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Thesis summary 

The Deconstruction of Reinforcement Learning in Human Substance Use Disorder 

Tsen Vei Lim 

Individuals diagnosed with substance use disorder (SUD) often behave in ways detrimental to 

their own interest and well-being. The mechanisms behind such maladaptive behaviour in 

human SUD remain unclear, but can be explained by disruptions to reinforcement learning 

processes that under normal circumstances shape behaviour adaptively. This perspective has 

led to two different, but not mutually exclusive, hypotheses: (1) reinforcement learning is 

impaired in drug-addicted individuals, as they are unable to learn from the consequences of 

their actions, and (2) learned behaviour in drug-addicted individuals reflects an imbalance 

between two regulatory systems: the goal-directed and the habit system. Recently, trial-by-trial 

computational modelling lends itself as a promising tool to deconstruct latent cognitive 

processes that underpin learning, which can provide mechanistic insights into these 

impairments. Thus, with multiple learning paradigms, the objectives of this thesis are two-fold: 

(1) to characterise the cognitive profile related to impaired reinforcement learning and its 

supporting processes in SUD with computational modelling; (2) to clarify the relationship 

between impaired reinforcement learning and habit learning in SUD.  

 

The first part of the thesis describes the computational analyses of task performance in 

probabilistic reinforcement learning. These analyses identified in two independent cohorts of 

stimulant-addicted individuals a selectively reduced learning rate from punishment, suggesting 

that their behaviour may be less amenable to negative feedback. In one of these cohorts, 

participants underwent pharmacological manipulations with dopamine D2/3 receptor agents, 

which found that both dopamine D2/3 receptor antagonist (400mg amisulpride) and agonist (0.5 

mg pramipexole) differentially modulated behaviour in stimulant-addicted individuals: while 

both dopamine agents impaired performance in control participants, they ameliorated learning 

from negative feedback in stimulant-addicted individuals – confirming the link between 

aberrant learning and dopamine dysfunction in SUD. Next, I investigated the integrity of 

declarative and non-declarative memory systems in cocaine use disorder patients with a 

category learning task, as these systems are thought to complement reinforcement learning. I 

found that cocaine use disorder patients showed clear deficits in both declarative and non-
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declarative memory. Analyses of their response strategies revealed that these patients were 

more likely than control participants to adopt a simple but suboptimal memorisation strategy 

during learning, as opposed to a more complex integrative strategy, which supports the notion 

of an aberrant engagement of memory systems during reinforcement learning.  

 

Given that SUD is associated with enhanced habit formation, I then tested the hypothesis that 

reinforcement learning impairments exacerbate subsequent habit formation in cocaine use 

disorder, by reanalysing prior data on an appetitive instrumental learning task with 

computational methods. Contrary to the hypothesis, I found that impaired reinforcement 

learning in cocaine use disorder, in the form of a reduced learning rate, is insufficient to account 

for enhanced habit formation in these patients, suggesting other modulatory factors at play. I 

subsequently addressed the question of whether patients with cocaine use disorder have insight 

into their behavioural tendencies by using self-report questionnaires. These data revealed 

evidence for a predilection for automatic habits and reduced goal-directed actions in their daily 

lives. Finally, I expanded my work by measuring instrumental learning in a community sample 

of individuals recruited online who consume alcohol hazardously (as measured with the 

Alcohol Use Disorder Identification Test questionnaire) – but not formally diagnosed with 

alcohol use disorder. I tested this with a novel task paradigm which measures goal-directed and 

habitual responses in a conflict situation, but did not find any evidence for an impaired goal-

directed or augmented habitual control associated with harmful alcohol use. 

 

Jointly, the study of reinforcement learning with multiple paradigms refined our understanding 

of maladaptive behaviours in severe SUD, which may be characterised by the attenuated effects 

of negative feedback on behaviour, as well as aberrant non-declarative and declarative memory 

systems. Impaired reinforcement learning, however, cannot fully account for habit 

predominance associated with SUD. Instead, this predominance might be modulated 

differentially by different drugs of abuse, drug use severity and individual differences in 

habitual tendencies.  
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Chapter 1: General Introduction 

1.1 Substance Use Disorder and reinforcement learning 

“But here’s the rub of addiction. By its nature, people afflicted are unable to do 

what, from the outside, appears to be a simple solution—don’t drink. Don’t use 

drugs.”  

(Sheff, 2008, p.184) 

This heart-wrenching quote from David Sheff’s Beautiful Boy, a first-person account of his 

son’s battle with alcohol and methamphetamine addiction, describes the reality of addicted 

users that many cannot fathom. Substance use disorder (SUD henceforth for the chapter), a 

condition that affects approximately 35 million people worldwide (UNODC, 2021), is 

primarily characterised by maladaptive patterns of drug use that span across domains of 

impaired control, social impairments, risky use and pharmacological tolerance (American 

Psychiatric Association, 2013). For these patients, drug use dominates their lives, to the point 

where they risk ill health, familial breakups, neglecting school or work responsibilities, in 

favour of scoring and using drugs. In some cases, even prior near-death experiences (e.g. by 

overdose) have little effect in deterring them from drugs in the future. These pathological 

behaviour patterns are widely recognised as a consequence of disrupted psychological and 

neurobiological processes that subserve adaptive behaviour (Volkow et al., 2016). Thus, the 

main impetus for cognitive research in SUD has been to elucidate the nature of these 

disruptions. Exact causes for such maladaptive behaviours are likely multifactorial; over the 

years, many psychological theories have been proposed to understand maladaptive behaviour, 

including, among others, aberrant incentive salience (Berridge & Robinson, 2016; T. E. 

