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Fluid-Rock Interactions in a Carbon Storage Site Analogue, Green River, Utah 

Niko Jan Sterland Kampman 

Reactions between CO2-charged brines and reservoir minerals might either enhance the long-term 

storage of CO2 in geological reservoirs or facilitate leakage by corroding cap rocks and fault 

seals. Modelling the progress of such reactions is frustrated by uncertainties in the absolute 

mineral surface reaction rates and the significance of other rate limiting steps in natural systems. 

This study uses the chemical evolution of groundwater from the Jurassic Navajo Sandstone, part 

of a leaking natural accumulation of CO2 at Green River, Utah, in the Colorado Plateau, USA, to 

place constraints on the rates and potential controlling mechanisms of the mineral-fluid reactions, 

under elevated CO2 pressures, in a natural system.  

The progress of individual reactions, inferred from changes in groundwater chemistry is 

modelled using mass balance techniques. The mineral reactions are close to stoichiometric with 

plagioclase and K-feldspar dissolution largely balanced by precipitation of clay minerals and 

carbonate. Mineral modes, in conjunction with published surface area measurements and flow 

rates estimated from hydraulic head measurements, are then used to quantify the kinetics of 

feldspar dissolution. Maximum estimated dissolution rates for plagioclase and K-feldspar are 

2x10
-14

 and 4x10
-16 

mol·m
-2

·s
-1

, respectively. Fluid ion-activity products are close to equilibrium 

(e.g. ∆Gr for plagioclase between -2 and -10 kJ/mol) and lie in the region in which mineral 

surface reaction rates show a strong dependence on ∆Gr. Local variation in ∆Gr is attributed to 

the injection and disassociation of CO2 which initially depresses silicate mineral saturation in the 

fluid, promoting feldspar dissolution. With progressive flow through the aquifer, feldspar 

hydrolysis reactions consume H
+
 and liberate solutes to solution which increase mineral 

saturation in the fluid and rates slow as a consequence. The measured plagioclase dissolution 

rates at low ∆Gr would be compatible with far-from-equilibrium rates of ~1x10
-13

 mol·m
-2

·s
-1

 as 

observed in some experimental studies. This suggests that the discrepancy between field and 

laboratory reaction rates may in part be explained by the differences in the thermodynamic state 

of natural and experimental fluids, with field-scale reactions occurring close to equilibrium 

whereas most laboratory experiments are run far-from-equilibrium.  

Surface carbonate deposits and cementation within the footwall of the local fault systems 

record multiple injections of CO2 into the Navajo Aquifer and leakage of CO2 from the site over 

ca. 400,000 years. The δ
18

O, δ
13

C and 
87

Sr/
86

Sr of these deposits record rapid rates of CO2 leakage 

(up to ~1000 tonnes/a) following injection of CO2, but rates differ by an order of magnitude 

between each fault, due to differences in the fault architecture. Elevated pCO2 enhances rates of 

feldspar dissolution in the host aquifer and carbonate precipitation in fracture conduits. Silicate 

mineral dissolution rates decline and carbonate precipitation rates increase as pH and the CO2 

charge dissipate. The Sr/Ca of calcite cements record average precipitation rates of ~2x10
-6

 

mol/m
2
/s, comparable to laboratory derived calcite precipitation rates in fluids with elevated 

Mn/Ca and Fe/Ca, at Ωcc of ~1 to 3. This suggests that far-from-equilibrium carbonate 

precipitation, which blocks fracture conduits and causes the leaking system to self-seal, driven by 

CO2 degassing in the shallow subsurface, can be accurately modeled with laboratory derived 

rates. Sandstones altered in CO2 leakage conduits exhibit extensive dissolution of hematite grain 

coatings and are chemically bleached as a result. Measurements of Eh-pH conditions in the 

modern fluid, and modeling of paleo-Eh-pH conditions using calcite Fe and Mn concentrations, 

suggests that the CO2-charged groundwaters are reducing, due to their low dissolved O2 content 

and that pH suppression due to high pCO2 is capable of dissolving and transporting large 

concentrations of metals. Exhumed paleo-CO2 reservoirs along the crest of the Green River 

anticline have been identified using volatile hosting fluid inclusions. Paleo-CO2-charged fluids 

mobilized hydrocarbons and CH4 from deeper formations, enhancing the reductive dissolution of 

hematite, which produced spectacular km-scale bleached patterns in these sediment.  
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Chapter 1  

Introduction 

 

1.1. Global Warming 

Climate change is one of the primary environmental concerns of the 21
st
 century. Over the past 

century, atmospheric carbon dioxide (CO2) concentrations have steadily increased, having now 

risen to over 387 ppm from the pre-industrial level of 280 ppm and are expected to continue 

rising at 2 ppm annually (IPCC, 2007). Increases in CO2 concentrations are attributed 

predominantly to the burning of oil, gas and coal for electrical generation, transportation, 

industrial and domestic uses, with deforestation and cement production making significant 

contributions.  

Interpretation of the temperature record on a scale of centuries to millennia indicates a 

slight increase in global average annual temperatures in the last 150 years, in the order of 0.76 °C 

(IPCC, 2007), and predictions are that, if emissions growth continues unabated, a warming of 1.1 

to 6.3 °C will be observed by the end of this century (IPCC, 2007). It is very likely and generally 

accepted that the main cause of the observed global warming is the increase in atmospheric 

concentrations of greenhouse gases, primarily carbon dioxide (CO2), methane (CH4) and nitrous 

oxide (N2O) (IPCC, 2007). Although a direct causal link between the rise in greenhouse gas 

concentrations in the atmosphere and global warming has not been demonstrated, significant 

circumstantial evidence points toward this link, which has been generally accepted by a broad 

segment of the scientific community (e.g. IPCC, 2007; AGU, 2003). And in agreement, 

increasing empirical evidence points to a causal relationship between elevated concentrations of 

green house gases in the atmosphere and changes in the radiative heat forcing, global surface 

temperatures and atmospheric pCO2 within the recent geological past (e.g. Crowley et al., 2003; 

Indermuhle et al., 1999; Keeling and Whorf, 2005; Petit et al., 1999; Tripati et al., 2009).  The 

detailed response of the highly nonlinear climate system to increasing CO2 concentration in the 

atmosphere, and to the resulting increased heat load, is uncertain because of the inherent 

complexity of the climate system and natural variability; however, the close coupling between the 

carbon cycle, including CO2 and CH4, and palaeo-climate suggests that changes in the former will 

be accompanied by changes in the latter (AGU, 1999). 
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1.1.1. Global Warming Mitigation 

Scientific consensus on global warming and the fear of abrupt climate change (IPCC, 2007; 

Schneider, 2004) is leading to increased efforts to develop new technologies and sciences in an 

attempt to mitigate global warming. Such climate change mitigation strategies include reducing 

demand for emissions-intensive goods and services, increasing efficiency gains, increasing use 

and development of low-carbon technologies, and reducing fossil fuel emissions (Parry et al., 

2007). A reduction in the release rate of CO2 to the atmosphere is considered an essential first 

step in the control of global warming.  It is widely agreed that for a rapid reduction in global CO2 

emissions to be successful a spectrum of new technologies and energy policies is required. 

Principally this will involve an increase in the utilization of non-fossil fuel based energy sources 

such as solar, wind, wave, nuclear and geothermal power and the sequestration of gas emissions 

from existing and future fossil or bio-fuel based power stations. Given predictions that a 

significant fraction of global energy production will continue to be generated from bio- or fossil 

fuels, CO2 emissions will continue into the next century (Coyle, 2009; Faiman et al., 2007; 

Shafiee and Topal, 2008). Thus a safe and secure method of sequestering CO2 out with the 

atmospheric system is being sought. Carbon sequestration can take many forms, including the 

direct sequestration of CO2 from the atmosphere through enhancement of surface silicate 

weathering, stimulation of surface ocean productivity, reforestation, physical sequestration of 

CO2 in the deep ocean and in geological environments, as well as mineral carbonation on 

exhumed or in-situ geological strata. Among these CO2 capture and geological storage, which 

entails CO2 capture from large industrial processes and injection into deep geological formations, 

plays an important role (IEA, 2005, 2006).  

1.2. Carbon Capture and Storage 

The capture of CO2 from large anthropogenic point sources and storage in geological formations 

including depleted oil and gas reservoirs, coal beds and aquifers has received increasing scientific 

attention as a safe and long-term storage option (Gale, 2004; Holloway et al., 2005). Geological 

storage can in addition be used in combination with enhanced oil or gas exploitation (CO2-EOR) 

(e.g. Damen et al., 2005). Whilst no immediate technological barriers inhibit the implementation 

of carbon capture and storage, uncertainty in our understanding of aspects of the physical and 

chemical impacts of long-term storage of CO2 in the subsurface undermines our ability to satisfy 

operational, regulatory and public acceptance criteria (Rudnicki and Wawersik, 1999). Globally 

distributed saline aquifers represent the largest single reservoir type for geological storage of 

anthropogenic CO2 (Bachu et al., 2005; Saylor and Zerai, 2004). The feasibility of storing CO2 in 

aquifers has been thoroughly discussed in the literature and continues to be debated. These 
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studies include an evaluation of the feasibility of CO2 aquifer storage (summarized in Cook, 

2006; Gale, 2004; Bachu, 2008). Recently, extensive experimental, field, and modeling studies of 

geological carbon storage have been conducted (Gaus, 2009; Gaus et al., 2005; Giammar et al., 

2005; Gunter et al., 1997; Holloway et al., 2007; Horita., 2002; Hovorka, et al, 2006, 2005; 

Johnson et al., 2001; Jones et al., 2006; Kaszuba, et al., 2003, 2005; Knauss et al., 2002; 

McPherson and Lichtner, 2001; Oelkers et al., 2005, 2008; Palandri and Kharaka, 2002, 2005; 

Pearce et al., 2006; Pruess et al., 2003; Rochelle et al., 1999; Rosenbauer, and Koksalan, 2002; 

Soong, et al., 2004;  Strazisar and Zhu, 2002; White et al., 2001; Xu et al., 2004, 2005, 2007). 

Whilst the engineered aspects of geological storage have been successfully demonstrated through 

a small number of commercial scale CO2-injection projects including Sleipner, Norwegian North 

Sea (Korbol and Kaddour, 1995); Snøhvit; Norway (Maldal and Tappel, 2004) and In Salah, 

Algeria (Rutqvist et al., 2009); and an increasing number of small-scale experimental projects 

including Ketzin, Germany (Schilling et al., 2009); Nagaoka, Japan (Kikuta et al., 2004); Frio, 

USA (Hovorka et al., 2006; Kharaka et al., 2006a, 2006b) and large-scale CO2-EOR projects at 

Weyburn, Canada (Emberley et al., 2004, 2005; Wilson and Monea, 2004) and Otway, Australia. 

A comprehensive summary of geological carbon storage is given by Bickle, (2009). 

1.2.1. CO2 Storage Integrity 

Carbon dioxide injected into saline aquifers below ~ 800 m water-depth will form a supercritical 

phase. The critical pressure and temperature of CO2 are 7.4 MPa and 31.1°C, corresponding to a 

critical density of 0.468 g/cm
3
 (Leitner, 2000). This is equivalent to reservoir depths of ca 800-

1500 m depending on local land surface temperature, heat flow and lithology. Supercritical CO2 

combines gas- (e.g. low viscosity, typically around 10
−4

 to 10
−3

 Pa·s for supercritical gases), and 

liquid- (e.g. high density, relative to gas) properties. A supercritical fluid is liable to very large 

changes of density, especially close to the critical point.  

Carbon dioxide is retained in geologic formations in four ways. First, CO2 can be trapped 

as a gas or supercritical fluid under a low-permeability caprock. The safety of the injected CO2 on 

a short timescale is related to buoyancy-driven flow of the immiscible part of the injected CO2 

and the trapping capabilities of the formation. Second, CO2 can become physically trapped within 

the reservoir pore space via residual or capillary trapping owing to surface tension phenomena in 

multiphase systems (e.g. Suekane et al., 2008; Taku Ide et al., 2007). Third, CO2 can dissolve into 

the groundwater, becoming trapped as a soluble phase. The dissolution of CO2 in groundwater 

increases the acidity of water and affects the solubilities of minerals composing the host rock 

matrix. Fourth, CO2 can react directly or indirectly with minerals and organic matter in the 

geologic formation leading to the precipitation of secondary carbonates and the solubilization of 

organic matter. The former process, so-called ‘mineral trapping’, is potentially attractive because 
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it could immobilize CO2 for long time-scales, and prevent its easy return to the atmosphere. The 

interaction of CO2 with alkaline aluminosilicate minerals will also result in the formation of 

soluble carbonates and bicarbonates in solution, thereby enhancing “solubility trapping”.  

The long-term containment of CO2 in the subsurface will depend on the performance of 

the materials sealing the host formation. Acceptable performance will need to be demonstrated in 

order to satisfy operational, regulatory and public acceptance criteria (Friedmann et al., 2007). 

Some of the CO2 injected into geological reservoirs is expected to dissolve relatively rapidly into 

formation waters and the resulting acidic solution will undergo geochemical reactions with host 

reservoir minerals and the reservoir seal which will ultimately control the long term containment 

and integrity of the stored CO2. These reactions may either stabilise the CO2 or enhance leakage. 

The nature and kinetics of the geochemical interactions between CO2, formation fluids, carbonate 

and silicate minerals in the reservoirs and their clay-rich caprocks are inadequately known (Gale, 

2004).  

Short term leakage from geological storage sites (see Oldenburg, (2007) for a complete 

summary) will involve process related to the buoyant migration of free phase CO2 laterally and 

vertically within the subsurface and may lead to introduction of CO2 into shallow potable aquifers 

(e.g. Nicot, 2008; Wang and Jaffe, 2004) and surface leakage (e.g. Beaubien et al., 2004). CO2 

leakage within the wellbore, via the cement casing and through existing wells is also of concern 

(e.g. Preuss, 2004; Nordbotten et al., 2005). Additionally, the leakage of CO2 from its host 

reservoir on longer timescales may be facilitated by migration through the caprock (Fleury et al., 

2009; Gherardi et al., 2007; Li et al., 2005; Morris et al., 2009) and via fracture networks and 

through the reactivation of local faults (Barnes et al., 1978; Irwin and Barnes, 1975; Kennedy et 

al., 1997; Pruess, 2005) under conditions of over-pressuring (e.g. Lewicki et al., 2007). The 

surface leakage of CO2 has a range of environmental (see Oldenburg and Unger, 2003) and 

economic impacts (see Zwaan and Gerlagh, 2009), a comprehensive summary is given by Bachu 

(2008). 

1.2.2. Modeling Long-term Storage Integrity: Insights at the Field-Scale  

Understanding the geochemical behaviour of anthropogenic carbon dioxide stored in geological 

reservoirs, over a range of time-scales, is crucial for quantifying the risk of leakage and the 

evolution of the sequestered form of that CO2 through the life of an individual storage site. The 

relatively low temperatures expected in typical storage sites imply rate-controlled systems that 

deviate from thermodynamic equilibrium (e.g. Lasaga, 1998; Lasaga and Luttge, 2004; Stumm 

and Morgan, 1996). Prediction of the long-term fate of this carbon dioxide requires determination 

of the relevant gas-fluid-mineral reactions and their chemical kinetics (e.g. Xu et al., 2004). 
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Figure 1.2-1 Reaction schemes showing the serial and parallel reactions occurring during the dissolution of 

anorthite. The protons formed by the CO2-dissolution branch (blue) will hydrolyse the plagioclase, 

resulting in the release of Ca
2+

 ions. The calcium and bicarbonate or carbonate ions form the parallel 

branches (red) will together result in the precipitation of calcite. For a complete discussion see Chapter 2. 

 

These gas-fluid-mineral reactions may act either to increase the stability of stored CO2 by 

precipitating carbonate minerals or enhance leakage by corroding well cements, existing 

boreholes, cap rocks and fault seals. Solubilisation of heavy metal bearing minerals in shallow 

groundwater systems is also of concern for the contamination of potable water sources (e.g. Wang 

and Jaffe, 2004). In addition, changes to the reservoir porosity and permeability structure, through 

clay and carbonate mineral precipitation, may alter injectivity and flow within the reservoir.  

The main gas-fluid-mineral reactions that will occur as a result of CO2 injection can be 

summarised by a number of serial and parallel reactions, as shown in Fig. 1.2-1. The rate-limiting 

step in such serial-parallel reaction sequences will in general be the slowest step of the fastest 

parallel branch. Amongst the above reactions, it is well established that the silicate dissolution 

reactions are likely to be the slowest and hence most important in controlling reaction progress 

(e.g. Sorai et al., 2005). The accurate modelling of CO2-fluid-mineral reactions therefore requires 

a robust knowledge of the dissolution kinetics as well as the solubilities of silicate and 

aluminosilicate minerals. 

Experimentally determined reaction rates and reaction product pathways have to-date 

been the major source of data used to constrain simulation of multicomponent, multiphase CO2-

fluid-rock systems (Gunter, 1996; Knauss et al., 2001; Johnson et al., 2001; Johnson and Nitao, 

2003, Xu et al., 2004, 2005, 2007). However, significant discrepancies have been found between 

the mineralogical products and reaction kinetics of natural and experimental systems (Brantley et 

al., 1993, 2007; Kim, 2002; Malmstrom et al., 2000; Taylor and Blum, 1995, 2000; White et al., 

1996; White and Brantley, 2003). 
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Figure 1.2-2 A compilation of field and laboratory dissolution rates for plagioclase plotted against the 

duration of the ‘experiment’. Significantly the natural dissolution rates are up to 5 orders of magnitude 

slower than, far-from-equilibrium, laboratory-derived rates at similar pH and temperature conditions. The 

cause of the discrepancy between experimental and in-situ reaction rates is uncertain but may reflect the 

proximity of natural systems to equilibrium, efficiency of solution/mineral contact, ageing of mineral 

surfaces, the nature of defects, etch pits and leached layers on mineral surfaces, surface coatings, gradients 

in solution chemistry in micro-pores and overestimates of dissolution rate for minerals with slow 

dissolution kinetics due to the lag in step density decrease following the change in dissolution mechanism 

from etch pit to step retreat as equilibrium is approached (e.g. Brantley and White, 2003).  

 

Modelling the progress of such reactions is frustrated by uncertainties in the absolute mineral 

surface reaction rates and the significance of other rate-limiting steps in natural systems (see 

White and Brantley, 2003 for a complete review). It is well established that silicate dissolution 

rates in the natural environment are typically 2 to 5 orders of magnitude slower than, far-from-

equilibrium, laboratory-derived rates at similar pH and temperature conditions (Fig. 1.2-2) (White 

and Brantley, 2003), and the laboratory rates are typically the only rates available for simulations 

(e.g. Knauss et al., 2005; White et al., 2005; Xu et al., 2004). Quantification of the kinetics of 

fluid-mineral reactions in natural systems, rich in CO2, is thus required for the accurate prediction 

of the long-term performance of geological storage sites.   
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1.2.3. Natural Analogues 

Carbon dioxide occurs naturally as a result of geologic processes in large, often high-purity 

(>90%) deposits in many sedimentary basins forming an ideal analogue to the subsurface storage 

of anthropogenic CO2 (Allis et al., 2005; Czernichowski-Lauriol et al., 1999; Evans et al., 2004; 

Gaus et al., 2005; Haszeldine et al., 2005; May, 2005; Moore et al., 2003, 2005; Pauwels et al., 

2007; Pearce et al., 1996, 1999, 2004; Stevens et al., 2001; Worden, 2006). Several CO2 fields in 

the United States, Hungary, France, Australia and Argentina have been exploited to provide 

injectant for enhanced oil recovery projects and industrial quality CO2 (Wycherley et al., 1999).  

The introduction of a volatile species such as CO2, be it anthropogenic or naturally 

produced, into subsurface geological reservoirs will result in chemical disequilibria and the 

initiation of various chemical reactions. Its abundance and the rapid kinetics of reactions 

involving dissolved carbonate species make it an important buffer of pH and a volatile component 

which dominates the overall equilibrium state of many natural systems (e.g. Coudrain-Ribstein et 

al., 1997; Hutcheon and Abercrombie, 1989, 1990; Hutcheon et al., 1992). In sedimentary 

formations the partial pressure of CO2 (pCO2) can be more than 10–100 times greater than 

atmospheric pCO2 at 25 °C (Coudrain-Ribstein et al., 1998; Gaucher et al., 2007). The 

mechanism of CO2 generation in some sedimentary basins and magmatic systems produces large 

quantities of CO2 which are able to migrate from its source through the basin interacting with 

reservoir fluids and minerals. 

Examination of natural analogue sites allows characterization of physiochemical 

processes, important for predicting the fate of geologically stored CO2, which cannot be captured 

at the laboratory scale and which, otherwise, would only be available through multiple, costly 

experimental CO2 injection projects.  These include observations, at the field-scale, of 1) 

multiphase flow where geophysical or isotopic constraints (such as stable or noble gas isotope 

systematics) are available; 2) gas-fluid-mineral reaction kinetics (and their inherent complexity in 

natural reservoirs with highly complex mineralogies, fluid chemistries and permeability 

structures); 3) the structural, hydrodynamic and geochemical controls on CO2 leakage, at a 

variety of temporal scales, which can only be made from natural observations (or from the failure 

of industrial CO2 storage projects).  

Access to fluids and gas samples from the deep subsurface is often difficult and costly. 

This thesis examines the geochemistry of a natural, leaking accumulation of carbon dioxide at 

Green River, Utah, in the Colorado Plateau, USA (Fig. 1.2-3) where fluid and gas effusion allows 

direct observation of physiochemical processes occurring in the subsurface.  
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Figure 1.2-3 The Colorado Plateau, located in the south western USA, is an extensive uplifted region 

covering portions of Utah, Colorado, Arizona and New Mexico. Natural accumulations of subsurface CO2 

gas are common in this province and the adjacent southern Rocky Mountain region, where eighteen CO2 

fields have been identified (Allis et al., 2001). Some CO2 fields, notably Bravo Dome (NM), McElmo and 

Sheep Mountain (CO), Farnham Dome (UT), Springerville (AZ), and Big Piney-LaBarge (WY) have been 

exploited for commercial purposes, mainly for enhanced oil recovery and dry ice production (Allis et al., 

2001). The source of the CO2 is considered to be dominantly volcanogenic, juvenile CO2 generated from 

Cenezoic magmatic activity and mantle degassing (Gilfillan et al., 2005, 2008, 2009). The gas reservoirs, 

usually sandstone or dolomite, lie in four way dip closed or anticlinal structures with mudstone or anhydrite 

top seals. Fault seals are common along the margins of the reservoirs (Allis et al, 2001; Shipton et al., 

2004). The commercially producing fields contain from 28 to 2800 billion m
3
 of CO2 gas (Allis et al., 

2001). The gases from the fields can be > 98% CO2 with trace quantities of N2 (4%), He (0.1-1%), Ar, and 

CH4 (Allis et al., 2001). Associated with these large subsurface CO2 accumulations is a region of  surface 

CO2 leakage near Green River, Grand and Emery County, Utah, the focus of this thesis. Significant 

volumes of CO2 escape to the surface in intimate association with the Little Grand and Salt Wash fault 

zones, along the northern edge the Paradox Basin. 

1.3. Project Aims and Scope 

Understanding the geochemical behaviour of anthropogenic carbon dioxide stored in geological 

reservoirs, over a range of time-scales, is crucial for quantifying the risk of leakage and the 
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evolution of the sequestered form of that CO2 through the life of an individual storage site. 

Observations from natural analogue sites provide insights into physical and chemical processes 

which differ at the field and laboratory scales. Direct measurement of the rate of CO2-promoted 

fluid-mineral reactions and quantification of their geochemical dependencies, in natural CO2-

charged groundwater systems can provide important insights into these processes over large 

physical and temporal scales. Several approaches have been employed in this project to assess the 

nature and rates of CO2-promoted fluid-mineral reactions and their controls. These have included 

hydrological and geochemical modelling of an active CO2-charged groundwater system from 

which rates of reactions where quantified using mass balance techniques and from petrological 

constrains on the reacting mineral properties. Measurement of the composition of secondary 

carbonate minerals, in conjunction with theoretical aspects of trace element incorporation in 

carbonates, was used to measure in-situ calcite precipitation rates. The synthesis of these 

approaches allowed quantification of their chemical controls and provides a possible explanation 

for the orders of magnitude difference in field-scale and laboratory mineral-fluid reaction rates. 

Observations of the long term performance of CO2 leakage from natural sites, via the 

examination of the geochemical and isotopic composition of dated near-surface carbonate 

deposits, is used to constrain the interplay of structural and chemical processes in controlling 

leakage sites and rates, the role of fluid-mineral interactions in generating and closing leakage 

pathways and their relation to geochemical processes in the host aquifer. These methods provide 

insights into leakage processes which cannot be discerned from present day measurements alone. 

Additionally, the relationship between the modern CO2-system and exhumed paleo-reservoirs, 

which exhibit extensive chemical bleaching were hematite grain coatings have been dissolved by 

the passage of diagenetic fluids, is investigated.  Various isotopic, petrological and geochemical 

methods, and observations from volatile-hosting fluid inclusions, are employed to investigate the 

mineralogical impact and nature of the volatile-rich diagenetic fluids. The identification of 

exhumed CO2 reservoir analogues has important implications for the future examination of CO2-

fluid-mineral reactions and transport processes at the field scale.   

1.4. Thesis Outline 

In Chapter 2 the general geology of the field area at Green River, Utah is briefly discussed and 

the CO2-leaking groundwater system is introduced. The thermodynamics of CO2 and CO2-fluid-

mineral reactions is then briefly discussed, the theory of which, is applied in many subsequent 

chapters. The CO2-spring geochemistry is then addressed. The isotopic composition of the 

effused fluids and gases are used to place constraints on the origin of the groundwater and CO2. 

Hydrological modelling is then used to place constraints on the flow paths between individual 
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springs. The fluid geochemistry is then addressed, supported by the hydrological modelling and 

thermodynamic considerations, to place constraints on the nature of the fluid-mineral reactions 

that control solute composition. Thermodynamic modelling is then used to quantify the in-situ 

CO2 solubility and place an upper limit on the degree of CO2 degassing experienced by the fluids 

during accent to the surface. Finally, time series fluid geochemistry from the largest of the CO2-

degassing springs, Crystal Geyser, is used to place constraints on the origin of the fluids, mixing 

processes in the subsurface and the role of cold water geysering in stimulating leakage from CO2-

rich groundwater systems. 

Chapter 3 utilizes the geochemical and hydrological models of Chapter 2, in conjunction 

with mass balance modelling techniques, and petrological measurements on the reacting mineral 

phases, to place constraints on the kinetics of the controlling fluid-mineral reactions, and their 

chemical dependencies, in the modern groundwater system. Comparable laboratory experiments 

are reviewed, the discrepancies discussed, and the implications for field-scale silicate mineral 

dissolution rates are evaluated. 

Chapter 4 uses petrological, isotopic and geochemical methods to investigate the history 

of CO2-leakage from the Green River anticline, recorded in surface and shallow subsurface 

carbonate deposits.  Isotopic measurements on U-Th dated carbonate deposits are used to 

reconstruct the last 400,000 year leakage history of the CO2 system and to place constraints on 

the style, location and duration of leakage and its relationship to fluid-mineral reactions in the 

host reservoir and in fracture conduits. Carbonate mineral compositions are used to constrain 

calcite precipitation rates in the modern setting and their controls and chemical dependencies are 

discussed. 

Chapter 5 uses petrological, isotopic and geochemical methods, in conjunction with a 

Raman microspectroscopy study of volatile hosting fluid inclusions, to investigate the nature of 

volatile rich diagenetic fluids which caused widespread chemical bleaching in Jurassic sandstones 

outcropping along the crest of the Green River anticline. Fluid inclusion Raman 

microspectroscopy and microthermometry are used to place constraints on the composition of the 

volatile phase(s) and the timing of this alteration. Its relation to chemical bleaching within 

Jurassic sediments of the wider Paradox Basin region is discussed. Additionally, volatile hosting 

fluid inclusions in bleached portions of travertine feeder systems are investigated using Raman 

spectroscopic techniques and the two systems are compared.  

Finally, tabulated analytical results for water chemistry, gas analyses, XRF, point 

counting, electron microprobe, and fluid and mineral, stable and radiogenic isotope geochemistry 

are presented for reference. 
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Chapter 2  

Hydrogeology and Geochemistry of a CO2 

Leaking Groundwater System, Green 

River, Utah 

2.1. Introduction 

CO2-charged fluids and gas escape to the surface along faults and through abandoned petroleum 

exploration wells in the vicinity of Green River, Utah, USA. This provides an opportunity to 

examine a CO2-rich groundwater system as an analogue to processes occurring in anthropogenic 

CO2 storage sites. A number of studies have examined various aspects of the origin of the carbon 

dioxide and effused groundwaters (Baers and Rigby, 1978; Gilfillan, 2004; Heath, 2004; 

Wilkinson et al., 2008), the nature and magnitude of CO2 leakage from this site, (Allis et al., 

2005), rates of CO2 effusion from the largest of the CO2 degassing geysers (Gouveia et al., 2005; 

Gouveia and Friedmann, 2006), and the role of the local structure and fault architecture on 

controlling the sites of CO2 leakage (Dockrill, 2005; Dockrill et al., 2010, Shipton et al., 2004, 

2005).  

 CO2-rich groundwaters are widely reported, (e.g. Chernichowski-Lauriol et al., 1996; 

Pearce et al., 1996) although few contain sufficiently quantities of dissolved CO2 to sustain cold 

water geysering (Glennon and Pfaff, 2005; Rinehart, 1980). Many studies have suggested that 

much of the CO2 gas in these CO2-charged groundwater systems has a deep origin being sourced 

from magma and/or mantle contributions (Cartwright et al., 2002; Gilfillan et al., 2006, 2008; 

Pauwels and Fouillac, 1997). Other sources of CO2 production in the geosphere have been 

identified including the metamorphism of carbonate rocks, diagenetic reactions between 

carbonate and silicate minerals, the thermal alteration of coal and other organic material, the 

biodegradation of oil and gas and the dissolution of carbonate rocks (Hutcheon and Abercrombie, 

1990; Wycherley et al., 1999). CO2-rich groundwaters typically show very high alkalinity and 

solute concentrations [1.3-110 mEq L-1 alkalinity, 200-10,400 mg L-1 total dissolved solids] (Choi 

et al., 2005). It is generally accepted that H+ from the dissociation of carbonic acid enhances 

fluid-rock reactions in these systems, elevating the solute load of these groundwaters (e.g. 

Schofield and Jankowski, 2004). This however, is somewhat inconsistent with laboratory 

experimental results. Many experimental studies agree that dissolution of silicate minerals is 

enhanced by high H+ concentrations in acidic solutions. However, the reactions have been shown 
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to be independent of pH (e.g. Drever 1994; Oxburgh et al. 1994) in neutral solutions 5<pH<9. 

Almost all CO2-charged groundwaters fall within this pH range (Choi et al., 2005 and references 

therein). CO2 rich groundwaters with pH<5 are rarely observed in the field, because only very 

dilute solutions can exhibit pH values less than 5 by dissolution and dissociation of CO2. This is 

due to the complexing effect of base cations on speciation in the carbonate system (see section 

2.5.1.2).   

Subsurface reservoirs imbue rocks with mineral assemblages of highly different 

solubilities and dissolution kinetics. The extent to which CO2-charged groundwater chemistries 

are controlled by equilibrated reactions with soluble minerals (e.g. carbonates, sulphates and 

oxides) and kinetically controlled reactions with relatively insoluble minerals with more complex 

frameworks (e.g. silicates, aluminosilicates)  is largely unevaluated. The complex relationship 

between mineral hydrolysis in multi-mineral assemblages, pH buffering and alkalinity generation 

is important as it impacts greatly on the reactivity of stored CO2, on the stability and precipitation 

of CO2 trapping carbonate minerals, on the potential for CO2-rich waters to corrode cap-rocks and 

on the ultimate solubility of the stored CO2.  

This chapter presents geochemical data from CO2-charged springs and geysers emanating 

along the crest of the Green River anticline, Northern Paradox Basin, Utah. The general geology 

of the Paradox Basin is discussed with emphasis on the stratigraphic and structural setting of the 

Green River anticline and its impact on local hydrology. Spring water chemistry and fluid and gas 

isotope geochemistry is discussed and used to illuminate the source of the groundwater and the 

CO2.  Published measurements of hydraulic head are then used to constrain flow paths between 

individual springs and aid in the interpretation of the evolution of the groundwater solute 

chemsitry. The degree to which spring water chemistry is controlled by equilibrated fluid-mineral 

reactions is then evaluated using activity-activity diagrams. The evolution of the solute chemistry 

will be used in Chapter 3 to place constraints on the rates of the kinetically controlled fluid-rock 

reactions. 

The solute and isotope geochemistry of fluid sampled prior to, and during the course of, a 

large-scale eruption of Crystal Geyser is then discussed. Observations of changes in the chemical 

and isotopic composition of the fluid is then used to place constrains on the origin of the solute 

chemistry and fluid mixing processes in the subsurface.  

2.2. Regional Geology of the Paradox Basin 

This region of SE Utah is underlain by the Paradox basin (Fig. 2.2-1a) a late Palaeozoic 

intracratonic basin filled with a mixture of carbonate, clastic, and evaporite sediments (Nuccio 

and Condon, 1996). The Paradox Basin is defined by the maximum extent of salt in the Middle 
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Pennsylvanian Paradox Formation (Nuccio and Condon, 1996). The basin was primarily a 

Pennsylvanian and Permian feature (320-245 Ma) that accumulated thick deposits of carbonate, 

halite, and clastics in response to tectonic down-warping and simultaneous uplift along its north-

eastern border (Baars and Stevenson, 1981). The shape of the basin was modified by later tectonic 

events, primarily the Laramide orogeny (80-35 Ma) (Dickinson and Snyder, 1978). Today, the 

basin has been dissected in places by uplift of the Colorado Plateau (25 Ma – present) and down-

cutting by the Colorado River and its tributaries (Flowers et al., 2008). The basin is bordered on 

the northeast by the Uncompahgre Plateau, a broad anticline cored by Precambrian rocks. The 

east side of the basin is bounded by the San Juan dome. The southeast end of the basin is defined 

by the northeast-trending Hogback monocline. The north-western, Green River, side is bounded 

by the San Rafael Swell (Fig. 2.2-1b), a Laramide aged monocline, and the far northern end of the 

basin merges with the southern Uinta Basin. 

Sedimentary rocks of the Paradox Basin (Fig. 2.2-2) overlie an Early Proterozoic 

metamorphic basement that is locally intruded by granite (Nuccio and Condon, 1996). Cambrian 

through Jurassic strata unconformably overlies the basement rocks. Remnants of Cretaceous 

rocks are also present, especially in the north-western and south-eastern part of the basin, but, 

except for the igneous intrusive centres, Tertiary rocks have been completely eroded away 

(Nuccio and Condon, 1996). At the surface, the subhorizontal, north-dipping rocks in the study 

area (Fig.2.2-3) consist of Jurassic and Cretaceous clastic sedimentary rocks that include from 

oldest to youngest: Entrada Sandstone, Curtis Sandstone, Summerville Formation, Morrison 

Formation, Cedar Mountain Formation, Dakota Sandstone, and Mancos Shale (Fig.2.2-4). 

2.2.1.1 Pre-Pennsylvanian Rocks 

Cambrian through Devonian sedimentation in Eastern Utah was on a stable shelf in mainly 

shallow marine conditions (Blakey, 2008). Sub-Pennsylvanian rocks consist of the Lower and 

Middle Cambrian Tintic Quartzite, Upper Cambrian Ignacio Quartzite, Middle Cambrian Ophir 

Formation, Middle Cambrian Maxfield Limestone, Middle and Upper Cambrian Lynch Dolomite, 

Upper Devonian Aneth and Elbert Formations and Ouray Limestone, and the Mississippian 

Leadville Limestone.  

2.2.1.2 Pennsylvanian and Permian Rocks 

During the Pennsylvanian and Permian, the Uncompahgre Plateau experienced rapid and large-

scale uplift, and the adjacent north-eastern side of the Paradox Basin subsided, accumulating 

sediments of great thickness (as much as 3650m) (Nuccio and Condon, 1996). Deposits within 

the oldest Pennsylvanian formation, the Molas Formation, are transitional from nonmarine to 

marine, later being deposited and reworked by streams. The upper part has, in addition to fluvial 

strata, marine limestone beds deposited by the transgressive Middle Pennsylvanian Sea. 
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Figure 2.2-1 Geological features of the Paradox Basin and surrounding region. (a) Structural provinces of 

the Paradox Basin and bordering uplifts (after Condon, 1997). (b) Main structural features of the Northern 
Paradox Basin, in the vicinity of the study area. The outlined area in grey is the maximum extent of the 

Pennsylvanian evaporite formations which demarks the extent of the Paradox Basin. Yellow stars denote 

the locations of CO2-charged springs or regions of dry CO2 exhalations. 
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Figure 2.2-2 Generalized stratigraphic section for the Green River area. Thickness data compiled from 

Trimble and Doelling (1978) and Hintze (1993). Hydrological data from Hanshaw and Hill (1969) and 

Hood and Patterson (1984). 
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The Middle and Upper Pennsylvanian Hermosa Group includes the Middle Pennsylvanian 

Pinkerton Trail and Paradox Formation and the Middle and Upper Pennsylvanian Honaker Trail 

Formations (Doelling, 1988). The Pinkerton Trail consists of interbedded marine limestone and 

dark shale, deposited in shallow-marine conditions of normal salinity. The cyclic Paradox 

Formation is composed of dolomite, black shale, anhydrite, halite, and other salts (Hite and 

Buckner, 1981). Halite is the most abundant constituent of the Paradox, occurring in beds tens of 

feet thick. The Honaker Trail Formation is composed of cyclically deposited limestone, 

sandstone, and shale. It represents a return to normal marine conditions in contrast to the 

evaporitic marine conditions of the Paradox Formation (Condon, 1997). The thickness of the 

formation varies significantly throughout the basin due to salt flowage in the underlying Paradox 

Formation during deposition. 

Continued uplift of the Uncompahgre Plateau in Late Pennsylvanian and Early Permian 

time eventually unroofed the Precambrian basement rocks (Nuccio and Condon, 1996). The 

Permian Cutler Formation is mostly a product of this unroofing process and consists of arkose 

sandstone, deposited in a series of alluvial fans (Campbell, 1980). In the study area, the Cutler 

Group includes the Elephant Canyon Formation, the Cedar Mesa Sandstone, the Organ Rock 

Formation, and the White Rim Sandstone (Baars, 1962).  

2.2.1.3 Triassic and Jurassic Rocks   

In the Triassic and Jurassic, sedimentation in the area of the Paradox Basin was influenced to a 

great degree by development of magmatic arcs to the south and west of the current basin (Currie, 

1997). Development of the arcs produced periodic uplift in source areas and provided sediment to 

the Paradox Basin (Nuccio and Condon, 1996). Triassic and early Jurassic sedimentary units 

contain large volumes of ash derived from volcanic activity in the arcs, creating thick regional 

aquitards. Times of less tectonic activity, especially in the Middle Jurassic, led to deposition of 

marine, sabkha, and eolian deposits of high hydraulic conductivity. 

Deposition of Permian, Triassic, and Jurassic sediment onto thick sequences of salt in the 

Middle Pennsylvanian Paradox Formation led to the diapiric rise of the salt in several anticlines in 

the fold and fault belt. Individual Triassic and Jurassic units thin on the flanks of these anticlines 

(Doelling, 1988). The basal Triassic unit in the basin is the Early and Middle Triassic Moenkopi 

Formation. Uplift south of the Paradox Basin in Late Triassic time led to development of a north-

westward flowing fluvial system depositing the Upper Triassic Chinle Formation (Huntoon et al., 

2002). The thickness of Jurassic sediment is dominated by the Lower Jurassic Glen Canyon 

Group, which is composed of the Wingate Sandstone, Kayenta Formation, and Navajo Sandstone 

(Doelling, 1988). The Wingate and Navajo are massive eolian units, the Kayenta is fluvial. 

Contacts between formations of the group are gradational; an unconformity lies at the top of the 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

17 

Navajo Sandstone (Doelling, 1988). Unconformably overlying the Glen Canyon Group is the 

Middle Jurassic San Rafael Group. The San Rafael Group consists of the Page Sandstone, Carmel 

Formation, Entrada Sandstone, Curtis Formation, and the Summerville Formation. These 

formations were deposited in and on the margins of an inland sea (Nuccio and Condon, 1996). 

2.2.1.4 Cretaceous and Tertiary Rocks 

Late Tertiary to Holocene erosion removed Cretaceous and Tertiary rocks throughout most of the 

Paradox Basin (Nuccio and Condon, 1996). The remaining Cretaceous rocks comprise the Early 

Cretaceous Morrison Formation and Cedar Mountain Formation (Molenaar, 1981) and the Upper 

Cretaceous Dakota Sandstone and Mancos Shale. The dominant event of latest Cretaceous and 

Tertiary time was the development of uplifts and adjacent basins associated with the Laramide 

orogeny. Major structural features in the Paradox Basin region are the Uncompahgre Plateau, San 

Rafael Swell, Monument Upwarp, San Juan Dome, and Uinta Basin. Records of Tertiary 

sedimentation in the Paradox Basin are absent due to late Tertiary uplift and erosion; however, it 

is very likely that Palaeocene, Eocene, and possibly even Oligocene, Miocene, and Pliocene rocks 

were once present in the northernmost part of the basin (Nuccio and Condon, 1996).  

2.2.2. Local Structure  

The northern part of the Paradox Basin, pertinent to this study (Fig. 2.2-1, Fig. 2.2-3), has been 

termed the Paradox fold and fault belt (Kelley, 1958). This includes the area encompassing the 

Green River and the major structural features of the Little Grand Wash and Salt Wash fault zones, 

the sites of natural CO2 leakage (Dockrill, 2005; Shipton et al., 2004, 2005) (Fig. 2.2-4). This area 

consists of a series of parallel, northwest-trending faults, anticlines, and synclines. Dissolution of 

salt along the crests of some anticlines in this region has caused down-faulting and the 

development of grabens at the crests (Doelling et al., 1988). Rocks as old as Pennsylvanian are 

exposed in the cores of some anticlines, and remnants of Cretaceous rocks are present in some 

synclines.  

The Little Grand Wash fault is a steeply south-dipping, listric normal fault, with an 

arcuate surface trace length of about 61 km (Shipton et al., 2004). The fault splays into two 

strands for ~ 3.3 km of its length (Shipton et al., 2004). The throw of the fault near the Green 

River is about 290 m and much of the displacement is concentrated along the southern strand 

(Heath, 2004). The fault may cut rocks from Pennsylvanian to early Cretaceous and sole into the 

halite-rich Pennsylvanian Paradox Formation (Heath, 2004). To the south, the Salt Wash and the 

Tenmile Grabens are together about 31 km long and are separated by a step-over zone (Dockrill, 

2005). The faults strike about N 70° W (Dockrill, 2005). The southeast end of the Salt Wash 

faults may link to the northwest tip of the Moab fault (Shipton et al., 2004). At least some 
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movement of these faults may be related to salt flow, since the faults are located on the northern 

plunging limb of the broad Cane Creek-Big Flat salt anticline. Doelling et al., (1988) and 

Condon, (1997) concluded that salt migration commenced in the Permian and continued to the 

mid Jurassic. Local sedimentation patterns reveal a period of salt movement between Triassic to 

mid Jurassic resulting in the development of the Green River anticline and adjacent Courthouse 

Syncline (Dockrill, 2005). Fault movement may also be due to interaction of the Uncompahgre 

and San Rafael blocks to the east and west, respectively (Campbell and Baer, 1978). Unpublished 

illite age analysis dates fault movement at 40 Ma ±10 corresponding to the early tertiary 

Laramide orogeny (Dockrill, 2005). 

2.2.3. CO2-charged Springs 

Almost pure CO2 gas [95.7-99.4 % CO2; 3.4-0.5 % N2; 0.1-0.9 % O2, 0.01-0.05 % Ar; 0.00-0.01 

% He; Heath (2004)] is discharged from the Green River anticline along the Little Grand and Salt 

Wash fault systems, in the vicinity of Green River forming a series of geysering, cold water 

springs and dry exhalations (Fig. 2.2-5). CO2-charged springs and mofettes emanate along and 

within complexities of the local normal fault systems or as fluid escapes from abandoned 

petroleum exploration and water wells (Fig. 2.2-6). Most springs occur in the northern fault 

footwalls of Little Grand Fault (Green River Airport Well [Grand Fault Unit 14-24], Crystal 

Geyser [Glen Ruby #1-X]) or Salt Wash Graben (Small Bubbling Spring, Big Bubbling Spring, 

Pseudo Tenmile Geyser, Torry’s Spring [Delaney Petro Corp #1]) where these faults intersect 

with the crest of the Green River anticline (Fig 2.2-4). Two springs lying off the normal fault 

systems (Tumble Weed Geyser and Chaffin Ranch Geyser), are located towards the anticlines 

axis and are sourced from abandoned water wells. Tenmile Geyser lies in the hangwall of the 

northern fault of the Salt Wash Graben and is thought to represent effusion from a well 

penetrating to considerable depth, through to the footwall of the fault, but no record of this well 

could be found.  Fluid discharge varies between individual springs typically being greater in the 

open conduits formed by wells. All the springs have been observed to geyser at some point in 

their history, but the height of these eruptions and volumes of expelled fluid vary considerably. 

Only Chaffin Ranch Geyser and Crystal Geyser erupt with any regularity. The most dramatic of 

these is Crystal Geyser on the eastern bank of the Green River in the footwall of the Little Grand 

Wash fault zone. This cold-water geyser has erupted at 8-22 hour intervals since the Glen Ruby 

#1-X well was drilled to the base of the Triassic section (TD 801 m) in 1935 (Baer and Rigby, 

1978). The well was spudded into a 21.5m thick travertine mound attesting to a long history of 

leakage from this site prior to drilling of the well (Shipton et al., 2004). Layered, ochre coloured 

travertine deposits accumulate within the immediate vicinity of all the emanations (Fig. 2.2-7). 

Many springs are also demarked by the precipitation of salt crusts as surface runoff evaporates. 
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Figure 2.2-3 Map showing the main geographic features of the region surrounding Green River 

and the locations of all known CO2-escapes. Dotted lines show the location of the cross sections in 

Figure 2.4-10. 
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Figure 2.2-4 Surface geology of the Green River anticline redrawn after Doelling (2000). Structure 

contours are for the top of the Navajo Sandstone (after Dockrill, 2005). The map shows the clustering 
of springs along the axis of the anticline, within the damage zones of the Little Grand Fault and the 

northern fault of Salt Wash Graben.  
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Figure 2.2-5 Photographs of springs, geysers, and groundwater leakage from abandoned wells. (a) Crystal 

Geyser. This geyser erupts periodically about once every 16 hours to a height of ~20 m from the Glen Ruby 

#1-X abandoned oil exploration well drilled during 1935 and 1936 (b) a side seep ~8m from Crystal 

Geyser. (c) Chaffin Ranch Geyser; regularly geysers, sourced from a water well drilled for livestock.(d) 

Torreys spring sourced from the Delaney Petroleum Co. #1 well (e) Tumble Weed Geyser, sourced from a 

water well drilled for livestock  
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Figure 2.2-6 Photographs of springs, geysers, sourced from abandoned wells and natural leaks. (a) Past 

eruption from Crystal Geyser showing a large discharge of water, much greater than what is seen today; 
estimated eruption high 23m (Shipton, 2004) (b) Modern eruption of Crystal Geyser, exhibiting its 

maximum height of ~12m (c) Pseudo-tenmile Geyser, a natural seep at the intersection of the Salt Wash 

Graben and the apex of the Green River anticline (d) Tenmile Geyser with well casing; thought to be an 

exploration well drilled within the Salt Wash Graben through to the underlying footwall. (e) Big Bubbling 

Spring, a natural seep at Salt Wash Graben.  
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Figure 2.2-7 Field photographs of modern Crystal Geyser (a,e) travertine mound and travertine formed 

around Green River Airport Well (b), Chaffin Ranch Geyser (c) and Tumble Weed Geyser (d). (a) 
Hemispherical pools that form the terrace morphology on travertine surface (b) Friable travertine poor in 

Fe, iron content of the travertine has a significant impact on its strength. (c) Fe-rich irregular travertines 

when the fluid flux is low (d) Large pools form around some of the springs where discharge can exceed 

local evaporation. The pools contain a travertine substrate. (e) Fe-rich, down-stepping lobate mounds that 

radiate out from geyser vent, with conically shaped speleothems on sub-vertical surfaces of the mound.  
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2.3. Geochemical Sampling and Results 

Knowledge of any groundwater system is often limited to the chemical data collected from 

surface spring waters. Manipulation of chemical data allows a valuable window into the deep 

workings of a groundwater system, provided that hydrology and geology of the site are 

sufficiently understood. Of particular importance when quantifying physiochemical controls on 

solute composition from spring fluids are: 1) knowledge of the conditions from which the fluids 

were sourced (e.g. host lithology, P, T) and; 2) any geochemical processes which may alter 

groundwater chemistry as fluids ascend to the surface, such as CO2 degassing and calcite 

precipitation. These aspects of CO2-spring chemistry are discussed in this section, especially with 

relevance to the carbonate system and fluid-mineral reactions controlling solute chemistry.  

2.3.1. Field Sampling Methods 

Water samples collected from the springs were filtered through 0.2 µm nylon filters on site and 

stored in pre-cleaned high-density polyethylene bottles, prewashed with filtrate, one sample 

acidified to ~pH 2-3 with HNO3 for analyses of cations and one un-acidified sample for analysis 

of anions. All samples where stored in 60 mL plastic bottles free of air to minimise degassing and 

oxidation. pH, alkalinity (by Gran titration (Stumm and Morgan, 1996)) and temperature were 

measured in the field. The pH probe was calibrated daily with 4.0 and 7.0 pH standards. 

Oxidation-reduction potential (mV) was measured in-situ using a Hach Lange 

MC3051Pt-9 ORP platinum electrode filled with an Ag/AgCl reference electrode and saturated 

KCl filling solution. These measurements were then converted to Eh values by using measured 

temperature values in order to establish standard hydrogen electrode corrections. ORP standard 

(Orion ® #967961) was used to perform ORP electrode checks where the measured value of the 

standard was 220 ± 3 mV at 25°C. The platinum electrode was cleaned at the end of each 

sampling day and stored according to manufacturer’s guidelines. ORP electrodes can be erratic 

when used in ground water and often do not stabilize rapidly (Stumm and Morgan, 1981). For 

each spring, measurements were recorded every five minutes over a thirty minute sampling 

interval and the average reported.  

Exsolved gases were collected in 10 mm diameter, internally polished, refrigeration-

grade copper tubes (EAWAG, 2000). Individual sampling units comprise two sections of copper 

pipe separated by a Swagelok® needle valve closed at either end with high grade thread sealing 

nuts.  During sampling polyerothene tubing and funnels where connected to either end of the 

piping to create a sampling environment isolated from the atmosphere.  The tube is flushed 

through with gas or water for at least 30 minutes to remove air contamination before the copper 

tube was submerged and sealed using sealing nuts. 
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2.3.2. Analytical Methods 

Water samples were collected from springs and geysers, during the 2006 and 2007 field season, 

for the analysis of δ18O, 87Sr/86Sr, 3H, K+, Na+, Ca2+, Mg2+, Sr2+, Ba2+, Fe, Mn, Al3+, SiO2, Cl- and 

SO4
2- (Table 1, Appendix A). Time series samples through a large-scale eruption of Crystal 

Geyser were collected during the 2007 season. Dissolved inorganic carbon (DIC) was calculated 

from field alkalinity and pH using the computer code PHREEQC (Pankhurst and Appelo, 1999). 

Cation analyses were measured on acidified samples using a Varian Vista-PRO simultaneous 

inductively coupled plasma atomic emission spectrometer (ICP-AES) and anion concentrations 

were analysed on a Dionex Ion Chromatography System at the University of Oxford (2006 

sample set) and the University of Cambridge (2007 sample set).  Spring samples were diluted to 

fit the calibration range. For the 2006 data set all water samples were interspersed with standards 

SPSSW2 and T-167 which indicate accuracies better than ±5% for Na, K, Ca, Mg, Al, S and Si. 

For the 2007 data set multiple analysis of standard T-167 by AES again indicates accuracies of 

better than ±5% (2σ).  

Total dissolved inorganic carbon (DIC) was measured at the University of Cambridge. 

CO2 was released from 5−15 mL aliquots of spring water by acidification with >100 % H3PO4 in 

vacuum. CO2 released on acidification in the reaction vessel was extracted while water was 

trapped at -80 ◦C. Total CO2 was measured manometrically before being converted to mmol L−1.  

Analyses for 87Sr/86Sr at the University of Cambridge follow Bickle et al. (2003) with 

analyses of NBS987 giving 0.710258 ± 0.000008 (2σ, n = 11) over the period of the analyses 

(2006 data set). δ13C of dissolved inorganic carbon (DIC) and the δ18O of H2O were analysed in 

the Godwin Labs, University of Cambridge and are expressed in δ‰ deviation relative to Peedee 

Belemnite (PDB) and VSMOW standards with analytical precisions estimated at ±0.06 and ±0.08 

‰ respectively. Analysis for δ13CCO2(g) of the sampled gas where performed at the University of 

Cambridge using VG PRISM Mass Spectrometer. 

Enriched 3H was counted at Brigham Young University using a PerkinElmer Quantualus 

1220 Liquid Scintillation Counter with a detection limit of ± 0.8 tritium units and a precision of 

about ±0.3 TU. 

δ
13C of CO2(g) from collected gas samples are presented in Appendix A and detailed in 

figure 2.4-6. Major cation, anion and isotope analyses for the CO2-spring waters and for time-

series fluid chemistry from Crystal Geyer are presented as data tables in Appendix A. 
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2.4. Discussion 

2.4.1. CO2-Water-Rock Interactions 

2.4.1.1 CO2 Solubility and the Carbonate System  

The theoretical aspects of carbonate equilibria are covered in great detail elsewhere (e.g. Drever, 

1997; Garrels and Christ, 1965; Plummer et al., 1979; Stumm and Morgan, 1981), and only a 

brief overview of the carbonate equilibria necessary for understanding CO2 dissolution and 

speciation, CO2 degassing and CO2 promoted fluid-rock interaction is discussed here. As is well 

known, dissolution of CO2, and subsequent precipitation of calcite, is determined by the chemical 

exchange equilibria: 

 

2 2( ) ( )CO g CO aq↔          (2.1) 

 

2 2 2 3( )CO aq H O H CO+ ↔         (2.2) 

 
*

2 3 3H CO H HCO+ −↔ +         (2.3) 

 

3 3HCO H CO− + −↔ +          (2.4) 

 
2

3 3 ( )Ca CO CaCO s+ −+ ↔ at pH > 8 or      (2.5) 

 
2

3 3 3 3 2 22 ( ) ( )Ca HCO CaCO s H HCO CaCO CO aq H O+ − + −+ ↔ + + ↔ + +  

at pH ≤ 8         (2.6) 
 
where H2CO3

* represents H2CO3 + CO2(aq) and the overall defining reaction for calcite 

precipitation may be written 

 
2

3 3 2 22 ( ) ( )Ca HCO CaCO s CO aq H O+ −+ ↔ + +       (2.7) 

 
Where the calcite saturation index (SICC), the logarithm of the saturation state (Ω), is defined as  
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the activities in the water sample. Where a is activity, [ ] is concentration, and γ is an activity 

coefficient. SI = 0, if there is equilibrium between the mineral and the solution; SI < 0 reflects 

subsaturation, and SI > 0 supersaturation (see for example Appelo and Postma, 2005, Drever, 

1997). 

Initially, CO2 transfers across the gas-water interface to become an aqueous ion, a 

kinetically slow process [Eq. (2.1), (2.2)] (Dreybrodt, 1996). The solubility of CO2 increases with 

pressure, but decreases with temperature and salinity (Joyce and Holloway, 1993; Duan and Sun, 

2003) (Fig. 2.4-1). At 25 °C and 1 bar, the solubility of CO2 in an aquifer fluid equivalent to a 3 

M NaCl solution is approximately one-third its solubility in pure water. The dissolution of CO2 

and subsequent speciation can be described by equations (2.1-2.4). 

The removal of CO2(g) from solution drives equation (2.1) to the left and equation (2.7) 

to the right, driving calcite precipitation in CO2-degassing springs and the formation of travertine. 

However, numerous studies (e.g. Dreybrodt et al., 1992; Herman & Lorah, 1987, 1988; Lorah & 

Herman, 1988; White, 1997) show that calcite does not precipitate instantaneously at the point of 

saturation. Precipitation requires a finite supersaturation because of activation barriers to calcite 

nucleation and crystal growth (White, 1997). In most circumstances this implies a saturation 

index (SICC) of +0.5, although Dreybrodt et al. (1992) suggest that saturation indices of at least 

+1.0 are required.  
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Figure 2.4-1 CO2 solubility (mol kg-1) as a function of temperature and various salinities at pressures of 1 

and 100 bar. Calculations performed using the CO2 solubility model of Duan et al., 2006. 
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Figure 2.4-2 Carbonate speciation for the system CO2–H2O and CaCO3–CO2–H2O assuming open system 

equilibrium and externally fixed pCO2 (calculations performed in PHREEQC). (a) Speciation in the simple 

system CO2–H2O illustrates that H2CO3
* is the dominant species in solution at the pCO2 of the springs. (b) 

The addition of calcite to the CO2–H2O system greatly affects the speciation of carbon in solution. The 
most dramatic change is [H2CO3

*] becoming subordinate to [HCO3
-]. HCO3

- stability increases up to 4 

orders of magnitude (compared to the CO2–H2O system) before [H2CO3
*] exceeds [HCO3

-] at −log pCO2 of 

0.4.  

