisfy the COT by

itself with an arbitrary real coefficient. Conversely, the first solution, which contains a log, satisfies

the COT only when it is combined with the second solution with a relative factor of iπ/2 (see Section

8.3 or [12]), namely in the combination

λ
[
4e3 − e2kT + (k3T − 3kT e2 + 3e3) log(−kT η0) + i

π

2

(
k3T − 3kT e2 + 3e3

)]
, (8.129)

for real λ.
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There are no p = 1 solutions. This can simply be understood as follows. Recall that for cubic

wavefunction coefficients, the degree p of the leading kT pole equals the number of derivatives. Then

the absence of solutions for p = 1 is related to the fact that there are no single derivative interactions

one can write down (for α = 0), other than a total time derivative. Wavefunction coefficients with

p = 1 do arise in not-manifestly-local theories. Indeed the scalar bispectrum induced by gravity has

p = 1, which is consistent with the above discussion because, after integrating out the non-dynamical

parts of the metric, GR displays not-manifestly-local interactions. We refer the reader to [33] for

more details on this case. Note that the COT fixes the coefficients of the terms rational in {k} to be real.

α = 2 In this case, we have h2(k1, k2, k3) = k2k3 without loss of generality, so we take the ansatz

to also be symmetric in k2 and k3. The leading solutions are then

η−1
0 :

i

η0
, (8.130)

p = 2 :
e3 + e2kT − k3T

k2T
, (8.131)

p = 3 :
k21
(
k21 + 3k1k23 + 2(k223 + k2k3)

)
k3T

, (8.132)

p = 4 :
k22k

2
3 (kT + 3k1)

k4T
, (8.133)

...

We see that only a simple η0 = 0 pole is allowed with a constant and imaginary residue, by unitarity.

In terms of total-energy poles, the leading solution has a degree two pole which is related to the fact

that such wavefunction coefficients arise from bulk vertices with at least two derivatives. Again, the

COT demands that the coefficients of these rational terms are real.

α = 4. Here we again have a single choice for the polarisation factor which is h4(k1, k2, k3) =

I21I2I3. This must be combined with an α = 4 solution to the MLT, which is symmetric in k2 and k3.

Clearly no η0 = 0 poles are allowed, and the leading solutions are

p = 4 :
3e3 + kT e2 + k3T

k4T
, (8.134)
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p = 5 :
k21
(
k21 + 5k1k23 + 4(k223 + 3k2k3)

)
k5T

, (8.135)

...

Again we see that the lowest possible total energy pole has degree 4.

α = 6. Finally, we have h6 = I21I
2
2I

2
3 . This is fully symmetric, so we can present solutions to

the MLT using the elementary symmetric polynomials. There are no η0 = 0 poles and the leading

solutions are

p = 6 :
15e3 + 3kT e2 + k3T

k6T
, (8.136)

p = 8 :
7e2e3 + kT e

2
2 − 2k2T e3

k8T
, (8.137)

...

In each case, solutions with higher-order kT poles can be easily computed. We see that an IR-divergent

logarithm is only permitted for α = 0, while IR-divergences in the form of η0 = 0 poles can only

arise for α = 0, 2 and they always come with imaginary coefficients. In Section 8.4.5 we will use

these solutions to write down the final form of the leading +++ and ++− bispectra.

Parity odd interactions We now turn to odd α which correspond to parity-odd interactions.

α = 1 In this case we have h1(k1, k2, k3) = k1. This must be combined with an α = 1 solution to

the MLT, symmetric in k2 and k3. The leading solutions are

η−2
0 :

1

η20
, (8.138)

p = 0 : k21, k
2
T − 2e2, (8.139)

p = 1 :
2e3 − e2kT

kT
+ (k2T − 2e2) log(−kT η0) , (8.140)

p = 2 :
k21 (kT (k2 + k3) + k2k3)

k2T
− k21 log(−kT η0) , (8.141)

p = 3 :
−2e3k

2
T + 2e3e2 + kT e

2
2

k3T
, (8.142)
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...

where, as indicated, there are two possible solutions for p = 0. We see that the only allowed η0 = 0

pole is of degree two, as it should be for α = 1 because of scale invariance. Interestingly, we also see

that IR-divergent logarithms are also permitted but only in combination with total-energy poles. This

is in contrast to even α where logarithms could contribute as the only singular term. The solutions

with higher total-energy poles that are not shown here do not have logarithms.

Unitarity places the following additional constraints. All terms without logs can appear with real

coefficients. The two solutions containing a log, namely p = 1 and p = 2, solve the Cosmological

Optical Theorem (COT) only when accompanied by a corresponding p = 0 solution with a relative

coefficient of iπ/2, namely in the combinations

2e3 − e2kT
kT

+ (k2T − 2e2)
[
log(−kT η0) + i

π

2

]
(8.143)

k21 (kT (k2 + k3) + k2k3)

k2T
− k21

[
log(−kT η0) + i

π

2

]
, (8.144)

with real overall coefficients. Notice that, since we are considering parity-odd interactions, it is only

the imaginary part of these trimmed wavefunction coefficients, namely that proportional to iπ/2, that

contributes to the bispectrum.

α = 3 Here we can choose h3(k1, k2, k3) = I1I2I3 and the solution to the MLT may be assumed to

be fully symmetric. No η0 = 0 poles are allowed, and the leading solutions are

p = 0 : 1 , (8.145)

p = 3 :
2e3 + e2kT

k3T
− log(−kT η0) , (8.146)

p = 5 :
4e2e3 + e22kT − 2e3k

2
T

k5T
, (8.147)

...

Again the higher order solutions do not contain logarithms, so only a single solution with such a

IR-divergence is allowed in this case. As above, unitarity in the form of the Cosmological Optical
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Theorem (COT) requires that the p = 3 term, which contains a log, must appear together with the

(trivial) p = 0 solution in the combination

2e3 + e2kT
k3T

−
[
log(−kT η0) + i

π

2

]
, (8.148)

with a real overall coefficient.

α = 5. In this penultimate case there are two choices for h5: h5(k1, k2, k3) = I31I2I3 and

h5(k1, k2, k3) = I1I
2
2I

2
3 . Both must be multiplied by a solution to the MLT that is symmetric

in k2 and k3. No η0 = 0 poles or logarithmic terms are allowed, and the leading solutions are

p = 5 :
8e3 + 2kT e2 + k3T

k5T
, (8.149)

p = 6 :
k21
(
k21 + 6k1k23 + 5(k223 + 4k2k3)

)
k6T

, (8.150)

...

both with real coefficients by unitarity.

α = 7. In this final case, we have h7(k1, k2, k3) = I31I
2
2I

2
3 and so the solution to the MLT needs to

be symmetric k2 and k3. The leading solutions are

p = 7 :
24e3 + 4kT e2 + k3T

k7T
, (8.151)

p = 8 :
k21
(
k21 + 8k1(k2 + k3) + 7((k2 + k3)

2 + 6k2k3)
)

k8T
, (8.152)

...

Again, higher order solutions are easily found. As we have emphasised a number of times, only the

coefficients of the logarithms contribute to the final bispectra for these parity-odd interactions. We

have found only three solutions with logarithms which are also required to come alongside total-energy

poles which will ultimately drop out from the correlator. It is important to stress that the fact we

only have three logarithmic terms is true to all orders in derivatives. Indeed, all remaining solutions

not explicitly shown above are purely rational. We can therefore extract the full form of parity-odd
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graviton bispectra, to all orders in derivatives, from these MLT solutions. Given that there is only

a single polarisation structure for α = 1, 3, there are only three independent parity-odd graviton

bispectra. We will discuss this further in Section 8.4.5 where we construct the final form of the

correlators.

Contact reconstruction formula In this section we have derived wavefunction coefficients for

graviton interactions without any reference to flat space. However, there also exists a well-defined

relationship between wavefunction coefficients in de Sitter and scattering amplitudes in flat space: the

residue of the leading total-energy pole of a wavefunction coefficient contains the flat space amplitude

(see also [185, 92, 265] for additional relations between correlators and amplitudes). This was first

noticed in [171, 172] and then an explicit formula was derived in [12]. For n external fields the

relationship is

ψn = (p− 1)!(iH)p−n−1 enA
(p−n+3)
n

kpT
+ . . . , (8.153)

where en =
∏n
a=1 ka is a product of the n energies and here we have re-inserted the factors of

Hubble. The ellipsis denote terms with subleading total-energy poles and A(p−n+3)
n is the part of the

corresponding scattering amplitude that contains the largest scaling in energy and momentum, which

is of order p− n+ 3. For n = 3 which is the primary focus of this work, this leading total-energy

pole picks out that part of the amplitude that comes from operators with p derivatives.

One may go a step further and hope that with the knowledge of the scattering amplitude, as well as

the form of the de Sitter mode functions, the full de Sitter wavefunction coefficient could be produced

since it is the same bulk interaction vertex that gives rise to the amplitude and the wavefunction.

As we have seen above, some knowledge of the de Sitter mode functions is contained in the MLT

and indeed in a recent paper [266] solutions to the MLT were used to convert a contact flat space

amplitude into a contact de Sitter wavefunction via a contact reconstruction formula:

ψn = (p− 1)!(iH)p−n−1
n∑

m=0

∑
π∈Sn

A
(p−n+3)
n

∣∣
{kπ(j)=0}nj=n−m+1

∏n−m
i=1 kπ(i)

m!(n−m)!kp−mT

∏m
l=1(p− l)

, (8.154)

where the sum
∑

π∈Sn runs over the n! permutations π of {1, 2, . . . , n}. For n = 3 this reconstruction
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formula takes the following form

ψ3 = (p− 1)!ipHp−4

[
A

(p)
3 k1k2k3
kpT

+
A

(p)
3

∣∣
k1=0

k2k3 +A
(p)
3

∣∣
k2=0

k1k3 +A
(p)
3

∣∣
k3=0

k1k2

kp−1
T (p− 1)

+
A

(p)
3

∣∣
k2=k3=0

k1 +A
(p)
3

∣∣
k1=k3=0

k2 +A
(p)
3

∣∣
k1=k2=0

k3

kp−2
T (p− 1)(p− 2)

+
A

(p)
3

∣∣
k1=k2=k3=0

kp−3
T (p− 1)(p− 2)(p− 3)

]
.

(8.155)

This formula is valid for p ≥ 4 where the time integrals in the bulk computation of these wavefunction

coefficients do not produce logarithms or purely analytic terms. In this case (8.155) yields the full

wavefunction. For p ≤ 3 the time integrals can yield such logarithms or analytic terms which are

not captured, but in those cases the total-energy poles can still be computed using this formula; then

one would need to write down an ansatz for the MLT solution and fix the additional terms that are

ultimately required to satisfy the MLT. For more details we refer the reader to [266].

Instead of taking the route outlined in this chapter one could in principle use (8.155) to construct

graviton bispectra. The p-derivative amplitude that we must input is simply given by taking one

of the polarisation factors we classified in Appendix 8.7.1, multiplying this SO(3) invariant object

by a polynomial in the energies of degree (p − α) > 0, followed by summing over permutations

[2]. The final sum over permutations is crucial since as can be seen from (8.155), the wavefunction

coefficient will only have the correct Bose symmetry if the amplitude does. For p ≥ 4 this procedure

will generate all possible bispectra. Note that here we are advocating to use this contact reconstruction

formula using polarisation tensors rather than the spinor helicity formalism since in A(p)
3 the energy

dependence needs to be from bulk time derivatives only. When the amplitude is written in terms of

spinors, there is an energy dependence that has arisen from the polarisation factor itself rather than

from bulk time derivatives, as we explained above. With the final result computed from (8.155), one

can convert this expression into the spinor helicity formalism using the expressions given in Appendix

8.7.1. Above we have presented the leading order MLT solutions for each α, one can in principle use

this reconstruction formula to generate all higher-order solutions.

8.4.5 The final form of graviton bispectra

With all of the ingredients at hand, we can now write down the final form of the wavefunction

coefficients and extract the corresponding correlators. We will concentrate on the +++ and ++−
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helicity configurations (since the other two are easily obtained from those by a parity transformation,

with an extra − sign for odd α) and again work at each order in α treating the even and odd cases

separately. Note that we classify the final form of the bispectra in terms of the leading pole of the

MLT solutions presented in the previous subsection. Once we sum over permutations there can be

cancellations meaning that the final form has a lower order pole. However, it is the solution to the

MLT whose leading degree pole is generically equal to the number of derivatives in a corresponding

bulk vertex. Each of the bispectra below can be multiplied by a real coupling which we denote as

gα,p, and we absorb all O(1) factors that appear when we go from a wavefunction to correlator (c.f.

(8.72)) into these couplings.

Parity-even interactions We begin with even α where both the rational parts and the logarithmic

parts contribute to the correlator, as shown in Section 8.3.

