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Abstract: The quasi-binary section of the intermetallic phases MAl4 

and MGa4 with M = Sr, Ba have been characterised by means of 

X-ray diffraction (XRD) and differential thermal analysis. The binary 

phases show complete miscibility forming solid solutions M(Al1-xGax)4 

with M = Sr, Ba. They crystallise in the BaAl4 structure type with four 

and five bonded Al and/or Ga atoms, denoted as Al(4b), Al(5b), 

Ga(4b), and Ga(5b), respectively, forming a polyanionic Al—Ga 

sublattice. Solid-state 
27

Al NMR and quantum mechanical (QM) 

calculations were applied to study the bonding of Al and the 

influence of Al/Ga substitution, especially in the regimes of low 

substitutions degrees. M(Al1-xGax)4 with M = Sr, Ba and 0.925 ≤ x ≤ 

0.975 can be described as a matrix of the binary majority compound 

in which a low amount of the Ga atoms is substituted by Al. In good 

agreement with QM calculations, 
27

Al NMR and single-crystal XRD 

proof a preferred occupancy of Al(4b) for these substitution regimes. 

Furthermore, two different local Al environments are found: isolated 

Al(4b1) atoms as well as Al(4b2) due to the formation of Al(4b)—

Al(4b) pairs besides the isolated Al(4b) atoms within the polyanionic 

sublattice. QM calculations of the electric field gradient (EFG) using 

superlattice structures within periodic boundary conditions are in 

good agreement with the NMR results and discussed in detail. 

Introduction 

Intermetallic phases (IPs) are a fascinating class of materials 

with numerous applications such as superconductors[1–3], 

spintronics[4,5], thermoelectrics[6–8], and catalysis materials[9]. 

Further insights into the structure-bonding-property relationships 

of IPs is still a sought-after issue nonetheless to improve 

technical applications and to make existing industrial usage 

even more efficient.[10–16] Especially materials showing atomic 

disorder and low amounts of dopants are an interesting field for 

both research[13–19] and applications, e.g. semiconductors,[20–22] 

steel,[23] and battery materials.[24] 

In particular, the BaAl4 structure type is highly important for 

IPs.[25] It is furthermore realised in various three dimensional 

(3D) ordered variants such as ThCr2Si2 or TlCu2Se2.
[26,27] 

ThCr2Si2 and TlCu2Se2 possess a separation of the different 

atom types on the two crystallographic sites of the anionic 

sublattice; a significantly different c/a ratio within the BaAl4 type 

unit cell results. In contrast, an atomic ordering of mixed 

occupied sites is found for CaBa2Ge2. In addition, larger unit 

cells with varying colouring schemes of the two crystallographic 

sites of the anionic sublattice are reported as super lattice 

structures of the BaAl4 type.[28,29]  

The combined application of X-ray diffraction (XRD), solid-state 

nuclear magnetic resonance (NMR) spectroscopy and quantum 

mechanical (QM) calculations was recently shown to be well 

suited to study the chemical bonding and local atomic 

environments in ordered and disordered IPs.[18,30] The XRD—

NMR—QM approach was thereby applied to the binary IPs 

MGa2 with M = Ca, Sr, and Ba[31] as well as MGa4 with M = Na, 

Ca, Sr, and Ba[32] to gain insights into the chemical bonding of 

the Ga atoms. An analysis of the electric field gradient (EFG) 

turned out to be a sensitive local measure for different chemical 

environments of the Ga atoms. Furthermore, we recently 

showed that the approach is suited to study varying Ga bonding 

situations due to cation substitution in the solid solution Sr1-

xBaxGa2.
[33] Similar attempts have been reported for complex 

types of substitution of the alkaline earth metals in Sr1-xGa2+3x 

and Ca1-xGa2+3x as well as vacancies influencing the Cu bonding 

in Cu1-xAl2.
[17,34–38] 

In this contribution we report on the next step by focussing on 

the difference of Al representing a typical main group metal vs. 

Ga being a non-typical main group metal. The influence of 

substitution on the chemical bonding within the anionic sublattice 

in M(Al1-xGax)4 with M = Sr, Ba is addressed in the following. The 

binaries crystallise in the BaAl4 type of structure in space group 

I4/mmm (Figure 1).[17,32] 
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Figure 1. Crystal structures of MX4 with M = Sr, Ba and X = Al or Ga in the 

BaAl4 type of structure in space group I4/mmm. Four- and five-bonded Al or 

Ga atoms are indicated by X(4b) and X(5b). Black lines represent the unit cell 

and thick grey lines Ga—Ga and Al—Ga contacts, respectively. Atomic 

distances (d / Å) of the binary samples are given in the tables on the 

left.
[12,19,20] 

Four- and five-bonded Al(4b)/Ga(4b) and Al(5b)/Ga(5b) atoms, 

respectively, are found to build a three-dimensional polyanionic 

sublattice. In this context, the formulation as (nb) is not meant in 

the sense of two-electrons-two-centre bonds but describe 

interatomic distances that are smaller than the average Al—Al 

distance in Al (2.86 Å)[39] and Ga—Ga distance in -Ga 

(2.70 Å)[40], respectively.[15,17,31,32]  

As for cationic disorder in Sr1-xBaxGa2 a model of isolated 

substitution centres (ISC)[33] in the vicinity of low degrees of 

substitution was carved out. We extended this approach within 

the XRD—NMR—QM methodology to study M(Al1-xGax)4 with 

M = Sr, Ba. An application of the ISC model on atomic disorder 

in the polyanionic sublattice of M(Al1-xGax)4 with M = Sr, Ba is 

likely to increase the experimental resolution for NMR 

experiments, which is crucial to derive NMR coupling 

parameters throughout line shape analysis. In cases of too high 

amounts of atomic disorder in IPs this can be challenging up to 

impossible since characteristic NMR signal features are 

smeared out and important details of the line shape information 

get lost.[33] 

Since NMR is a non-phase sensitive method, we performed a 

careful pre-characterisation of the materials under investigation 

using powder and single crystal XRD as well as differential 

thermal analysis (DTA) measurements for selected samples. 