Robinson & Berridge, 1993), disrupted self-regulation (Baler & Volkow, 2006; Baumeister, 

2003), dysregulated opponent processes (Koob et al., 1989; Koob & Le Moal, 2008; Solomon 

& Corbit, 1974), and impaired interoceptive awareness (Goldstein et al., 2009; Paulus et al., 

2009). Although these theories have made great strides in advancing our knowledge of 

addictive behaviours, the cognitive characteristics of maladaptive behaviours beyond drug-

taking in SUD remain elusive. This thesis will focus on an emerging yet understudied 

perspective of maladaptive behaviour in human SUD, which is conceived in terms of aberrant 

reinforcement learning. 
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Actions are guided by their consequences. This innate tendency to learn “by carrot or by stick” 

is known as reinforcement learning, and explains how humans maintain adaptive and functional 

behaviours to serve our best interests (Niv, 2009). For example, we learn to revisit restaurants 

where we had good dining experiences, or we stop drinking alcohol when feeling 

uncomfortable or nauseated. Indeed, many people are driven to consume psychoactive drugs 

because of their reinforcing properties. In a subset of these people, however, drug-taking 

persists even when its effects are highly detrimental. For example, someone with alcohol use 

disorder, even with aversive visceral sensations (e.g. vomiting and nausea), persists with 

drinking, and drinks again in the future. Decades of research identified that chronic use of drugs 

like alcohol or cocaine targets brain systems implicated in reward and motivation (Volkow et 

al., 2016). Thus, maladaptive behaviours characteristic of drug addiction are thought to reflect 

aberrant reinforcement learning (Hyman, 2005; Maia & Frank, 2011). Impaired reinforcement 

learning processes, which go against self-preservation instincts, pose serious challenges to 

addiction recovery, yet their nature is complex and only partially understood.  

 

Broadly, this thesis sets out to study reinforcement learning in SUD. This first chapter serves 

as an introductory chapter to outline the state of the research into the learning impairments in 

human SUD. I begin by describing the psychological and neural processes that underpin 

learning under normal circumstances, including reinforcement learning and instrumental 

learning processes. This is followed by a review of the extant literature on the learning 

mechanisms affected in SUD or by chronic drug use. In closing, this chapter identifies the 

outstanding questions, and delineate the aims and hypotheses tested in this thesis.   

 

1.2 Learning mechanisms in health 

The study of learning functions has emerged as an influential framework to explain the 

mechanisms of functional behaviour. In this section, I will outline two learning processes that 

greatly shaped our recent understanding of adaptive behaviour: reinforcement learning and 

instrumental learning. I acknowledge that these two learning systems have substantial overlaps 

with one another (e.g. instrumental actions are initially learnt through reinforcement). However, 

I elect to discuss each process in turn, as the former relates more specifically to feedback 

learning, whereas the latter involves the regulation of learned actions.  
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1.2.1 Learning from feedback: reinforcement learning 

Imagine that you are gambling on an electronic slot machine with two levers. Whilst playing, 

you notice that picking the right lever pays out more often, whereas the left lever frequently 

loses your money. Any sensible person would naturally bias their choices towards the right 

lever. This phenomenon can be explained by reinforcement learning (RL): a theoretical model 

of how humans use past consequences to better guide future behaviour (Niv, 2009). The goal 

of reinforcement learning is to make predictions on which action maximises one’s benefits or 

minimises unfavourable outcomes, thereby facilitating functional and adaptive behaviours (Niv, 

2009; Sutton & Barto, 1998).  

 

Reinforcement learning is an example of an instrumental behaviour that encompasses two 

elements: associative learning and reinforcing feedback. Associative learning refers to the 

learning of the contingency between specific events or actions, and specific outcomes (Shanks, 

1995), such as knowing the right lever is linked with winning more money. These learned 

contingencies are then reinforced by the outcome (positive or negative), as predicted by the 

law of effect (Thorndike, 1911). For example, a mother praises her son when he finishes his 

homework. This positive feedback then strengthens the likelihood of the son completing his 

homework in the future. Actions could also be reinforced in a negative manner, such that the 

outcome reduces the likelihood of negative consequences, e.g. one may choose to get the 

annual flu shot to avoid experiencing the negative health consequences from a previous flu.  

 

1.2.2.1 Psychological and neural substrates of reinforcement learning 

There are several components that aid optimal reinforcement learning, but more broadly 

reinforcement learning concerns the learning and update of subjective values of each available 

action, and selecting actions that maximises that value (Sutton & Barto, 1998). These 

subjective values are intimately linked with the human orbitofrontal cortex (OFC) and its 

animal homologue (Kringelbach, 2005; O’Doherty, 2004; Rolls, 2004; Schoenbaum et al., 

2011), and lesions to these regions impair subjects’ ability to adjust actions based on incentive 

values (Gallagher et al., 1999; Izquierdo et al., 2004; Jones & Mishkin, 1972). Considerable 

research suggests that the learning and update of this value depend on the neurotransmitter 
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dopamine. One notable role of dopamine in supporting reinforcement learning is to signal 

prediction errors – the discrepancies between expectations and actual outcomes (Glimcher, 

2011; McClure et al., 2003; Montague et al., 2004). Seminal work by Schultz and colleagues 

(1997) identified in non-human primates that when presented with an unexpected reward, 

midbrain dopaminergic neurons sharply increase in activity. However, when this reward 

becomes predicted by a discriminative cue, the onset of this phasic signal changes from reward 

receipt to the predictive cue – signalling reward prediction instead of reward. Conversely, when 

the reward was expected but did not materialise (reward omission), there was a sharp dip in 

dopaminergic neuronal activity. These important observations led to the proposal of a 

dopaminergic learning signal that guides reward prediction and may underpin reinforced 

behaviour. Motivated by this hypothesis, subsequent works have supported the relationship 

between dopamine prediction errors and feedback learning (Frank et al., 2004; Pessiglione et 

al., 2006; Steinberg et al., 2013). In humans, these prediction error signals are also 

predominantly localised in regions with rich dopamine innervations, including the midbrain, 

striatum (ventral and dorsal), OFC, and the anterior insula (Bayer & Glimcher, 2005; 

D’Ardenne et al., 2008; Jensen et al., 2007; Menon et al., 2007; Pagnoni et al., 2002; Seymour 

et al., 2007).  