α = 0 Since in this case we have hα = 1, both the final +++ and ++− bispectra are easily read off

from the solutions to the MLT given above. We simply take the spinor helicity factors, multiply them

by the MLT solutions and then divide by the power spectrum of each external field which contributes

a factor of 1/e33. We have

p = 0 : e33B
+++
3 = g0,0SH+++[4e3 − e2kT + (k3T − 3kT e2 + 3e3)(log(−kT η0/µ)] , (8.156)

e33B
++−
3 = g0,0SH++−[4e3 − e2kT + (k3T − 3kT e2 + 3e3) log(−kT η0/µ)] , (8.157)

p = 2 : e33B
+++
3 = g0,2SH+++

e2e3 + e22kT − 2e3k
2
T

k2T
, (8.158)

e33B
++−
3 = g0,2SH++−

e2e3 + e22kT − 2e3k
2
T

k2T
, (8.159)

p = 3 : e33B
+++
3 = g0,3SH+++

e23
k3T

, (8.160)

e33B
++−
3 = g0,3SH++−

e23
k3T

, (8.161)

...

This p = 0 bispectrum corresponds to a combination of a potential term in the bulk of the form

γ3ij and the contribution k3T − 3kT e2 + 3e3 which is the graviton version of the well studied local

non-Gaussianity [267]. The local shape arises from taking the free theory for the massless graviton
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and performing a field redefinition γij → γij + γikγkj . Such a redefinition does not alter the S-matrix

and so its contribution to the wavefunction must be regular as kT → 0, which it is. The log piece is

produced by the γ3ij vertex which appears in Solid Inflation [130] and in the slow-roll limit it is the

leading contribution from this interaction. The p = 3 bispectrum corresponds to that of a γ̇3ij vertex in

the bulk which appears in the Effective Field Theory of Inflation (EFToI) [136], without corrections

to the two-point function and with an independent coefficient [247]. We provide more details about

these examples in Section 8.5.

α = 2 In this case the polarisation factor is not fully symmetric, so after we multiply it by a solution

to the MLT, we need to symmetrize the result. We find

p = 2 : e33B
+++
3 = g2,2SH+++

e2(e3 + e2kT − k3T )

k2T
, (8.162)

e33B
++−
3 = g2,2SH++−

(k1k2 − k2k3 − k3k1)(e3 + e2kT − k3T )

k2T
, (8.163)

p = 3 : e33B
+++
3 = g2,3SH+++

e3(6e3 + 2e2kT + k3T )

k3T
, (8.164)

e33B
++−
3 = g2,3SH++−

−e3(4e3 + kT (4e2 + I23 + 2I3kT − k2T ))

2k3T
, (8.165)

...

Since GR is a two-derivative, parity-even theory, its bispectrum in de Sitter space must be contained

within the solutions we have written up to this point. Indeed, if we first take µ = −kT η0e−g̃0,0/g0,0 ,

and then

g0,2 = 2g̃0,0 = −g2,2, g0,0 = 0, (GR tuning) (8.166)

then both the + + + and + + − wavefunction coefficients are those of GR [171]. We remind the

reader that on the total-energy poles we recover the amplitude, and in GR the + + + amplitude

vanishes while the ++− amplitude does not. This tells us that in GR the +++ bispectrum should

not have such a pole while the ++− one should have a degree-2 pole. If we take an arbitrary linear

combination of these bispectra and demand that the +++ wavefunction does not have a total-energy

pole, while the + + − has a non-zero total-energy pole, then the result is a linear combination of

GR and the local non-Gaussianity. In [171] these conditions along with full de Sitter symmetry was
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enough to uniquely pick out GR. Without some additional symmetry principle, we cannot set the coef-

ficient of the local non-Gaussianity coupling to zero. Interestingly, this GR bispectrum is the leading

order one in the EFToI [245, 247, 246]: the breaking of boosts is only felt at higher-order in derivatives.

α = 4 Again in this case the polarisation factor is not fully symmetric, so we take the solutions to the

MLT and then symmetrise appropriately. We find

p = 4 : e33B
+++
3 = g4,4SH+++I1I2I3

3e3 + e2kT + k3T
k3T

, (8.167)

e33B
++−
3 = g4,4SH++−I1I2I3

3e3 + e2kT + k3T
k3T

, (8.168)

p = 5 : e33B
+++
3 = g4,5SH+++I1I2I3

24e2e3 + 6e22kT − 9e3k
2
T + e2k

3
T

k5T
, (8.169)

e33B
++−
3 = g4,5SH++−I1I2(2kT )

−4
[
12e2

2kT + 48e2e3 + e2kT
(
3I3

2 − 2I3kT + kT
2
)

+ 2e3
(
6I3

2 − 6I3kT − 7kT
2
)
+ I3

2kT
3 − kT

5
]
,

(8.170)

...

α = 6 Here we have hα = I21I
2
2I

2
3 , which is fully symmetric and no symmetrization is necessary

when constructing the full bispectra. We have:

p = 6 : e33B
+++
3 = g6,6SH+++I

2
1I

2
2I

2
3

15e3 + 3kT e2 + k3T
k6T

, (8.171)

e33B
++−
3 = g6,6SH++−I

2
1I

2
2

15e3 + 3kT e2 + k3T
k4T

, (8.172)

p = 8 : e33B
+++
3 = g6,8SH+++I

2
1I

2
2I

2
3

7e2e3 + kT e
2
2 − 2k2T e3

k8T
, (8.173)

e33B
++−
3 = g6,8SH++−I

2
1I

2
2

7e2e3 + kT e
2
2 − 2k2T e3

k6T
, (8.174)

...

Parity-odd interactions We now turn to odd α where only the coefficient of the logarithm can

contribute to the correlator. In all cases it must be multiplied by iπ/2. We absorb the π/2 factor into

the overall coupling gα,p and then the additional factor of i combines with the factors of i appearing
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in each hα, c.f. (8.115), to give real coefficients. As we showed above, to all orders in derivatives

logarithms can only appear for α = 1, 3 and give rise to a total of three solutions. Since in each case

the logarithmic solutions to the MLT must always come with total-energy poles, we still classify these

solutions by the corresponding p.

α = 1 In this case we need to multiply h1(k1, k2, k3) = k1 by the appropriate solutions to the MLT

and then symmetrise. We find

p = 1 : e33B
+++
3 = g1,1SH+++kT

(
k2T − 2e2

)
, (8.175)

e33B
++−
3 = g1,1SH++−I3

(
k2T − 2e2

)
, (8.176)

p = 2 : e33B
+++
3 = g1,2SH+++ (−3e3 + kT e2) , (8.177)

e33B
++−
3 = g1,2SH++−

(
k1(k

2
2 + k23) + k2(k

2
1 + k23)− k3(k

2
1 + k22)

)
. (8.178)

Possible operators that generate these bispectra are, respectively (up to constant factors),

a(η)−1g1,1ϵijkγilγlm∂jγkm, (8.179)

a(η)−2g1,2ϵijkγ
′
ilγlm∂jγkm . (8.180)

α = 3 In this case we have h3(k1, k2, k3) = I1I2I3 which is already symmetric. We then have a

unique log term yielding

p = 3 : e33B
+++
3 = g3,3SH+++I1I2I3 = g3,3SH+++

(
−8e3 + 4e2kT − k3T

)
, (8.181)

e33B
++−
3 = g3,3SH++−I1I2kT . (8.182)

This can be generated, up to a constant factor, by the operator

a(η)−3g3,3ϵijk∂lγin∂mγjl∂nγkm . (8.183)

These bispectra correspond to those in computed in [247] where the three couplings were tuned as

dictated by the symmetries of the EFToI. Although in that work the bispectra were presented using

polarisation tensors, we have checked that they are all indeed captured by our expressions and provide

details in Section 8.5.1. Such parity-odd interactions do not appear on their own in EFToI; rather,
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they come with a correction to the two-point function [247]. We also discuss this further in Section

8.5.1. It is also worth pointing out that our results tell us that for bulk vertices with more than three

derivatives, and therefore p ⩾ 4 degree poles in the solutions to the MLT, there are no contributions to

the bispectra. Indeed, IR-divergent logarithms can only appear when

Condition for IR-divergent logs: 2n∂η + n∂i ⩽ 3 , (8.184)

where n∂η and n∂i are respectively the number of time and space derivatives in the parity-odd

interaction. Note that here we assume that each field in the cubic vertex contains at most one

time derivative which can always be guaranteed by using the equations of motion. This offers

a complementary proof that the parity-odd Weyl3 vertex in de Sitter space leads to a vanishing

bispectrum. Indeed, this is a six derivative vertex and therefore the corresponding wavefunction does

not have logarithms and therefore the correlator vanishes. See [171, 251, 240] for further discussions.

Discussion So far in this chapter we have bootstrapped three-point wavefunction coefficients arising

from tree-level and manifestly local bulk graviton self-interactions. We have made very minimal

assumptions. We assumed the usual massless de Sitter mode functions, and assumed that the vertices

are SO(3) and scale invariant. With this full catalogue at hand, one can now search for interesting

subsets. Indeed, given a particular symmetry breaking pattern for inflation, as recently classified

in [248], only some of these bispectra will be permitted and non-linear realisations of the broken

symmetries could result in relations among the couplings gα,p, as is the case for GR. One could attempt

to perform the classification at the level of the Lagrangian using an effective field theory approach,

however the main message of the bootstrap approach is that the Lagrangian route might not be the

most efficient. Rather, one would like to take this full catalogue of bispectra and use soft theorems to

classify consistent subsets, or even better to use these objects as the building blocks of higher-point

functions. We have learned from the S-matrix programme that gluing together three-point amplitudes

to form consistent four-point ones can be very constraining [29, 2]. We expect this gluing procedure

to also be very constraining for cosmology and plan to explore this in future work. For parity-even

vertices in the EFToI, there is only a single operator at both cubic and quartic order in derivatives that

does not modify the two-point function [247]. It would be interesting to rederive this result directly

using bootstrap methods. In any case, in Section 8.5 we provide a discussion of how these bispectra

could be classified by the EFToI [136] or as the leading contributions to the bispectra of Solid Inflation
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[130], following the approach of [248].

8.4.6 Parity-odd bispectra involving gravitons and scalars

Given that we have discovered very few possible parity-odd bispectra for three gravitons, let us

provide a more complete analysis by also considering bispectra involving a scalar. As is well-known,

the bispectrum for three scalars cannot break parity. This is easily seen given that there is no non-

zero way to contract two independent momenta with an epsilon tensor, and so there are simply

no parity-odd tensor structures in the absence of polarisation tensors. Let us therefore concentrate

on scalar-scalar-graviton (B00+
3 ) and scalar-graviton-graviton (B0++

3 ) bispectra. As always, other

helicity configurations can be extracted from these as explained in Section 8.4.2.

As we have done throughout this work, we concentrate on manifestly local interactions and so

the solutions to the MLT that we have classified previously in this section can be used to construct

trimmed wavefunctions when we also have scalars: the MLT applies to scalars and gravitons alike.

Our results of Section 8.3 also apply and so for contact interactions there can be no singularities in the

parity-odd bispectra. Our job to classify B00+
3 and B0++

3 is then a simple one: we first write down all

possible parity-odd tensor structures, and then multiply these by a solution to the MLT. Here we will

concentrate on the contributions to the bispectrum rather than the wavefunction and so the relevant

part of the solution to the MLT is the coefficient of a logarithm, as we have explained in detail above.

These logs can only occur for α = 1, 3 and so we only need to consider these tensor structures.

Scalar-scalar-graviton First consider B00+
3 . In this case there is only a single parity-odd tensor

structure, which has α = 3:

ϵijke
h3
im(k3)k

j
1k
k
2k

m
1 , (8.185)

and permutations. The relevant solution to the MLT contains a log with a k-independent coefficient

just as was the case for α = 3 with three gravitons. If we multiply (8.185) by the appropriate MLT

solution and sum over permutations, then the contribution to the bispectrum written in terms of spinor

helicity variables is

e33B
00+
3 = h3,3

[13]2[23]2

k23[12]
2
I23k3 . (8.186)
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Regardless of the form of the symmetry breaking pattern, this is the only such parity-odd bispectrum

when the bulk interactions are manifestly local, to all orders in derivatives.

Scalar-graviton-graviton Moving onto B0++
3 we find a single tensor structure for α = 1 and two

for α = 3. Up to permutations we have

α = 1 : ϵijke
h2
im(k2)e

h3
jm(k3)k

2
k , (8.187)

α = 3 : ϵijke
h2
im(k2)e

h3
ml(k3)k

2
jk

3
kk

1
l and ϵijke

h2
il (k2)e

h3
jm(k3)k

2
kk

1
l k

1
m . (8.188)

Now for α = 1 we need to multiply this tensor structure by a degree-2 polynomial that arises from

the coefficient of a log in a solution to the MLT. We find three such solutions: this tensor structure

can be multiplied by k21, k
2
2 or k23 with arbitrary coefficients. Each of the appropriate MLT solutions

also have rational contributions with kT poles: one solution has a simple pole while the other two

solutions have k−2
T poles. A complete basis is

e33B
0++
3 =

[23]4

k22k
2
3

[
q1,1(k2 + k3)k

2
1 + q1,2,a(k

3
2 + k33) + q1,2,b(k2k

2
3 + k3k

2
2)
]
. (8.189)

Now for α = 3 we find that when converted to spinor helicity variables, the two α = 3 structures

are equivalent and since they already scale as ∼ k3, the relevant part of the MLT solution is simply

a constant multiplied by a log. We therefore have a single solution for the α = 3 B0++
3 bispectrum

which turns out to be a linear combination of those from α = 1 in (8.189). It follows that (8.189) is a

complete list, to all orders in derivatives. From these bispectra we can also extract those for B0+−
3 .

