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Summary. Before adjustment, low and high frequency data sets from national accounts are
frequently inconsistent. Benchmarking is the procedure used by economic agencies to make
such data sets consistent. It typically involves adjusting the high frequency time series (e.g.quar-
terly data) so that they become consistent with the lower frequency version (e.g. annual data).
Various methods have been developed to approach this problem of inconsistency between data
sets. The paper introduces a new statistical procedure, namely wavelet benchmarking. Wavelet
properties allow high and low frequency processes to be jointly analysed and we show that
benchmarking can be formulated and approached succinctly in the wavelet domain. Further-
more the time and frequency localization properties of wavelets are ideal for handling more
complicated benchmarking problems.The versatility of the procedure is demonstrated by using
simulation studies where we provide evidence showing that it substantially outperforms cur-
rently used methods. Finally, we apply this novel method of wavelet benchmarking to official
data from the UK’s Office for National Statistics.

Keywords: Benchmarking; Seasonal adjustment; Structural time series; Thresholding;
Wavelets

1. Introduction

National statistics institutes (NSIs) such as the UK’s Office for National Statistics (ONS) are
responsible for collecting and analysing economic data, e.g. national accounts data and labour
data (Cholette and Dagum (2006), chapter 1). Data sets that are collected by such agencies
are typically adjusted for a variety of reasons. Benchmarking (the focus of this paper) is an
adjustment procedure that is used to make measurements from the same statistical process across
different periodicities consistent. Since national accounts data must satisfy specific accounting
conditions, benchmarking has important applications. It is well documented for example that
unmodified quarterly gross domestic product (GDP) data are not consistent with their annual
GDP version (i.e. the quarterly totals do not sum to the corresponding annual value). Since data
sets of different periodicities (temporal resolutions) are often collected from different sample
surveys and compiled differently, such discrepancies occur naturally as a result of survey errors.
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In many cases, for example, a larger sample is used for the less frequent survey; hence the lower
frequency series is typically more reliable than its corresponding high frequency version. The
aim of benchmarking is to adjust the high frequency series so that it becomes consistent with
the lower frequency version while preserving short-term fluctuations. The low frequency and
adjusted high frequency time series are referred to as the benchmark and benchmarked series
respectively.

Benchmarking can be considered as a subclass of signal extraction problems. Current liter-
ature can be classified as providing either numerical or model-based solutions. Denton (1971)
approached benchmarking by using a numerical method based on quadratic minimization. A
penalty function defined by the user specifies this minimization procedure. Cholette and Dagum
(1994) expressed benchmarking in terms of a stochastic regression model; hence a regression-
type solution is provided. Owing to difficulties in estimating parameters, NSIs typically simplify
the benchmarking method that was originally proposed by Cholette and Dagum. However, since
it has a regression setting, confidence intervals can be obtained and so uncertainty about point
estimates can be quantified. In practice, NSIs often implement methods which make simplifying
assumptions to allow for easier estimation and greater transparency of the model.

In this paper, we present a new non-parametric methodology for benchmarking. It is based
on the natural idea that the time series can be decomposed into different timescale components,
and these components are subsequently used to constrain the high frequency series. Wavelets
(Daubechies, 1992) provide a natural time–frequency decomposition and can adapt to local con-
ditions in the time series. This is important in macroeconomic times series routinely analysed by
the ONS. Wavelets extend the ideas of Fourier decompositions by removing the assumption of
stationarity in the time series. By combining data sets from different wavelet decomposition lev-
els, and making use of the unbalanced Haar (UH) decomposition (Fryzlewicz, 2007) to account
for the non-dyadic nature of the analysis, our proposed method can reconstruct a benchmarked
series with high frequency components that still satisfy the low frequency constraints.

Outliers and abrupt structural changes are commonplace in observed time series. Current
methods provide global benchmarking solutions; hence volatile regions of the high frequency
series have the potential to introduce artefacts in the benchmarked series. The time–frequency
localization properties of wavelets (Percival and Walden (2000), page 59) provide a local solution
to benchmarking and thus overcome such a problem.

In addition, NSIs frequently publish a seasonally adjusted version of the high frequency series.
Seasonal adjustment is another procedure that is applied to data to remove unwanted effects
(Findley, 2005), but care must be taken when combining seasonal adjustment and benchmarking.
Along with adjustments for calendar effects (e.g. trading day effects) a version of benchmarking
must be applied so that both the original and the seasonally adjusted high frequency series
satisfy the benchmark constraint. We show that, by using a suitable seasonal model, wavelet
benchmarking and seasonal adjustment can be combined within the same framework.

The paper proceeds as follows. Section 2 provides an introduction to current benchmarking
methods and a short introduction to wavelets. Section 3 describes the process of benchmarking
in the wavelet domain. Additional issues which require consideration such as thresholding and
seasonal adjustment are also discussed. In Section 4 wavelet benchmarking is applied to a variety
of simulated data and official ONS data. Section 5 concludes the paper. Details on the simulation
implementations are given in Appendices A–C.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets
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2. Background

The requirement of benchmarking is frequently demanded by the ONS. Currently a variety of
benchmarking methods have been proposed in Denton (1971), Cholette and Dagum (1994),
Durbin and Quenneville (1997), Quenneville et al. (2013) and Di Fonzo and Marini (2012)
to name only a few. Currently the Cholette and Dagum method is the preferred method of
benchmarking within the ONS (Brown et al., 2012). However, this can also incorporate Denton
benchmarking so we shall therefore consider these two approaches and provide a comparison
of wavelet benchmarking with them.

Consider the following introductory example. A quarterly GDP time series needs to be bench-
marked to an annual GDP time series; typically the annual series is less noisy than its quarterly
version. To simplify the benchmarking procedure many NSIs assume that such an annual series
is not contaminated with noise, and hence the high periodicity series must equate to the lower
periodicity series when suitably aggregated (binding benchmarking). Throughout this paper the
above example of quarterly–annual benchmarking is used to provide a concrete description;
however, the methodology is applicable to general periodicity relationships. For completeness
the following discussion expresses benchmarking in a general and more formal way.

Let YH
T,t and YL

T,s describe the true evolution of high (i.e. quarterly) and low (i.e. annual)
frequency time series. The disturbance terms εH

t and εL
s contaminate these time series, with YH

O,t
and YL

O,s denoting the observed noisy versions respectively. This is summarized as follows:

YH
O,t =YH

T,t + εH
t , t =1, : : : , n,

YL
T,s =gs.{YH

T,t}fs
t=1/, s=1, : : : , m,

YL
O,s =YL

T,s + εL
s , s=1, : : : , m:

Here gs.·/ represents some function linking the unobserved true low frequency series to the
true unobserved high frequency series. Often gs.·/ is a summation over a small range, YH

T =
.YH

T,1, : : : , YH
T,n/, YL

T = .YH
L,1, : : : , YL

T,m/ and f =n=m denotes the aggregation order between the
two series. In the setting of quarterly to annual binding benchmarking (binding benchmarking
assumes that the low frequency series is non-noisy, i.e. εL

s = 0), YL
O,s = YL

T,s =Σ4s
t=4s−3 YH

T,t , and
f =4 .n=4m/. Although subsequent methods rely on various statistical techniques they have a
fundamental similarity in how benchmarking may be interpreted. The estimated series Ŷ

H
T can

typically be expressed as a linear combination of the observed high .YH
O / and low .YL

O/ frequency
processes. This results in the estimator

Ŷ
H
T =A

(
YH

O
YL

O

)
, .2:1/

where Ŷ
H
T = .Ŷ

H
T,1, : : : , Ŷ

H
T,n/′, YH

O = .YH
O,1, : : : , YH

O,n/′ and YL
O = .YL

O,1, : : : , YL
O,m/′.

Embedded within matrix A is information describing the relationship between the high
.YH

O / and low .YL
O/ frequency series. Conditionally on the benchmarking procedure that is imple-

mented, additional information summarizing statistical features, such as the time series correla-
tion structure or estimates of model parameters, may be present. In particular for the parametric
or non-parametric approach, the matrix A is respectively explicitly or implicitly data dependent.