 

It has been suggested that the learning of value differs with opposing valences, mostly from 

neural evidence of distinct regions associated with appetitive and aversive learning: learning 

from positive outcomes is linked with the medial OFC and the ventral striatum, whereas 

learning from negative feedback involves the lateral OFC, anterior insula, anterior cingulate 

cortex, the periaqueductal grey, and the lateral habenula (Elliott, Dolan, et al., 2000; Elliott, 

Friston, et al., 2000; Hennigan et al., 2015; Jensen et al., 2007; Lawson et al., 2014; Palminteri 

et al., 2012; Roy et al., 2014). However, since positive or negative outcomes are highly 

dependent on contexts and reference points (Kim et al., 2006), it is difficult to delineate a 

precise neuroanatomical distinction between these systems (Pessiglione & Delgado, 2015). An 

alternate neuro-computational model suggests that the dopaminergic receptors in the dorsal 

striatum play a role in determining approach and avoidance behaviour, as different dopamine 

neuronal populations have differential sensitivity to phasic and tonic levels of dopamine (Frank, 

2005; Frank & O’Reilly, 2006). Specifically, D1 receptors are excitatory and are thought to be 

sensitive to phasic dopamine bursts related to positive (reward) prediction errors. By contrast, 

D2 receptors are inhibitory by nature and sensitive to dips in tonic dopamine levels, which is 
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linked with negative (aversive) prediction errors. Because these two receptor subtypes have 

been associated with positive and negative prediction errors, it has also been argued that D1 

and D2 receptors differentially underpin learning from positive and negative feedback 

respectively (Cox et al., 2015; Hikida et al., 2010; Surmeier et al., 2007). There is also growing 

evidence for the opponency of dopamine and serotonin, such that these neurotransmitter 

systems modulate appetitive and aversive behaviours respectively (Boureau & Dayan, 2011; 

Cools et al., 2011; Daw et al., 2002). It is likely that these views overlap significantly with one 

another, but nevertheless, they allude to the notion that different valences are subserved by 

different neurobiological systems. 

 

In addition to value signals, another important component of reinforcement learning involves 

the action selection process. Logically, selecting the option with the highest value would be the 

default way to maximise gains. However, in an uncertain environment, agents usually have to 

evaluate their choices based on the information at hand (Sutton & Barto, 1998). In such 

situations, humans could either exploit their knowledge and stick with choices with the highest 

value, or explore other choices to gather more information. This is known as the 

exploration/exploitation trade-off (also known as stochasticity or reinforcement sensitivity) in 

the reinforcement learning literature, and this process has been modelled experimentally in a 

probabilistic learning task (Daw et al., 2006). Daw and colleagues (2006) simulated this 

process by having participants complete a reinforcement learning task with probabilities that 

change over time. Their data identified that the tendency to exploit values is associated with 

activations in the medial OFC – unsurprisingly a region implicated in value representation 

(O’Doherty, 2004). By contrast, exploratory activity involves the frontopolar cortex and the 

intraparietal sulcus (Daw et al., 2006). Interestingly, there is some evidence that the brain also 

signals the uncertainty levels for the available choices, notably in the anterior cingulate cortex 

(Behrens et al., 2007; Brown & Braver, 2005). These results support the notion that value and 

probabilistic information are integrated during the action selection process. However, although 

action selection is often driven by action values and its probability, this is not always the case. 

For example, an action could be selected simply because of familiarity, irrespective of 

reinforcement history – a process known as stickiness (also known as perseverative tendency; 

Christakou et al., 2013), and this process has been linked with compulsive disorders like 

substance use disorder and OCD (Kanen et al., 2019). Whether this process plays out 

differently in psychopathologies is an active and ongoing research endeavour. 
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Reinforcement learning is likely not an isolated process. A parallel and overlapping line of 

research has identified two dissociable memory systems that are involved in acquiring new 

knowledge – namely declarative and non-declarative memory (Packard & Knowlton, 2002; 

Seger & Miller, 2010). On one hand, declarative memory facilitates the rapid learning of factual 

knowledge or simple rules (e.g. at a traffic light, red means stop, green means go). This system 

is flexible and conscious, and depends on the hippocampus (Squire & Zola-Morgan, 1991). On 

the other hand, non-declarative memory supports the incremental learning of complex 

associations through trial-and-error. Compared to declarative memory, the non-declarative 

memory system is slow and implicit, but detects regular patterns in a changing environment 

(e.g. cloudy days and strong winds most likely predict an incoming storm); this system is 

thought to be striatal-dependent (Poldrack et al., 1999; Shohamy et al., 2008). Both declarative 

and non-declarative memory support reinforcement learning by mediating the acquisition of 

associative knowledge, albeit through different routes (Seger & Miller, 2010). Converging 

evidence suggests that these systems are dissociable (Knowlton et al., 1996; Poldrack et al., 

2001; Shohamy, Myers, Grossman, et al., 2004). A double dissociation is demonstrated in one 

such study with a probabilistic category learning task designed to test these systems (Knowlton 

et al., 1996). Patients with Parkinson’s disease, characterised by deficits in striatal dopamine, 

showed impairments in non-declarative, but not declarative memory, as reflected by poor trial-

and-error learning but preserved task knowledge. This is in stark contrast to amnesia patients 

(who typically show hippocampal damage), who were able to learn by trial-and-error (non-

declarative memory), but were unable to retain any factual knowledge about the task. The 

dissociable nature of these systems thereby allows learning to occur via different routes, and 

makes it possible for one system to compensate for the other in neuropathological conditions 

(Gluck et al., 2002; Shohamy, Myers, Onlaor, et al., 2004). 