We have

e33B
0+−
3 =

I42
k22k

2
3

[12]4

[31]4
[
q1,1(k2 − k3)k

2
1 + q1,2,a(k

3
2 − k33) + q1,2,b(k2k

2
3 − k3k

2
2)
]
, (8.190)

where the overall factor is a necessary consequence of helicity scaling and the absence of divergences.

One of our main messages in this chapter is that parity-odd contact bispectra, arising from manifestly

local cubic interactions, are small in number. In Table 8.2 we summarise the number of independent

couplings associated with tree-level parity-odd bispectra of manifestly local scalars and gravitons, to

all orders in derivatives, and with exact scale invariance. In inflationary models, we would expect
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additional bispectra that mix scalars and gravitons and violate manifest locality. These will arise when

we integrate out the non-dynamical modes. We still expect the shapes of such correlators to be heavily

constrained given our discussion in Section 8.3. The primary difference is that in those cases the

logs that appear in the wavefunction can in principle be multiplied by poles as one of the external

energies is taken soft. In any case, in Section 8.5 we comment on when the above bispectra appear in

the effective field theory of inflation and solid inflation.

Parity-odd bispectra SSS SST STT TTT
no. of couplings 0 1 3 3

Table 8.2: For manifestly local and scale invariant theories, the table specifies the number of indepen-
dent parity-odd tree-level bispectra for all possible combinations of scalars (“S”) and gravitons (“T”)
to all orders in derivatives.

8.5 Graviton bispectra and symmetry breaking patterns

In this section, we want to study which of the graviton and graviton-scalar three-point functions

we have discussed so far can arise during inflation depending on the particular way in which de

Sitter boosts are broken. We consider the Effective Field Theory of Inflation (EFToI) [136] and the

symmetry breaking pattern of a solid, i.e. Solid Inflation [130].

8.5.1 Effective field theory of inflation

Let us begin with the EFToI which is the most well-studied symmetry breaking pattern for inflation.

Here the symmetry breaking is driven by a single scalar that acquires a time dependent vev. The

background homogeneity and isotropy is then manifest and an approximate shift-symmetry for the

resulting Goldstone mode ensures approximately scale invariant primordial correlators. In the decou-

pling limit and on subhorizon scales, where we can neglect gravity and the expansion of the universe,

the Goldstone theory is that of a superfluid [268].

First, let us stress that at tree-level all cubic graviton interactions are manifestly local: one does not

need to worry about non-manifestly local interactions coming from solving the Hamiltonian and

momentum constraints in GR. The reason is that for the three-point function it is sufficient to solve
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the constraints at linear order6 [106] and at this order a two-tensor cannot mix with the scalars and

transverse vector in g0µ. Hence, the Manifestly Local Test (MLT) we used throughout this chapter

does indeed capture graviton bispectra in the EFToI. Now, what are the building blocks for the graviton

operators? Initially consider operators that give rise to non-trivial cubic graviton self-interactions, but

do not alter the graviton’s quadratic action with respect to the GR contribution. This case corresponds

to the setup in this chapter: standard dS mode functions for the massless graviton plus bispectra

arising from manifestly-local cubic self-interactions. To find these building blocks we can stop the

expansion of all geometric objects constructed from the foliation at leading order in perturbations. We

can either use γ̇ij , which is 2 δKi
j at leading order in perturbations (δKµν being the fluctuation in

the extrinsic curvature of constant-time hypersurfaces), or a−2∂k∂lγij . The indices ijkl cannot be,

however, chosen arbitrarily. We can either have the combination7

a−2
(
∂k∂[iγj]l − ∂l∂[iγj]k

)
, (8.191)

corresponding to the Riemann tensor (3)Rijkl on constant-time hypersurfaces, or

a−2∂2γij , (8.192)

corresponding to the Ricci tensor (3)Rij . We can then freely take further time derivatives or spatial

derivatives of these building blocks, since we can project derivatives either parallel or orthogonal to

nµ, the normal four-vector to constant-time hypersurfaces.

Parity even Let us consider a few parity-even examples (beyond the bispectrum of GR) before

moving to the parity-odd case. The constraints on the building blocks forbid us from having p < 3 for

α = 0 and p < 5 for α = 2 and α = 4. Two examples are the following: we have the dimension-6

and dimension-7 operators

∫
dηd3x a(η) γ′ijγ

′
jkγ

′
ki and

∫
dηd3x γ′ijγ

′
jk∂

2γki . (8.193)

6More generally, the solution of the constraints to order n is sufficient to write down the action to order (2n+ 1) or less
[90].

7The square brackets on a pair of indices denote anti-symmetrization with weight one, A[ij] ≡ (Aij −Aji) /2.
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Since no spatial derivative is contracted with the indices of γij , both have α = 0 and both give the

same trimmed wavefunction ψtrimmed(k1, k2, k3) which may be assumed to be symmetric since the

polarisation factors are. We find

ψtrimmed(k1, k2, k3) =
e23
k3T

, (8.194)

which is our α = 0, p = 3 solution from Section 8.4. In general we expect that the order of the

total-energy pole is given by [231]

p = 1 +
∑
A

(∆A − 4) , (8.195)

where the sum is over all vertices A with mass dimension ∆A. For the tree-level bispectrum of

gravitons and scalars this tells us that p is the total number of spatial and time derivatives. Indeed, for

the first interaction in (8.193), we get a k−3
T pole as expected. For the second interaction in (8.193),

we naively expect a k−4
T pole. However, the amplitude corresponding to this interaction vanishes, so

the residue of the k−4
T pole is zero8. A similar observation was made for the DBI limit of the EFToI in

[167]. Another example is the dimension-7 operator

∫
dηd3x γ′jkγ

′
il

(
∂k∂(iγj)l − ∂l∂(iγj)k

)
, (8.196)

which has α = 2 because two spatial derivatives are contracted with the indices of γij . The trimmed

wavefunction coefficient is

ψtrimmed(k1, k2, k3) =
k21k

2
2

k4T
(k1 + k2 + 4k3) , (8.197)

i.e. p = 4, as expected from (8.195). Note that this is the trimmed wavefunction for one of the

permutations where the third leg in the diagram is not differentiated with respect to time. One would

need to follow the rules outlined in Section 8.4 to find the final expressions with the correct symmetries.

Despite appearances, this trimmed wavefunction does indeed satisfy the MLT for each leg.

8On-shell we can replace the ∂2 with two time derivatives and then it is clear that this interaction is a total time derivative
and does therefore not contribute to the energy conserving S-matrix.
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Parity odd As we have seen already in the previous sections, the parity-odd case is much more

constrained. While it is possible to write infinitely many parity-odd high-dimension operators, only

one contributes to the three-point function. This is the three-dimensional Chern-Simons term, i.e.

M2
pl

Λ

∫
dηd3x a(η)ϵijk

[
(3)Γ

l
im∂j

(3)Γ
m
kl

2
+

(3)Γ
l
im

(3)Γ
m
jn

(3)Γ
n
kl

3

]
, (8.198)

where (3)Γ
k
ij are the Christoffel symbols for the covariant derivative on hypersurfaces of constant time

and we have introduced a new scale Λ on dimensional grounds. It is possible to show (see e.g. [247],

Appendix B), that this term is equal to the WW̃ combination (where W is shorthand for the Weyl

tensor and W̃ for its dual) multiplied by f(ϕ) ∝ ϕ where ϕ is the inflaton, up to a boundary term9 and

an operator that has α = 1 and p = 3 (which does not, then, contribute to correlators as we showed in

Section 8.3). At cubic order in perturbations, this operator is equal to [247]

M2
pl

Λ

∫
dηd3x a(η)

[
1

4
ϵijkγkn∂lγnm∂j∂lγim +

1

4
ϵijkγln∂nγim∂j∂lγkm − 1

4
ϵijk∂mγnj∂nγlm∂iγlk

− 1

12
ϵijk∂mγlj∂nγmi∂lγnk +

1

4
ϵijk∂nγlm∂kγln∂jγmi +

1

4
ϵijk∂mγnj∂mγlk∂lγni

+
1

4
ϵijk∂nγmk∂lγmn∂jγli

]
. (8.199)

We recognize the tensor structures summarized in Appendix 8.7.1. The first and sixth terms in the

above equation are the first and second tensor structures in Eq. (8.289). Indeed they only have one

spatial derivative contracted with the graviton’s indices and have α = 1. The other five terms are

found in Eqs. (8.291)-(8.293) and have α = 3. If we take the mode functions to be the usual massless

ones in dS (see below for a discussion on this point) then the bispectrum coming from this sum

of interactions is given by a linear sum of the parity-odd bispectra in Section 8.4.5. The relevant

constraints are

g1,1 = −2g1,2 = −1

6
g3,3 , (8.200)

and by fixing g1,1 in terms of M2
pl/(HΛ), and reinserting the factor of π, we find for the + + +

configuration

9Given the high number of derivatives, such boundary term vanishes very fast at late times and does not contribute to the
three-point function.
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Figure 8.3: Three-point exchange diagram in the parity-odd sector of the EFT of Inflation

e33B
+++
CS,contact =

π

256

H

Λ

H4

M4
pl

SH+++(99e3 − 53kT e2 + 14k3T ) , (8.201)

where the subscript CS stands for “Chern-Simons”. If we rewrite this using the tunings of Eq. (8.200),

we find

e33B
+++
CS,contact =

π

256

H

Λ

H4

M4
pl

SH+++

(
2kT (k

2
T − 2e2)− (−3e3 + kT e2)− 12I1I2I3

)
, (8.202)

e33B
++−
CS,contact =

π

256

H

Λ

H4

M4
pl

SH++−

(
2I3(k

2
T − 2e2)−

(
k1(k

2
2 + k23) + k2(k

2
1 + k23)− k3(k

2
1 + k22)

)
− 12I1I2kT

)
. (8.203)

The non-linear realization of boosts not only forces the different operators to appear with tuned

coefficients, it also forces a contribution to the quadratic graviton action. One can see how this is

necessary from the fact that the bispectrum from Eq. (8.199), by itself, gives a contribution ∼ q−3 in

the soft q limit10, spoiling the consistency relation of GR. The modification to the quadratic action is

−
M2

pl

4Λ

∫
dηd3x a(η) ϵijk∂i∂mγjl∂mγlk , (8.204)

and gives rise to the new three-point exchange diagram shown in Figure 8.3 where the cubic vertex is

the one from GR. In this chapter we have not discussed such exchange diagrams. However, given

10This comes from the first two terms in Eq. (8.199).
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that such an operator is the only source of parity violation in the EFToI, we find it interesting to

consider the wavefunction coefficient and resulting bispectrum from this diagram which must appear

in addition to the contact ones we just derived. Note that we are treating the correction to the two-point

function perturbatively which, as shown in [245], is valid as long as the approximately constant

Hubble scale during inflation is smaller than the scale Λ. Indeed, the correction to the late-time power

spectrum ⟨γ±k γ±k′⟩′ = P±(k) of the graviton is [245]

δP±(k) = ∓π H

2Λ

H2

M2
plk

3
, (8.205)

where the factor of π is enforced by unitarity, as explained in Section 8.3, and the ± indicates that

the helicities have been split by this parity-odd correction. To compute this correction to the power

spectrum the relation

iϵijkkje
h
km(k) = λhk e

h
im(k) (8.206)

proves useful, where λ± = ±1. By considering this correction perturbatively, we can use the usual

bulk-to-boundary and bulk-to-bulk propagators arising from the massless mode functions, as we

have done to compute (8.202) and (8.203). It is worth noting that to get a parity-odd bispectrum one

could use any parity-even vertex for the right-hand sub-diagram but this one is of the same order

as the contact contributions arising from (8.199). The contribution to the wavefunction from the

contact interactions (8.199) is M2
pl/(HΛ). For the diagram in Figure 8.3, the GR vertex contributes

a factor of M2
pl/H

2, the quadratic mixing contributes a factor of M2
pl/(HΛ), while the bulk-bulk

propagator scales in the same way as the graviton power spectrum and so contributes a factor of

H2/M2
pl. Multiplying these factors together shows that the contact diagram and this exchange diagram

contain the same dependence on Mpl, H and Λ, as expected from the consistency relations of the

EFToI [247]. If in Figure 8.3 we took the cubic vertex to be given by the sum in (8.199) then this

(parity-even) contribution would scale as M2
pl/(HΛ) × H/Λ and for H < Λ such a diagram is

suppressed.