Based on these results the lattice parameters, crystal structure 

and miscibility of M(Al1-xGax)4 with M = Sr, Ba is reviewed. 

Afterwards, the local atomic order and NMR spectroscopy 

combined with the results from QM calculations of the EFG are 

discussed. 

 

 

 

 

Results and Discussion 

Powder XRD and Lattice Parameters 

The synthesis of M(Al1-xGax)4 with M = Sr, Ba results in single-

phase materials (Experimental Section). No crystalline impurities 

or neighbouring phases were detected.  

The powder XRD patterns are indexed in space group I4/mmm 

and show significant shifts of the sample reflections with respect 

to the substitution degree. A minimum of lattice parameter a is 

found for x = 0.5 while the c parameter decreases linearly from 

the aluminide to the gallide (Figure 2, Figure S 1, Table S 1). 

Comparing the metallic radii of Al and Ga with 143.2 and 

141.1 pm[37], respectively, a decrease of 1.5% is found although 

Ga is located one period below Al in the periodic table of the 

elements. This decrease is also indicated by the different 

lengths of the crystallographic a axis but not by the c axis 

(Figure 2, Figure S 1). M(Al1-xGax)4 with M = Sr, Ba shows the 

larger lattice parameter for x = 0 than x = 1. Interestingly, the c 

parameter decreases linearly from x = 0 to 1, while a minimum is 

found for the a parameter at x = 0.5 (Figure 2, Figure S 1). 

These anisotropic changes of the lattice are also indicated by 

the c/a ratios for M(Al1-xGax)4 with M = Sr with 2.511 (x = 0) vs. 

2.416 (x = 1) and M = Ba with 2.477 (x = 0) and 2.357 (x =1), 

respectively. This corresponds to a decrease of -4 and -5 % for 

the Sr and Ba case (Figure 2, Error! Reference source not 

found., Error! Reference source not found.). Hence, the c/a 

ratio seems to be a good indicator for the changing bond lengths 

in M(Al1-xGax)4 with M = Sr, Ba (Figure 1). A substitution of Al by 

Ga results in a decrease of the 4b—4b distance of -1.9 

and -1.4 % as well as of the 5b—5b bond length of -4.6 

and -4.4 % for Sr and Ba, respectively. Hence, the change of the 

a lattice parameter is within the range of the changes of the 

atomic radii and the changes of the c parameter mirror 

approximately the decrease of the 5b—5b distances.  

The minimum of the a lattice parameter for M(Al1-xGax)4 with M = 

Sr, Ba for x = 0.5 indicates a preferred occupancy of the Al(4b) 

position since the 4b—4b interaction within the ab plane is 

described as a multi-centre-electron-deficient one with metallic 

character and the 5b bonding along the c axis as a covalent two-

electron-two-centre bond, respectively.[17,41] Solid-state 27Al NMR 

investigations have been performed to shed light into this 

assumption (Section Solid-State NMR Spectroscopy). In addition, 

a discussion of the lattice parameter trends interpreted by 

means of the Ga—Ga, Ga—Al, and Al—Al interactions and their 

“bonding analysis” referring to the fundamental work of 

Miller et al.[41] can be found in the Supporting Information 

(Figure S1b and text). 
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Figure 2. Lattice parameters a and c as well as unit cell volumes V of 

Sr(Al1-xGax)4 in space group I4/mmm. Experimental and QM calculated data 

are depicted as full and open circles, respecitvely. Open triangles show 

various local ordering variants of Al(4b)/Al(5b) for x = 0.5. Error bars are within 

the symbols. A linear trend line corresponding to Vegard’s rule is indicated by 

black lines. The data for Ba(Al1-xGax)4 is shown in Figure S 1a. 

DTA Measurements 

DTA experiments of selected M(Al1-xGax)4 with M = Sr, Ba 

samples confirm the congruent melting points 1040°C and 

961°C for Sr(Al1-xGax)4 with x = 0.0[42] and 1.0[31], respectively, as 

well as 1080°C and 1026°C for Ba(Al1-xGax)4 with x = 0.0[43] and 

1.0[31] (Error! Reference source not found., Experimental 

Section). The maxima of the endothermic melting signal are 

continuously shifted from the low-melting component to the high-

melting one with increasing amount of Al substitution. The DTA 

signals are broadened due to the substitutional disorder of the 

ternary compounds and the experimental resolution for Ba(Al1-

xGax)4 is worse, which indicates less crystalline materials in 

comparison with Sr(Al1-xGax)4. For Sr(Al1-xGax)4 with x = 0.925, 

0.9, and 0.5 a less intense endothermic signal is detected just 

before the intense melting signal (Error! Reference source not 

found.). This DTA line shape indicates a small separation of 

liquidus and solidus line of the pseudo-binary system SrAl4—

SrGa4.
[33,44] Hence, Sr(Al1-xGax)4 can be described as a solid 

solution of low-melting SrGa4 and high-melting SrAl4 with full 

miscibility. The Ba(Al1-xGax)4 situation is similar but less 

pronounced in the DTA line shape due to a worse signal-to-

noise ratio.[33,44] 

Single Crystal XRD 

The refinement of single crystal XRD data at 100(2) K for 

Sr(Al1-xGax)4 with x = 0.925 verifies its composition to be 

Sr(Al0.063(6)Ga0.937(6))4 (Table 1, Table 2, and Experimental 

Section). The refinements confirm a preferred occupancy of 

Al(4b) and exclude any significant occupancy of the Al(5b) 

position since negative site occupancy factors result. 

