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ABSTRACT
Inducible loss of gene function experiments are necessary to uncover
mechanisms underlying development, physiology and disease.
However, current methods are complex, lack robustness and do not
work in multiple cell types. Here we address these limitations by
developing single-step optimized inducible gene knockdown or
knockout (sOPTiKD or sOPTiKO) platforms. These are based on
genetic engineering of human genomic safe harbors combined with
an improved tetracycline-inducible system and CRISPR/Cas9
technology. We exemplify the efficacy of these methods in human
pluripotent stem cells (hPSCs), and show that generation of
sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled
individual or multiplexed gene knockdown or knockout in hPSCs and
in awide variety of differentiated cells. Finally, we illustrate the general
applicability of this approach by investigating the function of
transcription factors (OCT4 and T), cell cycle regulators (cyclin D
family members) and epigenetic modifiers (DPY30). Overall,
sOPTiKD and sOPTiKO provide a unique opportunity for functional
analyses in multiple cell types relevant for the study of human
development.

KEY WORDS: Human pluripotent stem cells, shRNA, CRISPR/Cas9,
OCT4, POU5F1, T, brachyury, DPY30

INTRODUCTION
Loss-of-function experiments in human pluripotent stem cells
[hPSCs; comprising human embryonic stem cells (hESCs) or
human induced pluripotent stem cells (hiPSCs)] provide a unique
opportunity to study the mechanisms that regulate human
development, physiology and disease (Avior et al., 2016;
Pourquié et al., 2015; Zhu and Huangfu, 2013). However,

functional genomic applications of hPSCs are currently limited by
the lack of an easy and efficient method to conditionally manipulate
gene expression in both hPSCs and hPSC-derived cells. Indeed,
such a system is necessary both for the study of genes essential for
hPSC self-renewal and for functional analyses at specific stages of
differentiation.

Historically, the expression of inducible short hairpin RNAs
(shRNAs) has been the most popular method to trigger gene
knockdown in human cells. This has been achieved using a TET-
ON system, which relies on a modified RNA polymerase (Pol) III
promoter that is responsive to a tetracycline-sensitive repressor
protein (tetR) to induce shRNA expression by simple tetracycline
(TET) treatment (Lambeth and Smith, 2013). Nevertheless,
application of this TET-ON system in hPSCs has proved
challenging for two main reasons: (1) tight control of shRNA
expression is difficult to achieve, thereby resulting in uncontrolled
knockdown; (2) induction of shRNA rarely works in differentiated
derivatives. Indeed, very high and homogenous expression of both
the tetR and the inducible shRNA is required to obtain potent yet
controlled knockdown. However, transgene silencing is a recurring
problem in hPSCs (Ellis, 2005; Herbst et al., 2012; Yao et al., 2004),
and randomly integrated promoters are often subject to positional
effects that can strongly limit their activity (Zafarana et al., 2009).
Differentiation further increases the chances of silencing, as
transgenes can be located in regions where heterochromatin forms
following cell fate choices (Herbst et al., 2012; Raya et al., 2009).
As a consequence, inducible shRNA expression in both hPSCs and
a wide variety of their differentiated progenies has never been
reported.

More recently, CRISPR/Cas9-mediated gene knockout has
emerged as a powerful method to interrogate gene function
(Wright et al., 2016), and inducible manipulation of gene
expression in hPSCs using this approach has been reported
(Chen et al., 2015; González et al., 2014; Mandegar et al., 2016).
However, these methods are either very complex and time
consuming, as they involve multiple genome editing steps that
need to be individually tailored for each gene to be examined
(Chen et al., 2015), or are not widely applicable in multiple
differentiated cell types as they rely on inducible promoters that are
not stably and homogeneously expressed following hPSC
differentiation (González et al., 2014; Haenebalcke et al., 2013;
Mandegar et al., 2016; Ordovas et al., 2015). Overall, there are
currently no methods for inducible gene knockout in hPSCs that
fulfill all the criteria described above.

Here we describe novel platforms for single-step optimized
inducible gene knockdown or knockout (sOPTiKD or sOPTiKO)
that address all the limitations of current inducible shRNA or
CRISPR/Cas9 systems, thus providing powerful and scalableReceived 31 March 2016; Accepted 7 October 2016
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platforms that have the potential to greatly simplify the study of
human gene function.