This paper considers a particular type of benchmarking, namely binding benchmarking of
flow variables; in the example of quarterly to annual benchmarking the sum of the four quarterly
values must equal the corresponding value from the annual series. Other types of benchmarking
exist such as ensuring that the beginnings of time period values are equal between two series.
Implementation of these benchmarking methods simply requires a different specification of the
benchmarking matrix A.
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2.1. Denton method
Denton (1971) benchmarking, which was the first widely used benchmarking procedure, is based
on the principle of movement preservation. This ensures that the benchmarked high frequency
series Ŷ

H
T evolves similarly to the observed series YH

O (i.e. Ŷ
H
T is approximately a level shift or

proportionate to YH
O depending on which Denton method is implemented). As described in

Cholette and Dagum (2006), chapter 6, the Denton method has the following underlying model
for discrete data:

YH
O,t =YH

T,t + εt , .2:2/

YL
O,s =

ps,f∑
t=ps,1

js,tY
H
T,t , .2:3/

with equation (2.3) giving the binding benchmarking constraint. In quarterly to annual binding
benchmarking js,t = 1, with ps,1 and ps,4 representing the beginning and end quarters corres-
ponding to year s respectively.

Two primary variants of Denton benchmarking are additive and proportional differencing
with each best suited for additive and multiplicative time series respectively. (Although simu-
lations generated in Section 4 have an additive form, the proportional Denton variant is also
considered since it is the most commonly used version of Denton benchmarking.) Additive first
differencing keeps the discrepancy between the benchmarked and original series Ŷ

H
T,t −YH

O,t as
close as possible to a constant by minimizing the following objective function (equation (2.4))
subject to the benchmark constraint (equation (2.5)) being satisfied:

n∑
t=2

{YH
T,t −YH

O,t − .YH
T,t−1 −YH

O,t−1/}2, .2:4/

subject to

YL
O,s =

ps,f∑
t=ps,1

js,tY
H
T,t , ∀ s=2, : : : , m: .2:5/

(Equation (2.4) expresses the Denton method in its modified form. This prevents transient
spurious movements from being introduced in the benchmarked series which may occur by
using the exact form (Cholette, 1984) of Denton benchmarking. Hence the modified version
is used in Section 4.) The benchmarked series is approximately a vertical shift of the original
series, i.e. Ŷ

H
T,t ≈YH

O,t + c, c∈R, ∀ t.
Denton (1971) devised the following solution based on Lagrangian optimization:(

Ŷ
H
T
λ̂

)
=
(

A B

B′ 0m×m

)−1(
A 0n×m

B′ Im

)(
YH

O
YL

O −B′YH
O

)
: .2:6/

In equation (2.6), λ̂ corresponds to the Lagrangian multiplier. The matrices 0m×m, 0n×m and
Im correspond to the null matrices of dimensions m×m and n×m and the identity matrix of
dimension m×m respectively. Finally the matrices A and B take the form

B=

( j 0 : : : 0
0 j : : : 0
:::

:::
:::

0 0 : : : j

)
n×m

, A=D′D with D=

(−1 1 0 : : : 0 0
0 −1 1 : : : 0 0
:::

:::
:::

:::
:::

0 0 0 : : : −1 1

)
n−1×n

,

.2:7/
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where j and 0 are f = n=m-dimensional column vectors taking values 1 and 0 respectively. In
the aforementioned example, j= .1111/′, B′ annualizes the quarterly series and D calculates the
differences between the error terms εt . Defining the matrix G as

G=
(

A B

B′ 0m×m

)−1(
A 0n×m

B′ Im

)
.2:8/

enables equation (2.6) to be expressed in the form(
Ŷ

H
T
λ̂

)
=G

(
YH

O
YL

O −B′YH
O

)
: .2:9/

Matrix G can be decomposed into the following constituent components (Cholette and Dagum,
2006):

G=
(

In GYH
T

0m×n Gλ

)
, .2:10/

where In and 0m×n correspond to the n×n identity matrix and m×n null matrix respectively. GYH
T

and Gλ affect only the estimation of the unobserved high frequency and Lagrangian multiplier
components respectively. As a result of equation (2.10), the following equation expresses the
benchmarking solution in the form of equation (2.1):

Ŷ
H
T = .I −GYH

T
B′ GYH

T
/

(
YH

O
YL

O

)
: .2:11/

It is important to note that working with matrix D from equation (2.7) means that the modified
Denton benchmarking solution as described in Cholette and Dagum (2006) is considered, which
avoids the initial condition of the original Denton method and often results in a more satisfactory
solution.

It is possible to specify equation (2.4) in terms of higher order additive differences between
the original and adjusted series. For example Σn

i=h+1.ΔhŶ
H
T,t − ΔhYH

O,t/
2 corresponds to the

hth-order additive model with Δh being the hth difference operator and values outside the
adjustment range being defined as YH

O, t =YH
T,t , t =0, −1, : : : , 1−h. Section 4 implements additive

Denton benchmarking with values of h= 1 (we also considered h= 2 but the results were not
useful in practice so h=2 was not further considered) and the proportional Denton variant (ma-
trix D is replaced by D×diag.YH

O // with h=1. Hereafter such benchmarked series are referred
to as the Dentona,1 and Dentonp,1 series.

Although it is not computationally demanding and requires only basic assumptions on the
structural form of the time series being analysed, the Denton method occasionally performs
poorly. This is evident in time series which evolve unconventionally; for example consider a time
series containing a small number of extreme data points. In this case, the Denton method would
adjust a disproportionate number of data points. As mentioned in Section 1, one motivation for
considering wavelets is that their time–frequency localization properties can help to overcome
this problem.

2.2. Cholette and Dagum method
The Cholette and Dagum (1994) benchmarking method is based on stochastic regression. How-
ever, its original structure is typically simplified in NSI applications. As such, the description
that was provided in Quenneville et al. (2003) is discussed in what follows. For completeness the
methodology that was proposed by Cholette and Dagum can be found in Appendix B.
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The regression benchmarking model consists of the two equations

YH
O =YH

T +CεH, E.εH/=0, cov.εH/=σ2
εH

ΩεH , .2:12/

YL
O =JYH

T , .2:13/

with equation (2.13) giving the benchmarking constraint. In equation (2.12) the observed noisy
high frequency time series is a linear combination of the true unobserved low frequency time
series and a distortion term CεH. Here εH is a zero-mean Gaussian process with auto-correlation
matrix σ2

εH
ΩεH . ΩεH is the autocovariance matrix of an auto-regressive AR.1/ process with

parameter ρ, and σ2
εH

is a nuisance parameter which does not require estimation. The matrix
C is an n×n matrix with weights ct ∝|YH

O,t|λ on the main diagonal and 0 elsewhere. Typically
the parameter value for λ is set to 0, 1

2 or 1. The Cholette and Dagum approach used by the
ONS sets λ = 0, resulting in the further simplification that C = I. In equation (2.13) J is an
annualizing matrix equivalent to matrix B′ from the Denton method. Equation (2.13) has the
interpretation that the sum of the subannual time periods from the high frequency time series
YH

T must equal the corresponding annual value from the low frequency time series YL
O (this

enforces the benchmarking constraint).
When we assume that the benchmark solution is characterized by equations (2.12)–(2.13), we

obtain the following equations:

Ŷ
H
T =YH

O +CΩεHCJ ′.JCΩεHCJ ′/−1.YL
O −JYH

O /, .2:14/

Ŷ
H
T =YH

O +ΩεHJ ′.JΩεHJ ′/−1.YL
O −JYH

O /, when C = I, .2:15/

Ŷ
H
T =YH

O +K.YL
O −JYH

O /, K =ΩεHJ ′.JΩεHJ ′/−1: .2:16/

Equation (2.16) has the interpretation that the estimated high frequency time series Ŷ
H
T is a linear

combination of the observed noisy high frequency time series YH
O and a scaled difference of the

observed non-noisy low frequency time series and annualized version of the noisy observed high
frequency time series. The matrix K determines the scaling effect. This solution can be expressed
in a form that is consistent with equation (2.1) as follows:

Ŷ
H
T = .I −K K/

(
YH

O

YL
O

)
: .2:17/

As discussed in Appendix B, the ONS uses values of ρ 0:8 and 0:83 for monthly and quarterly
to annual benchmarking respectively.