Table 1. Single crystal X-ray data collection and parameters of the structure 

refinement for Sr(Al1-xGax)4 with x = 0.925 at 100(2) K. The asterisk (*) refers 

to ambient temperature measurements. 

Formula SrAl0.3Ga3.7 

T / K 100(2) 

Formula weight / g mol
-1

 353.68 

Crystal size / mm 0.12 0.09 0.08 

Crystal colour Silver 

Crystal system Tetragonal 

Space group I4/mmm (No. 139) 

a / Å (powder*/single-crystal) 4.4382(6) / 4.4189(9) 

c / Å (powder*/single-crystal) 10.777(4) / 10.752(2) 

V / Å
3
 (powder*/single-crystal) 231.98(10) / 209.95(10) 

Z 2 

Diffractometer; detector Bruker D8; Apex CCD, multilayer optics 

 / Å 0.71073 (MoK) 

 (MoK) mm
-1

 35.903 

calc / g cm
-3

 5.5943 

2 max / ° 35.15 

 -5 ≤ h ≤ 6, -5 ≤ k ≤ 7, -15 ≤ l ≤ 17 

Measured reflections 1458 

Independent reflections 185 

Rint 0.0558 

Obs. reflections Fo > 4(Fo) 167 

Number of parameters 9 

R1 (Fo > 4(Fo)) / R1 (all data) 0.0369 / 0.0409 

wR2 (Fo > 4(Fo)) / wR2 (all) 0.0866 / 0.0882 

Goodness of Fit (GooF) 1.021 

Residual electron density (hole 
/ peak) e / Å

−3
 

-3.005/2.617 

Table 2a. Wyckoff positions, fractional atomic coordinates, and site occupancy 

factors (sof) of Sr(Al1-xGax)4 with x = 0.925 at 100(2) K. 

Atom Site x y z sof 

Sr 2a ½ ½ ½ 1 

Al(4b) 4d ½ 0 ¼ 0.874(12) 

Ga(4b) 4d ½ 0 ¼ 0.126(12) 

Ga(5b) 4e ½ -½ 0.1167(1) 1 
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Table 2b. Displacement parameters of Sr(Al1-xGax)4 with x = 0.925 at 100(2) 

K. All Uij and Ueq values in Å
2
. U11 = U22; U23 = U13 = U12 = 0. 

Atom Site U11 U33 Ueq 

Sr 2a 0.0038(4) 0.0039(4) 0.0039(3) 

Al/Ga(4b) 4d 0.0051(4) 0.0026(4) 0.0043(3) 

Ga(5b) 4e 0.0042(4) 0.0025(4) 0.0036(3) 

 

The displacement parameters for Al/Ga on (4b) were refined 

anisotropically but constrained to the same values for both 

atoms; Ga(5b) was also refined anisotropically. The resulting 

prolate shapes of both positions are aligned in c-direction and 

may be assigned to the general structure of the Ga-sublattice 

with a more rigid geometry in a-direction. The anisotropic 

refinement of Sr yielded an isotropic atom within standard 

deviations (Table 2). A further interpretation of this data does not 

seem to be suitable since despite the good reflection/refinement-

parameter ratio of 189/9 (approx. 20.5) we observed a strong 

correlation of the Uij values within the analysed d value range. 

Furthermore, there is a significant correlation of Uij with the site 

occupancy factors. The final refinement fulfils the quality 

requirements regarding the R and Rint values as well as the 

residual electron density (Table 1, Table 2, Experimental 

Section). Hence, a preferred occupancy of Al(4b) is proven by 

XRD. 

Local Order of the Atoms 

Based on the BaAl4 structure type and the low substitution 

degree we estimate the distribution of Al(4b) in the unit cell for 

M(Al1-xGax)4 with x = 0.925, 0.950, and 0.975. This substitution 

can be described as a matrix of MGa4 with M = Sr, Ba with 2.5, 

5.0, and 7.5 % Al substitution, which we will denote as Al@MGa4 

in the following. Regarding the formula sum the number of Al 

atoms per unit cell can be calculated by (1-x)-1 × ½ × ¼ where 

the (1-x)-1 factor describes a respective “dilution” throughout a 

multiplication of the unit cell and this factor as the inverse value 

of the substitution degree with respect to the amount of Al; the 

factor ½ takes a preferred occupancy of the (4b) position into 

account and the multiplication with factor ¼ normalises this 

calculation on the number of formula units of the MGa4 matrix. 

Considering a statistical distribution of the Al(4b), this estimation 

results in Al(4b) in every 5th, 2.5th, and 1.7th unit cell for 2.5, 5.0, 

and 7.5% Al@MGa4. The statistical probability for Al@(4b) 

increases with increasing substitution degree; but even for 7.5 % 

Al@MGa4 it is unlikely that more than one Al atom per unit cell 

occupies the (4b) position. Hence, the ISC model is formally 

fulfilled within the substitution regime discussed and under 

consideration of the crystal structure assumptions. 