 

2.4.1.2 Carbonate System Speciation 

The simplest speciation system (after Garrels and Christ, 1965) is the dissociation of carbon 

dioxide in water and follows from equation (2.1-2.4). All the other controlling species are 

assumed devoid from water, and hence the electrical neutrality may be written 

 
2

3 3[ ] [ ] [ ] 2[ ]H OH HCO CO+ − − −= + +        (2.11) 

 
Temperature has little effect on the speciation of the system (Garrels and Christ, 1965), with 

speciation being largely dependent on the pressure of the system (Fig. 2.4-2). As pCO2 goes to 

zero, the solution pH approaches 7, while increasing pCO2 causes the system to become more 

acidic. In this simple system the speciation of CO2 in the Green River springs would be 

dominated by H2CO3
*. Most H2CO3

* remains as CO2(aq); only about 0.3% actually forms 

carbonic acid (Drever, 1997). Fluid chemistry in groundwater system however, involves 

interaction with additional components, most importantly Ca2+, whose presence alters the 

electrical neutrality of the system and the subsequence carbonate speciation such that 

 
2 2

3 32[ ] [ ] [ ] [ ] 2[ ]Ca H OH HCO CO+ + − − −+ = + +      (2.12) 
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Addition of CaCO3 to the system significantly affects the speciation. At 25 oC the shift in 

speciation between H2CO3
* and HCO3

- implies an approximately even distribution of these two 

species in the CO2-charged groundwaters.  

Upon dissolution of CO2, the formation of bicarbonate ion, HCO3
- and production of 

acidity by release of H+ leads to a series of secondary reactions with complex feedbacks that 

buffer solution properties and mineral reactivity (Gunter et al., 1993). In the absence of any fluid-

mineral interaction the disassociation of this dissolved CO2 results in an acidic solution of pH 3.4 

due to the dissociation of carbonic acid: 

 

2 2 2 2 2 3 3( ) ( )CO g H O CO aq H O H CO H HCO+ −+ ↔ + ↔ ↔ +     (2.13) 

 
A temperature-dependent dissociation constant K can be defined for Eq. (2.13): 
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Figure 2.4-3 Temperature dependent dissociation constant for H2CO3 showing maxima at ~55°C 

 

Calculations of log K (Eq. (2.14)) using SUPCRT92 (Johnson et al., 1992) show a maximum of 

dissociation for reaction (2.13), occurring at about 55 °C above which log K decreases 

continuously with increasing temperature such that an initially weak acid becomes increasingly 

weaker at elevated temperature (Fig. 2.4-3). Thus, at low temperatures, the increased availability 

of H+ might be expected to cause higher rates of mineral hydrolysis. Overall the larger relative 

solubility of CO2 and the effective disassociation of H2CO3, means that even at very low 

temperatures CO2-charged fluids have a significant effect on the promotion of mineral-fluid 

reactions.  
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2.4.1.3 Alkalinity 

Alkalinity [Alk] is a measure of the ability of a solution to neutralize acids to the equivalence 

point of carbonate or bicarbonate (Stumm and Morgan, 1981). It is equal to the stoichiometric 

sum of the bases in solution. In groundwater systems carbonate alkalinity tends to make up most 

of the total alkalinity due to the common occurrence and dissolution of carbonate minerals and 

the ubiquitous presence of dissolved CO2 (Drever, 1997). Other aqueous species that can 

contribute to alkalinity include BO3
3−, PO4

−3, SiO2 and NH3 although these have low 

concentrations in groundwaters (Drever, 1997). Alkalinity may be defined either as:  

 
2

3 3[ ] [ ] 2[ ] [ ] [ ]Alk HCO CO OH H− − − += + + −       (2.15) 

 
or, the excess of positive charges over the anions of strong acids: 
 

2 2 2

4 3[ ] [ ] [ ] 2[ ] 2[ ] ... [ ] 2[ ] [ ] ...Alk Na K Ca Mg Cl SO NO+ + + + − − −= + + + + − − − −      (2.16) 

 
Removal or addition of CO2 modifies DIC and pH without changing [Alk] as the net reaction 

produces the same number of equivalents of positively contributing [H+] as negative contributing 

species [HCO3
- and/or CO3

2-].  This concept is typically illustrated in a capacity diagram 

(Deffeyes, 1965) which plots alkalinity against DIC to expediently show contours of pH. 

Accurate determination of pH, field alkalinity and DIC can be assessed by comparison of the 

measure values of [Alk], DIC and pH with the position of pH isopleths predicted from 

equilibrium conditions. If extensive CO2 degassing had occurred prior to sampling the measured 

values of pH should be significantly large than those predicted by equilibrium considerations. 

Figure 2.4-4 shows the relation between measured DIC (mmol L-1), field alkalinity (mEq L-1) and 

pH for the Green River springs. Measured values of pH are close to or within error of values 

predicated by theoretical considerations suggesting that equilibration within the carbon system is 

largely maintained during ascent of fluid to the surface and sampling.  

Addition of CO2 to a solution in contact with rock forming minerals can affect alkalinity. 

Hydrolysis of silicate, alumino-silicate and carbonate minerals consumes [H+] increasing [Alk], 

while releasing cations to solution which do not contribute to alkalinity. Precipitation of 

carbonate minerals consumes HCO3
- and/or CO3

2- buffering [Alk] towards lower values. 

Alkalinity is therefore an important measure of the degree of fluid-rock interaction in a 

groundwater system. CO2-rich groundwater systems should evolve to higher alkalinity due to the 

progressive hydrolysis of rock forming minerals. 
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Figure 2.4-4 Capacity (Deffeyes) diagrams for the CO2-springs. pH measurements made in the field are 

labeled next to each sample (2006 data). Data for the 2007 sampling program is included for reference.  

Constant pH isopleths are labeled about the margins of the diagrams for equilibrium at 25 °C. Change in 

temperature has negligible effect on the location of the important isopleths (between pH’s of 6 and 9). 

Springs are invariably characterized by higher [Alk] than DIC when compared to corresponding pH 

isopleths. The deficiency in DIC is interpreted to represent CO2-degassing (which maintains [Alk]). 

2.4.1.4 Fluid-Mineral Reactions 

After introduction of CO2 into a geological reservoir, initial rapid carbonate, sulphate and oxide 

acid hydrolysis is expected to be followed by more sluggish ion-exchange reactions and then 

hydrolysis of silicate phases accompanied by re-precipitation of carbonate in excess of that 

dissolved. Upon consumption of these phases and as the fluid-mineral system moves towards 

saturation with respect to these minerals, kinetically slower and energetically less favourable 

reactions will begin to dominate the geochemical evolution of these fluids. The dissolution of 

silicate and phylosilicate minerals, which are typically undersaturated in near surface and shallow 

subsurface geological fluids (Brantley and White, 2003), will be enhanced by the reduction in pH 

afforded by the dissolution and speciation of CO2 and by the overall availability of H+ (e.g. Casey 

and Bunker, 1990; Oelkers et al., 1994). A variety of secondary reactions (e.g. clays, silicates, 

carbonate, oxide, sulphates and salts) will be promoted by the availability of carbonate ions 

sourced from CO2 and carbonate dissolution, cations sourced from mineral dissolution and 

exchange reactions and the relative increase in saturation of secondary phases as a result of 

solubilisation of primary minerals and increases in pH. Reactions involving H2CO3
* with 

reservoir minerals are thus many and varied, depending on the chemical composition of the fluid 

and the mineralogy of the host rock.  

Porosity volume in sedimentary basins is dominant by contributions from porous and 

permeable sandstone formations (e.g. Bethke, 1989). The mineralogy of terrestrial and marine 

sandstones is dominated by silicate minerals; including quartz and feldspars, and phyllosilicate 

minerals, including smectites, illites and chlorites (e.g. Cox and Lowe, 1995). Sandstones are 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

32 

typically variably cemented by carbonate minerals including calcite, dolomite, siderite and 

ankerite (e.g. Cox and Lowe, 1995). Thus the dominant pH buffering reactions in mixed 

mineralogies are likely to vary with duration of reaction as the initial pH buffering will be 

dominated by minerals with fast dissolution kinetics;  

 
Dolomite 

( ) 2 2

3 32
2 2MgCa CO H Mg Ca HCO

+ + + −+ ↔ + +      (2.17) 

 
Followed by slower reaction of minerals with more complex frameworks, and lower solubilities, 

e.g. 

 
Albite        

3

3 8 2 4 44 4 3NaAlSi O H H O Na Al H SiO+ + ++ + ↔ + +      (2.18) 

 
At low temperatures, energy barriers prevent this reaction being reversible and these reactions are 

dominantly uni-directional. As a result, increases in porefluid [Al3+], [H4SiO4] and mono- and 

divalent cations results in an increase in the solution saturation state of a range of phyllosilicate 

minerals whose formation is favoured by thermodynamic considerations, but whose composition 

and precipitation will be fundamentally controlled by chemical kinetics (Lasaga, 1995). 

 Dissolved bicarbonate species will form soluble complexes with dissolved cations 

sourced from fluid-rock reactions, e.g. 

 
2

3 3HCO Ca CaHCO− + ++ ↔        (2.19)  

 
which will ultimately increase the solubility of the dissolved CO2. Dissolved HCO3

- will then 

react with divalent cations, in solution, to form carbonate minerals (e.g. calcite, siderite, 

magnesite) which will form a sink of CO2 from the fluid following Eq. (2.6).  Rates of these 

reactions are known to be fast, relative to the slow kinetics of CO2 dissolution and aqueous 

speciation, but have a complex dependence on reactant concentrations, in situ pH, temperature 

and fluid composition (e.g. Morse and Arvidson, 2002; Zuddas and Mucci 1998). Additionally, 

within porous media the growth of secondary precipitates may be ultimately limited by solute 

supply and solute transport, as apposed to true mineral surface reaction. 

2.4.2. CO2 Sources: Isotopic Constraints 

Carbon isotopes aid in the elucidation of the carbon history of groundwaters and CO2 gases due to 

the large spread in isotopic composition of the various sources of geospherically derived carbon 

(Clark and Fritz, 1997). However, assessment of the degree of isotopic equilibration between 

sampled fluids and CO2 gas is important before the observed compositions can be considered 
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characteristic of the original source carbon, due to the potential effects of CO2 degassing and non-

equilibirum fraction as fluids ascend to the surface. To determine whether the waters and gases 

are in equilibrium with respect to carbon isotopes, calculations can be made to derive theoretical, 

predicted δ13CDIC values based on the δ13C of exsolved CO2 gases.  

2.4.2.1 Stable Isotope Fractionation: Notation Review 

The isotope fractionation factor between two substances A and B is defined as 

 

A B a b
R Rα − =          (2.20) 

 

Where /h l

a
R E E=         (2.21) 

 
The ratio of the heavy isotope over the light stable isotope in phase A, such as 18O/16O or 13C/12C. 

Rather than determining the absolute ratio of a substance it is easier and more precise to 

determine the relative difference between that substance and a reference such that 

 

310A std

A

std

R R

R
δ

−
= ×         (2.22) 

 
where Rstd is the absolute ratio in the standard. The relation between δ values and fractionation 

factors (which are equilibrium constants that describe how isotopes are portioned between two 

phases) is 

 

1 1000 1000

1 1000 1000

A A

A B

B B

δ δ
α

δ δ
−

+ +
= =

+ +
       (2.23) 

 
Values of α are commonly close to unity so that isotopic fractionation factors are expressed as per 

mil (‰) fractionations, which can be approximated as 

 
310 ln

A B A B
α δ δ− ≈ −         (2.24) 

2.4.2.2 Carbon Isotopic Composition of DIC and CO2(g) 

The mass balance defining the contributions of H2CO3
* and HCO3

- forming the total dissolved 

carbon pool at the pH range of interest can be defined as: 

 

2 3 2 3 3 3

13 13 13

* *DIC H CO H CO HCO HCO
C X C X Cδ δ δ− −= +      (2.25) 

 
Where XH2CO3*

 and δ13CH2CO3*, and XHCO3 and δ13CHCO3- are the mole fractions of each component 

and their isotopic composition, respectively. Although H2CO3
* is composed of both CO2(aq) and 

H2CO3, the contribution of H2CO3 is small and for these calculations all H2CO3
* is assumed to be 
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CO2(aq). The fractionation factor, α, is related to δ values for the species CO2(aq), HCO3
- and 

CO2(g) by (Clark and Fritz, 1997): 

 

( ) ( )
2 2 2 2

13 13

( ) ( ) ( ) ( )1000 1000CO aq CO g CO aq CO gC Cα δ δ− = + +     (2.26) 

 

( ) ( )
23 2 3

13 13

( )( )
1000 1000

CO gHCO CO g HCO
C Cα δ δ− −−

= + +     (2.27) 

 
Where the temperature dependent fraction factors are determined using (Mook et al., 1974; Vogel 

et al., 1970):  

 

2 2

3 3 1

( ) ( )10 ln 0.373 10 0.19CO aq CO g Tα −

− = − × +       (2.28) 

  

3 2

3 3 1

( )
10 ln 9.552 10 24.1

HCO CO g
Tα −

−

−
= × −       (2.29) 

 
Which can be combined with the equation of mass balance to yield the isotopic composition of 

individual carbon species from the analysed δ13CCO2(g) using the measured values of DIC, pH and 

the distribution of carbon species calculated using PHREEQC (Parkhurst and Appelo, 1999). 
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Figure 2.4-5 δ13CDIC measured versus that calculated from the δ13C of CO2(g) using equilibrium 
fractionation factors and the distribution of HCO3

- and H2CO3
* at the measured pH and DIC. 
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Figure 2.4-6 Histogram of the δ13CCO2(g) for the 2006 and 2007 sampling programs and from the analyses 

of Gilfillan (2006) and Heath (2004). δ13CCO2(g) analyses show a relatively narrow range from -8.4 to -5.8 
‰ and a skewed distribution towards isotopically light values.  

 
The δ13CDIC calculated from the δ13CCO2(g) and the measured δ13CDIC do not exhibit a 1:1 

relationship (Fig. 2.4-5). During ascent to the surface spring waters degas CO2 as a result of 

changes in the ambient pressure. The sampled CO2 gas represents the weighted average of gas 

degassed over the whole degassing region, where as the sampled waters represent the cumulative 

fractionation effects up until the point of sampling at the surface. δ13CCO2(g) for the CO2-springs 

exhibit a skewed distribution towards lower values (Fig. 2.4-6). This results from a Rayleigh type 

fractionation of the DIC pool as degassing takes place; with the bulk of the exsolved gas having 

more negative values, becoming increasingly negative as degassing progresses and occurs at 

shallower depths. The observed negative correlation in DIC and δ13CDIC during a large-scale 

eruption of Crystal Geyser fits a Rayleigh fractionation model (of pure CO2 degassing) to a first 

order (Assayag et al., 2009), but the narrow range of composition observed and lack of 

corresponding measurements on the gas phase  does not put useful constraints on the initial 

undegassed fluid composition. 

The apparent disequilibrium between DIC and CO2 maybe due to: 1) the large uncertainty 

in δ13CDIC(calculated) due to uncertainty in measured pH and the resulting calculation of carbonate 

speciation; 2) kinetic fractionation resulting from diffusion into growing gas bubbles; 3) Bulk 

CO2 gas measurements representing a cumulative composition resulting from degassing over a 

degassing region as apposed to a true instantaneously degassed values. Constraints on the degree 

of degassing are important for the accurate characterisation of fluid chemistry and the calculation 

of mineral saturation state in the fluid.  
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Figure 2.4-7 Profile of the instantaneous carbon isotopic composition of the DIC and of the CO2 versus 

depth. This illustrates how the equilibrium carbon isotopic fractionation between the instantaneous DIC and 
CO2 changes from a small positive value at greater than 100 m depth to increasingly larger values at depths 

shallower than 100m and b) that the observed large negative isotopic fractionations are dominated by the 

degassing processes at shallow depths. From Assayag et al., (2009). 

 
Analysis of carbon isotopic fractionation during ascent of the fluid by Assayag et al., (2009) 

concluded that degassing must occur at shallow depths <100m inferred from the magnitude of the 

overall fractionation between DIC and CO2 gas (Fig. 2.4-7). The average of the fractionation 

between CO2(g) and DIC (∆CO2-DIC = δ13CCO2-δ
13CDIC) for all springs and geyser ranges from -4.8 

to -7.5 ‰ with an average of ~ -6.4 ‰. Isotopic fractionation resulting from CO2 degassing of a 

solution will be dominated by exchange in both the system H2CO3
*-CO2 and HCO3

--CO2. Given 

that H2CO3
* is largely CO2(aq) fractionation will be dominated by isotopic exchange in the 

system CO2(aq)-CO2(g), at pCO2 > 1 atm and by HCO3
--CO2 at pCO2 < 1 atm (Fig. 2.4-2). This 

means that the overall fractionation of a degassing solution will change with depth of degassing 

due to changes in the speciation and thus the magnitude of the observed fractionation is an 

approximate indication of the depth at which degassing started. The results suggest that in-situ 

values of δ13CCO2 and δ13CDIC are between 3.0 to 4.0 ‰ and 2.0 to 3.0 ‰ more positive and more 

negative respectively, depending on the measured surface δ13CCO2(g) and δ13CDIC, and the depth of 

the host reservoir. Recalculated values of δ13CCO2(g) are used for further discussion of the carbon 

dioxide source. This also indicates that variation in the δ13CDIC is overprinted by degassing effects 

and is thus not an accurate constraint on fluid-rock reactions occurring in the host aquifer. 

2.4.3. CO2 Sources for Springs 

Possible geological processes that may generate high concentrations of CO2 gas in crustal 

reservoirs include (Cappa and Rice, 1995): 1) gases derived from mantle or magmatic sources; 2) 

the degradation of organic matter; 3) diagenetic reactions involving clay and carbonate rocks; and 

4) thermal decarbonation of carbonate rocks by metamorphic processes. 
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The δ13C values of the CO2 gas phase emitted by the Green River springs show little 

spread, ranging from -6.61 to -7.55 ‰ (1σ = 0.29‰) (Table 1.). This suggests a common source 

for all the escaping CO2, and implies that the flux of the CO2 gas phase to the surface is sufficient 

to suppress transport related fractionation of the gas isotopic composition. However, degassing 

effects during fluid ascent imply a 3 to 4 ‰ fractionation on the original values of δ13CCO2(g), 

implying in-situ values in the region ~ -3 to -5 ‰. The δ
13

C of CO2
 
is within the compositional 

range of mantle-derived carbon (-3 to -8 ‰ V-PDB, Wycherley et al., 1999), but is also largely 

within the range of bulk crustal carbon (-5 to -7 ‰ V-PDB). 

Discriminating between magmatic, crustal and biogenic sources of CO2 is not possible 

with stable isotopes alone, because the ranges of δ13C in magmatic and crustal CO2 are non-

unique (Sherwood Lollar et al., 1997). In contrast, 3He is an unambiguous tracer of magmatic 

volatiles (Oxburgh et al., 1986), and 4He which is derived from radioactive decay of U, Th and K, 

elements concentrated in the crust, is a tracer of crustal components.  Because the rate of He 

diffusion is relatively low in magmatic/crustal fluids (Ballentine, 1997), magmatic 3He must be 

carried, or advected, into shallow systems. The carrier fluid is inferred to be CO2 (e.g. Sherwood 

Lollar et al., 1997). Differences in their production mechanisms and diffusivities partition 3He 

and 4He into terrestrial reservoirs with different concentrations. Mantle helium is dominated by 

primordial 3He, with a 3He/4He ratio (R) of 1 to 3 x 10-25 and R/Rair of 3 to 30. Crustal He, 

dominated by 4He from a decay of U and Th has a radiogenic 3He/4He ratio of 1 to 3 x 10-28 or 

R/Rair of 0:007 to 0.04 (Andrews, 1987). The clearest indication of a mantle-derived fluid is 

therefore shown by the presence of 3He (Ballentine, 1997).  

Because He is lost from the atmosphere, with a residence time of approximately 106 

years, the concentration of 3He in air is two orders of magnitude smaller than in typical magmatic 

gases (Oxburgh et al., 1986). Helium is present within the atmosphere at only low concentrations 

(5 x 10-6 vol/vol at STP; Ballentine et al., 2002). The production mechanisms of crustally sourced 

CO2 do not typically introduce additional 3He and as such crustally sourced CO2 has high 

CO2/
3He ratios.  CO2-rich groundwaters therefore have CO2/

3He ratios dominated by the CO2 

source, with crustally sourced CO2 systems having CO2/
3He elevated relative to MORB (CO2/

3He 

= 1 to 2 x 109). 
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Figure 2.4-8 The majority of the CO2-springs have CO2/
3He ratios above the MORB range indicating a 

predominantly crustal CO2-source (Sherwood Lollar et al., 1997; Ballentine et al., 2002). Also plotted is 

the data range from the deep CO2 reservoirs documented by Gilfillan et al., (2006), from McCallum Dome, 
Sheep Mountain, Bravo Dome, McElmo Dome, Doe Canyon and St John’s Dome.  All error bars are 

smaller than printed symbols. Drawn after Gilfillan (2004). 

 

Figure 2.4-8 shows CO2/
3He ratios plotted against CO2 concentration for all of the major 

CO2 gas fields of the Colorado Plateau and the Green River CO2-springs (Gilfillan, 2004). All of 

the samples from the major gas fields have CO2/
3He ratios around the MORB range, distinct from 

the elevated CO2/
3He ratios of at Green River. Many of these samples have elevated 3He/4He. 

This indicates that the CO2 within all the major CO2 fields of the Colorado Plateau is dominated 

by mantle derived CO2 but implies a predominantly crustal source for the CO2 at Green River.  
3He/4He ratios of Gilfillan (2004) for Green River show a small variation from 0.224 to 

0.256 Ra and CO2/
3He ratios are significantly elevated relative to MORB. Despite the distinctly 

crustal CO2/
3He ratios, measured 3He/4He values are well above the expected 0.02 Ra of pure 

crust. This indicates either a small contribution of mantle derived CO2 (1-15 %; c.f. Wilkinson et 

al., 2007) diluted by large crustal contributions or the entrainment of atmospherically derived 

noble gases in the groundwater system. The observed CO2/
3He and 3He/4He imply a 

predominantly crustal source for this CO2.  

Heath (2004) concluded that the CO2 was sourced in the uppermost Palaeozoic section. 

Drilling reports from petroleum exploration in the vicinity of Green River document small 

accumulations of CO2-rich fluid throughout the stratigraphy, within formations that include the 

Jurassic Navajo Sandstone, Permian White Rim Sandstone, Honaker Trail Hermosa Formation 

and within multiple clastic units of the predominantly evaporitic Pennsylvanian Paradox 

Formation. Of the deeper formations, the Mississippian Leadville Limestone is the most likely 

CO2 source, as it possesses a suitable clay and carbonate mineralogy, petrographic evidence of 
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replacement and breakdown of carbonate to produce a high secondary porosity (Chidsey et al., 

2005) and is known to contain accumulations of free phase CO2 in other regions of the Paradox 

Basin (Cappa and Rice, 1995). Nuccio and Condon (1996) infer that the Leadville Limestone was 

heated to ~ 170 °C between ~ 70 and 38 Ma, temperatures thought sufficient to drive 

decarbonation reactions (e.g. Hutcheon and  Abercrombie, 1990).  

2.4.4. Hydrology and Fluid Geochemistry 

2.4.4.1 Water Sources for CO2-Springs  

Aquifers within the Phanerozoic sequence include the Jurassic Entrada Sandstone, the Jurassic 

‘N-aquifer’ dominated by the Navajo Sandstone but including the Wingate Sandstone and the 

Kayenta Formation, the Permian White Rim Sandstone and a Palaeozoic aquifer comprising the 

Lower Pennsylvanian and Mississippian limestone and dolomite formations (Fig. 2.2-2) 

(Hanshaw and Hill, 1969).   

The N-aquifer is the dominant local aquifer and the temperatures of waters in the CO2-

springs and geysers (Table 1) are consistent with their derivation from depths appropriate to the 

local depth of the Jurassic Navajo Sandstone, assuming a constant thermal gradient of 22.1 °C/km 

(estimated from local bottom hole temperature measurements) and no conductive cooling as 

fluids ascend to the surface. The flow rates estimated in Chapter 3 imply a thermal Peclet Number 

~ 1 and therefore, that there is limited advection of heat within the Navajo Aquifer where it 

shallows in the anticline at Green River. Uncertainty on the local heat flow and thermal 

conductivities (Bodell and Chapman, 1982) and the magnitude of advective heat transport result 

in temperature estimates for the slightly shallower Entrada Sandstone which overlap those of the 

Navajo Sandstone. However, the deeper aquifers of the White Rim Sandstone and the 

Pennsylvanian formations would be significantly hotter (> 40 °C). The similarity of fluid 

chemistry and isotopic composition, and the constancy of the superposition of fluid temperature 

with reservoir depths appropriate for the Navajo Sandstone suggest a common source reservoir 

for all the springs.  

2.4.4.2 Reservoir Geology 

The  Navajo Sandstone, along with the Wingate Sandstone and Kayenta Formation, forms the 

regionally extensive Lower Jurassic ‘N-aquifer’, of which the Navajo Sandstone is the most 

productive unit.  

The aeolian Navajo Sandstone in the northern Paradox Basin is fine grained (0.1 to 0.25 mm) 

and is dominated by quartz (72–86 wt%) and K-feldspar (7–11 wt%) with minor amounts of 

plagioclase (3–6 wt%) and trace heavy mineral fractions of tourmaline, apatite and rutile (<1 

wt%) (Beitler et al., 2005; Bowen, 2004; Cooley et al., 1969; Harshbarger et al., 1957; Parry et 
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al., 2004). Primary quartz and feldspar grains are rimmed with hematite and goethite (Chan et al., 

2000) and feldspar grains are altered to illite, smectite and kaolinite (Zhu et al., 2005, 2006). 

Authigenic illite is disseminated across both feldspar and quartz surfaces. Portions of the feldspar 

surface are locally altered to kaolinite and a 1–3 µm thick layer of authigenic smectite. Diagenetic 

pore fillings of kaolinite, illite and smectite occur predominantly in larger pore spaces. Interstitial 

dolomite and calcite, and quartz overgrowths are present as sporadic cements. 

2.4.4.3 Local Hydrology and Fluid Flow Paths 

The Mesozoic and Permian aquifers are recharged seasonally from precipitation principally in the 

San Rafael Swell (Hood and Patterson, 1984). The distribution of hydraulic head in wells 

penetrating the Navajo Sandstone delineates groundwater flow paths from zones of recharge in 

the San Rafael Swell, southeast towards the centre of the basin, where artesian conditions prevail 

(Fig. 2.4-9; 2.4-10). Groundwater is subsequently discharged into both the Green and Colorado 

Rivers (Hood and Patterson, 1984). 

Individual flow paths, which map the source of fluid feeding each spring, are taken as down-slope 

on the potentiometric surface in the Navajo Sandstone from the potentiometric height of the 

Green River Airport Well, the upstream spring (Fig. 2.4-11). Spring solute chemistries show a 

progressive change along these flow paths attributed to fluid-mineral reactions (see section 2.5.7). 

Tritium abundances for measured springs (Table 1) exhibit values within error of zero, providing 

a minimum age constraint of >60 yrs for the groundwater samples. This precludes significant 

mixing with shallow, modern groundwater. Fluid flow rates estimated in Chapter 3. imply 

groundwater transit times between the most up-stream spring (Green River Airport Well) and the 

most down gradient spring (Chaffin Ranch Geyser) on the order of ~10,000 years. 

 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

41 

 

 

 
Figure 2.4-9 Map showing the location of CO2-charged springs, local geological structure and the relative 

saturation of groundwater within the Navajo Sandstone. Arrows indicate the direction of groundwater flow 

within the Navajo Sandstone defined by the topology of the potentiometric surface. Modified from Hood 

and Patterson (1984). 
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Figure 2.4-11 Map illustrating the relationship between local structure and the potentiometric surface 
within the Navajo Sandstone. The northerly plunging Green River anticline is transected by the 

approximately east-west trending Little Grand Wash and Salt Wash fault systems. Flow paths are deflected 

by the normal faults where throws exceed ~100m. Structure contours are of the top surface of the Navajo 

Sandstone. Redrawn after Doelling (2002) & Dockrill (2005). 

 

Flow is assumed to be homogeneous and springs are projected up to 6km laterally onto the ~ 

30 km flow path from the upstream Green River Airport Well (Fig. 2.4-11 & 2.4-17). Dockrill 

(2005) assessed sealing mechanisms on the Little Grand Wash Fault and northern fault of the Salt 

Wash Graben and concluded that cross-fault flow should occur at low throws (<100m), towards 

the fault tips but that the faults were sealed at higher throws (>100m), towards the axis of the 

Green River anticline, due to reservoir–non-reservoir juxtaposition and development of a 
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continuous clay smear. It is probable that the flow path through Crystal Geyser is deflected along 

the Little Grand Wash Fault and that flow paths are deflected along the northern margin of the 

Salt Wash Graben. Flow paths to Tumble Weed and Chaffin Ranch geysers pass through the fault 

tips of the Salt Wash Graben and, on the basis of the analysis of Dockrill (2005), should not be 

deflected. Below we show that data from the geysers on the north side of the Salt Wash Graben, 

as well as Ten Mile, Tumble Weed and Chaffin Ranch Geysers can be modelled as a continuous 

geochemical sequence although the extent to which this results from comparable hydrologies 

remains untested.   

2.4.5. Fluid Geochemistry 

2.4.5.1 Origin of the Fluid Isotopic Composition 

The consistent δ18O and 87Sr/86Sr ratios of the Green River spring waters suggest a common 

source for all ten springs (Table 1, Appendix A). The spring waters are initially of the Ca2+–

Mg2+–HCO3
- type, where they flow from the recharge zone to the westerly limb of the Green 

River anticline (Fig. 2.4-12). The waters then evolve to Na+–HCO3
-–Cl- type as they ascend and 

cool in the anticline and mix with deeply derived brines.  

Regionally, chloride concentrations in the Navajo Sandstone are low (0.1–1mmol/l) (Zhu, 

2000), being derived from atmospheric inputs in recharge waters. Halite is not present in the 

Navajo Sandstone and is thus not a potential source of Cl- (Zhu, 2005). Elevated chloride 

concentrations in the Green River springs are attributed to input of basinal brines most probably 

associated with the inputs of CO2. 

Heath (2004) shows that the spring waters lie close to the global meteoric water line on a 

plot of D/H versus δ18O, and attributed these fluids to a purely meteoric source. We interpret δ18O 

values ~ 2‰ more positive than local Green River surface waters (Mayo et al., 2003) as resulting 

from mixing between the meteoric source and isotopically heavy brine (Fig. 2.4-13a), (c.f. 

Wilkinson et al., 2008). 
87Sr/86Sr ratios (Table 1.) in the Green River spring waters are elevated compared with 

formation waters from the Navajo Sandstone elsewhere (0.70976 1σ = 0.0007) (Spangler et al., 

1996). Strontium concentration versus 87Sr/86Sr data (Fig. 2.4-13b) fall along a two component 

mixing hyperbola between Paradox Formation waters (Spangler et al., 1996), with values close to 

that of Pennsylvanian seawater (0.7081 to 0.7087, Burke et al., 1982), and a radiogenic end-

member comprising silicate minerals in the host aquifer.  
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Figure 2.4-12 Piper diagrams for the CO2-springs and basinal brine from the Paradox formation and 

Paleozoic Aquifers. Concentrations in mEq L−1. 

 

Assuming that chloride behaves conservatively and is derived solely from brine, the solute 

chemistry in each spring can be corrected for the brine input: 
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where kc, kS and kB are the corrected, spring and brine concentrations (mmol/l) of the kth element, 

respectively. ClS and ClB are the chloride concentrations in the spring and the formation brine. 

This is equivalent to treating brine inputs as an additional phase and allows the quantification of 

solutes derived from fluid-rock interaction alone (Fig. 2.4-17). Compilations of regional brine 

analyses are present in Appendix A. 
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Figure 2.4-13 (a) Cross plot of oxygen and hydrogen stable isotopic compositions of the Green River 

springs (Heath, 2004), local surface waters (Mayo et al., 2003) and Paradox Formation brine (Spangler et 

al., 1996). The isotopic composition of the CO2-charged springs is explained by mixing between 

isotopically light meteorically derived fluids with a small component of isotopically heavy basinal brine 

from the Paradox Formation. (b) 87Sr/86Sr versus Sr2+ concentration for the CO2-charged springs and 

Paradox Formation brine (Spangler et al., 1996), showing mixing of strontium derived from brine with a 

composition close to that of Pennsylvanian seawater (Burke et al., 1982) and a radiogenic end-member 

attributed to strontium derived from silicates in the host aquifer (Truini and Longsworth, 2003).  

2.4.5.2 CO2 Solubility and transport 

Figure 2.4-14 depicts the maximum dissolved CO2 concentration in pore fluid through the 

stratigraphy of the Paradox Basin, in the vicinity of Green River. This model assumes a constant 

porewater temperature from the surface to where this intersects the geothermal gradient at the 

reservoir top. The local geothermal gradient is calculated as 21.2 oC/km based on bottom-hole 

temperature measurements from exploration well Pan American 1#, Salt Wash. Fluid salinities 

are based on measured values for the Navajo Aquifer system (Crystal Geyser water) and on a 

compilation of published analyses for fluids of the White Rim, Paradox Formation (Spangler et 

al., 1996) and Paleozoic Aquifer systems. The solubility of CO2 was determined using the P, T 

and salinity dependent expressions of Duan et al., (2006).  Because of the interplay of increasing 
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temperature and pressure deeper into the subsurface, the solubility of CO2 in porefluid has a 

minimum at the surface and a maximum at between 500 and 900 m depending on the thermal 

profile and fluid salinities. Below this depth solubility decreases sharply at the transition from 

dilute meteoric aquifers to brine-rich aquifers with high salinities, due to the salting out effect 

(Duan et al., 2006) and then continues to decrease slowly due to the effects of temperature. The 

transport of deeply derived CO2 in solution from the Paleozoic Aquifer to the shallow White Rim 

and Navajo Aquifers will be limited by the solubility of CO2 within the saline Paradox Formation 

brine – a maximum concentration of ca. 0.8 mol L-1 can be expected in the brine rich formations 

and ca. 1.6 mol L-1 in the shallower Navajo and White Rim Aquifers. If CO2 is transported in 

solution from the Paleozoic Aquifer, exsolution of a free phase is unlikely due to the increased 

solubility in the shallow aquifers due to salinity, temperature and pressure effects.  

 

 

Figure 2.4-14 CO2 solubility versus depth for a typical profile through the Green River anticline, and for 

different thermal profiles. See text for method of derivation and details of fluid compositions in the 

different aquifer systems.  
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2.4.5.3 Fluid Rock Reaction: Evolution of the Fluid Chemistry 

Fluid chemistries of groundwater systems are controlled largely by the hydrolysis of rock forming 

silicate, aluminosilicate and carbonate minerals and to a lesser extent by the dissolution of halides 

and sulphates (Drever, 1997). Fluid-rock reactions in groundwater systems are driven by the 

dissolution and redistribution of CO2 which promotes mineral dissolution via the production and 

dissociation of carbonic acid. Shallow and/or young groundwater systems are dominated by 

reactions involving carbonate minerals, when present, due to the high solubility and rapid 

dissolution kinetics of these minerals. When there are no carbonates present, or saturation with 

respect to carbonate phases is reached, the ion chemistry will be controlled by the dissolution of 

silicate and aluminosilicate minerals. Determination of groundwater saturation state using 

PHREEQC (Parkhurst and Appello, 1999) indicates that groundwaters are undersaturated with 

respect to the predominant silicate minerals in the host aquifer; K-feldspar, albite and anorthite, 

and are oversaturated with respect to typical weathering product aluminosilicate minerals 

kaolinite, smectite and illite. Groundwaters are oversaturated with calcite and dolomite. 

Silicate mineral dissolution reactions consume CO2 and increase the dissolved cation and 

bicarbonate concentrations. Alkalinity is therefore frequently invoked as a variable which reflects 

the extent of fluid-rock interaction (Plummer et al., 1983) because it can increase concurrently 

with the base cations (Ca, Mg, Na, K) that are released during mineral dissolution. The 

stoichiometry of typical mineral dissolution reactions implies that alkalinity should show a 1:1 

relation with respect to Ca + Mg + Na + K in equivalent when the water chemistry is regulated by 

the weathering of silicate and/or carbonates. Dissolution of halide and sulphate minerals does not 

affect alkalinity (Garrels and Mackenzie, 1967).  The 1:1 relationship between the total base 

cations and alkalinity observed in the fluid chemistry of the CO2 springs (Fig. 2.4-15) indicates 

that the dissolved solutes, in excess of those derived from brine inputs, are sourced predominantly 

from the dissolution of silicate and/or carbonates. 

The fluid chemistry exhibits a systematic increase in Na+, K+, Ca2+, Sr2+, Al3+ and 
87Sr/86Sr along the flow path attributed to feldspar dissolution (Fig. 2.4-17). In general, DIC and 

alkalinity increase down stream from Green River Airport Well due to the progressive addition of 

CO2 to the fluid along flow and the consumption of CO2 and H+ during silicate hydrolysis.  
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Figure 2.4-15 Cross plot of field alkalinity versus the sum of the base cations corrected for brine derived 
N+ and K+ by subtraction of Cl-. 

 
87Sr/86Sr is highest for the most up gradient spring, Green River Airport Well, which is 

devoid of brine inputs. 87Sr/86Sr decreases to Crystal Geyser and Small Bubbling Spring reflecting 

brine inputs close to the site of these springs. 87Sr/86Sr and Sr2+ then increase progressively down 

stream reflecting increased proportions of silicate derived Sr2+ in the fluid. This trend mirrors that 

observed for other silicate derived components. Tenmile Geyser lies off this trend in both 
87Sr/86Sr and Sr2+ reflecting the high proportion of Sr2+ rich, low 87Sr/86Sr brine in this spring. On 

a plot of 1/Sr versus 87Sr/86Sr the spring waters down stream of Small Bubbling Spring form an 

array reflecting increasing quantities of silicate derived Sr2+ with increasing groundwater age and 

degree of fluid rock interaction (Fig. 2.4-16).  

 

 
Figure 2.4-16 Cross plot of 1/Sr versus 87Sr/86Sr illustrating the effects of both fluid mixing and fluid-rock 

reaction on the composition of the groundwater. 
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Figure 2.4-17 Solute chemistry versus distance along the modelled flow path.  Little Grand Fault and the 

northern fault of Salt Wash Graben are located approximately 8 and 14 km along the flow path, 

respectively. Trends in the data are discussed in the text. Concentrations of N+ and K+ are corrected for 

brine additions. Na+ and K+ error bars are uncertainty after correction for brine inputs (Appendix A) and 
analytical uncertainties for all other solutes. For cations and 87Sr/86Sr both 2006 and 2007 data sets are 

presented. Values are generally within the measured uncertainties adding validity to the trends and suggest 

spring chemistries are temporally invariant. (DIC = Dissolved Inorganic Carbon, [Alk] = Alkalinity 

(mEq/l).  



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

51 

The primary Mg2+ source is diagenetically early dolomite cement ubiquitous to aeolian Jurassic 

sediments of the Paradox Basin (Desborough and Poole, 1992). Mg2+ initially increases during 

the earliest portions of the flow path, interpreted to reflect dissolution of dolomite. Increases in 

Mg2+ along various portions of the flow path are match by relative increases in Sr2+ and decreases 

in 87Sr/86Sr, which reflect Mg2+ liberation from dolomite dissolution. Further along flow Mg2+ 

concentrations are variable suggesting its concentration is largely regulated by precipitation of 

secondary weathering products.  

The SiO2 content decreases sharply as fluid flows from the Green River Airport Well, 

which samples deeper, warmer (27°C), fluids on the NE limb of the Green River anticline, to 

springs along the crest of the anticline which consistently sample cooler fluids (16–18°C). On the 

projected profile (Fig. 2.4-17), pH shows a minimum at Green River Airport Well and increases 

to Crystal Geyser, decreases to Small Bubbling Spring and then increases at a decreasing rate in 

geysers downstream of Small Bubbling Spring. This is interpreted to reflect injection of CO2 at, 

or upstream, of Green River Airport Well and near Small Bubbling Spring on the northern margin 

of the Salt Wash Graben. The downstream increase in pH is interpreted to reflect progressive 

neutralization of this acidity by dissolution of silicate minerals.  

2.4.5.4 CO2 Degassing: In-situ DIC and pH 

The measured pH and DIC may not directly reflect the in-situ values of these quantities if 

extensive CO2 degassing has taken place as fluids ascend to the surface. Elucidation of the true 

in-situ values of these quantities is important for the interpretation of the fluid-rock interaction 

histories of these groundwaters and for the correct determination of mineral saturation state. 

Without direct measurement of the fluid and gas flux in each spring or isotopic constraints on the 

degassing process (from for example an inert tracer such as noble gases) it is impossible to 

precisely constrain the degree of CO2 degassing in individual springs. As has previously been 

discussed (section 2.4.2.2) stable isotopic constraints imply degassing takes place in the shallower 

portions of each spring. This implies that saturation with respect to CO2 in the ascending fluid is 

not reached until some finite depth (unless fluid velocities are very fast relative to the critical 

overstep in saturation required for bubble nucleation and growth) and that fluids are not saturated 

with CO2 at reservoir conditions. However, the in-situ solubility of CO2 at the site of each spring 

is a readily calculable quantity and provides a maximum constraint on the degree of CO2 

degassing experienced by each spring. 

Calculation of the maximum in-situ CO2 solubility for each spring was made using the 

model of Duan et al., (2006) and analyzed fluid chemistries, at reservoir depths estimated from 

the fluid emanation temperature or from well constraints, where available. In-situ pH, SIcc and 

pCO2 were then calculated in PHREEQC (Parkhurst and Appello, 1999) using the modeled DIC, 
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analyzed water compositions and field alkalinity (Fig. 2.4-18). Measured values of alkalinity 

provide an important constraint on in-situ pH and calcite saturation, being unaffected by the 

degassing process. If alkalinity of the groundwaters was controlled purely by equilibria in the 

carbonate system (i.e. by equilibrium between CO2(aq), HCO3
- and calcite) the decrease in the 

modeled CO2 solubility with distance along the flow path would impose a decrease in alkalinity 

also. This is not observed in the field measurements and thus alkalinity, and subsequently pH, 

must be elevated by progressive fluid-rock reaction along the flow path. The trends in in-situ DIC 

and pH with distance along the flow path mirror those observed in the measured values of these 

quantities. These calculated CO2 solubilities are a maximum for individual springs. Whilst the 

actual in-situ CO2 concentrations maybe somewhere close to, or below saturation this provides an 

upper limit on the degree of CO2 degassing experience by each spring (Table. 2.4-1) and a 

minimum possible value for in-situ pH. Importantly, elevated CO2 concentrations at the measured 

values of alkalinity lower mineral saturation in the fluid through a reduction in pH (Fig. 2.4-18). 

However, absolute changes in in-situ pH remain a result of progressive fluid-rock reaction and pH 

neutralization through hydrolysis reactions.  

 

 

 

 
Figure 2.4-18 In-situ DIC, pH and pCO2 and the resulting SIcc calculated using the Duan et al., (2006) CO2 

solubility model and PHREEQC. 
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Well Modelled DIC Measured DIC % Degassed 

  mmol L
-1

   

Crystal Geyser 1334 107 92 

Torreys Spring 411 112 73 

Tenmile Geyser 1079 83 92 

Pseudo-Tenmile Geyser 617 93 85 

Chaffin Ranch Geyser 239 100 58 

Green River Airport Well 1537 76 95 

Big Bubbling Spring 1215 116 90 

Small  Bubbling Spring 1298 119 91 

Side Seep Big Bubbling 1288 119 91 

Tumble Weed Geyser 737 98 87 

 
Table 2.4-1 Measured DIC versus DIC calculated for CO2-saturation at reservoir depth, and the implied 

degree of CO2 loss through degassing. 

 

 

Figure 2.4-19 Calcite and plagioclase saturation indices for the measured spring compositions (black 

squares) and the compositions recalculated for CO2 saturation in the host reservoir (open symbols). 

2.4.6. Thermodynamic Constraints on Fluid-Rock Reaction 

Although a weathering process must be regarded as a nonequilibrium process, a common 

approach to obtain information on the regulation of natural water composition is through 

equilibrium calculations. In principle this approach is valid since an irreversible pathway as a 

whole may be seen as a series of consecutive reactions each of which is in equilibrium with the 

next (Wernberg, 1998). Besides their relative simplicity, the equilibrium models always show the 

direction towards which the system is striving.  

One of the most common applications of equilibrium models is to relate analysed 

concentrations of different species to stability diagrams of some selected minerals. If the analysed 

species are approximately located along the boundary of two different phases, these phases are 

interpreted as concentration controlling. In order to define the different equilibrium model 
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systems (Figs. 2.4-20 to 2.4-23) a certain number of chemical species, i.e., components, were 

chosen (see Ingri, 1978). These components, H+-SiO2(aq)-Al3+-Na+-K+-Mg2+-Ca2+-H2CO3, are the 

minimum number of chemical species required to describe the composition of all phases and 

solute species (after Marini, 2007). H2O is not considered since its activity is set to unity in the 

calculations. The anions Cl- and SO4
2- are not considered since they are not included in the silicate 

minerals.  

It should be noted that the application of equilibrium constants of silicate minerals to 

natural water model systems is associated with some difficult problems. First, the equilibrium 

constants are usually not experimentally obtained but extrapolated using data (e.g. heat capacities, 

entropies) from elevated temperatures. In some cases even the thermodynamic data at elevated 

temperatures are estimated. Secondly, the silicate phases occurring in nature are not idealized 

pure phases, but instead solid solutions are ubiquitous.  Thus inferences about controlling 

reactions in groundwater systems based on activity diagrams are a general guide at best. The 

superposition of groundwater composition outwith a specific mineral field does not always imply 

that that mineral may not form or be an important buffer of composition.  

The concentration of dissolved silica, derived from the dissolution of silicate minerals, is 

controlled by equilibrium with an amorphous silica phase in the majority of springs (Figs. 2.4-

20). Theoretically dissolved silica may be either controlled by kinetic factors during the 

dissolution of silicate minerals or by precipitation of secondary minerals. It has been noted in 

several studies (e.g. Barnes and Hem, 1973; Paces 1978) that secondary silica formation in low 

temperature groundwaters typically involves amorphous forms of silica, with variable solubilities 

(between chalcedony and true amorphous silica), rather than direct precipitation of quartz. 

Although, tentatively the dissolved silica may be controlled by a more soluble silica phase or by 

the transformation of K-feldspar and smectite to illite at higher temperatures (Aagaard and 

Helgeson, 1983).  

 

Figure 2.4-20 The aSiO2(aq) as a function of temperature showing the superposition of measured values 

with the stability boundaries for chalcedony (for the low temperature springs) and for the reaction of K-

feldspar and smectite to illite for Green River Airport Well.  
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Kaolinite and Ca-smectite are the dominant stable clay minerals (Fig. 2.4-21 to 2.4-23). 

Equilibrium with the aforementioned silica phases maintains most groundwater samples within 

the kaolinite stability field. Al3+ concentrations are essentially independent of pH suggesting a 

non equilibrium control on this species. Because aSiO2(aq) is fixed by the precipitation of an 

amorphous silica phase, kaolinite will not regulate the dissolved Al3+ concentration (Deutsch, 

1997) and its concentration will be regulated by the dissolution of silicate minerals. 

Groundwater composition trajectories are from the stability field of smectite as waters at 

moderate temperature flow from depth up the NW-limb of the Green River anticline (Fig. 2.4-21). 

Accumulation of base cations and attenuation of pH as the fluids ascend induces trajectories 

towards the stability field of the dissolving silicate minerals (K-feldspar and plagioclase). Cooling 

of the fluid results in a decrease in solubility of the silica phase and results in a decrease in 

aSiO2(aq), moving the fluids into the stability field of kaolinite. 

A second introduction of CO2 further along the flow path suppresses silicate saturation in 

the fluid and they transpose vertically in aK+/aH+, aNa+/aH+, aCa2+/(aH+)2, aMg2+/(aH+)2 

compositional space. Further dissolution of silicate minerals drives compositions back towards 

the silicate mineral stability fields. The groundwaters are oversaturated with respect to calcite and 

therefore secondary calcite formation is thermodynamically favourable (Fig. 2.4-24). However, 

numerous studies (e.g. Dreybrodt et al., 1992; Herman and Lorah, 1987, 1988; Lorah and 

Herman, 1988; Michaelis et al., 1985; Segnit et al., 1962; White, 1997) show that calcite does not 

precipitate instantaneously at the point of saturation. Precipitation requires a finite supersaturation 

because of activation barriers to calcite nucleation and crystal growth (White, 1997). Activation 

barriers may be accentuated by calcite inhibitor ions, e.g. Mg (Berner, 1975; Bischoff, 1968; 

Pytkowicz, 1965), or the presence of organic matter (Berner, 1975; Raiswell & Fisher, 2004). In 

most circumstances this implies a saturation index (SICC) of +0.5, although Dreybrodt et al. 

(1992) suggest that saturation indices of at least +1.0 are required. The measured spring 

compositions fall within this +0.5 to +1.0 range. pCO2 recalculated for reservoir CO2 saturation 

(section 2.4.5.4) displaces SICC to values of undersaturation in the upper portions of the flow path, 

moving to saturated to moderately saturated in the later portions of flow. 

 

 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

56 

 

 
Figure 2.4-21 Activity-activity diagrams for Na+, Ca2+ and K+ at 25 °C for the CO2-springs (modified after 

Helgeson et al., 1969), showing generalized mineral stability boundaries aassuming that the activity of 

aqueous SiO2 is fixed by equilibrium with chalcedony. Blue path is the generalized trajectory for the 

evolution of the fluid along the length of the flow path. Lower in-situ pH would depress data points to 
lower values of log(aX/aH+). 

 

 

 

 

 
Figure 2.4-22 Alumino-silicate phase stability diagrams for Na+, Ca2+ and Mg2+ at 25 °C. Approximately 

linear correlations with slopes of 1:1 and 2:1 are characteristic of groundwater systems where Na+, Ca2+ and 

Mg2+ aqueous activities are regulated by silicate dissolution reactions (Helgeson, 1969, 1970; Norton, 

1974). Kaolinite and a Ca-rich smectite are the most thermodynamically favored reaction products.  
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Figure 2.4-23 Alumino-silicate phase stability diagrams at 25 °C for all the potential low temperature 
reaction products (modified after Marini, 2007). 
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Figure 2.4-24 Calcite saturation index as a function of pCO2 for measured CO2-spring water analyses 

(black squares) and for the modelled in-situ values (open symbols). The solid horizontal line at SIcc = 0 

describes water in equilibrium with calcite, while the dashed horizontal lines indicate kinetic thresholds for 

dissolution and precipitation (White, 1997). Vertical lines labeled ‘atmosphere’ represent pCO2 at sea level 

(1 atm total pressure).  

2.4.7. Redox Conditions  

Groundwaters typically contain Fe concentrations in the region of 5 µmol L-1 (Drever, 1997) but 

values as high as 2000 µmol L-1 have been reported in reducing groundwater systems (Deutsch, 

1997) due to the increased solubility of Fe phases in reduced and acidic fluids (e.g. Welham et al., 

2000). Analysed spring waters have Fe concentrations in the range 60 to 270 µmol L-1 and Mn 

concentrations in the range 2 to 30 µmol L-1.  

Measured Eh values for spring waters are in the range 6 to -42 ±3 mV, indicating that the 

groundwater system is in a reduced state and that Fe and Mn are predominantly present in 2+ 

oxidation state (Fig. 2.4-25a). Superposition of measured Eh, pH and aFe2+ indicate that dissolved 

iron concentrations are largely controlled by equilibrium with an iron oxide phase (Fig. 2.4-25b) 

with a solubility close to that of hematite or goethite (see Appendix C for a complete discussion) 

via the reductive dissolution reaction at acidic pH:  

 
2

2 3 26 2 2 3Fe O H e Fe H O+ − ++ + ↔ +       (2.28) 

or 
2

23 2FeOOH H e Fe H O+ − ++ + ↔ +       (2.29) 

 
It should be noted that various authors suggest caution in using Eh to quantify redox condition 

(e.g. Lindberg and Runnells, 1984). The difficulty in interpreting redox from Eh measurements 

results from using an equilibrium approach to describe a highly dynamic system (James and 

Bartlett, 2000). Eh is a simple measure, but it gives at best only qualitative assessment of water 

redox conditions because the Pt electrode may not respond to many important redox couples 
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(Lovely and Goodwin, 1998). Thus, a wide range of Eh has been observed for the same redox 

couple and, as a result, several redox reactions may be relevant within the same Eh range (Lovely 

and Goodwin, 1998). 

In the absence of soluble phase redox couples such as SO4
2--H2S or CO2-CH4 

groundwater redox reaction potential is largely a function of the oxygen fugacity of the fluid 

(Drever, 1997). 

Equilibrium redox potentials for the SO4
2--H2S and CO2-CH4 redox couples are in the 

region of 0 to -200 mV and -200 to -500mV, respectively (Drever, 1997). Dissolved oxygen 

concentrations typically decrease within increasing depth and groundwater age (e.g. Edmunds, 

Miles and Cook, 1984; Lin-Hua and Atkinson, 1985). This is largely due to the interaction of the 

groundwater with organic rich sediments, reduced mineral phases and bacterial activity in the 

subsurface (Drever, 1997). Gas compositional analyses of Heath (2004) suggest that these 

groundwaters are largely free of dissolved CH4 or H2S. However, circumstantial evidence in the 

form of a detectible odour of H2S during large-scale eruptions of Crystal Geyser suggests that 

dissolved H2S at least, may be present in small quantities in these groundwaters. This suggests 

that the groundwater redox reaction potential is largely controlled by the dissolved oxygen 

content of the fluid (and possibly by the presence of trace H2S), whilst the measured redox 

potential is determined by the Fe3+/Fe2+ redox couple.  

Effused spring water interacts with the atmosphere accumulating dissolved oxygen such 

that Fe moves from the ferrous to ferric state and as a result of the change in relative solubility is 

removed from solution: 

 
2 3

2 2 3 24 3 6 4 12 4 ( ) 4Fe O H O Fe OH Fe OH H O+ + −+ + → + → +     (2.30) 

or 
2 3

2 2 2 3 24 3 6 4 12 2 6Fe O H O Fe OH Fe O H O+ + −+ + → + → +     (2.31) 

 
Fe is precipitated as goethite or hematite. Reprecipitated Fe imparts a distinctive ochre colour to 

the precipitated carbonate in travertines. 
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Figure 2.4-25 a) Equilibrium phase diagram, calculated using CHNOSZ (Dick, 2008), for iron oxide-
hydroxides and sulphides in the system FeCSOH and MnCSOH at 18°C; aCO2= -1.4, aSTOT= -2.4 and 

aFeTOT at -3 and -7. b) As above but including equilibrium boundaries for Mn-oxides and aqueous species, 

and data points for the measured values of Eh and pH for each spring. Some scatter in the data is attributed 

to CO2 degassing and the incorporation of atmospheric O2 in the surface layers of the spring waters. 
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2.4.8. Time Series Fluid Chemistry: Crystal Geyser 

Modern eruptions of Crystal Geyer exhibit a bimodal pattern of size and frequency with short 

duration (~20 minutes), low flux (~0.17 kg/sec CO2) eruptions occurring approximately every 8 

hours and large explosive eruptions (~4.2 kg/sec CO2) occurring every 22 hours, lasting on 

average 115 minutes (Gouveia and Friedmann, 2006).  

Time series fluid chemistry from Crystal Geyser exhibits two distinct compositional 

patterns which are related to changes in the style of fluid and gas effusion (Fig. 2.4-26). During 

the build-up period to a large-scale eruption small-scale ‘bubbling events’ occur periodically (five 

small scale ‘bubbling events’ occurred during the sampling period, at regular 25 minute intervals) 

and fluid chemistry evolves towards increasing Na-K-Cl-SO4 rich and Ca-Mg-Sr-Fe-Mn poor 

compositions. During a large-scale eruption this trend reverses and the fluid chemistry then 

changes systemically through the course of the eruption (with the sampled eruption lasting two 

hour and ten minutes).  

The major changes in solute chemistry during this period are a systematic decrease in the 

Na+, K+, Cl-, SO4
2-, δ18O, DIC, 87Sr/86Sr and an increase in Ca2+, Mg2+, Sr2+, Fe2+, Mn2+ and 

δ
13CDIC. Systematic changes in Cl- and δ18O through both portions of the geyser cycle are 

interpreted to reflect two-component end-member mixing between a saline, isotopically heavy 

Na-K-Cl-SO4 type fluid (representing the ‘typical’ groundwater previously discussed; a mixture 

of meteorically derived formation fluid and deeply derived Paradox Formation brine) and an 

isotopically light, dilute Ca-Mg-Sr-Fe-Mn type fluid (representing ‘typical’ groundwater without 

addition of brine, similar to that of the fluid expelled from the Green River Airport Well further 

up the flow path) (Fig. 2.4-17).  Cl- versus δ18O defines a hyperbolic mixing line (Langmuir et al., 

1978).This hyperbola lies as a mixing curve between an isotopically light, dilute meteoric end-

member and an earlier mixture of dilute meteoric fluid and isotopically heavy, saline brine. Thus, 

the chemistry changes observed in Crystal Geysers largely represent the dilution of an earlier 

fluid formed by mixing isotopically light formation fluid and Paradox Formation brine. 