Now, up to cubic order the GR action is

SGR =
M2

pl

8

∫
dηd3x a(η)2[γ′ijγ

′
ij − ∂lγij∂lγij + (2γikγjl − γijγkl)∂k∂lγij +O(γ4)] , (8.207)
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and given that both the GR vertex and the new quadratic term only have spatial derivatives, none of

the propagators in the bulk time integrands are differentiated, so the relevant integrals are the same for

all permutations. The only integral we need to compute for this exchange diagram is

−i
∫
dη

∫
dη′a(η)a(η′)2K(k1, η)G(k1, η, η

′)K(k2, η
′)K(k3, η

′) , (8.208)

where we have used momentum conservation to write the internal energy as k1, and have included an

overall −i as dictated by the Feynman rules. We will use (see e.g. [33])

K(k, η) = (1− ikη)eikη , (8.209)

G(k, η, η′) = 2P (k)[θ(η − η′)K(k, η′)ImK(k, η) + (η ↔ η′)] , (8.210)

where P (k) is the GR power spectrum arising from the usual massless mode functions. We can

compute this integral exactly and while the full expression is not very illuminating, we find that the

result is purely imaginary. The result of this integral is then multiplied by a polarisation factor which

is purely real, as we discussed in Section 8.3, so it follows that the contribution to the wavefunction

from this digram is a pure phase, so it does not contribute to the bispectrum. It is interesting to note

that this diagram contributes logarithms to the wavefunction which by unitarity have to come with

iπ contributions too [12]. As we explained in Section 8.3, for contact diagrams the only logarithmic

divergences are of the form log(−kT η0), so iπ contributions are inevitable. However, for this three-

point exchange diagram we find a number of logarithmic terms with different arguments and it turns

out that the coefficients of these logs are such that all iπ contributions cancel out! This observation

clearly deserves further attention and we plan to come back it in the near future.

Although the contribution of Figure 8.3 to ψ3 is pure phase, this modification of the quadratic

action still leads to a parity-odd correction to the bispectrum, as we will now show11. First, we write

the full ψ2 as ψ(0)
2 + δψ2, i.e. the leading part from GR plus a small correction due to the parity-odd

quadratic term. To linear order in 1/Λ, the relevant contributions to the wavefunction for computing

the bispectra are

11We thank Aaron Hillman for discussions about this point.
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Ψ[γ, η0] = exp

{
−1

2

∫
k

∑
λ

(
ψ
(0)
2 (k) + δψλ2 (k)

)
γλkγ

λ
−k

− 1

3!

∫
k1,k2,k3

(2π)3δ(3)
(∑

ki

)∑
{µi}

ψµ1µ2µ33 ({ki}, {ki})γµ1k1
γµ2k2

γµ3k3
+ . . .

}
,

(8.211)

where ψ3 contains all contributions from GR and our parity-breaking CS term, and we have used the

fact that due to SO(3) invariance helicities do not mix at quadratic order. To linear order in 1/Λ we

then have

B3 =
1

3∏
i=1

P(0)
2 (ki)

(
−P{λi}

3 ({ki}) + P{λi}
3 ({ki})

(
δPλ1

2 (k1)

P(0)
2 (k1)

+ 2 permutations
))

, (8.212)

where the permutations are of both momenta and helicity labels, and we have defined

P{µi}
n ({ki}, {ki}) = ψ{µi}

n ({ki}, {ki}) + ψ{µi}
n ({ki}, {−ki})∗, (8.213)

for n ≥ 3, while for n = 2 we use SO(3) invariance to simplify the definition of Pλ
2 (k) as

ψλ2 (k) + ψλ2 (k)
∗. As we explained above, the contribution to ψ3 from Figure 8.3 drops out of P3;

thus the only parity-odd contribution to P3 is fixed by the contact interactions in (8.199) and the

contributions of these interactions are given by (8.202) and (8.203). However, δP2 is non-zero. The

expressions that we now need to compute the full bispectra are

P±
2 (k) =

2M2
pl

H2
k3
(
1± πH

Λ

)
(8.214)

and

P+++
3,GR ({ki}) =

M2
pl

32H2
SH+++(e3 + kT e2 − k3T ) , (8.215)

P++−
3,GR ({ki}) =

M2
pl

32H2
SH++−

I23
k2T

(e3 + kT e2 − k3T ) , (8.216)

which we have computed from the cubic Einstein-Hilbert action using the bulk formalism. It follows

that the full parity-odd contributions to the bispecta at O(1/Λ), by summing all terms in (8.212) with

those in Eqs. (8.202), (8.203), are given by
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e33B
+++
CS,total =

π

256

H

Λ

H4

M4
pl

SH+++

(
2kT (k

2
T − 2e2)− (−3e3 + kT e2)− 12I1I2I3 − 3(k3T − e2kT − e3)

)
,

(8.217)

e33B
++−
CS,total =

π

256

H

Λ

H4

M4
pl

SH++−

(
2I3(k

2
T − 2e2)−

(
k1(k

2
2 + k23) + k2(k

2
1 + k23)− k3(k

2
1 + k22)

)
− 12I1I2kT +

I23
k2T

(e3 + kT e2 − k3T )

)
. (8.218)

Again, we see that these parity-odd corrections are suppressed by H/Λ compared to the GR contri-

butions. Using the relation P±(k) = 1/P±(k), it is straightforward to check that these bispectra

satisfy the consistency condition for large wavelength gravitons, i.e. ⟨γhSk−q/2γ
hS
−k−q/2γ

hL
q ⟩′ ∼

3
2P

hL(q)P hS (k)ehLij (q)k̂
ik̂j for q/k → 0.

To conclude, many of the bispectra we have computed in Section 8.4 do indeed arise in the EFToI,

without corrections to the quadratic theory. The parity-odd contact bispectra, however, necessarily

come with a correction to the two-point function that can be treated perturbatively and results in a

total parity-odd contribution to the bispectrum in the EFToI given in (8.217) and (8.218). Although it

is very interesting that all parity-odd corrections can be computed, they are suppressed relative to the

GR contribution and will therefore be very difficult to detect observationally. This suppression was

also noted in [250]. In this chapter we have restricted ourselves to exact scale invariance, and away

from this limit other shapes are possible [249]. As we mentioned above, it would be very interesting

to pick out this EFToI subset of our full catalogue directly at the level of the correlator rather than

going back to the Lagrangian. We hope to return to this in the future.

In Section 8.4.6 we showed that (8.186) is the unique scale invariant, manifestly-local and parity-odd

bispectrum of two scalars and a graviton. Here we will argue that this bispectrum does not appear in

the EFToI. For the reader’s convenience the structure of this bispectrum is

e33B
00+
3 = h3,3

[13]2[23]2

k23[12]
2
I23k3 , (8.219)

and the relevant polarisation factor is

ϵijke
h3
im(k3)k

j
1k
k
2k

m
1 , (8.220)
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up to permutations. Let’s first ask if such a tensor structure can appear in the EFToI without a

correction to the graviton’s two-point function. In this case the corresponding operator must be built

out of the building blocks we listed above. Since such an interaction must have three spatial derivatives

(simply from the form of the polarisation factor) and no time derivatives (to ensure 2n∂η + n∂i ≤ 3

and therefore a non-vanishing bispectrum) the only possible building blocks contain two derivatives

acting on the graviton. However, it is easy to see from the structure of (8.220) that there is no way for

two of the k′s to correspond to the graviton. This implies that if such a bispectrum is to appear in the

EFToI, it should come with a correction to the graviton’s two-point function.

The leading correction to the graviton’s two-point function is the one we discussed above, namely

(8.204) which, as dictated by symmetries, appears in the EFToI in the form of the Chern-Simons term

(8.198), see also [245]. We have checked that to leading order in slow-roll this Chern-Simons term

does not contain a three-derivative scalar-scalar-graviton interaction and therefore cannot produce this

bispectrum. We therefore conclude that (8.186) does not appear in the EFToI. We note that in [250]

a scalar-scalar-graviton interaction with four-derivatives was derived from this Chern-Simons term.

This interaction is slow-roll suppressed, but given our discussion in Section 8.3 it also has too many

derivatives to produce a log in the corresponding wavefunction and so the corresponding bispectrum

is zero (rather than simply small).

8.5.2 Solid inflation

Let us now switch to the symmetry breaking pattern of solid inflation [130]. Here the symmetry

breaking is driven by a multiplet of scalar fields that pick up spatial vevs. Internal symmetries of the

scalars then ensure that the background geometry is homogeneous and isotropic. In stark contrast to

the EFToI, the fluctuations in solid inflation break spatial diffeomorphisms, and yield the following

effective field theory description [248].

The building blocks in unitary gauge are constructed from the one-forms ∂µxi, with the requirement

that latin indices are contracted in an SO(3)-invariant way. An important role is played by the trace

X = gii , (8.221)

which is a proxy for time, and by the four-vector
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Oµ =
eµνρσϵijk∂νx

i∂ρx
j∂σx

k

6
√
det(gmn)

, (8.222)

which we can use to take time derivatives of diffeomorphism scalars (via Oµ∇µ). Then, we can take

spatial derivatives of diffeomorphism scalars via

D⊥
i =

giµ∇µ√
X/3

. (8.223)

This reduces to ∂i/a at zeroth order in perturbations. The last ingredient is the SO(3) tensor

Γij = δij −
3gij

X
, (8.224)

which is equal to γij at leading order in perturbations.

With these building blocks it is then possible to write all possible manifestly-local cubic operators

involving three gravitons. These are always built from an object of the form

(D⊥
i1 · · ·D⊥

iα1
Γil)(D⊥

j1 · · ·D⊥
jα2

Γjm)(D⊥
k1 · · ·D⊥

kα3
Γkn) , (8.225)

where indices are contracted with δij or ϵijk. Contracting the indices i1, . . . iα1 , j1, . . . jα1 , k1, . . . kα1

allows us to obtain all the tensor structures discussed in Section 8.4.1 and Appendix 8.7.1. Adding

time derivatives to Γil, Γjm, Γkn only changes ψtrimmed
3 (k1, k2, k3) and is always allowed in this

solid inflation EFT. So all of the interactions we have considered in Section 8.4 can arise in solid

inflation. As it is clear from our bootstrap approach, there are a number of degeneracies at the level

of the action that do not appear when working directly with observables. However, as an example,

one possible set of interactions in solid inflation that can give rise to the parity-odd bispectra that we

derived in Section 8.4.5 are

g1,1 :

∫
d4x

√−g ϵijkΓknΓnmD⊥
j Γ

im , (8.226)

g1,2 :

∫
d4x

√−g ϵijkΓknOµ∇µΓ
nmD⊥

j Γ
im , (8.227)

g3,3 :

∫
d4x

√−g ϵijkD⊥
mΓ

ljD⊥
n Γ

miD⊥
l Γ

nk , (8.228)

whereOµ is defined in Eq. (8.222). In addition to parity-odd graviton bispectra, each of these operators
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also generates mixed bispectra containing gravitons and scalars, such as for example scalar-scalar-

graviton and scalar-graviton-graviton bispectra. No purely scalar bispectra are generated because

scalar bispectra cannot be parity-odd. To see why the scalars must enter the game, notice that to

leading order in scalar and tensor perturbations we have

Γij = γij + 2ζδij − 6
∂i∂j
∂2

ζ , (8.229)

where ζ are curvature perturbations on constant-energy time slices. Furthermore, this expression

makes it clear that the interactions involving the scalar ζ are not manifestly local due to the appearance

of the inverse Laplacian in the last term in (8.229), a fact that we have verified with an explicit com-

putation. Hence, the mixed scalar-scalar-graviton and scalar-graviton-graviton bispectra generated by

these operators are not the ones we derived in Section 8.4.6, where we used the Manifestly Local Test

(MLT) and therefore described only manifestly local interactions. In Section 8.5.4 we will see that,

in solid inflation, the signal-to-noise ratio for the bispectra involving one or more scalar is always

larger than that for the purely graviton bispectrum. Therefore, if the parity-odd graviton bispectra

derived here were to be detected, then either one should also see the corresponding parity-odd mixed

bispectra or one would conclude that the symmetry breaking pattern during inflation is different from

that assumed in solid inflation (and the EFT of inflation).

Since in Section 8.4.6 we have bootstrapped only the manifestly local parity-odd scalar-scalar-graviton

bispectrum, it is natural to ask whether that mixed bispectrum can be generated in solid inflation. It is

straightforward to see that the answer is yes. Let us consider the operator

∫
d4x

√−g X−2ϵijkD
⊥
l XD

⊥
k XD

⊥
j Γ

li , (8.230)

which starts at cubic order in perturbations. Using X = 3a−2(1 + 2ζ), together with Eq. (8.229), we

see that to lowest order it is equal to

4

∫
dηd3x a(η) ϵijk∂lζ∂kζ∂jγli . (8.231)

Furthermore, the operator in (8.230) does not introduce any other mixed interaction. In particular,

it does not generate terms with two gravitons and one ζ, with three gravitons (given that X does
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not contain γij), or with three scalars (they all vanish by integration by parts). The interaction in

Eq. (8.231) gives the bispectrum of Eq. (8.186). Since the coupling constant of this operator can be

large, we conclude that the parity-odd scalar-scalar-graviton bispectrum that we have bootstrapped

can indeed arise and be large in solid inflation. We plot its shape in Figure 8.4.