 

1.2.2.2 Experimental paradigms used to study reinforcement learning 

Experimental paradigms that assess reinforcement learning typically involve the use of 

corrective feedback to enable participants to learn from their choices. Common tasks that probe 

this ability include the probabilistic reinforcement learning task (O’Doherty et al., 2004), the 

reversal learning task (Murphy et al., 2003), the Iowa Gambling Task (Bechara et al., 1994, 

1997), and the Weather Prediction Task (Knowlton et al., 1996).   
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The probabilistic reinforcement learning task (sometimes also known as the n-arm bandit task) 

is a straightforward way to assess reinforcement learning (O’Doherty et al., 2004; Pessiglione 

et al., 2006). Participants are presented with several choices, and must learn by trial-and-error 

to select choices that more often lead to rewarding feedback, or more likely avoid punishing 

feedback. Feedback could take the form of positive (e.g. winning 10 points) or negative 

feedback (e.g. losing 10 points). In most cases, feedback is probabilistic (e.g. choosing A most 

likely leads to reward, but not always), but feedback can also be deterministic, depending on 

the process being assessed (e.g. to ensure participant reaches a certain criterion). Learning is 

then measured by task accuracy (e.g. rate of optimal choices) over time, or by inferring its 

latent variables with computational models (discussed later). Typically, these tasks have been 

used to assay reward or punishment learning, which are hypothesised to be disrupted in some 

neuropsychiatric disorders (Heinz et al., 2016).  

 

Sometimes, adaptive behaviour depends on one’s flexibility in switching behaviour when 

previously rewarded choices are no longer beneficial. This can be modelled in an extension to 

the reinforcement learning task, known as the probabilistic reversal learning task (Gallagher et 

al., 1999; Jentsch et al., 2002). Similar to reinforcement learning, this task uses corrective 

feedback to inform participants the outcome of their choices. However, instead of a stable 

contingency, this task switches learned contingencies from time to time, such that a previously 

rewarded choice becomes punished. The rationale behind this is to ascertain if participants 

switch their choices according to feedback, or stick to a previously rewarded choice despite 

negative feedback. The latter is thought to signify cognitive inflexibility in face of changes – a 

hallmark of compulsivity. There could be many reasons for such inflexible behaviour. One 

possibility is impaired learning from feedback (Fineberg et al., 2014), but this has yet to be 

conclusively shown. This inflexibility could also in part reflect dysregulated top-down 

behavioural control over instrumental actions (Vandaele & Janak, 2018). 

 

Real-life decisions usually require integrating potential costs and benefits, which also depends 

on feedback learning. This is modelled in a task known as the Iowa Gambling Task (Bechara 

et al., 1994). In this task, participants are required to draw cards from four deck of cards to 
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maximise their point gains. For each card drawn, participants receive varying magnitudes of 

monetary rewards, but on some card draws, these rewards are accompanied with penalties. For 

example, a participant could win $100 but lose $150 on a single trial. Unbeknownst to the 

participant, two of the card decks (termed risky decks) have higher monetary gains, but incur 

larger costs, which ultimately results in a net loss; the other two card decks (termed safe decks) 

yield smaller monetary gains, but would incur less penalty, and choosing these would 

eventually result in a net gain. Advantageous decision-making is reflected by the number of 

draws made from the safe decks against the risky decks. Further, it has been hypothesised that 

autonomic signals elicited in anticipation of penalties help guide decisions, and this process 

recruits the ventromedial prefrontal cortex (vmPFC). Bechara and colleagues identified that 

patients with vmPFC lesions consistently chose the risky deck over the safe decks, and did not 

elicit any anticipatory skin conductance response (SCR) (Bechara et al., 1994, 1997).  

 

Another way to gain insight into the reinforcement learning system is by probing the 

declarative and non-declarative memory systems that support it. This is commonly done with 

a probabilistic category learning task known as the Weather Prediction Task (Gluck & Bower, 

1988; Knowlton et al., 1996). Participants learn by trial-and-error to categorise card 

combinations into one of two categories (sunshine or rain). On each trial, the card combination 

consists of either one, two or three cards out of four possible unique tarot cards. Each of the 

four unique cards vary in their probability of producing sun, which gives an overall probability 

when combined. Task performance (% optimal responses made) is traditionally viewed as a 

measure of non-declarative learning. However, given that the two systems operate concurrently 

(Packard & Knowlton, 2002; Poldrack & Foerde, 2008), prior research has shown that it is 

possible to approach this task using various strategies: explicit verbalisable rule-based 

strategies (declarative) or implicit non-verbal learning by trial-and-error (non-declarative) 

(Gluck et al., 2002). Moreover, researchers have created a variant of the task, such that the task 

can only be learnt via declarative processes (explicit memorisation) instead of feedback 

(Poldrack et al., 2001; Shohamy, Myers, Grossman, et al., 2004), thus making it possible to 

dissociate between the two systems more cleanly. Combining analyses of both performance 

and strategy for the weather prediction task can provide insight into the processes that facilitate 

the learning of reinforced behaviour.  
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1.2.2 Goal-directed versus habit learning: dual-process theory of instrumental learning 

Control over learned actions, such as those acquired through reinforcement learning, is 

increasingly conceived in instrumental learning terms (Balleine & Dickinson, 1998; Dickinson, 

1985). This theory predicts that learned behaviours are regulated by two dissociable processes: 

a goal-directed system and a goal-independent habit system. The goal-directed system 

regulates actions that are motivated by a desired outcome. Psychologically, actions are deemed 

goal-directed if: (1) actions are directed towards achieving a certain outcome, (2) the outcome 

itself is desirable (Balleine & Dickinson, 1998; de Wit & Dickinson, 2009). An example of a 

goal-directed behaviour is being motivated to study hard in order to get good grades in an 

upcoming exam. In associative terms, goal-directed actions (e.g. studying hard) are mediated 

by action-outcome contingencies (e.g. studying hard causes good grades). This form of 

behaviour relies on knowledge between actions and outcomes, and therefore is characterised 

as prospective and flexible, but computationally costly as it requires conscious deliberation. 

Because of its sensitivity to reinforcement, I argue that reinforcement learning, at least under 

conditions of minimal training, falls largely within the remit of goal-directed learning.   

 

However, when actions become repetitive in a predictable environment, the brain automates 

actions into habits, so that they become reflexive and easier to perform (Wood & Neal, 2007). 