Cross plots of major cations and anions versus Cl- define approximately linear trends. 

Linear trends of decreasing Na+, K+ and SO4
2- with decreasing Cl- reflect dilution of a high Na/Cl, 

K/Cl and SO4/Cl fluid with increasing proportions of a dilute, isotopically light, Mg-Ca-HCO3
- 

end-member. Approximately linear trends of increasing divalent cation (Ca2+, Mg2+, Sr2+, Fe2+, 

Mn2+) concentrations with decreasing Cl- reflect dilution of the pre-eruption water with increasing 

proportions of the Ca-Mg-HCO3 end-member. Increase in these cation concentrations reflects that 

fact that the divalent cation/Cl of the Ca-Mg-HCO3 end-member are greater than that of the Na-

K-Cl type pre-eruption waters.  

 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

62 

 

F
ig

u
re 2

.4
-2

6
 a) T

h
e m

ech
an

ism
 d

riv
in

g
 ep

iso
d

ic g
ey

sers b
y

 C
O

2  d
eg

assin
g

. D
y

n
am

ic flu
id

 d
en

sity
, d

riv
en

 b
y

 C
O

2  d
eg

assin
g

 in
 th

e ascen
d

in
g

 flu
id

, 

d
riv

es catastro
p

h
ic d

eg
assin

g
 o

f C
O

2  an
d

 eru
p

tio
n

 o
f th

e g
ey

ser. b
) G

en
eralized

 v
iew

 o
f th

e ch
an

g
es in

 p
ro

p
o

rtio
n

s o
f flu

id
 en

d
-m

em
b

ers th
ro

u
g

h
 th

e 

d
eg

assin
g

 p
ro

cess. c) S
ch

em
atic d

iag
ram

 o
f C

ry
stal G

ey
ser an

d
 L

ittle G
ran

d
 F

au
lt sh

o
w

in
g

 th
e h

y
p

o
th

esised
 v

iew
 o

f g
ro

u
n
d

w
ater m

ix
in

g
 as a resu

lt o
f 

flu
id

 ejectio
n

 d
u

rin
g

 g
ey

serin
g

.  

 



Chapter 2: Hydrogeology and Geochemistry of a CO2 Leaking Groundwater System 
 

 

 
 

63 

 

 

 

Figure 2.4-27 Times series solute and isotope geochemistry for the time series samples of Crystal 
Geyser. Dashed line is the eruption height (m), solid line are the solute or isotope values. 
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Figure 2.4-28 δ
18O versus Cl- for all the CO2-springs (blue squares) and for the time series samples of 

Crystal geyser (red squares) showing the least squares hyperbolic fit to the data (Langmuir et al., 1978). 
The figure demonstrates the mixing between two end-member fluids: a saline brine with high Cl- and heavy 

δ
18O; and dilute meteoric fluid with low Cl- and light δ18O. The Crystal geyser samples are a further 

dilution of a mixture already formed from these end-members, with a third lighter meteoric end-member. 

Differences in the δ18O of the meteoric end-members is interpreted as reflecting variability in the δ18O of 

rainwater through the Holocene (c.f. Zhu, 2000) 
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Figure 2.4-29 Cl- versus major solute chemistry for the time series samples of Crystal Geyser. 
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Figure 2.4-30 Cross plots of Sr2+ and 87Sr/86Sr versus Mg/Ca illustrating the derivation of low 87Sr/86Sr 

Sr, Ca and Mg from dolomite dissolution. 

 

The magnitude of the variation in 87Sr/86Sr observed in the time series samples (0.712524 to 

0.712729, n = 17) is small compare to the observed range in 87Sr/86Sr observed between all 

samples (0.711755 to 0.713327, n = 10). 87Sr/86Sr decreases 1) through the course of an eruption, 

2) with decreasing Cl- and 3) with increasing Sr2+ concentration. The hyperbolic mixing trends 

between 87Sr/86Sr and various cations implies; a) the pre-eruption fluid has 87Sr/86Sr higher than 

the Ca-Mg-HCO3 end-member. b) trends in 87Sr/86Sr versus major cations reflect mixing between 

the two fluid end-members and the dilution effects previously discussed. C) 87Sr/86Sr decreases 

with increasing Sr2+. The lower 87Sr/87Sr and higher Sr, Ca and Mg of the Ca-Mg-HCO3 end-

member are attributed to a higher proportion of carbonate derived from dissolution of dolomite in 

the host aquifer, in the earlier portions of the flow path (Fig. 2.4-30). 

Temperature measurements of Gouveia and Friedmann, (2006) using rugged thermistors 

record systemic variations in temperature of the effused fluid during the build up to an eruption, 

and through the course of an eruption, which are generally consistent with our measurements of 

temperature variation. Time series measurements reveal a gradual but systematic increase in 

temperature of ~ 1.5 °C from 17 °C to 18.5 °C at the onset of eruption. During the course of an 

eruption temperature decreases systematically from the pre-eruptive maximum (18.7 °C) to close 

to the pre-eruptive minimum (16.6 °C), at the end of the eruption. These systematic temperature 

changes covary with changes in the proportion of two fluid end-members. The temperature 

variation may thus be related to mixing of two distinct water bodies of different temperature, and 

from different depths. This temperature variation is equivalent to a ~ 85 m variation in the depth 

of the source fluid. The Navajo Sandstone is ~ 95 m thick in the vicinity of Crystal Geyser (Green 

River Unit 1#).  Differences in the densities of the fluid end-members may impart differences in 

the hydrodynamics of these fluids and stratification within the host reservoir. It can thus be 
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inferred that the Na-Cl type end-member is sourced from deeper portions of the formation and the 

Mg-Ca-HCO3
- from shallower (Fig. 2.4-26).  

This variation in fluid chemistry and temperature is interpreted to reflect the drawing in 

and mixing of distinct water types within the near wellbore region, within the host aquifer. It 

seems likely that these fluid mixing processes are in part stimulated by the excess (e.g. a fluid 

flux greater than that driven by hydraulic head) of fluid withdrawn from the aquifer during 

geysering. This rapid fluid effusion is driven by the buoyant uplift and explosive ejection of fluid 

from the well by rising CO2 bubbles (Lu et al., 2005; 2006; Pruess, 2006, 2008). This results in a 

rapid decline in the height of the column of fluid sitting in the well, causing a pressure 

perturbation in the reservoir itself, which must impose increased fluid velocities in the subsurface. 

The observed pattern of fluid mixing implies that CO2-charged brines influx into the Navajo 

Aquifer in close proximity to Crystal Geyer, on the timescale of the geysering events. It suggests 

that the geysering processes itself acts as an active groundwater pump, stimulating the vertical 

migration of fluid between reservoir and leakage to the surface. 

The presence of an active flux of CO2-charged brine from a reservoir deeper than the 

Navajo Aquifer can be assessed from information on the effusion of CO2 and fluid from Crystal 

Geyser. The rate of CO2 effusion from Crystal Geyser has been measure as ~11,000 t/a (tones per 

annum) (Gouveia et al., 2005; Gouveia and Friedmann, 2006). The presence of a continuous free 

gas phase close to the site of Crystal Geyser is improbable as this well is close to the apex of the 

anticline and would thus be likely to directly penetrate any buoyantly accumulated gas cap. 

However, the exsolution of small volumes of CO2 within the host aquifer may occur due to the 

depression of CO2 solubility as fluids ascend the anticline. 

If the reservoir fluid was close to CO2 saturation (as it would likely be if an exsolved 

phase could be maintained) fluid entering the bottom of the Crystal Geyser well would degas 

instantaneously upon rising a short distance vertically. The geysering processes intrinsically 

requires that the point of gas exsolution be mobile and able to rise and fall vertically through the 

well (Fi.g 2.4-26), thus regulating the development of periodic, large-scale degassing events 

which drive large eruptions. A CO2-saturated reservoir would degas continuously from the well 

base, producing a continuous violent gas stream and would not exhibit periodicity in eruption 

style or strength.  
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Figure 2.4-31 Schematic diagram illustrating the accumulation of CO2-charged brine at the intersection of 

the Little Grand Fault with the apex of the Green River anticline. Free phase CO2 may accumulate as 

isolated, capillary trapped bubbles due to the change in solubility as fluids ascend the anticline.  

 
Measurement of the recovery rate of fluid within the well following a large eruption allows 

calculation of the fluid velocity (1.03 x 10-4 m/sec) and volumetric fluid flux (1.17 m3/day). This 

value match closely with that expected for a pressure head driven fluid flux calculated using the 

equations of Bernoulli, and is equivalent to the artesian fluid flux. Additional fluid is expelled 

from the well during large eruptions due to the buoyant uplift of water by large, rising gas 

bubbles. The rate of water flux from Crystal Geyser during large-scale eruptions was measured in 

the early 1970’s (although the method was not specified) and was reported by Baer and Rigby 

(1978) as 27.5 ±2 m3/hr, with eruptions lasting on average 4.25 hours. However, anecdotal 

evidence suggests that the modern flux has decreased since this measurement (Waltham, 2001; 

Fig. 2.2-6), possibly due to reduction in local hydraulic head as a result of fluid and pressure 

depletion in the surrounding reservoir, or depletion of a CO2-charged fluid reservoir. Scaled to the 

duration of a modern eruption these flux estimates imply that in the course of an eruption 60 ±3 

m3 of fluid (or a 527m x 38cm column) is emptied from the well; equivalent to the entire well 

volume. Assuming that this flux was similar over the period prior to the flux measurements this 

implies that for the given reservoir thickness (95 m) and porosity (20%) a 3.2 ± 0.8 km radius 

around the geyser was emptied of fluid prior to the 1970’s and 5.5 ± 1.4 km radius over the 74 

year life of the geyser (scaling for the decrease in eruption length since the 1970’s). This large 

volume of fluid effusion is most likely balanced by influx of fluid from aquifers below the Navajo 

Aquifer and from increase in the fluid velocity within the aquifer itself. 

From eruption frequency data and the estimates of fluid and gas expulsion during 

eruptions and the background fluid and gas flux during periods of quiescence, annual estimates of 
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the CO2 and water discharge, and the yearly, average CO2 concentration can be made. Average 

annual CO2 emissions range from 5694 ± 1708 t/a to 12702 ± 3810 t/a using upper and lower 

limits for the CO2 flux observed in individual, large eruptions and uncertainty estimates in the 

sampling method (Gouveia et al., 2005). Estimates of fluid flux during periods of eruption and 

quiescence yield 2.7x104 m3/a and 368 m3/a, respectively. This results in average CO2 

concentrations of ~4 to 10 mol L-1, greatly exceeding the maximum solubility of CO2 in the 

Navajo Aquifer. This strongly implies that CO2 must be added to the Navajo Aquifer close to the 

site of Crystal Geyser.  

2.5. Conclusions 

Crustally sourced CO2, produced from diagenetic reactions in the Leadville Limestone, at depth 

within the Paradox Basin, migrates vertically through the stratigraphy mixing with and dissolving 

into basinal brines of the Paradox Formation. These CO2-charged brines migrate along the Little 

Grand and Salt Wash fault systems into the shallow White Rim and Navajo Aquifers where they 

mix with meteorically derived groundwaters, flowing along hydraulic gradients from zones of 

recharge in the San Rafael Swell to zones of discharge near the confluence of the Green and 

Colorado Rivers. This passive migration of CO2 is analogous to leakage of a deep geological CO2 

reservoir into shallower aquifer systems. CO2 entering the shallow groundwater systems 

suppresses pH and mineral saturation in the fluid promoting dissolution of silicate and carbonate 

minerals in the host aquifer. The introduction of this high partial pressure CO2 gas increases the 

capacity to accept dissolved solids by lowering the pH and the saturation state of the 

groundwater, enhancing mineral dissolution. As a result, the CO2-rich groundwaters can evolve 

towards very high solute concentrations after prolonged water-rock interaction. In geological CO2 

storage sites this processes will ultimately enhance the fluids capacity to accept dissolved CO2, 

through ionic complexing, thereby enhancing solubility trapping. With progressive flow through 

the aquifer the hydrolysis of plagioclase and K-feldspar consume H+, releases solutes and 

alkalinity to the solution driving the groundwaters towards saturation with respect to these phases. 

pH attenuation and elevation in mineral saturation will ultimately reduce the reactively of 

migrating CO2-charged fluids reducing the rate of corrosion of caprocks and fault seals 

encountered by the migrating plume. Thermodynamic constraints imply that the dominant 

reaction products are smectite, kaolinite and chalcedony. Importantly equilibrium with 

chalcedony fixes aSiO2(aq), maintains groundwater compositions in the stability field of kaolinite 

and prevents kaolinite equilibrium from regulating Al3+.  

The CO2-charged groundwaters contain high quantities of dissolved Fe2+ and Mn2+. 

Superposition of Eh, pH and aFe2+ suggests that the redox sate of the fluid is controlled by low 
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oxygen fugacity and fixed by the Fe3+/Fe2+ redox couple through equilibration with hematite. This 

has important implications for the mobilization and transport of metals in CO2 storage sites and is 

analogues to iron mobilization processes recently observed at the Frio test CO2-injection site 

(Hovorka et al., 2006; Karaka et al., 2006; Smyth et al., 2009). This suggests that, even in the 

absence of an additional reductant, deep O2 depleted groundwaters in CO2 storage sites will 

derive high metal concentrations from the pH suppression induced by large quantities of 

dissolved CO2. 

Cold water geysering of Crystal Geyser, driven by CO2-degassing, causes pressure 

depletion in the Navajo Aquifer. This stimulates influx of CO2-charged brines from deeper 

formations, on the time-scale of the geysering events, which mix with chemically distinct fluids 

in the host aquifer. The physical process of CO2 gas-driven geysering is therefore an important 

mechanism for the stimulation of vertical fluid and gas migration in the subsurface and will be 

important for prolonging effusion from leaking wells in CO2 storage sites. 
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Chapter 3  

Silicate Mineral Dissolution Kinetics 
 

3.1. Introduction 

The majority of estimates of field-based mineral dissolution rates have previously been 

determined by mass balance techniques in soil profiles and watersheds (reviewed in Drever and 

Clow, 1995; White and Brantley, 1995; White and Brantley, 2003), at surface pressure and 

temperature conditions. A smaller number of studies have focused on understanding reaction rates 

in natural porous media (e.g. Brantley et al., 2001; Hereford et al., 2007; Keating and Bahr, 1998; 

Kenoyer and Bowser, 1992a, 1992b; Kim, 2002; Maher et al, 2006; Malmstrom et al., 2002; 

Rowe and Brantley, 1993; Zhu, 2000, 2005). Few attempts have been made to determine field 

scale reaction rates in clastic reservoirs with high pCO2 (Matter et al., 2007).  

In this chapter the groundwater chemistry, thermodynamic and hydrological modelling 

described in Chapter 2 is used, in conjunction with petrological observations and a compilation of 

published porosity and hydraulic conductivity measurements, to estimate rates of the controlling 

fluid-mineral reactions in the CO2-charged groundwaters. The main results of this work were 

published by Kampman et al., (2009) and this chapter builds on this work. Emphasis is placed on 

the feldspar dissolution reactions, as they are likely to be the slowest and hence the most 

important in controlling reaction progress. Prior to this the most relevant aspects of the 

experiment studies of feldspar dissolution are reviewed with emphasis on aspects of fluid 

chemistry and the dissolution mechanisms relevant to the conditions expected in natural CO2-

charged groundwaters. 

3.2. Review of Experimental Studies on Feldspar 

Dissolution Kinetics 

Dissolution rate experiments on feldspars have been conducted in three ways: 1) batch 

experiments (Amrhein & Suarez, 1992; Casey et al., 1991; Hamilton et al., 2001); 2) flow-

through experiments (Berg & Banwart, 2000; Hellmann, 1994; Knauss & Wolery, 1986; Oxburgh 

et al., 1994); or, 3) surface titration experiments (Blum and Lasaga, 1991; Oxburgh et al., 1994). 

Fluid samples and effluents of the former two experimental methods were analysed for various 

elements, e.g. Al, Si, Na and Ca and, using this data, dissolution rates were calculated by mass 
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balance techniques. The latter was mainly used to derive reaction rate equations as a function of 

surface charge.  

In general feldspar dissolution rates can be divided into three different pH-dependent 

regions (Fig 3.2-1) (Blum and Lasaga, 1991; Hamilton et al., 2001; Knauss and Wolery, 1986; 

Oxburgh et al., 1994): 1) low pH region (pH < 5): the dissolution rate decreases with increasing 

pH; 2) near-neutral pH region (pH 5 to 8): the dissolution rate shows no dependence on pH; 3) 

high pH region (pH > 8): the dissolution rate increases with increasing pH, though this pH 

dependence is less pronounced than for the “low pH” region. As temperature increases, the 

dissolution rates become more pH dependent in the acid and alkaline pH regions. The activation 

energy required for dissolution is also higher (~ 80 kJ/mol) in more acid and alkaline 

environments, than in the near-neutral pH region (~ 65 kJ/mol). 

 

 

Figure 3.2-1 Laboratory dissolution rates for feldspars of different composition at various pH. 

3.2.1. Dissolution Mechanism 

The dissolution mechanism of the feldspar mineral surface has been a point of debate among 

various authors. Essentially, there are three main contentious aspects: 1) the surface-controlled 

dissolution reaction; important aspects of which include a) the reactive site density (Amrhein and 

Suarez, 1992; Holdren Jr. and Speyer, 1987), which in turn is related to the “reactive surface 

area”, though not in a proportional manner; b) the formation of surface complexes (Brady and 

Walther, 1992; Hellmann, 1999; Oxburgh et al., 1994) c) mineral heterogeneities, e.g. more rapid 

dissolution of Ca-rich phases than Na- or K-rich phases (Casey et al., 1991; Inskeep et al., 1991); 

and 2) formation of a leached or altered layer at the mineral-solution interface (Amrhein and 

Suarez, 1992; Hellmann et al., 2003; Muir et al., 1990; Muir and Nesbitt, 1991; Nesbitt and Muir, 

1988); and 3) formation of protective coatings at the crystal surface (Amrhein and Suarez, 1992; 

Berner and Holdren Jr., 1977; Nugent et al., 1998).  
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3.1.1.1.  Surface Controlled Reaction 

Knauss and Wolery (1986), as well as Hamilton et al. (2001) and Berner and Holdren (1977), 

suggest that dissolution was controlled by the reactive site density due to non-uniform attack at 

the surface, preferentially at high energy crystal defects, along twin boundaries or at dislocations, 

which intersect the surface. However, Amrhein and Suarez (1992) have shown that the relation 

between dissolution rate and specific surface area is not a simple one, and though the density of 

reactive surface sites per unit area varies systematically with grain size, it does not do so in a 

linear way (Holdren Jr. & Speyer, 1985).  Laboratory estimates of mineral surface areas are 

typically measured using the BET technique which relates the adsorption of a measured volume 

of inert gas (usually N2) to the mineral surface area (e.g. Gregg and Sing, 1982). Geometric 

estimates, considering idealized sediment grains, typically underestimate mineral surface areas by 

orders of magnitude, when compared to BET measurements, due to the effects of surface 

roughness and topology (e.g. Brantley et al., 2000, White et al., 1996). In naturally weathered 

materials surface roughness and thus total mineral surface area increases with the duration of 

weathering (White et al., 2003) but how this relates to the total reactive surface area of the 

mineral is still uncertain.  

Further complexity surrounds the formation of surface complexes on the mineral surface, 

prior to detachment and dissolution of the grain, which relate the surface dissolution mechanism 

to the solution pH. At low pH values the feldspar surface is positively charged due to the 

formation of ≡Al-OH2
+ surface complexes, and at high pH values ≡Si-O- surface complexes are 

dominant, resulting in a negative surface charge. As a result of the formation of these surface 

complexes, at acid pH dissolution will be mainly concentrated at the Al-surface site, while, at 

alkaline pH, dissolution focuses on the Si-surface sites (Brady and Walther, 1989; Hellmann, 

1999; Oxburgh et al., 1994). At near-neutral pH, however, the dissolution rate is independent of 

surface charge, as it is mainly occupied by neutral ≡Si-OH and ≡Al-OH surface complexes. 

Oxburgh et al. (1994) suggested that, at near-neutral pH, reaction occurs at neutral Al-surface 

sites, due to the fact that an Al-O-Si bond is weaker than a Si-O-Si bond (Hamilton et al., 2001).  

Further, the role of compositional heterogeneity may introduce variable dissolution rates 

across the mineral surface. In general, it is suggested that the dissolution rate of feldspars 

increases with anorthite content (Casey et al., 1991; Oxburgh et al., 1994). This is related to the 

higher solubility of more Ca-rich feldspar compared to Na-rich feldspar. TEM imaging of a zoned 

labradorite by Inskeep et al. (1991) has shown that the more Ca-rich lamellae were dissolved 

preferentially over the more Na-rich ones. These mineralogical heterogeneities influence the 

measured dissolution rate significantly.  

Hamilton et al. (2001) and Oxburgh et al. (1994) showed that the Al/Si ratio also affects 

the dissolution rate. For feldspars with varying Al content it is seen that the dissolution rate 
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increases with increasing Al/Si ratio (Hamilton et al., 2001). In addition, Hamilton et al. (2001) 

and Oxburgh et al. (1994) both concluded that variations in Al content among feldspars could 

explain the observed increase in dissolution rate going from albite to anorthite. This difference is 

explained by the difference in feldspar structure, which is related to the interconnection between 

AlO4
 
and SiO4

 
tetrahedra (Hellmann, 1999). Increasing the Al/Si ratio means replacement of Si 

atoms by Al atoms, which results in an increase in Si-O-Al bond length (Hamilton et al., 2001). 

As a result of this bond length increase AlO4
 
tetrahedra are preferentially removed from the 

feldspar framework. Albite contains SiO4
 
tetrahedra that are interconnected, and therefore the loss 

of AlO4
 
tetrahedra will not affect the kinetics of surface SiO4

 
tetrahedra detachment, i.e. ≡Si-OH 

complexes, in albite. This is in contrast to anorthite, which contains completely isolated SiO4
 

tetrahedra, and therefore anorthite dissolution requires only the breaking of, weaker, Al-O-Si 

bonds, instead of both Al-O-Si and Si-O-Si bonds, as is the case for albite dissolution (Hellmann, 

1999).   

3.1.1.2.  Leached Layer 

The mineral surface dissolution of feldspar is also influenced by the formation of leached layers 

and precipitates. Coating of the feldspar grains by these layers is assumed to change the 

dissolution mechanism from transport-controlled to diffusion-controlled, as released ions must 

now first diffuse through the coating before being released to solution. Leached layers are the 

result of non-stoichiometric dissolution and near-surface alteration at acid to neutral pH, and are 

not generally observed at basic pH (Casey et al., 1988, 1991; Hellmann et al., 2003). Depth 

profiles of these altered zones typically show depletion in interstitial cations, i.e. Na, K, Ca, and 

framework elements, i.e. Al, retention of Si and O (Hellmann et al., 2003; Muir et al., 1990), and 

enrichment in aqueous species, i.e. H (Casey et al., 1988).  

There is a significant difference between naturally formed leached layers and laboratory 

produced layers: naturally formed leached layers are Al-rich (Nesbitt and Muir, 1988), while 

laboratory produced layers are Si-rich (Hellmann et al., 2003; Inskeep et al., 1991; Muir et al., 

1990). These altered layers usually have a thickness of several hundreds of angstroms, and this 

thickness may also vary with feldspar composition (Muir et al., 1990), increasing with increasing 

Al content. The mechanism of leached layer formation is thought to involve three consecutive 

steps (Chou and Wollast, 1985; Muir et al., 1990): 1) rapid replacement of Ca2+ and Na+ by H+ or 

H3O
+; 2) hydrolysis reactions, resulting in the breaking of Si-O-Al and Si-O-Si bonds 

preferentially and the depolymerisation of the silicate structure, eventually resulting in a Al-

depleted layer; 3) slow dissolution of the residual layer at the solid-solution interface, together 

with diffusion of ions from the fresh feldspar surface, leading to steady state dissolution. This 

results in the formation of a layer composed of Si, O and H, most likely a hydrated silica gel, 

overlying the fresh feldspar mineral (Chou and Wollast, 1985; Hellmann et al., 2003; Muir et al., 
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1990). The effect of this layer on inhibiting dissolution remains uncertain. Additionally, the 

presence of a cation depleted surface layer in highly weathered natural minerals may adversely 

influence BET or geometric estimates of the reactive mineral surface area, resulting in 

overestimation of the reactive surface of natural feldspars. 

3.1.1.3.  Secondary mineral precipitation  

Part of the discrepancy between laboratory and field-scale reaction rates may be explained by the 

presence of surface coatings formed by the precipitation of secondary minerals, which may 

influence the dissolution rates. Weathered minerals in nature are often coated by clays (Berner & 

Holdren Jr., 1977; Nugent et al., 1998; Zhu; 2005), organic material and oxyhydroxides of Al, Fe, 

and Mn. This coating can either be discontinuous (Berner & Holdren Jr., 1977; Nugent et al., 

1998), or continuous. Even if the coating is discontinuous, as a result of its porosity or patchy 

distribution, it may affect the dissolution of the mineral where this is in contact with the coating 

rather than with the solution (Hodson, 2003).  

Investigation of natural mineral coatings on feldspars (Berner & Holdren Jr., 1977; 

Nugent et al., 1998; Zhu, 2005) has shown that the weathering of feldspar minerals indeed results 

in the formation of a patchy hydrous coating consisting of aluminosilicates, e.g. kaolinite or other 

clay minerals. In spite of the presence of this clay-like coating the underlying feldspar showed the 

same textural features as laboratory weathered feldspar without a coating. Therefore, Berner and 

Holdren Jr. (1977) concluded that it is unlikely that the presence of this coating inhibited 

dissolution. However, they did not take into account the possibility that the observed dissolution 

textures, e.g. etch pits, could either have developed before the precipitation of the coating, or just 

developed more slowly below the coating (Hodson, 2003).  

To investigate the effect of coatings on the dissolution rate of feldspar under conditions 

where effect of solution saturation state can be discounted Hodson (2003) studied the dissolution 

behaviour on anorthite in the presence of a, laboratory produced, Fe-rich coating. He concluded 

that the formed coating was porous, containing both meso- and micropores, and that this porous 

coating of secondary minerals did not inhibit the dissolution of the feldspar mineral, as the 

obtained dissolution rates were in the same order of magnitude as those for uncoated minerals. 

This also means that the presence of porous surface coatings on minerals does not explain the 

observed discrepancy between mineral dissolution rates obtained in the field and those in the 

laboratory.  

A similar study was performed on anorthite (Murakami et al., 1998), but with different 

secondary mineral precipitates; boehmite, “modified” boehmite, and kaolinite, which are reaction 

products derived from the dissolving feldspar. Though their obtained dissolution rates were in the 

same order of magnitude as those for uncoated minerals, they concluded, on the basis of 
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calculated Gibbs free energies for anorthite dissolution, that the precipitation of secondary 

minerals promoted dissolution. They stated that, even though the dissolution rate decreased as a 

result of precipitation, the formation of the coating required elements present in solution, thereby 

reducing the saturation state of the fluid, and hence, promoting more dissolution of the feldspar.  

3.2.2. Solution Composition 

Other factors affecting the dissolution rate of feldspars are: 1) solution saturation state (Aagaard 

and Helgeson, 1977, 1982; Lasaga, 1981; Oeklers et al., 1994); 2) cations in solution, e.g. 

aqueous Al (Amrhein and Suarez, 1992; Muir and Nesbitt, 1991); and 3) ligand absorption, e.g. 

oxalate (Berg and Banwart, 2000; Blake and Walter, 1999), citrate (Blake & Walter, 1999), or 

carbonate (Berg & Banwart, 2000);  

3.1.1.4.  Solution Saturation State 

Within the framework of transition state theory (TST) (Lasaga, 1981), the rate of an elementary 

reaction is proportional to the concentration of the activated complex (or the energy maximum 

that the reactants should pass to be converted into products) and to the concentration of the 

surface species precursor of the activated complex (precursor complex) (Wieland et al., 1998). 

Although feldspar dissolution likely involves several elementary reactions, TST can still be 

applied to the overall rate if it is controlled by a single elementary rate-limiting step (Lasaga, 

1981). Within this context, silicate dissolution rates can be described using (Lasaga, 1981): 

 

{ }1 exp( /ni

i r
r k a G RTσ+ −= ∏ − ∆       (3.1) 

 

where r defines the net reaction rate, k+ denotes a dissolution rate constant, a corresponds to the 

activity of the i
th aqueous species, ni signifies the reaction coefficient of the i

th species in the 

reaction forming the precursor complex, σ refers to the reaction order, ∆Gr denotes the change in 

free energy for the overall reaction, T stands for absolute temperature, and R represents the gas 

constant. The product Πai
-ni

 describes the effect on the overall rate of the activities of the aqueous 

species involved in precursor complex formation. The terms within the brackets describe the 

effect of solution saturation state. For highly undersaturated solutions, ∆Gr has a large negative 

value and the term within the brackets is equal to 1. At these conditions the dissolution rate is 

independent of bulk solution saturation state, but is still dependent on the activities of the aqueous 

species that participate in the formation of the precursor complex. For small deviations from 

equilibrium (i.e. when ∆Gr /σ<RT), the rate becomes linearly related to chemical affinity. 

When applying Eq. (3.1) to silicate dissolution rates, it has commonly been assumed that 

1) H+, OH- and H2O are the only aqueous species involved in precursor complex formation, 2) a 
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single reaction mechanism controls the overall rate at all ∆Gr, and 3) σ = l. These assumptions 

lead to the following rate equation (Lasaga, 1981): 

 

{ }' ( ) 1 exp( /n

H r
r k a H G RT

+

+ += − ∆       (3.2) 

 
where k'+ refers to the dissolution rate constant for the hydrolytic process. This rate law has been 

used extensively to model fluid-rock interactions. However, the functional form of the dissolution 

rate:∆Gr dependence is not well established and published expressions include simple 

exponentially decreasing rates as ∆Gr tends to zero (e.g. Aagaard and Helgeson, 1977, 1982; 

Lasaga, 1981) as well as combinations of two or more exponential terms attributed to multiple 

dissolution mechanisms such as the development of etch pits as saturation states deviate further 

from equilibrium (e.g. Hellman and Tisserand, 2006; Taylor et al., 2000).  

3.1.1.5.  Cation Effects 

The addition of cations to solution could affect the dissolution rate of feldspars, though not all 

cations have this effect (Amrhein & Suarez, 1992; Muir & Nesbitt, 1991). Addition of “feldspar 

building” ions, e.g. Ca, Na, Si, and Al, to solution resulted in different effects on the dissolution 

rate. In general, Ca, Na, and Si ions appeared to have no effect on the dissolution rates of 

labradorite (Muir & Nesbitt, 1991), and anorthite (Amrhein & Suarez, 1992) in acid solutions. 

This is in contrast to Al, which significantly inhibited dissolution at pH 3.6 to 6.0 at 25 °C 

(Amrhein & Suarez, 1992; Muir & Nesbitt, 1991), though not at pH 3.0 (Amrhein & Suarez, 

1992), and only at concentrations above ca 0.5 mM. Inhibition of dissolution by Al was assumed 

to be the result of the blocking or retardation of H+ supply from the bulk solution to the surface by 

aqueous aluminium. As the release of Al from the silicate surface to solution depends on the 

concentration gradient between the solid and solution, addition of aluminium to solution 

decreases this gradient and therefore slows down the release of Al from the solid, and hence the 

dissolution rate (Muir & Nesbitt, 1991).  

3.1.1.6.  Ligand Complexation 

The addition of ligands to solution also affects the dissolution rate, as they tend to form surface 

complexes. Carbonate is believed to form ≡Al-CO3
- surface complexes with positively charged 

Al-surface groups (Berg & Banwart, 2000). A similar process is applicable to organic acids 

(Blake & Walter, 1999). Blake and Walther (1999) have studied the effect of citric and oxalic 

acid on the dissolution rate of albite, labradorite, and orthoclase. They concluded that there is a 

similarity in dissolution behaviour of alkali feldspars with similar Al content, i.e. albite and 

orthoclase, and a greater solubility of the more Al-rich feldspar, labradorite, in the presence of 

organic acids.  
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3.3. Methodology: Calculating Reaction Rates 

3.3.1. Introduction 

The rate of individual mineral-fluid reactions occurring in the Navajo Sandstone, have been 

determined by the solution of the mass balance equations which relate changes in fluid chemistry 

between a single initial spring (Green River Airport Well) and down-gradient springs (Fig. 2.4-

17), to addition or subtraction of specific mineral phases. Fluid compositions sampled at each 

CO2 spring are corrected for the addition of brine entrained in the CO2 stream. Reaction progress 

(Mj) is then calculated by difference from a single initial well. The flow path and its length (z) are 

estimated from potentiometric surface measurements. Fluid velocity is calculated from a 

compilation of published porosity, hydraulic conductivities and local hydraulic head 

measurements for the Navajo Sandstone (Appendix B). Mineral proportions and surface areas are 

estimated from physical, chemical and petrological measurements on Navajo Sandstone samples 

locally, and from sites elsewhere in the Paradox Basin. The extent of mineral-fluid 

thermodynamic disequilibrium (∆Gr) is calculated from the fluid chemistry, uncorrected for the 

brine additions 

3.3.2. Mass Balance 

Reaction progress, the net transfer of a mineral j to the fluid, Mj (negative for precipitation, 

positive for dissolution), was calculated from the evolution of solute chemistry between springs. 

Mineral mole transfers, Mj, in units of moles per m3 of fluid, were calculated between the brine 

corrected chemistry of the upstream spring, Green River Airport Well, and the brine corrected 

chemistry of all down-gradient springs. Positive Mj denotes dissolution, negative Mj denotes 

precipitation. The chemical evolution of component k (concentration mk moles/l), in the water 

between two points along the flow path is given by   

kj

J

j

jk bMm ,

1

∑
=

=∆         (3.3) 

 

where  
, final initialT k k k

m m m∆ = −  and bj,k are the stoichiometric mole fraction of component k in 

mineral phase j (c.f. Plummer et al., 1990). The solute flux mass balance model is non-unique to 

the extent that there may be phases additional to the ten (including brine) constrained by the ten 

components (including Cl-) modelled here. The possible reacting phases are defined by 

petrographic observations of outcrop samples of fresh unaltered Navajo Sandstone obtained from 

the San Rafael Swell, and core chips from petroleum exploration wells that penetrate the Navajo 

Sandstone along the Green River anticline, as well as published petrography of the Navajo 
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Sandstone (Harshbarger et al., 1957; Zhu et al., 2006). Primary and secondary mineral 

compositions were analysed by electron microprobe, average compositions are presented bellow 

(see Appendix B for tabulated probe data). The following mineral compositions were used to 

constrain the mass balance model  

 

K-feldspar:  
0.95 0.05 1.00 3.00 8

K Na Al Si O     

Plagioclase: 
0.62 0.38 1.38 2.62 8

Na Ca Al Si O       

Smectite:  [ ][ ] ( )0.26 0.03 0.35 0.13 1.52 3.51 0.49 10 2
K Na Mg Fe Al Si Al O OH  

Kaolinite:  ( )2 2 5 4
Al Si O OH * 

Dolomite:  ( )1.06 0.93 3 2
Ca Mg CO  

Calcite:  
3

CaCO * 

Quartz:  
2

SiO * 

Gypsum:  
4 2

2CaSO H O⋅ *   (*ideal composition used) 

 

Nine components (Na+, K+, Ca2+, Mg2+, Al3+, SiO2, SO4
2-, C and alkalinity), and nine phases 

(plagioclase (An38), K-feldspar, silica, kaolinite, smectite, calcite, gypsum, dolomite and CO2(g)) 

were considered, giving: 

 

(i) solute mass balance  
 

smectitefeldsparKeplagioclasNaT MMMm 03.005.062.0, ++=∆ −     (3.4) 

smectitefeldsparKKT MMm 26.095.0, +=∆ −       (3.5) 

dolomitesmectiteMgT MMm 93.035.0, +=∆       (3.6) 

smectitekaolinitefeldsparKeplagioclassilicaSiT MMMMMm 51.32362.2, ++++=∆ −  (3.7) 

smectitekaolinitefeldsparKeplagioclasAlT MMMMm 01.2238.1, +++=∆ −    (3.8) 

dolomiteeplagioclasgypsumcalciteCaT MMMMm 06.138.0, +++=∆    (3.9) 

2, COdolomitecalciteCT MMMm ++=∆       (3.10) 

gypsumST Mm =∆ ,          (3.11) 

 

(ii) alkalinity mass balance  

 

, 2 4 2 5.94

2.76 2

T Alkalinity calcite dolomite kaolinite smectite

plagioclase k feldspar

m M M M M

M M −

∆ = + + +

+ +
    (3.12) 

 

 

where 
2

3 32Alkalinity HCO CO OH H
− − − +       = + + −            (3.13)  
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In addition to the solute mass balance equations mineral mass transfers are further constrained by 

the solution of an alkalinity mass balance. The stoichiometric coefficients constraining individual 

mineral mole transfers in equation 3.12 are the number of equivalents (mEq/l) of alkalinity 

produced or consumed per mole of phase dissolved or precipitated. Silicate dissolution and clay 

precipitation reactions modify local alkalinity by consuming or releasing protons, respectively. 

Reactions involving carbonate minerals modify alkalinity through the consumption or release of 

protons and bicarbonate ions. The dissolution and dissociation of CO2 has no net effect on 

alkalinity as it produces both HCO3
- and H+ ions via the dissociation reaction CO2 + H2O → 

HCO3
- + H+.  

The mole transfers for plagioclase can be independently constrained by separate solution of 

the mass balance equations for Sr and 87Sr/86Sr (Eq. 3.14 to 3.16), assuming all Sr, corrected for 

brine additions, is derived from the dissolution of plagioclase and dolomite, and Mdolomite is 

derived from the solute mass balance model: 

 

final initial
Sr Sr Sr∆ = −          (3.14) 

 
87 86 87 86 87 86/ ( / ) ( / )

final initial
Sr Sr Sr Sr Sr Sr Sr Sr Sr∆ ⋅ = ⋅ − ⋅     (3.15) 

 

dolomitedolomiteeplagioclaseplagioclas MSrSrSrMSrSrSrSrSrSr ⋅⋅+⋅⋅=⋅∆ )/()/(/ 868786878687
 

           (3.16) 

 
The average Sr concentration in analysed plagioclase and dolomite are ~ 320 ppm and 205 ppm, 

respectively.  87Sr/86Srplag (0.724102) is taken to be the average 87Sr/86Sr reported for whole rock 

analyses of Truini and Longsworth, (2003). 87Sr/86Srdolomite is taken as the average 87Sr/86Sr for 

early dolomite cements (0.71030) reported by Goldstein et al., (2008). 

Whilst illite clays are present as altered products of feldspar they are thought to represent the 

products of higher temperature diagenetic reactions during burial and are not thought to 

participate in these reactions either as dissolving phases due to their relative super-saturation or as 

precipitates due to the presence of other, thermodynamically more stable phases. 

The solutions of equations 3.4 to 3.12 for the changes of brine-corrected water compositions 

between the Green River Airport Well and the nine downstream wells are consistent with: 1) 

dissolution of plagioclase, K-feldspar, dolomite and gypsum, 2) precipitation of calcite, kaolinite, 

smectite and quartz, and 3) consumption of CO2. The proportions of the phases are consistent 

with the stoichiometry of the reaction  

 

3plag Kspar gypsum dolomite H HCO

kaolinite smectite calcite quartz

+ −+ + + + + →

+ + +
     (3.17)                                                                        
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3.3.3. Calculation of Reaction Rates 

Feldspar dissolution rates in mole·m-2·s-1 were calculated from 1) the gradient of the mineral 

modes in the fluid with distance along the flow path, 2) the fluid flux and 3) mineral surface areas 

within the aquifer. Porosity and hydraulic conductivity data are compiled in Appendix B. Mineral 

mode against distance plots show an inflection where there is a drop in pH (Figs. 2.4-17 & 3.4-1) 

and we model the best constrained part of the profile downstream of this point. The rate of change 

of mineral mode with distance was calculated by modelling the variation of mineral modes (Mj) 

with distance (z), by a least-squares fit to the empirical expression 

 

(1 exp )Bz

j
M A

−= ⋅ −         (3.18) 

 
which was then differentiated to obtain the rate of change of the slope, dMj/dz.  

 

exp
j Bz

dM
AB

dz

−= ⋅         (3.19) 

 
The differential equation describing the variation in moles of a reacted phase in the fluid phase 

with time may be approximated by  

 

j j

j j o

M M
R S

t z
ϕ ω ϕ

∂ ∂
= ⋅ −

∂ ∂
       (3.20) 

 

where ωo is the fluid velocity (ms-1), φ is the porosity, Rj is the reaction rate for phase j (mole.m-

2.s-1) and Sj is the surface area of mineral j (m2/m3). For flow systems where Sj varies slowly, the 

quasi stationary state approximation (Lichtner 1988), ∂Mj/∂t = 0, simplifies equation (3.20) to 

 

j j j

o

M R S

z ω ϕ

∂
=

∂
          (3.21) 

 

The fluid flux (ωoφ) was calculated from the gradient in hydraulic head dh/dz, and the mean of a 

compilation of laboratory derived hydraulic conductivity values from the Navajo Sandstone, K 

(ms-1) (Hood and Patterson, 1984; Weigel, 1986), where  

 

o

dh
K

dz
ω ϕ = ⋅          (3.22) 

 
Reaction rate Rj for the jth mineral phase, was then calculated as 
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x o

j

j

M
R

z S

ω ϕ∂
=

∂
.         (3.23) 

 
Sj, the surface area of the jth mineral (m2/m3) is calculated from the whole rock specific surface 

area, (sj = 0.7 m2/g from BET measurements on Navajo Sandstone by Zhu (2005) assuming that 

individual mineral surface areas are proportional to their volume fractions and allowing for the 

mean porosity of the Navajo (φ = 0.20 ± 0.04 1 σ, from Navajo Sandstone samples collected from 

the northern Paradox Basin, (Cooley et al., 1969; Freethy, 1988; Hood and Patterson, 1984; 

Weigel, 1986) as 

 

( )1
j j j

S s v ϕ ρ= ⋅ ⋅ − ⋅         (3.24) 

 

Mineral volumetric abundances, vj, were determined from normative mineral abundances 

calculated using the mineral compositional data obtained in this study and a compilation of whole 

rock chemical analyses of Navajo Sandstone from this study (Appendix B) and Bowen (2004). 

Modal mineralogy was calculated from least squares mixing of mineral proportions to match 

whole rock compositions using the program MINSQ (Hermann & Berry, 2002). Calculated 

mineral surface areas for plagioclase and K-feldspar are 51x103 ± 6x103 m2/m3 and 112x103 

±10x103 m2/m3 respectively. 

3.4. Results and Discussion 

3.4.1.  Reaction Rates 

Reaction progress in terms of net dissolution of plagioclase and K-feldspar and precipitation of 

kaolinite, smectite and calcite calculated relative to Green River Airport Well (Table 3.4-1) show 

an inflection after Crystal Geyser but then increase at an exponentially decreasing rate 

downstream (Fig. 2.4-17). These rate changes are attributed to progressive neutralization of pH 

downstream from the sites of CO2 injection and the approach to mineral-fluid equilibrium. The 

inflexion in gradient after Crystal Geyser is consistent with the drop in pH and increase in CO2 

consumed (Fig. 2.4-17) at Small Bubbling Spring attributed to additional CO2 injection.  

We therefore fit the empirical equation 3.18 to the change in mineral modes against distance 

for springs downstream of Small Bubbling Spring (Fig. 3.3-1). These fits include the down 

stream Ten Mile, Tumble Weed and Chaffin Ranch Geysers which have a more tenuous 

hydrological connection with the upstream wells. Excluding these springs from the fits makes 

only a ~ 25% difference to the gradient except where it is poorly defined towards the ends of the 

flow paths. 
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The rates of mineral dissolution are calculated from the gradients in molar transfer with 

distance (equation 3.18) and from the steady state solution to the transport equation 3.21. The 

rates of plagioclase and K-feldspar dissolution are in the ranges 2x10-14 to 2x10-19 and 4x10-16 to 

4x10-18 mol·m-2·s-1 respectively, within the range observed for other field studies at near-neutral 

pHs but slower than most laboratory studies (Fig. 3.4-2).  

 

 

Figure 3.4-1 Calculated changes in the feldspar mineral modes with distance along the flow path. The rate 

of change of mineral mode with distance was calculated by a least-squares fit to the variation of mineral 

modes (Mj) with distance (z) over the well-constrained portion of the flow path, downstream of Small 
Bubbling Spring. Error bars are the propagated errors derived from analytical uncertainty, uncertainty 

associated with the brine correction and mass balance modeling (see Appendix A of detials). 
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Figure 3.4-2 Variation in feldspar dissolution rate versus pH for a compilation of laboratory (White and 
Brantley, 2003) and in-situ dissolution rates (Hereford et al., 2007; Malstrom et al., 2004; White and 

Brantley, 2003), feldspar dissolution rates in the Navajo Sandstone at Black Mesa (Zhu, 2005) and the rates 

calculated at Green River. 

 

 

 Plag Kspar Kao Smc Cc Si Gyp Dol CO2 

Spring mmol/l 

Crystal Geyser 40.18 2.53 -28.38 -3.80 -14.06 -58.46 3.03 2.58 40.68 

Small Bubbling 55.85 3.26 -35.50 -8.00 -26.17 -73.25 2.05 4.01 61.44 

Big Bubbling 73.30 4.25 -47.97 -10.13 -32.75 -98.56 0.14 4.46 64.58 

SS Big Bubbling 81.99 5.27 -51.01 -13.63 -38.47 -106.14 1.75 5.89 69.88 

Pseudo Tenmile 99.86 6.01 -61.98 -16.26 -46.50 -127.72 1.18 6.27 51.72 

Torreys 117.80 7.97 -73.25 -19.66 -48.41 -151.66 3.64 7.38 69.70 

Tenmile 103.50 7.63 -49.01 -32.05 -35.09 -110.67 18.77 13.67 15.35 

Tumble  98.87 7.45 -55.00 -21.46 -40.16 -117.34 9.87 9.10 44.30 

Chaffin 112.68 8.96 -58.32 -28.54 -36.90 -127.03 15.10 12.70 16.59 

Table 3.4-1 Mineral mol transfers (mmol/l) calculated using the mass balance model detail in section 3.3.2. 
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Error propagation analyses, using Gaussian error propagation, give uncertainties of approximately 

20-25% of the calculated rates (the formulation of error analysis is detailed in Appendix A). Error 

propagation  takes into account the errors associated with mass transfer calculations arising from 

analytical uncertainty, the uncertainties in correction for brine inputs taken as the standard error 

of brine compositions compiled from Spangler et al., (1996) and Breit (2002), the scatter in BET 

specific surface area measurements, mineral abundances and porosity. Calculation of plagioclase 

mole transfers depends primarily on changes in fluid Na concentrations which have relatively 

large uncertainty due to the scatter in brine Na/Cl ratios. If the brine inputs in the Green River 

system are of relatively homogeneous compositions then plagioclase exhibits smooth changes in 

mole transfer with distance comparable with the better constrained K-feldspar mole transfers 

(Figs. 3.4-1). However the magnitude of plagioclase mole transfers and resultant inferred reaction 

rates are sensitive to the assumed brine Na/Cl ratio. If this is varied over the full range observed 

(0.73 to 0.99), then average calculated plagioclase dissolution rates decrease from ~ 3x10-14 to ~ 

8x10-15 mol·m-2·s-1.  

Plagioclase dissolution rates determined independently with 87Sr/86Sr and Sr mass balance 

vary from 4x10-14 to 1x10-25 mol·m-2·s-1 in good agreement with rates derived from solute mass 

balance. However, uncertainties associated with rates derived from Sr are on the order of 50% of 

the calculated rates, given the compounding effects of the large variation in 87Sr/86Srplag, Srplag, 
87Sr/86Srdol, Srdol, 

87Sr/86Srbrine and Srbrine. Depressed Sr and 87Sr/86Sr for Torreys Spring and Big 

Bubbling side seep are probably due to the addition of a low 87Sr/86Sr Sr source not accounted for 

in the model, variability in the brine 87Sr/86Sr and Sr concentration or to heterogeneity in mineral 

87Sr/86Sr and Sr concentrations at the aquifer scale.  
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Figure 3.4-3 (A) Calculated changes in the plagioclase mineral modes with distance along the flow path, 

using Sr mass balance. (B) Least squares fitting of equation 3.18 yields mole transfers and calculated rates 

that are of the same order of magnitude as those derived from solute mass balance.  Torrey’s spring and Big 

Bubbling side seep are discounted from the fit as they have negative mole transfers, suggesting that the 

model does not accurately account for their measured fluid composition.  

3.4.2. Approach to Equilibrium - ∆Gr 

Reaction rates decrease as minerals approach equilibrium with co-existing fluids (e.g. Lasaga, 

1998). We have therefore calculated the degree of solution saturation state for each spring with 

respect to the individual feldspar dissolution reactions. The deviation from equilibrium is 

expressed in terms of the Gibbs free energy of reaction, ∆Gr (kJ mol-1), 
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where R is the gas constant (kJ.K-1.mol-1), T is the absolute temperature (K), IAP is the ion 

activity product and Keq is the equilibrium constant. The general reaction for the dissolution of 

plagioclase feldspar in water can be described as (Arnórsson and Stefánsson, 1999):  

 

(1 ) (2 ) (2 ) 8 2

2

4 4 4

8

(1 ) (2 ) ( ) (2 )

x x x x
Na Ca Si Al O H O

xNa x Ca x Al OH x H SiO

− + −

+ + −

+ ↔
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    (3.26) 

 
In general, feldspars dissolve congruently at acid and alkaline pH, and incongruently at neutral 

pH. Studies of mineral saturation in aqueous solutions involve two steps: (1) derivation of 

equilibrium constants (Keq) for mineral hydrolysis from thermodynamic data taking into account 

the effects of variable composition of the minerals and ordering, as appropriate; and, (2) 

calculation of individual aqueous species activities from analytical data on the waters to retrieve 

values for the respective activity product (IAP). Comparison between the two allows evaluation 

of saturation states of waters with respect to feldspars as a function of their composition and Al-Si 

ordering (Arnórsson & Stefánsson, 1999).  

The distribution of aqueous species and their activities were calculated using the geochemical 

computer code PHREEQC (Parkhurst and Appelo, 1999). ∆G°f, Tr, Pr, V°, S°, Cp of feldspar solid 

solutions were calculated after Arnórsson and Stefánsson, (1999). Equilibrium constants (Keq) for 

the reactions considered where calculated using the SUPCRT92 code (Johnson et al., 1992) 

modified with the thermodynamic data for Al species of Tagirov and Schott (2001).  

∆Gr values for the feldspar dissolution reactions were computed from equation 3.25. Values 

of the ion activity product, IAP in equation 3.25, for the congruent dissolution of plagioclase and 

K-feldspar, consistent with the reactions 
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The modelled plagioclase and K-feldspar reactions exhibit a strong inverse relationship between 

dissolution rate and mineral-fluid free energy difference over a -10 to -2kJ mol-1 and a -6 to 0 kJ 

mol-1 transition region, respectively (Fig. 3.4-3). These free energies lie close to equilibrium in the 

very low ∆Gr, low dissolution rate region that is characterized by a strong functional dependence 

of the dissolution rate on ∆Gr. Laboratory studies on feldspars (Beig and Lüttge, 2006; Burch et 

al., 1993; Hellman et al., 2006;  Hellmann and Tisserand, 2006; Taylor et al., 2000) and other 

silicate minerals (e.g. Nagy & Lasaga, 1992) confirm theoretical predictions that dissolution rates 

are independent of saturation state far from equilibrium (but see Oeklers et al., 1994) and 

decrease in a transition region as equilibrium is approached. However, the functional form of the 

dissolution rate:∆Gr dependence is not well established and published expressions include simple 

exponentially decreasing rates as ∆Gr tends to zero (e.g. Aagaard and Helgeson, 1977, 1982; 

Lasaga, 1981) as well as combinations of two or more exponential terms attributed to multiple 

dissolution mechanisms such as the development of etch pits as saturation states deviate further 

from equilibrium (e.g. Hellman and Tisserand, 2006; Taylor et al., 2000).  

The results here for plagioclase and K-feldspar dissolution rates (Fig. 3.4-3), suggest that at 

∆Gr > -10 kJ/mol rates decrease exponentially over 5 orders of magnitude as equilibrium is 

approached. This is the most difficult region to investigate in laboratory experiments because of 

the very slow reaction rates, and field results, such as those here which reflect reactions over the ~ 

1000 year time scales for water flow between the springs, offer an alternative approach. 
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Figure 3.4-4 The variation in feldspar dissolution rate with ∆Gr at Green River, illustrating the strong 
dependence of rate on degree of under-saturation, the wide range of rates observed and the overall 

proximity of the system to equilibrium. Error bars are the propagated uncertainty in dissolution rate and 

∆Gr detailed in Appendix A. 

3.4.3. Uncertainties in Reaction Rates and Solution Saturation States  

The uncertainties in the reaction rates recovered from the field measurements should not be 

underestimated. However several of the most significant of these may cause systematic 

uncertainty in the absolute magnitude of the reaction rates but not the form of the functional 

dependence on ∆Gr. A major uncertainty is that the BET method may over-estimate mineral 

surface areas. However, it is unlikely that mineral surface areas will vary significantly along the  
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Figure 3.4-5 The variation in plagioclase dissolution rate with ∆Gr comparing estimates of ∆Gr from 
measured pH and pCO2 to those derived from recalculation of in-situ pCO2 and pH described in Chapter 2. 
 

flow path and any systematic error in surface areas will result in a corresponding systematic error 

in the absolute values of dissolution rates but not their functional dependence on ∆Gr. K-feldspar 

and plagioclase geometric surface areas, are 27% and 41% less than BET determined surface 

areas, respectively, and would imply calculated rates that are faster than BET normalized rates by 

the same factors, with peak K-feldspar and plagioclase rates of 4.5x10-16 and 4.5x10-14 mol·m-2·s-1. 

Complications in the hydrology could invalidate the calculation of reaction rates but the results 

from closely spaced springs are consistent. Again, systematic errors in estimating flow rates 

would not change the form of the relationship with ∆Gr.  

Uncertainties in the calculation of ∆Gr are more difficult to estimate because confidence 

limits on the thermodynamic data are not available for the fluid species. In addition there are two 

further potential sources of uncertainty: 1) the filtration of water samples through 0.2 µm filters 

may not remove all particulate Al, although the consistency of the results suggest that this is not a 

serious problem in these relatively clean spring waters: 2) fluid pH and alkalinity measurements 

are taken from samples collected after degassing during ascent in the spring. Modelling of the 

carbon isotope versus pH changes during the degassing process (Assayag et al., 2009) suggests 

that degassing must be a relatively shallow process and even so the observed CO2-gas to DIC 

δ13C fractionations need to include an extra ~ 1 ‰ kinetic fractionation. Precise estimates of the 

uncertainty in DIC and pH are therefore difficult to ascertain. Depth-dependent degassing may 

result in over-estimates of local fluid pH which would introduce systematic uncertainty in ∆Gr 

and erroneously high ∆Gr estimates for each spring. Recalculation of in-situ pH and pCO2 

(Chapter 2, section 2.4.5.4) for the plagioclase dissolution reaction results in ~ -10 kJ/mol lower 



Chapter 3: Silicate Mineral Dissolution Kinetics 

 91 

estimates of ∆Gr for the springs closest to the site of CO2 injection, decreasing to between -5 and 

0 kJ/mol for the springs furthest along the flow path (Fig. 3.4-5). Evan at the maximum in-situ pH 

∆Gr estimates are still close to or within the experimentally determined close to equilibrium 

region, where rates are predicted to exhibit strong ∆Gr dependence. 

3.4.4. Comparison of Reaction Rates with Laboratory and Field Estimates 

The observed proximity of Green River Navajo Sandstone fluids to plagioclase and K-feldspar 

equilibrium and the dependence of feldspar dissolution rates on deviation from these equilibria 

may explain a significant part of the apparent discrepancy with comparable laboratory-derived 

rates, which typically characterize systems far from equilibrium.   

 For example, the experiments of Taylor et al., (2000) on plagioclase (An61) dissolution 

at 25°C and pH 3 (Fig. 3.4-6) imply that plagioclase (An61) dissolution rates at ∆Gr = -10 kJ/mol 

are about 18% of those measured at far from equilibrium (Fig. 3.4-6). If so, the calculated rates at 

low ∆Gr of ~ 2x10-14 mol·m-2·s-1 would be compatible with far-from-equilibrium rates of ~1x10-13 

mol·m-2·s-1 as observed in some experimental studies (e.g. Amrhein and Suarez, 1992; White and 

Brantley, 2003). If geometric surface area normalized rates are considered, close to equilibrium 

rates derived here imply far from equilibrium rates of ~3x10-13 mol·m-2·s-1 within error, of the 

mean of circum-neutral pH laboratory derived plagioclase dissolution rates (~4.6x10-13 mol·m-2·s-

1) (White and Brantley, 2003). 