RESULTS
Validation of the ROSA26 and AAVS1 loci as genomic safe
harbors in hPSCs and their differentiated derivatives
We aimed to develop optimal conditional loss-of-function platforms
using inducible shRNAs or guide RNAs (gRNAs) for CRISPR/
Cas9. We reasoned that inserting each element of the TET-ON
system into a different genomic safe harbor (GSH; Sadelain et al.,
2012) would maximize expression in hPSCs and their differentiated
progenies while avoiding potential promoter interference (Shearwin
et al., 2005). The AAVS1 and ROSA26 loci appeared particularly
suitable for this purpose as these GSHs have been suggested to

allow strong expression of various transgenes in hPSCs, including
constitutively expressed shRNAs (DeKelver et al., 2010;
Hockemeyer et al., 2009; Irion et al., 2007). We first improved the
targeting efficiency for both GSHs by developing a CRISPR/
Cas9n-based gene-trap strategy to target the human ROSA26 locus
(Fig. 1A,B, Fig. S1A) and by refining an existing zinc-finger
nuclease (ZFN)-based targeting strategy for the AAVS1 locus
(Hockemeyer et al., 2009) (Fig. 1A,B). In both cases, hPSC
targeting occurred with very high efficiency (59-100%; Table S1),
while neither ROSA26 nor AAVS1 modifications resulted in
chromosomal abnormalities (data not shown).

We then sought to identify the most efficient promoter to drive
constitutive transgene expression from GSHs. We tested the ability of
different promoter configurations to express an enhanced green
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Fig. 1. Validation of the ROSA26 and AAVS1 loci as bona fide genomic safe harbors. (A) Experimental approach behind the generation of genomic safe
harbor (GSH) EGFP reporter hPSCs to test GSH expression during differentiation. Neurons, oligodendrocytes and astrocytes were obtained in bulk cultures
containing a mixture of these cell lineages, whereas all other cell types were individually generated. (B) ROSA26 and AAVS1 EGFP reporter transgenic alleles.
R26-prom, ROSA26 locus promoter; AAV-prom, AAVS1 locus promoter; 5′-HAR/3′-HAR, upstream/downstream homology arm; SA, splice acceptor; T2A, self-
cleaving T2A peptide; Neo, neomycin resistance; Puro, puromycin resistance; pA, polyadenylation signal; CAG, CAG promoter. (C) Summary of EGFP flow
cytometry quantification experiments in the indicated cell types generated from GSH EGFP reporter hPSCs (abbreviations indicate the lineages described in A).
The percentage of EGFP-positive cells and the EGFP median fluorescence intensity (MFI) are reported. Wild-type hESCs (H9) were used as negative controls,
and results are from two independent cultures per lineage. (D) Representative immunofluorescent stainings for lineage-specific markers in three of themature cell
types analyzed. EGFP fluorescence from the reporter lines is in green, and DAPI (blue) shows nuclear staining. Scale bars: 200 μm.
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fluorescent protein (EGFP) transgene from the ROSA26 locus in
hESCs (Fig. S1A,B). The highest and most homogenous EGFP
expression (100%) was achieved with the artificial CAG promoter
(Fig. S1C-E), which was stronger by an order of magnitude than the
endogenousROSA26promoter (Irion et al., 2007). Interestingly, and in
contrast to previous reports (Ramachandra et al., 2011), we observed
that the EF1α (EEF1A1) promoter was strongly silenced, as shown by
mosaic EGFP expression (Fig. S1C-E). Similar results were obtained
after EGFP targeting into the AAVS1 locus (data not shown), thereby
preventing the use of this promoter in subsequent experiments.
To further evaluate the robustness of theCAGpromoter activity, we

analyzed in detail hESCswith heterozygous or homozygous targeting
of a CAG-EGFP transgene in the ROSA26 orAAVS1 loci (Fig. 1A,B).
For both GSHs EGFP was homogeneously expressed at high and
comparable levels for more than 30 passages (Fig. S1F), and similar
results were obtained after differentiation of hESCs into the three
primary germ layers (Fig. S1G-M). Importantly, targeting did not
interferewith pluripotency or differentiation, as shown by appropriate
expression of lineage markers (Fig. S1N,O).We further differentiated
these EGFP-hESC lines into fifteen different cell types (Fig. 1A), and
both GSHs allowed homogeneous and strong EGFP expression in all
cell types analyzed (Fig. 1C,D, Fig. S2). Overall, these results validate
the ROSA26 and AAVS1 loci as suitable for robust transgene
expression in both hPSCs and their derivatives.