In psychological terms, habits no longer depend on intentions, outcomes, or action-outcome 

contingency (Dickinson, 1985). Rather, behaviour is stimulus-bound i.e. elicited by the 

presence of a conditioned cue that was previously predictive of a prior reward (Adams & 

Dickinson, 1981). Habits are adaptive such that they allow us to perform routine behaviours 

without the need for conscious deliberation, thereby maximising efficiency (Wood et al., 2002). 

However, they lack flexibility because, unlike goal-directed actions, behaviours controlled by 

the habit system are not modified by outcomes (Dickinson, 1985). Clearest examples of these 

are action slips – actions performed unintentionally. For instance, we unwittingly turn on the 

light switch upon entering our bedroom during daytime; or entering the kitchen prompts us to 

open the fridge in the absence of any intention to look for food. Environmental cues trigger 

habitual responses. The goal-directed and the habit systems are thought to work in parallel to 

regulate instrumental actions (Balleine & O’Doherty, 2010). As such, adaptive behaviour has 

been hypothesised to arise from the flexible switching between the two systems, depending on 

situational demands.  
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1.2.2.1 Psychological and neural substrates of goal-directed and habit learning 

Actions are jointly regulated by the goal-directed and habit systems in the brain, but under 

different circumstances, one system can dominate over another to control instrumental actions 

(Balleine & O’Doherty, 2010). A common method to bias actions towards the habit system is 

with extensive repetition. Adams and Dickinson (1981) found that after extensive repetition of 

an appetitive behaviour, rodents are no longer sensitive to changes in outcome value, which is 

indicative of habitual control over behaviour. Subsequent investigations characterise the neural 

substrates underpinning goal-directed to habit learning. There is widespread agreement that the 

goal-directed and habit systems are subserved by dissociable brain systems. On one hand, the 

goal-directed system is underpinned by fronto-striatal systems closely linked with value 

computation, such as the anterior caudate, ventral striatum and the medial OFC (Balleine & 

O’Doherty, 2010). On the other hand, the habit system is linked with cortico-striatal systems 

implicated in motor responses, including the putamen and the premotor cortex (Knowlton & 

Patterson, 2016). Early studies in rats over-trained with appetitive food-seeking behaviours 

have identified, through brain lesion procedures, that inactivating the dorsomedial striatum 

(homologue to the human anterior caudate) causes behaviour to be habitual and insensitive to 

changes in outcome or contingency (Yin, Knowlton, et al., 2005; Yin, Ostlund, et al., 2005). 

By contrast, inactivating the dorsolateral striatum (homologue to human putamen) enabled 

habitual rats to regain sensitivity to outcomes and contingency (Yin et al., 2006). This 

reciprocal relationship is replicated in human studies. For example, overtraining an operant 

response increases the relative engagement of the putamen (Tricomi et al., 2009). By contrast, 

the medial OFC and the anterior caudate nucleus were sensitive to both changes in outcome 

value (Valentin et al., 2007) and action-outcome contingency (Tanaka et al., 2008). Further, 

the inter-individual differences within the cortico-striatal connectivity have also been 

demonstrated to underlie variations in habit formation (de Wit et al., 2012).  

 

As goal-directed and habit systems are viewed to regulate behaviour in parallel, there is an 

increase in interest in the mechanisms that arbitrate the balance between the two systems. 

Converging evidence suggests that the lateral prefrontal cortex, which has been implicated in 

goal-directed planning, plays a role in this balance (Bogdanov et al., 2018; Lee et al., 2014). 

Lee and colleagues (2014) showed that switching flexibly between computational proxies of 
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goal-directed and habitual behaviours (i.e. model-based and model-free behaviour) during a 

volatile learning task corresponds to the activity in the inferolateral prefrontal cortex, but this 

result was only correlational at that time. Subsequently, Bogdanov and colleagues (2018) 

sought to test this hypothesis by applying a theta-burst stimulation to transiently inhibit the 

inferolateral prefrontal cortex before completing an instrumental learning task (the slips of 

action task). They found that participants’ task performance was more biased towards habitual 

responding when the inferolateral prefrontal cortex was inhibited relative to control conditions, 

suggesting a causal role for this region in switching between the control systems depending on 

the situational demands. Therefore, understanding the balance between goal-directed and 

habitual responding does not only involve each individual system, but also the arbitration 

between the two.   

 

1.2.2.2 Experimental paradigms of goal-directed and habit systems 

Conventional experimental paradigms of habits in animal studies have taken advantage of the 

independence of habits from goals. Essentially, habits are viewed as the reciprocal of goal-

directed actions, and have been operationally defined as the absence of goal-directed behaviour. 

Two classical tests of habits have developed from this: outcome devaluation, which 

manipulates the value of the outcome (Adams & Dickinson, 1981); and contingency 

degradation, which alters the action-outcome contingency (Dickinson & Balleine, 1994; 

Hammond, 1980). In both task paradigms, instrumental responses are learnt via overtraining in 

the presence of a predictive cue, but they differ in terms of subsequent phases. In outcome 

devaluation paradigms, once a learned response is established, the reinforcer is then devalued. 

This can be done in multiple ways, such as inducing satiety or inducing sickness, with the goal 

to reduce the desirability or value of the outcomes so that they no longer should motivate 

behaviour. If humans (or animals) continue to respond despite devaluation, their actions are 

thought to be no longer guided by the outcomes, but instead by the cue, which is a feature of a 

habit. By contrast, in contingency degradation paradigms, once the initial action-outcome 

contingencies are established, they are gradually degraded, so that the causal relationship 

between actions and outcomes no longer exist. If the instrumental response continues despite 

degradation, that action is said to be controlled by the habit system. Both outcome devaluation 

and contingency degradation were successful paradigms in identifying habits in animals, and 

have been translated for human experiments (de Wit et al., 2007, 2012; Vaghi et al., 2019). 
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An alternative model conceived instrumental processes of goal-directed and habitual control in 

computational terms (Daw, 2014; Daw et al., 2011; Dayan & Daw, 2008). On the one hand, 

goal-directed control is thought to involve an internal model of the environment as it typically 

tracks values and action-outcome contingencies during action selection. Therefore, it is known 

as a model-based process that involves forward prospective simulations of all possible 

outcomes to maximise values. On the other hand, habit learning may only involve the 

stamping-in of stimulus-response associations through reinforcement and is largely guided by 

prior rewards. As such, the habit system is deemed a model-free system guided only by prior 

rewards (Dolan & Dayan, 2013). These processes could be tested in the two-step decision-

making task (Daw et al., 2011; Gläscher et al., 2010). In this task, participants needed to pick 

a stimulus that they think might maximise their rewards in a two-stage decision process. Based 

on their choice selections on each stage, this task purportedly enables the dissociation between 

actions that are guided either by prior experiences of rewards (model-free) or the knowledge 

of the transition between stages (model-based).  