Mode functions Let us now discuss our assumption that the mode functions for the graviton and

scalar are the usual massless de Sitter ones. Let us start with the graviton. As one may have anticipated

from the breaking of spatial diffeomorphisms, in solid inflation the graviton acquires a mass. Indeed,

in unitary gauge solid inflation can be thought of as a theory of Lorentz-violating massive gravity

[269]. On the surface this seems problematic for our assumptions, but it turns out that this mass is

slow-roll suppressed. Let us quickly review how this happens (we refer the reader to [130] for more

details.) We write the non-Einstein-Hilbert part of the action S as

S =

∫
d4x

√−g
{
L0(X) +M4(X, δY, δZ)

}
, (8.232)

where we defined

δY = Y − 1

3
=
gijgji

X2
− 1

3
, (8.233)

δZ = Z − 1

9
=
gijgjkgki

X3
− 1

9
, (8.234)

andX = gii was defined in Eq. (8.221). Without loss of generality,M4 can be written as an expansion

in powers of δY and δZ, each multiplied by a function of X . This mimics the expansion in powers

of g00 + 1 (with time-dependent coefficients) of the EFToI action at zeroth order in derivatives,

thanks to the fact that δY and δZ start at second order in perturbations around a FLRW background.

Consequently, it is only L0 whose dependence is fixed by the background evolution: we have

3M2
plH

2 = −L0 , (8.235)

ε ≡ − Ḣ

H2
=
d logL0

d logX
, (8.236)

where we recognize the slow-roll parameter ε on the left-hand side of (8.236). What are the contri-

butions of Eq. (8.232) to the graviton action (which are added to those from Einstein gravity)? It is

straightforward to see that
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Sγγ =

∫
d4x a3

(
1

6

dL0

d logX
+

1

9

∂M4

∂Y
+

1

9

∂M4

∂Z

)
γijγji . (8.237)

Using Eq. (8.236), together with the fact that the propagation speed c2T of the transverse part of the

Goldstone modes πi is [130]

c2T = 1 +
2

3

M4
,Y +M4

,Z

XL0,X
, (8.238)

we see that the graviton has a small mass given by

m2
γ = −2Ḣc2T = 2H2εc2T . (8.239)

One might ask what happens if other (higher-derivative) operators are turned on. No other operator

can contribute to the mass term aside from Eq. (8.237). They could, however, modify Eq. (8.236) and

therefore modify how one converts from Eq. (8.237) to Eq. (8.239) via the definition of the speed of

sound c2T. As long as these operators are only small perturbative corrections to the solid inflation

action of Eq. (8.232), the graviton mass will still be given by Eq. (8.239) at leading order, and thus it

will be slow-roll-suppressed. Therefore, to leading order in slow-roll one can use the massless dS

mode functions to compute the bispectra, as we have been doing and as was done in [248, 270]. In

the scale invariant limit, it then follows that all of the parity-even and parity-odd bispectra we have

constructed in this chapter using the MLT are the leading contributions to the graviton bispectra in

solid inflation.

Let us now turn to the scalar’s mode functions. We have shown that the unique parity-odd B00+
3 can

indeed arise from an interaction in solid inflation under the assumptions we have made in this chapter

which translate into constraints from the COT, MLT and boostless bootstrap rules that enable us to

write down an ansatz for the wavefunction. It turns out that in solid inflation the mode functions for ζ

are not the usual ones for a massless scalar in dS [130], yet the COT, MLT and our ansatz still apply

and so this unique bispectrum can indeed be generated when using the corrected mode functions for ζ .

In more detail, it was shown in [130] that in the slow-roll limit the ζ mode functions contain an

extra term relative to the usual ones for a massless scalar in dS which corrects the ζ bulk-boundary

propagator to

Kζ(k, η) ∼ (1− icLkη + c2Lk
2η2/3)eicLkη , (8.240)
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where we have omitted overall constant factors12. Now, one can easily verify that this new bulk-

boundary propagator satisfies (8.54) and any contact diagrams that we derive using this propagator

satisfy the contact COT (8.55). One can also see that this propagator will lead to wavefunction

coefficients that satisfy the MLT. Indeed, the first derivative of (8.240) vanishes at k = 0. Finally,

wavefunction coefficients due to manifestly-local interactions that are derived in the bulk formalism

using this bulk-boundary propagator still take the form we assume in this chapter the energy depen-

dence corresponds to rational functions, with only total-energy poles, with the additional possibility of

log(−kT η0) terms multiplied by polynomials. This can be easily seen from the fact that any integrand

in the bulk formalism that is a function of (8.240) and its derivatives, can also be written in terms of

the usual expression for K(k, η) and its derivatives. To capture the effects of the k2η2 correction,

we would need to include terms with extra time derivatives which will in turn result in wavefunction

coefficients where the degree of the leading total-energy pole will not equal the number of derivatives

in the corresponding bulk interaction. Indeed, we have

Kζ(k, η) = K(k, η)− η

3

∂K(k, η)

∂η
. (8.241)

For our interests in this chapter, the important point is that the interaction in (8.231) still generates a

logarithm in the wavefunction. Indeed, given that the relevant interaction vertex has α = 3, terms

coming from the second term on the RHS of (8.241) will violate 2n∂η + n∂i ≤ 3 and so will not alter

the coefficient of the log divergence coming from three copies of K(k, η). It follows that (8.186) does

indeed arise as a ζ-correlator in solid inflation.

8.5.3 Phenomenology of parity-odd interactions in solid inflation

In the EFToI, we showed above that the parity-odd correction to the graviton bispectrum is small

relative to the GR contribution since in our analysis we took the correction to the quadratic action to

be perturbative. Furthermore, the mixed scalar-scalar-graviton parity-odd bispectrum that we found in

Section 8.4.6 does not arise in the EFToI. In solid inflation, however, we can choose operators that do

not affect the quadratic action and can in principle give rise to large parity-odd bispectra: see (8.226) -

(8.228) for gravitons (which do also introduce three-point functions involving the curvature pertur-

12We note that ζ and γ are not conserved in solid inflation which induces time dependence in both the power spectra and
bispectra of these modes. However, in the slow-roll limit this time dependence is small and to capture it one needs to keep
slow-roll corrections in the mode functions. Importantly for us, the shapes of solid inflation bispectra are unaffected by this
mild time dependence. We refer the reader to [130] for details.
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bation ζ) and (8.230) for scalar-scalar-graviton (which is the only three-point function arising from that

operator).

Figure 8.4: The shape of the unique parity odd,
manifestly local B00+

3 .

The reason we focus on these three-point func-

tions is two-fold. On the one hand, if parity-odd

non-Gaussianities involving scalars are suppressed

in some model of inflation beyond the ones we dis-

cuss here, then graviton-graviton-graviton bispectra

will be the leading signal. On the other hand, in

the generic case where non-Gaussianities involving

scalars are not suppressed (as is the case in EFToI

and solid inflation), then the scalar-scalar-graviton

signal will be the leading one, as we show in Sec-

tion 8.5.4. In this short section, we therefore study the phenomenology of the parity-odd, manifestly

local graviton-graviton-graviton and scalar-scalar-graviton bispectra in more detail by plotting and

commenting on the shapes of each possibility that we presented in Sections 8.4.5 and 8.4.6.

Let us start with the unique scalar-scalar-graviton bispectrum, which is

(α = 3, p = 3) : B00+
3 = h3,3

1

e33

[23]2[31]2

[12]2k3
I23 . (8.242)

Taking k3 = k3ẑ without loss of generality, the bispectrum can be rewritten in terms of the graviton

polarisation tensor

e±(k3) =


0 0 0

0 1 ±i
0 ±i −1

 , (8.243)

as

B00h
3 = −4λhh3,3

1

e33
ehij(k3)k

1
i k

2
jk3 = λh

h3,3
e33k3

kT I1I2I3 , (8.244)

where λ± = ±1. To see the shape of this bispectrum, in Figure 8.4 we plot B00+
3 e23, which has a
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vanishing scaling dimension. The correlator vanishes in the folded limit and does not peak in the

squeezed limit.

Let us now move to the three parity-odd graviton bispectra. For the convenience of the reader we

recall that these are

α = 1, p = 1 : B+++
3 = g1,1SH+++

kT
(
k2T − 2e2

)
e33

,

B++−
3 = g1,1SH++−

I3
(
k2T − 2e2

)
e33

, (8.245)

α = 1, p = 2 : B+++
3 = g1,2SH+++

−3e3 + kT e2
e33

,

B++−
3 = g1,2SH++−

k1(k
2
2 + k23) + k2(k

2
1 + k23)− k3(k

2
1 + k22)

e33
, (8.246)

α = 3, p = 3 : B+++
3 = g3,3SH+++

I1I2I3
e33

,

B++−
3 = g3,3SH++−

I1I2kT
e33

. (8.247)

Now, for each of these bispectra the polarisation factor is unique and is fixed by the helicity transfor-

mations of the external spinors. In terms of polarisation tensors we have

SH++± = −e+ij(k1)e
+
jk(k2)e

±
ik(k3) , (8.248)

which we can express solely in terms of the energies k1, k2, k3. Using momentum conservation and

SO(3) invariance, we can make each of the three external vectors lie in the (x, y) plane with

k1 = k1(1, 0, 0), k2 = k2(cos θ, sin θ, 0), k3 = k3(cosφ, sinφ, 0), (8.249)

where

cos θ =
k23 − k21 − k22

2k1k2
, cosφ =

k22 − k23 − k21
2k1k3

. (8.250)

The angles θ andφ are simply those formed by k1 with k2 and k3 respectively. With this representation

for ka we can write the polarisation tensors as
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e±(k1) =


0 0 0

0 1 ±i
0 ±i −1

 , (8.251)

e±(k2) =


sin2 θ − sin θ cos θ ∓i sin θ

− sin θ cos θ cos2 θ ±i cos θ
∓i sin θ ±i cos θ −1

 , (8.252)

e±(k3) =


sin2 φ − sinφ cosφ ∓i sinφ

− sinφ cosφ cos2 φ ±i cosφ
∓i sinφ ±i cosφ −1

 . (8.253)

It is then straightforward to see that

SH+++ = −k
3
T

(
8e3 − 4kT e2 + k3T

)
e23

, (8.254)

SH++− = −I
3
3

(
−8e3 − 4I3e

′
2 + I33

)
e23

. (8.255)

Note that, perhaps surprisingly, these expressions are purely rational. Here we have defined e′2 which

is simply e2 with the sign of k3 flipped i.e. e′2 = k1k2 − (k1 + k2)k3.

To see the behaviour of these different shapes we plot B++±
3 e23 for each of the three couplings.

These combinations have vanishing scaling weight and can be written as functions of the dimensionless

parameters

x2 ≡
k2
k1
, x3 ≡

k3
k1
. (8.256)

The shapes can be found in Figure 8.5. We see that both α = 1 parity-odd bispectra peak in the

squeezed limit for all helicities, but have an angular dependence which causes them to vanish when all

spatial momenta are parallel. More specifically, in the squeezed limit k3 ≪ k1, k2, all α = 1 bispectra

are proportional to sin2 (∡(k1,k3)). By contrast, the α = 3 parity-odd bispectrum vanishes in the

squeezed limit for all helicities, and is large in the equilateral configuration.



8.5 Graviton bispectra and symmetry breaking patterns 297

(a) The shape of B+++
3 for α = 1, p = 1. (b) The shape of B++−

3 for α = 1, p = 1.

(c) The shape of B+++
3 for α = 1, p = 2. (d) The shape of B++−

3 for α = 1, p = 2.

(e) The shape of B+++
3 for α = 3, p = 3. (f) The shape of B++−

3 for α = 3, p = 3.

Figure 8.5: Shapes of each of the three tree-level, contact parity-odd bispectra consistent with the
MLT.
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8.5.4 On the detectability of graviton and scalar bispectra

In this subsection we discuss the signal-to-noise ratio S/N for general bispectra. We use this analysis

to argue that, since (S/N)2 scales with the power spectrum of the fields involved, it is larger for

bispectra that contain more scalar fields, all other things being equal.

So far we have seen that the three parity-odd graviton bispectra that we have bootstrapped to

all orders in derivatives can indeed arise in solid inflation. Since there cannot be any parity-odd

scalar bispectra, the graviton bispectra do not have any counterpart in the purely scalar sector and are

therefore unconstrained by current data. In solid inflation they can appear with a large coefficient and

should therefore be considered an important observational target for observations of the polarization

of the Cosmic Microwave Background (CMB). It would be interesting search for these parity-odd

graviton bispectra also with gravitational wave interferometers. Since both ground and space based

interferometers probe scales that are very much shorter than cosmological scales, the possibility to

detect a primordial stochastic background of gravitational waves in the conceivable future hinges on

having a blue tilt in the tensor power spectrum. It is worth keeping in mind that such a blue tilt is at

odds with the assumption of scale invariance that we have used extensively in this work.