Development of an optimized inducible knockdown platform
in hPSCs
Having demonstrated the suitability of the ROSA26 and AAVS1 loci
for transgene expression, we developed a TET-ON inducible
knockdown system based on dual GSH targeting (Fig. 2A,
Fig. S3A). To simplify knockdown evaluation and method
optimization we generated hESC lines in which an EGFP
transgene could be silenced in an inducible fashion (Fig. 2B). To
achieve this we targeted: (1) a CAG-tetR expression cassette into the
ROSA26 locus; and (2) a CAG-EGFP transgene plus an inducible
EGFP shRNA cassette into the AAVS1 locus (Fig. 2A,B).
Interestingly, we observed a strong and homogeneous decrease in
EGFP fluorescence following tetracycline treatment for 5 days
(>95%; Fig. 2C), thereby confirming efficient knockdown.
However, a decrease in EGFP expression was also noticed in the
absence of tetracycline (Fig. 2C), suggesting a significant leakiness
in the expression of the shRNA and thus confirming previous
reports (Henriksen et al., 2007).
We then hypothesized that this limitation could be bypassed by

expressing higher levels of the tetR protein to more strongly repress
shRNA expression in the absence of tetracycline. We performed a
multi-parameter RNA and codon optimization of the bacterial tetR
cDNA (Fath et al., 2011) and used the resulting codon-optimized
tetR (OPTtetR) to generate new EGFP inducible knockdown hESC
lines (Fig. 2B). This modification achieved a tenfold increase in tetR
expression compared with the standard sequence (STDtetR;
Fig. 2D). Furthermore, homozygous expression of OPTtetR was
sufficient to completely prevent shRNA leakiness while fully
preserving efficient knockdown induction (Fig. 2C, Fig. S3B). Of
note, the inducible knockdown was rapid, reversible and dose
responsive (Fig. 2E,F, Fig. S3C-E). Finally, inducible hESCs
displayed a normal karyotype (data not shown), demonstrating that
the genome engineering necessary to create these lines did not alter
their genetic stability.
Based on these encouraging results, we further validated this

method in the context of endogenous genes by generating hESCs
carrying inducible shRNAs against OCT4 (POU5F1) or B2M

(Fig. S3F). Remarkably, all the sublines analyzed (six for each gene)
showed robust inducible knockdown with no significant shRNA
leakiness (Fig. S3G,H). Tetracycline titration identified optimal
concentrations to partially or fully knockdown OCT4 (Fig. 2G,
Fig. S3I,J). As expected, a strong decrease in OCT4 specifically
resulted in loss of pluripotency and induction of neuroectoderm and
definitive endoderm markers (Fig. 2H, Fig. S3I,J) (Thomson et al.,
2011; Wang et al., 2012). Similar results were obtained with 20
additional OCT4 inducible knockdown hESC sublines, confirming
the robustness and reproducibility of this method (Fig. S3K).
Importantly, the generation of hESCs with strong and tightly
regulated knockdown was so efficient that phenotypic analyses
could be performed immediately after antibiotic selection on a
mixed population of cells, thereby entirely bypassing the need to
pick individual colonies for clonal isolation (Fig. S3K).

Overall, these results establish that dual targeting of GSHs with
an optimized inducible knockdown system is a powerful method to
control gene expression in hPSCs. This approach is hereafter named
optimized inducible knockdown, or OPTiKD (Fig. 2A, Fig. S3F).

Single-step generation of optimized inducible knockdown
hPSCs
We then sought to further improve the OPTiKD system by
developing an all-in-one targeting approach that would facilitate
the rapid and scalable generation of inducible knockdown hPSCs.
We constructed a single AAVS1 targeting vector to carry both the
inducible shRNA and the CAG-tetR expression cassette (Fig. 3A),
and validated this approach by knocking down the expression of an
EGFP transgene targeted in the ROSA26 locus (Fig. S3L).
Remarkably, this method shared key properties with OPTiKD,
such as both the absence of shRNA leakiness (Fig. S3L,M) and
rapid, reversible and dose-responsive inducible knockdown
(Fig. S3N,O). Thus, this all-in-one strategy, which we named
single-step optimized inducible knockdown, or sOPTiKD (Fig. 3A),
is as efficient as our original dual targeting approach.