2.3. Wavelets
Stationarity underpins many time series methods; this assumption is often unreasonable.
Wavelets’ time or frequency localization enables segmentation of data over various frequency or
time levels, thus providing a framework to analyse high (i.e. quarterly data) and low (i.e. annual
data) frequency series jointly. Intuitively, wavelets can be seen to perform frequency analysis
over localized time segments, producing a joint time–frequency analysis, in a related (but not
identical) vein to windowed Fourier analysis. A more formal definition will be given in the next
section.

Although wavelets have facilitated recent advances in time series, i.e. alternative modelling of
non-stationary processes (Nason et al., 2000), their primary use lies in non-parametric regression
and involves removing noise from a statistical process in a non-parametric setting (Donoho and
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Johnstone, 1994). Subsequent sections show that the combination of a strict benchmarking and
thresholding (denoising) step produces a benchmarking procedure which can outperform those
currently used.

2.3.1. Unbalanced Haar wavelets
The remainder of this section discusses UH wavelets (Fryzlewicz, 2007). Data sets observed are
typically non-dyadic in length (i.e. n �= 2J , J ∈ N). UH wavelets are a generalization of Haar
wavelets (Daubechies, 1992) and enable the transformation of such non-dyadic data sets into
the wavelet domain. Whereas discontinuities in Haar basis functions occur in the middle of
their support (Fig. 1), UH basis functions have discontinuities at arbitrary locations (Fig. 2).
Consequently high and low frequency data sets with arbitrary lengths or factor differences can
be jointly analysed.

Consider the temporal support set {1, : : : , n}. The elementary father wavelet ϕ−1,1.t/ is defined
as

ϕ−1,1.t/= 1√
n

1.1� t �n/: .2:18/

Let sj,k < bj,k < ej,k denote the start point, break point and end point of a mother wavelet at
scale level j and translation level k. The mother wavelet ϕsj,k ,bj,k ,ej,k .t/ is defined as follows (see
Fig. 2):

ϕsj,k ,bj,k ,ej,k .t/=
(

1
bj,k − sj,k +1

− 1
ej,k − sj,k +1

)1=2

1.sj,k � t �bj,k/

−
(

1
ej,k −bj,k − 1

ej,k − sj,k +1

)1=2

1.bj,k +1� t � ej,k/: .2:19/

Given ϕj,k.t/ := ϕsj,k ,bj,k ,ej,k .t/, its two daughter wavelets ϕj+1,2k−1.t/ and ϕj+1,2k.t/ (mother
wavelets existing on higher frequency levels) with arbitrary break points bj+1,2k−1 (where sj,k <

bj+1,2k−1 <bj,k/ and bj+1,2k (where bj,k <bj+1,2k <ej,k/ are obtained as follows:

ϕj+1,2k−1.t/=ϕsj,k ,bj+1,2k−1,bj,k .t/, .2:20/

ϕj+1,2k.t/=ϕbj,k ,bj+1,2k ,ej,k .t/: .2:21/

This recursive process continues until an orthonormal wavelet basis is formed. Selecting ap-
propriate break points {b0,1, b1,1, b1,2, : : :} to ensure that benchmarking can be performed is
discussed in subsequent sections. In the setting of Haar wavelets .n= 2J /, for a particular fre-
quency level j it has a dyadic number of translation levels, i.e. k =1, : : : , 2j. Furthermore break
points also occur at dyadic intervals; the first break point b0,1 = n=2 and those at higher fre-
quency levels are given by bj+1,2k−1 =bj,k=2 and bj+1,2k =bj,k +bj,k=2. At all frequency levels
the first start point sj,1 =1 and the last end point ej,2j =n.

For a given set of start points {s0,1, s1,1, s1,2, : : :}, break points {b0,1, b1,1, b1,2, : : :} and end
points {e0,1, e1,1, e1,2, : : :} the discrete UH transform of a series Y ={Yt}n

t=1 is defined as

w.j, k/ :=〈Y , ϕj,k〉=
n∑

t=1
Ytϕ

j,k.t/, j =−1, : : : , J , k =1, : : : , kj: .2:22/

To shorten the notation w.j, k/’s and ϕj,k’s dependence on {sj,k, bj,k, ej,k} is implicit. In partic-
ular w.−1, 1/= .1=

√
n/Σn

t=1Yt denotes the elementary father wavelet coefficient; it summarizes
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the average behaviour of the time series. Mother wavelet coefficients w.j, k/, j �0, provide infor-
mation describing local features. Larger values of j make the region of the time series considered
narrower whereas k determines the position considered on the timescale. The following equation
resynthesizes the original series Y from the set of wavelet coefficients:

Yt =w.−1, 1/ϕ−1,1.t/+
J∑

j=0

kj∑
k=1

w.j, k/ϕj,k.t/, t =1, : : : , n: .2:23/

Equation (2.23) expresses Y as a weighted linear combination of the elementary father wavelet
and mother wavelets across various frequency and translation levels. Weights are given by their
corresponding wavelet coefficients. This allows reconstruction of the benchmarked series after
wavelet analysis.

3. Methodology

In this section we discuss the selection of wavelet bases that are used to facilitate benchmarking.
Elementary wavelet benchmarking is introduced along with an application to simulated data.
Finally the additional issue of thresholding and its integration with seasonal adjustment is
considered.

3.1. Wavelet basis selection
3.1.1. Forming a basis for non-dyadic data by using unbalanced Haar wavelets
This paper segments data by using a basis that is similar to the traditional Haar basis. Only
a limited number of UH wavelets are used to construct such a basis. The formation of such a
basis is outlined as follows. At each iteration the positive region of the mother wavelet being
considered is segmented into a daughter wavelet with the largest possible dyadic region and non-
dyadic positive region. Its negative region is segmented into a daughter wavelet with positive
and negative regions of equal length (Haar segmentation).

More formally, consider the support of ϕj,k along with the support of its positive and negative
regions. Denote their cardinality by nj,k, n+

j,k and n−
j,k respectively. For the father wavelet ϕ−1,1,

|supp.ϕ−1,1/|=n−1,1 =n+
−1,1 .supp.f/ :={x; f.x/ �=0}/, with n−1,1 being the length of the time

series. ϕ−1,1 is decomposed, forming the mother wavelet ϕ0,1, with |supp.ϕ0,1/|=n0,1 =n−1,1.
Setting n−

0,1 = 2�log2.n0,1/� .�·� denotes the greatest integer function) ensures that the negative
region of ϕ0,1 has the largest possible dyadic support. Consequently n+

0,1 =n0,1 −n−
0,1; typically

n+
0,1 is non-dyadic in length. Its corresponding region is segmented in a similar manner to ϕ0,1

whereas regions of dyadic support (regions of ϕ0,1 corresponding to n−
0,1) are segmented by

using the Haar transform. This iterative process continues until a basis is formed.
Fig. 2 illustrates an example of the above segmentation using UH wavelets with the frequency

levels −1, 0, 1 and 2 considered. Table 1 records the support of these wavelets. To provide a
comparison Fig. 1 illustrates the Haar segmentation on the same frequency levels.

3.1.2. Creating a benchmarking basis
The set of break points {b0,1, b1,1, b1,2, : : :} determines the UH wavelet basis. Benchmarking
requires the bases for low and high frequency processes to be comparable.

The low .{YL
t }m

t=1/ and high .{YH
t }n

t=1/ frequency series are observed, with n = fm and f

being the factor difference. Let LBP ={b
0,1
L , b

1,1
L , b

1,2
L , : : : , b

JL,kJL
L } and HBP ={b

0,1
H , : : : , b

JL,kJL
H ,

b
JL+1,1
H , : : : b

JH,kJH
H } represent the low and high frequency series set of break points respectively.
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Table 1. Support of vectors used to perform
the wavelet transform for non-dyadic data of
length 600

UH wavelet length Value

n0,1 600
n1,1 600
n+

1,1 88
n−

1,1 512
n2,1 88
n+

2,1 24
n−

2,1 64
n2,2 512
n+

2,2 256
n−

2,2 256
n3,1 24
n+

3,1 8
n−

3,1 16
n3,2 64
n+

3,2 32
n−

3,2 32
n3,3 =n3,4 256
n+

3,3 =n+
3,4 128

n−
3,3 =n−

3,4 128

The set of break points LBP is selected by the method that was described in Section 3.1.1.
Break points for HBP with overlapping frequency levels with LBP are defined as

b
j,k
H =fb

j,k
L , j =1, : : : , JL, f =1, : : : , kj: .3:1/

Remaining break points {b
JL+1,1
H , : : : , b

JH,kJH
H } can be chosen arbitrarily as they exist on fre-

quency levels that are not affected by elementary benchmarking. To maintain consistency the
procedure in Section 3.1.1 is used. The sets LBP and HBP provide the foundation that is required
to perform elementary wavelet benchmarking.