Solid-State NMR Spectroscopy 

Frequency sweep NMR of the regular powder signals of MAl4 

with M = Sr, Ba show the central transition (CT) signals of Al(4b) 

and Al(5b) and their respective satellite transition (ST) signals 

spreading a frequency range of -750 to 1000 kHz (Figure 3, 

Error! Reference source not found. top). 

Figure 3. 
27

Al NMR spectra of regular (top) and aligned (bottom) SrAl4 powder. 

Central and satellite transitions are marked by CT and ST, respectively. 

Experimetal data is shown with solid lines and fits with black and grey shaded 

areas, respectively. NMR signal contributions of Al(4b) and Al(5b) are 

represented for the alligned powder in black and grey. The data for BaAl4 is 

shown in Error! Reference source not found.. 

The number of signals is in agreement with the crystal structure. 

An alignment of the crystallites in the magnetic field shows a 

significant enhancement of the experimental resolution, which 

results in sharp and easily distinguishable CT and ST signals for 

Al(4b) and Al(5b) (Figure 3, Error! Reference source not 

found. bottom). The signal detection of the aligned powders was 

performed with wideline NMR experiments applying different 

carrier frequencies due to the significantly different shift values 

(Figure 3, Error! Reference source not found. bottom, 

Experimental Section). 

27Al NMR investigations of M(Al1-xGax)4 with M = Sr, Ba for 

x = 0.925, 0.950, and 0.975 show nearly complete 

disappearance of the CT5b signal, which is more pronounced for 

M = Sr (Figure 4, Error! Reference source not found.). A 

measurement for the highest Al—Ga substitution degree, 

exclusively performed for Sr(Al1-xGax)4 with x = 0.5, shows a 

CT5b signal of very low intensity but still present (Figure 4). 

Furthermore, the ST signals are tremendously broadened, 

indicating a high degree of atomic disorder. A very low 

crystallinity of the investigated powder sample, already indicated 

by the thermoanalytical investigations, is likely to also cause this 

broadening in part (Section DTA Measurements).  

Focussing on the ISC regimes, a preferred occupancy of the 

(4b) position for 2.5, 5.0, and 7.5 % Al@MGa4 with M = Sr, Ba is 

indicated by an increase of the ST4b intensities as well as 

frequency ranges (Figure 4, Figure S 4). Furthermore, the ST4b 

signal line shape shows additional signal contributions, which 

are not caused by an isolated Al(4b) position (Figure 5, Figure S 

5). Hence, on the local atomic scale of NMR, an additional Al 

environment is detected for 2.5, 5.0, and 7.5 % Al@MGa4 with 

M = Sr, Ba. We assign this signal to a special local arrangement 

of Al(4b)—Al(4b) pairs besides isolated Al(4b) atoms within the 

polyanionic sublattice (Figure 5, left). We distinguish these 

different Al(4b) environments as Al(4b1) and Al(4b2), 

respectively (Figure 5). 
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Figure 4. 
27

Al NMR spectra of aligned powder samples of Sr(Al1-xGax)4 with 

x = 0.0, 0.5, 0.925, 0.950, and 0.975 from top to bottom. NMR signal 

contributions of Al(4b1), Al(4b2) are shaded for Al content of 2.5, 5.0, and 7.5 

% in light and dark grey, respectively. The data for Ba(Al1-xGax)4 is shown in 

Error! Reference source not found.. 

QM Calculations  

The system M(Al1-xGax)4 with M = Sr, Ba was studied by means 

of density functional theory (DFT) using VASP and WIEN2k 

program packages.[45,46] Lattice parameters, formation energies, 

crystal structure variations, local ordering of the atoms, and 

NMR parameters due to substitution in the anionic sublattice are 

in the focus of this investigation. Following the group-subgroup 

relations according to the Bärnighausen formalism[47] super 

lattice structures (SLS) were developed to describe the local 

atomic arrangements (Experimental Section). The symmetry 

relations and corresponding Wyckoff positions are summarised 

in Figure S 7. 

The calculations were performed with the space group’s 

symmetry restraints and without in space group P1 to double 

check on possible influences on the results throughout the 

symmetry restraints. Calculations for P1 structure models are 

much more expensive but offer detailed unaffected information 

about atomic shifts. 

The electric field gradients (EFG) of the binary phases MX4 with 

M = Sr, Ba and X = Al, Ga, In reflect the increasing polarizability 

of the group 13 elements by an increasing anisotropy of the 

charge distribution with the atomic number of the element 

(Error! Reference source not found.). The negative sign of VZZ 

obtained for all positions of the anionic sublattice indicates a 

prolate charge distribution that is aligned with VZZ along the c 

axis of the unit cell. The absolute values of the EFG’s main 

component VZZ are larger for the 4b than for the 5b atoms, i.e. 

the electron distribution of the 4b atoms in the centre of a 

distorted tetrahedron is more elongated than for the 5b atoms in 

tetragonal pyramidal environment.  

The respective VZZ(4b)/VZZ(5b) ratio decreases from 2.7 to 1.7 

with increasing atomic number of the group 13 element. This is 

slightly less pronounced for the heavier alkaline earth metal 

indicating an interaction of the anionic sublattice with the cations.
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Figure 5. (Left) Crystal structure of Sr(Al1-xGax)4 with x = 0.925, 0.950, and 

0.975. Different local four-bonded Al(4b1) and Al(4b2) environments are 

indicated next to the four- and five-bonded Ga(4b) and Ga(5b) atoms of the 

anionic sublattice. (Right) Zoom of the inner 
27

Al(4b) satellite transition NMR 

signals of Sr(Al1-xGax)4 with x = 0.925, 0.950, and 0.975 corresponding to Al 

amounts of 2.5, 5.0, and 7.5 % from top to bottom. Experimental data is shown 

with solid black lines; contributions of Al(4b1) and Al(4b2) are given as light 

and dark grey shaded areas, respectively. The data for Ba(Al1-xGax)4 is shown 

in Error! Reference source not found.. 