The effect of inhibiting ions, namely Al and CO3
2- are difficult to assess in any natural 

system due to the competing and interdependent effects of pH, ∆Gr, and ion activities. Al 

concentrations are on the order of 3 to 6 µmol L-1 significantly lower than the 500 µmol L-1 

required for significant Al inhibition at 25 °C reported by Amrhein and Suarez, (1992). Amrhein 

and Suarez, (1992) report a 31% decrease in anorthite dissolution rate at 25 °C and pH 6 in the 

presence of Al concentrations of 4 µmol L-1. Correction of the calculated rates for this magnitude 

of Al inhibition makes a negligible difference to the peak plagioclase dissolution rates, which 

become 2.4x10-14 mol·m-2·s-1. Oeklers et al., (1994) reported a ~16% decreasing in albite 

dissolution rates at 150°C and pH 9 in the presence of 1000 µmol L-1 Al. A ~10% decrease in K-

feldspar dissolution rate at 150°C and pH 2 was reported by Gautier et al., (1994) for similar Al 

concentrations. Whilst the presence of dissolved Al may have a small effect on suppressing the 

overall magnitude of the dissolution rates in this system, its effect is probably small and cannot 

explain the overall variation in the magnitude of rates observed. However without experimental 

studies at the relevant feldspar compositions, temperature and pH this is difficult to assess 

quantitatively. No applicable experimental work has been conducted on CO3
2- at the relevant 

temperature and pCO2 and as CO3
2- surface complexation is likely to increase solubility, its effect 

on retarding dissolution rate can be negated. 
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Figure 3.4-6 Variation in plagioclase dissolution rate with ∆Gr at Green River compared to experimentally 
determined rates at similar pH and temperature (after Taylor et al., 2000). Green River rates have been 

normalized to 25°C using the Arrhenius equation and an activation energy of 80 kJ/mol from Blum and 
Stillings (1995). Line fit to the experimental data is the dissolution rate law of Taylor et al., (2000). The 

figure illustrates the main ∆Gr regions over which free energy-rate dependence and independence is 
observed in experimental studies. It should be noted that differences in the magnitude of our rates 

compared to the predicted rates at ∆Gr > -10 kJ/mol of Taylor et al., (2000) are attributed to differences in 

An content and pH between their experiment and the groundwater system, but this is the only study of ∆Gr 
dependence at a ‘comparable’ plagioclase composition and at low temperature. 

 

Differences in feldspar dissolution rates observed between surface weathering environments and 

aquifer systems (White and Brantley, 2003) are attributed to the difference in proximity of these 

two systems to equilibrium. The difference in proximity to equilibrium found here as compared to 

the lower ∆Gr values (-30 to -50 kJ mol-1) for feldspar dissolution observed in surface weathering 

environments (Velbel, 1989) with high percolation velocities suggests that slow flow velocities 

and long solution-mineral contact times in aquifers maybe important in holding silicate 

weathering reactions close to thermodynamic equilibrium. It should be noted that the slow rate of 

fluid percolation through the Navajo Sandstone favours mineral surface control, as apposed to 

transport control on fluid-mineral reaction rate. 

Additionally the apparent pH dependence observed in compilations of field-scale dissolution 

rates at circum-neutral pH (Fig. 3.4-2) is attributable to the combined effects of a) their proximity 

to equilibrium and b) the strong variation in ∆Gr observed over a small change in pH between pH 

6 and 7. 
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3.5. Conclusions 

In-situ feldspar dissolution rates under conditions of high pCO2, within the saturated Navajo 

Sandstone at Green River, Utah have been determined in this chapter. The close to equilibrium 

plagioclase dissolution rates derived from mass balance and hydrological modelling range from 

10-13.74 ±0.11/0.15 mol·m-2·s-1 to 10-18.63 ±0.6/1.5 mol·m-2·s-1. K-feldspar dissolution rates range from 10-

15.45 ±0.08/0.09 mol·m-2·s-1 to 10-17.42 -0.27/0.81 mol·m-2·s-1. These rates are 1 to 3 orders of magnitude 

slower than rates determined by laboratory experiments at similar temperatures and pH, and 1 to 

3 orders of magnitude faster than rates determined in the same aquifer under alkaline groundwater 

conditions. The enhancement of feldspar dissolution rates in this study area, relative to those 

determined by Zhu (2005) for alkaline groundwater, is attributed to the introduction of CO2 which 

depresses silicate mineral saturation in the fluids. The finding that the Green River system is close 

to thermodynamic saturation adds to the evidence that the 2–5 orders of magnitude discrepancy 

between laboratory and field rates may, in part, be explained by differences in the thermodynamic 

state of experimental and natural fluids (c.f. Burch et al., 1993; White and Brantley, 2003).  

The range of rates and the rate:∆Gr dependence observed at Green River suggest that 

feldspar dissolution rate laws should include exponentially declining rates close to equilibrium 

(∆Gr <-10kJ/mol), over a wider range (and slower absolute values) of dissolution rate than 

previously suggested by experimental studies. These findings suggest that mineral-fluid reactions 

in CO2 hosting reservoirs will be promoted by the state of disequilibrium induced by the 

introduction of CO2 and highlight the importance of including a rate:∆Gr dependence in the 

geochemical modelling of the long term interactions of CO2-fluid-rock in geological storage 

reservoirs. This suggests that in the earliest stages of CO2 injection in storage sites systems can be 

expected to be highly undersaturated with respect to minerals comprising the host reservoir and 

reaction rates will be fast, occurring at low ∆Gr. The continued study of fluid-rock interactions in 

natural settings may help further elucidate the relationship between rate and ∆Gr for a range of 

mineral phases, in the close-to-equilibrium region which is so difficult to assess experimentally. 

These results must be tempered with the understanding that large uncertainties exist in the 

quantification of modelling parameters in natural settings, especially reactive mineral surface 

area, indirect sampling of reservoir fluids and the hydro-geological setting. The long duration of 

reaction accessible in natural studies, whilst allowing access to controlling factors of real mineral 

weathering such as near equilibrium rate dependence, also introduces uncertainty as many model 

parameters may change through the duration of the ‘experiment’. The change in porosity and 

reacting mineral surface through the duration of the natural experiment cannot easily be factored 

into the calculation of the controlling rates. Heterogeneity in reservoir hydraulic properties, 

mineralogy and fluid chemistry also lead to uncertainty in the calculation of rates. 
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Chapter 4  

Geochemistry of an Ancient CO2-Leaking 

Groundwater System, Green River, Utah 
 

4.1. Introduction 

Surface travertine deposits, and carbonate cementation and veining within Jurassic sandstones 

within the footwall of Little Grand Fault (LGF) and Salt Wash Graben (SWG) record a history of 

CO2 leakage from the Green River anticline. The origin and evolution of fluids responsible for 

surface travertine formation, shallow subsurface carbonate veining and host rock alteration may 

be delineated from petrographic observations, and from the chemical and isotopic composition of 

mineral products. Further, processes important for controlling the leakage of CO2 from the fault 

systems, and the coupling of physical and geochemical processes during subsurface CO2 leakage, 

can be investigated through the analysis of chemical and isotopic systems. Understanding the 

evolution of leakage behaviour in fault systems both in time and space, and under conditions of 

differing fluid infiltration, mineral-fluid reactions, fault architecture and lithological properties is 

of great importance for predicting the potential leakage behaviour of geological CO2 storage sites. 

Physical and geochemical observations from naturally leaking faults allows prediction to be made 

about the interplay of structural and chemical processes in controlling leakage sites and rates, the 

role of fluid-mineral interactions in generating and closing leakage pathways and their relation to 

geochemical processes in the host aquifer, such as the volume of the CO2-charge, and subsequent 

in-situ pCO2, and the dissolved mineral load.  

The petrology and mineral chemistry of altered host rock, carbonate cements and veins 

from fracture networks in the fault damage zone and in travertine feeder systems provide 

constraints on the pathways and rates of CO2-promoted fluid-mineral reactions. Minor and trace 

element contents of carbonate cements reflect pore water chemistries prevailing during carbonate 

precipitation (Veizer, 1983) and with knowledge of the relevant mineral-fluid partition 

coefficients can be used to reconstruct the chemistry of the parent fluid. In addition, if the 

composition of the parent fluid is known, a posteriori, mineral and fluid chemistry can be used to 

constrain the magnitude of this partitioning. For some trace elements, experimental studies have 

shown that the magnitude of the partitioning is dependent on the kinetics of the incorporation of 

the element into the carbonate mineral structure. Thus, if past fluids associated with ancient 
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travertine formation were compositionally similar to the modern CO2-charged fluids, this fluid 

composition, in conjunction with measured carbonate cement compositions can be used to 

estimate the rate of carbonate mineral precipitation. Information on the rates of carbonate 

cementation in fault zones, and their geochemical controls, is of great importance in predicting 

the sealing behaviour of faults and fracture zones as a result of the passage of CO2-charged fluids. 

This will allow prediction of the time required for leaking faults in geological carbon storage sites 

to self seal through carbonate mineral precipitation. 

4.1.1. Diagenetic Bleaching of Jurassic Sandstones, Paradox Basin 

The aeolian Lower to Middle Jurassic sandstones of the Paradox Basin are typically characterized 

by a uniform red color that results from thin hematite coatings on sand grains, formed during 

early diagenesis (Walker, 1975). Across the Paradox Basin, adjacent to faults and preferentially in 

coarser grained sandstone units, these reddish sandstones are frequently bleached pale-yellow or 

white where hematite grain coatings have been dissolved by the passage of diagenetic fluids 

(Foxford et al., 1996; Garden et al., 1997, 2001). The nature of the fluid(s) responsible for this 

bleaching are still highly debated as many volatile species are capable of altering the Eh-pH 

conditions of subsurface fluids, facilitating dissolution of minerals such as hematite, which are 

otherwise relatively insoluble in typical, low temperature groundwater systems. These extra-

formational fluids may include hydrocarbon liquids, carbon dioxide, organic acids, methane, 

hydrogen sulphide (Chan et al., 2000; Eichhubl et al., 2009; Garden et al., 2001; Surdam et al., 

1993) and de-oxygenated fluids. Previous studies of bleaching in the Paradox Basin have mainly 

attributed the bleaching fluid directly to hydrocarbons (Beitler et al., 2003; Bowen, 2004; Chan et 

al., 2000; Garden et al., 2001; Hansley, 1995; Parry et al., 2004) or fluids directly associated with 

them (Eichhubl et al., 2009). Although alternative volatile phases, such as CO2 + H2S, have been 

proposed (Haszeldine et al., 2005). What ever the mechanism, such extensive dissolution of 

hematite must involve reductive hydrolysis via the reaction;  Fe2O3 + 2e + 6H+ �� 2Fe2+ + 

3H2O, given the very low solubility of Fe3+ in typical groundwaters. 

At Green River bleaching of Jurassic sandstones occurs to varying degrees in the 

footwalls of both Little Grand Fault (Curtis Formation) and Salt Wash Graben (Entrada 

Sandstone) (Dockrill, 2005). The distribution of bleaching in the footwalls of both faults is 

focused at the intersection of the faults and the fold axis of the Green River anticline. Two 

distinct generations of sandstone bleaching are observable in the field. The first is large-scale 

bleaching which is m’s thick and 10’s to 1000’s m in lateral extent, separated from unbleached 

rock by a sharp contact and constrained to the lower portions of individual formations. This 

bleaching is associated with calcite cementation and gypsum and calcite veining. The second is 

small-scale bleaching which is confined to the base of ancient travertine deposits. This occurs as: 
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a) thin, 10’s cm thick bleached sandstone beds which extend laterally 10’s meters from the 

alteration zone; b) as halos, mm’s-cm’s thick, around fractures within the alteration zone and; c) 

as diffuse bleaching in zones of complex alteration, and calcite and aragonite cementation and 

veining. The origin of both bleaching events, and their relationship to each other, is uncertain but 

the localization of bleaching in travertine feeder zones implies at least some relation between this 

geochemical processes and the passage of CO2-charged fluids.  

This chapter discusses the petrology, isotope geochemistry and mineralogy of bleaching 

associated with ancient travertine feeder zones, within the Entrada Sandstone, Salt Wash Graben. 

In this chapter mineral composition from calcite cements associated with bleaching below 

travertine mounds are used to constrain the Eh-pH conditions prevailing in the ancient CO2-

system. The petrology and isotope geochemistry of the large-scale bleached zones is discussed in 

Chapter 5, where observations from fluid inclusions are used to constrain the volatile phase 

responsible for bleaching in each system.  

4.2. Objectives 

Carbonate cemented host rock and carbonate veins from the Entrada Sandstone, in the footwall of 

Salt Wash Graben, were collected for geochemical, petrological and isotopic analysis. Samples 

collected during the 2007 field season were supplemented with chips of U-Th dated carbonate 

veins from both Little Grand Fault and Salt Wash Graben provided by Neil Burnside, University 

of Glasgow. Isotopic analysis of their 87Sr/86Sr, δ18O and δ13C performed at the University of 

Cambridge allows a reconstruction of the evolution of the isotopic composition of CO2-charged 

groundwaters, sourced from the Navajo Aquifer, over the ca 413 ka year leakage history 

(Burnside, 2009) recorded in these deposits.  

Detailed petrology, cathodoluminescence and SEM mapping of thin sections, and EDS, 

XRD and XRF were used to characterize the mineralogy of the original host rock and the 

mineralogical products of interaction with CO2-charged fluids. Detailed compositional analysis of 

the carbonate minerals can be used to constrain the chemistry of the parent fluid, Eh-pH 

conditions prevailing during its deposition and to asses the role of kinetic processes in controlling 

carbonate formation and to quantify their precipitation rates. A petrological and isotopic study of 

carbonate mineral products within the fault zones was carried out in order to investigate the 

following: 

 
1) What was the nature and origin of the fluid associated with ancient travertine deposition 

and did that fluid vary compositionally with time (i.e. modification of major chemistry 
through fluid-mineral reactions; degassing or carbonate precipitation modification of the 

δ13CDIC)? Was it compositionally similar to the active CO2 system? 
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2) What were the Eh-pH conditions prevailing in the ancient CO2-charged groundwaters? 
Were the groundwaters sufficiently reduced, due to low dissolved oxygen content, that 
pH suppression due to high concentrations of dissolved CO2, was sufficient to dissolved 
hematite grain coatings?  

 
3) What geochemical factors control the mineralogy, chemistry and rates of carbonate 

cementation in travertine feeder zones? Can carbonate chemistry be used to infer 
carbonate precipitation rates and if so how do these rates compare to predictions from 
experimental studies on surface controlled mineral precipitation rates? What geochemical 
factors, such as the presence of inhibiting ions, the state of saturation with respect to 
carbonate and the degree of CO2-degassing, are most important in controlling 
precipitation rates? 

 
4) What are the timescales of active CO2 injection, from deeper formations, into the Navajo 

Aquifer? Does surface leakage occur immediately upon injection of CO2 into the Navajo 
Aquifer or is there a delay reflecting the time required for physical and geochemical 
interactions to occur, facilitating leakage? How long does this CO2-charge take to 
dissipate? Is there a coupling between CO2 injection, surface leakage and the rate of 
mineral- and gas-fluid reactions?  

 
5) What controls the spatial and temporal distribution of leakage sites? Do these sites vary 

as a result of geochemical processes, such as the plugging of leakage pathways by 
carbonate deposition? Are overall properties of the fault lithologies, fault architecture and 
local hydrology important in controlling rates of leakage? 

 

4.3. Methodology 

4.3.1.  Isotopic Systems and Fluid Rock Interaction 

When information is desired regarding the past properties of a hydrological system information 

recorded in minerals deposited in past regimes is of great value (e.g. Bottomley and Veizer, 1992; 

Hendry and Marshall, 1991; Marshall et al., 1992, Paces et al., 1994; Whelan and Stuckless, 

1992). The stable-isotope geochemistry of carbonate phases can be analyzed to help constrain 

pore-water evolution. The isotope ratios of O and C record the isotope ratios of the parent fluid, 

modified by temperature-dependent fractionations. Oxygen isotopic signatures may provide 

information about fluid flow, fluid sources and fluid–rock interaction (e.g. Burkhard and Kerrich, 

1988; Burkhard et al., 1992; Janssen et al., 1997, 1998). Commonly pore waters can be attributed 

to end-member compositions (e.g. meteoric, seawater, basinal brine) or to mixing lines between 

these end member compositions (e.g. Lee and Krothe, 2001).  

The carbon isotopic signature of carbonate can be used to study the origin and evolution 

of the pore water carbon reservoir from which inferences about the nature of the original carbon 

source can be made, if precipitation temperature can be independently estimated. Further, the 

stable isotopic composition of the parent fluid may be fractionated by reactions resulting from 
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physical processes, such as volatile loss and mineral precipitation, important for understanding 

the physical and geochemical controls on fluid chemistry and the evolution of pore fluid 

chemistry and mineral products as a result of these processes.  

The isotope ratios of Sr and other ‘nonfractionating’ elements in solution deposited 

minerals are always equal to those of the parent water; thus these isotope ratios directly record 

water conditions prevailing at the time of precipitation, with possible alteration due to subsequent 

cation exchange. The 87Sr/86Sr ratios in groundwater reflect the water-rock reaction histories and 

flow pathways of the waters and the mixing of distinct water sources. Several studies have used 
87Sr/86Sr as a natural tracer of groundwater flow and fluid-rock interaction (e.g., Blum et al., 

1993; Bullen et al., 1997; Clow et al., 1997; Johnson and DePaolo, 1994; Katz and Bullen, 1996; 

Musgrove and Banner, 1993). 87Sr/ 86Sr in groundwater evolve toward the ratio of Sr acquired 

from the host rock, primarily from silicate minerals (e.g. plagioclase, K-feldspar, mica). Although 
87Sr is radiogenic the roughly forty seven billion year half life of the decay process is so long that 

on the timescale of groundwater evolution, 87Sr/86Sr of Sr sources is essentially stable. 

4.3.2.  Faults and CO2 Leakage  

Fluid infiltration into faults and the resulting fluid–rock interaction influence the chemical and 

mechanical behaviour of faults (Hubbert and Rubey, 1959). In particular, elevated pore fluid 

pressures, which reduce the effective confining stress and allow frictional slip at low fault stress, 

have been invoked to explain the remarkable weakness of major fault zones (Chester et al., 1993; 

Chester and Logan, 1986; Lachenbruch and Sass, 1980; Miller et al., 1996). Since areas of CO2 

discharge globally coincide with regions of seismic activity, CO2 exsolution may increase pore 

fluid pressures within fault zones (e.g. Barnes et al., 1978; Irwin and Barnes, 1975), and corrode 

minerals comprising the fault surface, inducing fault weakening (Kennedy et al., 1997). Recent 

detailed studies on fault zones have revealed that faults act both as important fluid conduits 

during fault-related deformation and as barriers to fluid flow (Caine et al., 1996). This conduit-

barrier behaviour of faults varies in space and time during the active fault stages (Goddard and 

Evans, 1995; Logan and Decker, 1994). Structural and geochemical studies have been used to 

characterize fault-related alteration processes both along and across major fault zones (e.g. 

Chester, 1994; Cox, 1995; Hadizadeh, 1994) 

4.3.3. Isotopes: Equilibrium versus kinetic fractionation 

4.3.3.1. Carbon Isotopes 

Various mechanisms can lead to the precipitation of calcium carbonate from groundwaters. 

Precipitation of calcite can precede either by slow reactions close to equilibrium or by rapid 
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irreversible reactions. In the first forward and backward reaction rates are almost equal. The 

products formed escape from the solution and do not interact with it again. Under such conditions 

the products are in carbon and oxygen isotopic equilibrium with the solution, when they are 

generated. This, however, requires slow deposition rates, whereby the Ca-concentration at the 

surface of the solid must be close to saturation with respect to calcite. The fractionation factors 

αeq in this case are the corresponding equilibrium values. For the carbonate system, in the pH 

range of interest, they can be defined from experimental studies (Clark and Fritz, 1997; Deines et 

al., 1974; Romanek, 1992) as: 
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can be employed to yield the individual equilibrium fractionation factors between all of the 

various carbonate species and from which the isotopic composition of HCO3
- in equilibrium with 

measured values of calcium carbonate δ13C can be estimated.  

For non-equilibrium fractionation the other extreme is irreversible fast precipitation as a 

consequently of rapid changes in solution composition which produce and maintain an elevated 

saturation state of calcium carbonate (Ωcc). Such processes include very rapid changes in pH via 

H+ consuming mineral dissolution reactions with fast kinetics and CO2 degassing. Three 
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processes determine the value of the rate constant of calcium carbonate precipitation: (a) the 

precipitation kinetics at the surface of the mineral. (b) Mass transport of the reacting species from 

and towards this surface, respectively. (c) The slow conversion of HCO3
- to CO2 and the chemical 

reactions of carbonate chemistry (Buhmann and Dreybrodt, 1985; Dreybrodt, 1988, Dreybrodt et 

al., 1996). Such irreversible processes result in kinetic fractionation with different fractionation 

factors αkin, caused by the different reaction rates of the light and the heavy molecules (Zeebe and 

Wolf-Gladrow, 2001).  However, the magnitude of these fractionations is largely unknown. 

4.3.3.2.  Oxygen Isotopes 

During calcium carbonate precipitation, in contrast to carbon where all atoms are contained in 

HCO3
- and CO2(aq) molecules and to a negligible amount in CO3

2-, the oxygen atoms are 

exchanged not only within the carbonate species but also with the huge amount of oxygen atoms 

in the water. These represent a large reservoir with about 104 times more atoms than contained in 

the carbonate species. 

The oxygen isotopic composition of water in equilibrium with calcite, aragonite and 

dolomite can be derived from (Kim and O’Neil, 1997, 2007; Zhou and Zheng, 2003):  
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Equilibrium isotopic fractionation between HCO3
- and H2O can be assumed in instances where 

the precipitation rate of carbonate is sufficiently slow to allow equilibration of HCO3
- in solution 

with H2O. Since the slowest of the reactions taking place in solution during the precipitation of 

calcium carbonate is the dehydration of bicarbonate ions, and the hydration of aqueous carbon 

dioxide (Williams, 1983) and since this is the only step in which isotopic exchange can take place 

between the oxygen of the water and the oxygen of the carbon compounds in solution, 

equilibrium between these species is necessary for the carbonate to be precipitated in oxygen 

isotopic equilibrium with the water. Positively correlated δ18O versus δ13C with a slope that 

deviates from that expected for changes in fractionation due to temperature variations is a general 

indication that kinetic processes may ultimately govern δ18OCaCO3.  

4.3.4. Carbonate Precipitation in CO2-rich Fluids 

Dissolved CO2 will react with divalent cations, in solution, to form carbonate minerals (e.g. 

calcite, siderite, magnesite) which will form a sink of CO2 from the fluid. Overall reaction 
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stoichiometries show that calcite precipitation consumes bicarbonate ion while either increasing 

acidity in a closed system or liberating CO2(g) in a system open to CO2 loss (i.e. CO2 degassing): 

          
2

3 3 3
2 ( )Ca HCO CaCO s H HCO

+ − + −+ ↔ + +        (4.14) 

 
2

3 3 2 2
2 ( ) ( )Ca HCO CaCO s H O CO g

+ −+ ↔ + +       (4.15) 

 

Increase in HCO3
- concentrations, Ca2+ liberation and H+ consumption through mineral 

dissolution, or CO2 loss through degassing, drives overall equations (4.14) and (4.15) to the right, 

resulting in the precipitation of calcite. 

Rates of these reactions are known to be fast, relative to the slow kinetics of CO2 

dissolution and aqueous speciation, but have a complex dependence on reactant concentrations, in 

situ pH, temperature and fluid composition (e.g. Morse 1986; Mucci and Morse, 1983. 1984; 

Zuddas and Mucci 1998). Additionally, carbonate precipitation rates may be ultimately limited by 

solute supply and solute transport, as apposed to true mineral surface reaction (e.g. Given and 

Wilkinson, 1985; Lee et al., 1996; Wilkinson and Dampier, 1990). 

Surface controlled mineral precipitation and dissolution rates have most often been 

expressed in terms of a disequilibrium functional dependence. Since the net growth rate of 

calcium carbonate is, a priori, a function of calcium and bicarbonate concentrations, rate data has 

been commonly fitted to the following rate equation (Arvidson and Mackenzie, 2000; Berner and 

Morse, 1974; Gledhill and Morse, 2006; Morse and Arvidson, 2002; Nancollas and Reddy, 

1971): 
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or its logarithmic form: 
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where R is the precipitation rate normalized to the reacting surface area (mol m-2 s-1), k is the rate 

constant, n is the order of the overall reaction (Lee and Morse, 1999; Morse, 1987; Mucci and 

Morse, 1984; Nancollas and Reddy, 1971) and Ωcc is the saturation state defined as 
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       (4.18) 

 
where Kcc

* is the calcite stoichiometric solubility constant at a given temperature, and [HCO3
-] 

and [Ca2+] are the bicarbonate and calcium ion concentrations, respectively. This model is 

commonly adopted for precipitation from aqueous solutions of minerals such as calcite and 
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involves alternating incorporation of cations and anions (Ca2+ and CO3
2-) into the lattice. In this 

case, the growth rate also depends on the relative abundance of the cations and anions in solutions 

in addition to Ωcc. 

Within porefluids at, or close to saturation with CO2 the [HCO3
-] >> [Ca2+] and the 

macroscopic variation in carbonate precipitation rates will be partly limited by the availability of 

Ca2+ and other divalent ions. Given the order of magnitude differences between [HCO3
-] and 

[Ca2+] in typical porefluids the microscopic variability in precipitation rate will be governed by 

variation in Ωcc due to variable activities of [HCO3
-] and [H+]. Variation in [HCO3

-] and [H+] will 

primarily be caused by changes in pCO2, the extent of reaction and the degree of pH buffering.  

Numerous studies (e.g. Dreybrodt et al., 1992; Herman & Lorah, 1987, 1988; Lorah & 

Herman, 1988; White, 1997) show that calcite does not precipitate instantaneously at the point of 

saturation. Precipitation requires a finite supersaturation because of activation barriers to calcite 

nucleation and crystal growth (White, 1997). Activation barriers may also be accompanied by 

calcite inhibitor ions, e.g. Mg (Arvidson et al., 2006; Berner, 1975; Bischoff, 1968; Pytkowicz, 

1965), or the presence of organic matter (Berner, 1975; Raiswell & Fisher, 2004). In most 

circumstances this implies a saturation index (SIcc) of +0.5, although Dreybrodt et al., (1992) 

suggest that saturation indices of at least +1.0 are required. 

The rate of calcite growth in porefluids is strongly influenced by its relative super-

saturation, the pCO2, the concentration of inhibitor ions and organic molecules and the trace 

ion/Ca2+ of the parent fluid (Arvidson et al., 2003; Busenberg and Plummer, 1986; House et al., 

1981; Inskeep and Bloom, 1985; Morse, 1983; Nancollas and Reddy, 1971; Reddy et al., 1981; 

Shiraki and Brantley, 1995; Zhong and Mucci, 1993; Zuddas and Mucci, 1994). It is expected 

that, in fluids with complex chemistry calcite precipitation will be suppressed by a decrease in the 

density of active growing sites due to the blocking of growth steps and kink sites by the 

adsorption of divalent ions such as Fe2+, Mn2+ and Mg2+ (Chen et al., 2006; Dromgoole and 

Walter, 1990b; Gutjahr et al., 1996; Katz et al., 1993; Meyer, 1984; Reddy and Wang 1980). This 

effect decreases with increasing super-saturation due to higher intrinsic growth rates and the rapid 

‘burial’ of the absorbed ion.  The ratio of trace ion (Tr) concentrations of components forming 

solid solutions with that of the pure endmember, Tr2+/Ca2+, (e.g. Mg2+, Mn2+, Fe2+) have been 

shown to lower calcite precipitation rates where the concentration of the trace ion in the parent 

fluid is high and where the solubility of the TrCO3 endmember is greater than that of pure calcite 

(Berner, 1975, Dromgoole & Walter, 1990b; Meyer, 1984; Mucci, 1988). This may be especially 

important in diagenetic systems where Fe2+ and Mn2+ concentrations in pore fluids can be large. 

Additionally the precipitation kinetics of calcite increase with increasing pCO2 at (constant super-

saturation) due to an increase in the activity of the component carbonate species in solution. 

Water soluble organic ligands and ions such as PO4
3- and SO4

2- have been known to act as 
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precipitation inhibitors by blocking crystal growth sites (Katz et al., 1993; Kitano and Hood, 

1965; Paquette et al., 1996; Reddy, 1977)  

4.3.5. Carbonate Cement Compositions 

Interpreting the mode and environment of formation of secondary carbonates deposited from 

CO2-charged fluids is best achieved by examination of the chemical and isotopic composition of 

the secondary phases themselves. Minor and trace element contents (Mg, Fe, Mn, Sr, Ba, Na, K) 

of carbonate cements reflect pore water chemistries prevailing during carbonate precipitation (e.g. 

Rimstidt, 1998; Veizer, 1983). The systematic dependence of the coprecipitation of these 

‘foreign’ ions in calcite, dolomite and aragonite with various physical and chemical processes 

provides an important tool in understanding paleo-fluid chemistry and the pathways by which 

fluid-mineral reactions have occurred.  Numerous studies have focused on the measurement and 

application of partition coefficients, which relate the composition of the carbonate mineral to that 

of the solution from which it predicated (e.g. Brand and Veizer, 1980; Budd et al., 1993; Fairchild 

et al., 2000; Oomori et al., 1987). For instance, the temperature dependence of Mg2+ 

incorporation into the calcite lattice makes it an important tool in interpreting paleo-temperatures 

(e.g. Morse et al., 1997). Efforts have been made to use the Na+ contents of carbonates as 

indicators of paleosalinities and salinity (e.g. Veizer et al., 1977; Ishkawa and Ichikumi, 1984) 

but Na probably occupies interstitial positions in the calcite structure and its incorporation is thus 

partly dependent on the number of surface defect sites (see Busenberg and Plummer, 1984).  

Concentrations of the redox sensitive elements Fe and Mn in calcite have been used, in 

conjunction with cathodoluminescence (CL) microscopy, to interpret paleo-redox conditions of 

pore waters prevailing during diagenesis (see Barnaby and Rimstidt, 1989 for a thorough review). 

Variation in CL brightness is primarily a function of Fe2+ and Mn2+ content, with Fe2+ the main 

quencher and Mn2+ the main activator of luminescence (Sommer, 1972; Fairchild, 1983; Machel, 

1985; Mason, 1987). Natural calcite cements may contain 1000's of ppm Fe or Mn, and a 

minimum of ~ 10 ppm Mn is necessary to activate CL (Ten Have and Heijnen, 1965). Variations 

in CL brightness may record changes in Fe2+ and Mn2+ concentrations which reflect changes in 

the Eh-pH conditions of the parent fluids (e.g., Frank et al., 1982).  

The equilibrium partitioning of a component between two phases can be represented as a 

simple chemical reaction: 

 

phaseA phaseB
X X↔         (4.19) 

 
With an equilibrium constant (K) for the reaction of: 
 

phaseA phaseBX X
K a a=         (4.20) 
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Where aX is activity and the equilibrium constant K is equivalent to a distribution coefficient of X 

between the two phases. This equilibrium constant can only be equal to the concentration ratio of 

X in the two phases when the activity coefficient of X in both phases is unity (or the same). Given 

the difficulty in determining activities and the non-equilibrium state of many experimental and 

natural systems the concentration of a trace component (Tr) is typically related to a carrier 

component (Cr) in the solid (S) and liquid (L) phases (e.g. Ca2+) by the non-thermodynamic 

partition coefficient, D, where: 
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D can be theoretically related to a true thermodynamic equilibrium constant by solid (fi) and 

liquid (γi) activity coefficients (after Morse and Bender, 1990). Using the exchange reaction for a 

hypothetical trace component (Tr) in calcite as an example, we have: 
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and 
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Since the molar ratios of Tr to Ca in the solid phase and TrCO3 to calcite are the same, D is 
related to Kd as: 
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       (4.27) 

 
Taking the activities of the solid phases as unity and substituting (4.26) into (4.27) we have: 
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( ) ( ) ( )2 2Tr Ca d Tr CaTr Cacalcite L
m m K m mγ γ+ += ⋅      (4.28) 

 
The dependence of partition coefficients on both the crucial thermodynamic properties of 

pressure, temperature and composition and the kinetics of carbonate precipitation have been 

determined for a number of minor and trace elements in calcite: Mg and Sr (Gascoyne, 1982; 

Huang and Fairchild, 2001; Lorens, 1980; Mucci and Morse, 1982; Oomori et al., 1987; Pingitore 

and Eastman, 1986; Tesoriero and Pankow, 1996); Mn and Fe (Böttcher, 1998; Dromgoole and 

Walter, 1990a; Lorens, 1978, 1981; Mucci, 1988, Pingitore et al., 1988); Ba (Tesoriero and 

Pankow, 1996; Tunusoglu, 2007); Na (Busenberg and Plummer, 1986; Ishkawa and Ichikumi, 

1984); and some trace elements (Zhong and Mucci, 1989, 1995). Experimentally determined 

partition coefficients for minor and trace element incorporation in dolomite and aragonite 

(Busenberg and Plummer, 1984; Gaetani and Cohen, 2006; Kinsman and Holland, 1969; Zhong 

and Mucci, 1989), are less ubiquitous or are absent and as such values must be determined from 

theoretical thermodynamic calculations (e.g. Curti, 1999, Wang and Xu, 2001). However, given 

its easy substitution for Ca, Sr incorporation in aragonite (Kinsman and Holland, 1968; Gabitov et 

al., 2008; Gaetani and Cohen, 2006) and dolomite (Baker and Burns 1985; Vahrenkamp and 

Swart, 1990) is reasonably well constrained. The application of experimentally determined (K’d) 

values or those based on thermodynamic calculations of mineral solubilities are complicated by 

the fact that true thermodynamic equilibrium is rarely attained in low temperature experimental or 

natural systems.  

Kinetic processes effecting the distribution of trace elements within precipitating 

carbonate crystals include the tendencies of Ca and Tr to attach at kink sites on the growth steps 

of an actively growing crystal (Watson and Liang, 1995, Rakovan and Reeder 1996). This is due 

to differences in the surface energies of different absorption sites in the crystal. This process 

results in heterogeneous trace element distributions and sector and intersectoral zoning in 

carbonate crystals due to the low rates of diffusion of trace elements in the solid phases relative to 

the rates of crystal growth (Rakovan and Reeder 1996). 
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Figure 4.3-1 The dependence of DSr on the precipitation rate of calcite at various fluid Mg/Ca. Compiled 
from Mucci (1986) and Mucci and Morse (1983). 

 

The second process is related to surface-solution boundary processes which result in the 

incorporation of Tr into the growing crystal at a different rate to the incorporation of Ca, so that 

(mTr/mCa) ratio is either large or smaller than the contacting solution.  This differential 

incorporation is dependent on the rate of transport of the ions from the solution to the mineral 

surface (Lasaga, 1981; 1982). 

Experimental distribution coefficient show a systematic pattern of behaviour that differs 

from that expected if the distribution were controlled by equilibrium thermodynamics alone 

(Rimstidt et al., 1998), suggesting that experiments are effected by kinetic processes. As such 

calculations of pore fluid chemistry from carbonate cement composition using equilibrium 

distribution coefficients can predict general trends but they must be tempered with an 

understanding of the kinetic processes affecting the specific system of interest. This does however 

allow the Tr/Ca of calcite to be used to infer precipitation rates where the original fluid Tr/Ca 

value is know and the dependence of DTr on precipitation rate is experimentally well constrained. 

In the case of calcite, the value of trace element partition coefficients varies with 

increasing rate of precipitation in a systematic manner (Beck et al., 1992; Kinsman and Holland, 

1969; Lorens, 1981; Morse and Bender, 1990; Mucci, 1986; Pingitore and Eastman, 1986). Mucci 

(1986) precipitated magnesian calcites at room temperature from solutions of various 

[Mg2+]/[Ca2+] and at Ωcc values ranging from 2.0 to 14.4. The results, combined with those of 

Mucci and Morse (1983) (Fig. 4.3-1) were used to obtain the empirical relationship 

 

0.65973 0.06591 log
Sr

D R= + ⋅        (4.29) 
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where R is the precipitation rate in mol/m2/sec, DSr is the Sr/Cacc partition coefficient, at a 

[Mg2+]/[Ca2+] of 1.0. It is noted that the exact nature of this rate-dependence is not clear, nor are 

the effects of Mg and pCO2 rigorously known. Eq. (4.29) is the result of a least square fit with a 

correlation coefficient of 0.60. Beck et al., (1992) in agreement with the results of Mucci and 

Morse (1983, 1990) and Jacobson and Usdowski (1976), reported no significant effect on DSr due 

to increase in pressure. These workers observed only a slight increase in DSr value with increasing 

temperature in experiments carried out to 400°C and 10 MPa.  

4.3.6. Redox 

Various studies (Carpenter and Oglesby, 1976; Grover and Read, 1983; Niemann and Read 1988; 

Oglesby, 1976) have suggested that progressive changes in Fe and Mn contents reflect variation 

in porewater pH and Eh during diagenesis. Implicit in this geochemical model is the assumption 

that the Mn2+ and Fe2+ concentrations in the fluid were governed by equilibrium reactions with 

Mn- and Fe-bearing mineral phases whose solubilities were controlled by the pH and Eh 

conditions of the groundwater and that these minerals were present in the system during the 

precipitation of carbonate. The Mn and Fe content of this pore water is determined by the Mn/Ca 

and Fe/Ca ratios of the calcite precipitate and the corresponding distribution coefficients DMn and 

DFe. Application of Eq. (4.27) requires knowledge of the aCa2+ in pore waters and activity 

coefficients for Ca2+, Mn2+ and Fe2+. Given the apparent similarity of chemistry of modern CO2-

charged fluids and those responsible for calcite deposition (see section 4.4.3) Ca concentration 

and activity coefficients from the modern fluid have been used in the calculation of element 

distributions in calcite cements.  The distribution coefficients for Mn and Fe in calcite are 

influenced by precipitation rate (Dromgoole and Walter, 1990a; Lorens, 1981; Mucci, 1988) and 

temperature (Bodine et al., 1965). Lorens (1981) indicated that DMn varies from 5 at rapid 

precipitation rates to almost 70 at very slow rates of precipitation. A similar behaviour is 

observed for DFe (Lorens, 1981). In subsequent calculations values of DMn= 7 and DFe= 3 were 

used. If the effective distribution coefficients for Mn and Fe during calcite precipitation varied by 

even an order of magnitude from these values due to rate effects, the estimated solution Eh and 

pH would be in error by only 0.06 volts and 0.25 pH units, respectively. This would not 

significantly effect the conclusions about approximate Eh & pH ranges of paleo-CO2-charged 

fluid. Temperature is not of a significant concern given the narrow range of temperatures 

observed in modern CO2-charged fluids and the lack of a significant variation in DMn and DFe at 

temperatures lower than 100°C (Bodine et al., 1965)   
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4.3.7. Eh-pH Diagrams 

The redox couples of interest Fe2+/Fe2O3 and Mn2+/MnO2 more closely approximate equilibrium 

with respect to measured Eh than to Eh computed from other parameters such as dissolved O2 

(Lindberg and Runnells, 1984). It is thus reasonable to conclude that Pt electrode measured Eh 

closely resembles groundwater Eh as reflected by the Fe and Mn equilibria, and that redox 

conditions inferred on the basis of calcite Fe and Mn contents should be compatible with 

measured Eh values for modern CO2-charged fluids. A crucial component of this model is the 

identification of the correct redox coupled Mn- and Fe-oxyhydroxide phases whose solubilities 

govern the fluid Mn and Fe content. For the Navajo and Entrada Sandstones the potential Fe-

oxyhydroxide phases include hematite, goethite, magnetite and amorphous ferric hydroxide; 

potential Mn-oxyhydroxides include pyrolusite, manganite, amorphous MnO2 and ‘complex’ 

MnO2 (Chan, 2000). 

Identification of the oxyhydroxide phases controlling groundwater Fe2+ and Mn2+ content 

can be made based on the assumption that Mn and Fe contents are controlled by equilibrium with 

an appropriate oxyhydroxide and that measured spring Eh and pH values adequately reflect 

subsurface Eh/pH conditions. Superposition of measured Eh-pH values for CO2-chraged fluids, 

with the stability boundary of hematite, and its ubiquitous presence in these sediments suggest 

this phase largely controls fluid Fe (Chapter 2, section 2.4.7). Manganese chemistry in natural 

systems is complex and not well understood (e.g. Barnaby and Rimstidt, 1989; Bricker, 1965; 

Potter and Rossman 1979). Mn exists in several possible oxidation states and commonly forms 

complex nonstoichiometric oxyhydroxides, with highly variable crystallinity (Ponnamperuma et 

al., 1969). Detailed studies of Mn-oxide mineralogy from various sedimentary environments 

indicate that insoluble Mn oxides other than pyrolusite (MnO2) are the dominant controls on 

dissolved Mn (see Taylor et al., 1964). Consequently it is assumed that Mn2+ concentrations are 

controlled by equilibrium with a relatively insoluble ‘complex’ MnO2 phase. Details of the 

calculation of the solubility of this phase are presented in Appendix C. 

Relating values for measured Eh in CO2-charged waters to activities of redox elements in 

solution may be problematic given that internal disequilibrium for any given redox couple is 

common (Lindberg and Runnells, 1984); however given the time scale of groundwater residence 

(>103 yrs), redox reactions between cations in solution are comparatively instantaneous (e.g. 

Basolo and Pearson, 1967); furthermore, the dissolution and precipitation rates of Fe- and Mn-

oxyhydroxides are also fast (e.g. Cornell and Giovanoli, 1993; Melbourne et al., 1991; Surana 

and Warren, 1969; Schwertmann, 1991). Thus it is reasonable to assume redox equilibria between 

groundwaters and oxyhydroxide phases and that Fe and Mn contents of authigenic calcite will 

reflect this fact.  
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4.3.8.  Analytical Methods 

Representative thin sections of altered and unaltered Entrada sandstone and veins were 

qualitatively investigated petrographically using transmitted light microscopy. Percent 

mineralogy and porosity were estimated by point counting (200 points) at a spacing of 0.1 mm, 

on representative samples. Polished thin sections were examined with cathodoluminescence using 

a cold cathode machine and a mono-CL attached to a Jeol JSM 6100 SEM. SEM imaging and 

SEM-EDS analyses were undertaken on flat, well-polished specimens following Reed, (2005). 

Samples were analysed using a Jeol JSM 6100 scanning microscope, combined with an Oxford 

Instruments INCA EDS suite. The accelerating voltage for X-ray intensity measurement and for 

SEM image capture was 15 kV, using a probe current of 0.3 nA and a mean dead time of 20%. X-

ray diffraction analysis was conducted on a Bruker AXS D8 diffractometer at the University of 

Cambridge. Diffraction patters were recorded by step scanning from 2-80°2θ, with a step size of 

0.013605° and counting for 0.7s per step. The Eva 9.0 software by SOCABIM (2003) was used to 

identify the mineral phases. The major and minor element chemistry of carbonate cements and 

veins were analysed using a Cameca SX-100 electron microprobe. The operation conditions were 

a filament voltage of 15 kV and a current of 10 nA with a beam diameter of 5.5 µm for the 

carbonates. Whole rock major element concentrations were determined by X-ray fluorescence 

(XRF) spectrometry at the Open University. Analyses were performed on fused discs following 

Potts et al., (1984). Modal mineralogy was calculated from least squares mixing of mineral 

proportions to match whole rock compositions using the method of Hermann & Berry, (2002). 

Carbon and oxygen isotopes, 18O/16O and 13C/12C, were measured in carbonates from 

cements and veins. Powdered carbonate micro-samples (~0.5g) taken from homogenized bulk 

samples (15g) were reacted at 90oC in pure orthophosphoric acid. The resultant CO2 gas was 

purified cryogenically and analyzed for 18O/16O and 13C/12C using a Thermo Finnigan MAT253 

Gas Bench II stable isotope mass spectrometer. δ13C and δ18O are expressed in δ‰ deviation 

relative to Peedee Belemnite (PDB) and VSMOW standards with analytical precisions, based on 

the repeat analysis of in house standards, estimated at ±0.06 and ±0.08 ‰ respectively (1σ). 

Samples of U-series dated aragonite veins provided by Neil Burnside, University of 

Glasgow, were analyzed for 87Sr/86Sr, δ18O and δ13C. Chips taken from dated samples were 

ground to a powder and duplicated 0.3 to 0.5 mg samples were taken for analysis. The samples 

were analyzed using a Thermo Gas Bench attached to a Thermo MAT 253 mass spectrometer in 

continuous flow mode. Results are quoted to the international standard VPDB and the precision is 

better than ±0.10 ‰ for δ18O and better than ±0.06 ‰ for δ13C (1σ). Results are reported as 

averages of the two analyses. Approximately 0.3 g of each sample was dissolved in 6 M HCl in 

Teflon beakers for the analysis of 87Sr/86Sr. The solutions were evaporated to dryness on a hot 

plate at approximately 70°C. Each residue was dissolved in 1 M HCl and 0.4 ml was loaded on a 
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cation-exchange resin column to separate Sr from Ca and Rb. Eluant was 3 M HCl. The 

strontium-containing volume of eluant was then evaporated to dryness. After final evaporation to 

dryness the sample was dissolved in 1 M HNO3 and approximately 0.5 µg of strontium were 

loaded on a single tungsten filament. Isotopic analyses were performed on the T40 Sector 54 VG 

mass spectrometer at Cambridge following Bickle et al., (2003). Analyses of NBS987 gave 

0.710258 ± 0.000008 (1σ, n =20) over the period in which the samples were analysed. 

4.4. Results and Discussion 

4.4.1. Field Observations 

Exposed along Little Grand Fault and the northern fault of Salt Wash Graben are a series of 

partial to complete remnants of ancient travertine deposits that parallel the fault trace (Fig. 4.4-1). 

The ancient travertine deposits form resistant caps to sandstone buttes and are topographically 

higher than modern, actively-forming travertines. All deposits originate in the footwall proximal 

to areas where the fold axis of the Green River anticline is cut by normal faults. However, there 

are variations in the distribution and development of the ancient deposits between the two faults. 

The Little Grand Fault contains a series of discrete, well-developed, thick (1 to 10 m) deposits 

that are located in various footwall lithologies from the variably sand-rich Curtis Formation to 

clay-rich sections of the Morrison Formation (Fig. 4.4-2). The deposits form in the immediate 

footwall but generally drape over the fault into the hanging wall (Fig. 4.4-3). Additionally, the 

deposits are confined to sections where the two main fault strands are close together and/or there 

are pronounced structural complexities such as fault bends and relay ramps (Dockrill, 2005). The 

northern fault of the Salt Wash Graben contains mainly thinner (0.5 to 4 m) deposits compared to 

the Little Grand Fault (Fig. 4.4-4). They are located in the sand-rich Entrada Sandstone. The 

deposits are predominantly confined to the immediate footwall, occasionally draping into the 

adjacent graben. However, around the Green River fold axis deposits increase in number and 

form further into the footwall. The easternmost travertine deposits are associated with a breached 

relay ramp (Dockrill, 2005) (Fig. 4.4-1). In both fault systems the fault gouge is locally well 

exposed and consists of a zone up to 5m thick of slices of host lithologies separated by clay rich 

foliated gouge. Where the footwall Upper Jurassic units are juxtaposed against shales in the 

hanging-wall, the fault core is dominated by low-permeability clay-rich gouge (Dockrill, 2005). 

Conversely, the surrounding damage zone is dominated by fractures both in the high permeability 

reservoir units and in the low-permeability seal units (Dockrill and Shipton, 2010). Fracture 

orientation range and frequency are enhanced in zones of structural complexity improving 

fracture connectivity and providing pathways for fluids to migrate vertically, parallel to the fault 

(Dockrill and Shipton, 2010). 
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Figure 4.4-1 Distribution of surface travertines along (a) Little Grand Wash Fault and (b) the northern fault 

of Salt Wash Graben. Also shown is the distribution of iron oxide dissolution and bleaching in the Entrada 

Sandstone. Insets show the location of each map relative to the Green River, the axis of the Green River 

Anticline and the two fault systems. Modified after Dockrill (2005). 
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Figure 4.4-2 (a-f) Field photographs of ancient travertine mounds from the Little Grand Fault showing 

distribution of: (a) A layered travertine mound emplaced on partially bleached Mancos Shale. In mud-

dominated lithologies, networks of thin boxwork veins (5 to 10 mm thick) are more common than the 

thicker white-banded veins, locally destroy the host rock fabrics, and have thin reduction haloes (1 to 5 

mm).  (b) The faulted and fractured feeder zone to a travertine mound with associated reduction halo in the 
partially sandy Curtis Formation. (c-f) Horizontal and vertical aragonite veins with diffuse bleaching 

paralleling the vein trace and following fine fractures radiating from the veins.  
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Figure 4.4-3 Field photographs of ancient travertine mounds from the Little Grand Fault showing 

distribution of (a) A thick mound draping across the fault, dominated by a thick aragonite vein that down 

turns to the left hand side of the photo, into the fault zone. (b) Large vertical aragonite vein with open 

cavity feeding travertine (a). (c) Feeder fault cross cutting the Curtis formation (left hand side of (a)) with 

partial bleaching and extensive bedding parallel calcite cementation, aragonite veining and bleaching (d-e). 
(f) Close up of the fault zone in (c). 
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Figure 4.4-4 Field photographs of a) a travertine mound (Tenmile Butte) collapsing to the south, from the 

footwall of the northern fault of Salt Wash Graben into the graben itself. (b) Close up of righthand side of 

photo (a) showing extensive horizontal aragonite veining ~15 m beneath the top of Tenmile Butte which is 

capped with travertine deposits. (c-e) increasingly close up images of (b) showing aragonite veining and 
cavity formation within the partially bleached and heavily cemented Entrada Sandstone. Iron is dissolved 

and locally precipitated on the mm-cm scale as coarse dark Fe-oxides (e). (f) Bedding parallel bleaching 

and cementation halos in sandy layers surrounding thin bedding parallel aragonite veins, accumulating 

beneath and between impermeable silty horizons.  



Chapter 4: Geochemistry of an Ancient CO2 Leaking Groundwater System 

 114

4.4.1.1.  Ancient Travertine Deposits 

 

Figure 4.4-5 Figure (from Dockrill, 2005) showing the different stages involved in the formation of a fault 
related travertine deposit. (a) CO2-charged waters migrate up the fault damage zone (DZ) through pre-

existing fractures. Discharged waters percolate through the surrounding colluvium and flow across the land 

surface, degassing CO2 and cementing conglomerate (CG). (b) Sealing of the colluvium initiates layered 

carbonate (LM) deposits at the surface. Aragonite veins (WBV or BBV) begin to form in the colluvium and 

host rock beneath the layered deposit. (c-d) Travertine builds up laterally and vertically. Eventually the 

springs become inactive and the travertine begins to erode. 

 

The morphology and formation of travertine mounds is discussed thoroughly by Dockrill (2005): 

a brief over view is given here. Travertine mounds essentially comprise (Fig. 4.4-5): a) Calcite-

cemented colluvium conglomerate which forms the base of the mound. b) A subhorizontal, 

layered carbonate deposit with moderate to high visible porosity, situated above the 

conglomerate. The morphology of the layered carbonate varies considerably in texture and 

packing, but is generally composed of layered, subhorizontal alternating porous and dense 

horizons. Each layer contains subvertical, dendritic precipitates that branch out from a thin, 

laminated substrate. The substrate commonly has an irregular, sinuous shape similar to the pool-

and-rim geometries of microterraces on the present-day travertines. c) Horizontally and vertically 

orientated banded aragonite veins cross cut the travertine mounds and extend to depth beneath 

individual deposits. 
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4.4.2. Petrology, Cathodoluminescence, SEM and XRD 

4.4.2.1. Entrada Sandstone 

The aeolian sandstones of the Slick Rock and Earthy members of the Entrada are fine- to 

medium-grained quartz arenites to subarkose sandstones (Trimble, 1978). These sandstone units 

alternate with siltstone and silty sandstone of the Dewey Bridge Member at the base of the 

Entrada Sandstone. The sandstones are red in colour due to the presence of hematite and goethite 

grain coatings (Beitler et al., 2005, Bowen et al., 2007, Chan et al., 2000, Parry et al., 2004). 

Regionally, the detrital mineralogy of dune facies sandstones comprises subangular to rounded 

grains of 76-89 wt% quartz, 8.5-16.5 wt% K-feldspar, 2.2-6.5 wt% plagioclase and trace 

muscovite (<0.4 wt%), tourmaline, apatite and zircon (<0.5 wt%) (Cullers, 1995; Mirsky and 

Treves, 1962). All samples vary somewhat in grain size (0.12-0.56 mm), sorting and packing. 

Type and amount of cement varies considerably and includes quartz, dolomite, calcite, illite, 

smectite, kaolinite, hematite and goethite.  

Point counted samples from SWG average 72.2 vol% quartz grains and  9.8 vol% 

feldspar grains (both K-feldspar and plagioclase). Quartz grains show occasional quartz 

overgrowths (0.1 vol%) that exhibit a euhedral outline and occasionally preserve illite and 

haematitic grain coatings on the original grain rim. Samples average 3.3 vol% illite and 0.2 vol% 

kaolinite. Two illite textures are present: illite coatings on quartz and K-feldspar grains and pore 

filling illite, which may replace K-feldspar. Samples average 1.8 vol% illite coating and 1.5 vol% 

pore filling illite. Samples average 7.6 vol% rhombohedral dolomite and trace (detrital?) calcite 

(0.1 vol%). Cryptocrystalline hematite averages 1.2 vol% in red dune facies samples and they 

contain trace detrital oxides (0.1 vol%) 
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Figure 4.4-6 Typical crossed polarized light photomicrographs of micro-wafers from thick aragonite veins 

illustrating the typical pattern of grain morphology and size through an individual growth set. Also 

prominent in the images are the Fe and Mn rich layers that occur on inception of a new growth surface 

4.4.2.2. Aragonite Veins 

Aragonite and calcite veins parallel bedding or infill open joints and are observed at depths up to 

~30m below ancient travertine mounds. Thick aragonite veins are composed of multiple sets of 

growth surfaces, generally 5 to 30 mm thick, defined by radial and ray crystals elongate 

perpendicular to the plane of the veins (Fig. 4.4-6). Thin veins are composed of equant and 

euhedral, occasionally twinned, pseudohexagonal aragonite crystals which grow in open fractures 

and within the porosity (Fig. 4.4-8). Individual veins grew primarily from the fracture walls 

inwards (Figs. 4.4-2 to 4.4-4). The carbonate lining the fracture walls are usually equidimensional 

and occasionally separated by a central cavity. At the inception of a new growth surface aragonite 

crystals are equant and pigmented containing micro-inclusions of Fe- and Mn-oxides and 

crystallize with cryptocrystalline hematite and goethite (Fig 4.4-6 & 4.4-7). With distance from 

the growth surface towards the vein centre crystals increase in size and become elongate, acicular 

and prismatic. Thick veins thin laterally and terminate in networks of thin veins, occluding lenses 

of the local host rock, which becomes heavily altered. Fe-oxyhydroxides precipitate on the inner 

surface of the vein occluding sections of the host rock. Feldspar grains included in these vein 

segments exhibit evidence of extensive dissolution and reprecipitation of silica, kaolinite and 

smectite within the pore volume formed by the occluding vein (Figs. 4.4-10 to 4.4.12).   

Aragonite 

Goethite 
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Figure 4.4-7 XRD patterns from a) coarsely crystalline transparent aragonite and b) from one of the 

pigmented growth surfaces in Fig. 4.4-6 illustrating the presence of hematite and goethite. 
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Figure 4.4-8 Typical plane and crossed polarized light photomicrographs from aragonite micro-veins 

growing either a) at ~ 30 m below the paleo-land surface or b-e) at the lateral termination of a shallow thick 

aragonite vein. a) Illustrates the variety of twinned and pseudohexagonal habits of the aragonite crystals 
which grow in thin micro-veinlets within fractures or the porosity of the local host rock. b-e) Illustrates 

inclusion of host rock, Fe-mobilization and reprecipitation on the inner surface of the occluding veinlet. 
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Figure 4.4-9 Cold cathodoluminescence photomicrographs of thick aragonite veins exhibiting a-c) 

Inclusion of fragments of host rock grains, at the inception of a new grow surface, around which new 
crystals or rosettes of crystals nucleate. d) CL image from the coarse portion of a vein showing the 

generally homogeneous nature of the CL pattern.  

 

Cathodoluminescence patterns for aragonite veins are homogeneous reflecting relatively uniform 

fluid compositions throughout the precipitation of a single vein (Fig. 4.4-9). Some difference in 

CL brightness is observed on individual crystal facets reflecting the preferential attachment of 

ions to surfaces which grow at different rates. Bright yellow-orange (calcite) and blue (K-

feldspar) CL patterns observed at the inception of a new growth surface represent grains from the 

host rock lithology entrained into the vein cavity. These sites comprise amalgams of many small 

crystals reflecting rapid crystal nucleation due to the density of nucleation sites on the surface of 

the entrained grains. 