The operators in (8.226)-(8.228) generate a parity-odd graviton bispectrum, but also scalar-scalar-

graviton and scalar-graviton-graviton bispectra. It is therefore interesting to ask which of these signals

can be seen first. To assess the theoretical detectability of a bispectrum we look at the signal-to-noise

ratio. For concreteness and convenience, we assume that we can access the full three-dimensional

distribution of the fields within a volume V and up to a resolution of order k−1
max. Let us consider the

following action for three massless fields φa with a = 1, 2, 3, which can be scalars or gravitons,

S =

∫
d3xdη a4

[
3∑

a=1

∆2
a

2
(∂µϕa)

2 + ga−p∂pϕ1ϕ2ϕ3

]
, (8.257)

where g is a coupling constant, ∆a is an arbitrary normalization, and we have schematically indicated

that the interaction has p derivatives and therefore comes with the appropriate power of the scale

factor required by scale invariance. The indices of the spatial derivatives can be contracted with the

indices of the gravitons, with δij or with the anti-symmetric Levi-Civita symbol ϵijk, so that this

discussion captures parity-odd interactions as well. For example, for the graviton γij we would have

∆γ =MP/2 and for curvature perturbations ∆ζ =MP
√
2ϵ≪ ∆γ . The power spectra are found to

be
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⟨ϕaϕa⟩′ =
H2

2∆2
a

1

k3
≡ Aa
k3

, (8.258)

where the prime indicates that we are dropping the factor (2π)3δ3(k). The bispectrum induced by the

interactions in (8.257) in the in-in formalism takes the following schematic form

⟨ϕ1ϕ2ϕ3⟩′ = B123 =

∫
dη⟨[Hint, ϕ1ϕ2ϕ3]⟩ (8.259)

∼ gHp−4

(
3∏

a=1

Aa
k3a

)
R3(k1, k2, k3) , (8.260)

where R3 is a rational function of the momenta that scales as k3, up to possible logarithmic terms.

For parity-even interactions we expect R3 ∼ Polyp+3/k
p
T , while for parity-odd interactions we have

proven that no kT pole can arise and so R3 ∼ Poly3. Notice that the bispectrum therefore scales as

the power spectrum of each of the fields. Then, we define the dimensionless signal-to-noise ratio S/N

as (see e.g. [271])

(
S

N

)2

= V 3

∫
k1k2k3

⟨ϕ1(k1)ϕ2(k2)ϕ3(k3)⟩⟨ϕ1(k1)ϕ2(k2)ϕ3(k3)⟩
⟨ϕ1(k1)ϕ2(k2)ϕ3(k3)ϕ1(k1)ϕ2(k2)ϕ3(k3)⟩

(8.261)

= V 3

∫
k1k2k3

(2π)3δ

(
3∑

a=1

ka

)
B123(k1, k2, k3)

2 × (2π)3δ(0)∏3
a=1(2π)

3δ(0)Pa
, (8.262)

where we estimated the denominator, i.e. the noise, in the Gaussian theory since we have in mind

non-Gaussianities that are perturbatively close to the Gaussian theory. For a finite-volume survey we

substitute (2π)3δ(0) = V and use (8.259) to find

(
S

N

)2

= V

∫
k1k2

(
gHp−4R3

∏3
a=1Aa

)2
e33
∏3
a=1Aa

(8.263)

= g2H2p−8

(
3∏

a=1

Aa

) (
V k3max

)
, (8.264)

where we estimated the momentum integrals with dimensional analysis13. Since we can write

V ∼ k−3
min and the number of independent data points isNdata ∼ (kmax/kmin)

3, the last factor confirms

13Here we focus our attention on the parametric scaling of S/N . The reader should be mindful that this discussion
neglects the fact that different bispectra might have very different shapes and so momentum integrals might give rise to
large numerical factors that are not captured by dimensional analysis. This is not the case for the parity-odd bispectra we
are considering in this work.



300 Bootstrapping Large Graviton non-Gaussianities

the intuition that our ability to detect a signal scales as S/N ∼ N
1/2
data . From the above expression we

deduce that if two interactions have the same coupling constant g, then the interaction involving fields

with the largest power spectrum has the most signal-to-noise ratio and therefore should be the main

observational target.

If we apply this result to the parity-odd bispectra generated in solid inflation by the operators (8.226)-

(8.228) we conclude that the scalar-scalar-graviton bispectrum is expected to have an S/N larger

than the graviton bispectrum by a factor of ϵ−1, which is the inverse of the small tensor-to-scalar

ratio. (See [272] for a detailed analysis of efficient CMB estimators of this signal.) To summarize, we

briefly discuss some possible scenarios in which the manifestly local parity-odd bispectra that we

computed in this work can be the leading observational signals:

• The manifestly local, parity-odd scalar-scalar-graviton bispectrum that we computed in (8.185)

and which is generated in solid inflation by the interaction in (8.230) does not have a purely

scalar counterpart because of symmetry, and therefore can be the leading observational signal

in solid inflation or in other non-minimal symmetry breaking patterns.

• If one has access only to the gravitational sector, as it is the case for example if one considers

only interferometric and pulsar observations of gravitational waves, then the parity-odd graviton

bispectra in (8.175)-(8.182) can be the leading observational signals in solid inflation. A

detection of these signals would rule out the effective field theory of inflation.

• A detection of the parity odd graviton bispectra in (8.175)-(8.182) that is not accompanied

by correlated parity-odd scalar-scalar-graviton and scalar-graviton-graviton bispectra with a

much higher signal-to-noise ratio would rule out both the effective field theory of inflation and

solid inflation. It would be interesting to investigate what symmetry breaking pattern could be

consistent with this possibility.

8.5.5 Perturbativity, naturalness and strong coupling

Since we have claimed at the beginning of this chapter that the bispectra we study, in particular

the parity-odd bispectra of Section 8.5.3 can be large, we need to verify how large they can be

without compromising the validity of our analysis. One might worry that loop corrections could spoil

our conclusions. Such corrections can come in a number of forms. Loops could introduce brand



8.5 Graviton bispectra and symmetry breaking patterns 301

new shapes coming from performing new bulk time integrals coming from loop diagrams. These

will introduce more complicated shapes that we have not considered here, but these will always be

suppressed relative to the ones we have computed as long as we work below the strong coupling scale

which we estimate below. Loops could also alter the quadratic action which we have assumed takes

on the GR form. Such corrections could be in the form of operators with three or more derivatives that

introduce new diagrams that contribute to the bispectrum. We will show below that these corrections

are always small if we work below the strong coupling scale. Corrections to the quadratic action could

also arise in the form of a large mass correction to the graviton. In Solid Inflation, where our large

parity-odd bispectra can arise, the graviton is massive but the mass is very small and in this section

we pay special attention to the issue of large mass corrections within the context of naturalness. A

reader not interested in the details of the calculation may skip to the end of this section, where we

summarize our findings.

We can write a general Lagrangian up to cubic order as

L[γc] = LGR[γc] +
∑
i

f (i)m
(Hη)m−4

Λm−2
∂mγ2c +

∑
i

g(i)n
(Hη)n−4

MplΛn−2
∂nγ3c +O

(
γ4c
)
, (8.265)

where γc := Mplγ is the canonically normalized field, ∂nγmc is a shorthand notation for an

n−derivative operator and f
(i)
n and g

(i)
n are the dimensionless coupling constants. We have in-

cluded all powers of η that are required by scale invariance. The parity-odd interactions that contribute

to bispectra have n = 1, 2 and 3, and their dimensionless coupling constants are denoted by g1, g2, g3,

respectively. At tree-level these operators do not correct the quadratic action which allows us to

conclude that they can yield a large contribution to the graviton non-Gaussianity relative to the GR

contribution if

(L3)new ≫ (L3)GR ∼ H

MP
L2 . (8.266)

In the above, L2 is simply the GR quadratic Lagrangian, as we have assumed throughout the chapter.

Ideally, we want a stronger notion of a large non-Gaussianity, namely that the signal-to-noise (S-to-N)

in the 3−point function is close to that of the power spectrum. This would mean

fNL γ ≲ O(1). (8.267)
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Crucially the non-Gaussian contributions need to be smaller than the vacuum one to remain within a

perturbative analysis. These two conditions entail, respectively, (at horizon crossing)

gn
Hn−2

Λn−2
≫ 1, (8.268)

gn
Hn−2

Λn−2
≲
Mpl

H
, (8.269)

and these would need to be satisfied for H ≪Mpl again so that the vacuum contribution dominates

over the GR cubic contribution. We see that it is possible to have large non-Gaussianities relative to

GR, while remaining perturbative. However, we must remember that the tree-level bispectra derived

in this work are good approximations only if the loop contributions to the bispectra are suppressed,

while the GR quadratic Lagrangian assumed throughout is only natural if loop corrections to it are

insignificant. Let us therefore estimate (i) the size of quantum corrections to the quadratic Lagrangian

and (ii) the size of loop contributions to the bispectra.

We start by estimating the UV cutoff scale Λc. This can be done by deriving the scale Λ∗ at which

the theory becomes strongly coupled, since at that energy new physics is expected to be important

[273]. This corresponds to a limiting scenario where loop corrections are the largest, although it

is still possible that the cutoff lies much below the strong coupling scale, which would correspond

to a weakly coupled UV completion which we will comment on later. Now consider a general

cubic operator with n derivatives. A rough estimate of the strong coupling scale can be derived by

examining the breakdown of perturbative unitarity in flat-space i.e. by asking when the γγ → γγ

scattering amplitude is of order 1. We work in flat space as this is a good approximation for energy

scales well above the Hubble scale and indeed we want the theory to be valid in such a regime. A

back-of-the-envelope estimate in the flat space limit yields

A4 ∼ g2n
En

MplΛn−2

1

E2

En

MplΛn−2
=

(
gn

En−1

MplΛn−2

)2

, (8.270)

implying that the strong coupling scale Λ∗ associated to an n−derivative operator is

Λ∗ ∼
(

1

gn
MplΛ

n−2

) 1
n−1

. (8.271)

(For n = 1, we take Λ∗ ∼Mpl, since we expect new physics to be relevant at Mpl, if not earlier.) For
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the EFT to be useful, we should require that it is valid at least up to Hubble scale, so that Λ∗ > H .

Thanks to the presence of the Mpl factor, this is consistent with the above estimate of Λ∗, as well as

with (8.268).

Let’s now estimate the size of the loop corrections to the quadratic Lagrangian. First we focus our

attention on a particular n-derivative operator and cut off the loop momentum at the relevant Λ∗ given

above. In the absence of a symmetry that would protect a small value of a given coupling, the radiative

correction to the coefficient of a (∂aγc)
2 operator due to a loop with two n−derivative vertices is of

the order

δL(∂aγc)2 ∼ 1

MplΛn−2

1

MplΛn−2

∫ Λ∗

d4pg2n
pn−apn−a

p4
∼ g2n

Λ2n−2a
∗

M2
plΛ

2n−4
∼ Λ2−2a

∗ . (8.272)

The ratio of the loop contribution (L2)new to the GR contribution at E ∼ H is of the order

(L2)new
(L2)GR

∼
(
Λ∗
H

)2−2a

. (8.273)

Now for a > 1 this is a small contribution since we take Λ∗ > H . For a = 1 we would have a

correction to the two derivative GR action but such corrections are harmless since we can always do

field redefinitions that bring the quadratic action into the canonical form [245]. However, we see that

the mass term (a = 0) could receive a large quantum correction. An important exception is for n = 3

where we have a shift symmetry. In this case a small graviton mass is protected by the shift symmetry

of the interaction (8.183). For the other two operators (8.179)-(8.180) it looks like a large mass could

be generated, but before jumping to such a conclusion one would need to perform a fully fledged

computation to check if once all polarisation sums are included such a correction is still non-zero and

large. We leave such an analysis for future work.

In the above we have assumed that there is only one cubic operator which not only generates radiative

corrections, but also defines the cutoff scale. Suppose, however, that we have multiple cubic operators

O1, . . . ,Ok. If the gn couplings do not differ by too many orders of magnitude, then the cutoff scale

Λc is the one associated to the highest-dimension operator and this can alter our conclusions about

large corrections to the mass. In the case of our three parity-odd interactions (8.179)-(8.180), (8.183)

the lowest cutoff is Λ∗ =
√

MPΛ
g3

. The radiative correction to the coefficient at (∂aγ)2 due to a loop
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with two n−derivative vertices is then of the order

δL(∂aγc)2 ∼ 1

MplΛn−2

1

MplΛn−2

∫ Λ∗

d4pg2n
pn−apn−a

p4
∼ g2n

Λ2n−2a
∗

M2
plΛ

2n−4
∼ g2n
gn−a3

Mn−a−2
pl Λ4−n−a.(8.274)

Comparing this with the GR contribution at E ∼ H , we have

(L2)new
(L2)GR

∼ g2n
gn−a3

(
H2

MPΛ

)a−1(
Λ

MP

)3−n
. (8.275)

For a ⩾ 1 the corrections are small. For a = 0, only n = 1, 2 contribute due to the shift symmetry for

n = 3. We have

n = 1 :
(L2)m2

(L2)GR
∼ g21
g3

Λ3

MPH2
, n = 2 :

(L2)m2

(L2)GR
∼ g22
g23

Λ2

H2
. (8.276)

We see that the g1 could dominate the GR contribution (fNL ≫ 1, but fNL ≪ MP/H) while

keeping δm2 small. This applies as long as the cutoff scale is dictated by the n = 3 operator

which, as we have shown before, could be very large (fNL ∼MP/H) since its loops do not correct

the mass. On the other hand, we need a hierarchy g3 ≫ g2
Λ
H if the radiative corrections to m2

from the n = 2 parity-odd operator are supposed to be small. In this case it is difficult to keep non-

Gaussianity from g2 larger than the GR non-Gaussianity, while keeping loop corrections under control.