To further demonstrate the versatility of sOPTiKD, we generated
both hESC and hiPSC lines carrying an inducible shRNA against
OCT4 or B2M. Generation of sOPTiKD hPSCs following
lipofection was rapid (2 weeks) and extremely efficient, as all
the sublines generated showed robust inducible knockdown
(Fig. 3B,C). qPCR analyses confirmed that knockdown of OCT4
using sOPTiKD induced differentiation of both hESCs and hiPSCs,
whereas knockdown of B2M had no effect (Fig. 3D). Overall, these
experiments show that sOPTiKD provides an efficient system to
knock down gene expression that can be easily applied to a large
number of hPSC lines.

Finally, we explored whether sOPTiKD could enable
simultaneous knockdown of multiple genes (Fig. 3E). We focused
on the cyclin D family (CCND1, CCND2 and CCND3). These cell
cycle regulators are functionally redundant, and thus their study in
hESCs has previously required laborious multiple rounds of stable
shRNA transfection in order to achieve double or triple knockdown
(Pauklin and Vallier, 2013). We developed a method to easily
combine multiple shRNAs into the same targeting vector using a
one-step Gibson assembly, and generated sOPTiKD plasmids
carrying one, two or three shRNAs against cyclin D genes or
scrambled control shRNAs (Fig. 3E). These vectors were tested in
hESCs without isolation of clonal sublines, and inducible
knockdown proved highly efficient and comparable with single,
double and triple shRNA constructs (Fig. 3F). Interestingly,
prolonged knockdown of one or two cyclin Ds was compatible
with hESC self-renewal (Fig. 3G), whereas triple knockdown
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resulted in definitive endoderm differentiation (Fig. 3G,H), as
previously reported (Pauklin and Vallier, 2013; Pauklin et al.,
2016). Collectively, these results demonstrate that sOPTiKD can be
used to simultaneously decrease the expression of several genes
with redundant functions.

Validation of the optimized inducible knockdown platforms
in differentiated progenies of hPSCs
The capacity to knock down genes in a variety of differentiated cells
would represent a significant advance over existing systems for
inducible gene knockdown. To thoroughly test this possibility, we

analyzed the efficacy of the OPTiKD and sOPTiKD platforms to
knock down an EGFP transgene in hPSCs differentiated into the
three germ layers, as well as in a panel of 13 fully differentiated cell
types (Fig. 1A). For both methods, qPCR analyses demonstrated
strong and inducible knockdown of EGFP transcripts in all lineages
tested (Fig. 4A). Microscopy observations confirmed a robust
decrease in EGFP protein expression (Fig. 4B), and flow cytometry
showed a decrease in EGFP fluorescence of more than 70% for most
lineages (Fig. S4A-G).

Interestingly, EGFP was less reduced in cell types with slower
proliferation rates (Fig. S4A). Since EGFP has an extended half-life
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of more than 24 h, protein loss upon transcriptional or post-
transcriptional inhibition relies heavily upon its gradual dilution
following cell division (Li, 1998). Considering the strong decrease
in EGFP mRNA, we concluded that residual EGFP fluorescence

was likely to be a consequence of the relatively short tetracycline
treatment performed to trigger knockdown (5 days). To test this,
we induced prolonged EGFP knockdown in postmitotic
cardiomyocytes, and we indeed observed a slow but constant
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decrease in protein expression for up to 20 days, at which point the
EGFP was decreased by more than 75% (Fig. S4H,I). To reinforce
these observations, we performed similar experiments using a
ROSA26-targeted EGFP reporter transgene fused to a
destabilization domain (EGFPd2; Li et al., 1998), which avoids
confounding effects due to the long half-life of standard EGFP (Fig.
S4J-M) (Wahlers et al., 2001). Remarkably, EGFPd2 inducible
knockdown in cardiomyocytes using the sOPTiKD method resulted
in >90% protein knockdown after 5 days of tetracycline treatment
(Fig. S4N,O). Considered together, these results establish that
OPTiKD and sOPTiKD allow efficient manipulation of gene
expression even after differentiation of hPSCs.