Back-scatter electron (BSE) and mono-CL images of micro-aragonite veins (Figs. 4.4-10 

to 4.4-11) from the lateral tip of a thick horizontal vein reveals that individual micro-veins are 

composed of a single, or up to three, growth events and that early growth stages are broken apart 

and then occluded by later growth stages. Electron intensity increases with proximity to an 

included portion of host rock reflect dissolution of silicate grains in the matrix and increased 

incorporation of foreign ions into the aragonite. Increased electron intensity, where no concurrent 

change in CL intensity is observed reflects an increase in Sr2+, Na+ and K+ content. Later stages of 

vein growth have higher CL intensities but lower electron intensities reflecting a decreased Fe2+, 

Aragonite 

Calcite + K-feldspar 
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Sr2+, Na+ and K+ content. This general pattern reflects a decrease in wall rock interaction in these 

fine veins as fluid becomes isolated from the host rock by precipitation of aragonite on the 

fracture surface. EDS patterns and SEM imaging reveal extensive kaolinite veining in these 

micro-veins where they interact with the host rock, deriving SiO2 and Al3+ locally, from the 

dissolution of silicate minerals.  

 

 

Figure 4.4-10 a) BSE and b) Mono-CL photomicrographs of an aragonite micro-veinlet and alteration of 
occluded portions of the local host rock. EDS spectral for various secondary products including a) smectite 

surrounding a dissolving K-feldspar grain, b) kaolinite precipitating as fine micro-veins surrounding sand 

grains and intergrowing with CaCO3 and c) the aragonite vein. 
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Figure 4.4-12 SEM photomicrographs at various scales of a single feldspar grain occluded by an aragonite 

micro-vein. a) The grain is heavily corroded and is preferentially dissolved along cleavage planes. b-f) The 

feldspar surface is largely free of secondary mineral coatings. Dissolved components are reprecipitated 

within the porosity volume created by the dissolved grains as flakes of silica, smectite and micro-platelets 
of kaolinite on portions of the grain surface and the cavity wall.  Clay gains adhering to the aragonite 

crystal surface inhibit carbonate nucleation, creating pockets of clay occluded in the growing vein.  

4.4.2.3.  Altered Entrada Sandstone 

The host rock below individual ancient travertine mounds are generally altered along fractures 

and bedding planes (Fig. 4.4-4 & 4.4-13). Alteration includes; pervasive calcite, aragonite and 
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silica cementation, and calcite and aragonite veining. Poikilitic aragonite crystals occur in zones 

away from fracture conduits. Point counted bleached yellow-orange dune facies samples average 

6.5 vol. % feldspar (both K-feldspar and plagioclase), much of which is heavily corroded (Fig. 

4.4-12 & 4.4-14), and 65.5 vol. % detrital quartz grains, which are commonly overgrown by 

euhedral and irregular quartz overgrowths (2.4 vol. %). Overgrowths surround both hematite and 

illite grain coatings, grains from which the haematitic coatings have been dissolved and 

commonly include calcite. Grain rimming illite/smectite (1.8 vol. %) and kaolinite (0.5 vol. %) 

are common and many feldspar grains have 2-10µm coatings of clay intergrowths (Fig. 4.4-14). 

Samples contain trace, heavily corroded fragments of dolomite (0.2 vol. %) and abundant pore 

filling calcite (13.7 vol. %) (Fig. 4.4-15 to 4.4-17). Grain rimming, cryptocrystalline hematite and 

coarse crystalline oxides average 0.4 % and 2.6 %, respectively. 

 

Figure 4.4-13 Photomicrographs of representative samples of Entrada Sandstone showing a) Unaltered 

diagenetically red dune facies sandstone from SWG. Dark pigmented layers are zones with thicker (4-6µm) 

hematitic grain coatings. b) Altered sandstone from a travertine feeder zone at SWG. Cryptocrystalline 

haematitic grain coatings have been dissolved and the Fe locally reprecipitated as coarse hematite and 

goethite grains. The pore space is completely occluded by calcite cement. c) Altered Entrada Sandstone 

from SWG adjacent to an aragonite filled fracture (left hand side of image). Grain coatings have been 
removed and some Fe has been locally reprecipitated and some mobilized to the fluid. The fracture is in 

filled with aragonite, kaolinite and smectite.  Some fine fracturing in the host rock adjacent to the fracture is 

observable in the sample due to alteration of the adjacent host rock and the growth of the fracture fill. 

 

Dissolved hematite grain coatings are locally reprecipitated, at the mm-cm scale, as goethite, and 

occasionally as coarse hematite grains (Fig. 4.4-13). Calcite occurs as granular to blocky, equant 

to poorly prismatic poor rimming and filling cements. Individual calcite crystals typically contain 

a pigmented core reflecting a high Fe and Mn content in the crystal and the inclusion of micro-

crystalline inclusions of Fe-oxyhydroxides (Fig. 4.4-15). CL patterns for samples close to fracture 

conduits exhibit a dominant single stage of calcite growth, with no pronounced concretionary 

zoning and gradational changes in Fe and Mn content from calcite core to rim (Fig. 4.4-16). 
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Figure 4.4-14 SEM photomicrographs at various scales of a sand grains in the altered portions of the host 
rock surrounding an aragonite vein. a) heavily corroded feldspar grains and local reprecipitation of 

kaolinite and smectite. b) pore-filling kaolinite. c) Dissolving feldspar grain which continues to dissolve 

even though it is surrounded by a 5 to 10 µm thick layer of reprecipitated silica and clay. d-f) close up of 

secondary products surrounding c).  
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Figure 4.4-15 Cold CL photomicrographs of pore occluding calcite (a-f) cement close to a fracture conduit. 

The calcite fills pore space and is gradationally zoned suggesting continuous precipitation from a fluid of 
relatively homogenous composition. The cores of most grains are pigmented contain high concentrations of 

Fe and Mn and micro inclusions of oxyhydroxides, whilst the rims are transparent. Large-scale image of the 

same sample showing the homogenous nature of the calcite.  

 

Calcite 

K-feldspar 

Quartz 



Chapter 4: Geochemistry of an Ancient CO2 Leaking Groundwater System 

 126

 

Figure 4.4-16 Typical plane and crossed polarized light photomicrographs from a-d) pore occluding calcite 

cement close to a fracture conduit in Fig. 4.4-14; e-f) poikilitic aragonite in calcite cemented host rock ~ 

3m from the fracture conduit. 

 

Where calcite cementation is associated with joints or open fractures a systematic increase in 

cement volume is observed with proximity to the conduit. Typically the calcite cementation 

occludes the majority of the porosity in individual samples. 
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Figure 4.4-17 Cold CL photomicrographs of pore filling calcite and poikilitic aragonite in cemented host 

rock ~3 m from a facture conduit.  

 

Other samples (Fig. 4.4-17), typically forming some distance from fracture conduits or at the 

edges of calcite cemented halos, around veins, exhibit more complex CL patterns, concretionary 

and concentric zoning and abundant pokiolitic aragonite cements 
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4.4.3. Carbonate Trace Element Compositions and Paleo-Fluid Chemistry 

A single representative sample from each of the two distinct cementation zones; zones containing 

only calcite cements and zones containing calcite and aragonite cements, were analyzed for major 

and minor element chemistry (Figs 4.4-18 to 4.4-22).  

 

Figure 4.4-18 Cumulative frequency plot of Sr2+ concentrations in a) calcite only and b) calcite and 

aragonite cemented host rock. 

 
Figure 4.4-19 Cumulative frequency plot of Mg2+ concentrations in a) calcite only and b) calcite and 

aragonite cemented host rock. 
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Figure 4.4-20 Cumulative frequency plot of Fe2+ concentrations in a) calcite only and b) calcite and 

aragonite cemented host rock. 

 

 
Figure 4.4-21 Cumulative frequency plot of Mn2+ concentrations in a) calcite only and b) calcite and 

aragonite cemented host rock. 
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Figure 4.4-22 Cumulative frequency plot of Na+ concentrations in a) calcite only and b) calcite and 

aragonite cemented host rock. 

4.4.3.1.  Calcite Cements 

Calcite cements, in samples containing only calcite, contain a gradational zonation in Fe and Mn 

from core to rim (Figs. 4.4-15, 4.4-16 & 4.4-23). Mg2+, Sr2+, Na+ and K+ concentrations are 

essentially homogenous (Figs. 4.4-23). Mg contents reflect crystallization at low temperatures: 

crystallization temperatures calculated from the temperature dependent DMg (Oomori et al., 1987) 

have a mean (~15 °C) close to the average emanation temperature of CO2-charged springs in 

SWG (Fig. 4.4-24). Parent fluid Sr2+, Na+ and K+ concentrations calculated from the distribution 

coefficients of Mucci and Morse (1982) and Ishkawa and Ichikumi, (1984) overlap with the Sr2+, 

N+ and K+ contents of the modern CO2 charged fluids at SWG and exhibits similar co-variation of 

these solutes (Figs. 4.4-25 to 4.4-27). N+ and K+ range to higher values in part due to the effects 

of ion incorporation into intestinal sites (Busenberg and Plummer, 1984). Superposition of 

calculated parent fluid chemistry and crystallization temperature suggest deposition from a fluid 

of comparable composition to that of the modern CO2-charged fluids at SWG. 
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Figure 4.4-23 Tr/Ca of calcites in samples containing only calcite cements showing the variation in cement 

composition between crystal cores and rims. 
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Figure 4.4-24 Cumulative frequency plot of crystallization temperature calculated from the temperature 

dependent DMg expression of Oomori et al., (1987) and using the average Mg/Ca of the modern CO2-

charged fluids (0.51) at SWG. 

 

 

Figure 4.4-25 Parent fluid Fe2+ and Mn2+ concentrations calculated using the distribution coefficients of 
Lorens (1981). 
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Figure 4.4-26 Parent fluid Na+ and K+ concentrations calculated using the distribution coefficients of 

Ishkawa and Ichikumi, (1984). The range of Na/Ca and K/Ca observed in calcite cements suggests Na+ and 
K+ concentrations in the paleo-CO2-charge fluids that overlap with those of the modern fluid but ranged to 

higher concentrations. However, both Na and K probably occupy interstitial positions in the calcite 

structure and their incorporation is thus partly dependent on the number of surface defect sites (see 

Busenberg and Plummer, 1984) which probably explains the high concentrations observed in some 

cements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4-27 Parent fluid Mg2+ and Sr2+ concentrations calculated using the distribution coefficients of 

Mucci and Morse (1982). Sr2+ concentrations in the paleo-fluids largely overlap those of the modern fluids.  

Mg2+ concentrations range to higher values suggesting Mg2+ concentrations in the paleo-CO2-charged fluids 

where probably higher, but not significantly so, than those observed in the modern fluids. 
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4.4.3.2.  Calcite Precipitation Rates 

Given the similarity in composition of the parent fluid and the modern CO2-charged fluids, in-situ 

distribution coefficients can be derived from measured calcite compositions and the Tr/Ca and 

activity coefficients of the modern fluid. Using the rate dependent expression for DSr (Equation 

4.29) derived from experimental studies (section 4.3.5) the rate of calcite precipitation can then be 

calculated from the Sr/Cacc. Average calcite precipitation rates calculated for calcite core 

compositions are 2.1x10-6 mol/m2/s and from rim compositions are 1.3x10-6 mol/m2/s (Fig. 4.4-

28). The values approximate a Gaussian distribution and fall within the range of experimentally 

observed calcite precipitation rates (e.g. Morse, 1987; Mucci and Morse, 1984; Lee and Morse, 

1999; Nancollas and Reddy, 1971) (Fig. 4.4-29). Implicit in this model is that fluid Sr/Ca is 

invariant throughout the precipitation of calcite; this is likely to be a significant simplification. 

However, uncorrelated Sr and Mg, and the range of values observed, suggest that fluid Mg/Ca 

and Sr/Ca are not significantly fractionated by calcite precipitation. Varying the calculation 

through the full range of Sr/Cafluid observed at SWG (0.006 to 0.009, average = 0.007, n = 6) 

changes the mean rate by only +11 to -17 %. The mean values of Sr/Cacc
 are probably derived 

from fluids with Sr/Ca values close to that observed in the modern fluid and mean calculated 

precipitation rates will reflect this fact. Modern fluid Mn/Ca and Fe/Ca ratios are ~0.001 and 

~0.005 respectively, values sufficient to suppress calcite precipitation but only by a small degree 

(e.g. Dromgoole and Walter, 1990b).  Paleo-CO2 charge fluids had up to an order of magnitude 

higher Fe/Ca ratios (although similar Mn/Ca ratios) than modern CO2 charged fluids (Fig. 4.4-25 

& assuming [Ca2+] was of the same order of magnitude as the modern fluid). The dependence of 

precipitation rate on Fe/Ca has not been quantified but if it exhibits a similar magnitudinal 

relationship as Mn (Dromgoole and Walter, 1990b) this would imply an order of magnitude 

inhibition of rate.  The variation in calculated rate probably reflects a variety of factors including 

changes in the solution saturation state, pCO2, small variations in the Tr/Ca of inhibiting trace 

ions (mainly Mn and Fe) and nucleation site density and the variation of all these parameters in 

pores of different sizes and degrees of connectivity. 
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Figure 4.4-28 Calcite precipitation rate calculated from Sr/CaCC and Sr/Cafluid and the DSr rate dependence 

derived from a least square fit to the data of Mucci and Morse (1983) and Mucci (1986). Displayed are the 

rates for all a) calcite compositions and b) the rates for core and rim compositions. Curves are best fit 
Gaussian distributions. 
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Figure 4.4-29 Laboratory derived calcite precipitation rates as a function of solution saturation state for 

fluids of various compositions. Data for the variation in rate with: pCO2 are from Zuddas and Mucci 1993 

(25°C, pH 8, [Mg/Ca] = ~5, 1.2 M NaCl); for [Mn/Ca] from Dromgoole and Walter, 1990b (25°C, pH 8, 

[Mg/Ca] unknown, 0.1 M NaCl, pCO2 = 100 Pa; and for [Mg/Ca] from House et al., 1988 (25°C, pH 8, 1.0 

M NaCl, pCO2 = ~100 to 1000 Pa). 

 

4.4.3.3.  Paleo-fluid Eh-pH 

Constrains on paleo-fluid Eh-pH conditions, base on calcite Fe and Mn contents, the distribution 

coefficients of Lorens (1981) and simultaneous Fe2O3-MnO2 equilibria (section 4.3.7)  imply Eh-

pH conditions comparable to that of the modern CO2-charged fluids (Figs. 2.4-25 & 4.4-30) but 

which range to lower pH. Actual variations in calcite Mn and Fe reflect variation in the Eh-pH 

conditions of the fluid and variations in precipitation rate (Fig. 4.4-30 & 4.4-31); although the 

effects of variation in DFe and DMn due to variations in precipitation rate are relatively small 

compared to the magnitude of the partitioning (see section 4.3.7).  Differences in the Fe and Mn 

content between cores and rims reflect a progressive increase in pH through the course of 

precipitation. Any major variation in pH in these fluids is most likely a result of differing degrees 

of CO2 saturation modified either by degassing during ascent of the fluids to the surface or as the 

initial CO2-charge in the aquifer dissipates.  

 Modelling the solubility of hematite as a function of pCO2, at different fixed Eh 

conditions (Fig. 4.4-32), highlights the high solubility of hematite in fluids with high pCO2 even 

at relatively oxidizing conditions.  
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Figure 4.4-30 Eh-pH diagrams for the system FeSCOH and MnSCOH, calculated using CHNOSZ (Dick, 

2008) at 15°C; log(aCO2)= -1.4, log(aSTOT) = -2.4. Black bands are the projected Eh-pH range of parent 

fluids calculated for calcite core and rim Fe and Mn contents showing upper and lower Eh-pH limits for 
maximum and minimum Fe and Mn contents observed in each zone. DMn= 7 and DFe= 3 were used based 

on the rate dependent expressions of Dromgoole and Walter (1990a), calculated for the rates derived in 

section 4.4.3.1.  The calculated trajectory for Eh-pH evolution between cores and rims suggests mainly a 

transition towards higher pH rather than a change in Eh. 
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Figure 4.4-31 Measured calcite Fe and Mn contents (grey squares) versus calcite Fe and Mn contents 

modelled for the modern CO2 charged fluids at varying precipitation rates using expressions from 

Dromgoole and Walter (1990a); log(aFe2+)= -4.5 and log(aCa2+) =-2.3. Differences in the dependence of 

DMn and DFe on precipitation rate produce non-linear correlations in calcite Mn-Fe and most likely explains 

some of the variation in measured concentrations.  The bimodal distribution of Mn concretions may be 
explained by precipitation from two generations of fluid with varying aMn2+ but similar aFe2+ and aCa2+. 

 

 

Figure 4.4-32 Fluid Fe2+ concentration in equilibrium with hematite as a function of pCO2, up to 100 bar 

and for different fixed values of Eh, from -120mV to +300mV.  A wide range in Fe2+ concentrations is 

observed over the full range of pCO2, and hematite is relatively soluble at high pCO2 even at relatively 

oxidizing conditions. Calculations performed in PHREEQC; 0.1M NaCl solution, hematite equilibrium, 

fixed Eh using O2 fugacity, progressive titration of CO2  
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4.4.3.4. Calcite and Aragonite Cements 

Fe, Mn, Na, K contents of these calcites (Fig. 4.4-33) are similar to the concentrations in samples 

containing only calcite but Sr and Mg concentrations range to higher values and exhibit a strong 

positive correlation. Positively correlated Mg/Ca and Sr/Ca suggest calcite precipitation from a 

closed fluid reservoir. Thus cation concentrations cannot be accurately used to estimate 

temperature or precipitation rate due to the highly variable nature of the parent fluid composition. 

Given the rate independence of Mg-incorporation into calcite, and an insignificant variation in DSr 

with temperature, only variation in the composition of the parent solution can explain correlated 

Mg/Ca and Sr/Ca. Positively correlated variation in Tr/Ca for multiple cations in calcite (e.g., 

Mg/Ca, Sr/Ca, Na/Ca), where both DTr are either <1, =1 or >1 is indicative of a Rayleigh 

fractionation process occurring during precipitation. Precipitation from a closed system results in 

modification of the fluid Tr/Ca due to the non-uniform incorporation of Tr into calcite relative to 

Ca2+. 

Rayleigh fractionation as applied to individual trace element behaviour has been 

discussed thoroughly elsewhere (e.g. Mcintire, 1963). When examining multiple Tr/Ca2+ systems 

where the incorporation of one trace component (e.g. Mg2+) modifies the degree or rate of 

incorporation of a second trace component (e.g. Sr2+) one must consider a modified form of the 

Rayleigh relationship where by DSr
cc varies as a function of Mg/Ca.  

The Sr/Ca of calcite [(Sr/Ca)
cc] precipitated at any point during a Rayleigh process from a 

closed solution of initial Sr/Ca can be calculated from the initial solution composition 

[(Sr/Ca)o
fluid] assuming a constant effective partition coefficient (DSr

cc): 

 

1cc
Sr

cc fluid

Dcc

Sr

o

Sr Sr
D F

Ca Ca

−   
= ⋅ ⋅   

   
       (4.30) 

 
where the extent of precipitation is defined as: 
 

o fluid

Ca
F

Ca

 
=  
 

         (4.31) 

 

Mg/Ca can be described similarly to Eq. (4.30), where Sr/Ca is replaced by Mg/Ca and DSr
cc by 

DMg
cc. Since Mg/Ca and Sr/Ca are linked by the extent of precipitation, F, the expressions can be 

combined, eliminating F, yielding a linear log–log relationship:  
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Figure 4.4-33 Tr/Ca of calcites in samples containing both calcite and aragonite cements. 
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For the incorporation of Sr2+ and Mg2+ into calcite where the (Mg/Ca)fluid modifies the DMg

cc and 

DSr
cc and the functional relationship (Fig. 4.4-34) can be derived from a least means squared fit to 

the experimental data of Mucci and Morse (1983) giving: 
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D χ= + ⋅        (4.34) 

 

where cc

Mg
χ  is the mole fraction of Mg in calcite at a given (Mg/Ca)cc. Combining Eq. (4.32) to 

(4.34) yields 
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(4.35) 

Under the conditions of closed system precipitation with constant partition coefficients and any 

initial fluid composition, trace–trace behaviour is predicted to follow Eq. (4.32) In Eq. (4.32) the 

slope of the log–log relationship is determined by the partition coefficients of each Tr and the 

intercept is influenced by both the initial solution composition and the partition coefficients. The 

slope in Eq. (4.32) is relatively less sensitive to variations in DMg
cc than DSr

cc, since DMg
cc is << 

DSr
cc.  

First we can consider the simple model of constant DMg
cc and DSr

cc. We can calculate a 

value for DMg
cc and DSr

cc from the composition of the calcites precipitated from the unfractionated 

reservoir, and the modern fluid (DMg
cc = 0.0131 close to the value of 0.0154 predicted from the 

temperature dependence of Mg incorporation into calcite (Oomori et al., 1987) and DSr
cc = 0.23).  
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Figure 4.4-34 a) Variaiton in DMg
cc as a funciton of (Mg/Ca)fluid (Mucci and Morse, 1983). b) Mg/Ca and 

Sr/Ca covariation in samples containing calcite and aragonite cements. Curves are the Rayleigh 
fractionation models previously described. Model 1) Constant  DMg

cc and DSr
cc. Model 2)  Variation in the 

fluid Mg/Ca as a result of fraction of the fluid composition due to calcite precipitation modifies DMg
cc and 

DSr
cc resulting in a non-linear relationship which best describes the measured data. Error bars are 2σ 

uncertainties in the deviation of repeat analysis of points. 
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We can also consider a second model describing the Sr/Ca of calcite precipitating from a closed 

system where the fluid composition is undergoing a Rayleigh type fractionation and the resulting 

modification of (Mg/Ca)fluid results in a progressive modification of DMg
cc and DSr

cc. Fitting these 

two models to the measured data (Fig. 4.4-34) suggests the functional form of the variation in 

Mg/Ca and Sr/Ca is best described by the second model, consistent with the experimental 

prediction that the incorporation of Mg2+ into the calcite lattice is dependent on the Mg/Ca of the 

parent solution and that the ΧMg in calcite exerts a control on the incorporation of Sr2+ as 

discussed. Further this suggest that closed system fraction of the solution composition results in 

elevated (Mg/Ca)fluid and Mg2+.  

It has been well established that the presence of dissolved Mg2+ favours the precipitation 

of CaCO3 as aragonite, rather than the more stable calcite, from magnesium-rich aqueous 

solutions (Lippmann, 1973). Also, other studies (e.g. Taft, 1967; Bischoff and Fyfe, 1968) 

indicate that Mg2+ inhibits the low temperature transformation, via dissolution-reprecipitation, of 

aragonite to calcite. A commonly accepted explanation of these observations is that Mg2+ inhibits 

calcite nucleation and/or crystal growth, and, as a result aragonite, which precipitates more 

rapidly, is kinetically ‘stabilized’ (Bischoff, 1968). Dissolved Mg is not readily absorbed on to the 

surface of aragonite, nor is Mg2+ taken up to any extent into the aragonite crystal lattice. As a 

result aragonite crystal growth is relatively unaffected by the presence of dissolved Mg2+. By 

contrast Mg2+ is readily absorbed on to the surface of calcite and incorporated into its crystal 

structure. Most of the Mg inhibition is believed to be due to the non-equilibrium incorporation of 

Mg into growing calcite crystals, which causes them to be considerably more soluble than pure 

calcite (e.g. Mcintire, 1963). Also, the presence of Mg2+ ions in solution inhibits nucleation 

kinetics of calcite as hydrated magnesium is adsorbed onto the surfaces of the pre-critical nuclei 

of the calcite (i.e., crystallites that are too small to be stable in solution and quickly dissolve) and 

poisons the active growth sites (Fernández-Díaz et al., 1996).   

The findings of Fernández-Díaz et al., (1996) and Given and Wilkinson (1985) suggest 

that carbonate mineralogy and morphology are not controlled by a single parameter but by 

interplay between super-saturation and solution Mg/Ca ratios. These findings are further 

supported by the fact that aragonite can be precipitated from low-Mg2+ solutions at very high 

super-saturations (González and Lohmann 1988), indicating that CO3
2–-controlled kinetics also 

play a major role in aragonite precipitation in fluids with low Mg/Ca, such as dilute surface and 

ground waters. 

Thus the presence of pokiolitic aragonite cements growing with calcite can be attributed 

to the modification of (Mg/Ca)fluid through closed system fractionation of the parent fluid 

resulting in elevated Mg/Ca ratios suitable for the inhibition of calcite precipitation and the 

kinetic stabilization of aragonite. The additional role of CO3
2- and thus Ωcc is difficult to asses in 
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this situation. Significant modification of the Ω of carbonate minerals in this setting is probably 

best achieved by H+ consumption by CO2 degassing following the conversion of CO2 (aq)� CO2 

(g).  

4.4.4. Stable Isotope Geochemistry 

Twenty samples of bleached and altered Entrada Sandstone and twenty samples of aragonite 

veins, from travertine feeder systems, where collected from Salt Wash Graben. Table B-VI and 

B-VII (Appendix B) displays the δ13C and δ18O of samples of carbonate cemented Entrada 

Sandstone associated with travertine mounds, aragonite veins and modern travertine samples 

obtained in this study. These samples were supplemented with 16 chips of U-Th dated aragonite 

veins from travertine feeder systems (Burnside, 2009) from both LGF and SWG (Table B-IX, 

Appendix B). U-Th dated samples where obtained from the thickest portions of homogeneous 

veins in order to limit the effects of wall rock interaction. This data is presented in figure (4.4-35) 

together with data from Dockrill (2005) for aragonite veins, ancient travertine deposits and 

travertine samples from the actively forming mound at Crystal Geyser.  
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Figure 4.4-35 Stable Isotope analyses for carbonate deposits associated with the modern CO2 systems from 

this study and from Dockrill (2005).  
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4.4.5. Modern Travertine Deposits 

Modern travertine deposits exhibit extreme enrichment in 13C with values of δ13CCaCO3 ranging 

from 5.2 to 11.3 ‰ V-PDB (Fig. 4.4-36). This ~6 ‰ variation is attributed to CO2 degassing and 

carbonate precipitation driven 13C enrichment in the out-gassing fluid. Positively correlated δ13C 

and δ18O is attributed to kinetic isotope effects during the degassing processes (see section 4.4.6). 

The range in δ18OCaCO3 of these modern deposits is largely attributed to kinetic degassing effects 

(but see section 4.4.7). The least fractionated values of δ18OCaCO3 are consistent with the δ18OHCO3- 

beginning controlled by equilibration with δ18OH2O of modern CO2-charged waters. The fraction 

models suggest that the modern fluid undergoes ~20% degassing before the initiation of calcite 

precipitation (Figs. 4.4-36 & 4.4-40). 
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Figure 4.4-36 The δ18O (PVB) and δ13C (PVB) of HCO3
- calculated from the isotopic composition of 

modern travertine samples from springs in Salt Wash Graben and from samples of travertine from Crystal 

Geyser (Dockrill, 2005) using appropriate equilibrium fractionation factors calculated for the emanation 

temperature of each spring. Also plotted is the δ18O and δ13C of HCO3
- in modern CO2-charged fluids 

calculated from the measured δ18OH2O and δ13CCO2(g). Lines are Rayleigh distillation models of kinetic 
fraction of the average HCO3

- of modern fluid resulting from for CO2 degassing only, and coupled CO2 

degassing and calcite precipitation (see section 4.5.2 for a complete discussion). Error bars are the 2σ of 
analytical uncertainty. 
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4.4.6. CO2 Degassing, Carbonate Precipitation and Kinetic Isotope Fractionation 

Carbonate precipitation in shallow subsurface and surface systems will be driven by changes in 

pCO2 resulting from changes in ambient pressure. As CO2-charged fluids ascend through the 

shallow subsurface the water will move toward chemical equilibrium with its new environment 

by degassing CO2, dissolved as CO2(aq). During this first stage of out gassing of CO2(aq) from 

the solution the concentrations of Ca2+ and HCO3
- will stay constant (Dulinski and Rozanski, 

1990). The equilibrium concentrations of HCO3
- and Ca2+ with respect to CaCO3 are determined 

by the initial pCO2 at depth and consequently the fluid becomes quickly supersaturated with 

respect to CaCO3 as pCO2 decreases. After the first stage of out gassing of CO2, carbonate 

precipitation starts, the stoichiometry of the overall reaction;  

 
2

3 3 2 2
2HCO Ca CaCO CO H O

− ++ ↔ + +      (4.36) 

  

requires that for each CaCO3 molecule deposited one CO2 molecule is created. In fluids with high 

DIC the rate of CaCO3 precipitation will ultimately be governed by the state of CaCO3 saturation 

which will be a direct function of the amount of degassing experience by the fluid. The rate of 

CaCO3 precipitation is therefore dependent on the CO2 degassing rate of the solution.  

 

Figure 4.4-37 Evolution of the isotopic composition of the reactant DIC pool during the kinetic 

fractionation of δ18O and δ13C (from an initial δ18O and δ13C of both 0‰) during different mechanism of 
DIC loss from an open and closed fluid reservoir. Only CO2 degassing from an HCO3

- reservoir and 

coupled CO2 degassing and CaCO3 precipitation can lead to positively correlated δ18O and δ13C. Open 
system behaviour leads to large fractionations in the reacting DIC pool. 
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Figure 4.4-38 Evolution of the δ13C of the reactant DIC pool as a function of various degrees of C loss 

during the kinetic fractionation of  δ13C (from an initial δ13C of 0 ‰) under different mechanism of DIC 
loss from an open (exponential functions) and closed (linear functions) fluid reservoir. 

 

As calcium carbonate precipitation and CO2 degassing, progresses, the HCO3
- reservoir in the 

fluid will undergo 13C enrichment (Fig. 4.4-37 & Fig. 4.4-38) if C isotope exchange reactions 

between DIC and CO2(g) are sufficiently slow and/or fluid/gas velocities is small. This 13C 

enrichment results from the relatively low δ13C value of the CO2 that is lost from the fluid by 

degassing. The extent of 13C enrichment is a function of the fractionation factors between the C 

species and the fraction of total DIC lost to CO2 degassing and CaCO3 precipitation. Only 

relatively slow hydration-dehydration reactions permit oxygen isotope exchange between 

CO2(aq) and H2O, so if the precipitation of calcium carbonate proceeds rapidly, there may be 

progressive 18O enrichment in the HCO3
– and in the CO3

2- that is ultimately incorporated into the 

calcium carbonate. Both batch (closed) and Rayleigh distillation (open) models can be used to 

describe the covariation in δ13C and δ18O of the precipitated CaCO3 during CO2 degassing and 

CaCO3 precipitation from a fluid. Batch and Rayleigh distillation can be used to model the C and 

O isotope evolution of precipitating calcium carbonate because if C and O isotopes are 

fractionated during calcium carbonate precipitation, there must be an effect on the isotope 

composition of the remaining reactant. It is assumed that an instantaneous isotopic equilibrium 

fraction occurred among the degassed CO2, remaining HCO3
- and precipitated CaCO3. During 

rapid mineral precipitation it is not uncommon for isotopic disequilibrium to occur (e.g. Fantidis 
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and Ehhalt, 1970; Hendy, 1971). However, equilibrium fractionation factors are used as a best 

first approximation because they are known, whereas any deviation from isotopic equilibrium is 

unknown.  

An estimation of the maximum 13C enrichment in the HCO3
- reservoir owing to CO2 

degassing and CaCO3 precipitation was made, using an open system Rayleigh distillation model, 

and published isotope fractionation factors. The effects of Rayleigh distillation on the δ13C value 

of the DIC reservoir can be modelled by: 

 

( ) ( ) ( )1
1000 1000 p r

o
f

α
δ δ − −

+ + =       (4.37) 

 
where δ is the C isotope composition of HCO3

– , δo is the initial C isotope composition of HCO3
– , 

f is the fraction of HCO3
– remaining at a given point in the fluids evolution, and αp-r is the 

equilibrium carbon isotope fractionation factor between a bulk product and the HCO3
– reactant. 

Because the C in HCO3
– is evenly partitioned between CaCO3 and CO2 (g) during CaCO3 

precipitation, a fractionation factor between a bulk product and HCO3
– can be defined such that  

 

( ) ( ) ( )
2 3 33_

1 2 1 2
CO HCO calcite HCObulk product HCO

α α α− −− − −−
= +     (4.38) 

 
Using fractionation factors for αCO2–HCO3 and αcalcite–HCO3 of 0.9922 and 1.0010, respectively 

(Romanek et al., 1992; Zhang et al., 1995), the α (bulk product–HCO3 ) is 0.9966 at 15 °C. The oxygen 

isotope effects of CO2 degassing, CaCO3 precipitation, and H2O formation, can be modelled using 

an analogous Rayleigh distillation approach with the following assumptions: There is no oxygen 

isotope exchange between DIC and water, and the fractionation factor between the bulk product 

and HCO3
– is  

 

( ) ( ) ( ) ( )
2 3 3 2 33_

2 6 3 6 1 6
CO HCO calcite HCO H O HCObulk product HCO

α α α α− − −− − − −−
= + +   (4.39) 

 
or in proportion to the oxygen in each of the three products. Using fractionation factors for αCO2–

HCO3, αcalcite–HCO3 and αH2O–HCO3 of 1.0062, 0.9939, and 0.9667, respectively, α (bulk product–HCO3) is 

0.9935 at 15 °C (Brenninkmeijer et al., 1983; Kim and O’Neil, 1997; Usdowski and Hoefs, 

1993). 
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Figure 4.4-39 Changes in the δ18O and δ13C of HCO3
- as a result of progressive loss of HCO3

- during CO2 

degassing and CaCO3 precipitation with different isotope effects. The δ18O of HCO3
- can either be 

maintained at a constant value by equilibration between DIC and H2O through equations (4.41) and (4.42). 

In the absence of any oxygen exchange δ18OHCO3 will evolve, as HCO3
- is removed from solution, 

according to the equilibrium fractionation between dissolved species, out gassing CO2 and precipitating 

CaCO3. An intermediate situation is also possible. (Redrawn after Mickler et al., 2006). 

 

Similarly, the effects of batch degassing on the isotopic composition of the fluid can be expressed 

as (after Valley, 1986): 

 

(1 ) 1000 ln
o p r

fδ δ α −= − − ⋅ ⋅        (4.40) 

 

where the notations are as previously described. If crystallization of CaCO3 is sufficiently rapid, 

HCO3
- enriched in 18O will be incorporated into CaCO3 before 18O re-equilibration occurs 

between HCO3
- and the bulk water. This approach is an end-member calculation because it 

neglects CO2 hydration and hydroxylation reactions (equations 4.41 and 4.42), which will buffer 

the oxygen isotopic composition of the HCO3
- reservoir and reduce the magnitude of the oxygen 

isotope effects of CO2 degassing. The relatively slow forward and backward reactions outlined in 

equations (4.41) and (4.42) will result in the HCO3
– acquiring a δ18O value closer to equilibrium 

with the large reservoir of oxygen in H2O (Hendy, 1971). Note that in the pH range of interest, 

reaction (4.41) is dominant. 

 
CO2 hydration-dehydration 
 

2 2 2 3 3
( )CO H O H CO HCO aq H

− ++ ↔ ↔ +      (4.41) 

 
and 
 

CO2 hydroxylation 
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2 3
( )CO OH HCO aq

− −+ ↔        (4.42) 

 
This model of progressive loss of HCO3

– during calcium carbonate precipitation, while excluding 

oxygen isotope exchange between DIC and H2O, will cause progressive 18O and 13C enrichment 

in the HCO3
- reservoir, as shown in figures (4.4-37) to (4.4-39). Kinetic fractionation of HCO3

-

(aq) implies rapid rates of CO2 degassing and carbonate precipitation, faster than the HCO3
--H2O 

equilibration reaction which operates on the 1000’s to 10000’s sec time-scale (Hendy, 1971). 

4.4.7. Ancient Travertine Deposits  

δ
13CCaCO3 of ancient travertine deposits (Dockrill, 2005) range from 2.5 to 6.5 ‰, the variation 

being attributed to fractionation during CO2 degassing. Minimum δ13CCaCO3 values 1‰ lower than 

modern travertine deposits suggest deposition from an isotopically lighter, less degassed reservoir 

of carbon. This suggests the δ13C of the DIC reservoir has evolved through time and was lighter 

during earlier periods of CO2 leakage Ancient travertines from Little Grand Fault (Dockrill, 2005) 

exhibit trends consistent with kinetic fractionation of the HCO3
- reservoir. The lack of a positive 

correlation in δ13C and δ18O in Salt Wash Graben samples (Dockrill, 2005) may reflect under 

representation of the sample population or that these fluids were sufficiently degassed at the time 

of travertine deposition to suppress kinetic effects. The wide variation in δ18OCaCO3 (Fig. 4.4-40) 

(δ18O SWG: 18.6 to 25.1 ‰; δ18O LGWF: 17.3 to 21.7 ‰) and values that range to compositions 

significantly heavier than the modern travertine deposits is attributed to larger concentrations of 

Paradox Formation brine in the groundwaters during past periods of leakage. Differences in the 

range of δ18O observed between each fault system reflect differences in the maximum flux of 

brine in each fault system. 
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Figure 4.4-40 The δ18O and δ13C of HCO3
- calculated from the isotopic composition of modern travertine 

samples and from ancient travertine samples from Little Grand Fault (a) and Salt Wash Graben (b). The 

composition of Crystal Geyser fluid and springs from SWG are shown. Lines are Rayleigh distillation 

models as in Fig. 4.4-36. The fraction models suggest that the modern fluid undergoes ~20% degassing 

before the initiation of calcite precipitation. Only the ancient travertines from LGF exhibit a correlation 

consistent with kinetic fractionation of the HCO3
- reservoir. The wide range in δ18O of the SWG samples is 

interpreted to reflect a wide variation in the range of brine fractions in the source fluid. In both instances the 

lowest δ13C of HCO3
- in the ancient travertine samples is between 1 to 1.5 ‰ lower than the modern 

samples which is interpreted to reflect progressive fraction of the initial δ13C of the subsurface CO2 

reservoir through the life of the leaking site. This is most likely due to fraction of the δ13CCO2 due to in-situ 

degassing.  

4.4.8. Aragonite Veins 

The wide range of δ18O observed in aragonite veins and modern travertine samples is indicative 

of variation in the δ18O composition of the parent fluid as a result of both mixing of meteoric and 

brine fluid sources and modification by kinetic fraction of the solution HCO3
- pool during CO2 

degassing and CaCO3 deposition. Positive correlated δ18OCaCO3 and δ13CCaCO3 is a general 

indication that kinetic affects may be influencing isotopic fractionation during the precipitation of 

calcium carbonate, although other physical variables may also result in this correlation (e.g. fluid 

temperature, surface evaporation-condensation processes or progressive dissolution of a precursor 

carbonate phase and subsequent enrichment in 13C and 18O).  

The range of δ18O observed in aragonite and modern travertine samples exceeds that 

expected for likely temperature variations in shallow subsurface and surface environments. The 4 

to 5 ‰ variation in δ18O observed in aragonite veins would be equivalent to an ~20 to 25 °C 

variation in precipitation temperature. The slope of the trend in δ18O versus δ13C resulting from 

variation in precipitation temperature is significantly lower than the observed correlations. 

Aragonite deposition occurs at shallow subsurface to near surface depths and so evaporation-

condensation processes are unlikely. Given that the stabilization of aragonite at low temperatures 

requires high [CO3
2-] and high levels of supersaturation, non-equilibrium fractionation is to be 

expected during its deposition. 
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Figure 4.4-41 The δ18O and δ13C of HCO3
- calculated from the isotopic composition of aragonite veins and 

ancient travertines from (a) LGF and (b) SWG (Dockrill, 2005). Dated aragonite samples (this study) are 

also shown and encompass the general trend of all samples in both fault systems. Both data sets do not fit a 

kinetic degassing model from an initial fluid of the same composition as the modern CO2-charged waters 

(compare to Fig 4.4-40) suggesting derivation from a fluid with lower initial δ13CHCO3- and heavier δ18OH2O. 

Both fault systems exhibit variation in δ18O attributed to variation in the brine additions. This is especially 
noticeable in SWG where clusters of compositions reflect distinct leakage events with progressively 

younger events having lighter δ18O as the brine additions decline (see section 4.5-7). A corresponding 

decline in the average δ13C of each cluster is attributed to the δ13CCO2(g) becoming increasingly heavy due to 
fractionation of the in-situ composition by exsolution of CO2 in the subsurface. Within individual 

populations linear correlations in δ18O and δ13C are attributed to kinetic fraction of the HCO3
- pool. 

Travertines from LGF have compositions close to or lighter than their corresponding aragonite veins which 

is attributed to rapid ascent of the fluid with limited CO2 degassing in the subsurface. Travertines from 
SWG are always lighter than their corresponding aragonite veins, attributed to extensive CO2 degassing in 

the subsurface prior to effusion of fluid at the surface. 

4.4.9. Altered Host Rock 

Variation in the δ13C of altered and calcite cemented Entrada Sandstone samples in travertine 

feeder systems is interpreted as reflecting degassing driven 12C depletion from an initial HCO3
- 

reservoir of ~ -0.7 ‰.  The variation in δ18O of all samples is attributed to both differences in the 

proportions of fluid end-members and kinetic fractionation. The trends suggest that the initial 

δ
13CHCO3- of the CO2-charged fluids may have been ~2 ‰ lower than that observed in the modern 

system. 

 

 

Figure 4.4-42 The δ18O and δ13C of HCO3
- as above but including the values for altered Entrada Sandstone 

from SWG. 
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4.4.10. Implications for modern and ancient travertine formation 

The presence of large kinetic isotope effects during precipitation of aragonite veins in travertine 

feeder systems suggests substantial CO2 degassing from the ascending fluid, in the shallow 

subsurface, increasing Ωcc, enforcing very rapid rates of CaCO3 precipitation, sufficient to 

suppress equilibration of HCO3
- and H2O in solution. 

The absence of a positive correlation in 18O versus 13C in ancient travertine samples from 

Salt Wash Graben is interpreted to reflect the slow equilibrium degassing of CO2-charged fluids 

as they escape from the fault zone, having undergone extensive CO2 degassing in the shallow 

subsurface.  

 

 

 

Figure 4.4-43 (a-d): Deformation and alteration beneath travertine mounds from Salt Wash Graben. The 

degassing of CO2 in the shallow subsurface results in free gas accumulation and cavity formation inducing 

buoyant uplift of the surrounding rock volume and associated deformation. Cavity formation induces 

folding of the Entrada Sandstone which is in part accommodated by the formation of conjugate reverse 

fault sets. This active deformation will be important for the formation and maintenance of leakage 
pathways at shallow depth. 
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Conversely, positively correlated δ13C and δ18O of modern travertines, and ancient travertines 

from Little Grand Fault, are interpreted to reflect rapid CO2 degassing and calcite precipitation as 

the effused fluid flows over the land surface. It is inferred that some largely undegassed fluid was 

able to escape to the surface at LGF imply rapid fluid velocities and leakage rates.  

This is consistent with the observed morphologies of travertine deposits in each fault 

setting: individual travertines of LGF are up to 10 m thick, drape over fault scarps and local 

topographic features and are of relatively narrow lateral extent having degassed rapidly at the 

surface, depositing carbonate rapidly; travertines from SWG are much thinner (up to 4m), but of 

larger lateral extent having degassed slowly at the surface. Additionally, altered Entrada 

Sandstone beneath travertine mounds in SWG shows extensive deformation, faulting and folding 

attributed to accumulation of pockets of CO2(g) in the subsurface and buoyant uplift of the 

surrounding rock volume (Fig. 4.4-43), a feature largely absent in LGF. Differences in the styles 

of leakage are interpreted to be a result of a) differences in the fault architecture; b) differences in 

the depth of the leaking reservoir; c) differences in the local hydrology d) differences in the 

hydraulic conductivities of the shallow lithologies. This is discussed further in section 4.5.8. 

4.4.11. Reconstructing the CO2 Leakage History 

Variation in the δ18O, δ13C and 87Sr/86Sr of U-series dated aragonite veins (Burnside, 2009) from 

Salt Wash Graben and Little Grand Fault record a history of CO2 injection, migration, degassing 

and CO2 promoted fluid-mineral reactions within the Navajo Aquifer. Both fault systems exhibit 

the same style of covariance in isotopic systems, although the timing and magnitude of events 

differ between the two.  

4.4.11.1. Salt Wash Graben 

The Navajo Aquifer was charged with CO2 at some point prior to 413 ka and was later recharged 

with a second major pulse of CO2 at ca. 135 ka. Enrichment in the δ13C of aragonite of 1.13 ‰ 

between 413 ka and 219 ka, and 1.23 ‰ between 135 ka and 60 ka is interpreted to reflect CO2 

leakage and kinetic fraction of the fluid HCO3
- reservoir via coupled CaCO3 precipitation-CO2 

degassing. 
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Figure 4.4-45 The change in δ13C and δ18O of aragonite with time, during periods of kinetic fractionation, 

for both LGF and SWG. The near identical slopes of dδ13C/dt and dδ18O/dt highlights that the same 

mechanism is modifying both isotopic systems. 

 

Suppression of the δ13C and δ18O of aragonite between these two periods of degassing reflects 

introduction of a fresh unfractionated CO2 charge at ca. 135ka, sufficient to suppress the δ18O 

composition of the HCO3
-. The enrichment in both δ13C and δ18O from 135 ka to 60 ka reflects 

rapid leakage and kinetic fractionation of HCO3
-(aq), which implies rapid rates of CO2 degassing 

and carbonate precipitation, faster than the HCO3
--H2O equilibration reaction which operates on 

the 1000’s to 10000’s sec time-scale (Hendy, 1971). Travertine mounds show a maximum 

volume at 135ka and the volume of travertine mounds decreases exponentially from 135ka to 

60ka. The covariation of travertine volume and linearly increasing δ13C and δ18O, and the 

initiation of an increase in 87Sr/86Sr are interpreted to reflect introduction of a new CO2 charge at 

135ka which saturated the reservoir fluid and produced a free gas phase. This CO2-charge then 

degassed rapidly from 135ka to a state of under-saturation at 65ka.  The linear covariation in δ13C 

and δ18O over these periods, and the similarity of dδ13C/dt and dδ18O/dt in each fault system 

reflects kinetic fraction of the HCO3
- reservoir due to rapid rates of CaCO3 precipitation as a 

result of a large degree of CaCO3 oversaturation in the fluid caused by rapid rates of CO2-

degassing. This state of oversaturation is due to: a) rapid CO2 degassing in the subsurface and; b) 

higher concentrations of Ca2+ and HCO3
- in the ascending fluid following a CO2-charge as the 

fluid moves towards equilibrium with respect to carbonate by dissolving dolomite in the reservoir 

under conditions of elevated pCO2. High pCO2, and consequently elevated Ca2+ and HCO3
-, will 

lower the depth at which over-saturation with respect to CaCO3 is reached in the ascending fluid, 

promoting rapid rates of CaCO3 deposition. As pCO2 in the reservoir falls the point at which 

CaCO3 super-saturation in the ascending fluid is reached will move closer to the surface and 

subsurface CaCO3 deposition rates will decline, inhibiting kinetic fractionation of the HCO3
- pool. 

A cessation in covarying dδ13C/dt and dδ18O/dt following these periods reflects a decline in the 

rate of CaCO3 deposition due to a reduction in the CO2 degassing rate and in-situ pCO2, and 

consequently a lowering of fluid Ca2+ and HCO3
- and Ωcc at shallow depths. This reflects the 

depletion of the free gas phase and a return to CO2 under saturated conditions. 
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δ
18O of aragonite progressively decreases from ca. 413 ka to ca. 135ka by 3.25 ‰ (Fig. 

4.4-41 & 4.4-45). Initially high δ18O of aragonite is interpreted to reflect heavy δ18OH2O resulting 

from an increased proportion of Paradox formation brine in the early fluids, with progressively 

decreasing contributions to ca. 135ka, and constant contributions there after. Following the CO2 

charge at ca. 135ka δ18O of aragonite progressively increases at the same rate as δ13C. Differences 

in the range of δ18O between LGF and SWG reflect consistent differences in the volume of brine 

influx between each fault system, in both modern and ancient settings. This probably reflects 

intrinsic differences in the fault architecture and hydrological systems between each fault. The 

northern fault of Salt Wash Graben penetrates to greater depth than Little Grand Wash Fault 

(Dockrill, 2005). And as such the fault may also act as a more significant conduit to upward fluid 

movement. 

4.4.11.2.  87
Sr/

86
Sr 

Depression of the fluid δ13C is accompanied by the initiation of exponentially increasing 87Sr/86Sr. 

Increase in the 87Sr/86Sr of aragonite reflects an increased contribution of 87Sr from silicate 

mineral dissolution following injection of CO2 into the reservoir. Covariation of δ13C and 
87Sr/86Sr reflects a coupling between the CO2-charge and mineral dissolution. Influxing CO2 will 

suppress fluid pH and mineral saturation, elevate [H+] and enhance mineral dissolution rates. Sr 

incorporated into aragonite will de derived from three primary sources: 1) dissolved Sr carried in 

groundwater advected into the fault system; 2) high 87Sr/86Sr derived from silicate mineral 

hydrolysis and; 3) low 87Sr/86Sr derived from dolomite dissolution, within the zone of high CO2-

charge. Additionally, low 87Sr/86Sr may be added at the site of CO2 injection derived from brine 

entrained in the CO2 stream. The rate of change d87Sr/86Sr/dt of aragonite will largely reflect the 

ratio of the rate of Sr liberation from silicate and dolomite dissolution assuming 1) the initial 

dissolved Sr flux and 87Sr/86Sr is constant; 2) the flux of Sr in groundwater is exceeded by the flux 

in Sr derived from mineral dissolution. The exponential increase in 87Sr/86Sr following 

introduction of the 135 ka CO2 charge can reflect either; 1) initial dissolution of both silicate and 

dolomite, but at different rates, or; 2) that the rate of silicate mineral dissolution increased with 

time. The former explanation is the most likely and the form of d87Sr/86Sr/dt suggests a decline in 

the rate of dolomite dissolution to ca 95ka. Inversion of the exponentially increasing trend in 
87Sr/86Sr to an exponentially decreasing trend at ca 93 ka reflects groundwater Sr flux exceeding 

Sr-flux from mineral dissolution. This reflects slowing of the dissolution rate of silicate minerals 

over ca. 42 ka as the fluid losses CO2 through degassing, pH is neutralized by reaction and pore-

fluid chemistry moves towards equilibrium with the silicate mineral surface.  
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4.4.11.3. Little Grand Wash Fault 

87Sr/86Sr declines exponentially from 114 ka to 106 ka and δ13C and δ18O increase (Fig. 4.4-45) 

concomitantly due to rapid CO2-leakage and degassing. 87Sr/86Sr decline from an initially high 

value suggests injection of CO2 prior to 114ka and that silicate dissolution rates declined as CO2 

saturation decreased. Between ca. 59ka and 5ka a gradual decline in δ13C coupled with increasing 
87Sr/86Sr and δ18O is interpreted to reflect slow bleeding of a CO2-brine mixture into the reservoir 

(Figs. 4.4-45 & 4.4-46). 

 

Figure 4.4-46  The δ13C and δ18O of HCO3
- in equilibrium with aragonite veins from LGF. Fitting of 

kinetic fraction models implies degassing from a fluid reservoir with initial δ13CHCO3- lower than that 

observed in modern fluids. Dated veins constrain the trajectory of the evolution in isotopic composition of 

HCO3
- through time. 

4.4.12. Controls on Leakage 

Differences between the slope of dδ13C/dt and dδ18O/dt, the time taken for the δ13C/δ18O trend to 

plateau, and the rate of travertine deposition (Fig. 4.4-45) reflect intrinsic differences in the CO2-

leakage rate of each fault. The trends record far more rapid CO2 loss from Little Grand Fault. The 

volume of dated travertine records the mass of CO2 leaked from each fault and the variation in the 

CO2 leakage rate through time (Fig. 4.4-47). The mass of leaked CO2 can be estimated by 

assuming that every litre of effused fluid deposited ~10 mmoles of CaCO3 (Ca2+ loss is estimated 

from differences in Ca2+ concentration in spring waters and Ca2+ concentration after prolonged 

runoff) and that each litre of fluid was initially saturated with CO2 at reservoir conditions. This 

calculation implies a similar cumulative loss of CO2 from each fault: LGF; 1.2x107 tonnes (CO2) 

and SWG; 1.3x107 tonnes (CO2). Initial leakage rates are up to ~633 t/a and ~927 t/a for SWG 
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and LGF, respectively. However, average leakage rates of 50-100 t/a are more common. These 

leakage rates during periods of quiescence are comparable to modern CO2 effusion rates of ~55 

t/a measured at SWG by Allis et al., (2005). Variation in the leakage rate is presented in figure 

(4.4-47). The ‘average’ large (600 Mw) coal burning power station in the USA produces 4-5x106 

t/a (CO2) (IPCC, 2007). Many of these have been in existence since the 1950’s, giving a 

cumulative CO2 production of ~2.3x108 tonnes (CO2). Whilst the magnitude of leaked CO2 

obviously depends on the volume of the initial CO2-charge a fault leaking CO2-saturated reservoir 

will therefore still leak at rates significantly lower than ‘leaking’ power stations.   

The spatial-temporal pattern of travertine formation (Fig. 4.4-48), for both LGF and 

SWG, suggests that: a) a new CO2-charge always initial exploits leakage pathways at the crest of 

the anticline (or zones of high structural complexity such as the easterly breached relay ramp); b) 

for SWG this central leakage site moves by small distances (10’s to 100’s meters) eastward with 

younger charges, in the direction of groundwater flow, suggesting the continued formation of new 

leakage pathways rather than the re-exploitation of older leakage pathways, at the anticline crest; 

c) with time from the initial introduction of a new CO2-charge, leakage pathways spread from the 

anticline crest laterally along the fault trace. This spatial-temporal relationship is interpreted as 

reflecting: a) the establishment of new leakage pathways with the introduction of a new CO2-

charge due to mineral-fluid reactions at the cap-rock reservoir interface, and within fracture zones 

and the fault damage zone. These pathways are localized at the apex of the anticline initially, due 

to the buoyant accumulation of free-phase CO2; b) these initial leakage pathways then become 

blocked by the deposition of carbonate within fractures; c) the lateral migration of leakage points 

as initial pathways become blocked and CO2-charged fluids exploit, and initiate, more complex 

and ss hydraulically conductive leakage pathways along the length of the fault trace.  

 

 

Figure 4.4-47 Variation in the cumulative travertine volume with time for LGF and SWG. Estimated 
leakage rates (tonnes (CO2)/year) during periods of rapid CO2 loss and quiescence are detailed at the top of 

each figure. Temporal data and surface travertine volumes are estimated from the maps of Burnside, 

(2007). 
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The spatial-temporal trend of travertine deposition (Fig. 4.4-48) implies an increase in the 

blocking rate of leakage pathways with time. This is interpreted to reflect progressive CO2 loss 

from the reservoir and a decrease in in-situ pCO2, which elevates Ωcc in the upwelling fluid 

increasing the rate of carbonate deposition. Differences between the slope of this trend in each 

fault system record more rapid blocking rates in SWG than in LGF. This may be due to 

differences in reservoir depth (the Navajo Aquifer is located at ~500m depth at LGF and at 

~250m depth at SWG) and thus differences in the in-situ  pCO2 at each fault, which imposes 

differences in the Ωcc of the upwelling fluid.  

Differences in the rate of CO2-leakge at each fault may reflect differences in the volume 

of the initial CO2-charge, depth to the host reservoir, the fracture blocking rate, local hydraulic 

head, pore over-pressure and intrinsic differences in the permeability structure of the fault 

damage zone, the stratigraphic architecture and reservoir-seal juxtaposition between each fault. 

Slow leakage rates at SWG, as compared to LGF, are largely due to the high throw, lower degree 

of reservoir-reservoir juxtaposition and higher shale gouge ratio (Dockrill, 2005) of this fault 

system. However, the hydraulic properties of the near surface lithologies may also impact on the 

leakage rate. Shallow lithologies at LGF comprise low permeability formations of the Curtis 

Formation and Mancos Shale, and at SWG the more permeable Entrada Sandstone. The 

observation of aragonite veining extending laterally some distance from individual travertine 

mounds and the extensive deformation associated with free gas accumulation in the subsurface, 

together with isotopic evidence discussed, suggests substantial degassing of CO2 in the shallow 

subsurface at SWG. These features are largely absent from LGF suggesting fluids rapidly 

ascended leakage pathways without significant interaction with shallow formations. It is inferred 

that surface leakage at LGF has historically taken the form of active cold water geysering, which 

has actively stimulated leakage and has had a significant impact on the time taken for an 

individual CO2 charge to dissipate. Additionally, higher levels of local hydraulic head at LGW 

will have helped sustain high rates of fluid discharge. 
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Figure 4.4-48  The spatial distribution of individual travertine mounds versus their age for LGF, SWG and 

for travertines associated with the 135ka leakage event at SWG. Spatial and temporal data from Burnside, 

(2007). 
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4.5. Conclusions 

Extensive alteration and cementation in the Entrada Sandstone beneath surface travertine deposits 

preserves the geochemical and mineralogical impacts of interaction with CO2-charged fluids. 

Feldspar grains show evidence of extensive corrosion and reprecipitation of silica, smectite and 

kaolinite on grain surfaces and within the local pore volume. Feldspar grains continue to dissolve 

even when coated with up to 10µm surface coatings of inter-grown clay minerals, suggesting the 

maintenance of porosity within the surface coating. This adds to the evidence that the presence of 

such a coating does not inhibit dissolution at the mineral surface. 