 

1.2.3 Summary 

In brief, reinforcement learning is concerned with the use of past reinforcement to guide future 

behaviour to maximise potential benefits and avoid aversive states. This process involves 

multiple latent processes such as value learning, reward prediction and action selection, most 

of which implicates the dopaminergic system. Supporting memory systems such as declarative 

and non-declarative processes can also facilitate reinforcement learning. Learned behaviours 

as such are thought to be regulated by the goal-directed system – which is sensitive to outcomes; 

or, upon extensive repetition, by the habit system that is insensitive to changes in outcomes or 

action-outcome contingency. Both reinforcement learning and instrumental learning theories 

are overlapping but distinct frameworks that can jointly be used to understand the 

psychological basis of maladaptive behaviour observed in SUD.   

 

1.3 Learning impairments in substance use disorder 

Chronic drug use induces neuro-adaptive changes that alter brain circuits (Volkow et al., 2004). 

In particular, the potent reinforcing effects of addictive drugs are attributed to its interactions 
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with brain reward and learning pathways, which these drugs alter over extended use (Hyman, 

2005; Hyman et al., 2006; Koob & Volkow, 2010). Individuals addicted to stimulant drugs (e.g. 

cocaine, amphetamines, methamphetamine) and alcohol show notably reduced striatal 

dopamine receptors, which speaks for a downregulation of dopamine transmission (Martinez 

et al., 2004; Volkow et al., 1993, 1996). Hence, it is conceivable that dopamine-dependent 

processes such as learning and motivation are affected in substance use disorder. Our 

knowledge that dopaminergic pathways crucially underpin learned and motivated behaviours 

(Wickens et al., 2007) led to two prevailing hypotheses within the addiction literature: (1) 

reinforcement learning is impaired in SUD; (2) SUD patients show increased habitual control 

over behaviour. This section discusses the available evidence relevant to these hypotheses, with 

a special focus on cocaine and alcohol.  

 

1.3.1 Altered feedback learning in human cocaine and alcohol use disorder 

Deficits in optimising actions with reinforcing feedback is thought to be one pathway in which 

pathological drug use is sustained (Maia & Frank, 2011). This section discusses several strands 

of evidence that provide support for this hypothesis. Evidence presented here is largely derived 

from behavioural and neuroimaging experiments that incorporate the use of corrective 

feedback to adjust ongoing behaviour, such as gambling tasks, reinforcement and reversal 

learning tasks. The synthesis of this evidence would lead to the conclusion that despite the clear 

impairments of feedback learning in cocaine and alcohol use disorder, the underlying cognitive 

profile in these patients is less well understood. 

 

Adaptive actions in real life are guided by their consequences, and the probabilistic 

reinforcement learning task is an appropriate means to investigate this process. Converging 

evidence show that chronic users of methamphetamine (Harlé et al., 2015), cocaine (Morie et 

al., 2016; Strickland et al., 2016) and alcohol (Jokisch et al., 2014; Rustemeier et al., 2012) 

learned slower than their healthy counterparts in response to monetary gains, consistent with 

the notion that reinforcing feedback guides actions less well. This deficit putatively impacts 

drug use initiation and subsequent relapse. For instance, cocaine and methamphetamine users 

who showed attenuated striatal activations during reinforcement learning were more likely to 

relapse within a 12-month period (Stewart et al., 2014a, 2014b). Moreover, the use of negative 

feedback to learn avoidance behaviour, although less studied, also seems to be impaired; 



General Introduction 

 

29 

 

studies found that negative feedback such as electric shocks, symbolic errors, disgust cues or 

monetary losses were not effective in altering behaviours in patients addicted to alcohol or 

cocaine (Ersche et al., 2014, 2016; Hester et al., 2013; Thompson et al., 2012). However, poor 

reinforcement learning can result from a multitude of factors, and the specific nature of such 

impairments is less clear.  

 

Deficits in reinforcement learning also hamper one’s ability to adjust behaviour flexibly 

according to situational demands, which results in the abnormal persistence of behaviour. This 

is known as perseveration and is viewed as a behavioural marker for compulsivity (Figee et al., 

2016). Perseverative tendencies and cognitive inflexibility are measured in reversal learning 

tasks, which require the flexible update of incentive values acquired from feedback. Studies in 

stimulant- (Ersche et al., 2008; Ersche, Roiser, Abbott, et al., 2011) and alcohol-addicted 

individuals (Vanes et al., 2014) have shown behavioural signatures of perseveration, such that 

initially learned contingencies do not flexibly adapt to the changed feedback. Deficits in 

reversal learning in patients could also be traced to impairments in latent processes of learning, 

such that patients are more likely to repeat prior choices irrespective of incentive values (Kanen 

et al., 2019). Moreover, this deficit has been linked to reduced grey matter in the orbitofrontal 

cortex in alcohol use disorder patients (Moreno‐López et al., 2015), further corroborating the 

role of OFC in signalling incentive values, and its dysfunction in addicted individuals. 