3.2. Elementary wavelet benchmarking
Consider quarterly to annual GDP binding benchmarking. The quarterly {Y

Q
O,t}n

t=1 and annual
{YA

O,t}m
t=1 GDP series are observed (m=n=4). Both series are expressed in the form described

by equation (2.23):

Y
Q
O,t =wQ

O.−1, 0/ϕ
Q
−1, 0.t/+

J+2∑
j=1

kj∑
k=0

wQ
O.j, k/ϕ

Q
j,k.t/, t =1, : : : , n,

YA
O,t =wA

T .−1, 0/ϕA
−1,0.t/+

J∑
j=1

kj∑
k=0

wA
T .j, k/ϕA

j,k.t/, t =1, : : : , m:

The construction of wavelet functions ϕ
Q
j,k.·/ and ϕA

j,k.·/ defined on the sets {1, : : : , n}
and {1, : : : , m} respectively is discussed in Section 2.3.1. wQ

O.−1, 0/, wQ
O.j, k/ and wA

T .−1, 0/,
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wA
T .j, k/ denote noisy and non-noisy wavelet coefficients from the quarterly and annual time

series respectively. J is the highest frequency level of the annual time series; the quarterly time
series has two additional frequency levels.

Quarterly wavelet coefficients existing on lower frequency levels of the wavelet domain have
corresponding annual wavelet coefficients with similar interpretations, i.e. coefficients existing
on frequency levels j = −1, : : : , J . A comparison of elementary quarterly and annual father
wavelet coefficients illustrates this:

wQ
O.−1, 1/= 1√

n

n∑
t=1

Y
Q
O,t , .3:2/

wA
T .−1, 1/= 1√

m

m∑
t=1

YA
O,t =

1√
m

m∑
t=1

YA
T,t (since the annual GDP series is non-noisy),

= 1√
m

m∑
t=1

4t∑
j=4t−3

Y
Q
T,j = 1√

m

n∑
t=1

Y
Q
T,t =

2√
n

n∑
t=1

Y
Q
T,t =2wQ

T .−1, 1/ .since n=4m/:

.3:3/

This illustrates the key idea of elementary wavelet benchmarking; replacing wQ
O.j, k/ with

1
2 wA

T .j, k/ for wavelet coefficients on frequency levels j =−1, : : : , J produces the benchmarked
series {Ŷ

Q
T,t}n

t=1:

Ŷ
Q
T,t =

wA
T .−1, 0/

2
ϕ

Q
−1,0.t/+

J∑
j=0

kj∑
k=0

wA
T .j, k/

2
ϕ

Q
j,k.t/︸ ︷︷ ︸

Y
A,Q
T, t

+
J+2∑

j=J+1

kj∑
k=0

wQ
O.j, k/ϕj, k.t/︸ ︷︷ ︸

R
J+1,J+2

Y
Q
O, t

: .3:4/

Equation (3.4) decomposes the benchmarked series into the two components Y
A,Q
T,t and

R
J+1,J+2

Y
Q
O, t

:

Y
A,Q
T,t expresses the non-noisy annual series on a quarterly timescale with no intra-annual fluctu-

ations (i.e. quarterly values in a given year take the same value). The second component isolates
fluctuations that are unique to the quarterly time series. Since it exists on the frequency levels
J + 1 and J + 2 it has no effect on the annualized version of Ŷ

Q
T ,t . Therefore the benchmark

constraint is satisfied, i.e.

Ŷ
A
T,t =

4t∑
j=4t−3

Ŷ
Q
T,t =YA

T,t :

Thresholding {R
J+1,J+2

Y
Q
O, t

}n
t=1 can further improve the estimation of {Ŷ

Q
T}n

t=1, as discussed in
later sections.

Elementary wavelet benchmarking is expressed in a form that is consistent with equation
(2.1) as follows. Although computationally inefficient, the wavelet transform can be expressed
as an orthogonal matrix; see Nason (2008), chapter 2, for details. Suppose that WQ and WA

transform the quarterly and annual series into the wavelet domain respectively:

y
Q
O =WQY

Q
O ,

yA
T =WAYA

O :
.3:5/

Decomposing WQ into low .WQ,A/ and high .WQ,Q/ frequency components enables the low
.y

Q,A
O / and high .y

Q,Q
O / frequency wavelet coefficients to be obtained:
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y
Q
O =

(
y

Q,A
O

y
Q,Q
O

)
=
(

WQ,A

WQ,Q

)
Y

Q
O :

The non-noisy annual wavelet coefficients yA
T can be incorporated in the noisy quarterly wavelet

coefficients y
Q
O as follows:

ŷ
Q
T =

⎛
⎝ 1

c
yA

T

y
Q,Q
O

⎞
⎠=

(
0 0

1
c

I

0 I 0

)⎛⎜⎝y
Q,A
O

y
Q,Q
O

yA
T

⎞
⎟⎠:

As seen from equation (3.3), in the example of quarterly to annual benchmarking c = 2.
The benchmarked series {Ŷ

H
T,t}n

t=1 is then calculated as follows:

Ŷ
H
T = .WQ/Tŷ

Q
T = .WQ/T

( 1
c

yA

ỹQ,Q

)
= .WQ/T

(
0 0

1
c

I

0 I 0

)(
WQ 0

0 WA

)
︸ ︷︷ ︸

elementary wavelet benchmarking matrix

(
Y

Q
O

YA
O

)
:

3.3. Thresholding
In the previous example the benchmarked series {Ŷ

Q
T,t}n

t=1 was decomposed into a low frequency
non-noisy component {Y

A,Q
T,t }n

t=1 and a high frequency noisy component

{R
J+1,J+2

Y
Q
O, t

}n
t=1:

Thresholding wavelet coefficients corresponding to {R
J+1,J+2

Y
Q
O, t

}n
t=1 produces a more reliable

benchmarked series, as it removes spurious noise.
Technical details of thresholding are available in Vidakovic (1999), chapter 6; however, two fea-

tures of the error term are important. Firstly its structure: in real data sets, random components
typically exhibit some form of auto-correlation. Hence independently and identically distributed
Gaussian noise is not appropriate. Thus simulations in this paper use an auto-regressive moving
average ARMA(1,1) process to generate disturbance terms. Consequently, wavelet coefficients
on a given frequency level are correlated; hence thresholding based on Stein’s unbiased risk
estimator SURE (Percival and Walden (2000), chapter 10) is used. Secondly, we use the method
in Percival (1995) for estimating the error variance across different frequency levels.

3.3.1. Thresholding framework
Suppose that YO,t =YT,t + εt , t =1, : : : , n, is observed, with εt being an error term. Transforming
YO = .YO,1, : : : , YO,n/′ into the wavelet domain by using the orthonormal matrix W, we have

w =WYO, .3:6/

w = .w1, : : : , wn/′. Typically either hard or soft thresholding (Donoho and Johnstone, 1994) is
used. In this paper, we use soft thresholding with estimates obtained as follows:

ŵi = sgn.wi/.|wi|−λ/1.|wi|�λ/, .3:7/

=
(

1− λ

|wi|
)

1 .|wi|�λ/ wi, .3:8/

where λ denotes the threshold value (a parameter depending on the noise variance), sgn.·/ is
the sign function and 1.·/ is the indicator function.
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If the magnitude of an observed wavelet coefficient is greater than λ it is shrunk in magnitude
by λ. Otherwise it is set to 0. As mentioned above λ is estimated based on SURE; such an
estimator depends on both the series length and the variance of the noise term. In particular
Percival’s estimator based on the maximal overlap discrete wavelet transform is used to estimate
the variance of wavelet coefficients; Percival (1995) discussed this in more detail. Consequently λ
is a data-dependent parameter, i.e. λ=λ.YO/. Using equation (3.7), estimates of the true wavelet
coefficients are obtained as follows:

ŵ =diag.z1, : : : , zn/︸ ︷︷ ︸
Zw

w: .3:9/

The diagonal elements of Zw are zi = .1− λ̂=|wi|/1.|wi|� λ̂/, with λ̂ being a threshold estimate.
An estimate of the unobserved true series YT is now obtained as

ŶT =W ′ZwWYO: .3:10/

3.4. Alternative seasonal model
As seen in Section 4, in many cases the noisy high frequency series is seasonally adjusted (Durbin
and Koopman (2001), chapter 3) before benchmarking or thresholding and is reintroduced
afterwards. The seasonal component is unknown and hence must be estimated. The time series
data that are studied in this paper are represented in state space form (Durbin and Koopman
(2001), chapter 3) as this allows most generic models that are used in seasonal adjustment to be
represented in one form. To estimate the seasonal component we apply the Kalman smoother
(Durbin and Koopman (2001), chapter 4). A stochastic seasonal model that takes the following
form is often used:

γt+1 =−
f−1∑
j=1

γt+1−j +ωt , ωt ∼ IID∼ N.0, σ2
ω/: .3:11/

However, the zero-sum constraint of the seasonal component is violated .i.e. Σf
j=1γt+1−j �=0/.