VZZ(4b) of the Al atoms increases almost linearly with the 

number of next neighbour Ga atoms and is only subject to minor 

changes for geometric variations as shown by SLS calculations 

(Error! Reference source not found.). In comparison, VZZ(5b) 

is strongly influenced by the number of next neighbour Ga atoms. 

Furthermore, the individual local conformation possess a 

significant influence. The reason for that might be a higher 

sensitivity of the 5b position on chemical bonding and/or the 

much smaller absolute value of VZZ. Additionally, VZZ(5b) is quite 

sensitive on the positional z parameter of the atoms as shown 

by systematic variations of this parameter (Error! Reference 

source not found.). 

VZZ of both Al sites is almost exclusively influenced in the first 

coordination sphere of the substitution centre (Error! Reference 

source not found.). Outside this range, a scattering around an 

average value close to the experimental ones of the binary 

parent phases is observed. In addition, the asymmetry 

parameter is influenced in higher coordination spheres but 

decreases to almost zero above 10 Å. A similar trend is found 

for the positional shifts of the atoms. 

Optimisation of lattice parameter for various SLS results in a 

good agreement with the experimental values (Figure 2, Error! 

Reference source not found.). The systematic offset towards 

smaller values for all calculations is within the typical range, well 

known for the LDA over binding phenomenon.[48] Especially the 

experimentally observed minimum of the a parameter is well 

reproduced. A large influence of the local atomic order in the 

anionic sublattice is seen by a variation of Al(4b)/Al(5b) site 

occupation for x = 0.5 in M(Al1-xGax)4 with M = Sr, Ba. Increasing 

and decreasing lattice parameter are obtained for a and c, 

respectively. 

 

Additional evidence for a Al(4b) preferred site occupation is 

obtained by an estimation of the formation energies ∆fE (Figure 

6, Error! Reference source not found.). These were calculated 

as the difference between the total energy (Etot) of the structure 

model (Md.) and the weighted total energies (∑Etot) calculated 

for the elements: ∆fE = Etot(Md.) – ∑Etot(elem.).[48,49] 

The resulting negative ∆fE values indicate that all investigated 

structures are stable compared to the elements (Figure 6, Error! 

Reference source not found.). The differences of the formation 

energies ∆(∆fE)[x(Ga)] = 

∆fE[x(Ga)] + ∆(∆fE)[binary phases]·[x(Ga)] of M(Al1-xGax)4 

(referenced to MGa4 and MAl4) with M = Sr, Ba show a concave 

trend visualising the relative stability. Hence, a preferred 

occupancy of the 4b position by Al is also indicated by energetic 

considerations. This stabilisation effect is even more 

pronounced for the Sr than the Ba phase (Figure 7).  

Various 3×3×2 SLS models were applied to model local atomic 

coordinations at low substitution degrees and explore the origin 

of the experimentally observed Al(4b2) NMR. Model I (Md. I) 

describes two Al(4b) separated by a distance lager than 10 Å. 

The other SLS calculations focus on local arrangements within 

the BaAl4 type unit cell surrounded by a MGa4 matrix with M = Sr, 

Ba (Figure 7). Two neighbouring Al(4b) sites with shortest Al—Al 

distances of approx. 3.1 Å were used in Md. II. Md. III focuses 

on a formation of Al(4b)—Al(4b) pairs within the ab plane of the 

unit cell (d ≈ 4.4 Å) and Md. IV on such pairs along the c axis 

(d ≈ 5.4 Å). Md. V describes the remaining Al(4b)—Al(4b) pairs 

with a distance of approx. 6.2 Å within a BaAl4 type unit cell. The 

overall variation of the energy is below 0.01 eV and is even 

smaller for Ba(Al1-xGax)4. Thus, compared with the thermal 

energy available at ambient temperature none of these models 

is favourable with respect to energetic reasons (Error! 

Reference source not found.). 

The changes of VZZ(4b) for models Md. I to Md. V are very small 

(± 3%). Md. II to Md. V result in small asymmetry parameters of 

Q≈ 0.1, which are in good agreement with the experimentally 

observed ones (Table 4). The EFG for Md. I, considering two 
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isolated Al(4b) to a first approximation, does not significantly 

differ from that of only one isolated Al(4b) atom. Once more, this 

evidences the local character of the EFG that was recently also 

described for cationic substitution in Sr1-xBaxGa2.
[33] For both 

calculations focusing on isolated Al(4b) sites the asymmetry 

parameter Q is almost zero. Thus, isolated Al(4b) sites are 

assigned to the observed NMR signal of Al(4b1). Models Md. II 

to Md. V cannot be distinguished by their formation energies or 

EFGs. However, Md. II shows the best agreement of the EFG 

values derived by experiment and QM calculations (Error! 

Reference source not found.). 

Conclusions 

The isotypic IPs SrAl4—SrGa4 and BaAl4—BaGa4 form two solid 

solutions that can be described as M(Al1-xGax)4 with M = Sr and 

Ba, respectively, and crystallise in the BaAl4 type in space group 

I4/mmm. Full miscibility is proven by XRD and DTA 

investigations in which powder XRD experiments show a 

minimum for the a lattice parameter at x = 0.5, which is due to 

local atomic order in the anionic sublattice. 