Inducible knockdown of T (brachyury) during mesendoderm
differentiation of hPSCs
We then sought to exemplify the use of OPTiKD and sOPTiKD to
rapidly and efficiently evaluate endogenous gene function in a
variety of cell types and at different stages of hPSC differentiation
related to embryonic development. First, we focused on the master
developmental regulator T (brachyury), which plays an essential
role in mesoderm formation and, in particular, during the
development of posterior mesoderm, notochord and somites
(Martin, 2015; Papaioannou, 2014). Indeed, mice carrying a
heterozygous mutation in T exhibit a short tail phenotype, while
homozygous mutations are embryonic lethal at around 9.5 dpc
(Dobrovolskaia-Zavadskaia, 1927; Gluecksohn-Schoenheimer,
1944). T mutants also present severe cardiovascular and placental
defects (David et al., 2011; Inman and Downs, 2006; King et al.,
1998). Furthermore, T was recently shown to specifically regulate
mesoderm but not endoderm differentiation in hPSCs (Faial et al.,
2015).
To investigate the role of T during the differentiation of hPSCs we

combined T sOPTiKD sublines with culture conditions known to
drive the differentiation of hPSCs into subpopulations that
recapitulate different portions of the primitive streak and their
derived lineages (Fig. 5A) (Bernardo et al., 2011; Cheung et al.,
2012; Mendjan et al., 2014; Touboul et al., 2010). Inducible
knockdown of T was robust in all cell types analyzed (Fig. 5B,C,
Fig. S5A,B), confirming the efficiency of sOPTiKD to knock down
developmental genes. Decrease in T expression did not affect
definitive endoderm specification, while differentiation into
posterior primitive streak cells, cardiac mesoderm and lateral plate
mesodermwas mildly impaired (Fig. 5D, Fig. S5C). By contrast, the
generation of late primitive streak progenitors (recapitulating the
onset of somitogenesis) and their further specification into
presomitic mesoderm and chondrocytes were severely affected
following inducible knockdown of T (Fig. 5D-G). In particular,
induction of TBX6, MSGN1 and MEOX1 was nearly abolished, in
agreement with the established role of T in the expression of such
genes (Chapman et al., 1996; Faial et al., 2015; Martin, 2015).
Collectively, these results strikingly recapitulate the known role

of T during early embryonic development, thereby demonstrating
the versatility of OPTiKD platforms to study the mechanisms of
human development in vitro.

Inducible knockdown of DPY30 at various stages of hPSC
differentiation reveals stage- and lineage-specific functions
We then aimed to demonstrate the suitability of the OPTiKD
platforms to investigate the function of genes that are not only
expressed during early development, but also in differentiated cells.
We focused on DPY30, a ubiquitously expressed co-factor of the
COMPASS histone methyltransferase complexes required for

histone H3 lysine 4 trimethylation (H3K4me3) (Jiang et al.,
2011). This epigenetic modifier is necessary for mouse early
embryonic development, as its knockout leads to impaired
gastrulation associated with ectopic neuralization of the post-
implantation epiblast (Bertero et al., 2015). Similarly, DPY30 is
required for hESC pluripotency (Bertero et al., 2015), and this early
role had prevented further studies of its function during
differentiation. Finally, Dpy30 has been implicated in mouse
ESC differentiation and in the proliferation and differentiation of
hematopoietic progenitors (Jiang et al., 2011; Yang et al., 2014).
Consequently, we decided to employ our inducible knockdown
platform to bypass the early function of DPY30 in hPSCs and
specifically suppress its expression during differentiation
(Fig. 6A).