Consequently the benchmark constraint will no longer be satisfied once the seasonal estimate
has been reintroduced in the series. Therefore the following representation, which allows the
seasonal process to vary stochastically while ensuring that the zero-sum constraint is satisfied,
is considered: ⎛

⎝ γ1,t+1
:::

γf ,t+1

⎞
⎠=

⎛
⎝ γ1,t

:::

γf ,t

⎞
⎠+

⎛
⎝ ω1,t

:::

ωf ,t

⎞
⎠, .3:12/

or, equivalently,

γt+1 =γt +ωt: .3:13/

In equation (3.12) any season j within a given year t +1 takes the value γj,t+1 and is equal to its
value from the previous year γj,t plus a disturbance term. One way to ensure that the seasonally
adjusted series satisfies the benchmark constraint is to define an appropriate correlation structure
.var.ωt/ =σ2

ω{If − .1=f/If×1I′
f×1}/ between the components of ωt. Therefore the sum of each

year’s f seasons is constant, i.e.

f∑
j=1

γj,t+1 =
f∑

j=1
γj,t =: : :=

f∑
j=1

γj,0 .3:14/
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holds. Imposing the above correlation structure results in E.I′
f×1ωt/ = 0 = var.I′

f×1ωt/. This,
along with the initialization condition Σf

j=1γj,0 =0, forces the benchmark constraint to hold.
To maintain consistency, other components from structural time series models (i.e. trend,

slope and error components) are represented in a similar form to equation (3.12). Such models
are known as periodic structural time series; more information is provided in Tripodis and
Penzer (2004).

4. Data analysis

We now consider the application of wavelet benchmarking to simulated data and ONS data.
The advantages of a wavelet approach to benchmarking discussed in previous sections are sup-
ported by diagnostic measures of performance. Since simulated time series are additive, additive
methods of benchmarking have been used. However, analogous results hold for multiplicative
time series. An algorithmic summary of wavelet benchmarking can be found in Appendix A to aid
interpretation of the steps. Initialization and parameter values that were used to generate sub-
sequent simulations are available from http://wileyonlinelibrary.com/journal/
rss-datasets, along with the code to reproduce the simulations.

4.1. Revision metric for benchmarking
Subsequent sections assess benchmarking methods by using a number of metrics; mean-squared
error (MSE), a revision metric and a growth rate metric.

The MSE metric assesses the performance of simulations but real data sets require an
alternative metric since the true high frequency series is unobserved. As mentioned earlier,
since published economic data impacts decisions that are made by policy makers, producing a
stable benchmarked series is important. Therefore, when current data sets are revised or new
data become available, adjustments to a benchmarked series should be minor. In particular
the effect on latter regions of the benchmarked series is most important since these points
describe most recent economic conditions. The following metric measures the sensitivity of the
latter regions of a benchmarked series when the observed high and low frequency series are
adjusted.

Consider quarterly to annual GDP benchmarking; the series {Y
Q
O,t}t=1,:::, n and {YA

O,s}s=1,:::,m
are observed with corresponding benchmarked series {Ŷ

Q
T,t}t=1,:::,n. When new data become

available the new benchmarked series {Ỹ
Q
T,t}t=1,:::,l is observed with l�n. A metric focusing on

the last year of common benchmarked data is used. It measures the discrepancy between the
last four quarters of overlapping time points:

metric=100× 1
4

n∑
t=n−3

(∣∣∣∣1− Ỹ
Q
t

Ŷ
Q
t

∣∣∣∣
)

: .4:1/

(Equation (4.1) provides larger metric readings for upward movements of the benchmarked
series compared with downward movements. However, since changes in benchmarked series
are relatively small such differences are negligible.) Suppose that p years of additional data
become available, so {Y

Q
O,t}t=1,:::,n+4p and {YA

O,s}s=1,:::,m+p are now observed. Consequently,
we construct p new benchmarked series {Ỹ

Q
O,t}t=1,:::,n+4, : : :, {Ỹ

Q
O,t}t=1,:::,n+4p. We compare

each of these new benchmarked series and the original benchmarked series {Ŷ
Q
T,t}t=1,:::,n. In

subsequent sections, the mean of these differences for a suitably chosen p, which will depend
on the length of the data, will be referred to as the revision metric. In particular, this metric will
be 0 for both the original series and elementary wavelet benchmarking. In this case, additional
data have no effect on the estimated high frequency series at earlier time points.
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4.2. Growth rate metric for benchmarking
Ideally benchmarked series published by NSIs would additionally preserve the movements of the
true original high frequency series. Hence the growth rate metric that is now described is used to
measure the ability of a particular benchmarking method to preserve the movements of a series.
Denote {YH

T,t}n
t=1 and {Ŷ

H
T,t}n

t=1 as the true observed high frequency series and benchmarked
series respectively. The following metric is used:

metric= 1
n−1

n−1∑
t=1

(∣∣∣∣∣Y
H
T,t+1 −YH

T,t

YH
T,t

− Ŷ
H
T,t+1 − Ŷ

H
T,t

Ŷ
H
T,t

∣∣∣∣∣
)

: .4:2/

When considering simulated data this growth rate can be calculated exactly. However, when
analysing real data sets YH

T,t is unobserved and so replaced by YH
O,t .

As shown in the simulations, wavelet benchmarking outperforms currently used methods
when the growth rate metric compares the true unobserved data and benchmarked data. How-
ever, when noisy observed data are compared with benchmarked data, the proportionate Denton
method minimizes the growth rate metric. This occurs as a result of the proportionate Denton
method’s definition; it minimizes the sum of squares between the observed and benchmarked
series. Since structural time series model simulations provide a good representation of economic
time series being analysed comparisons are made with the true ’unobserved’ series. However,
if NSIs believe that noisy observations are the best indicator in terms of explaining fluctua-
tions, then the Denton proportionate method provides the optimal solution in terms of this
metric.

4.3. Dyadic quarterly and annual data
Wavelet benchmarking is applied to simulated quarterly–annual GDP time series. For simplic-
ity, data are dyadic allowing the Haar transform to be applied. Since univariate structural time
series models (Durbin and Koopman (2001), chapter 3) adequately describe many economic
processes they are used to generate simulations and in particular do not conform to any of the
chosen methodologies providing a valid comparison, not biased to any of the underlying bench-
marking methods. 500 simulated data sets were generated by the structural time series model
in Appendix C. (Parameter and initialization values used to generate simulations in this section
can be found at http://wileyonlinelibrary.com/journal/rss-datasets.) Since
in certain circumstances performing elementary wavelet benchmarking is sufficient (i.e. small
survey error), it is included in the data analysis.

Equation (3.4) decomposed the benchmarked quarterly series into a signal (YA,Q
T,t ) and noisy

(RJ+1,J+2

Y
Q
O, t

) component:

Ŷ
Q
T,t =

wA
T .−1, 0/

2
ϕ

Q
−1,1.t/+

J∑
j=0

kj∑
k=0

wA
T .j, k/

2
ϕ

Q
j,k.t/︸ ︷︷ ︸

Y
A,Q
T, t

+
J+2∑

j=J+1

kj∑
k=0

wQ
O.j, k/ϕj, k.t/︸ ︷︷ ︸

R
J+1,J+2

Y
Q
O, t

:

As mentioned previously, thresholding the noisy component should produce a more reliable se-
ries. However, the structural form of the quarterly time series needs to be considered. Its seasonal
component exists primarily on the high frequency regions of the wavelet domain. Thresholding
has a tendency to interpret such subtle and localized features as noise; consequently thresholding
inadvertently removes the seasonal component.