Figure 6. Formation energies Ef of Sr(Al1-xGax)4 (top) as well as the 

difference Ef) for comparison with the binary phases SrAl4 and SrGa4 

(bottom). Open circles correspond to the various SLS calculations; open 

triangles show data for varying local ordering schemes of Al(4b)/Al(5b) with x = 

0.5. The data for Ba(Al1-xGax)4 is shown in Error! Reference source not 

found.. 

 

M(Al1-xGax)4 with M = Sr, Ba and x = 0.975, 0.950, and 0.925 

can be described as regimes of low Al substitution into a MGa4 

matrix with M = Sr, Ba and formulated as Al@MGa4. 

Solid-state 27Al NMR investigations on magnetically aligned 

powder samples are very well suited to investigate different Al 

environments on a local atomic level. Especially the ST NMR 

signals are highly sensitive on the Al—Ga substitution degree 

and give an experimental proof for a preferred occupancy of the 

(4b) position by Al within the gallide matrix. 

The trend of the lattice parameter is reproduced by QM 

calculations considering a preferred site occupation of Al(4b). In 

addition, the formation energies support this local order of the 

atoms. Various models of different local Al(4b)—Al(4b) pairs 

cannot be distinguished by their formation energies. Best 

agreement of respective calculated and measured EFG values 

is found for Al(4b) pairs in close distance too each other. Hence, 

the formation of Al(4b)—Al(4b) pairs next to isolated Al(4b) 

atoms is revealed by the combined application of NMR and QM 

investigations. 

While already being well known to study ordered and disordered 

IPs influenced by cation substitution, this work enhances the 

XRD—NMR—QM approach to a next level since investigations 

of anionic disorder in IPs become accessible. Especially for the 

sought-after aluminides with high technological relevance this 

approach is likely to shed light into structure-bonding-property 

relationships and to be applied to an ever increasing range of 

technologically relevant metallic materials.  
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Figure 7. Relative energies (E / meV) for Sr(Al1-xGax)4 (left) and Ba(Al1-xGax)4 (right). Varying local Al—Al arrangements corresponding to model 

Md. II to Md. V are given with respect to a BaAl4 type unit cell used in the centre of a 3×3×2 SLS calculation (middle). Details of the special Al 

arrangements are discussed in the text. Ga(4b) and Ga(5b) positions are visualised by grey and black circles, respectively. Al(4b) positions are 

marked by crosses. Open circles represent the cations M = Sr or Ba. The maximum of the energy differences is approx. 0.009 eV for Sr(Al1-xGax)4 

and 0.004 eV for Ba(Al1-xGax)4, respectively. 
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Table 3. 
27

Al NMR parameters of quadrupole coupling and signal shift interaction from NMR signal line shape analysis and QM calculations for SrAl4 and BaAl4. 

According to the site symmetry of the Al(4b) and Al(5b) atoms on Wyckoff position 4d (4̅m2) and 4e (4mm) in space group I4/mmm an asymmetry parameter of 

 = 0 results.
[17,30,50]

 

 SrAl4 BaAl4 

 Al(4b) Al(5b) Al(4b) Al(5b) 

 NMR QM NMR QM NMR QM NMR QM 

VZZ / 10
21

 Vm
-2

 1.74(2) -1.85(2) 0.80(2) -0.68(2) 2.06(2) -2.23(2) 0.51(2) -0.32 

iso / ppm 1030(10) - 564(10) - 1128(10) - 347(10) - 

aniso / ppm 0 - 100(10) - -54(10) - 106(10) - 

 

 

Table 4. 
27

Al NMR parameters of quadrupole coupling and signal shift interaction from NMR signal line shape analysis for Sr(Al1-xGax)4 and Ba(Al(1-xGax)4 with x = 

0.975, 0.950, and 0.925. The respective ISC regimes and models for the local Al(4b) environments are given. Additionally, the QM calculated parameters 

considering model II are shown (see QM calculations andFigure 7 for further details). 

Sr(Al1-xGax)4 x = 0.975 0.950 0.925 

QM 

ISC regime 2.5 % Al@SrGa4 5.0 % Al@SrGa4 7.5 % Al@SrGa4 

Model Al(4b1) Al(4b2) Al(4b1) Al(4b2) Al(4b1) Al(4b2) Al(4b1) Md. II 

VZZ / 10
21

 Vm
-2

 1.99(2) 1.88(2) 2.00(2) 1.85(2) 1.99(2) 1.88(2) -2.09 -1.924 

Q 0 0.1(1) 0 0.1(1) 0 0.1(1) 0 0.11 

iso / ppm 875(10) 931(10) 872(10) 916(10) 854(10) 937(10) - - 

aniso / ppm -57(10) -67(10) -65(10) -72(10) -72(10) -31(10) - - 

 0 0 0 0 0 0 - - 

Ba(Al1-xGax)4 x = 0.975 0.950 0.925 

QM 

ISC regime 2.5 % Al@BaGa4 5.0 % Al@BaGa4 7.5 % Al@BaGa4 

Model Al(4b1) Al(4b2) Al(4b1) Al(4b2) Al(4b1) Al(4b2) Al(4b1) Md. II 

VZZ / 10
21

 Vm
-2

 2.04(2) 1.93(2) 2.05(2) 1.97(2) 2.05(2) 1.97(2) -2.14 -2.023 

Q 0 0.1(1) 0 0.1(1) 0 0.1(1) 0 0.06 

iso / ppm 1005(10) 1030(10) 1022(10) 1014(10) 1102(10) 999(10) - - 

aniso / ppm -35(10) -73(10) -39(10) -45(10) -339(10) -70(10) - - 

 0 0 0 0 0 0 - - 
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Experimental Section 