First, we generated DPY30 OPTiKD hESC sublines (Fig. S6A),
and confirmed that inducibleDPY30 knockdown in undifferentiated
hESCs impaired the expression of pluripotency genes and triggered
neuroectoderm differentiation (Fig. 6B, Fig. S6B), as shown
previously (Bertero et al., 2015). We then analyzed the function
of DPY30 during lineage specification by differentiating DPY30
OPTiKD hESCs into five different cell types while inducingDPY30
knockdown from the induction, specification or maturation stages
(Fig. 6A). qPCR confirmed the decrease in DPY30 expression in all
the cells generated (Fig. S6C-H). Interestingly, phenotypic analyses
demonstrated that DPY30 knockdown from the early induction of
cardiac specification impaired cardiomyocyte differentiation, as
shown by the decrease in contractile markers (Fig. 6C). However,
knockdown at later stages had no significant effects (Fig. 6C). A
similar result was observed for the hepatocyte lineage, since
decrease of DPY30 expression in endoderm progenitors led to
extensive cell death at the anterior foregut stage thereby preventing
further differentiation (Fig. S6I). Similarly, specification of
pancreatic endocrine cells was also impaired by knockdown of
DPY30 in the initial stage of differentiation (Fig. 6D). However,
neither hepatocyte nor pancreatic endocrine cell specification was
significantly affected by knockdown of DPY30 in maturing
progenitors or differentiated cells (Fig. 6D,E, Fig. S6I). By
contrast, neuronal differentiation was promoted following DPY30
knockdown during the induction of neuroepithelial progenitors
(Fig. S6J). Finally, DPY30 knockdown at any stage during smooth
muscle cell differentiation had no effect on the expression of key
lineage markers (Fig. S6K).

Considered together, these data confirm a key role for DPY30
during germ layer specification while suggesting that the
requirement for DPY30 expression could vary during the
differentiation and maturation of specific lineages (Fig. 6E).
Overall, these experiments illustrate how the optimized inducible
knockdown platform can be easily applied to acquire novel
information about developmental mechanisms by performing
functional studies at different steps of hPSC differentiation into
multiple cell types.

Development of an optimized inducible CRISPR/Cas9
knockout platform in hPSCs
Having established an optimized inducible knockdown platform,
we turned our attention to developing a complementary inducible
knockout approach. Current inducible CRISPR/Cas9 methods rely
on conditional overexpression of Cas9 in the presence of a
constitutively expressed gRNA (González et al., 2014; Mandegar
et al., 2016). In this case, control of Cas9 overexpression is achieved
by a TET-ON method in which, following doxycycline treatment, a
tetracycline-controlled reverse transactivator (rtTA) activates a Pol
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II-dependent tetracycline-responsive element (TRE) promoter (a
fusion between multiple TET operons and a minimal CMV
promoter). Although this TET-ON platform has been successfully
applied to certain human cell types (Qin et al., 2010), we observed

that this inducible system is silenced during hPSC differentiation
into multiple lineages (including cardiomyocytes, hepatocytes and
smooth muscle cells), even after targeting into the AAVS1 GSH
(Fig. S7). These observations reinforce previous reports
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(Haenebalcke et al., 2013; Mandegar et al., 2016; Ordovas et al.,
2015) and demonstrate that recently described systems for inducible
CRISPR/Cas9 (González et al., 2014; Mandegar et al., 2016) are
unlikely to work in a diversity of hPSC-derived cell types. For this
reason, we explored the possibility of developing an alternative and
improved method by combining a constitutively expressed CAG
promoter-driven Cas9 with an inducible gRNA cassette based on

that developed for inducible shRNA expression in sOPTiKD
(Fig. 7A,B).

We generated hESC lines in which a fluorescent reporter gene
could be knocked out in an inducible fashion (Fig. 7C). For this, we
targetedROSA26-EGFPd2 reporter hESCs (Fig. S4J,K)with both an
inducible EGFP gRNA and a constitutive Cas9 in the AAVS1
locus, each transgene being integrated into one of the two alleles
(Fig. 7C,D). This dual targeting approach was rapid (<2 weeks) and
efficient (>90% of lines containing both transgenes; Table S1).
Remarkably, when individual clonal sublines were grown in the
presence of tetracycline we observed decreased EGFPd2 expression
in all of the targeted lines, and EGFPd2 homozygous cells showed
near-homogeneous loss of at least one copy of the reporter gene as
early as 5 days following tetracycline induction (as demonstrated by
50% reduction in EGFPd2 fluorescence, Fig. S8A). Prolonged
treatment with tetracycline progressively led to the complete loss of
EGFPd2 fluorescence in up to 75% of EGFPd2 homozygous cells
(Fig. 7E,F, Fig. S8A,B). Interestingly, co-expression of either two or
three copies of the same EGFP gRNA cassette from the same AAVS1
locuswas sufficient to significantly increase the speed and efficiency
of inducible EGFPd2 knockout in all the clonal sublines analyzed
(Fig. 7H,I, Fig. S8A). For instance, simultaneous induction of three
copies of the same gRNA resulted in a remarkable 95% knockout
efficiency following tetracycline treatment (Fig. 7I). Importantly,
inducible EGFPd2 knockout hESCs did not show any significant
decrease in the proportion of EGFPd2-positive cells nor in their
fluorescence after prolonged culture in the absence of tetracycline,
even when several gRNA copies were used (Fig. 7G, Fig. S8C,D).
This demonstrated that the inducible gRNA expression was tightly
controlled. Finally, testing of additional gRNAs against EGFPd2
revealed that the speed and efficiency of the inducible knockout
strongly relied on the gRNA. Indeed, an optimal sequence allowed
up to 90%knockout after only 2 days of induction (Fig. S8E,F,K). Of
note, the most efficient gRNA also resulted in uncontrolled EGFPd2
knockout (Fig. S8G), but this limitation was avoided by simply
adding a second TET operon to the inducible H1 promoter to ensure
even more stringent transcriptional control (Fig. S8H-K).