Removing the seasonal component before benchmarking or thresholding and reintroducing it
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Table 2. MSE, revision metric and growth rate metric values of
various benchmarking methods averaged over 500 dyadic quarterly
and annual simulated series

Series type MSE Revision Growth rate
metric metric

Original 13744.63 — 14.42
Dentona,1 8638.15 1.58 13.62
Dentonp,1 9113.68 1.52 13.84
Cholette and Dagum 8574.88 1.09 13.59
Elementary wavelet 8540.80 0.00† 13.66

benchmarking
Wavelet benchmarking 4728.56 0.83 8.78

†When elementary wavelet benchmarking is implemented, no revi-
sions are made. This is a natural consequence of replacing contam-
inated wavelet coefficients from the high frequency series with their
non-contaminated versions from the low frequency series.

afterwards offers one solution, as seen in Section 3.4. Therefore we used wavelet benchmarking
with seasonal adjustment for analysis of the simulations.

MSE, revision metric values (with p = 3, corresponding to three additional years and ap-
proximately 5% of data being available) and growth rate metric values (to calculate the average
revision and growth rate metric values the median across all 500 simulations is recorded; when
the mean is used a small number of simulations can disproportionately affect the average) for
the different benchmarking methods are summarized in Table 2. (When additional data are
introduced, it should be noted that data sets are no longer dyadic. Hence a traditional Haar
basis is no longer appropriate to transform the data from the time to wavelet domain. Therefore
a UH Haar basis was used.) Clearly wavelet benchmarking outperforms all previous methods
discussed so far; this is illustrated by its MSE values being lower than the other benchmarking
methods’ corresponding values. In terms of revisions, elementary wavelet benchmarking pro-
duces a benchmarked series which is not revised when new data become available. The revision
metric value also implies that wavelet benchmarking outperforms currently used methods in
terms of producing a stable benchmarked series. (The same results were also qualitatively found
for other values of p; the data are not shown.) The growth rate metric also indicates that wavelet
benchmarking outperforms other benchmarking methods in terms of preserving movements in
the true unobserved series.

4.4. Comparison with current methods
In this section and Section 4.5, four additional sets of simulations were generated by using
different parameter values. The results of these different simulations along with parameter
values can be found at http://wileyonlinelibrary.com/journal/rss-datasets.
These results support the conclusion that wavelet benchmarking outperforms currently used
methods.

Simulated data from Section 4.3 relied on the unrealistic assumption that both data sets have
dyadic length. This assumption can be relaxed and now non-dyadic monthly and quarterly data
sets are analysed. Furthermore, the monthly series has a periodicity of 3, resulting in a non-
dyadic relationship between these two data sets. As in Section 4.3 the model that is specified by
equations (C.1)–(C.7) in Appendix C is used to generate the high frequency monthly data.
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Table 3. MSE, revision metric and growth rate metric values of
various benchmarking methods averaged over 500 simulations
from non-dyadic monthly and quarterly data sets

Series type MSE Revision Growth rate
metric metric

Original (noisy) 6731.98 — 13.11
Dentona,1 3382.58 1.58 11.48
Dentonp,1 3657.26 1.40 12.15
Cholette and Dagum 3378.83 1.51 11.48
Elementary wavelet 3436.33 0.00 11.71

benchmarking
Wavelet benchmarking 1856.62 0.81 8.26
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Fig. 3. Boxplot comparing MSE values of various benchmarking methods for 500 simulations generated
from non-dyadic monthly and quarterly data sets

Once again 500 simulations were generated. The MSE, revision metric (p = 3) and growth
rate metric values for various benchmarking methods are recorded in Table 3. Fig. 3 shows a
boxplot comparing MSE values of the observed series with the benchmarked series.

Results from Table 3 and Fig. 3 are consistent with results from Section 4.3. Elementary
wavelet benchmarking performs similarly to currently used benchmarking methods with im-
provements being offered with wavelet benchmarking. As would be expected wavelet bench-
marking outperforms elementary wavelet benchmarking in terms of the MSE for each of the
500 simulations. The revision metric once again implies that wavelet benchmarking produces a
more stable benchmarked series in terms of revisions compared with currently used methods.
The growth rate metric shows that wavelet benchmarking is the best method in terms of preserv-
ing movements in the true series. Such evidence suggests that wavelet benchmarking significantly
outperforms currently used methods implemented by NSIs.

4.5. Comparison with current methods (shorter series)
Previous examples used simulated time series with long lengths which are not typically seen in
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Table 4. MSE, revision metric and growth rate metric values of
various benchmarking methods averaged over 500 simulations
from non-dyadic monthly and quarterly simulated series

Series type MSE Revision Growth rate
metric metric

Original (noisy) 2392.07 — 20.39
Dentona,1 926.92 2.94 17.68
Dentonp,1 1069.29 2.87 18.66
Cholette and Dagum 922.37 2.75 17.71
Elementary wavelet 996.02 0.00 18.75
Wavelet benchmarking 566.46 0.95 13.18
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Fig. 4. Boxplot comparing Denton, Cholette and Dagum and wavelet benchmarking: 500 simulations were
generated from non-dyadic monthly and quarterly series

time series that are published by NSIs. In reality time series being analysed have smaller lengths.
Hence the performance of wavelet benchmarking in this setting is of interest. The same structural
time series model as defined by equations (C.1)–(C.7) in Appendix C was used to generate data.
The quarterly and monthly time series considered have respective lengths of 10 and 30.

Once again 500 simulations were generated with results summarized in Table 4 and Fig. 4.
As expected, wavelet benchmarking outperforms both Denton and Cholette and Dagum

benchmarking; however, improvements from wavelet benchmarking are reduced. This is re-
flected by comparing MSE values recorded in Table 3 and Table 4. For shorter time series the
revision metric (here with p=1, given the short length of the series) shows that wavelet bench-
marking produces more stable benchmarked series compared with currently used methods. In
the shorter series, wavelet benchmarking is the best method for preserving movements in the
true unobserved series as seen by the growth rate metric.

4.6. Benchmarking a time series with outliers
As mentioned in Section 1 the time–frequency localization properties of wavelets provide a
local solution of benchmarking and thus reduce the potential for artefacts to be introduced
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Table 5. MSE, revision metric and growth rate metric values
of various benchmarking methods averaged over 500 simula-
tions from non-dyadic monthly and quarterly simulated series
with an additive outlier and level shift in the noisy observed
high frequency series

Series type MSE Revision Growth rate
metric metric

Original (noisy) 6731.98 — 10.73
Dentona,1 3382.58 0.92 9.31
Dentonp,1 3635.00 0.85 9.90
Cholette and Dagum 3378.83 0.81 9.31
Elementary wavelet 3436.33 0.00 9.60
Wavelet benchmarking 1121.83 0.62 5.28

when dealing with series with outliers and abrupt structural changes. The 500 simulations from
Section 4.4 are reconsidered, but within these series an outlier and level shift were introduced
in the observed high frequency series (but not in the true unobserved high frequency series).
Initialization and parameter values (including outlier values and times of occurrence) can be
found at http://wileyonlinelibrary.com/journal/rss-datasets.

The results of these simulations are recorded in Table 5.
Table 5 shows that when outliers are present wavelet benchmarking outperforms currently

used methods in terms of MSE, revision metric and growth rate metric readings. This results
from the ability of wavelets to isolate local features of a time series.