Sample Preparation 

Polycrystalline powder samples of M(Al1-xGax)4 with M = Sr, Ba were 

prepared by three different solid-state synthesis methods depending on 

the Al amount of the respective sample (Table S1).[17] The starting 

materials Sr (Alfa Aesar, distilled dendritic pieces, 99.95 %), Ba (Alfa 

Aesar, crystalline dendritic pieces, 99.9 %), Al (ChemPur, pellets, 

99.999 %), Al foil (0.1 and 0.25 mm thickness, 99.99 % and 99.997 %), 

and Ga (ChemPur, pellets < 8 mm, 99.999 %), precursors phases, and 

products were always handled under Ar atmosphere in a MBraun glove 

box system with p(O2;H2O) < 0.1 ppm to avoid contamination and/or 

reaction with moisture of air. 

Direct synthesis in Ta ampoules (method A): Appropriate mixtures of Sr, 

Ba, Al, and Ga for Sr(Al1-xGax)4 (0.6 ≤ x ≤ 1.0) and Ba(Al1-xGax)4 (0.0 ≤ x ≤ 

1.0) were melt at approx. 950°C in a high-frequency furnace using sealed 

Ta ampoules. The Ta containers were enclosed in evacuated quartz 

glass ampoules, thermally treated at 800°C for 2 weeks and cooled down 

to ambient temperature with 10 K/min afterwards. 

Synthesis via precursor AlGa alloy (method B): Side reactions of Al with 

the Ta ampoules impaired the synthesis of single phase materials for 

Sr(Al1-xGax)4 with x = 0.5. Hence, a precursor AlGa alloy, showing a 

moderately lower melting point of approx. 400°C compared to Al metal 

with 660°C[17] was used. A 1:1 ratio of small Al and Ga pieces was 

homogenised at 420°C in an open Ta ampoule inside a tube furnace for 

2 days. The resulting alloy (silver, metallic lustrous) was added to Sr in a 

respective ratio for SrAl2Ga2, sealed in a Ta ampoule, enclosed in 

evacuated quartz glass ampoules and slowly heated to 550°C within 6 

hours. After a thermal treatment for 7 days at this temperature the 

sample was cooled down to ambient temperature with 10 K/min. 

Synthesis via a pellet (method C): For Sr(Al1-xGax)4 (0.0 ≤ x < 0.5) neither 

method A nor B succeed in single phase materials due to side reactions 

of Al with the container material. Therefore, we prepared thin Al 

ampoules out of Al foil and added the respective Sr and Ga amounts. 

The elements were pressed at 30 kN for 2 minutes and melted on the Cu 

coquille of an arc welder. The resulting pill was sealed in a Ta ampoule, 

thermally treated in a muffle furnace at 800°C for 2 weeks, and finally 

slowly cooled down to ambient temperature with 10 K/min. 

Powder XRD and Lattice Parameter Determination 

XRPD experiments were performed using a STOE & Cie (Darmstadt, 

Germany) STADI P diffractometer in transmission geometry with CuK1 

radiation (= 1.54056 Å; Ge monochromator after Johann; 

measurements at  = 55°; image plate detector; internal standard LaB6 

with a = 4.15692 Å). The lattice parameters were determined using the 

same set of sample and internal standard reflections for the whole series 

of M(Al1-xGax)4 with M = Sr, Ba (Error! Reference source not found.).[17] 

The WinCSD-2000 program package was used for the peak profile fitting 

and lattice parameter determinations.[51] 

Single Crystal XRD 

A single crystal of Sr(Al1-xGax)4 with x = 0.925 was mounted on a glass 

fibre using crystal oil (Perfluoropolyalkylether AB128333 viscosity 1800 

cSt., ABCR) and measured at 100(2) K under nitrogen gas flow. Intensity 

and geometry data were collected in -scan mode with an APEX CCD 

area detector on a Bruker D8 goniometer that was equipped with an 

Incoatec microsource with multilayer optics using MoK. For the low 

temperature measurement an Oxford Cryostream 700 cooler was utilised. 

Data processing and multi-scan absorption corrections were done using 

the programs SAINT+[52] and SADBS[53], respectively. Crystal structure 

solution and refinement were carried out with SHELXS-97 and 

SHELXL-2013, respectively.[54,55] Details of the data collection and 

handling are summarised in Table 1 and Table 2. Further details on the 

crystal structure investigations can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshalfen, 

Germany (fax: (+49)7247808666, e-mail: crysdatat@fizkarlsruhe.de; 

http://www.fiz-karlsruhe.de/request_for_deposited_data.html) on quoting 

the depository number CSD-430628. 

DTA Measurements 

Samples of M(Al1-xGax)4 with M = Sr, Ba were investigated by means of 

DTA using a Netzsch DSC 404C Pegasus under argon flow of 

150 mL/min.[56,57] Approximately 50 mg of powdered sample were sealed 

in a niobium ampoule under argon atmosphere and measured between 

ambient temperature and 1200°C at heating/cooling rates of 5 Kmin-1. An 

empty sealed niobium ampoule was used as reference material on a 

Netzsch DSC sample holder type S. Data analysis of the heating curves 

with respect to start, onset and maximum values of thermal effects was 

performed using the program Netzsch Proteus thermal analysis.[44,58] 