Let us now study loop contributions to the parity-odd tree-level shapes we have computed in this

chapter. We are interested mostly in the regime where the energy in the loop is large (close to Λ∗), so

the loop is effectively deep inside the horizon. We can therefore again work in flat-space and estimate

the size of the loop corrections to the three-particle amplitude and compare it with the tree-level result.

We should be careful, however, to only put derivatives on the external legs in such a way that we

reproduce the structure of one of our parity-odd operators, since otherwise the loop diagram will

not contribute to the parity-odd bispectrum as we have shown in Section 8.4.5. We can therefore

put m = 1, 2 or 3 derivatives on the external legs. An estimate of such a loop diagram proceeds

similarly as before. For loop diagrams with three instances of the same n-derivative parity-odd

operator, assuming the cutoff Λ∗ =
(

1
gn
MPΛ

n−2
)1/(n−1)

is dictated by that operator, we find

A1−loop
3

Atree
3

∼ g
m−1
n−1
n g−1

m

(
MP

Λ

)n−m
n−1

. (8.277)
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• If n = 3, then shift symmetry must be preserved at any loop order, which means that loop

diagrams cannot generate the shapes (8.175)-(8.178), but only the three-derivative shape. Thus,

it suffices to consider m = 3. It seems that the ratio (8.277) is equal to 1, although in our

estimate we neglected combinatorial factors as well as factors of (2π). In any case, identifying

the cutoff with the perturbative unitarity breakdown scale is supposed to only give us an order-

of-magnitude estimate, and it is not unnatural to have a slightly lower cutoff which would

further suppress loops which scale as Λ4
c .

• If n = 2, then loop contributions are small for m = 3, again O(1) for m = 2, while they are

large for m = 1. However, if the n = 3 interaction is also present and dominates the signal,

then the cutoff is lowered from Mpl/g2 to
√
MplΛ/g3, and all the loop contributions from

n = 2 are small.

• For n = 1, high energies are suppressed and we don’t observe any UV divergences in the loop

constructed out of three copies of the n = 1 operator. Instead, we ought to consider the loop

constructed out of two GR vertices and one n = 1 operator. Regardless of the structure of

derivatives on the external legs, this loop diagram is suppressed, relative to tree level, by M−2
pl ,

but has at most two factors of Λ∗ since at most four derivatives can be put on the internal legs.

Therefore, loop contributions due to n = 1 are small.

Let us conclude this section by summarising our findings:

• If we consider the parity-odd operators individually, then g3 (and only g3) can be so large that

the (8.182) bispectrum has a S-to-N ratio comparable to that of the power spectrum, without

the need for fine-tuning. This is because of shift symmetry of (8.183), which protects a small

mass from receiving quantum corrections. Meanwhile, the other two parity-odd operators do

contribute to the mass via radiative corrections, and natural values of g1 and g2 must be very

small, meaning that the associated signals are weaker than the GR bispectra.

• By identifying the cutoff scale of the theory with the scale at which the three-derivative

parity-odd interactions given by (8.183) become strongly coupled, Λc =
√
MPΛ/g3, we can

consider a more general case in which we have multiple parity-odd operators. In this case,

non-Gaussianities generated by (8.179) may be larger than GR non-Gaussianities (but with

S-to-N smaller than in the power spectrum) while g1 remains natural. However, the coefficient
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of (8.180) is bounded by g2 ≪ g3
H
Λ , implying that the region of parameter space where

(8.177)-(8.178) are larger than GR is very limited.

• Tree level calculations are a good approximation for the three-derivative parity-odd interaction:

loop contributions to the bispectrum can be suppressed without the need for fine-tuning. Overall,

the g3 operator is best placed to give large non-Gaussianities, both in the sense of being large

compared to GR but also with a sizeable S-to-N, while keeping loop corrections under control.

8.6 Summary and future directions

In this work we have, for the first time, bootstrapped tree-level inflationary graviton bispectra to all

orders in derivatives. Under a minimal set of assumptions, we have detailed how one can write down

these bispectra without working with a concrete inflationary model. We used spatial translations,

spatial rotations and scale invariance to write down a general ansatz for the corresponding wavefunc-

tion of the universe. Assuming that the mode functions are the usual ones of a massless graviton

with Bunch-Davies initial conditions, we used locality and unitarity to constrain the wavefunction

coefficients. We considered all possible tree-level contributions, including IR-divergences at future

infinity, η0 → 0. We imposed locality by demanding that the wavefunction coefficients satisfy the

Manifestly Local Test (MLT) introduced in [33] which is a simple differential constraint that all

n-point functions of massless gravitons should satisfy. Solutions to the MLT replace solutions to

the time integrals that one is required to calculate in the bulk formalism. The beauty of the MLT is

that it allows us to compute non-Gaussian shapes without having to consider the unobservable bulk

time evolution. We imposed bulk unitarity using the Cosmological Optical Theorem (COT) [12]. We

presented our results succinctly in Section 8.4 using the cosmological spinor helicity formalism of

[171], and we computed all bispectra for both parity-even and parity-odd interactions.

In Section 8.3, we showed which part of the wavefunction contributes to the correlator, for contact

diagrams. We concentrated on contact diagrams since our focus in this chapter is on tree-level

bispectra but many of our results in that section hold for any tree-level n-point function. We showed

that only the part of the wavefuction that breaks the {k} → {−k} symmetry, where {k} are the

external energies, can contribute to the correlator. This is a direct consequence of bulk unitarity and

can be easily derived from the COT for contact diagrams. For graviton bispectra, this tells us that

for parity-even interactions both the rational part and the log part of the wavefunction can appear in
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the correlator, whereas for parity-odd interactions the only allowed contributions are regular at both

η0 → 0 and kT → 0. Indeed, unitarity in the form of the COT tells us that the log must always appear

in the combination log(−kT η0) + iπ
2 and for parity-odd interactions it is the iπ

2 piece that contributes

to the correlator. This allowed us to show that, to all orders in derivatives, for parity-odd graviton

self-interactions there are only three independent couplings that contribute to the bispectrum. This

is not evident when using concrete Lagrangians and the in-in formalism and therefore offers a neat

example of where the bootstrap approach can be very advantageous.

In Section 8.5, we showed that our parity-breaking graviton bispectra appear in both the Effective

Field Theory of Inflation (EFToI), and in solid inflation. For the former, a correction to the two-point

function is forced by the non-linearly realized symmetries. By accounting for this correction, we

computed the full parity-odd contribution to the graviton bispectrum. The associated non-Gaussianity

is too small to be detected observationally in any conceivable future. Conversely, for solid inflation

there is no symmetry that forces a correction to the two-point function, so the three parity-odd

bispectra we have computed can indeed arise with arbitrary coefficients. Given that such operators do

not contribute to the bispectrum of curvature perturbations, which cannot violate parity, there are no

strong observational bounds on the size of these non-Gaussianities. We plotted the associated shapes

in Figure 8.5.

With this catalogue of graviton non-Gaussianities at hand, we outline here a few directions for future

work

• To derive our catalogue of graviton bispectra we did not assume any particular symmetry

breaking pattern for the inflationary dynamics. Indeed, we have captured all scale invariant

contributions, assuming the usual massless mode functions. It would be very interesting to

develop further criteria to identify those non-Gaussianites that are consistent only in the presence

of additional degrees of freedom. For example, we expect that only some couplings can appear

in the EFToI and in future work we plan to use soft theorems/consistency relations to extract

this subset. It would also be very interesting to take these three-point building blocks and to

glue them together to form four-point functions. By demanding that the full four-point function

satisfies some consistency constraints, we will also be able to pick out interesting subsets of our

full catalogue. This approach would be very similar to that used to constrain cubic interactions

in flat space with S-matrix consistency conditions [29, 2], and in [181] assuming invariance
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under de Sitter boosts. Deriving this full catalogue is the first step towards distinguishing

between different symmetry breaking patterns for inflation directly at the level of the observable.

This will complement the recent Lagrangian analysis of [248] and ultimately lead to a more

efficient way of “simplifying" inflationary predictions [246]. For example, we expect there to

be only a single three-derivative correction to the graviton bispectrum in the EFToI [247], and

we plan to develop bootstrap techniques that enables us to efficiently extract this result without

having to use the Lagrangian or bulk time evolution.

• Given the small number of possible parity-odd graviton bispectra in solid inflation, it would

be interesting to study the associated bulk operators. In particular one would like to know

when those same operators give also rise to interactions between the graviton and curvature

perturbations. It is also very important to study the quantum stability of these operators and

possible perturbative unitarity bounds on their size.

• Finally, we notice that Ref. [274] showed that for manifestly-local interactions, all parity-odd

scalar correlation functions vanish at tree level. It would be interesting to see if their result can

be generalized to spinning particles.

Our understanding of physical observables in nature becomes increasingly more opaque as we

approach the real world. In anti-de Space (AdS) we have the gauge-gravity duality that provides

us with a good understanding of the structure of boundary observables. In flat-space, the object of

interest is the S-matrix. The S-matrix bootstrap has lead to a good understanding of the tree-level

properties of amplitudes, with progress now being made on the analytic structure at loop level. Finally,

we have de Sitter space, which appears to describe the early and late phases of our universe very well.

We are only now starting to understand the general structure of cosmological correlators in de Sitter,

both at tree and loop level. We hope that our results will contribute to broadening this understanding

and to provide theoretical guidance on the physical modeling of inflation.

8.7 Appendix

8.7.1 From polarisations to spinors

In this appendix we construct all possible polarisation factors for three gravitons and explain how one

can convert these into spinor expressions using the spinor helicity formalism. We consider parity-even
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and parity-odd structures separately. Throughout we suppress the momentum dependence of the

polarisation tensors. Note that throughout we only contract momenta with polarisation tensors as any

pair of contracted momenta can be written in terms of the energies (norms) which we include in the

trimmed part of the wavefunction c.f. (8.37). Indeed, we have

ka · kb =
1

2
(k2c − k2a − k2b ) , a ̸= b ̸= c . (8.278)

When we convert the following expressions into spinors, their symmetry properties will become

manifest.

Parity-even tensor structures

For parity-even structures we need to contract spatial momenta with

eh1i1i2e
h2
i3i4

eh3i5i6 , (8.279)

using δij . We work order by order in the total number of derivatives α.

α = 0 In this case there is clearly only a single structure which is given by

eh1ij e
h2
jke

h3
ki . (8.280)

This structure is fully symmetric and when converted to spinors this contraction simply yields

SH+++ , (8.281)

for the all-plus configuration.

α = 2 In this case we have two possibilities. For the first we contract the two momenta with the

same polarisation tensor and for the second we contract each momentum with different polarisations.

Using momentum conservation and the transversality of the polarisation tensors, there is then a single

option for the labels of the momenta, up to permutations. We have

eh1lme
h2
lme

h3
ij k

i
1k
j
2 and eh1lme

h2
il e

h3
jmk

i
1k
j
1 . (8.282)
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These two structures appear in GR with tuned coefficients. The first structure is symmetric in labels 1

and 2 while the second is symmetric in 2 and 3. If we sum over permutations and convert to spinors

then we have

SH+++ × Poly2 = SH+++

(
a0e2 + a2k

2
T

)
. (8.283)

α = 4 In this case we have a single option. All momenta need to be contracted with polarisation

tensors and then using the fact that the polarisations are traceless yields a single possibility. Again,

momentum conservation and transversality yields a single possibility for the labels, up to permutations.

We have

eh1lk e
h2
mke

h3
ij k

i
1k
j
2k
l
3k
m
3 . (8.284)

This structure is symmetric in 2 and 3 and when we sum over permutations and convert to spinors we

have

SH+++ × Poly4 = SH+++

(
k4T − k2T e2 + 8kT e3

)
. (8.285)

α = 6 Finally, in this case there is a single option with all polarisation tensor indices contracted with

momenta. We have

eh1il e
h2
jme

h3
knk

i
2k
l
3k
j
3k
m
1 k

k
1k

n
2 . (8.286)

This structure is fully symmetric and yields

SH+++ × Poly6 = SH+++

(
k6T − 8k4T e2 + 16k3T e3 + 16k2T e

2
2 − 64kT e2e3 + 64e23

)
. (8.287)

when we convert to spinors.