 

The decision to continue to use drugs by SUD patients is thought to be largely driven by 

immediate positive reinforcement at the expense of long term losses. Therefore, these patients 

are thought to exhibit decision-making deficits that have been characterised as a “myopia for 

future consequences” (Bechara, 2005). This hypothesis is tested in an experimental task that 

requires the real-time incorporation of positive and negative prospects of a decision, such as 

the Iowa Gambling Task. Individuals addicted to cocaine and alcohol were more likely to select 

cards that led to immediate large rewards, even if their choices are accompanied by large losses 

(resulting in a net loss over time), revealing a form of risky decision-making (Bechara et al., 

2001; Verdejo-Garcia et al., 2007). By contrast, their healthy counterparts were more likely to 

select the advantageous deck with smaller gains, but also smaller losses (resulting in a net gain 

over time). A subsequent study revealed that cocaine-dependent users showed a blunted 

anticipatory SCR, suggesting that the unpredictable losses did not affect their decisions – a 
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behavioural profile that is similar to those with ventromedial prefrontal cortex (vmPFC) lesions 

(Bechara & Damasio, 2002). The involvement of the vmPFC is further confirmed in a 

subsequent study where cocaine users also show abnormal vmPFC activation when completing 

this task (Bolla et al., 2003). To confirm the specificity of the anticipatory SCR, Bechara and 

colleagues (2002) conducted a subsequent study with a reversed design – participants instead 

receive immediate punishing feedback on their choices, but occasionally receive a delayed 

reward. The results were opposite to that of the standard design. Cocaine users showed intact 

anticipatory SCR for delayed reward and unimpaired performance, thereby confirming that 

their choices are driven by reward at the expense of punishment (Bechara et al., 2002). Alcohol 

users share a similar behaviour profile – they too, tend to select riskier options and lack 

anticipatory SCR to unpredictable punishments (Bechara et al., 2001; Brevers et al., 2014; 

Loeber et al., 2009). Collectively, results from these decision-making studies characterised 

SUD impairments as a hypersensitivity to reward, but hyposensitivity to future losses, which 

may mirror their drug use in real life.   

 

The prevailing view is that reinforcement learning impairments in addicted individuals are 

related to dysfunctions in dopamine-related processes (Kalivas & O’Brien, 2008; Wise & 

Robble, 2020). A candidate mechanism for that is striatal prediction error signals (Keiflin & 

Janak, 2015). Several studies on stimulant-addicted individuals have found blunted striatal 

prediction error signals towards unexpected outcomes (Parvaz et al., 2015; Rose et al., 2014; 

Tanabe et al., 2013). In particular, this was specific to unexpected negative feedback, and 

correlates with poor learning (Parvaz et al., 2015; Tanabe et al., 2013). Although studies on 

alcohol use disorder patients did not identify abnormalities in striatal prediction errors per se, 

further analyses revealed aberrant functional connectivity between the striatum and the 

prefrontal cortex, which was presumed to underpin action selection (Deserno et al., 2015; Park 

et al., 2010). Another candidate mechanism that supports reinforcement learning is the role of 

dopamine D2 receptors, which is consistently shown to be downregulated in chronic alcohol 

and cocaine users (Heinz, 2002; Volkow et al., 1993, 1996). It has been hypothesised that 

dopamine D2 receptors are more sensitive to negative prediction errors, which facilitate 

learning from negative feedback (Frank & Hutchison, 2009; Hikida et al., 2010). Indeed, 

individuals with genetically-determined lower dopamine D2 receptors have problems 

incorporating negative feedback into their actions (Jocham et al., 2009; Klein et al., 2007). 

Thus, it is possible that addicted individuals are impaired in learning from negative feedback, 
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which could perpetuate their pathological drug taking patterns, as the effects of negative 

feedback, which should deter behaviour, is dampened. Whether this really is the case remains 

to be determined. However, in addition to negative reinforcement learning, reductions in 

dopamine D2 receptors in rats have been shown to predict trait impulsivity and subsequent 

cocaine reinforcement in cocaine-naïve rats (Dalley et al., 2007), which suggests another 

possible mechanism for low dopamine D2 receptor density to elevate addiction risk (Gleich et 

al., 2021; Noble et al., 1993). It is likely that dopamine underpins several dissociable 

reinforcement learning processes (Frank et al., 2007), but these have not yet been investigated 

in the context of SUD.   

 

It has also been suggested that non-declarative memory, a system supporting reinforcement 

learning, is also impaired, although evidence for this is limited and equivocal. The non-

declarative system in these studies were tested with the Weather Prediction Task. Although a 

study found preserved non-declarative memory in cocaine-dependent users (Vadhan et al., 

2008), other studies have found clear deficits in short and long term cocaine users (Kumar et 

al., 2019; Vadhan et al., 2014). In particular, deficits in non-declarative memory were only 

present after heavy alcohol and cannabis use were statistically controlled for in the cocaine 

users (Vadhan et al., 2014). However, it is noteworthy that these studies have only analysed 

summary score performance for the task but did not identify their learning strategies or assessed 

declarative memory. Hence, the nature of this profile remains unclear.   

 

To summarise, extant evidence largely supports the notion of altered learning from feedback 

in cocaine and alcohol users, which could have implications for maladaptive behaviour 

frequently reported in patients. Possible mechanisms for this impairment include dysfunctions 

to dopaminergic processes implicated in prediction error signalling and learning from negative 

feedback, and possibly memory systems associated with learning. However, the nature of these 

deficits have not been conclusively determined in human drug users. 

 

1.3.2 Habit predominance in substance use disorder 

An alternative but not mutually exclusive hypothesis that explains maladaptive behaviour in 

SUD concerns the dysregulated regulatory control over learned actions. It has been 
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hypothesised that the balance between goal-directed and habitual behaviours is disrupted in 

SUD, heavily biased towards the latter (Everitt & Robbins, 2005, 2016). Since actions 

controlled by the habit system are automatic by nature and insensitive to consequences, this is 

thought to be one way in which bad habits (e.g. drug use) persist despite adverse consequences. 