High Mn and Fe concentrations in fracture and host rock calcite cements record elevated 

Mn2+ and Fe2+ concentrations in the parent fluid. Fe and Mn concentrations imply reducing Eh 

conditions (30 to -50 mV) in the parent fluid and a pH in the range 5.5 to 6.5, comparable to the 

Eh-pH conditions of the modern CO2-charged groundwaters. This finding, together with hematite 

solubility modelling and field and petrographic observations of extensive dissolution of hematite 

grain coatings and Fe-oxide reprecipitation, suggests that CO2-charged fluids alone are capable of 

dissolving and mobilizing Fe in these sediments. However, the precise control on Eh is uncertain.  

Equilibrium redox potentials for the SO4
2--H2S and CO2-CH4 redox couples are in the region of 0 

to -200 mV and -200 to -500mV, respectively (Drever, 1997). The calculated Eh values are 

generally higher those expected for redox potentials controlled by either SO4
2--H2S or CO2-CH4 

equilibrium. The range of values obtained is more comparable to redox potentials observed in 

groundwaters with low O-fugacity (e.g. White et al., 1990). 

Sr concentrations in these cements record mean calcite precipitation rates of 1.3x10-6 to 

2.1x10-6 mol/m2/s, comparable to laboratory derived calcite precipitation rates, in fluids with 

moderate Mn/Ca and Fe/Ca, at Ωcc of ~1 to 3. The overall variation in rate is large, from ~1x10-9 

to ~1x10-5 mol/m2/s, probably reflecting both variation in the intrinsic rate and variation in the 

Sr/Ca of the parent fluid. 

Mg and Sr concentrations in calcite cements away from fracture conduits record closed 

system fractionation of the fluid Sr/Ca and Mg/Ca by calcite precipitation, which elevated the 

Mg/Ca ratio sufficiently to allow kinetic stabilization of aragonite and the precipitation of 

poikilitic aragonite cements. However, other kinetic factors such as the Ωcc of the fluid and [CO3
2-

] most likely also contributed to this stabilization.    

Ancient travertine deposits and aragonite veining record leakage of CO2 from the Navajo 

Aquifer that initiated at ca 413 ka at Salt Wash Graben and at ca 114 ka at Little Grand Fault. At 

Salt Wash Graben a second injection of CO2 at ca 135 ka initiated simultaneous variation in 

δ18OCaCO3 and δ13CCaCO3, and a spike in 87Sr/86Sr which is interpreted to reflect near coeval 

injection of CO2 into the aquifer and the initiation of surface leakage as a result of this injection. 
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Temporal trends in 87Sr/86Sr record enhanced silicate mineral dissolution rates following injection 

of this CO2 charge, but dissolution rates decreased as CO2 was lost from the reservoir, pH 

increased and saturation with respect to the dissolving mineral was approached (Chapter 3). 

Correlations in δ18OCaCO3 and δ13CCaCO3, kinetic fractionation of the HCO3
-(aq) reservoir, the 

volume and rate of surface travertine formation and its spatial and temporal distribution suggest 

that initially leakage: a) occurred rapidly and at a constant rate, b) was localised at the anticline 

crest and c) occurred from a reservoir fluid saturated in CO2, coexisting with a free-gas phase. 

Additionally, kinetic fractionation of HCO3
-(aq) during these periods implies rapid rates of CO2 

degassing and carbonate precipitation, faster than the HCO3
--H2O equilibration reaction which 

operates on the 1000’s to 10000’s sec time-scale (Hendy, 1971). A sharp inflection in leakage rate 

and an approximately concurrent cessation in kinetic fraction of the HCO3
-(aq) reservoir are 

interpreted to reflect depletion of the saturated CO2 and a return to undersaturated conditions, 

after ~75ka of leakage. During this time leakage sites propagated laterally along the length of the 

fault trace as fracture conduits were blocked by carbonate deposition and new leakage pathways 

were exploited and opened by mineral-fluid reactions. Fracture blocking rates increased as the 

CO2 charge dissipated, pCO2 in the aquifer fell and the fluids became increasingly oversaturated 

in carbonate.   

Whilst the cumulative CO2 loss from both Little Grand Fault and Salt Wash Graben are 

of the same order of magnitude (~1x107 tonnes CO2), the time required to deplete the initial CO2-

charge to a state of CO2-undersaturation (~8 ka versus ~75 ka), and leakage rates during this 

period (~927 t/a versus ~164 t/a), vary by an order of magnitude between the two fault systems. 

This is attributed primarily to intrinsic difference in the fault architecture and properties of the 

fault damage zone, including the shale gouge ratio and degree of reservoir-reservoir juxtaposition. 

However, the depth of the host reservoir, and thus maximum in-situ pCO2, imposes difference in 

the fracture blocking rate in each fault which may impact the overall leakage rates. In addition the 

hydraulic properties of shallow lithologies appear to be important in controlling leakage rates 

where permeable formations allow migration of CO2-charged fluids away from the fault damage 

zone, prolonging the fluid ascent time, enhancing CO2 degassing in the shallow subsurface and 

promoting carbonate deposition and fracture blocking. This highlights the importance of 

accurately modelling the fault surface, damaged zone, shallow lithological properties and regional 

hydraulic gradients when modelling leakage from CO2 storage sites. The findings suggest that in 

geological storage sites fault controlled CO2 leakage rates from shallow CO2 saturated fluids will 

be slow (relative to CO2 emission rates from anthropogenic sources) and fracture conduits will 

seal through carbonate precipitation impeding leakage, but that this process is likely to take place 

on 100’s to 1000’s year time-scales. 
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Chapter 5  

Fluid Inclusion Petrography of Diagenetic 

Bleaching in the Entrada Sandstone, 

Green River, Utah  

 

5.1.  Introduction 

Across the Paradox Basin, adjacent to faults and preferentially in coarser grained sandstone units, 

originally red Jurassic sandstones are frequently bleached pale-yellow or white were hematite 

grain coatings have been dissolved by the passage of diagenetic fluids (Foxford et al., 1996; 

Garden et al., 2001). This bleaching has been attributed by various authors to a variety of 

different extra-formational fluids including hydrocarbon liquids, organic acids and methane 

(Beitler et al., 2005; Bowen, 2005; Chan et al., 2000, 2001; Eichhubl et al., 2009; Garden et al., 

2001; Parry et al., 2004), and carbon dioxide and hydrogen sulphide (Haszeldine et al., 2005). 

Regionally bleached sandstones record the passage of migrating diagenetic fluids over a 

variety of physical and temporal scales (e.g. Bowen et al., 2007). Understanding their 

geochemical origin facilitates their use as a reservoir analogue, from which the petrophysical and 

geochemical controls on fluid flow can be made by direct observation. Additionally, exhumed 

reservoirs such as these provide the opportunity to examine the coupling of fluid transport and 

mineral-fluid interactions, directly (e.g. Bickle, 1992). Constraining the large-scale migration of 

fluids in the subsurface has traditionally only been possible via numerical simulation or by direct 

geochemical observations in well studied groundwater systems (e.g. O’Nions et al., 1993) or 

hydrocarbon fields (e.g. Bradley et al., 1986).    

In this chapter the petrology and isotope geochemistry of large-scale diagenetic bleaching 

of the Entrada Sandstone at Salt Wash Graben is discussed. Fluid inclusions trapped in secondary 

minerals associated with this bleaching, and with bleaching in travertine feeder zones (discussed 

in Chapter 4) were examined using laser Raman microspectroscopic and microthermometric 

techniques, and the results are presented and discussed. Mineral hosted fluid inclusions may 

preserve fluid and vapour compositions at the time of trapping yielding information on the 

thermal, pressure and chemical regimes under which that mineral developed. The objectives of 

this chapter are to a) establish the composition of the volatile phase(s) (i.e. CH4, CO2, N2, O2, H2, 
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H2S, SO2) associated with large-scale diagenetic bleaching of the Entrada Sandstone at Salt Wash 

Graben. b) To assess whether volatile phase(s) in addition to CO2, were present in the ancient 

CO2-system c) to derive thermal and pressure data which will inform on the relative timing of the 

large-scale diagenetic bleaching.  

5.2. Methodology 

5.1.1. Fluid Inclusions 

When crystals grow or recrystallize in a fluid medium, growth irregularities result in the trapping 

of small portions of the fluid in the solid crystal, yielding primary fluid inclusions. Healing of 

fractures developed in existing crystal can also lead to the entrapment of secondary fluid 

inclusions.  

5.1.1.1. Microthermometry 

Microthermometry techniques provide information on the melting point of included aqueous 

fluids and the homogenisation temperature of two phase vapour-liquid mixtures. Measurement of 

the homogenization temperature (Th) and temperature of last ice melting (Tm) in fluid inclusions 

provides information on the minimum temperature of the fluid inclusions formation and the 

salinity of fluids from which the cement(s) precipitated (Roedder, 1984). 

5.1.1.2. Tm 

Aqueous fluids in geological environments typically contain varying amounts of salt, dominantly 

NaCl, KCl or CaCl2 (Bodnar, 2003). Salts and other solutes depress the melting point of ice, thus 

the temperature at which the last remaining ice in an inclusion melts will reflect the salinity of the 

fluid. The relationship between freezing point depression and salinity varies only slightly for the 

various species dominant in the fluid (Bodnar, 2003). Most researchers report their interpretations 

of freezing point depression in weight % NaCl equivalent, simply stating the salinity of fluid 

inclusions assuming all dissolved species to be NaCl. This yields a salinity that is fairly close to 

reality for many diagenetic systems (Roedder, 1984). 

 



Chapter 5: Petrology and Fluid Inclusion Raman Microspectroscopy  

 169 

 

Figure 5.2-1 NaCl-H2O phase diagram, after Bodnar, (2003).  I = ice; L = liquid; HH = hydrohalite; H = 

halite; P = peritectic (0.1°C, 26.3 wt% NaCl); E = eutectic (-21.2°C, 23.2 wt% NaCl). 

 
Figure (5.2.1) shows the H2O-NaCl phase relations in the low temperature region, including the 

relationship between salinity and the ice melting temperature. Hall et al., (1988) determined the 

freezing-point depression of H2O-NaCl solutions ranging from pure water to the eutectic 

composition (23.2 wt% NaCl), and Bodnar (1993) presented a simple equation according to: 

 
2 3( %) 1.78 0.0442 0.000557Salinity wt α α α= − +      (5.1) 

 
where α is the freezing point depression (FPD) in degrees Celsius (FPD is simply the negative of 

the freezing temperature). Equation (5.1) reproduces the original experimental data of Hall et al., 

(1988) to better than ±0.05 wt% NaCl at all temperatures from 0.0°C to -21.2°C, the eutectic 

temperature for H2O-NaCl. 

The presence of CO2 in a fluid inclusion may affect the melting temperature obtained 

from phase relations determined in CO2-free systems. However, in fluid inclusions which have 

both liquid and vapour phases, most CO2 is contained in the vapour phase at the temperature of 

final ice melting (Roedder, 1984). Therefore, only very small CO2 concentrations exist in the 

liquid phase, and thus the affect of CO2 on the temperature of ice melting is considered 

insignificant (Frantz et al., 1992). Frantz et al., (1992) observed that the presence of up to 43.2 

mol% CO2 in individual inclusions had a negligible effect on final ice melting temperature.  

5.1.1.3. Th 

A conspicuous feature of many aqueous fluid inclusions is a vapour or gas bubble. Phase 

separation (liquid and vapour) is a result of differential shrinkage of the host mineral and the 

inclusion fluid on cooling from the temperature of trapping to that of observation. Upon cooling 
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to room temperature, the fluid shrinks far more than the host, thus, the pressure in the inclusions 

drops below the saturation vapour pressure of the contained fluid and the fluid splits into two 

phases: liquid and vapour. Artificially heating a two-phase inclusion observed at ambient 

temperatures and observing the point of homogenisation provides information on the temperature 

of entrapment.  

If a fluid inclusion is trapped from a homogeneous fluid below or on a boiling curve (i.e. 

under P-T conditions such that it was in equilibrium with either a vapour or gas phase) the 

temperature of homogenisation represents the actual trapping temperature of the inclusion. 

However, some inclusions have trapped fluids at a P-T combination above the liquid/vapour 

curve. In these, a bubble disappears on heating up from room temperature when the pressure and 

temperature have increased to the liquid/vapour curve, below the actual temperature at which the 

fluid was included. There can be a large difference between the measured Th and the true trapping 

temperature (Tt). In order to obtain the true trapping temperatures of an inclusion trapped at high 

P-T conditions, a pressure correlation needs to be applied. However given that fluids within the 

studied system were included at temperatures significantly below the boiling curve for H2O-

NaCl-CO2 systems this consideration is unnecessary. 

5.1.2. Raman Microspectroscopy 

The laser Raman microprobe (LRM) permits the spectroscopic analysis of solid, liquid and gas 

phases as small as a few micrometers. In this technique of molecular spectroscopy the sample is 

imaged through the high power objective of an optical microscope. The Raman effect is the shift 

in frequency that monochromatic light (e.g., laser light) undergoes during inelastic scattering 

(Burke, 2001). Only the spectral distribution of the inelastically scattered light emitted by the 

sample (Raman scattering) is of analytical interest, since it is caused by component-specific 

molecular vibrational and rotational phenomena in the sample. The scattered light is transmitted 

through the microscope into a double monochromator, step scanned, and detected with a 

monochannel photon-counting system (Seitz et al., 1987). The spectra are recorded in terms of 

the amount of displacement from the frequency of the exciting (laser) radiation.  

The accompanying spectra are plots of total counts vs. wave numbers (cm-1). The photon 

count rate of the inelastically scattered radiation is a function of both the sample and the 

instrumental conditions (Burke, 2001). In regard to the former the Raman band intensities are 

largely proportional to the number of molecules in the scattering volume or the density (Long, 

1977). Among the latter are the exciting laser power, the alignment of the laser in the optical 

system, the optical properties of the objectives, the chosen slit width, and the electronic 

parameters of the detection system (Burke, 2001). The total number of recorded counts depends 

upon the count rate, the counting time (signal integration time per step of the monochromator 
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during a scan), and the spacing of the steps (number of wave numbers between each step) (Seitz 

et al., 1987). Analysing the spectra collected enables identification of the species that are 

contained within a fluid inclusion by identifying the unique band assemblage of individual 

species. 

Multiple species in both the vapour and liquid phase of a fluid inclusion can be identified 

by laser Raman microprobe spectroscopy (Wopenka and Pasteris, 1987). Raman quantitative 

analysis based on Placzek’s polarizability theory (Placzek, 1934) can be applied to derive a 

compositional analysis for Raman active species (e.g. H2O, CO2, CO, N2, H2S, SO2, CH2, O2, H2) 

in a fluid inclusions liquid and vapour phases. This allows estimates of the relative gas 

composition and the contribution of CO2 in individual inclusions and distinct diagenetic events.  

Theoretical estimates of the detection limits of Raman microprobes in general are in the 

pictogram (10-12 g) range (Etz, 1979). As pointed out by Rosasco et al., (1979), the detection limit 

for a species in a fluid inclusion depends upon the scattering efficiency of the species itself, the 

counting time and stepping interval, the Raman and optical properties of the host, the geometry of 

the inclusion, spectral interference (e.g., overlapping Raman peaks, fluorescence) from other 

components, and the stability of the species under the impinging laser beam. Using Raman 

spectroscopy, CO2 can be detected to about 1 bar at ambient temperature (Rosso and Bodnar, 

1995). A lack of appropriate standards prevents the quantification of instrumental detection limits 

in this study. 

In this study Raman spectroscopy was used to identify CO2 and other volatile bearing 

inclusions in distinct diagenetic assemblages and to provide a quantitative estimation of the gas 

composition of vapour bearing fluid inclusions. The pressure dependent bond configurations of 

some Raman active species (e.g. CO2, CH4 and N2) allows features of the Raman spectra to be 

used to calculate vapour phase gas densities, dissolved gas concentrations in the liquid phase, 

entrapment pressures and thus entrapment depths. 

5.1.2.1. The Spectrum of CO2 

The CO2 molecule is linear and thus has four modes of vibration (Fig. 5.2-2); a symmetric 

stretching mode (ν1), an antisymmetric stretching mode (ν3), and two bending modes (ν2a and 

ν2b)  
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Figure 5.2-2  Schematic representation of the three fundamental vibrations of CO2 (after Rosso and 

Bodnar, 1995) 

 

 

Figure 5.2-3 Typical Raman spectrum of CO2 with background subtracted. Peaks marked (ν1-2ν2) comprise 
the ν1-2ν2 Fermi diad. The hot bands are also coupled through Fermi resonance (modified after Rosso and 

Bodnar, 1995). 

 

which have the same frequency of vibration and form a degenerate pair (Gordon and McCubbin, 

1966) (Fig. 5.2-3). The symmetric stretching mode is the only predicted Raman-active vibration 

because the derivative of the change in total molecular polarizability during this motion is 

nonzero (Rosso and Bodnar, 1995). 

Due to Fermi resonance, the admixed excited ν1 and 2ν2 states are split apart and two 

strong CO2 bands are present in the Raman spectrum. These two bands are referred to as the ν1-

2ν2 Fermi diad and have the approximate frequencies 1388 cm–1 (upper band) and 1285 cm–1 

(lower band) (Gordon and McCubbin, 1966; Rosso and Bodnar, 1995) (Fig. 5.2-3). Another band 

type is represented by low intensity peaks flanking the Fermi diad, which are referred to as hot 

bands. Their resultant frequencies are approximately 1264 cm–1 and 1409 cm–1 (Fig. 5.2-3). They 

arise from transitions that originate in excited vibrational states higher in energy than the ground 
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vibrational state due to the thermal energy of the molecules (Rosso and Bodnar, 1995). The hot 

bands are also perturbed by Fermi resonance (Rosso and Bodnar, 1995). The intensity of the hot 

bands of the Raman spectra of CO2 increases concomitantly with increased temperature of CO2; 

at ambient temperatures they are typically not observable (Brown and Steeper, 1991). 

5.1.2.2. Relative Gas Compositions 

According to Placzek’s (1934) polarizability theory, the area of a Raman peak (over a finite range 

of wave numbers) is a function of (1) the number of molecules of a certain species in the 

scattering volume (absolute concentration of the species), (2) the Raman scattering cross section 

of the species, (3) the irradiance of the specimen, and (4) the solid angle of light collection. If two 

or more Raman-active species in the same phase of a fluid inclusion are analyzed either at the 

same time or one immediately after the other, the irradiance, the scattering volume, and the angle 

of collection of light are assumed to be the same for all the species. Thus instrumental effects on 

peak height and area are negated and the ratio of two or more species can be estimated. In 

practice, for a two-component system, the experimental result in units of mole percentages (Ca, 

Cb) is the function of three ratios: one for the determined Raman peak area (Aa, Ab), one for the 

relative scattering cross sections (σa, σb) of the two species, and one for the instrumental 

efficiencies (ηa, ηb) for Raman scattered light at specific wavelengths and polarization orientation. 

The σ’s and η’s can be combined into “Raman quantification factors” (Fa, Fb) (Wopenka and 

Pasteris, 1987). The quantitative relationship between the relative concentration of two 

components, a and b, and their Raman peak areas reduce to a simple formula: 

 

( ) ( ) ( ) ( ) ( )a b a b a b a b a b a b
A A C C C C F Fσ σ η η= ⋅ ⋅ = ⋅      (5.2) 

 
This equation requires knowledge of the Raman scattering efficiencies (σ’s) for the different 

components and the instrumental efficiencies (η’s) for Raman scattering radiation arising from 

those components.  

In calculating the mol% of CO2 and CH4 in gas mixtures the 1388 cm–1 and 2917 cm–1 

peak are used as comparative bands. It has long been realized that the cross-section of a volatile 

changes with the total pressure in a given fluid inclusion (Rosso and Bodnar, 1995). For CH4 and 

CO2 in calibration gas mixtures up to 15 bars total pressure, Wopenka and Pasteris (1987) 

determined F-factors (relative to N2) of 6.7 and 1.5, respectively, for their laser Raman 

microprobe. The ratio of these F-factors is 4.4. Such ratios for low density gas mixtures are the 

ones most appropriate for the species in gas bubbles in this study and are therefore adopted to 

quantify the contents of the vapour phase. For a CH4-CO2 supercritical fluid with a density of 

about 80 cm3/mole (about 80 bars at room temperature), the empirically determined F-factor ratio 
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is 2.9, a relative decrease of about 34% compared to the ratio obtained at low pressure (Seitz et 

al., 1987).  

However, the fact that there are several instrument-specific parameters makes it 

problematic to apply the above empirical F-factors to different instruments. Among the most 

important instrumental factors are the different sensitivities of the gratings and the detector 

system for Raman scattered light of different polarization orientations and/or wavelengths. The 

use of the microscope of a laser Raman spectrometer will cause additional optical effects due to 

different components (e.g., objective, beam splitter, lenses) (Wopenka and Pasteris, 1987). Since 

each optical component has its own spectral characteristics that are a function of both wavelength 

and polarization orientation of the interacting light, the published F-factors are only approximate 

solutions for the Raman instruments used in this study. 

In fluid inclusions from high temperature geological systems, ductile strain (e.g. 

Hollister, 1989) or diffusion along dislocation edges (e.g. Cordier et al., 1994) can lead to because 

enrichment of components such as CO2 and NaCl as H2O is soluble and can diffuse through the 

silicate lattice. In such a low temperature system as that examined these processes are not thought 

to significantly contribute to alteration of the fluid composition.  

5.1.2.3. Gas Density 

The sensitivity of bond configuration to the pressure on or density of a phase has been 

documented in the Raman spectra of gaseous CO2 (Bertran, 1983), CH4 (May et al., 1959), and 

N2. This effect has been previously noted in the spectra of natural fluid inclusions (e.g. Burke, 

2001; Rosasco et al., 1975; Dubessy et al., 2001).  

Many previous studies have documented the density-dependent band shift in Raman 

peaks of pure CO2 (e.g., Wang & Wright, 1973; Bertrán, 1983; Garrabos et al., 1989a,b; Rosso & 

Bodnar, 1995; Yamamoto & Kagi, 2006). In the spectrum of CO2, the bands of the Fermi diad 

shift to lower wave numbers with increasing density. The frequency shift of the lower band has a 

higher density dependence than does the upper band. At the same time, the intensity ratio of the 

upper band to the lower band increases with increasing density (Garrabos et al., 1980) The split 

(∆) between the Fermi diad peaks increases with increasing density of CO2 (e.g., Bertrán, 1983; 

Kawakami et al., 2003). Rosso and Bodnar (1995) have calibrated the dependence of the Fermi 

diad separation on CO2 density from a compilation of experimental results ranging from analyses 

of low density gaseous CO2 to liquid CO2 in the density range of 0.01– 1.20 g/cm3. Within this 

density range the relationship between ∆ and density is assumed to be linear (Hacura et al., 1997). 

This resulted in the following empirical fit suitable for estimating CO2 densities (g/cm3): 

 

( )
2

102.68

2.49
CO

ρ
∆ −

=          (5.3) 
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The overall precision of the determination of ∆ is approximately 0.05 cm-1 which equates to 

±0.02 g/cm3.  

The total pressure (PT) of a mixture of ideal gases is equal to the sum of the partial 

pressures of the individual gases in the mixture as stated by Dalton's law. For the vapour phase of 

a fluid inclusion containing CO2, CH4 and H2O vapour, PT is defined as 

 

4 2 2T CH CO H O
P P P P= + +          (5.4) 

 

where PCH4, PCO2 and PH2O are the gas partial pressures of CH4, CO2 and H2O in the vapour phase. 

For fluid inclusions at room temperature the total pressure is essentially PCO2+PCH4 since the 

vapour pressure of water at ambient temperatures is negligible (Hedenquist and Henley, 1985). 

The mole fraction of a gas component in a gas mixture is equal to the volumetric fraction 

of that component in a gas mixture. The mole fraction (xi) of an individual gas component (i) in 

an ideal gas mixture can be expressed in terms of the component's partial pressure (Pi) or the 

moles of the component (ni) as 

 

i i

i

T

P n
x

P n
= =          (5.5) 

 

and the partial pressure of an individual gas component in an ideal gas can be obtained using this 

expression: 

 

i i T
P x P= ⋅          (5.6) 

 

From the calculated CO2 gas density the inclusion CO2 partial pressure can be estimated from the 

combined ideal gas law expressed as a function of density and temperature as 

 

( )
2 2CO CO

P R Tρ= ⋅ ⋅          (5.7) 

 
where ρCO2 is the CO2 gas density, PCO2 is CO2 partial pressure, R is the specific gas constant for 

CO2  (188.9 J/kg·K) and T is absolute temperature at the time of the spectra acquisition. In 

inclusions containing only CO2 in the vapour phase PCO2=PT. The uncertainty associated with 

measurement of ρCO2 results in an uncertainty in PCO2 of ±1.03 MPa. 

From the total inclusion pressure (PT) the depth (m) of inclusion formation can be 

estimated, assuming a hydrostatic pressure gradient, according to  

 

( ) ( )T atm fluid
Depth P P gρ= − ⋅         (5.8) 
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Where PT is the inclusion pressure, Patm is atmospheric pressure, ρfluid is the average density of the 

pore fluid (1.01 g/cm3) and g is the acceleration due to gravity. Propagating the uncertainty in 

ρCO2 results in an uncertainty in the depth estimate of ±96 m. 

As shown by May et al., (1959), the Raman spectrum of CH4 in the fluid state depends on 

pressure. The wave number of the Raman peak for the symmetric C-H stretching mode (υ1) 

decreases as pressure increases. Lu et al., (2007) have quantified the dependency of the measured 

Raman shifts of C–H symmetric stretching band (υ1) in the vapour phase with methane vapour 

pressures in inclusions from a compilation of experimental and natural fluid datasets. They derive 

a unified equation for the relationship between pressure and Raman peak position at isothermal 

conditions by using all available data, such that it can be applied reliably in any laboratory. The 

shift, D (in cm−1) of υ1 from υ0 (2917.30 cm−1), the CH4 υ1 peak position at near zero pressure (or 

density), with total inclusion pressure, PT (in MPa) can be represented by  

 
5 4 3 20.0148 0.1791 0.8479 1.765 5.876

T
P D D D D D= − ⋅ − ⋅ − ⋅ − ⋅ − ⋅    (5.9) 

 

where 0sample
D υ υ= −          (5.10) 

 
Methane density, ρCH4 (g/cm3), can be represented as a function of D as follows: 

 

4

5 3 4 2 25.17331 10 5.53081 10 3.51387 10
CH

D D Dρ − − −= − × ⋅ + × ⋅ − × ⋅    (5.11) 

 
The uncertainty of D is estimated to be about 0.3 cm−1, and therefore, the uncertainty of the 

calculated density of methane in vapour is about 0.012 g/cm3 and the uncertainty of the calculated 

inclusion pressure is ±1.34 MPa. 

From an estimate of vapour phase gas partial pressure the concentration of a dissolved 

gas in equilibrium with the inclusion fluid can be calculated. For a dilute solution in equilibrium 

with CO2(g) the ideal gas vapour pressure of CO2 is proportional to its mole fraction in the 

solution The calculations utilise Henry’s Law constant KH, which relates the partial pressure of a 

gas Pi to its mole fraction in aqueous solution Xi according to: 

 

i H i
P K Xα =           (5.12) 

 
where α is the fugacity coefficient. For any non-electrolyte solution, the fugacity of the dissolved 

component, i, becomes closer to being directly proportional to the mole fraction xi as xi 

approaches zero. Such that in solutions with low gas concentrations, the fugacity coefficient will 

be close to unity so that it can safely be ignored. This study uses the expression for KH (CO2) 

generated by Wilkinson (2001) over the temperature range 0-350°C and the salinity range 0.0-2.0 

M NaCl by regression of data from the studies of Ellis and Golding (1963) and references therein. 



Chapter 5: Petrology and Fluid Inclusion Raman Microspectroscopy  

 177 

5.1.3. Sample Material 

65µm thick doubly polished wafers for fluid inclusion analyses were made from ten samples of 

Entrada Sandstone host rock and vein material collected from exposures at Tenmile Butte, 

outcropping in the footwall of the northern fault of Salt Wash Graben. Sections were prepared 

from: i) two samples of gypsum veins petrograpically associated with large-scale diagenetic 

bleaching of the Entrada Sandstone; ii) two samples of bleached sandstone; iii) one sample of 

unbleached sandstone, and; iv) five samples of aragonite veins, including samples of thick veins 

(>40cm thickness) and thin veins (<3mm) in bleached and unbleached host rock.  Individual 

wafers were broken into fragments in order to enable multiple microthermometry runs from each 

sample.  

5.1.4. Analytical Methods 

Six representative samples were investigated using Raman microspectroscopy. Dispersive laser-

Raman spectra were obtained at the University of Cambridge by means of a LabRam 300 

spectrometer equipped with a 632.81 nm diode laser, a 1200 lines/mm diffraction grating and a 

CCD detector. The spectrometer is attached to an Olympus microscope, with 5×, 20×, 50× and 

100× objective lenses, giving a lateral resolution down to ~1 µm.   

Raman spectra were collected at room temperature in the spectral window of 100-4000 

cm–1 which covers the ν1-2ν2 bands of CO2 at 1285 cm–1 and 1388 cm–1 and its two hot bands at 

1264 cm–1 and 1409 cm–1; the N2 band at 2328 cm–1; the SO2 band at 1151 cm–1; the large 

stretching band of H2O (2900 – 3700 cm–1) and the υ1 band of CH4 at 2917 cm–1 (Pasteris et al., 

1988). Overlap of Raman bands from volatiles in inclusions with bands from the mineral hosts 

(typically 400 – 1000 cm–1) does not usually occur.  

Microthermometric measurements on fluid inclusions from two representative vein 

samples (one aragonite, one gypsum) were conducted at the University of Leeds using a Linkam 

heating-freezing stage. It was calibrated using the temperature of the CO2 triple point (56.6 °C) 

and H2O triple point (0 °C) and the critical homogenization of an H2O fluid inclusion (374.1 °C). 

The accuracy of measurement is ±0.1 °C in the range of -100 °C to +25°C, ±0.5 °C between 25 

°C and 250 °C and increases linearly to ±1 °C at 374.1 °C. During heating, the temperature was 

increased at a rate of 1 to 2°C/min to minimize thermal-gradient effects. Homogenization 

temperatures were not corrected for pressure. 
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5.3. Results 

5.1.5. Field Observations 

At Green River bleaching of aeolian Lower to Middle Jurassic sandstones occurs to varying 

degrees in the footwalls of both Little Grand Fault and Salt Wash Graben (see Chapter 4, Fig. 4.4-

1 for maps detailing the distribution of bleaching and sample localities). The distribution of 

bleaching in the footwalls of both faults is focused in the faulted fold axis of the Green River 

anticline (Fig. 5.3-1), though its spatial extent varies depending on the footwall lithologies. Along 

the more shale-rich Little Grand Wash fault footwall, bleaching is mainly confined to the lower, 

sand-rich sections of the Curtis Formation, with the bottom 2 m of the outcropping sandstone 

partially to completely bleached, while the next 4m contains sporadic, thin bleached horizons (1 

to 10 cm thick) subparallel to bedding and thin bleached haloes (1 to 5cm thick) surrounding 

steeply-dipping fractures that are sporadically infilled with calcite or rare gypsum veins.  

Along the more sand-rich rocks exposed in the footwall of the northern fault of Salt Wash 

Graben, the red Entrada Sandstone is extensively bleached to pale yellow-white and is especially 

well exposed at Tenmile Butte. The zone of bleaching, up to 8m thick, is localized to the 

stratigraphic base of the formation and extends up to 300m into the footwall. Above this contact, 

bleaching is mainly located around clusters of steeply-dipping fractures with bleached haloes up 

to 5 m wide, which are sporadically infilled with calcite or gypsum veins. The bleached zone is 

domal in structure and is coincident with the structural high formed by the anitclinal crest. The 

zone thins both down-dip, away from the fault trace and laterally E-W along the fault outcrop, 

eventually forming elongate stringers. The basal contact of the bleached zone with underlying 

unbleached rock is not exposed. The upper contact of the bleached zone with overlying 

unbleached rock is sharp, dips at a low angle over its length and terminates in bulbous fronts 

towards the north, east and west. It cross cuts stratigraphic boundaries and its macroscopic form 

is more influenced by the distance from faults and fracture conduits, than by permeability 

heterogeneity. Small-scale permeability heterogeneity, such as the presence of granulation seems 

or facies heterogeneity exerts controls on the geometry of the bleached front at the outcrop scale 

(Fig. 5.3-2).  
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Figure 5.3-2 Field photographs showing granulation seems both enhancing (a) and impeding (b) 
propagation of the bleaching front. Steeply dipping fractures (c-d) extend from the larger bleached zone 

and commonly have bleached halos that thin and terminate m’s to 10m’s along the fracture length. Fracture 

cores occasionally contain reprecipitated Fe-oxides, indicating transport of Fe in solution and multiple 

generations of fluid flow. Scales: Hammer: 35cm, Coin: 2.5 cm. 
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5.1.6. Petrology and Cathodoluminescence 

Bleached Entrada Sandstone samples average 6.2 vol.% feldspars and 70.8 vol.% detrital quartz 

grains, which are occasionally overgrown by euhedral and irregular quartz overgrowths (2.0 

vol.%).  Overgrowths surround both hematite and illite grain coatings and grains from which the 

haematitic coatings have been dissolved. Bleached sandstones samples average 2.9 vol.% illite 

and 1.1 vol.% kaolinite. Bleached samples average 3.3 vol.% corroded dolomite and abundant 

pore filling calcite (8.2 vol.%). Cryptocrystalline hematite and coarse crystalline Fe-oxides 

average 0.2 vol.% and 1.2 vol.% respectively. Scatter plots (Fig. 5.3-3) indicate potential 

paragenetic relationships between phases. 

 

Figure 5.3-3 Scatter plots of the point counted mineralogies for samples of bleached and unbleached 

Entrada Sandstone. Negatively correlated volumes of quartz overgrowths and feldspar suggests derivation 

of silica from the dissolution of feldspar. Negative correlated volumes of dolomite+feldspar versus calcite 

suggest, at least in part, derivation of some Ca2+ for calcite precipitation from the dissolution of these 

phases. Negative correlated cryptocrystalline hematite and coarse Fe-oxide volumes suggest a non-detrital 

origin for coarse oxides and their formation from the dissolution and reprecipitation of cryptocrystalline 
hematite to coarse crystalline hematite. Porosity is occluded by calcite and clay precipitation. 
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Dolomite is present as an early cement and is often corroded and shows evidence of 

patchy recrystallization. Calcite rims sand grains and overgrows dolomite cement partially filling 

and completely occluding pore space. Calcite has a tabular, blocky habit and individual grains 

range in size from (5-45µm). Two distinct calcite phases can be identified based on 

cathodoluminescence properties (Fig. 5.3-4): 1) an early, pigmented, bright yellow-orange 

luminescent calcite that rims grains and overgrows dolomite and 2) a second later calcite phase 

that infills remaining pore space, overgrows earlier calcite cement, and is weakly orange-red or 

nonluminescent.  The luminosity in calcite is relatively homogeneous with no evidence or 

zonation. The blocky texture of the calcite and homogenous CL pattern suggests partial 

recrystallization.  

Minor amounts of pore-filling poikilotopic barite and sylvite were observed in samples 

from the base of the bleached zone. Intergrowths of calcite and sylvite towards the edges of these 

poikiloblasts suggest contemporaneous precipitation. Extensive occurrence of barite was 

described by Morrison and Parry (1986) and Breit et al., (1990) from areas associated with 

collapsed salt cored anticlines to the south east of Green River, in the vicinity of the Moab fault. 

Based on the sulfur isotopic composition of barite found in the Upper Jurassic Morrison 

Formation, Breit et al., (1990) attributed barite formation to fluids originating in the underlying 

Pennsylvanian evaporites. 

Proximal to faults, and within fractures, gypsum veins (Fig. 5.3-5) (0.5-2mm thick) grew 

contemporaneously with calcite. Individual gypsum veins contain inclusions of pyrite and are 

paralleled by occasional hematite and magnetite liesegang bands (Fig. 5.3-6). Occasional calcite 

veins (0.25-1mm) cross cut and are cut by gypsum veins and contain inclusions of Fe-oxides.  
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Figure 5.3-4 Typical cold CL and plane polarized light photomicrographs from bleached Entrada 

Sandstone from the fracture conduit (Fig.  5.3-1D) feeding the bleached zone. Ubiquitous calcite cements 

(yellow-orange CL) are pigmented and overgrow corroded dolomite rhombs (red CL). 
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Figure 5.3-5 Typical plane and crossed polarized light photomicrographs from bleached Entrada 
Sandstone, in Fig. 5.3-4, adjacent to a fracture filling gypsum vein. Gypsum contains inclusions of calcite 

and pyrite. Secondary crystalline Fe-oxides (a-b) parallel the veinlet. 
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Figure 5.3-6 Typical plane and crossed polarized light photomicrographs from bleached Entrada Sandstone 

adjacent to a fracture filling gypsum vein showing: a) coarse hematite liesegang bands; c-e) coarse 

secondary hematite. 
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Figure 5.3-7 SEM images from bleached Entrada Sandstone showing: a-c) corroded feldspar grains and 

pore filling and grain rimming illite/smectite and kaolinite; d) amalgams of kaolinite and calcite; e) 

extensively corroded feldspar rimmed by calcite and kaolinite and; f) coarse amalgams of kaolinite and 

calcite. 

5.1.7. Scanning Electron Microscopy 

Samples contain corroded K-feldspar and plagioclase overgrown by patchy coatings of illite, 

illite-smectite and kaolinite (Fig. 5.3-7). Corroded feldspars contain abundant clay precipitates in 

adjoining pore space. Occasional remnant feldspar grains have been completely replaced by 
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coarse pore filling illite/smectite or kaolinite. Equant and irregular quartz overgrowths are visible 

occasionally. Pore filling kaolinite often inter-grows with small <0.5µm euhedral calcite.  

5.1.8. XRD and XRF 

X-ray diffraction patterns (Fig. 5.3-8) from bleached Entrada Sandstone include typical detrital 

minerals; quartz and K-feldspar and secondary minerals calcite, dolomite, kaolinite and mixed 

layer illite-smectite. Modal mineralogy (Table 5.3-1) was calculated from least squares mixing of 

mineral proportions to match whole rock compositions using the program MINSQ (Hermann & 

Berry, 2002). Recalculated modal mineral proportions are similar to those determined from point 

counting and exhibit similar patterns in the genetic relationships of detrital and secondary 

minerals. Whilst bleached sandstone is depleted in Fe ~25% of the initial Fe content remains. 

 

 

Figure 5.3-8 XRD pattern from bleached Entrada Sandstone. 

 
 

Sample Type Qtz Kspar Plag Dol Kao Hem Cc MnOx Apt Il TOT SSQ 

RS060 B 65.4 10.7 5.7 6.4 0.3 0.4 3.5 0.00 0.0 7.5 100.0 0.8 

RS029 R 64.4 13.2 5.9 10.3 0.0 2.0 0.0 0.04 0.1 3.9 100.0 1.5 

 

Table 5.3-1 Modal Mineralogy of bleached (RS060) and unbleached (RS029) Entrada Sandstone 

recalculated from XRF analyses. Abbreviations: Qtz = Quartz, Kspar = K-feldspar, plag = plagioclase, Dol 

= dolomite, Cc = calcite, Kao = kaolinite, Hem  = Fe2O3, MnOx = Mn-oxide, Apt = apatite, Il = 
illite/smecite 

5.1.9. Discussion: Petrology of Diagenetic Bleaching in the Entrada Sandstone  

Hematite grain coatings are the earliest determinable diagenetic event and reddening is 

considered to have occurred during earliest burial. (Walker et al., 1979). Petrographic 
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observations and XRF analyses suggest that during bleaching cryptocrystalline hematite was 

dissolved and reprecipitated locally as coarse hematite grains and some Fe was transported, in 

solution. The red colour of the Entrada Sandstone is caused by the reflectance in the red part of 

the visible spectrum by cryptocrystalline hematite. However, reflectance in the red part of the 

spectrum decreases as hematite particle size increases. With increasing size from 0.1 to 0.8 µm, 

the colour progressively changes from orange to red to purple (Kerker et al., 1979; Morris et al., 

1996). The colour of hematite changes to gray in the 5-10 µm-size range (Lane et al., 1999) so 

that coarse-grained hematite is black or steel gray. The colour change in bleached sandstone is a 

result of changes in the grain size of hematite in addition to removal of Fe from the sandstone. 

Cryptocrystalline hematite grain coatings are largely absent in thin sections of bleached 

sandstones and modal (Fig. 5.3-3) and compositional measurements (Table 5.3-1) confirm the 

removal of hematite and Fe in bleached samples. 

In unbleached Entrada Sandstone (Chapter 4, section 4.4.2.1) illite/smectite occurs as 1-5 

µm thick pore-lining cements which generally dust entire detrital grains. Illite-smectite coating is 

absent or very thin at grain contacts. No detrital clay is observed in the Entrada Sandstone. 

Kaolinite occurs as authigenic pore filling cement which post dates dolomite cementation and is 

intimately associated with feldspar grains. Both these clay products are thought to represent 

alteration of silicate grains during burial. Volumetrically minor quartz overgrowths (<1%) were 

also precipitated during this episode. In bleached Entrada Sandstone reaction between volatile 

components in the extra-formational fluid and the host formation resulted in moderate dissolution 

of detrital feldspar grains and precipitation of additional grain rimming and pore-filling kaolinite 

and illite/smectite. This implies elevated [H+] in the bleaching fluid. Feldspar dissolution was 

accompanied by reprecipitation of silica as euhedral and irregular quartz overgrowths which 

crystallize on grains from which the hematite grain coatings have been removed. Feldspar and 

hematite dissolution was accompanied by calcite veining and cements which follow regional 

bleaching.  

Calcite cement contents decreasing from ~17 vol. % close to the main feeder conduit 

(Fig.5.3-1D) to ~6 vol. % towards the northerly and easterly extremes of the bleached zone. 

Regionally the Entrada Sandstone is loosely cemented relative to the sandstones which are 

stratigraphyically below and above it (Ohran, 1992). Dolomite occurs as pore filling rhombs in 

unbleached interdunal and dune facies sandstone. Regionally, dolomite was precipitated from an 

isotopically heavy fluid which may have originated as evaporated playa water on the Entrada 

dune field (Desborough and Poole, 1992). Regionally, calcite occurs mostly as a poikilotopic 

cement, well developed in the extreme upper and lower parts (30-50cm) of the Entrada Sandstone 

but is absent elsewhere (Ohran, 1992). This calcite cement is thought to be sourced from 

infiltration of CaCO3 bearing solutions from formations above and bellow the Entrada during 
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early compaction (Ohran, 1992). Extensive calcite cementation in bleached sandstones is directly 

related to the bleaching event, which implies that the bleaching fluid was enriched in C and had 

elevated [HCO3
-]. 

Localization of bleaching to the base of the formation suggests derivation from a fluid 

denser than the original pore fluid. The presence of gypsum veining and pore-filling poikilotopic 

barite and sylvite cements suggest the involvement of a saline fluid enriched in SO4
2-, Cl-, Ba2+ 

and K+. 

5.1.10. Isotope Geochemistry 

5.1.10.1. Carbon and Oxygen Stable Isotopes 

Tables B-VI and B-VII (Appendix B) displays the δ13C and δ18O of samples of the bulk Entrada 

Sandstone (both bleached and unbleached) and calcite veins associated with bleaching. Twenty 

three of the samples were collected from Tenmile Butte, Salt Wash Graben, from calcite veins, 

bleached and unbleached Entrada Sandstone. In addition twenty samples of the Navajo Sandstone 

were collected from core chips from petroleum exploration wells Salt Valley 22-34 and Salt 

Wash #1 (well details can be found in Appendix B, Table VII) which penetrate the Navajo 

Sandstone on the eastern limb of the Green River anticline. In both the sampled wells the Navajo 

Sandstone shows a progressive colour change from very pale-white to pale yellow over the 

entirety of the sampled interval and only the upper 5 to 10m were unbleached and retained the 

original red colouration. This data is projected in Figure 5.3-9, together with published data sets 

from carbonate cements, veins and concretions from bleached Jurassic Sandstones in the Moab 

and Courthouse syncline regions of the northern Paradox Basin (Beitler et al., 2005, Chan et al., 

2000, Eichhubl et al., 2009, Garden et al., 2001).  

5.1.10.2. 87
Sr/

86
Sr 

87Sr/86Sr of calcite veins in bleached Entrada Sandstone range from 0.712115 to 0.712645, n=2, 

and gypsum veins in bleached Entrada Sandstone range from 0.711837 to 0.711919, n=3. 

Analyses are presented in figure 5.3-10 against values for aragonite veins from the Green River 

anticline, the silicate fraction of the Entrada and Navajo Sandstone (Truini and Longsworth, 

2003), early diagenetic cements in these formations elsewhere in the Northern Paradox Basin 

(Goldstein et al., 2008), secondary hematite concretions associated with bleaching of the Entrada 

Sandstone along the Moab Fault (Chan et al., 2000), analyses of barite cements in the Morrison 

Formation from the Slickrock Mining District (Breit et al., 1990) part of a large salt collapse 

structure and zone of upward brine movement from the Paradox formation, and values for the 

Paradox formation brine from the Greater Aneth Oil Field (Spangler et al., 1996). 
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Figure 5.3-9 Stable isotope analyses for calcite cements and veins associated with bleached portions of the 

Entrada and Navajo Sandstones from this study. Included are a compilation of stable isotope analyses of 

calcite cements and veins associated with bleached Jurassic sandstones from the northern Paradox Basin 

(see text for references) and the isotopic composition of aragonite veins and modern and ancient travertine 
deposits associated with the leaking CO2 system. 

 

 
 

Figure 5.3-10 
87Sr/86Sr of aragonite, calcite and gypsum veins, modern travertine and modern CO2-charged 

waters. Additionally the 87Sr/86Sr of diagenetic carbonate cements and the silicate fraction in the Navajo 

and Entrada Sandstones, Paradox Formation Brine, hematite concretions from bleached Jurassic Sandstones 

near Moab fault and salt collapse related barite cements are shown for reference. See text for references.  
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5.1.10.3. Discussion: Isotope Geochemistry  

δ
18OCaCO3 of bleached Entrada Sandstone samples range from 19.9 to 23.6 ‰ (V-SMOW) and 

δ
13CCaCO3 values range from -1.5 to -3.9 ‰ (V-PDB) (Fig. 5.3-9). δ18OCaCO3 of bleached Navajo 

Sandstone range from 19.2 to 22.7 ‰ (V-SMOW) and δ13CCaCO3 values range from -2.2 to -3.7 ‰ 

(V-PDB) (Fig. 5.3-9). Calcite cements from both bleached Entrada and Navajo Sandstones 

exhibit a similar range and trends in δ13CCaCO3 and δ18OCaCO3 (Fig. 5.3-11). This suggests formation 

of calcite from a fluid of comparable isotopic composition at similar temperatures and implies 

that carbonate deposition occurred from a fluid migrating vertically through the stratigraphy.  

δ
18OH2O calculated from δ18OCaCO3 (Fig. 5.3-11) (using the crystallization temperatures 

determined in section 5.1.13) of bleaching related cements in both Entrada and Navajo Sandstone 

is isotopically similar to that of carbonate associated with the modern CO2-system, but is heavier 

than calcite cements associated with bleaching in the wider Paradox Basin area (determined from 

various crystallizations temperatures reported in Beitler et al., (2005), Chan et al., (2000) and 

Garden et al., (2001), ranging from ~30-80°C) (Fig. 5.3-11). Bleaching related waters elsewhere 

in the Paradox basin have been variably attributed to fluids of a largely meteoric origin (Beitler et 

al., 2005, Eichhubl et al., 2009, Garden et al., 2001) or to mixtures of meteoric water and saline 

fluids derived from the Pennsylvanian evaporite formations (Chan et al., 2000). The 3.7 to 3.8 ‰ 

variation in δ18O observed here would imply an ~20oC variation in temperature over the course of 

precipitation if carbonate formed from an invariant, unfractionated fluid source. This range of 

temperature during deposition of calcite is unlikely. Additionally, the correlated trends in δ13C 

and δ18O does not follow that predicted for isotopic variation due to varying precipitation 

temperatures. The heavy δ18O implies precipitation from a fluid enriched in 18O. This is 

interpreted as reflecting precipitation from a fluid composed of a mixture of meteoric water and 

saline fluid derived from Pennsylvanian evaporite formations, but containing higher contributions 

of brine than observed elsewhere in the Paradox Basin. 

 87Sr/86Sr of calcite and gypsum veins is radiogenic, and significantly more so than 

bleaching related hematite concretions from the Moab fault region (Chan et al., 2000), Paradox 

Formation brines (Spangler et al., 1996) or diagenetic cements origination from extremely brine 

enriched fluids (Breit et al., 1990) (Fig. 5.3-10). 87Sr/86Sr is close to, but marginally less 

radiogenic than, carbonate cements associated with the ancient CO2 system but overlaps with the 

range in 87Sr/86Sr observed in modern CO2-charged waters.  The radiogenic 87Sr/86Sr suggests 

significant contributions of 87Sr suggesting the role of a reactive fluid, enriched in H+, capable of 

dissolving significant quantities of silicate minerals in the host aquifer. 

δ
13C of bulk rock bleached samples is on average ~5‰ lighter than the average δ13C of 

carbonate cements associated with ancient travertines (Fig. 5.3-9). The analysed δ13C and δ18O 

will be a mechanical mixture of all carbonate phases present in the sample during powdering.  
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Figure 5.3-11 δ
18OH2O and δ13CHCO3 calculated from the isotopic composition of bleached Entrada and 

Navajo Sandstone samples using crystallization temperatures determined in section 5.1.13, uncorrected for 
dolomite.  

 

The linear correlation in δ13C and δ18O passes through the composition of samples that contain 

only sabkha dolomite cements suggesting that the array in δ13C and δ18O represents a mixing line 

between this and an isotopically heavy carbon/oxygen source (Fig. 5.3-9). Dolomite formed at 

low temperatures (e.g. 25°C) typically should be enriched in 18O by 5-7‰ compared to coexisting 

calcite (Clark and Fritz, 1997). Therefore the observed isotopic difference between early dolomite 

and later bleaching related calcite indicates that they were precipitated from different fluids. Due 

to the mixing of cements during sample preparation, the actual value of δ13C and δ18O of the 

calcite cements will be heavier than the bulk values measured. Recalculation of the precise δ13C 

and δ18O of individual samples is difficult without having bulk rock chemical analyses for each 

sample. However, point counted estimates suggest that between 30 to 70% of the C in individual 

bleached samples is derived from early dolomite cements. This implies that the average δ13C of 

measured calcite is between -1.7‰ and +1.8‰ as apposed to the average measured bulk rock 

value of -2.5‰.   

Secondary carbonate minerals forming in the presence of a precursor carbonate phase 

will derive 13C and 12C from the partial recrystallization of the precursor and from the addition of 

C from the pore fluid HCO3
- reservoir. Carbonate volumes (up to ~ 20 vol. %) significantly in 

excess of those observed in samples containing only early diagenetic  
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Figure 5.3-12 δ
13C of CO2(g) and fluid from the modern CO2 charged waters, carbonate cements in large-

scale bleached zones, ancient and modern travertine and aragonite veins compare to the range of δ13C in 

various geological environments and substances.  

 

cements (up to ~10 vol. %) suggests significant addition of HCO3
- from an external C reservoir. 

These distinct C sources are interpreted as being dolomite cement, observed in unaltered samples 

of both sandstones, related to early diagenetic sabkha deposits and an isotopically heavy source of 

C and O related to the bleaching fluid.  

In this instance likely extra-formational carbon sources, for carbonate cementation during 

sediment exhumation, include bicarbonate produced from the transformation of organic matter 

during hydrocarbon generation (Battani et al., 2000; Butala et al., 2000), or geogenic CO2 

sourced from decarbonation reactions involving clay–carbonate mineral diagenetic reactions in 

deeper formations (Chapter 2, section 2.4.3). Calcite precipitated from the breakdown of 

hydrocarbon has δ13CCaCO3 values as low as -20‰ (Tucker and Wright, 1996; Wood and Boles, 

1991) and are typically in the range -20 to -10‰. Diagenetic and metamorphic CO2 would have 

about the same δ13CCO2(g) as the carbonate mineral source because fractionation is only about ~1‰ 

at 150oC (Friedman and O’Neil, 1977). It is therefore unlikely, but not impossible, that this 13C 

enriched HCO3
- arose from hydrocarbon breakdown. Early δ13CHCO3 in the ancient CO2 system 
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was certainly as light as 1‰ (Chapter 4, section 4.4.8), may have had values as low as -0.7‰ 

(Chapter 4, section 4.4.9) and has certainly evolved from lighter to heavier δ13CHCO3 through time. 

δ
13CHCO3 calculated from the δ13CCaCO3, corrected for C derived from dolomite, for samples from 

which point count estimates of dolomite/calcite is available, have values between ~ -3.52 to -

0.56‰. Which is lighter than the δ13CHCO3 in modern and ancient CO2 systems, but not only 

moderately so. The heavy δ13C may therefore have arisen from crustally sourced, unfractionated 

CO2 and/or from a mixture of CO2 and a lighter, hydrocarbon C source, although this cannot be 

conclusively confirmed from C-isotopes alone. 

5.1.11. Fluid Inclusion Petrography 

Fluid inclusions examined in this study occur in aragonite, calcite, gypsum, and in quartz 

overgrowths surrounding detrital quartz grains. Most of the fluid inclusions examined in this 

study are found in aragonite (Fig. 5.3-13) and gypsum (Fig. 5.3-14) crystals and in healed 

microfractures within, and quartz overgrowths surrounding, detrital quartz grains (Fig. 5.3-15). 

Only quartz overgrowths possessing a clear petrographic link to, and contemporaneous timing 

with, the overall diagenetic assemblage and event of interest were analysed. Petrographic criteria 

for the acceptance of a genetic link between quartz overgrowth and other diagenetic phases 

include i) the observation of intergrowths or solid inclusions of the other diagenetic phases of 

interest within quartz ii) a consistent vapour/liquid ratio between inclusions in overgrowths and 

other cements. Necking-down or stretching textures were observed and avoided. Primary and 

secondary inclusions were distinguished by their relationships to crystallographic surfaces and 

microfractures, respectively. 

Primary inclusions within aragonite crystals (Fig. 5.3-13) are typically small (1-5µm), 

single or two phase (aqueous liquid ± vapour), ovoid and occur in dense clusters along growth 

and cleavage planes (A1 type) (e.g. Fig. 5.3-13A-F). Larger type A1 inclusions (10-20 µm) 

typically have a subhedral to euhedral negative crystal shape (e.g. Fig. 5.3-13F). Primary fluid 

inclusions in aragonite also occur at impinging crystal boundaries (type A2), where they typically 

trap both aqueous and hydrocarbon liquids (e.g Fig. 5.3-13B,E,F) and occur as single (aqueous or 

hydrocarbon), two (aqueous and/or hydrocarbon and/or vapour) or three phase inclusions 

(aqueous, liquid hydrocarbon and vapour). Curviplanar arrays of secondary fluid inclusions also 

occur along healed microfractures (A3 type) (e.g. Fig. 5.3-13B,C).  

Gypsum crystals (Fig. 5.3-14) contain a variety of primary inclusion types, ranging from 

clusters of small equant inclusions (1-5µm) along growth and cleavage planes (type G1), to larger 

irregular inclusions (8-20µm) along growth planes and between impinging crystal boundaries 

(type G2).   
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Figure 5.3-13 Photomicrographs illustrating the various primary and secondary fluid inclusions types 

observed in aragonite crystals from vein and matrix samples of the Entrada Sandstone, Salt Wash graben, 

Green River. 
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Figure 5.3-14. Photomicrographs illustrating the various primary and secondary fluid inclusions types 

observed in gypsum crystals from vein samples of the Entrada Sandstone, Salt Wash graben, Green River. 
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Figure 5.3-15. Photomicrographs illustrating the various primary and secondary fluid inclusions types 

observed in quartz crystals from vein and matrix samples of the Entrada Sandstone, Salt Wash graben, 

Green River. 

 

Small (2-8µm), primary fluid inclusions within quartz overgrowths (Fig. 5.3-15) are found on the 

boundary between detrital grains and overgrowths (type Q1) and, less commonly, within the 

overgrowths themselves (type Q2). Most primary fluid inclusions show a subhedral to euhedral 

negative crystal shape. Curviplanar arrays of small (2-6 µm), secondary fluid inclusions also 

occur along healed microfractures (Q3 type).  
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5.1.12. Raman Spectroscopy 

The optical properties of fluid inclusions that are ‘ideal’ for Raman analysis are the same as those 

that are desirable for microthermometric analysis, i.e., high optical clarity, sufficient size (> 5 µm 

desirable), and shallow depth below the sample surface. The chosen inclusions are generally 

between 2 to 15 µm in size. They occur in clusters or have an isolated occurrence. All the fluid 

inclusions which were examined by LRM spectroscopy contain two phases, liquid and vapour at 

room temperature. The vapour phase volume ranges from ~ 2 to ~ 15 %. Inclusions sufficiently 

large to allow reliable LRM analysis on their vapour bubbles proved difficult to find.  Due to the 

small size of inclusions in carbonate minerals and the turbidity of the host, targeting these 

inclusions for LRM is highly problematic. Due to the close proximity to the homogenization 

temperature, vibration and Brownian motion of vapour bubbles makes them difficult to target 

with the laser: movement of vapour bubbles would lead to distorted spectra, with enhanced bands 

of the volatiles when the bubbles are on target and subdued bands when the bubbles moved off 

the laser beam. 