Collectively, these results show that the sOPTiKD system could
be readily repurposed to support inducible gRNA expression and
allow tightly controlled activity of CRISPR/Cas9 over a broad range
of gRNA potency (Fig. S8L). To the best of our knowledge, this is
the first conditional CRISPR/Cas9 approach based on inducible
gRNA expression. We named this method single-step optimized
inducible gene knockout, or sOPTiKO.

Validation of the optimized inducible CRISPR/Cas9 platform
in differentiated progenies of hPSCs
Having demonstrated that sOPTiKO allows efficient control of
CRISPR/Cas9 activity in undifferentiated hPSCs, we thoroughly
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tested its performance following differentiation. We differentiated
homozygous EGFPd2 inducible knockout cells carrying a single
copy of inducible EGFP gRNA into the three primary germ layers

and into five cell types of clinical interest (neurons, cardiomyocytes,
smooth muscle cells, hepatocytes and endocrine pancreatic cells).
Immunostaining for lineage-specific markers demonstrated that
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treatment with tetracycline resulted in strong loss of EGFPd2
expression (Fig. 8A-F, Fig. S9A,B) in all these cell types. Moreover,
flow cytometry quantification confirmed that inducible knockout
in differentiated cells was tightly controlled and efficient
(Fig. S9C-H). For example, 85% of neuronal cells and 75% of
smooth muscle cells completely lost EGFPd2 expression following
tetracycline treatment (Fig. S9C,F). Considered together, these
results validate that sOPTiKO allows efficient control of CRISPR/
Cas9 activity not only in hPSCs, but also into a large panel of mature
cell types (Fig. 8G).

DISCUSSION
This report describes sOPTiKD and sOPTiKO – two novel
platforms for inducible knockdown or knockout of gene
expression that address the limitations of previous methods.
Compared with alternative approaches that rely on viral
transduction or random integration of inducible shRNAs
(Lambeth and Smith, 2013; Zafarana et al., 2009), sOPTiKD is
simpler to use (plasmid based), quicker (2 weeks or less to generate
stable lines following a single step of gene targeting by lipofection),
more efficient (>95% of the resulting cells show inducible
knockdown), more scalable (isolation of clonal sublines can be
entirely bypassed) and significantly more robust (due to the use of
GSHs and the lack of leakiness). Furthermore, sOPTiKO shares
these same advantages, thus outperforming recent inducible
CRISPR/Cas9 methods that rely on the conditional expression of
Cas9 (González et al., 2014) or of a fusion protein between a
catalytically inactive Cas9 and the transcriptional repressor KRAB
(Mandegar et al., 2016). Indeed, these systems rely on the TRE
promoter, which is heavily silenced upon hPSC differentiation into
multiple lineages. Furthermore, these are lengthy two-step methods,
and expression of the gRNA is achieved either by transient
transfection, which can be poor in efficiency, or by random
integration of the gRNA, which can result in mosaic expression.
Finally, whereas CRISPR interference can only efficiently control
gene promoter activity (Mandegar et al., 2016), sOPTiKO allows
the deletion of a broader range of genomic targets, including regions
outside of promoters that might not have a direct role in
transcriptional regulation. Overall, sOPTiKD/KO are the first
inducible shRNA and CRISPR/Cas9 technologies that enable
streamlined functional studies of multiple genetic variants in hPSCs
and in a diversity of differentiated cell types (Fig. 8G).
sOPTiKD and sOPTiKO each presents distinct advantages. On the