Parity-odd tensor structures

We now turn to parity-odd structures where we need to contract momenta with

ϵi1i2i3e
h1
i4i5

eh2i6i7e
h3
i8i9

. (8.288)

As above, in all cases there is a single option for the labels, up to permutations.
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α = 1 In this case there are two possible structures with the single momentum either contracted with

a polarisation tensor or with the epsilon tensor. We have

ϵijke
h1
il e

h2
lme

h3
kmk

j
3 and ϵijke

h1
il e

h2
jme

h3
kl k

m
3 . (8.289)

The first of these is symmetric under the exchange 1 ↔ 2, while the second is symmetric under

1 ↔ 3. When symmetrized over all possible permutations of the three energies, these two contractions

coincide up to a minus sign. This fact can be checked using explicit expressions for the polarization

tensors, but it is not at all obvious. Conversely, it is easy to see in the spinor helicity formalism where

both contractions must take the form

SH+++ × Poly1 , (8.290)

where the only permutation-invariant linear symmetric polynomial is Poly1 = kT .

α = 3 In this case we have six possibilities and we classify them according to how many momenta

are contracted with the epsilon tensor. First consider the case where none of the momenta are

contracted with the epsilon tensor. Given the properties of the polarisation tensors, we then have a

single possibility given by

ϵijke
h1
il e

h2
jme

h3
knk

l
3k
m
1 k

n
2 . (8.291)

Now when one of the momenta is contracted with the epsilon tensor we have two possibilities since

the remaining two momenta can be contracted with the same polarisation tensor or with two different

ones. We have

ϵijke
h1
nl e

h2
jme

h3
kmk

n
2 k

i
3k
l
3 , ϵijke

h1
jl e

h2
nme

h3
knk

m
1 k

l
2k
i
1 and ϵijke

h1
jl e

h2
nme

h3
knk

m
1 k

l
2k
i
3 . (8.292)

Finally, we can contract two momenta with the epsilon tensor. There are then two possibilities: the

third momentum must be contracted with a polarisation tensor, and the other index of this polarisation

can be contracted with the epsilon tensor or another polarisation. We have

ϵijke
h1
nl e

h2
nme

h3
il k

m
1 k

j
2k
k
3 and ϵijke

h1
ime

h2
ln e

h3
ln k

j
1k
k
2k

m
3 . (8.293)
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Upon symmetrization over all possible permutations of the three energies, only three of the above six

contractions are linearly independent (for example (8.291) and the first two in (8.292)). To see this

with explicit polarization tensors requires a laborious calculation. Conversely, this can be easily seen

using spinor helicity variables, where the most generic α = 3 (symmetrized) contraction must take

the form

SH+++ × Poly3 = SH+++

(
a0e3 + a1kT e2 + a3k

3
T

)
, (8.294)

which has indeed three free coefficients a0,1,3.

α = 5 In this case we have a total of three possibilities. One of them corresponds to having only one

momentum contracted with the epsilon tensor, while for the others two of the momenta are contracted

with the epsilon tensor. We have

ϵijke
h1
mqe

h2
nqe

h3
lk k

i
1k
j
2k
m
2 k

n
1 k

l
1 , ϵijke

h1
mne

h2
lq e

h3
qkk

i
1k
j
2k
m
2 k

n
2 k

l
1 , and ϵijke

h1
mne

h2
qj e

h3
lk k

i
2k
m
3 k

q
1k
l
1k
n
3 .

(8.295)

When we sum over permutations and convert to spinors we have only two structures:

SH+++Poly5 = a SH+++(−3k5T + 20k3T e2 − 24k2T e3 − 32kT e
2
2 + 64e2e3) (8.296)

+ b SH+++(k
5
T − 8k3T e2 + 8k2T e3 + 16kT e

2
2 − 32e2e3) . (8.297)

α = 7 Finally, in this last case we have a single possibility given by

ϵijke
h1
mne

h2
qpe

h3
lk k

i
1k
j
2k
m
2 k

n
2 k

q
1k
p
1k

l
1 , (8.298)

and once we sum over permutations and convert to spinors we have

SH+++Poly7 = SH+++(k
7
T − 8k5T e2 + 16k4T e3 + 16k3T e

2
2 − 64k2T e2e3 + 16kT e

2
3) . (8.299)

Note that in the above we have used the fact that three momenta cannot be contracted with the epsilon

tensor due to momentum conservation.
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Converting to spinors

Now that we have all of the possible polarisation factors, we can convert them into spinor expressions

using the spinor helicity formalism. As we explained in detail in Section 8.4, given the form of the

+ + + polarisation factor, one can easily construct the ones for the other helicity configurations.

The following expressions hold for three-point kinematics only. In the parity-even case the only

expressions we need are

ea+ · eb+ = − [ab]2

2kakb
, (8.300a)

pa · eb+ =
(ab)[ab]

2kb
, (8.300b)

where we have used the relations presented in Section 8.2.5. For parity-odd structures we use the

general expression

ϵijkV
a
i V

b
j V

c
k =

i

4
(⟨ab⟩[ab](cc) + ⟨ab⟩[ca](cb) + ⟨bc⟩[ab](ac)) , (8.301)

where each SO(3) vector contains the spatial parts of a null four-vector Vµ which is converted to

spinors using the standard expressions

V µ = −1

2
(σ̄µ)α̇αVαα̇, Vαα̇ = V µ(σµ)αα̇, Vαα̇ = λαλ̃α̇ . (8.302)

The expressions that we need are then

ϵijk e
a+
i eb+j ec+k = i

[ab][bc][ca]

2kakbkc
, (8.303a)

ϵijk p
a
i e
a+
j eb+k = i

[ab]2

2kb
, (8.303b)

ϵijk p
a
i p
b
je
a+
k =

i

2
[ab](ba) . (8.303c)

Note that by momentum conservation, we only need to consider cases where one of the momenta has

the same label as one of the polarisation tensors. We used these relations to derive the list of possible

hα(k1, k2, k3) in (8.85) to (8.92). Notice that for some α there are fewer choices for hα compared to

the polarisation structures above.





Chapter 9

Discussion

In this thesis I have emphasized that cosmic anisotropies and inhomogeneities can be traced back

to primordial fluctuations generated during inflation. These fluctuations probe energies of order of

the inflationary Hubble scale and therefore may serve as valuable data about high energy physics.

I have therefore explored the problem of constraining inflationary correlators using the framework

of the cosmological bootstrap. The importance of model-insensitive predictions that follow from

reparametrization invariance of General Relativity [1], unitarity of time evolution and Bunch-Davies

initial conditions [12, 14, 4], locality [33, 4] and little group scaling [2] follows from the fact that

they can be used to guide the observational effort towards detection of particular signals. By relying

on first principles, these techniques are an alternative to the EFT Lagrangian description, and can

be employed to efficiently organize the correlators that originate from unknown UV corrections to

General Relativity [4]. We have derived a number of consistency relations that are valid under wide

assumptions which can be falsified if the consistency relation was observed to be violated. On the

other hand, an observational confirmation would support the models in which the relations are valid.

In this final chapter, I summarize the main results presented in this thesis and sketch an outlook

for future research in the area.

9.1 Summary of the main results

Cosmological correlators in a curved universe. Observations constrain the mean curvature of the

universe to be small, consistent with zero [39], ΩK = 0.0007± 0.0019 (68% CI). Still, the effects

of curvature on primordial correlators could be of interest. As was first observed by [112], in the
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EFT of Inflation these effects scale as K/c2s, where cs is the effective speed of sound. In Chapter 5,

we derived O(K/c2s) corrections to the scalar power spectrum and the bispectrum and showed how

the ratio ΩK/c
2
s can in principle be constrained by the low CMB multipoles, although at present the

constraint is not meaningful in its regime of applicability. The discussed effect, linear in K, is model

dependent and therefore cannot be captured by soft theorems, implying a violation of the Maldacena’s

soft theorem already at order K/q2l (where ql is the momentum of the longest mode) in a curved

universe.

Constraints on boost-violating flat space theories. The on-shell S-matrix bootstrap is a rich

program that has been successful in constructing higher-point amplitudes from simple building blocks,

bypassing complex Feynman diagram computations. It encodes symmetry, locality and unitarity

directly on the level of scattering amplitudes, using these general principles to constrain their form,

often allowing only for one unique amplitude. In Chapters 6 and 7 ([2, 3]), we showed how these

methods can be extended to flat space theories that do not respect boost invariance. We made the

assumption that all particles are massless, propagate at the same speed and that Lorentz violations

enter the action only through time derivatives. We found that such theories are tightly constrained:

spin 1 particles cannot couple to themselves through a (+1,+1,−1) amplitude, while spin 2 particles

may interact with themselves only in a Lorentz-invariant way. In fact, in the presence of a graviton all

interactions that dominate in the IR must be Lorentz invariant, with a coefficient that is identical to

the pure spin 2 coupling constant. We determined that (+S,+S,−S) amplitudes are only consistent

for S ⩽ 2. In Chapter 7 we derived the conclusions for the interactions of identical particles under

the same assumptions using the BCFW formalism, demonstrating its validity in a boost-violating

setting. While the assumptions of Chapters 6 and 7 are quite restrictive, there is a possibility of giving

them a physical interpretation related to the manner in which the theories considered therein are

UV-completed by a Lorentz-invariant theory. It would be interesting to explore this issue further.

Constraints on graviton non-Gaussianities. In [4] (Chapter 8), we used new techniques developed

in [171, 2, 33, 12] - the spinor-helicity formalism for boost-violating settings, the Manifestly Local

Test and the Cosmological Optical Theorem - to constrain and catalogue all tree-level graviton

three-point non-Gaussianities consistent with scale invariance. We did not restrict the analysis to

any particular symmetry breaking pattern, and our results capture the physics of EFT of single field

inflation as well as the Solid Inflation [130], the latter of which can in fact produce the most general

graviton non-Gaussianities. Remarkably, we found only three parity-odd graviton bispectra in addition
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to infinitely many parity-even ones, for which we wrote down a general formula.

9.2 Outlook

Within the last several decades, there has been steady progress in the measurements of cosmological

correlators [refs] and the inference of primordial fluctuations. On the large scales, the CMB power

spectrum has been measured with a precision approaching the fundamental variance of the limited

sample we have access to in a finite universe (the cosmic variance limit). The main focus of some

upcoming experiments will be therefore the Large Scale Structure [275] and primordial gravitational

waves [276, 277, 55], which should contain more information than the CMB alone. The current

upper limit on the tensor-to-scalar ratio is r0.05 < 0.036 (95 % CL) [278], which is consistent with

some single-field slow-roll models (see Section 2.3.1). The uncertainty is expected to be improved

to σ(r) ∼ 0.003 within the next few years which could confirm or exclude many models. The

next generation experiments include the LiteBIRD mission (expected σ(r) ∼ 0.001), planned to be

launched in the late 2020s [279], and gravitational wave inteferometers such as LISA [55], sensitive

to metric perturbations in the 10−2 Hz frequency range.

Given the cautious optimism about new data on scalar and tensor fluctuations, it is important to

understand how scalar and graviton non-Gaussianities depend on inflation dynamics, field content

and symmetry breaking patterns. The work outlined in this thesis makes several contributions to this

project. In particular, in [4] (Chapter 8), we obtained shapes of tree-level tensor non-Gaussianities

that can be large, including in the squeezed limit. If an expriment detects a tensor power spectrum,

both the corresponding ⟨γγγ⟩ bispectrum and ⟨γγζ⟩ could be “just around the corner”. Since such

three-point correlators contain additional information, measuring them would provide even more

valuable data about the early universe [280].

It is important to continue making progress on the theoretical side of the problem as well. A

problem not discussed in this thesis are non-Gaussianities in the presence of massive degrees of

freedom, including scalar or spinning particles. Recent developments can be found in [177, 178, 281],

which predict a characteristic pattern of oscillations in the scalar bispectrum (as a function of

momentum ratios) as a signature of massive particle exchange.

Virtually all the results for (quasi) de Sitter spacetime discussed in this thesis are perturbative in

nature. Even those that are valid to any loop order, such as the Cosmological Optical Theorem or
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the Manifestly Local Test assume a perturbative expansion of wavefunction coefficients. It would be

worthwhile to explore the possibility of generalizing these results beyond perturbation theory, only

using fundamental physical postulates such as unitarity and causality. Hopefully, the results of [1]

might also be generalized to any order in background curvature K; [282] indeed derived the power

spectrum in the special case where inflation is split into a phase dominated by the kinetic term and the

slow-roll phase.

One of the remaining challenges is to explore the problem of consistent UV completions of

inflationary EFTs. In a non-gravitational theory in flat space, assuming the existence of a UV

completion leads to a set of inequalities that must be satisfied by the forward limit (t → 0) of a

four-particle scattering amplitude which can be expressed as a set of positivity bounds on the low

energy EFT coefficients. These positivity bounds [283–287] have been studied in depth in the context

of flat space but still do not have a full generalization to de Sitter space. Since amplitudes cannot be

defined in the latter case, one could instead look for analogous constraints on wavefunction coefficients

or correlators, but it is not known how to formulate such a procedure (but see [288]).

Effort is also being made to develop (quasi) de Sitter holography that aims to construct a boundary

theory corresponding to the gravitational physics in the bulk spacetime. Since the IR limit in the

bulk corresponds to the UV limit on the boundary and vice versa, such a holographic method could

automate the computations of non-Gaussianities, including in the strongly coupled regime, and

generate constraints that cannot be derived by studying the IR physics alone. We should certainly

look forward to seeing new developments in this and related areas.
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