Over 120 fluid inclusions were examined by LRM in this study. CO2 and CH4 were 

detected as volatiles. It was found that the volatile content varies strongly in these inclusions: 

some show moderate intensities for the H2O, CO2 or CH4 bands, while others show only weak or 

no signal. The vast majority of the fluid inclusions analysed contained only H2O and no other 

volatile components were detected. This is either because the vapour bubble was not accurately 

targeted; the volatile content was below the detection limit of the apparatus or the inclusion was 

devoid of volatile material. 

CO2 was identified in eight fluid inclusions. CO2 and CH4 were found to coexist in three.  

The compositions of volatile species of these fluid inclusions are displayed in Table 5.2. As Fig. 

5.3-16 shows, the CO2 bands can be easily resolved against the bands of the host mineral. 

Superposition of the two ν1-2ν2 bands of CO2 on the broad but low quartz bands can be clearly 

resolved. No other volatiles were found in this fluid inclusion, indicating that the inclusion 

primarily contains water vapour and CO2.  

Three inclusions were found to contain CH4 as a coexisting species. In the vapour phase 

spectrum (Fig. 5.3-18), for example, the CH4 band at 2916.5 cm-1 is present together with the two 

ν1-2ν2 bands of CO2, highlighting the presence of both CO2 and CH4. The results of the 

calculations of gas composition, CO2 and CH4 gas density, inclusion pressure and formation 

depth and the dissolved content of CO2 and CH4 in the inclusion fluid are presented in Table 5.2. 

Peak areas used to calculate gas composition where determined from Raman spectra, after 

baseline correction, using a Gaussian curve fitting algorithm in Origin Pro (version 7.0, 

OriginLab Corporation, Northampton, MA). 
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Figure 5.3-16. Raman spectra of the host and the vapour phase of a fluid inclusion in a quartz overgrowth 

associated with an aragonite bearing sample from the feeder zone of an ancient travertine deposit in the 

Entrada sandstone, Salt Wash Graben, Green River.  The main ν1-2ν2 peak of CO2 is visible at 1389.40 cm-
1. The broad peak 3100-3700 cm-1 corresponds to a weak v1 vibration of H2O vapour. 
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Figure 5.3-17. Close up of the region 1200-1800 cm-1 for the Raman spectra of the host and the vapour 
phase of a fluid inclusion in a quartz overgrowth associated with an aragonite bearing sample from the 

feeder zone of an ancient travertine deposit, Salt Wash Graben, Green River. The upper and lower ν1-2ν2 

peaks of CO2 are visible at 1389.40 and 1286.60 cm-1 respectively. 
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Figure 5.3-18. Raman spectra of the host and the vapour phase of a fluid inclusion in a quartz overgrowth 
associated with gypsum in a sample from a bleached zone in the Entrada Sandstone, Salt Wash Graben, 

Green River. The main ν1-2ν2 peak of CO2 is visible at 1388.92 cm-1. The v1 peak of CH4 is visible at 

2916.5 cm-1. 
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Figure 5.3-19. Close up of the region 1200-1800 cm-1 for the Raman spectra of the host and the vapour 

phase of a fluid inclusion in a quartz overgrowth associated with gypsum in a sample from a bleached zone 

in the Entrada Sandstone, Salt Wash Graben, Green River.  The upper and lower ν1-2ν2 peaks of CO2 are 

visible at 1388.92 and 1286.03 cm-1 respectively. 
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Figure 5.3-20. Close up of the region 2825-3000 cm-1 for the Raman spectra of the host and the vapour 
phase of a fluid inclusion in a quartz overgrowth associated with gypsum in a sample from a bleached zone 

in the Entrada Sandstone, Salt Wash Graben, Green River. The v1 peak of CH4 is visible at 2916.5 cm-1. 

5.1.13. Microthermometry 

Tm and Th of analysed fluid inclusions are displayed in Figs. 5.3-21 and 5.3-22. Fig. 5.3-23 shows 

Th and Tm for those fluid inclusions from which both quantities could be analysed. The salinity 

(in terms of total weight % Na, K, Ca, Mg, Cl, SO4 and HCO3) and the emanation temperature of 

modern CO2-spring fluids are included in these figures for comparison. Due to the turbidity of 

both minerals visual determination of melting point temperature was problematic and Tm could 

only be determined for ~1/3 of inclusions examined.  The majority of inclusions examined 

possessed or nucleated a gas bubble upon cooling. Homogenization temperatures where measured 

on inclusions upon heating, following melting point determination. 

Homogenization temperatures and salinity estimates for the two specimens examined fall 

into distinct clusters (Fig. 5.3-23). Fluid salinities (1.31-2.82 wt% salt) and homogenisation 

temperatures (16.1-17.5 °C) for inclusions in aragonite (n = 12) lie within the range of salinity 

(0.38-1.90 wt% salt) and temperatures (14.7-27.0 °C) of modern CO2-charged fluids at Green 

River (n = 10). Fluid salinities (2.49-6.95 wt% salt) and homogenisation temperatures (22.1-27.1 

°C) for inclusions in gypsum (n = 25) formed from more saline fluid, at moderately higher 

formation temperatures.  
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Figure 5.3-21. Fluid salinities, estimated from last ice melting temperatures (Tm), for primary aqueous 

inclusions in aragonite and gypsum veins from the Entrada Sandstone, Salt Wash Graben, Green River. The 

salinities of modern CO2-charged fluids are included for comparison. 
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Figure 5.3-22. Homogenization temperatures (Th) of primary aqueous inclusion in aragonite and gypsum 

veins from the Entrada Sandstone, Salt Wash Graben, Green River. The emanation temperatures of modern 

CO2-charged fluids are included for comparison. 
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Figure 5.3-23. Fluid salinities versus homogenization temperatures of primary aqueous inclusion in 

aragonite and gypsum veins from the Entrada Sandstone, Salt Wash Graben, Green River. 

5.4. Discussion: Fluid Inclusion Petrology 

Aragonite crystals and associated quartz overgrowths contain: i) primary single phase aqueous 

inclusion of moderate salinity (1.31-2.82 wt% salt); ii) primary two phase inclusions of saline 

fluid and both pure CO2 (100 mol% CO2) and a single inclusion with mixed CO2 and CH4 vapour 

(92 mol% CO2, 8 mol% CH4) and; iii) primary inclusions of liquid hydrocarbon, aqueous fluid 

and vapour (vapour composition could not be determined with LRM due to the fluorescence of 

the hydrocarbon phase). Homogenisation temperatures (16.1-17.5 °C) and vapour phase densities 

(0.01-0.05 ±0.02 g/cm3) attest to inclusion at low pressures (0.41-2.49 ±1.03 MPa) at shallow 

burial depths (29-221 ±97 m) during the most recent periods of basin exhumation. Fluid salinities, 

entrapment temperatures and dissolved CO2 concentrations (0.06-0.88 ±0.33 mol/l) for these fluid 

inclusions fall with the ranges of those quantities observed in the modern CO2-charged fluids at 

Green River. This suggests that aragonite and its associated alteration textures formed from a 

fluid of composition similar to that of the modern CO2-charged fluids. The brine content of this 

fluid, based on the measured salinities of the inclusions, would have been within the range of 

those observed in the modern CO2-charged fluids or ~1 wt% more saline.  
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CO2 was only observed in the vapour phase of a small number of the actual inclusions 

examined in aragonite bearing samples (4 out of 52 examined). This is thought to be due to 

difficulties in accurately targeting the vapour phase, the small size of the vapour bubble (typically 

<1.5 µm) and the very close proximity of the CO2 concentrations to the theoretical detection limit 

of LRM.  

Gypsum crystals and associated quartz overgrowths examined in this fluid inclusion 

study are petrologically associated with large-scale diagenetic bleaching of the Entrada Sandstone 

at the crest of the Green River anticline. Gypsum crystals and associated quartz overgrowths 

contain: i) primary single phase aqueous inclusion of high salinity (2.49-6.95 wt% salt); ii) 

primary two phase inclusions of saline fluid and both pure CO2 (100 mol% CO2) and mixed CO2 

and CH4 vapour (88-73 mol% CO2, 11-27 mol% CH4) and; iii) primary inclusions of liquid 

hydrocarbon, aqueous fluid and vapour (vapour composition could not be determined with LRM 

due to the fluorescence of the hydrocarbon phase). Homogenisation temperatures (22.1-27.1 °C) 

and vapour phase densities (0.04-0.09 ±0.02 g/cm3) attest to inclusion at higher pressures (2.28-

4.56 ±1.03 MPa) and burial depths (202-413 ±97m) than inclusions formed in aragonite 

associated samples. Based on burial curves for the Entrada Sandstone in the area surrounding 

Green River (Nuccio and Condon, 1996), modified for local variations in burial depth due to the 

structural high formed by the Green River anticline, the interval from which these samples were 

taken passed through the burial depth range 200-400 ±97 m between 2.1-5.5 ±1.5 Ma (Fig 5.4-1).  

Fluid salinities, entrapment temperatures and formation pressures suggest that gypsum 

and the large-scale diagenetic bleaching formed during the latest stages of basin exhumation from 

a saline fluid enriched in brines derived from the Pennsylvanian evaporite formations. In a plot of 

homogenization temperature versus fluid salinity (Fig. 5.3-23) values for the two sets of 

examined fluid inclusions fall along an approximately linear array of increasing fluid salinity with 

increasing entrapment temperature. Possible explanations for this apparent correlation included i) 

the transport of ‘hot’ brine into the Entrada Sandstone ii) a correlation between pore fluid salinity 

and temperature where increasing temperatures reflect higher burial depths and fluid inclusions of 

greater age. Given that fluids passively migrating along faults are likely to loose heat through 

thermal conduction it seems unlikely that basinal brines would carry significant heat into 

shallower formations. Thus, increasing salinity with increasing entrapment temperature most 

likely records a decrease in the proportion of Paradox formation brine entering the Entrada 

sandstone with time. 
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A number of single, two and three phase hydrocarbon bearing primary fluid inclusions were 

observed in all the sample types analyzed. CH4 is present in the vapour phase of three of the 

primary fluid inclusions; two in gypsum (17-21 mol% CH4), and one in aragonite (8 mol% CH4). 

CH4 may have been derived from: i) dissolved or free phase gas migrating with the CO2/brine 

mixture entering the Entrada Sandstone; ii) exsolved from a liquid hydrocarbon phase that 

entered the Entrada Sandstone during deep burial; iii) exsolved from a liquid hydrocarbon phase 

that migrated along with the CO2/brine mixture; iv) the reduction of CO2 to form CH4 via the 

reaction: 

2 2 4 2
4 2CO H CH H O+ = +        (5.13) 

 
However, this reaction requires elevated temperatures and redox conditions improbable in 

shallow diagenetic systems (Berndt et al., 1996; Horita and Berndt 1999; McCollom and Seewald 

2001). Migration of both liquid hydrocarbons and CH4, along with a CO2 bearing free gas phase 

or CO2-saturated brine, would be aided by the high solubility of CO2 in hydrocarbon liquids (e.g. 

Dehima et al., 1999) and the resulting reduction in oil viscosity: a process akin to natural 

enhanced oil recovery. Gypsum bearing samples contain a higher proportion of CH4 bearing 

inclusions, and the vapour phase of these inclusions contains a higher proportion of CH4 relative 

to CO2 than does the aragonite bearing samples (only a single CH4 bearing inclusion was 

observed in aragonite, with low mol% CH4 relative to CO2). This general trend of apparently 

decreasing CH4 content with time may reflect a flushing of the hydrological system, with 

hydrocarbon liquids and CH4 being stripped from the system by CO2 rich fluids and gases. 

CH4 would be a suitable redox agent for the reduction of Fe3+ and dissolution of hematite. 

However, CH4 was not observed in all the volatile bearing inclusions, the rest contained only CO2 

and CO2 is the dominant volatile phase in all volatile bearing inclusions. Reductive dissolution of 

hematite would be enhanced by pH suppression at high pCO2 and by the overall availability of H+ 

(e.g. Cornell and Giovanoli, 1993). Kinetically rapid dissolution of hematite may explain the 

sharp nature of the contact between bleached and unbleached sandstone (e.g. Fig. 5.3-2). 

Additionally, isotopically light HCO3
- derived from the break down of CH4, mixed with 

isotopically heavy HCO3
- derived from crustally sourced CO2 may explain measured values of 

δ13CCaCO3 lighter than those observed in the young leaking CO2 system (section 5.1.10.3). 

The paragenesis of the Entrada Sandstone is presented in figure 5.4-2, which shows the 

relative timing and duration of diagenisis observed in this study to regional diagenetic episodes 

and to local and regional geological events. Detrital fragments of locally derived pisolites and 

travertine have recently been discovered in the fluvial Lower Cretaceous Yellow Cat Member of 

the Cedar Mountain Formation, at Crystal Geyser Dinosaur Quarry, near Crystal Geyser (Suarez 

et al., 2007a, 2007b). The similar morphology and mineralogy of these fragments to actively 

forming travertine at Crystal Geyser led those authors to attributed their formation to CO2-
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charged springs. Additionally, extensive carbonate, Fe-oxide, and silicate alteration, including 

chemical bleaching of the sediment, at the Temple Mountain uranium district, on the edge of the 

San Rafael Swell have been attributed to CO2-charged fluids and dated at ~13Ma (Morrison and 

Parry, 1988). These finding suggests that CO2-charged fluids have been leaking from local Green 

River area for considerably longer periods than is evident from persevered surface travertine 

deposits and that CO2-hosting paleo-reservoirs could be expected in now exhumed sandstone 

formations. 

 

 

Figure 5.4-2 Paragenesis of the Entrada Sandstone in the vicinity of Green River Interpreted paragenetic 

relationships of diagenetic alteration and associated geological events constructed from age data of Beitler 

et al., 2005; Condon, 1997; Dockrill, 2005; Doelling et al., 1988;  Morrison and Parry, 1988; McKnight, 

1940; Nuccio and Condon, 1996; Suarez et al., 2007a. 
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5.5. Conclusions 

Mineral assemblages in samples from travertine feeder systems contain low salinity aqueous 

single and two phase primary fluid inclusions and single, two and three phase hydrocarbon 

bearing primary fluid inclusions. The aqueous fluid contained in these inclusions was trapped at a 

comparable temperature to, and is of salinity similar to that of modern CO2 charged fluids 

escaping along normal faults of the Salt Wash Graben and Little Grand Fault systems.  Vapour 

densities, inclusions pressures and homogenisation temperatures suggest these inclusions formed 

within the most recent periods of basin exhumation at very shallow burial depths (<200 m). The 

CO2 content of these fluid inclusions is similar to that of the modern fluid but ranges to higher 

concentrations. This may represent the trapping of less CO2-degassed fluid than that which is 

seem escaping to the surface today. A single inclusion was observed to contain a low 

concentration of CH4 suggesting the intermittent presence of CH4 in the CO2-rich gas phase 

associated with travertine formation.  

Mineral assemblages in samples from zones of extensive Fe3+ bleaching in the Entrada 

Sandstone contain primary fluid inclusions of moderately saline aqueous fluid, CO2 and CH4 

vapour and occasional liquid hydrocarbon bearing two and three phase primary inclusions. 

Vapour densities, inclusion pressures and homogenisation temperatures attest to the formation of 

these inclusions at shallow burial depth, during basin exhumation, in the last 2.1-5.5 ±1.5 Ma. 

Fluid salinities are higher than those observed in modern fluid at Green River which suggests an 

increased component of Paradox formation brine in these older entrapped fluids in agreement 

with petrological observations and isotopic evidence presented in section 5.1.10.3. The presence 

of a CO2 rich vapour phase with moderate quantities of CH4 is attributed to mobilization of 

hydrocarbons and CH4 by migrating CO2 bearing fluids and gases. The CH4 dissolved in this fluid 

would be a suitable redox agent for the reduction of Fe3+ to Fe2+, and the high concentrations of 

CO2 would significantly enhance the solubility and dissolution rate of hematite by lowering pH 

and increasing the availability of H+. 

 

 

 

 



 

 

 

 
 
 
 

 

 

 

 

Table 5.5-1 Details of the gas composition, gas densities, inclusions pressures, formation depths for the vapour phase of primary fluid inclusions in vein and 

matrix samples associated with large-scale diagenetic bleaching (B) and bleaching in ancient travertine feeder systems (Y-B) in the Entrada Sandstone, Salt 

Wash Graben, Green River.  

 
 

Sample Type 

Host 

Mineral 

Gas 

Composition 

∆ ν1-

2ν2 ρCO2  PCO2 Depth  ν1 ρCH4  PT Depth  

Dissolved 

CO2 

Dissolved 

CH4 

     (g/cm3) 

 

(MPa) (m)  (g/cm3) (MPa) (m)  (mol/l)  (mol/l) 

RS073 B Quartz CO2 (73%), CH4 (27%) 102.89 0.04 2.28 202 2916.50 0.028 3.94 356 1.05 0.36 

RS061 B Gypsum CO2 (89%), CH4 (11%) 102.90 0.09 4.56 413 2916.49 0.029 3.98 360 1.30 0.15 

RS066 B Gypsum CO2 (100%) 102.84 0.06 3.32 298     1.18  

RS061 B Quartz CO2 (100%) 102.81 0.05 2.74 244     0.97  

RS069 Y-B Quartz CO2 (100%) 102.75 0.03 1.45 125     0.14  

RS069 Y-B Quartz CO2 (100%) 102.72 0.02 0.83 67     0.29  

RS069 Y-B Aragonite CO2 (100%) 102.80 0.05 2.49 221     0.88  

RS069 Y-B Quartz CO2 (92%), CH4 (8%) 102.70 0.01 0.41 29 2917.27 0.001 0.17 7 0.06 0.005 
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Chapter 6  

Discussion and Conclusions 

Understanding the geochemical behaviour of anthropogenic carbon dioxide stored in geological 

reservoirs, over a range of time-scales, is crucial for quantifying the risk of leakage and the 

evolution of the sequestered form of that CO2 through the life of an individual storage site. 

Prediction of the long-term fate of this carbon dioxide requires determination of the relevant gas-

fluid-mineral reactions and their chemical kinetics (e.g. Xu et al., 2004). These gas-fluid-mineral 

reactions may act either to increase the stability of stored CO2 by precipitating carbonate minerals 

or enhance leakage by corroding well cements, existing boreholes, cap rocks and fault seals. 

Modelling the progress of such reactions is frustrated by uncertainties in the absolute mineral 

surface reaction rates and the significance of other rate-limiting steps in natural systems (see 

White and Brantley, 2003 for a complete review). It is well established that silicate dissolution 

rates in the natural environment are typically 2 to 5 orders of magnitude slower than, far-from-

equilibrium, laboratory-derived rates at similar pH and temperature conditions (White and 

Brantley, 2003), and the laboratory rates are typically the only rates available for simulations (e.g. 

Knauss et al., 2005; White et al., 2005; Xu et al., 2004). Quantification of the kinetics of fluid-

mineral reactions in natural systems, rich in CO2, is thus required for the accurate prediction of 

the long-term performance of geological storage sites.   

This thesis uses the chemical evolution of groundwater from the Jurassic Navajo 

Sandstone, part of a leaking natural accumulation of CO2 at Green River, Utah, in the Colorado 

Plateau, USA, to place constraints on the rates and potential controlling mechanisms of the 

mineral-fluid reactions, under elevated CO2 pressures, in a natural system. Surface carbonate 

deposits and cementation within the footwall of the local fault systems record multiple injections 

of CO2 into the Navajo Aquifer and leakage of CO2 from the site over ca. 400,000 years. 

Geochemical and petrological methods are employed to examine the mineralogical consequences 

of this fluid-mineral interaction. The stable and radiogenic isotopic composition of these deposits 

are examined and used to interpret the physical and chemical processes controlling the long-term 

leakage of CO2 from the underlying Navajo Aquifer.  Additionally, large scale zones of 

mineralization and mineralogical alteration in the overlying Entrada Sandstone are examined; the 

role of CO2 and other volatile phases (e.g. CH4, H2S, organic acids) in the production of this 

alteration is investigated using petrographic techniques and the analysis of volatile bearing, 

mineral hosted fluid inclusions. The key findings of this thesis are summarized below.  



Chapter 6: Discussion and Conclusions 

 210 

6.1. Carbon Storage Site Analogue, Green River, Utah 

6.1.1. Summary of the CO2-charged Groundwater Hydrogeochemistry 

Crustally sourced CO2, produced from diagenetic reactions in the Leadville Limestone, at depth 

within the Paradox Basin, migrates vertically through the stratigraphy mixing with and dissolving 

into basinal brines of the Paradox Formation. These CO2-charged brines migrate along the Little 

Grand and Salt Wash fault systems into the shallow White Rim and Navajo Aquifers where they 

mix with meteorically derived groundwaters, flowing along hydraulic gradients from zones of 

recharge in the San Rafael Swell to zones of discharge near the confluence of the Green and 

Colorado Rivers. This passive migration of CO2 is analogous to leakage of a deep geological CO2 

reservoir into shallower aquifer systems. CO2 leaks to the surface through the fault damage zone 

of the Little Grand and Salt Wash fault systems and through a number of abandoned petroleum 

exploration wells.  

Time-series analysis of the fluid isogeochemistry from the largest of these leakage sites, 

Crystal Geyser, has provided important insights into the plumbing of fault leakage and the role of 

CO2-driven cold water geysering in stimulating and enhancing CO2 leakage rates. Cold water 

geysering of Crystal Geyser, driven by CO2-degassing, causes pressure depletion in the Navajo 

Aquifer. This stimulates influx of CO2-charged brines from deeper formations, most likely from 

the White Rim Sandstone, on the time-scale of the geysering events, which mix with chemically 

distinct fluids in the host aquifer. The physical process of CO2 gas-driven geysering is therefore 

an important mechanism for the stimulation of vertical fluid and gas migration in the subsurface 

and will be important for prolonging effusion from leaking wells in CO2 storage sites. Estimates 

of the average annual CO2 emissions from Crystal Geyser range from 5694 ± 1708 t/a to 12702 ± 

3810 t/a. Combining these with estimates of the annual fluid flux results in average CO2 

concentrations of ~4 to 10 mol L
-1

, greatly exceeding the maximum solubility of CO2 in the 

Navajo Aquifer. This strongly implies that CO2, in addition to brine, is imbibed through the Little 

Grand fault as a consequence of the geysering process and is added to the Navajo Aquifer close to 

the site of Crystal Geyser.  

CO2 entering the Navajo Sandstone groundwater system dissolves into the formation 

water, suppressing pH and mineral saturation in the fluid promoting dissolution of silicate and 

carbonate minerals in the host aquifer. The introduction of this CO2 increases the fluids capacity 

to accept dissolved solids by lowering the pH and the saturation state of the groundwater, 

enhancing mineral dissolution. As a result, the CO2-rich groundwaters evolve towards very high 

solute concentrations after prolonged water-rock interaction. In geological CO2 storage sites this 
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processes will ultimately enhance the fluids capacity to accept dissolved CO2, through ionic 

complexation, thereby enhancing solubility trapping. 

The groundwater chemistry is controlled by a mix of kinetically rapid, equilibrated mineral-

fluid reactions and disequilibrated reactions where the mineral surface dissolution kinetics are 

slow or the saturation state of the reacting phase is controlled by an additional rate limiting step. 

The dominant controlling reactions are the dissolution of plagioclase (An38) and K-feldspar 

which result in increasing concentrations of Na
+
, K

+
 and Al

3+
 as the groundwaters evolve. These 

phases, in addition to quartz, dominate the mineralogy of the Navajo Sandstone. With progressive 

flow through the aquifer, feldspar hydrolysis reactions consume H
+
 and liberate solutes to 

solution which increase mineral saturation in the fluid. The concentration of dissolved silica, 

derived from the dissolution of silicate minerals, is controlled by equilibrium with an amorphous 

silica phase. Kaolinite and smectite are the dominant stable clay minerals and reaction products of 

feldspar dissolution. Equilibrium with silica maintains most groundwater samples within the 

kaolinite stability field. Because aSiO2(aq) is fixed by the precipitation of an amorphous silica 

phase, kaolinite will not regulate the dissolved Al
3+

 concentration (Deutsch, 1997) and its 

concentration will be regulated by the dissolution of silicate minerals. 

The fault damage zones of the Little Grand fault and Salt Wash Graben are altered and 

cemented by the passage of CO2-charged fluids. Feldspar grains show evidence of extensive 

corrosion and reprecipitation of silica, smectite and kaolinite on grain surfaces and within the 

local pore volume. Feldspar grains continue to dissolve even when coated with up to 10µm 

surface coatings of inter-grown clay minerals, suggesting the maintenance of porosity within the 

surface coating. This adds to the evidence that the presence of such a coating does not inhibit 

dissolution at the mineral surface.  

6.1.2. Fluid-Mineral Reaction Kinetics 

Silicate Mineral Dissolution 

 
Using the evolution of the CO2-charged groundwater chemistry along defined flow paths the 

kinetics of the dissolution reactions controlling groundwater chemistry was investigated. The 

progress of individual reactions, inferred from changes in groundwater chemistry was modelled 

using mass balance techniques. The mineral reactions are close to stoichiometric with plagioclase 

and K-feldspar dissolution largely balanced by precipitation of clay minerals and carbonate. 

Mineral modes, in conjunction with published surface area measurements and flow rates 

estimated from hydraulic head measurements, are then used to quantify the kinetics of feldspar 

dissolution. The close to equilibrium plagioclase dissolution rates derived from mass balance and 

hydrological modelling range from 10
-13.74 ±0.11/0.15 

mol·m
-2

·s
-1

 to 10
-18.63 ±0.6/1.5

 mol·m
-2

·s
-1

. K-

feldspar dissolution rates range from 10
-15.45 ±0.08/0.09

 mol·m
-2

·s
-1

 to 10
-17.42 -0.27/0.81

 mol·m
-2

·s
-1

. These 
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rates are 1 to 3 orders of magnitude slower than rates determined by laboratory experiments at 

similar temperatures and pH, and 1 to 3 orders of magnitude faster than rates determined in the 

same aquifer under alkaline groundwater conditions. The enhancement of feldspar dissolution 

rates in this study area, relative to those determined by Zhu (2005) for alkaline groundwater, is 

attributed to the introduction of CO2 which depresses silicate mineral saturation in the fluids. The 

finding that the Green River system is close to thermodynamic saturation adds to the evidence 

that the 2–5 orders of magnitude discrepancy between laboratory and field rates may, in part, be 

explained by differences in the thermodynamic state of experimental and natural fluids (c.f. 

Burch et al., 1993; White and Brantley, 2003).  

The range of rates and the rate:∆Gr dependence observed at Green River suggest that 

feldspar dissolution rate laws should include exponentially declining rates close to equilibrium 

(∆Gr <-10kJ/mol), over a wider range (and slower absolute values) of dissolution rate than 

previously suggested by experimental studies. These findings suggest that mineral-fluid reactions 

in CO2 hosting reservoirs will be promoted by the state of disequilibrium induced by the 

introduction of CO2 and highlight the importance of including a rate:∆Gr dependence in the 

geochemical modelling of the long term interactions of CO2-fluid-rock in geological storage 

reservoirs. This suggests that in the earliest stages of CO2 injection in storage sites systems can be 

expected to be highly undersaturated with respect to minerals comprising the host reservoir and 

reaction rates will be fast, occurring at low ∆Gr.  

 

Carbonate Precipitation Kinetics in CO2-leaking Faults 

 

The fault damage zones of Little Grand fault and Salt Wash Graben are heavily veined and 

cemented with carbonate where CO2-charged fluids ascend to the surface, degassing CO2 which 

drives carbonate supersaturation in the fluid. The precipitation of carbonate in CO2 leaking faults 

has important implications for the long term performance of these leakage conduits as carbonate 

precipitation may eventual block leakage pathways. The kinetics of calcite precipitation where 

quantified by measuring the concentrations of trace elements known to exhibit a kinetically 

dependent liquid-solid partitioning. Sr concentrations in calcite cements within the fault damage 

zone record mean calcite precipitation rates of 1.3x10
-6

 to 2.1x10
-6

 mol/m
2
/s, comparable to 

laboratory derived calcite precipitation rates, in fluids with moderate Mn/Ca and Fe/Ca, at Ωcc of 

~1 to 3. The overall variation in rate is large, from ~1x10
-9

 to ~1x10
-5

 mol/m
2
/s, probably 

reflecting both variation in the intrinsic rate and variation in the Sr/Ca of the parent fluid. This 

suggests that far-from-equilibrium carbonate precipitation, which blocks fracture conduits and 

causes the leaking system to self-seal, driven by CO2 degassing in the shallow subsurface, can be 

accurately modeled with laboratory derived rates. 
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The continued study of fluid-rock interactions in natural settings may help further elucidate 

the relationship between rate and ∆Gr for a range of mineral phases, in the close-to-equilibrium 

region which is so difficult to assess experimentally. These results must be tempered with the 

understanding that large uncertainties exist in the quantification of modelling parameters in 

natural settings, especially reactive mineral surface area, indirect sampling of reservoir fluids and 

the hydro-geological setting. The long duration of reaction accessible in natural studies, whilst 

allowing access to controlling factors of real mineral weathering such as near equilibrium rate 

dependence, also introduces uncertainty as many model parameters may change through the 

duration of the ‘experiment’. The change in porosity and reacting mineral surface through the 

duration of the natural experiment cannot easily be factored into the calculation of the controlling 

rates. Heterogeneity in reservoir hydraulic properties, mineralogy and fluid chemistry also lead to 

uncertainty in the calculation of rates. 

Heavy Metal Mobilization in CO2-rich Fluids 

The modern CO2-charged groundwaters contain high quantities of dissolved Fe
2+

 and Mn
2+

. 

Superposition of Eh, pH and aFe
2+

 suggests that the redox sate of the fluid is controlled by low 

oxygen fugacity and fixed by the Fe
3+/

Fe
2+

 redox couple through equilibration with hematite. This 

has important implications for the mobilization and transport of metals in CO2 storage sites and is 

analogues to iron mobilization processes recently observed at the Frio test CO2-injection site 

(Hovorka et al., 2006; Karaka et al., 2006; Smyth et al., 2009). This suggests that, even in the 

absence of an additional reductant, deep O2-depleted groundwaters in CO2 storage sites will 

derive high metal concentrations from the pH suppression induced by large quantities of 

dissolved CO2. 

The fault damage zones of the Little Grand fault and Salt Wash Graben are altered and 

cemented by the passage of CO2-charged fluids. This alteration includes dissolution and 

remobilization of pre-existing Fe-oxide grain coatings, which bleaches the sediment from a 

distinctive ochre red to pale yellows and white at scales of mm’s to cm’s. High Mn and Fe 

concentrations are observed in fracture and host rock calcite cements within the mineralized 

portions of the damage zone. These cements record elevated Mn
2+

 and Fe
2+

 concentrations in the 

ancient CO2-charged groundwaters. The measured Fe and Mn concentrations where combined 

with equilibrium modelling techniques to derive groundwater Eh (30 to -50 mV) and  pH (5.5 to 

6.5) conditions. These ancient groundwater compositions are comparable to the Eh-pH conditions 

of the modern CO2-charged groundwaters. This finding, together with hematite solubility 

modelling and field and petrographic observations of extensive dissolution of hematite grain 

coatings and Fe-oxide reprecipitation, suggests that CO2-charged fluids alone are capable of 

dissolving and mobilizing Fe in these sediments. However, the precise control on Eh is uncertain.  
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Equilibrium redox potentials for the SO4
2-

-H2S and CO2-CH4 redox couples are in the region of 0 

to -200 mV and -200 to -500mV, respectively (Drever, 1997). The calculated Eh values are 

generally higher than those expected for redox potentials controlled by either SO4
2-

-H2S or CO2-

CH4 equilibrium. The range of values obtained is more comparable to redox potentials observed 

in groundwaters with low O-fugacity (e.g. White et al., 1990). 

Analogues km-scale sandstone bleaching of the Entrada Sandstone is observed at the 

apex of the Green River anticline. Mineral assemblages in samples from zones of extensive Fe
3+

 

bleaching in the Entrada Sandstone contain primary fluid inclusions of moderately saline aqueous 

fluid, CO2 and CH4 vapour and occasional liquid hydrocarbon bearing two and three phase 

primary inclusions. Vapour densities, inclusion pressures and homogenisation temperatures attest 

to the formation of these inclusions at shallow burial depth, during basin exhumation, in the last 

2.1-5.5 ±1.5 Ma. The presence of a CO2-rich vapour phase with moderate quantities of CH4 is 

attributed to mobilization of hydrocarbons and CH4 by migrating CO2 bearing fluids and gases. 

The CH4 dissolved in this fluid would be a suitable redox agent for the reduction of Fe
3+

 to Fe
2+

, 

and the high concentrations of CO2 would significantly enhance the solubility and dissolution rate 

of hematite by lowering pH and increasing the availability of H
+
. 

CO2 has played an important role in the dissolution and mobilization of metal oxides in 

all of these sandstone aquifer systems. This has important implications for trace and heavy metal 

mobilization in CO2 storage sites as solubilisation of heavy metal bearing minerals in shallow 

groundwater systems is of concern for the contamination of potable water sources (e.g. Wang and 

Jaffe, 2004). Further work on understanding the kinetics of these reactions, and their coupling to 

advective and diffusive fluid transport process, is of critical importance to the accurate prediction 

of the performance of CO2 storage sites. 

6.1.3. CO2 Leakage from Fault Systems 

Ancient surface travertine deposits along the trace of the Little Grand fault and Salt Wash Graben 

and carbonate veining within the fault damage zones record leakage of CO2 from the Navajo 

Sandstone over a ca 400,000 year period (Burnside, 2009).  CO2 leakage initiated at ca 413 ka 

from Salt Wash Graben and at ca 114 ka from Little Grand Fault (Burnside, 2009). Temporal 

variation in the δ
18

OCaCO3 and δ
13

CCaCO3 of these deposits reflects multiple injections of CO2 into 

the underlying Navajo Sandstone from deeper formations, at 10,000’s year intervals. These new 

pulses of CO2 are enriched in 
12

C and 
16

O, dissolving to form HCO3
-
(aq) with a light stable 

isotopic composition, which is inherited by the daughter carbonate precipitates. Following the 

injection of individual CO2 pulses, leakage and CO2 degassing drives a progressive Rayleigh 

distillation of the HCO3
-
(aq) reservoir and the precipitating carbonate becomes increasingly 

enriched in 
13

C and 
18

O as a consequence. Kinetic fractionation of HCO3
-
(aq) during these periods 
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implies rapid rates of CO2 degassing and carbonate precipitation, faster than the HCO3
-
-H2O 

equilibration reaction which operates on the 1000’s to 10000’s sec time-scale (Hendy, 1971). 

Periods of progressive isotopic fractionation correlate with periods of rapid surface travertine 

accumulation. The linear variation in δ
18

OCaCO3 and δ
13

CCaCO3 with time reflects constant rates of 

CO2 degassing over 10’s kyrs. Correlations in δ
18

OCaCO3 and δ
13

CCaCO3, kinetic fractionation of the 

HCO3
-
(aq) reservoir, the volume and rate of surface travertine formation and its spatial and 

temporal distribution suggest that initially leakage: a) occurred rapidly and at a constant rate, b) 

was localised at the anticline crest and c) occurred from a reservoir fluid saturated in CO2, 

coexisting with a free-gas phase. A sharp inflection in leakage rate and an approximately 

concurrent cessation in kinetic fraction of the HCO3
-
(aq) reservoir are interpreted to reflect 

depletion of the saturated CO2 and a return to undersaturated conditions, after ~75ka of leakage. 

During this time leakage sites propagated laterally along the length of the fault trace as fracture 

conduits were blocked by carbonate deposition and new leakage pathways were exploited and 

opened by mineral-fluid reactions. Fracture blocking rates increased as the CO2 charge dissipated, 

pCO2 in the aquifer fell and the fluids became increasingly oversaturated in carbonate.   

Whilst the cumulative CO2 loss from both Little Grand Fault and Salt Wash Graben are 

of the same order of magnitude (~1x10
7
 tonnes CO2), the time required to deplete the initial CO2-

charge to a state of CO2-undersaturation (~8 ka versus ~75 ka), and leakage rates during this 

period (~927 t/a versus ~164 t/a), vary by an order of magnitude between the two fault systems. 

These leakage rates are also an order of magnitude slower than rates calculated for Crystal Geyser 

which range between 5694 ± 1708 t/a to 12702 ± 3810 t/a, depending upon assumptions about 

eruption frequency. Differences in leakage rates between the two fault systems is attributed 

primarily to intrinsic difference in the fault architecture and properties of the fault damage zone, 

including the shale gouge ratio and degree of reservoir-reservoir juxtaposition. However, the 

depth of the host reservoir, and thus maximum in-situ pCO2, imposes difference in the fracture 

blocking rate in each fault which may impact the overall leakage rates. In addition the hydraulic 

properties of shallow lithologies appear to be important in controlling leakage rates where 

permeable formations allow migration of CO2-charged fluids away from the fault damage zone, 

prolonging the fluid ascent time, enhancing CO2 degassing in the shallow subsurface and 

promoting carbonate deposition and fracture blocking. This highlights the importance of 

accurately modelling the fault surface, damaged zone, shallow lithological properties and regional 

hydraulic gradients when modelling leakage from CO2 storage sites. The findings suggest that in 

geological storage sites fault controlled CO2 leakage rates from shallow CO2 saturated fluids will 

be slow (relative to CO2 emission rates from anthropogenic sources) and fracture conduits will 

seal through carbonate precipitation impeding leakage, but that this process is likely to take place 

on 100’s to 1000’s year time-scales. 
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6.1.4. Future Work 

The interaction of fluid-mineral systems is of great importance in a range of Earth System 

processes including surface weathering, continental scale alteration of the crust, the behaviour 

and evolution of hydrothermal systems and a range of industrial processes including the long-

term containment of nuclear waste and the sequestration of CO2. Establishing reliable rates for 

silicate mineral dissolution and its controls also has important implications for many fundamental 

aspects of the long term relationship between silicate weathering, global climate (Berner and 

Berner, 1997) and global elemental cycling (Lasaga et al., 1994).  

Further work on groundwater systems over a range of pH conditions, bulk rock 

mineralogies and fluid residence times is crucial for understanding in-situ dissolution kinetics for 

the wide variety of mineral structures, and over a range of mineral saturations. Further work on 

the evolution of mineral surface areas over the long durations of surface mineral weather is vitally 

important to understand the role of the truly reactive mineral surface, as apposed to the bulk 

mineral surface, and how the evolution of this surface is coupled to properties of the contacting 

fluid and the duration of reaction. Ultimately it is likely that a range of transport phenomena are 

important in controlling fluid-mineral interactions at various scales. Further investigation of 

mineral reaction kinetics in a range of weathering environments under different conditions of 

water saturation and fluid velocities is crucial to understanding this coupling.  

The role of microbial activity in mediating and catalysing a range of in-situ fluid-mineral 

reactions is beginning to be appreciated (e.g. Edwards et al., 2005, Fein, 2000). Continued work 

on understanding the ecology of subsurface microbial systems and the role of microbes in 

modifying the mineral surface, the production of metabolic by-products that enhance mineral 

solubilities and mediation of groundwater solute chemistry is crucial for the accurate modelling 

of large-scale mineral weathering in both surface and subsurface systems.  

The further understanding of the long-term containment of CO2 will be greatly aided by 

continued work on natural analogue sites. Investigation of the geochemical evolution of a range 

of CO2-accumulations, in a variety of host lithologies, is vital to understanding the underlying 

fluid-mineral interactions, and their coupling to physical processes, that influence the long term 

mineralization of CO2. The study of a number of ‘failed’ natural CO2 accumulations, many of 

which exhibit evidence of leakage in the geological past but which are now secure, well help 

understand the coupling between geochemical and physical processes, that both enhance leakage 

and ultimately lead to its containment.  
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Appendix A  

Spring Geochemistry Data Tables 

 
 

 

A.1. Gas Isotope Geochemistry  
 

 

 

Table A.1-I  δ13
C of CO2(g) collected from CO2-charged springs during the 2006 and 2007 field seasons. 

 

 2006 Data    

Sample Spring/Geyser   δδδδ13
CCO2(g) (VPDB) Notes 

UT0601 Crystal Geyser -7.31    

UT0602 Torrey's Spring -6.79   

UT0603 Tenmile Geyser -7.55  Slow Freeze 

UT0605 Pseudo Tenmile Geyser -7.28   

UT0605A Pseudo Tenmile Geyser -7.32   

UT0606 Chaffin Ranch -7.25   

UT0608 Airport Well -6.61   

UT0609 Big Bubbling Spring -6.97  Excess Water 

UT0610 Small Bubbling Spring -7.02   

UT0611 Seep, Big Bubbling Spring -7.18   

UT0615 Tumble Weed Geyser -6.72   

UT0617 Side Seep, Crystal Geyser -7.30    

    

2007 Data    

Sample Spring/Geyser   δδδδ13
CCO2(g) (VPDB) Notes 

GR07g001 Pseudo-Tenmile Geyser -7.54   

GR07g006 Big Bubbling -7.21  

GR07g003 Torreys Spring -7.39  

GR07g004 Airport Well -6.29 Excess Water 

GR07g005 Small Bubbling Spring -6.98  

GR07g002 Tenmile Geyser -7.34  

GR07g012 Crystal Geyser -7.33  

GR07g009 Chaffin Ranch -6.88 Eruption 

GR07g008 Chaffin Ranch -6.20 Pre-eruption  
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A.2. CO2-spring Fluid Chemistry & Isotope Data 
 

Table A.2-I Major and minor element and isotope data from the CO2-charged springs, 2006 and 2007 field seasons. Alkalinity [Alk] was titrated in the field. 

2007 data includes field determined redox potentials (mV). 

 2006 Data Temp pH Al3+ Ba2+  Ca2+  Fe K+ Mg2+ Mn Na+ Si Sr2+  Cl- SO4
2- [Alk] DIC 87Sr/86Sr    

Spring/Sample Name °C   µmol/l µmol/l mmol/l µmol/l mmol/l mmol/l µmol/l mmol/l mmol/l µmol/l mmol/l mmol/l meq/l mmol/l      

Green River Airport Well 27.0 6.18 3.6 0.14 19.7 4.6 2.15 7.95 22.7 18.11 922.8 112.7 2.59 19.06 37.08 75.59 0.712660    

Crystal Geyser 18.0 6.46 4.9 0.10 21.8 44.4 7.98 9.02 25.1 159.02 186.7 142.9 137.94 26.46 68.86 107.37 0.712588    

Small  Bubbling Spring 17.2 6.17 3.2 0.12 18.2 2.3 7.35 8.88 19.0 160.27 139.7 138.0 128.63 26.65 56.54 118.89 0.711755    

Big Bubbling Spring 17.5 6.30 5.1 0.10 21.6 2.7 9.36 8.55 7.2 212.87 135.7 157.4 178.29 32.17 66.04 116.33 0.712798    

Side Seep, Big Bubbling 16.5 6.21 5.0 0.11 19.1 4.0 9.23 8.65 7.5 211.26 131.0 131.0 170.47 30.12 59.69 118.75 0.713053    

Pseudo-Tenmile Geyser 15.0 6.52 4.3 0.08 19.3 19.2 9.55 8.09 2.2 228.04 136.7 164.2 177.98 31.20 62.06 93.33 0.713327    

Torrey's Spring 15.8 6.59 4.8 0.13 23.5 48.0 11.02 7.93 19.1 251.29 152.3 145.0 193.14 30.16 78.72 111.63 0.712720    

Tenmile Geyser 15.7 6.58 5.0 0.14 22.2 83.1 6.79 9.44 18.5 219.01 159.5 236.3 165.19 14.30 58.21 83.19 0.712554    

Tumble Weed Geyser 15.9 6.46 5.0 0.12 18.8 5.2 8.11 8.90 12.1 189.25 144.3 153.5 132.88 19.74 62.12 97.94 0.712663    

Chaffin Ranch Geyser 14.7 6.73 5.0 0.08 26.0 67.6 7.58 9.78 17.4 193.54 134.0 165.5 128.39 14.54 76.12 100.15 0.712581    

                                     

                     

                     

                     

 2007 Data Eh Temp pH Al3+ Ba2+  Ca2+  Fe K+ Mg2+ Mn Na+ Si Sr2+  Cl- SO4
2- DIC 87Sr/86Sr δδδδ13CDIC    δδδδ18O    3H 

Spring/Sample Name mV °C   µmol/l µmol/l mmol/l µmol/l mmol/l mmol/l µmol/l mmol/l µmol/l µmol/l mmol/l mmol/l mmol/l   (VPDB) (SMOW) TU 

Green River Airport Well -42 26.8 6.18 4.6 0.09 22.18 106.0 2.19 8.82 24.0 20.55 993.0 104.2 2.59 20.93 66.73 N/A -1.83 -14.48 0.50 

Crystal Geyser -5 16.9 6.37 5.8 0.08 26.13 230.6 9.35 9.63 28.4 163.56 199.8 147.1 121.77 25.58 120.96 0.712719 -0.85 -14.52 0.30 

Small Bubbling Spring -7 19.2 6.14 4.3 0.07 19.81 61.1 8.82 9.54 19.2 164.80 143.4 128.5 131.07 25.44 90.83 0.712530 -1.17 -14.25 N/A 

Big Bubbling Spring -32 17.7 6.26 5.0 0.05 23.20 123.3 11.42 9.35 6.8 218.28 138.2 148.6 183.64 30.12 85.79 0.712721 -0.48 -13.88 0.30 

Side Seep, Big Bubbling -32 17.9 6.25 4.3 0.10 20.79 118.0 11.03 9.28 9.7 213.47 148.9 127.5 161.41 30.33 94.80 N/A -0.39 -13.77 N/A 

Pseudo-Tenmile Geyser 6 15.8 6.42 4.7 0.04 20.72 107.9 11.38 8.53 1.9 223.76 126.9 150.7 153.07 31.61 95.81 N/A -0.59 -13.76 0.70 

Torreys Spring -40 16.4 6.51 5.8 0.04 25.41 144.2 13.40 8.41 19.8 247.39 123.8 132.6 229.42 31.41 118.75 0.712617 0.74 -13.86 0.70 

Tenmile Geyser -23 18.5 6.55 5.0 0.06 24.08 55.9 7.81 10.13 19.0 220.07 131.6 221.3 197.61 19.71 110.01 0.711788 -1.67 -13.21 0.30 

Tumble Weed Geyser -32 17.9 6.42 6.0 0.03 28.26 263.7 8.62 10.34 17.9 192.66 115.7 154.4 179.45 25.91 84.53 0.713056 -0.19 -13.82 0.40 

Chaffin Ranch Geyser -35 16.0 6.75 5.8 0.02 27.58 267.2 8.62 10.33 17.4 194.19 112.4 147.1 145.74 26.22 118.59 N/A -0.63 -13.76 0.50 
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A.3. Crystal Geyser Fluid Chemistry & Isotope Data 
 

 

 
Table A.3-I Major and minor element and isotope data from temporal samples through the build up to, and course of, a large-scale eruption of Crystal Geyser. 

 

Sample Time pH Temp Al3+ Ba2+  Ca2+  Fe K+ Mg2+ Mn Na+ Si Sr2+  Cl- SO4
2- DIC δδδδ18O    δδδδ13CDIC    87Sr/86Sr 

      °C µmol/l µmol/l mmol/l µmol/l mmol/l mmol/l µmol/l mmol/l µmol/l µmol/l mmol/l mmol/l mmol/l (VSMOW) (VPDB)   

CG1 12:00:00 6.52 17.0 5.8 0.08 26.1 231 9.3 9.6 28 164 200 147 123 24.7 109 -14.36 -0.69 0.712712 

CG2 12:30:00 6.38 18.1 5.4 0.08 26.3 236 9.4 9.6 28 164 203 149 124 24.9 111 -14.32 -0.92 0.712704 

CG3 13:00:00 6.48 18.3 5.8 0.07 26.1 246 9.5 9.6 28 166 203 149 126 24.9 101 -14.35 -0.52 0.712707 

CG4 13:30:00 6.38 18.1 6.1 0.09 26.3 250 9.6 9.7 28 169 204 149 129 25.0 103 -14.32 -0.61 0.712723 

CG5 14:00:00 6.38 18.2 5.4 0.07 25.8 246 9.7 9.7 27 170 205 148 128 25.2 119 -14.51 -0.81 0.712726 

CG6 14:30:00 6.47 18.2 6.2 0.07 26.0 239 9.6 9.5 27 168 199 148 122 24.2 93 -14.48 -0.51 0.712723 

CG7 15:00:00 6.51 18.8 5.3 0.08 25.9 229 9.5 9.5 27 169 200 148 123 24.2 90 -14.54 -0.63 0.712723 

CG8 15:30:00 6.38 18.7 6.0 0.08 25.7 241 9.7 9.6 27 171 204 147 130 25.5 109 -14.44 -0.94 0.712726 

CG9 15:47:00 6.57 18.1 6.0 0.07 26.3 251 9.6 9.6 27 171 201 150 129 25.2 95 -14.43 -0.22 0.712729 

CG10 15:55:10 6.57 17.7 6.1 0.08 26.5 252 9.4 9.7 30 163 202 148 123 25.0 98 -14.46 -0.73 0.712698 

CG11 16:02:00 6.55 17.3 5.7 0.08 26.3 248 9.2 9.6 30 160 199 148 121 24.6 88 -14.49 -0.19 0.712696 

CG12 16:06:00 6.57 17.7 5.8 0.08 26.2 257 9.1 9.6 29 158 202 149 122 24.9 96 -14.50 -0.29 0.712685 

CG13 16:10:00 6.55 17.8 5.9 0.07 26.5 258 9.1 9.7 30 158 206 150 119 24.1 102 -14.51 -0.47 0.712669 

CG14 16:16:30 6.55 17.8 6.0 0.08 26.5 264 9.1 9.8 30 157 207 151 117 24.2 82 -14.52 -0.35 0.712674 

CG15 16:33:00 6.55 18.7 5.7 0.08 26.7 280 8.6 10.0 31 149 203 154 112 23.9 93 -14.55 -0.42 0.712613 

CG16 17:00:00 6.53 18.2 5.4 0.08 26.8 281 8.1 10.2 32 133 205 158 97 22.4 93 -14.61 -0.23 0.712551 

CG17 17:30:00 6.56 16.6 5.5 0.08 26.7 276 7.8 10.2 32 128 202 159 98 22.7 86 -14.64 -0.42 0.712524 
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A.4. Paradox Formation Brine Analyses 
 
Table A.4-I Major solute chemistry of brine analyses from the Paradox Formaiton, Paradox Basin, 

compiled from the USGS produced water database Breit, (2002). 

 

          mmol/l 

Lat Long API Interval pH Ca K Mg Na HCO3 Cl SO4 

37.32 -109.25 4303706099 DESERT CREEK 7.6 113  38 550 3 846 1 

38.14 -109.81 4303706346 PARADOX 8.3 52  46 572 0 719 26 

37.09 -109.5 4303705082 PARADOX 8 16  66 578 19 623 50 

38.15 -109.8 4303706350 PARADOX 8.2 135  47 596 3 931 14 

37.08 -109.5  PARADOX 8 32  31 638 16 649 50 

37.08 -109.49 4303705074 PARADOX 7.1 51  19 663 19 700 42 

38.15 -109.8 4303706350 PARADOX 6.8 187  40 674 3 1100 14 

37.05 -109.49 4303705047 PARADOX 7.18 66  62 703 20 869 36 

37.07 -109.6 43037005068 PARADOX 8.3 57 12 50 739 15 880 35 

37.3 -109.18 4303706002 PARADOX HERMOSA 6.8 177  77 793 2 1298 1 

37.07 -109.6 4303705068 PARADOX LOWER 7.4 62 13 53 797 14 959 34 

37.07 -109.6 4303705068 PARADOX 7.6 60 13 53 811 16 965 35 

37.07 -109.6 43037005068 PARADOX 7.8 60 13 51 811 17 959 35 

37.39 -109.46  ISMAY 6.6 100 10 39 870 5 1111 21 

37.09 -109.61 4303705077 PARADOX 7.1 135  75 892 19 1241 26 

37.09 -109.61 4303705077 PARADOX 7.1 105  53 943 19 1185 28 

37.66 -109.59 43037006292 ISMAY UPPER 7.4 174  53 944 2 1326 35 

37.05 -109.59 4303705057 PARADOX 6 195  117 973 9 1551 19 

37.07 -109.31 4303705067 PARADOX 7.9 162  113 996 8 1467 36 

38.59 -109.96 4301905035 PARADOX 5.4 182  97 1044 1 1574 16 

37.04 -109.22 4303705041 ISMAY LOWER 8 73 8 53 1059 6 1308 7 

   DESERT CREEK 7.2 187 7 70 1171 2 1664 13 

37.42 -109.42 4303706216 PARADOX 7.4 105  70 1179 2 1805 21 

37.3 -109.25  PARADOX 7.2 267  97 1249 2 1946 14 

37.09 -109.08 4303705080 ISMAY LOWER 7.3 133 8 91 1393 4 1828 10 

37.03 -109.53 4303720291 ISMAY LOWER 7.3 82  56 1415 23 1612 28 

37.32 -109.32  PARADOX 8.3 236  64 1428 4 1974 24 

   DESERT CREEK 7.2 223 17 90 1544 2 2172 7 

37.09 -109.08 4303705080 ISMAY LOWER 7.1 147 8 112 1554 5 2059 8 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7.2 170 11 79 1611 3 2087 15 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7.4 182 10 60 1652 2 2115 15 

38.34 -109.59 4303706415 PARADOX 6.7 49  22 1670 8 1721 42 

37.08 -109.14 4303705075 PARADOX 7.5 94  44 1687 3 1907 27 

37.3 -109.14 4303705990 PARADOX 7 210  216 1689 2 2510 14 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7.4 188 11 73 1693 3 2200 11 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7 188 10 79 1701 2 2228 15 

37.68 -109.5 43037006294 PARADOX 7.4 281  112 1706 3 2460 15 

37.08 -109.14 4303705075 PARADOX 7.5 115  50 1739 7 2032 15 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 5.5 188 11 79 1762 1 2285 10 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7.3 194 13 73 1763 3 2285 11 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 5 206 11 79 1781 1 2341 10 
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Table A.4-I continued 

          mmol/l 

Lat Long API Interval pH Ca K Mg Na HCO3 Cl SO4 

37.29 -109.5 43037005903 PARADOX ISMAY 6.2 556  226 1806  3357 6 

37.24 -109.11 4303705658 ISMAY 8.1 213  80 1826 3 2370 18 

37.22 -109.11 4303705483 ISMAY LOWER 7.1 195  80 1827 3 2341 17 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 5.7 206 11 97 1830 1 2426 10 

37.29 -109.14 4303705902 ISMAY LOWER 8.7 201 7 104 1831 1 2426 9 

37.26 -109.1 4303706545 ISMAY UPPER LOWER 7 206 13 79 1838 2 2398 10 

37.3 -109.14 4303705990 PARADOX 6.9 196  115 1892 2 2482 15 

37.3 -109.18 4303706002 PARADOX HERMOSA 7.7 241  177 1988 5 2528 8 

   PARADOX ISMAY 7.2 421  203 2012 1 3244 7 

37.62 -109.48  PARADOX ISMAY 7.8 413  151 2021 3 3131 7 

37.29 -109.44  PARADOX ISMAY 6.2 360  241 2028  3216 8 

37.72 -109.15 4303706303 PARADOX  302  201 2030 1 3013 10 

37.3 -109.31 4303705976 DESERT CREEK 6.6 451  158 2041 1 3244 7 

37.22 -109.11 4303705483 ISMAY 6.7 216  83 2054 1 2629 11 

37.68 -109.5 43037006294 PARADOX 6.8 358  179 2072 2 3120 13 

37.22 -109.11 4303705483 ISMAY 6.6 223  87 2088 2 2686 11 

37.25 -109.07 4303705704 ISMAY LOWER 5.7 221  99 2100 1 2713 13 

37.31 -109.56 4303706071 ISMAY LOWER 8.2 187  100 2182 2 2708 24 

37.68 -109.5 43037006294 PARADOX 6.7 377  230 2264 2 3456 10 

37.24 -109.29 4303705649 DESERT CREEK 6.9 376  166 2316 2 3385 6 

37.25 -109.34  DESERT CREEK 6.8 398  294 2349 1 3723 4 

37.27 -109.25 4303705805 PARADOX 6.7 447  185 2388 2 3639 6 

37.16 -109.57  PARADOX 5.3 357  190 2392 1 3469 9 

37.22 -109.26 4303705485 DESERT CREEK 6.8 360  181 2574 2 3639 8 

37.31 -109.54 4303706094 PARADOX 7.2 320  142 2596 4 3498 10 

37.29 -109.25 4303705918 DESERT CREEK 6.7 518  233 2600 2 4090 6 

37.29 -109.35  DESERT CREEK 7 548  196 2753 2 4231 5 

37.33 -109.19 4303706157 PARADOX 6.9 629  140 2807 5 4316 12 

37.24 -109.34 4303705648 PARADOX 6.6 455  270 2868 2 4299 9 

37.3 -109.29 4303706000 DESERT CREEK 6.5 488  188 2887 1 4231 4 

37.29 -109.52  PARADOX 6.5 548  218 2989  4513 5 

37.33 -109.26  PARADOX UPPER 6.2 568  227 3068 8 4639 6 

37.31 -109.32 4303706111 PARADOX P 3  517  156 3103 1 4441 4 

37.3 -109.05 4303705993 PARADOX 5.2 262  80 3140 1 3808 8 

37.19 -109.07 4303705304 PARADOX 6.7 771  220 3220 3 5190 5 

37.28 -109.29 4303705868 PARADOX C D 7 540  194 3302 3 4752 8 

37.54 -109.34 4303706269 PARADOX 5 465  188 3385  4682 4 

37.54 -109.33  PARADOX 6.2 464  115 3415 1 4569 4 

37.3 -109.05 4303705993 PARADOX ISMAY 6.5 308  143 3426 2 4316 6 

37.28 -109.27 4303705835 PARADOX C D 7.2 417  129 3431 6 4500 9 

37.3 -109.18 4303706002 PARADOX 5.8 824  281 3565 8 5745 12 

38.59 -109.96 4301905035 PARADOX 6.4 192   60 3754 2 4231 14 

            



Appendix A 

 A-6 

A.5. Uncertainty Analysis 

Fully propagated errors in the calculated reaction rates were derived, using the Gaussian 

error propagation method (Barrante, 1974), from the elemental uncertainties of 

analytically determined parameters and the parametric uncertainties of all modelled 

components. Given that all the variables in the calculation of mineral reaction rates are 

uncorrelated, and therefore statistically independent, the linear error propagation method 

of Anderson (1976) can be used to calculate the uncertainty in reaction rates arising from 

uncertainty in the individual parameters used.  