one hand, the ability to control the level of knockdown using
sOPTiKD allows the study of genes for which complete loss-of-
function induces cell death, and facilitates the examination of gene
dosage mechanisms. On the other hand, phenotypic studies following
full gene knockout using sOPTiKO are more relevant in the case of
genes that are still functional even when expressed at low levels.
Moreover, sOPTiKO is applicable not only to genes, but also to non-
coding genomic regulatory regions, which could represent a majority
of disease-associated genetic traits (Cooper and Shendure, 2011).
Aside from the examples reported in this manuscript, we envision

several other potential applications of the sOPTiKD/KO technologies.
With regard to cellular and developmental biology, we anticipate that
sOPTiKO could efficiently accommodate variants of the Cas9 gene
with catalytically inactive domains (Dominguez et al., 2015). For
instance, Cas9 fusion proteins with epigenetic modifiers could allow
functional validations of putative genomic regulatory regions.
Similarly, sOPTiKD could be repurposed to drive other types of
inducible non-codingRNAs, such as antagomir ormiRNA sponges to
probe microRNA function (Ebert and Sharp, 2010). Remarkably, the

high targeting efficiency and scalability of sOPTiKD/KO could allow
high-throughput screenings by targeting inducible shRNA or gRNA
pools. Compared with viral-based approaches (Chen et al., 2012), the
isogenic integration of inducible shRNAs/gRNAs would reduce
heterogeneity in the targeted population, hence increasing the
screening sensitivity and specificity. With regard to disease
modeling applications, sOPTiKD/KO could allow the simultaneous
targeting of several hiPSC lines to probe gene function in different
genetic backgrounds. Such an approach could facilitate the
identification of genetic disease modifiers and the discovery of
novel potential drug targets in the context of personalized medicine.
Multiplex inducible gene knockdown or knockout could also be used
to model complex genetic disorders. Finally, sOPTiKD/KO could be
easily transferred to other cell types amenable to geneticmanipulation,
including established cell lines and adult stem cells (Drost et al., 2015;
Mandal et al., 2014), thus allowing functional studies in amultitude of
systems. In conclusion, we expect that sOPTiKD/KO technologies
will have a broad impact on our ability to study human development,
physiology and disease.

MATERIALS AND METHODS
hPSC culture and differentiation
Feeder- and serum-free hESC (H9 line; WiCell) and hiPSC (A1ATR/R line;
Rashid et al., 2010) culture and differentiation were as previously described
(Vallier, 2011). Details of media compositions and protocols are provided in
the supplementary Materials and Methods.

Gene targeting
Sequences of all plasmids used in this study are provided in Appendix S1,
and all cloning procedures and targeting experiments are described in detail
in the supplementary Materials and Methods. Briefly, AAVS1 targeting for
OPTiKD and sOPTiKD was performed by lipofection, while AAVS1
targeting for sOPTiKO was performed by nucleofection (Bertero et al.,
2015; Vallier et al., 2004). Clonal lines were selected using 1 μg/ml
puromycin (Sigma; for OPTiKD and sOPTiKD) or 25 μg/ml geneticin
(G418 sulfate, Gibco) and 0.5 μg/ml puromycin (for sOPTiKO).

Inducible gene knockdown and knockout
Unless otherwise described in the results or figure legends, tetracycline
hydrochloride (Sigma-Aldrich) was used at 1 μg/ml to induce gene
knockdown or knockout. Refer to the supplementary Materials and
Methods for details on the timing of DPY30 inducible knockdown during
hESC differentiation.

Analysis of RNA and protein expression
Quantitative real-time PCR (qPCR), western blot, flow cytometry and
immunofluorescence were performed according to standard protocols as
previously described (Bertero et al., 2015). Details, including the primer
sequences and antibodies used, are provided in the supplementary Materials
and Methods.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 6. The type and
number of replicates, the statistical test used, and the test results are
described in the figure legends. All statistical tests employed were two-
tailed. Unless stated otherwise in the figure legends, all graphical data are
presented as mean±s.e.m. No experimental samples were excluded from
the statistical analyses. Sample size was not pre-determined through power
calculations, and no randomization or investigator blinding approaches
were implemented during the experiments and data analyses. When
representative results are presented, the experiments were reproduced in at
least two independent cultures.
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