4.7. Official Office for National Statistics data
As mentioned previously benchmarking is frequently applied to time series originating from
national accounts. The set of national accounts includes GDP, which is a measure of the value
of goods and services produced in a geographic area for a particular period (Office for National
Statistics, 2012). Data that are used to construct estimates of GDP come from a range of
surveys and administrative data sources measuring the value of goods and services produced by
different areas of the economy. There are three different measures of GDP (Office for National
Statistics, 2012), and each of these can be broken down into different components measuring
different areas of the economy. Benchmarking methods are typically applied early in the process
of estimating GDP at a level of detail where the series may be disclosive and are therefore not
published because of concerns over confidentiality. However, benchmarking is not only applied
in national accounts and could be used in other areas of official statistics. For example, the ONS
published data on total turnover from the Annual Business Survey (ABS) (Office for National
Statistics, 2010a), and also a higher frequency estimate of total turnover from the Monthly
Business Survey (Office for National Statistics, 2010b). Estimates from the monthly survey
could be used as an indicator variable and benchmarked to ABS data to give a high frequency
estimate that is consistent with the ABS. In the following sections we assess the performance
of benchmarking methods by using a set of quarterly and annual series from a component of
GDP (Section 4.7.1) and a set of monthly and annual series from the Monthly Business Survey
and ABS (Section 4.7.2).

4.7.1. Component of UK gross domestic product data
The following section investigates the application of various benchmarking methods to data
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Fig. 5. Application of various benchmarking methods to components of the UK GDP data: , quarterly
component of GDP series; , wavelet benchmarked series; , Denton benchmarked series; ,
Cholette and Dagum benchmarked series; , quarterly form of annual component of GDP series

Table 6. Metric values for various benchmarked series
corresponding to official ONS data

Series type Revision Growth rate
metric metric

Dentona,1 0.61 7.27
Dentonp,1 1.16 5.33
Cholette and Dagum 1.95 7.19
Elementary wavelet 0.00 6.12
Wavelet benchmarking 0.87 6.61

from UK national accounts. In particular one component of GDP data is considered. For
confidentiality (this is a low level component of GDP), the component cannot be named but
the data themselves are available from http://wileyonlinelibrary.com/journal/
rss-datasets. Fig. 5 shows the results of applying quarterly to annual benchmarking to this
one component of GDP data.

In Fig. 5 the Denton and Cholette and Dagum versions of the benchmarked series perform
similarly. The output of wavelet benchmarking is similar to currently used methods; however,
in some time periods wavelet benchmarking performs better at preserving movements in the
observed quarterly series. One such time period is from 2004, quarter 1, to 2005, quarter 1. This
is due to the localized nature of a wavelet benchmarking solution.

In the time period from 2007, quarter 1, to 2008, quarter 1, the observed quarterly time series
seems to exhibit a structural break. This structural break most likely is a result of the economic
recession, which began in 2007. By creating a wavelet basis that considers the structure of the
observed time series, wavelet benchmarking has the ability to offer further improvements in
terms of ensuring that movements in the original quarterly time series are maintained in the
formation of the benchmarked quarterly time series. In this paper wavelet bases are determined
solely by the length of observed time series. Future work could incorporate the structure of these
time series during the selection of wavelet bases.
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Table 7. Average metric values for various benchmarked
series corresponding to 39 official ONS time series

Series type Revision Growth rate
metric metric

Dentona,1 0.35 0.92
Dentonp,1 0.34 0.51
Cholette and Dagum 0.08 0.81
Elementary wavelet 0.00 0.92
Wavelet benchmarking 0.46 1.50
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Fig. 6. Application of various benchmarking methods to business survey data on the turnover of companies
manufacturing soft drinks and bottled water: , monthly component; , wavelet benchmarked series;

, Denton benchmarked series; , Cholette and Dagum benchmarked series; , monthly form
of annual component

Table 6 records the revision and growth rate metric values for the various benchmarking meth-
ods. Wavelet benchmarking produces a stable benchmarked series and on the whole performs
similarly to currently used methods. For this example the maximum lag length p=3 was used,
since this corresponds to 20% of the length of the observed series. However, results were not
qualitatively different for smaller values of p.

4.7.2. Summary of benchmarking 39 Office for National Statistics quarterly to annual time
series
This section considers the mass application of various ONS time series. Monthly to annual
benchmarking is considered. However, these time series originate from business surveys as
opposed to being components of GDP. For these time series a lag value of p = 1 is used. The
length of the annual time series was 6; this restricted the length of the lag considered.

From Table 7 it can be seen that, across the 39 different business survey time series,
Cholette and Dagum and proportionate Denton benchmarking have the lowest revision
(excluding elementary wavelet benchmarking) and growth rate metrics respectively. However, the
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difference between these various benchmarking methods is relatively small. Although wavelet
benchmarking is no longer conclusively outperforming currently used methods, it still produces
stable benchmarked estimates. Fig. 6 illustrates the application of benchmarking of one of the
39 time series that were considered. In particular, it contains information on the turnover of
companies manufacturing soft drinks and bottled water. As can been seen all the benchmarking
methods perform relatively similarly.

5. Discussion

Benchmarking is a problem that is frequently encountered by NSIs; this paper has provided
an introduction to wavelet-based solutions. Wavelet-based benchmarking consists of a non-
parametric and a parametric step. The first step involved introducing true information from
the benchmark series into the noisy observed high frequency series via the wavelet domain.
Afterwards high frequency wavelet coefficients were thresholded to remove any remaining noise.
However, the structural form of time series being analysed had to be considered; in particular
the seasonal component is often incorrectly identified as noise and inadvertently removed.
Consequently periodic structural time series models were used to adjust the high frequency series
seasonally while ensuring that the benchmark constraint was satisfied. After thresholding the
seasonally adjusted high frequency series the estimated seasonal component was reintroduced
to form the final benchmarked series.

To illustrate wavelet benchmarking both simulated and real data sets were analysed. Simula-
tion studies showed that wavelet benchmarking outperformed currently used methods, whereas
the real data showed that elementary wavelet benchmarking has some useful properties in
practice.

There are several areas which could be considered to extend work on wavelet benchmarking.
Seasonal adjustment could be performed in the wavelet domain, thus allowing the entire bench-
marking problem to be considered in the wavelet domain. Secondly, by forcing the benchmarked
series to be consistent with the benchmark series there is an implicit and unrealistic assumption
that the benchmark series is not contaminated with noise. This assumption can be relaxed; both
high and low frequency processes can be treated as noisy. Benchmarking can now be described
as optimally combining both high and low frequency processes to create a benchmarked series.
The weights would depend on the variances of the distortion terms εH

t and εL
t . This results in the

additional complexities of estimating the distortion terms’ variances along with determining
an optimal estimator. Although NSIs rarely consider non-binding benchmarking, it does have
applications to areas outside national accounts. Furthermore since national accounts data sets
originate from sample surveys an argument could be presented that non-binding benchmarking
is more appropriate. However, this would require a substantial change in the manner in which
NSIs process such data.

Wavelet benchmarking can also be extended to situations where multiple constraints must
be satisfied. One such example occurs when a time series is classified according to periodicity
and geographical location. Benchmark constraints need to be satisfied on both individual and
aggregate levels; wavelet benchmarking could facilitate this also.

The selection of wavelet bases needs to be considered in greater detail. This paper constructed
such bases on the basis of the length of observed time series. Although a reasonable starting point
for an introduction to wavelet benchmarking, bases which incorporate the structure of observed
time series could be used in future work. It should also be noted that although Denton and
Cholette and Dagum benchmarking naturally provide a framework to consider extrapolation
this is currently not considered in the case of benchmarking via wavelets and would be of
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considerable interest to explore in future research. Finally the ONS performs benchmarking on
a large number of time series and therefore would require a method of wavelet benchmarking
which can be used in a mass production setting.
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Appendix A: Wavelet benchmarking algorithm

The following summarizes wavelet benchmarking: input, a high and low frequency series denoted YH
O

(length n) and YL
O (length m) respectively; output, a benchmarked series Ŷ

H
T .