Solid-State NMR Spectroscopy 

NMR sample preparation and measurement techniques: Static 27Al NMR 

experiments have been performed on both regular and magnetically 

aligned powder samples.[17,30–33] Therefore, the polycrystalline powder 

samples were mixed with two-component glue (UHU endfest 300) and 

filled into quartz glass tubes of 5 mm in diameter. The hardening process 

of the glue-powder suspension was done outside or inside the magnetic 

field to achieve regular and aligned powder samples, respectively. The 

NMR experiments were performed by using a Bruker AVANCE III 

spectrometer with a magnetic field of B0 = 9.40 T. The corresponding 27Al 

frequency is 104.269 MHz. All signals are referenced to a solution of 

Al(NO3)3 in D2O.[59,60] The static (no sample spinning) NMR experiments 

were performed with a low-Q automatic tuning matching goniometer 

(ATMG) probe system[33]. Wideline measurements were performed on 

aligned powder samples using an echo sequence with pulses of equal 

duration (1.75 µs). To avoid lineshape distortions the interpulse delay 

was optimised to 100 – 200 µs. Regular powder samples were measured 

by applying a series of selective excitation experiments (frequency 

sweep)[17,30,61] with low power pulses of 50 and 25 µs duration for SrAl4 

and BaAl4, respectively. All experiments were performed using eightfold 

cycle of pulse sequences with a cycle delay of 0.25 s. 

Definitions and data analysis: The polycrystalline powder samples of 

M(Al1-xGax)4 with M = Sr, Ba comprise a statistic distribution of the 

crystallite orientations in the pristine stage, which is described as regular 

powder.[17,30–33] As soon as these samples experience a strong magnetic 

field (such as the one of the NMR experiment) the crystallites align in a 

preferred orientation with respect to the direction of the magnetic field. 

This is due to the intrinsic anisotropic conductivity of the material and its 

interaction with the magnetic field, the so-called Lorentz force, which is 

minimised by the preferred orientation. Powder samples with crystallites 

in such a preferred orientation are referred to as aligned powders.[17,30–33] 

The dominant NMR interactions for M(Al1-xGax)4 with M = Sr, Ba are 

quadrupolar coupling, chemical and Knight shift. The main component of 

the EFG Vzz and the asymmetry parameter Q describe the quadrupolar 

coupling.[30] The shift interactions, chemical shielding and Knight shift, 

cannot be separated experimentally and are therefore represented by the 

mailto:crysdatat@fizkarlsruhe.de
http://www.fiz-karlsruhe.de/request_for_deposited_data.html


FULL PAPER                Pecher et al. MAlGa4 for Chem. Eur. J.2016, accepted (13/08/2016) 

 

 

11 / 13 

 

following set of parameters: the complete isotropic iso and anisotropic 

shift aniso as well as the asymmetry parameter 
[30,33] NMR signal 

lineshape analysis was performed using MATLAB scripts that enabled 

simultaneous least square fits of multiple NMR data sets for one sample. 

For aligned powders a reduced powder average was implemented to 

describe the orientation of B0 with respect to the NMR coupling tensors 

based on QM calculations and the crystallite orientations.[46] For all local 

atomic environments with  = Q = 0 the interaction tensors main 

component is parallel to the crystallographic c axis. With asymmetry 

parameters deviating from zero the coupling tensor can take other 

orientation. For aligned crystallites the c axis is perpendicular to B0. 

Therefore for  = Q = 0 the tensor main components are disc-like 

distributed with respect to B0. A more complex orientation of the NMR 

coupling tensors is possible in case of /Q ≠ 0 since the symmetry 

constraints no longer exist.[17,33] As already successfully established for 

similar fits of Ga NMR data, we carefully checked the influence of non-

equal orientations of the shift and quadrupole tensor on the NMR signal 

fit and found no significant difference on the fit quality for the present Al 

NMR data. Hence, we assume identical orientations of shift and 

quadrupole interaction tensors throughout the data analysis. 

QM Calculations 

The VASP program package[45] based on the Plane Augmented Waves 

(PAW)[62] method using the Local Density Approximation (LDA) was 

employed for crystal structure optimisations. For all calculations the 

energy cut-off for the plane waves was set to 500 eV, the convergence 

criteria for the electronic relaxation was set to 1×10-6 eV and for the ionic 

relaxation to -5×10-3 eV. Nine models using the BaAl4 type unit cell for 

M(Al1-xGax)4 with M = Sr, Ba and x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 

0.75, 0.875, 1 were utilised with a 10×10×5 k-grid. An estimation of the 

formation energies of the elements Sr(fcc)[63], Ba(bcc)[63], Al(fcc)[39,63], and 

-Ga[40,63] was performed applying the identical convergence criteria and 

a 30×30×30 k-grid. The 3×3×2 SLS of M(Al1-xGax)4 with M = Sr, Ba and x 

= 0.007, 0.014, 0.986, and 0.993 with up to 180 atoms, were used to 

model isolated and adjacent substitution centres. The SLS were 

generated according to the Bärnighausen formalism.[47] To check for the 

influence on the symmetry constraints the calculations were also 

performed in space group P1. These were sampled with a 4×4×2 k-grid 

applying the same convergence criteria mentioned above. After structure 

optimisation in the VASP program package the EFG was calculated 

using the Full Potential Linear Augmented Plane Wave (FP-LAPW) 

method as implemented in the Wien2k code.[46] As exchange and 

correlation functional the build in GGA PBE option was selected.[62] As 

basis set size we chose RMT×Kmax = 7 and the default separation energy 

of -6.0 Rydberg for all calculations. The unit cells of the binary 

compounds were sampled with an 8×8×8 k-grid and the SLS with a 

2×2×1 k-grid, respectively. 
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