Uncertainty in the brine corrected fluid composition was determined using a linear 

error propagation method, taking into account an assumed 3% analytical uncertainty in 

the measured CO2-spring fluid composition and the standard deviation in the 

concentration of each solute in the brine, determined from a compilation of brine 

compositions for fluids in Pennsylvanian strata in the northern Paradox Basin (Breit, 

2002; Spangler et al., 1996).  
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Uncertainties in the modelled mass transfer coefficients were determined by treating 

the mass balance equations as a set of dependent linear equations and propagating the 

error on the corrected element concentrations. 
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where 222

, nitialifinalkT kkm σσσ +=        (A3) 

 

Uncertainty in ∂Mj/∂z resulting from the fit of Mj-dz was computed as 
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and A and B are the fitting terms in equation (A4). 

 

The uncertainty in calculated reaction rates, resulting from uncertainty in individual 

parameters used in the calculation can be computed as follows, assuming all parameters 

are statistically independent:  
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Model parameters that are derived from compilations of published data have values 

of the mean of these compilations and uncertainties of one standard error. An average of 

laboratory determined hydraulic conductivities of the Navajo Sandstone (Hood and 

Patterson, 1984) was used, giving a mean conductivity value (n = 91) of 0.47m/day with 

±0.06m/day variation. Effective porosity values for the Navajo Sandstone vary from 10% 

to 35% (n = 129) (Cooley et al., 1969; Hood and Patterson, 1984; Weigel, 1986; Freethy 

1988), with a volume-weighted average of 20.03% with ±4.4% variation. Individual 

mineral abundances used in these calculations were determined as the mean of the 

normative mineral abundances calculated from the whole rock data of this study and 

Bowen (2004) and the mineral compositional analyses of this study. Variation in 

individual mineral abundances was taken as one standard error of the mean of these 

analyses. The error associated with bulk surface area measurements (n = 7) was taken to 

be ±0.06m/g, one standard error of the BET measurements of Zhu (2005). From these the 

uncertainty in mineral surface area was calculated as 

 

( )( ) ( ) ( )( )2222
11 ρφσρσφρφσσ ⋅−⋅⋅+⋅⋅⋅+⋅−⋅⋅= jjjjjjj svvsvsS    (A7) 

 

 Uncertainties in the free energies of the reactions are determined as a square root 

of the sum of the products of activity uncertainties (±5% of the calculated activities) and 

derivatives of ∆Gr, taken with respect to activities and equilibrium constants of equation 
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(20) and (23), all raised to the square. For the dissolution of K-feldspar this expression 

has the form 
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The standard deviations of ∆Gr are on average 0.5–1 kJ/mol. 
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Appendix B  

Petrographic, XRF and Petrophysical 

Data: Navajo Sandstone  
 

 

B.1. XRF Analyses   
 

 
Table B.B-I Major element XRF analyses for Entrada and Navajo Sandstone samples. 

 

sample RS026 RS044 RS045a RS046 RS056 RS060b SV001 SV002 SV008 SV009 

wt. % Navajo  Navajo  Navajo   Navajo   Entrada  Entrada  Navajo    Navajo   Navajo   Navajo  

SiO2 94.05 90.25 72.51 92.57 75.06 77.15 81.05 80.92 77.56 74.71 

TiO2 0.083 0.169 0.243 0.091 0.288 0.262 0.292 0.294 0.287 0.301 

Al2O3 2.77 4.08 4.43 2.87 6.76 5.88 5.80 5.53 5.95 6.04 

Fe2O3 0.26 0.46 1.11 0.21 1.39 0.92 1.54 1.47 1.74 1.56 

MnO 0.004 0.003 0.072 0.004 0.037 0.031 0.050 0.059 0.099 0.098 

MgO 0.02 0.12 3.82 0.11 1.76 1.53 0.97 1.01 1.81 1.89 

CaO 0.05 0.65 5.95 0.14 4.73 4.57 3.22 3.36 4.84 5.51 

Na2O 0.06 0.07 0.09 0.15 0.45 0.40 0.18 0.26 0.31 0.33 

K2O 1.52 2.05 2.16 1.83 2.36 2.09 2.30 2.14 2.20 2.18 

P2O5 0.033 0.046 0.053 0.015 0.080 0.072 0.076 0.077 0.101 0.107 

LOI 0.49 1.34 9.50 1.03 6.69 6.66 4.48 4.62 6.26 7.40 

            

Total 99.35 99.24 99.93 99.02 99.60 99.57 99.96 99.73 101.14 100.12 

ppm           

Ba 285 387 358 297 352 308 313 381 389 663 

Cr 8 15 16 12 20 16 18 26 23 20 

Ni 8 7 11 8 11 7 12 6 9 13 

S% 0.01 0.11 0.01 0.11 0.01 0.12 0.02 0.03 0.02 0.03 

 Please Note:  Ba, Cr, Ni and S values presented here are only approximate and are for information purposes only. 
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B.2. Electron Probe Data: Navajo Sandstone   
 

Table B.B-II Recalculated probe data for Navajo Sandstone samples. Abbreviations: K-spar = K-feldspar, 

plag = plagioclase, Smct = smectite, Dolo = dolomite, Cc = calcite 

wt% oxides Sample 

Slide No. RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 

Phase K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar 

Na2O 0.63 0.32 0.36 0.24 0.62 0.68 0.55 1.13 0.40 0.59 0.41 0.88 0.34 

MgO 0.004 0.000 0.007 0.000 0.002 0.001 0.002 0.003 0.004 0.004 0.003 0.002 -0.001 

FeO -0.003 0.083 0.212 0.107 0.015 -0.002 0.074 0.033 0.063 0.041 0.030 0.059 0.127 

CaO 0.042 0.060 0.043 0.024 0.027 0.030 0.017 0.049 0.007 0.000 0.090 0.056 0.039 

BaO 0.25 0.77 0.71 0.53 0.43 0.28 0.36 0.10 0.39 0.05 0.38 0.03 0.19 

K2O 15.98 16.14 16.16 16.56 16.24 16.18 16.07 15.67 16.64 16.51 16.59 16.05 16.54 

SrO 0.13 0.08 0.09 0.02 0.04 0.05 0.02 -0.01 0.00 0.03 0.03 -0.01 0.01 

SiO2 63.99 63.34 63.04 63.41 63.64 63.78 64.38 65.24 65.29 65.55 63.51 64.23 63.81 

Al2O3 17.97 18.22 18.43 18.27 18.25 18.26 18.19 18.09 17.85 18.09 18.66 18.34 18.16 

TiO2 -0.02 -0.07 -0.07 -0.05 -0.05 -0.03 -0.05 0.00 -0.05 0.00 -0.03 0.02 -0.01 

Total 99.00 99.04 99.06 99.16 99.27 99.27 99.68 100.31 100.64 100.87 99.71 99.68 99.22 

Na 0.057 0.029 0.033 0.022 0.056 0.062 0.050 0.101 0.036 0.052 0.037 0.079 0.031 

Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ca 0.002 0.003 0.002 0.001 0.001 0.002 0.001 0.002 0.000 0.000 0.005 0.003 0.002 

Ba 0.005 0.014 0.013 0.010 0.008 0.005 0.006 0.002 0.007 0.001 0.007 0.001 0.003 

K 0.955 0.969 0.971 0.993 0.971 0.966 0.954 0.921 0.980 0.967 0.989 0.951 0.988 

Sr 0.003 0.002 0.003 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000 

Si 2.998 2.981 2.969 2.980 2.982 2.984 2.995 3.005 3.013 3.009 2.966 2.985 2.988 

Al 0.992 1.011 1.023 1.012 1.008 1.007 0.998 0.982 0.971 0.979 1.027 1.005 1.002 

Sum 5.01 5.01 5.02 5.02 5.03 5.03 5.01 5.01 5.01 5.01 5.03 5.03 5.02 

                 

Slide No. RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 

Phase K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar 

Na2O 0.40 0.25 0.23 0.51 0.31 0.79 1.10 0.16 0.61 0.55 0.43 0.57 0.74 

MgO -0.003 0.006 0.009 0.002 0.005 0.005 0.005 -0.002 0.003 0.000 0.002 0.004 0.003 

FeO 0.060 0.039 0.031 0.035 0.057 0.024 0.008 0.028 0.023 0.121 0.064 0.023 0.031 

CaO 0.068 0.037 0.023 0.060 0.016 0.063 0.058 0.020 0.036 0.089 0.011 0.053 0.054 

BaO 0.04 1.18 0.87 0.10 0.03 0.05 0.04 0.10 0.28 0.05 0.16 0.74 0.16 

K2O 16.38 16.68 16.15 16.43 16.48 16.13 15.67 17.10 16.50 16.47 16.54 16.21 16.27 

SrO -0.04 0.00 0.00 0.03 0.03 0.02 0.01 -0.01 0.01 0.01 0.00 0.00 0.02 

SiO2 63.25 63.81 62.96 63.21 64.54 64.66 63.59 64.70 65.17 65.37 65.78 64.62 64.56 

Al2O3 18.03 18.57 18.26 18.28 17.56 18.57 18.27 18.16 18.31 18.33 18.37 18.09 18.65 

TiO2 -0.01 -0.16 -0.12 -0.01 0.00 -0.01 -0.01 0.00 -0.03 -0.01 -0.02 -0.08 -0.02 

Total 98.22 100.57 98.55 98.66 99.02 100.31 98.74 100.28 100.95 101.00 101.38 100.32 100.48 

Na 0.036 0.023 0.021 0.046 0.028 0.070 0.100 0.015 0.054 0.049 0.038 0.051 0.066 

Mg 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ca 0.003 0.002 0.001 0.003 0.001 0.003 0.003 0.001 0.002 0.004 0.001 0.003 0.003 

Ba 0.001 0.022 0.016 0.002 0.000 0.001 0.001 0.002 0.005 0.001 0.003 0.013 0.003 

K 0.987 0.990 0.975 0.987 0.984 0.950 0.937 1.011 0.968 0.964 0.964 0.959 0.958 

Sr 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Si 2.988 2.970 2.978 2.977 3.019 2.985 2.982 2.998 2.996 2.998 3.004 2.997 2.979 

Al 1.004 1.019 1.018 1.014 0.968 1.010 1.009 0.992 0.992 0.991 0.989 0.989 1.015 

Sum 5.02 5.03 5.01 5.03 5.00 5.02 5.03 5.02 5.02 5.01 5.00 5.01 5.03 
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Table B.II. continued 

wt% oxides Sample 

Slide No. RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS026 RS044 RS044 RS044 

Phase K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar 

Na2O 0.76 0.40 0.25 0.26 0.58 0.74 0.24 0.28 0.63 1.22 0.66 1.08 0.73 

MgO 0.001 0.002 0.008 0.002 0.003 0.000 0.004 0.000 0.001 0.001 0.004 0.002 0.003 

FeO 0.062 0.043 0.039 0.040 0.133 0.036 0.036 0.040 0.015 0.136 0.016 0.008 0.012 

CaO 0.050 0.003 0.030 0.054 0.028 0.014 0.023 0.054 0.014 0.066 0.027 0.053 0.028 

MnO 0.000 0.000 0.017 0.016 0.021 0.006 -0.001 0.004 0.000 0.000 0.000 0.000 0.005 

BaO 0.48 1.42 0.15 0.20 1.11 0.36 0.59 0.38 0.28 0.36 0.78 0.28 0.25 

K2O 16.04 16.23 16.88 16.84 15.77 16.07 16.04 16.32 16.37 15.51 15.99 15.70 15.97 

SrO 0.09 0.07 0.00 0.02 0.10 0.00 0.00 0.01 0.00 0.03 0.08 0.01 0.05 

SiO2 64.79 64.06 64.72 64.90 64.25 65.76 64.76 64.71 65.00 65.24 64.28 65.30 65.18 

Al2O3 18.38 18.71 18.10 18.62 18.76 18.71 18.31 18.15 18.32 18.54 17.57 18.12 18.47 

TiO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Total 100.66 100.94 100.19 100.96 100.76 101.71 100.00 99.94 100.63 101.11 99.40 100.54 100.70 

Na 0.068 0.036 0.022 0.023 0.052 0.066 0.021 0.025 0.056 0.108 0.060 0.096 0.065 

Mg 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ca 0.002 0.000 0.001 0.003 0.001 0.001 0.001 0.003 0.001 0.003 0.001 0.003 0.001 

Ba 0.009 0.026 0.003 0.004 0.020 0.007 0.011 0.007 0.005 0.007 0.014 0.005 0.004 

K 0.944 0.959 0.998 0.988 0.931 0.933 0.948 0.966 0.963 0.906 0.955 0.922 0.936 

Sr 0.002 0.002 0.000 0.001 0.003 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.001 

Si 2.989 2.970 3.000 2.985 2.972 2.993 3.001 3.002 2.996 2.988 3.010 3.005 2.995 

Al 1.000 1.022 0.989 1.010 1.023 1.004 1.000 0.992 0.995 1.001 0.970 0.982 1.001 

Sum 5.02 5.02 5.02 5.02 5.01 5.00 4.98 5.00 5.02 5.02 5.01 5.01 5.01 

                

Slide No. RS045 RS045 RS045b RS045b RS045b RS045b RS045b RS045b RS045b RS045b RS045b RS045b RS045b 

Phase K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar K-spar 

Na2O 0.57 0.51 0.71 0.49 0.74 0.65 0.59 0.38 0.33 0.34 0.39 0.65 0.29 

MgO 0.004 0.004 0.004 0.000 0.004 0.003 0.002 0.004 0.003 0.002 0.000 0.006 0.007 

FeO 0.057 0.004 0.073 0.000 0.062 0.057 0.016 0.018 0.003 0.017 0.029 0.041 0.018 

CaO 0.075 0.028 0.043 0.018 0.051 0.061 0.028 0.006 0.072 0.084 0.029 0.089 0.092 

MnO 0.002 0.000 0.010 0.000 0.011 0.00 0.008 0.000 0.000 0.00 0.000 0.000 0.007 

BaO 0.32 0.16 0.04 0.08 0.10 0.05 0.47 0.01 0.05 0.04 0.01 0.04 0.05 

K2O 15.99 16.34 16.25 16.25 15.98 16.08 15.99 16.65 16.04 16.29 16.68 15.97 16.74 

SrO 0.03 0.000 0.000 0.000 0.000 0.000 0.01 0.000 0.05 0.04 0.00 0.05 0.02 

SiO2 64.30 64.59 64.46 64.39 64.64 64.71 64.58 64.65 64.23 64.58 64.90 64.45 63.81 

Al2O3 18.05 17.39 17.48 17.90 17.64 17.62 17.57 17.65 18.61 18.30 17.68 18.45 18.83 

TiO2 0.000 0.000 0.01 0.00 0.000 0.01 0.000 0.01 -0.01 0.00 0.00 0.01 0.000 

Total 99.41 99.02 99.10 99.14 99.23 99.24 99.27 99.37 99.40 99.69 99.72 99.75 99.88 

Na 0.052 0.046 0.064 0.044 0.067 0.058 0.053 0.034 0.030 0.030 0.035 0.059 0.026 

Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Ca 0.004 0.001 0.002 0.001 0.003 0.003 0.001 0.000 0.004 0.004 0.001 0.004 0.005 

Ba 0.006 0.003 0.001 0.002 0.002 0.001 0.009 0.000 0.001 0.001 0.000 0.001 0.001 

K 0.951 0.976 0.970 0.968 0.951 0.956 0.953 0.991 0.951 0.965 0.989 0.945 0.993 

Sr 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001 

Si 2.999 3.023 3.015 3.007 3.015 3.017 3.017 3.015 2.987 2.997 3.016 2.988 2.967 

Al 0.992 0.959 0.964 0.985 0.970 0.968 0.967 0.970 1.020 1.001 0.968 1.008 1.032 

Sum 5.01 5.01 5.02 5.01 5.01 5.01 5.00 5.01 4.99 5.00 5.01 5.01 5.03 
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Table B.II. continued 

wt% oxides Sample 

Slide No. RS045b RS045b RS045b RS046 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 

Phase K-spar K-spar K-spar K-spar plag plag plag plag plag plag plag plag plag 

Na2O 0.69 0.55 0.73 0.50 7.95 6.99 6.11 7.35 6.69 7.78 6.43 7.13 6.82 

MgO 0.002 0.003 0.002 0.002 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

FeO 0.025 0.017 0.004 0.027 0.05 0.05 0.10 0.03 0.03 0.03 0.03 0.06 0.07 

CaO 0.058 0.023 0.050 0.023 6.78 7.74 8.71 7.33 7.98 6.88 8.31 7.63 7.47 

MnO 0.003 0.021 0.009 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 -0.02 0.01 

BaO 0.28 0.17 0.27 0.55 0.02 0.02 0.00 0.00 0.00 0.04 0.05 0.02 0.03 

K2O 16.26 16.60 16.19 16.37 0.37 0.57 0.39 0.25 0.47 0.15 0.64 0.51 0.39 

SrO 0.06 0.00 0.06 0.07 0.06 0.06 0.03 0.06 0.06 0.02 0.00 0.01 0.03 

SiO2 64.91 65.34 65.06 64.57 58.87 58.87 58.93 58.88 58.73 57.94 58.29 58.50 59.10 

Al2O3 18.27 17.87 18.31 17.56 26.84 26.84 26.45 26.60 26.70 26.54 26.79 26.34 26.50 

TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 

Total 100.56 100.59 100.69 99.67 100.94 101.14 100.68 100.44 100.63 99.38 100.53 100.18 100.42 

Na 0.062 0.049 0.065 0.045 0.683 0.600 0.525 0.633 0.576 0.679 0.555 0.618 0.587 

Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Ca 0.003 0.001 0.002 0.001 0.322 0.367 0.414 0.349 0.380 0.332 0.397 0.365 0.356 

Ba 0.005 0.003 0.005 0.010 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 

K 0.957 0.976 0.951 0.975 0.021 0.032 0.022 0.014 0.026 0.008 0.036 0.029 0.022 

Sr 0.002 0.000 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 

Si 2.995 3.012 2.996 3.013 2.609 2.606 2.615 2.617 2.609 2.606 2.597 2.614 2.626 

Al 0.994 0.971 0.994 0.966 1.402 1.400 1.383 1.394 1.398 1.407 1.407 1.387 1.388 

Sum 5.02 5.01 5.02 5.01 5.04 5.01 4.97 5.01 4.99 5.03 4.99 5.02 4.98 

                

Slide No. GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 GS006 

Phase Illite Illite Illite Illite Illite Illite Illite Illite Illite Illite Illite Illite Illite 

Na2O 0.11 0.10 0.09 0.12 0.08 0.09 0.09 0.11 0.09 0.09 0.11 0.10 0.09 

MgO 0.66 0.67 0.68 0.65 0.66 0.66 0.66 0.67 0.67 0.66 0.66 0.66 0.67 

FeO 1.08 1.10 1.08 1.11 1.09 1.11 1.12 1.14 1.12 1.11 1.09 1.12 1.13 

CaO 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

MnO 0.000 0.03 0.000 0.00 0.000 0.000 0.000 0.01 0.02 0.01 0.02 0.000 0.00 

BaO 0.000 0.000 0.00 0.02 0.000 0.04 0.00 0.00 0.00 0.04 0.03 0.01 -0.04 

K2O 8.67 8.85 8.66 9.03 8.68 8.85 8.83 8.71 8.93 8.89 8.90 9.01 8.77 

SrO 0.000 0.02 0.03 0.02 0.000 0.01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SiO2 47.62 47.46 47.72 47.49 47.70 47.19 47.23 47.97 47.56 47.37 47.80 47.51 47.63 

Al2O3 19.83 20.01 20.04 20.13 20.00 19.96 20.07 20.04 20.22 20.00 19.99 20.09 20.07 

TiO2 0.02 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 

Total 78.13 78.42 78.47 78.74 78.38 78.09 78.17 78.81 78.78 78.34 78.76 78.67 78.54 

Na 0.034 0.032 0.027 0.038 0.026 0.029 0.028 0.032 0.027 0.028 0.035 0.031 0.029 

Mg 0.157 0.160 0.161 0.154 0.156 0.158 0.158 0.158 0.159 0.158 0.155 0.156 0.158 

Fe 0.143 0.147 0.144 0.147 0.145 0.149 0.150 0.150 0.149 0.148 0.144 0.149 0.150 

Ca 0.023 0.024 0.024 0.024 0.024 0.024 0.025 0.025 0.025 0.025 0.026 0.026 0.026 

K 1.763 1.798 1.755 1.829 1.761 1.807 1.799 1.756 1.806 1.809 1.799 1.826 1.778 

Sr 0.000 0.002 0.003 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Si 7.593 7.557 7.576 7.543 7.581 7.551 7.543 7.585 7.540 7.554 7.577 7.549 7.564 

Al 3.727 3.756 3.750 3.768 3.746 3.764 3.778 3.735 3.779 3.759 3.734 3.762 3.757 

Sum 13.4 13.5 13.4 13.5 13.4 13.5 13.5 13.4 13.5 13.5 13.5 13.5 13.5 
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Table B.II. continued 

wt% oxides Sample 

Slide No. SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 SV009 

Phase Smct Smct Smct Smct Smct Smct Smct Smct Smct Smct Smct Smct Smct 

Na2O 0.181 0.226 0.199 0.186 0.214 0.168 0.194 0.182 0.163 0.183 0.178 0.171 0.184 

MgO 3.727 3.685 3.701 3.743 3.714 3.734 3.819 3.739 3.635 3.717 3.632 3.667 3.678 

FeO 1.692 1.667 1.715 1.729 1.712 1.684 1.777 1.645 1.726 1.686 1.705 1.723 1.738 

CaO 0.148 0.151 0.152 0.153 0.154 0.155 0.155 0.156 0.156 0.157 0.158 0.158 0.158 

MnO 0.013 0.016 0.000 0.000 0.002 0.000 0.004 -0.026 0.004 0.000 0.009 0.000 0.000 

BaO 0.041 0.025 0.006 0.000 0.000 0.014 0.013 -0.006 0.008 0.021 0.002 0.000 0.049 

K2O 3.185 3.205 3.197 3.199 3.195 3.197 3.173 3.210 3.189 3.207 3.153 3.193 3.180 

SrO 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.015 0.016 0.003 0.000 0.000 

SiO2 55.730 56.601 56.018 56.264 56.184 56.349 55.377 56.336 55.804 56.540 54.425 56.032 55.467 

Al2O3 28.002 27.986 28.088 28.073 28.060 27.975 27.875 28.274 28.056 28.083 27.979 28.123 28.017 

TiO2 0.022 0.029 0.024 0.018 0.021 0.021 0.024 0.020 0.021 0.024 0.022 0.026 0.022 

Total 94.710 95.574 95.065 95.308 95.236 95.300 94.387 95.527 94.777 95.630 93.266 95.025 94.443 

Na 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Mg 0.36 0.35 0.35 0.36 0.36 0.36 0.37 0.36 0.35 0.35 0.36 0.35 0.36 

Fe 0.091 0.089 0.092 0.093 0.092 0.090 0.096 0.088 0.093 0.090 0.094 0.093 0.094 

Ca 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

Mn 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

Ba 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 

K 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

Si 3.60 3.62 3.60 3.61 3.61 3.61 3.59 3.60 3.60 3.61 3.57 3.60 3.59 

Al 2.13 2.11 2.13 2.12 2.12 2.11 2.13 2.13 2.13 2.12 2.17 2.13 2.14 

Sum 6.48 6.47 6.48 6.47 6.48 6.47 6.49 6.47 6.47 6.47 6.49 6.47 6.48 

                

Slide No. SV002 SV002 SV002 SV002 SV002 SV002 GR007 GR007 GR007 GR007 GR007 GR007 GR007 

Phase Dolo Dolo Dolo Dolo Dolo Dolo Cc Cc Cc Cc Cc Cc Cc 

Na2O 0.000 0.013 0.003 0.022 0.025 0.039 0.004 0.000 0.008 0.002 0.002 0.000 0.000 

MgO 20.68 20.05 20.34 20.95 22.30 21.34 0.24 0.25 0.09 0.41 0.10 0.36 0.12 

FeO 0.05 0.22 0.12 0.18 0.26 0.31 0.02 0.01 0.02 0.18 0.10 0.46 0.01 

CaO 32.02 30.78 31.92 30.33 30.65 30.13 55.14 56.51 56.08 57.44 56.14 52.37 54.60 

MnO 0.032 0.166 0.002 0.000 0.025 0.013 0.178 0.068 0.268 0.133 0.168 0.738 0.000 

K2O 0.031 0.123 0.057 0.003 0.018 0.023 0.045 0.031 0.046 0.127 0.057 0.077 0.041 

SrO 0.033 0.000 0.016 0.005 0.000 0.012 0.025 0.008 0.034 0.074 0.005 0.025 0.020 

BaO 0.000 0.000 0.042 0.000 0.021 0.000 0.000 0.016 -0.045 0.019 0.054 0.000 0.000 

CO2 47.14 48.64 47.50 48.51 46.71 48.14 44.17 43.05 43.34 41.40 43.27 45.38 45.04 

Total 52.86 51.36 52.50 51.49 53.29 51.86 55.84 56.95 56.66 58.60 56.73 54.62 54.96 

Na 0.000 0.001 0.000 0.001 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mg 0.954 0.915 0.936 0.954 1.029 0.975 0.006 0.006 0.002 0.010 0.003 0.009 0.003 

Fe 0.001 0.006 0.003 0.004 0.007 0.008 0.000 0.000 0.000 0.003 0.001 0.006 0.000 

Ca 1.061 1.009 1.056 0.993 1.016 0.989 0.983 1.017 1.008 1.051 1.010 0.927 0.966 

Mn 0.001 0.004 0.000 0.000 0.001 0.000 0.003 0.001 0.004 0.002 0.002 0.010 0.000 

K 0.001 0.005 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001 

Sr 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

Ba 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO3 1.991 2.032 2.002 2.024 1.973 2.013 1.004 0.987 0.992 0.966 0.991 1.023 1.015 

Sum 4.010 3.971 4.000 3.977 4.028 3.988 1.997 2.013 2.008 2.036 2.009 1.977 1.985 
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B.3. Petrophysical Data: Navajo Sandstone   
 

Table B.B-III Porosity, permeability and hydraulic conductivity of the Navajo Sandstone, compiled from 

Weigel, (1986)
1
 and Hood and Patterson, (1984)

2
. Abbreviations: perm = permability, Hydr Cond = 

hydraulic conductivity, Poro = effective porosity, Hor = horizontal, Ver = vertical, Ref = reference. 

(ft/day) %    (ft/day) %   

perm Hydr Cond Poro Ref  perm Hydr Cond Poro Ref 

Hor Ver Hor Ver      Hor Ver Hor Ver     

1.8 7.9 11 9.9 30.8 1     0.58 0.055 20.9 1 

   1.2 0.18 12.8 1      1.6 26.8 1 

1.6 1.1 0.72 0.46 23.2 1     0.7 0.089  1 

     13.7 1      1.5 25.2 1 

     15.5 1     0.34 0.27 21.3 1 

     13.3 1  0.64 0.54   24.3 1 

    0.011 13 1       13.4 1 

    1.3 15.1 1    0.017   14.3 1 

     12.5 1    1.2  0.75 21.3 1 

0.063 0.039 0.038 0.024 11.6 1       23 1 

  2.7  0.93 18 1  1.3 1.2 0.52  21.4 1 

     28.6 1  1.2    18 1 

3.5 4.7 2.8  20.7 1     2.2   1 

4.7 2.4   18.5 1     0.64   1 

3.8    20 1     0.89  22.8 1 

8.7    20.7 1     0.56  21.9 1 

9.6 8.4 5.8  20 1     0.78 0.52 20.5 1 

1.2  0.19  20.6 1     0.41 0.52 20.7 1 

  0.83  0.22 19.2 1     2.5  25.9 1 

     21 1     0.33 0.17 20.4 1 

3.1 0.79 0.55  22.1 1     0.47 0.12 20.4 1 

     15.6 1     1  24.3 1 

  3.1  1.3 19.1 1     1.4  25 1 

0.034 0.032 0.013 0.0041 14.1 1     1.4  25.9 1 

     10.5 1     0.17 0.067 22.3 1 

     19.8 1     0.45 0.43 22.3 1 

     21.2 1     0.78  22 1 

   0.91  20.7 1     0.66  23.1 1 

     27.4 1     0.4  24.1 1 

2.8 2.1 1.8 1.2 26.8 1     0.015 0.035 22.5 1 

  2.6  42 15.8 1     0.38 0.25 22.5 1 

     17.6 1     0.55  24.7 1 

0.43 0.29   17.5 1     0.43  25.2 1 

     22 1      0.24 13.8 1 

3.7 0.7 1.5  21.2 1      1.1 26.1 1 

     19.9 1     0.0079 0.021  1 

0.76    16.5 1      1.7 13.9 1 

2.4    16.4 1      1.5 20.9 1 

1.7    15.9 1     2.7 0.91 17.4 1 

2.4    12.7 1      0.91 14 1 

2.3    14.1 1     0.0022 0.0011 16.1 1 
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(ft/day) %    (ft/day) %   

perm Hydr Cond Poro Ref  perm Hydr Cond Poro Ref 

Hor Ver Hor Ver      Hor Ver Hor Ver     

   0.88 0.46 14.2 1     0.011  14.1 2 

   0.43 0.25 25.6 1     0.0089  13.8 2 

   5.2  26.5 1     <0.00002  6.7 2 

   1.4   1     <0.00002  6.7 2 

5.5 6.5 2.4 2.4 28.3 1     0.8  20.7 2 

   1.1   1     1.6  26.3 2 

   0.93   1     1.5   2 

   0.49   1       17.5 2 

   1   1     1.4  21.2 2 

     25 1       24.3 2 

   0.0022  22.1 1       24.1 2 

   0.64 0.41 23 1       23.1 2 

   0.38 0.22 26 1       22.8 2 

   2 0.24  1      0.46   21.4 2 

   7.5 0.53 22 1        

   0.78 0.27  1        

   7.6 0.5 22 1        

     22 1        

   3.4 2 25 1        

   3.2 0.7 15 1        

   1.9 5 24 1        

   3 0.8 17 1        

   1.6 3 15 1        

   2.4   1        

   0.33   1        

   1.7   1        

   0.006   1        

   0.055   1        

   0.21   1        

   4.2 2.2 28 1        

     30 1        

   5 2.3 19 1        

   4.5 4.6 27 1        

   0.002 0.005 15 1        

   0.12 0.099 11 1        

    0.17 14 1        

   6.1 4.5 30 1        

   0.3 0.11 11 1        

   0.034  11.5 2        

   0.029  11.4 2        

   2.5  19.4 2        

   1.6   2        

     18.5 2        

   5.1  19.6 2        

   0.17  20.6 2        

    0.49   22.1 2        
Table B.III continued 
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B.4. Sample Details 
 

Table B.B-IV Sample localities, rock types and analyses. Abbreviations: Lat = latitude, Long = longitude, Alt = altitude, PWD = powder, TS = thin section, MW 

= micro-wafer, XRF = x-ray florescence. ‘Lithology’ describes the unit/formation type and whether the samples are of the bulk host rock (Rock), a vein (vein) or 

a travertine (trav). ‘Type’ describes whether the sample is bleached (B), unbleached/red (R) or obviously bleached and carbonate cemented Y-B.  

Code Lat. Long. Alt (m) Location PWD TS MW XRF Lithology Type 

RS001 38.96618 -110.22624 * Green River Airport Well x    Travertine Trav N/A 

RS004 38.96618 -110.22624 * Green River Airport Well x    Travertine Trav N/A 

RS005 38.76350 -110.12744 * Chaffin Ranch x    Travertine Trav N/A 

RS006 38.86272 -110.10125 * Tenmile Geyser x    Travertine Trav N/A 

RS007 38.85873 -110.07277 * Torreys Spring x    Travertine Trav N/A 

RS020 38.98344 -110.53357 1680 San Rafael River  x x   White Rim Rock B 

RS021 38.98347 -110.53360 1657 San Rafael Swell x x   White Rim Rock B 

RS024 38.93354 -110.45022 1454 San Rafael Swell x x   White Rim Rock R-B 

RS026 38.93353 -110.41688 1409 Black Dragon Canyon x x  x Navajo Sst Rock R 

RS027 38.92959 -110.41925 1314 Black Dragon Canyon x x   Entrada Sst Rock Y-B 

RS029 38.92959 -110.41925 1318 Black Dragon Canyon x    Entrada Sst Rock R 

RS041 38.94825 -110.44040 * Black Dragon Canyon x    Wingate Sst. Rock B 

RS044 38.94586 -110.43100 1345 Black Dragon Canyon  x  x Navajo Sst Rock B 

RS045a 38.94544 -110.42973 1341 Black Dragon Canyon  x  x Navajo Sst Rock R 

RS045b 38.94544 -110.42973 1341 Black Dragon Canyon  x   Navajo Sst Rock R 

RS046 38.94548 -110.42975 * Black Dragon Canyon  x  x Navajo Sst Rock R 

RS048 38.87023 -110.11190 1248 Near Big Bubbling Spring  x   Entrada Sst Rock Y-B 

RS052a 38.86842 -110.10816 1286 Near Big Bubbling Spring x x   Entrada Sst Rock Y-B 

RS052b 38.86842 -110.10816 1286 Near Big Bubbling Spring x x   Entrada Sst Rock Y-B 

RS053 38.86622 -110.10348 1263 Tenmile Butte x x   Entrada Sst Rock B 

RS054a 38.86824 -110.10208 1269 Tenmile Butte x    Entrada Sst Vein  B 

RS055 38.86717 -110.09952 1261 Tenmile Butte x x   Entrada Sst Rock B 

RS056a 38.86696 -110.09933 1268 Tenmile Butte x x  x Entrada Sst Vein  B 

RS056b 38.86696 -110.09933 1268 Tenmile Butte x x   Entrada Sst Rock B 

RS057 38.86756 -110.10040 1278 Tenmile Butte x x   Entrada Sst Rock B 

RS058 38.86770 -110.10076 1268 Tenmile Butte x x     Entrada Sst Rock B 
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Table B.IV continued 

Code Lat. Long. Alt (m) Location PWD TS MW XRF Lithology Type 

RS059 38.86770 -110.10076 1268 Tenmile Butte     Entrada Sst Rock R 

RS060 38.86731 -110.10248 1257 Tenmile Butte x x  x Entrada Sst Rock R-B 

RS061 38.86731 -110.10248 1257 Tenmile Butte x x   Entrada Sst Rock B 

RS062 38.86780 -110.10178 * Tenmile Butte x x   Entrada Sst Rock B 

RS063 38.86643 -110.10234 * Tenmile Butte x x   Entrada Sst Rock B 

RS065 38.86493 -110.09981 1277 Tenmile Butte     Entrada Sst Rock B 

RS066 38.86488 -110.09982 1267 Tenmile Butte x x x  Entrada Sst Vein  B 

RS067 38.86487 -110.09982 1266 Tenmile Butte x    Entrada Sst Vein  B 

RS068 38.86550 -110.10105 1262 Tenmile Butte x    Entrada Sst Rock B 

RS069a 38.86532 -110.10098 1277 Tenmile Butte x x x  Entrada Sst Vein  B 

RS069b 38.86532 -110.10098 * Tenmile Butte  x   Entrada Sst Vein  B 

RS070 38.86514 -110.10070 1277 Tenmile Butte x x   Entrada Sst Vein  B 

RS071a 38.86543 -110.10160 1274 Tenmile Butte x x x  Entrada Sst Vein  B 

RS071b 38.86563 -110.10152 1274 Tenmile Butte x x x  Entrada Sst Vein  B 

RS071c 38.86563 -110.10139 1274 Tenmile Butte x  x  Entrada Sst Vein  B 

RS072 38.86563 -110.10139 1274 Tenmile Butte x    Entrada Sst Vein  B 

RS073 38.86655 -110.10241 1281 Tenmile Butte x x x  Entrada Sst Rock B 

RS090a 38.87023 -110.11190 * Big Bubbling Spring x x x  Entrada Sst Vein  R-B 

RS090b 38.87023 -110.11190 * Big Bubbling Spring x    Entrada Sst Vein  R-B 

RS090c 38.87023 -110.11190 * Big Bubbling Spring x    Entrada Sst Vein  R-B 

RS090d 38.87023 -110.11190 * Big Bubbling Spring x    Entrada Sst Vein  R-B 

RS091a 38.87265 -110.11662 * Small Bubbling Spring x    Travertine Trav N/A 

RS091b 38.87265 -110.11662 * Small Bubbling Spring x    Travertine Trav N/A 

RS092a 38.87023 -110.11190 * Big Bubbling Spring x    Entrada Sst Vein  B 

RS092b 38.87023 -110.11190 * Big Bubbling Spring x    Entrada Sst Vein  B 

RS093a 38.86717 -110.09952 * Tenmile Butte x    Entrada Sst Vein  B 

RS093b 38.86717 -110.09952 * Tenmile Butte x    Entrada Sst Vein  B 

RS093c 38.86717 -110.09952 * Tenmile Butte x    Entrada Sst Vein  B 

RS094 38.86272 -110.10125 * Tenmile Geyser x       Travertine Trav N/A 



Appendix B 

 B-10 

 

 
Table B.B-V Details for petroleum exploration wells sampled in this study, including; well details, API No., localities, rock types and the intervals from which 

samples where collected. The ‘code’ at the bottom of each table is the generic sample code for that well. 

 

Well Name 

Green River 

Unit 1.  

(Amerada 

Hess) 

Mt Fuel  

Supply  

Geyser 

Grand  

Fault 

14-24 

Government 

Smoot #2 

Salt Valley 

22-34 

Sharp 

State #1 

API 4301910030 4301930124 4301511182 4301916048 4301911188 4301910817 

Latitude 38.9331 38.8749 38.9661 38.8086 38.8563 38.8599 

Longitude -110.1307 -110.1128 -110.2262 -110.0668 -110.0341 -110.0621 

Elevation (m) 1244 1259 1284 1311 1319 1372 

Sample Form. Navajo Sst. Navajo Sst. Navajo Sst. Navajo Sst. Navajo Sst. Navajo Sst. 

Start Depth (m) 445 381 640 195 137 149 

End Depth (m)  539 430 765 274 293 216 

Thickness (m) 94 49 125 79 155 67 

Smpl Spcing (m) 3 3 3 3 3 6 

Samples 7 6 9 6 12 5 

Code GR00X MF00X GF00X GS00X SV00X SS00X 

 
Well Name Salt Wash #1 Silliman #1 Culburtson #1 Forest Governmnt #1 North Salt Wash #1 

API 4301910831 4301910406 4301911521 4301510373 4301930282 

Latitude 38.8087 38.9331 38.9409 38.8837 38.8232 

Longitude -110.0390 -110.1410 -110.1221 -110.1334 -110.0526 

Elevation (m) 1310 1259 1349 1329 1352 

Sample Form. Navajo Sst. White Rim White Rim Leadville Leadville 

Start Depth (m) 143 756 938 1685 2700 

End Depth (m)  271 799 1026 1713 2705 

Thickness (m) 128 43 88 28 5 

Smpl Spcing (m) 6 3 2 2 1 

Samples 9 6 6 4 4 

Code SW00X SI00X CU00X FG00X NSW00X 
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B.5. Rock Isotope Data 
 
Table B.B-VI δ

18
O, δ

13
C and 

87
Sr/

86
Sr for rock samples  

 

Code Location 

VSMOW 

δ
18

O 

PDB 

δ
13

C 

% 

 Carbonate 
87

Sr/
86

Sr 

% 

error Lithology Type 

RS001 Airport Well, east side of geyser 17.8 7.8   0.713342 7 Travertine Trav N/A 

RS004 Airport Well, north side of geyser 16.7 6.6 97%   Travertine Trav N/A 

RS005 Chaffin Ranch 20.9 9.1 98%   Travertine Trav N/A 

RS006 Tenmile Geyser, west of vent 20.2 3.4    Travertine Trav N/A 

RS007 Torreys Spring 20.7 8.3 76%   Travertine Trav N/A 

RS020 San Rafael River   3.5 0%   White Rim Rock B 

RS021 San Rafael Swell  0.1 0%   White Rim Rock B 

RS024 San Rafael Swell  -1.0 5%   White Rim Rock R-B 

RS026 Black Dragon Canyon  4.3 8%   Navajo Sst Rock R 

RS027 Black Dragon Canyon  -3.1 6%   Entrada Sst Rock Y-B 

RS029 Black Dragon Canyon  -2.9 5%   Entrada Sst Rock R 

RS041 Black Dragon Canyon  -6.0 11%   Wingate Sst. Rock B 

RS044 Black Dragon Canyon      Navajo Sst Rock R 

RS045a Black Dragon Canyon  -2.4 4%   Navajo Sst Rock R 

RS045b Black Dragon Canyon  -4.2 0%   Navajo Sst Rock R 

RS046 Black Dragon Canyon      Navajo Sst Rock R 

RS048 Near Big Bubbling Spring  3.3    Entrada Sst Rock Y-B 

RS052a Near Big Bubbling Spring 19.8 4.6 44%   Entrada Sst Rock Y-B 

RS052b Near Big Bubbling Spring 19.8 5.7 63%   Entrada Sst Rock Y-B 

RS053 Tenmile Butte 21.2 -2.5 2%   Entrada Sst Rock B 

RS054a Tenmile Butte 18.7 6.1 89%   Entrada Sst Vein  B 

RS055 Tenmile Butte 18.8 6.2 65%   Entrada Sst Rock B 

RS056a Tenmile Butte 19.2 5.8    Entrada Sst Vein  B 

RS056b Tenmile Butte 20.9 -2.4 7%   Entrada Sst Rock B 

RS057 Tenmile Butte 20.0 -2.7 5%   Entrada Sst Rock B 

RS058 Tenmile Butte 21.4 -1.9 5%     Entrada Sst Rock B 
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Table B.IV continued 

 

Code Location 

VSMOW 

δ
18

O 

PDB 

δ
13

C 

% 

 Carbonate 
87

Sr/
86

Sr 

% 

error Lithology Type 

RS059 Tenmile Butte 16.8 -4.4       Entrada Sst Rock R 

RS060 Tenmile Butte  2.9 1%   Entrada Sst Rock R-B 

RS061 Tenmile Butte 20.0 -2.2 4%   Entrada Sst Rock B 

RS062 Tenmile Butte 21.6 -1.9 2%   Entrada Sst Rock B 

RS063 Tenmile Butte 21.5 -2.4 6%   Entrada Sst Rock B 

RS065 Tenmile Butte, southern cliff 19.9 -2.8    Entrada Sst Rock B 

RS066 Tenmile Butte, southern cliff  -2.9 0%   Entrada Sst Vein  B 

RS067 Tenmile Butte, southern cliff 19.6 0.6 2% 0.712645 8 Entrada Sst Vein  B 

RS068 Tenmile Butte, southern cliff 20.5 -2.4 8%   Entrada Sst Rock B 

RS069a Tenmile Butte, southern cliff 18.7 5.8 91%   Entrada Sst Vein  B 

RS069b Tenmile Butte, southern cliff      Entrada Sst Vein  B 

RS070 Tenmile Butte 20.5 4.6 43%   Entrada Sst Vein  B 

RS071a Tenmile Butte 18.6 5.8 100% 0.713035 10 Entrada Sst Vein  B 

RS071b Tenmile Butte 18.8 5.9 87%   Entrada Sst Vein  B 

RS071c Tenmile Butte 18.5 5.7 96%   Entrada Sst Vein  B 

RS072 Tenmile Butte 18.7 5.9 61%   Entrada Sst Vein  B 

RS073 Tenmile Butte 20.7 -2.5 16% 0.711829 7 Entrada Sst Rock B 

RS090a Near Big Bubbling Spring 19.5 6.4 54%   Entrada Sst Vein  R-B 

RS090b Near Big Bubbling Spring  6.6 49%   Entrada Sst Vein  R-B 

RS090c Near Big Bubbling Spring  6.7 87%   Entrada Sst Vein  R-B 

RS090d Near Big Bubbling Spring  6.6 111%   Entrada Sst Vein  R-B 

RS091a Small Bubbling Spring 18.7 4.2 34% 0.712115 7 Travertine Trav N/A 

RS091b Small Bubbling Spring  5.0 44%   Travertine Trav N/A 

RS092a Near Big Bubbling Spring 19.7 6.1 62%   Entrada Sst Vein  B 

RS092b Near Big Bubbling Spring  6.3 85%   Entrada Sst Vein  B 

RS093a Tenmile Butte 18.2 5.3 52%   Entrada Sst Vein  B 

RS093b Tenmile Butte  4.8 100%   Entrada Sst Vein  B 

RS093c Tenmile Butte  4.9 103%   Entrada Sst Vein  B 

RS094 Tenmile Geyser 19.6 6.0 59%     Travertine Trav N/A 
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Table B.B-VII 

Code Powder 

Thin 

Section Location Sample Description Lithology 

(m) 
Depth 

VSMOW  
δ

18
O 

PDB 
δ

13
C 

% 
 Carb 

SV001 x x Green River Anticline Salt Valley 22-34 Navajo Sst 137 20.0 -3.7  5.4% 

SV002 x x Green River Anticline Salt Valley 22-35 Navajo Sst 149 19.6 -3.4  7.1% 

SV003 x  Green River Anticline Salt Valley 22-36 Navajo Sst 168 20.9 -3.1  5.9% 

SV004 x  Green River Anticline Salt Valley 22-37 Navajo Sst 183 20.1 -2.9  9.6% 

SV005 x  Green River Anticline Salt Valley 22-38 Navajo Sst 201 19.2 -3.2  12.1% 

SV006 x  Green River Anticline Salt Valley 22-39 Navajo Sst 213 20.6 -2.8  17.4% 

SV007 x  Green River Anticline Salt Valley 22-40 Navajo Sst 229 19.6 -3.4  10.2% 

SV008 x  Green River Anticline Salt Valley 22-41 Navajo Sst 241 19.8 -2.9  8.4% 

SV009 x x Green River Anticline Salt Valley 22-42 Navajo Sst 259 22.5 -2.3  10.4% 

SV010 x  Green River Anticline Salt Valley 22-43 Navajo Sst 274 22.7 -2.2  12.0% 

SV011 x x Green River Anticline Salt Valley 22-44 Navajo Sst 290 21.0 -2.6  16.0% 

SV012   Green River Anticline Salt Valley 22-45 Navajo Sst 305    

SW001 x  Green River Anticline Salt Wash #1 Navajo Sst 143 23.0 -2.8   

SW002 x  Green River Anticline Salt Wash #1 Navajo Sst 158 20.8 -3.3   

SW003 x  Green River Anticline Salt Wash #1 Navajo Sst 174 21.8 -3.1   

SW004 x  Green River Anticline Salt Wash #1 Navajo Sst 189 21.0 -2.9   

SW005 x  Green River Anticline Salt Wash #1 Navajo Sst 204 21.7 -2.1   

SW006 x  Green River Anticline Salt Wash #1 Navajo Sst 219 20.6 -3.4   

SW007 x  Green River Anticline Salt Wash #1 Navajo Sst 235 22.8 -2.7   

SW008 x  Green River Anticline Salt Wash #1 Navajo Sst 250 22.0 -3.0   

SW009 x   Green River Anticline Salt Wash #1 Navajo Sst 265 21.1 -3.4    
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B.6. Point Counting Data: Entrada Sandstone 
 

Table B.B-VIII Point count estimates (expressed as vol% of thin section) for major mineral phases in Entrada Sandstone Samples averaged over 200 counts per 

slide. Abbreviations: Qrtz = Quartz, Otz Ovgrth = Quartz Overgrowth, Feld = feldspar, Dol = dolomite, Cc = calcite, Hem = hematite cryptocrystalline, Crys 

Oxides = coarse Fe-oxides, Illite Coat = illite grain coating, Illite Pore = pore filling illite, Kaol = kaolinite, Poro = porosity 

 

 

    vol% of slide 

Sample Type Qrtz Qtz Ovgrth Feld Dol Cc Hem Crys Oxide Illite Coat 

Illite 

Pore Kaol Poro 

             

             

RS057 B 71.9 3.3 4.1 2.6 7.3 0.1 0.9 1.4 2.1 0.3 5.9 

RS073 B 73.9 2 3.7 3.7 12.2 0.2 1.1 1.8 0.8 0.6 0.8 

RS062 B 67.7 1.5 6.2 4.3 7.7 0.3 0.6 1.1 1.4 1.1 8.1 

RS061 B 70.9 2.1 9.8 3.2 4.8 0.4 2.3 0.3 0.7 0.4 5.1 

RS058 B 69.5 1 7.3 2.8 8.9 0.1 1.3 3.2 1.6 3.3 1.5 

RS027 R 73.9 0.2 9.1 4.5 0.1 1.3 0.1 1.7 1.7 0.3 7.9 

RS029 R 70.4 0 10.4 10.6 0 1.1 0 1.8 1.3 0.1 3.4 

RS069 Y-B 66.2 3.2 5.4 0.2 16.6 0.1 1.8 1.8 1.3 0.8 3.2 

RS052 Y-B 67.3 2.6 5.6 0.4 13.5 0.6 3 1.9 0.9 0.5 4 

RS090 Y-B 62.9 1.5 8.6 0.1 10.9 0.5 2.9 1.6 2.5 0.2 10 
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B.7. Aragonite Vein Isotope Data 
 
Table B-IX Aragonite vein isotope data, travertine volumes and distance along fault trace from most 

westerly (up groundwater flow direction) travertine, for Salt Wash Graben and Little Grand Fault. 

Sample/Travertine Age  σ 

Distance 

 Along 

Fault  

Travertine 

Volume 
87

Sr/
86

Sr σ  δ
13

C δ
18

O 

  (ka) (ka) (km) (m3)     (PDB) (VSMOW) 

Salt Wash Graben         

SW1 0.11 0.63 3.94 8162         

SW2 4.79 0.03 3.10 3741     

SW3 9.75 0.05 5.88 2041     

SW4 10.79 0.04 1.76 3401     

SW5 13.07 0.06 1.48 4081     

SW.03.52K 28.38 0.24 1.67 1275 0.712812 1.4E-05 5.74 18.92 

SW6 38.91 0.16 0.00 1700     

SW.06.27A 51.29 0.25 1.64 170 0.712851 1.4E-05 5.61 19.22 

SW7 57.01 0.41 2.70 6802     

SW03.65N 60.19 0.44 0.61 10101 0.712872 1.6E-05 5.87 19.19 

SW8 65.09 0.33 2.04 9353     

SW.03.56H 92.79 1.12 1.63 10203 0.713019 1.6E-05 5.40 18.64 

SW06.17D 100.38 0.56 1.44 5510 0.712947 1.6E-05 5.28 18.94 

SW.06.18C 106.09 0.42 1.49 6122 0.712915 1.4E-05 5.16 18.47 

SW02.36J 112.80 0.63 3.23 14879 0.713173 1.6E-05 5.63 19.54 

SW9 116.79 0.69 4.07 1700     

SW10 130.67 0.83 3.39 20406     

SW.06.19C 135.14 1.14 1.50 5986 0.712834 1.4E-05 4.64 17.76 

SW.06.22A 291.31 5.59 1.36 816 0.712979 1.4E-05 6.13 20.16 

SW.06.16B 413.47 15.13 1.40 6122 0.712998 1.4E-05 5.00 21.01 

         

Little Grand Fault         

LG1 5.03 0.04 0.00 240         

LG.03.50A 5.06 0.04 0.22 2047 0.712731 1.4E-05 5.19 17.87 

LG.03.51Q 27.41 0.08 0.66 1588 0.712703 1.6E-05 5.61 19.13 

LG2 31.22 0.08 0.66 36     

LG3 49.09 0.30 0.66 335     

LG4 50.89 0.32 1.62 388     

LG.03.48F 58.80 0.40 2.89 10213 0.712680 1.4E-05 5.71 18.63 

LG5 75.50 0.46 0.42 1621     

LG.03.42AX 106.00 0.50 0.50 69660 0.712750 1.4E-05 5.99 18.48 

LG.03.42AF 109.00 0.50 1.55  0.712883 1.8E-05 5.20 17.36 

LG.03.42AD 113.91 0.60 1.70  0.712907 1.4E-05 4.76 16.99 

LG6 9.48 0.04 0.22      

LG7 103.17 0.50 0.66           
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Appendix C  

Eh-pH Diagrams 

 

C.1. Calculation of Mn-oxyhydroxide solubility 

Fluid-mineral equilibrium with ‘typical’ well crystalline Mn-oxyhydroxide suggests that 

Mn
2+

 concentrations in groundwater at any given Eh and pH should be much higher than 

Fe
2+

, but this is rarely observed. It has commonly been noted that when Mn
2+

 and Fe
2+

 

solution concentrations for typical clastic and carbonate groundwater systems are 

superimposed on their respective activity contours the redox conditions defined from the 

Mn content (assuming equilibrium with a ‘typical’ Mn-oxyhydroxide) do not coincide 

with those defined on the basis of Fe (e.g. Barnaby and Rsimstidt, 1989; Edmunds et al., 

1986). A similar phenomenon is observed in CO2-charged fluids suggesting that 

groundwaters are not in equilibrium with any of the Mn-oxyhydroxide phases considered 

in construction of typical Eh-pH stability diagrams. This could reflect a) the absence of a 

true Mn-oxyhydroxide phase 2) disequilibrium between porewater Mn
2+

 and Mn-

oxyhydroxides 3) pore waters are in equilibrium with Mn-oxyhydroxides of different 

thermodynamic stability than those used to construct stability diagrams. Given the 

ubiquitous presence of Mn-oxyhydroxide minerals in sedimentary environments (1) is 

unlikely (e.g. Bricker, 1965; Potter and Rossman 1979).  The compatibility with 

measured aFe
2+

, pH and Eh with know Fe-oxyhydroxides suggests equilibrium is 

maintained. Thus (3) seems the most likely explanation given the variable composition, 

crystallinity and thermodynamic stability of naturally occurring Mn-oxyhydroxide 

minerals. 

Manganese chemistry in natural systems is complex and not well understood. Mn 

exists in several possible oxidation states and commonly forms complex 

nonstoichiometric oxyhydroxides, with highly variable crystallinity (Ponnamperuma et 

al., 1969). Detailed studies of Mn oxide mineralogy from various sedimentary 

environments indicate that Mn oxides other than pyrolusite (MnO2) are dominant (see 
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Taylor et al., 1964). Consequently it is valid to assume that Mn
2+

 concentrations are 

controlled by equilibrium with a relatively insoluble ‘complex’ MnO2 phase. 

The thermodynamic stability of the Mn-oxyhydroxides governing Mn
2+

 solubility 

in the CO2 charged fluids can be evaluated by estimating the apparent standard free 

energy of formation of a hypothetical Mn-oxide phase in equilibrium with the CO2 

charged fluids using the Nernst equation, measured fluid aMn
2+

, pH and assuming Pt-

electrode-measured Eh potentials approximate the actual Eh. Assuming the controlling 

redox reaction; 

 

OHMneHMnO 2

2

2 224 +↔++
+−+      (C.1) 

 

For which the equilibrium constant (KMnO2) can be written as; 

 

24

2

2
2

2

−+

+

⋅

⋅
=

eH

OHMn

MnO
aa

aa
K         (C.2) 

 

Where −−
= ea

Eh 10          (C.3) 

 

And using the Nernst equation 

 

[ ]K
n

RT
E ln

F
=°∆         (C.4) 

 

The apparent standard state free energy of formation can be defined as 

 

°∆−=∆
°

EnFG f         (C.5) 

 

Where ∆E° is the standard state cell potential, n is the number of electrons involved in 

the reaction, F is the Farady constant, R is the gas constant and T is temperature (°K). 

This yields an average estimated ∆Gf MnO2 = -144640 kJ mol
-1

. Stability diagrams 

constructed using this estimated ∆Gf (Fig. C.1-1) demonstrate that the Mn
2+

 activity 

contours are depressed towards more reducing conditions and define Eh conditions 

consistent with those predicted from the iron equilibria discussed in Chapter 2 section 

2.4.7. 
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Figure C.1-1 Eh-pH stability fields for the important Mn-oxyhydroxides in typical clastic aquifers, at 

25°C, log(MnTOT)=-3 and -4. Calculated using CHNOSZ (Dick, 2008). MnO2,cplx is the hypothetical Mn-

oxide phase whose solubility has been calculated from measured spring pH, Eh and Mn concentrations. 

 

 

 