If seasonality is present then seasonally adjust the high frequency series,

Y̌H
O =YH

O − γ̂,

where γ̂ denotes the estimated seasonal component; otherwice do not perform seasonal adjustment:

Y̌H
O =YH

O :

(a) Transform Y̌H
O and YL

O from the time to wavelet domain (Section 2.3): represent the wavelet transform
for Y̌H

O and YL
O by the orthogonal matrices WH and WL respectively. This produces the following

vector of wavelet coefficients: (
yH

O

yL
T

)
=
(

WH 0
0 WL

)(
Y̌H

O

YL
O

)
:

(b) Apply elementary benchmarking and thresholding (Section 3.2 and Section 3.3): yH
O is decomposed

into a noisy low frequency .y
H,L
O / and high frequency .y

H,H
O / component:⎛

⎝ y
H,L
O

y
H,H
O

yL
T

⎞
⎠=

(
yH

O

yL
T

)
:

Applying elementary benchmarking results in the following set of high frequency wavelet coeffi-
cients: ⎛

⎝ 1
c

yL
T

y
H,H
O

⎞
⎠=

(
0 0

1
c

I

0 I 0

)⎛⎝ y
H,L
O

y
H,H
O

yL
T

⎞
⎠:

c represents the constant taking the scale difference between the high and low frequency series
into account. Thresholding is applied to coefficients existing on high frequency regions, i.e. the
coefficients y

H,H
O :

ŷH
T =

⎛
⎝ 1

c
yL

T

ŷH,H

⎞
⎠=

(
Im 0m,n−m,

0n−m,m Zn−m,n−m.y
H,H
T /

)( 1
c

yL

yH,H

)
:

Zn−m,n−m.y
H,H
T / is a data-dependent matrix performing the thresholding operation.

(c) Transform the estimated high frequency wavelet coefficients to the time domain: this results in the
benchmarked series ỸH

T :

Ỹ
H
T = .WH/′ŷH

T

= .WH/′
(

Im 0m,n−m

0n−m,m Zn−m,n−m.y
H,H
T /

)(
0 0

1
c

I

0 I 0

)(
WH 0

0 WL

)
︸ ︷︷ ︸

A≡ elementary wavelet benchmarking and thresholding matrix

(
Y̌H

O
YL

O

)
:
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Matrix A expresses the overall benchmarking process in a form that is consistent with equation
(2.1). If seasonality is present then reintroduce the seasonal component γ̂

Ŷ
H
T = Ỹ

H
T + γ̂;

otherwise set

Ŷ
H
T = Ỹ

H
T :

Appendix B: Cholette and Dagum benchmarking method

This section provides a comprehensive description of Cholette and Dagum (1994) benchmarking. It is
based on the following three stochastic equations:

YH
O =Hb+Zδ +θ + εH, E.εH/=0, E.εHε′

H/=VεH , .B:1/

YL
O =JZδ +Jθ + εL, E.εL/=0, E.εLε′

L/=VεL , .B:2/

Sθ =η, E.η/=0, E.ηη′/=Vη: .B:3/

These equations are now discussed in the setting of quarterly to annual GDP benchmarking. The high
.YH

O / and low .YL
O/ frequency series in equations (B.1)–(B.3) are replaced by their quarterly .Y

Q
O / and annual

.YA
O / forms respectively.
Equation (B.1) decomposes the observed quarterly process into its true unobserved quarterly process

.Y
Q
T = Zδ + θ/ and deterministic .Hb/ and stochastic .εH/ disturbance terms. Typically H is a vector of

1s and b is a constant column vector forming a bias term capturing the average difference between the
observed quarterly .Y

Q
O / and annual .YA

O / series. Z is an n×p matrix of known regressors and δ is a p×1
vector of unknown coefficients modelling calendar effects. Although θ may be modelled by a variety of
statistical processes, in Cholette and Dagum benchmarking it typically has an auto-regressive integrated
moving average structure; this is discussed below.

Equation (B.2) decomposes the observed annual series YA
O into its true unobserved annual series YA

T =
JZδ +Jθ and a disturbance term εL. J is an annualizing matrix equivalent to matrix B′ from the Denton
method. The disturbance component εL is assumed to be Gaussian noise.

Matrix S in equation (B.3) transforms the stochastic component θ into a stationary time series; this
requires estimating the order of the seasonal and non-seasonal differencing operators. Set θt =υt +γt + εt ,
with υt being approximately linear, i.e. υt ≈a+bt, γt capturing quarterly seasonality and εt being Gaussian
random noise. In this scenario, to make θ stationary, the following matrix is required:

S =

⎛
⎜⎜⎝

1 −1 0 0 −1 1 0 0 : : :
0 1 −1 0 0 −1 1 0 : : :
0 0 1 −1 0 0 −1 1 : : :
:::

:::
:::

:::
:::

:::
:::

:::
: : :

⎞
⎟⎟⎠

n−5×n

: .B:4/

This is equivalent to applying the differencing operators 1 − L and 1 − L4 to θ. They remove linear and
seasonal components from the series respectively, with L denoting the lag operator, i.e. Lθt =θt−1.

Model (B.1)–(B.3) can be written more concisely as⎛
⎝YH

O

YL
O

0

⎞
⎠=

(
H Z In

0 JZ J
0 0 S

)(
b
δ
θ

)
+
(

εH
εL
−η

)
, .B:5/

or equivalently

y =Xα+ e, E.e/=0, Ve :=E.ee′/=block.VεH , VεL , Vη/; .B:6/

block.·, · , ·/ denotes a block diagonal matrix. Cholette and Dagum (1994) provided the following solution:

α̂= .X′V −1
e X/−1X′V −1

e y: .B:7/
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The benchmarked estimate is given by β̂ =XÅα̂, where XÅ = .0 Z In/. The following equation expresses the
solution in a form that is consistent with equation (2.1):

Ŷ
H
T = .O Z In/

(
b̂
δ̂
θ̂

)
= .O Z In/.X′V −1

μ X/−1X′V −1
μ

⎛
⎝YH

O

YL
O

0

⎞
⎠: .B:8/

In Cholette and Dagum benchmarking the matrices S, VεH , VεL and Vη need to be estimated. To circumvent
these estimation difficulties NSIs usually simplify the above model. The behaviour describing the unob-
served stochastic component θ is ignored, i.e. equation (B.3) is removed. Since NSIs usually implement
binding benchmarking εL = 0. Finally εH is modelled as an AR.1/ process. For practical implementation
of Cholette and Dagum benchmarking, Cholette and Dagum (2006), chapter 3, recommended setting the
AR.1/ parameter value between 0:7 and 0:9 for monthly series and between 0:73 and 0:93 for quarterly
series. For monthly and quarterly time series, the ONS uses parameter values of 0:8 and 0:83 (these par-
ameter values can be varied if necessary) respectively (Brown et al., 2012). Naturally such adjustments can
in some cases have a negative effect on the accuracy of the benchmarking process. In particular the ONS
uses the following form of the Cholette–Dagum model:(

YH
O

YL
O

)
=
(

In

J

)
. θ /+

(
εH
0

)
, .B:9/

with εH being an AR.1/ process with parameter value 0:8 or 0:83 for monthly and quarterly time series
respectively.

Appendix C: Simulation methodology

The following section describes how simulated time series were generated. The model below generates the
unobserved true high frequency data points:

YH
T, t =μt +γt , .C:1/

μt =μt−1 +υt +�t , �t ∼N.0, σ2
�/, .C:2/

υt =υt−1 + ζt , ζt ∼N.0, σ2
ζ /, .C:3/

γt =−
f−1∑
i=1

γt−i +ωt , ωt ∼N.0, σ2
ω/: .C:4/

The observed non-noisy low frequency time series is obtained by using

YL
O,s =

ft∑
t=f.s−1/+1

YH
T, t : .C:5/

An ARMA(1,1) process is used throughout the paper to generate disturbance terms. This results in the
following observed high frequency series:

YH
O, t =YH

T, t + εt , εt ∼ARMA.1, 1/, .C:6/

εt =φεt−1 +θτt , τt ∼N.0, σ2
τ /, |φ|, |θ|< 1: .C:7/

Initialization values are required to begin the simulation. The values μ1, υ1, γ1, : : : , γf−1 are generated
independently from a zero-mean Gaussian process with respective variances σ2

μ1
, σ2

υ1
, σ2

γ1
, : : : , σ2

γf−1
.

To ensure that simulations can be reproduced the set.seed()(R Development Core Team, 2008)
function is used to generate pseudorandom numbers. For the slope, trend and seasonal components
the following pseudorandom numbers are used respectively: set.seed(simulation number×time
series number; set.seed(2×simulation number×time series number); set.seed(3
×simulation number×time series number). The term simulation number identifies the cur-
rent simulation being generated, whereas the time series number corresponds to the time point in that
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current simulation. Details of generating these simulations are available from http://wileyonline
library.com/journal/rss-datasets.
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