Most animal studies test this hypothesis with the outcome devaluation procedure. These studies 

have shown that whilst healthy rodents reduced responding after outcome devaluation, those 

treated with stimulants or alcohol did not show this decrement, which is indicative of habitual 

control (Corbit et al., 2012; Corbit, Chieng, et al., 2014; Dickinson et al., 2002; Hopf et al., 

2010; Lesscher et al., 2010; Miles et al., 2003; A. Nelson & Killcross, 2006). It is noteworthy 

that instrumental response only becomes habitual after prolonged training – cocaine and 

alcohol-treated rats with moderate training do not demonstrate this habit bias (Corbit et al., 

2012; Zapata et al., 2010). Nevertheless, current evidence suggests that extended cocaine and 

alcohol exposure seems to facilitate habit formation, as treated rats formed habits quicker than 

their non-treated counterparts (Mangieri et al., 2012; Nordquist et al., 2007). Neurally, this 

transition might be underpinned by a quicker devolution of control from the dorsomedial 

striatum to the dorsolateral striatum (Belin & Everitt, 2008; Corbit et al., 2012). Indeed, 

inactivating the dorsolateral striatum in alcohol-exposed rats that received extensive practice 

renders initially habitual behaviours sensitive to outcomes again, further corroborating the 

enhanced habitual control over their actions (Corbit et al., 2012). However, the psychological 

and neural mechanisms that underlie this shift is yet unclear.  

 

In humans, evidence for this process is limited and equivocal. Human studies mostly use 

outcome devaluation tasks, but adopt different devaluation techniques, such as instructed 

devaluation (e.g. participants are told that outcome A is no longer valuable) in the slips of 

actions task (de Wit et al., 2007); or taste aversion techniques that render certain outcomes 

undesirable (van Timmeren et al., 2020). Although the majority of available studies in human 

cocaine and alcohol use disorder contend that learned behaviour becomes habitual quicker in 

these patients (Ersche et al., 2016; Sjoerds et al., 2013), this is not always the case (van 

Timmeren et al., 2020). An alternative paradigm often used to study habits computationally is 

the two-step task. This task approximates goal-directed and habits as computational accounts 

of model-based and model-free control respectively. Extant evidence shows that alcohol users 

(Sebold et al., 2014) and methamphetamine users (Voon et al., 2015) have reduced model-

based, but comparable model-free behaviour. In other words, these studies tell us that the goal-
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directed system, rather than the habit system is impaired in these drug users. However, 

subsequent studies with larger and more heterogeneous samples did not replicate this finding 

(Nebe et al., 2018; Sebold et al., 2017). Interestingly, one study found that alcohol use disorder 

patients who relapsed had lower neural signatures of model-based control (Sebold et al., 2017), 

which echoed earlier findings in reinforcement learning in methamphetamine users (Stewart et 

al., 2014b), suggesting that the ability to exert goal-directed control might be related to 

protracted abstinence during recovery.  

 

In summary, whilst the evidence for a habit predominance over instrumental action is 

compelling in animal studies, the findings in humans are equivocal. Moreover, the exact nature 

of this disrupted balance, whether this is related to an impaired goal-directed system, an 

augmented habit system, or poor regulation between the two, remains unknown. 

 

1.4 Outstanding questions and the potential of computational learning models 

It is clear that reinforcement learning is impaired in individuals with SUD, and this might be 

related to their impaired ability to respond appropriately to reinforcing feedback. However, 

there remain gaps in our knowledge pertaining to these areas. Clarifications to the 

psychological processes might be clinically informative: 

(1) What are the underlying computational features that underpin such impairments? On a 

cognitive level, which components of reinforcement learning (e.g. value learning, 

action selection) contribute to the behavioural profile in SUD patients? A potential 

mechanism discussed earlier implicates deficits in dopamine neurotransmission, but 

this link has not been concretely established. I address these questions in Chapter 3.  

(2) The differences in the declarative and non-declarative memory systems that support 

reinforcement learning are unclear in SUD. Do SUD patients rely on a different strategy 

during learning from feedback? This is addressed in Chapter 4.  

 

In the context of behavioural control, SUD is linked with a predominance of the habit system 

over the goal-directed system (Everitt & Robbins, 2016). Consequently, conscious control over 

well-learned actions, such as drug use, might have devolved to a system insensitive to the 

consequences of such actions. One possible way this occurs, among several, is that the goal-



General Introduction 

 

34 

 

directed system fails to exert control when actions are rendered meaningless (Vandaele & Janak, 

2018), but this has not been concretely shown in humans, which raises several outstanding 

queries:  

(3) Does the initial goal-directed learning of appetitive behaviours affect subsequent habit 

formation? This question formed the basis of Chapter 5. 

(4) Does enhanced habitual control seen in behavioural tasks also mean patients are more 

habitual in their daily lives? I explore this question in Chapter 6 with self-reported 

questionnaires.  

(5) Do impaired reinforcement learning and habit predominance manifest during initial 

stages of harmful substance use? Although this habit predominance associated with 

SUD is clear within animal models of addiction, limited research has looked into the 

early stages of alcohol use disorder. Even in severe alcohol use disorder, findings in 

humans have been equivocal (Sebold et al., 2014; Sjoerds et al., 2013; van Timmeren 

et al., 2020), which could be attributed to limitations in existing task paradigms. I use 

a novel behavioural task to study these processes in a population characterised by 

harmful alcohol consumption in Chapter 7. 

 

Reinforcement learning is increasingly studied using computational techniques. These 

techniques interface between our knowledge of computer science, neuroscience and 

psychology, providing an instrumental tool for researchers to deconstruct the learning process 

into its constituent components. Leveraging mathematical frameworks, computational learning 

models offer a mechanistic insight into the reinforcement learning process by providing a 

quantitative means to measure psychological processes (Huys et al., 2021). This offers the 

advantage of exploring latent variables quantitatively that were previously not accessible 

through summary scores alone. The advent of reinforcement learning algorithms proved 

fruitful in identifying behavioural and neural signatures that underpin learning. For example, 

Stout and colleagues (2004) applied an expectancy valence model to computationally 

deconstruct behavioural performance of a small sample of cocaine-dependent users on the Iowa 

Gambling Task. They identified a reduced loss weightage parameter in the cocaine user group, 

suggesting that cocaine-dependent users were less likely to take monetary losses into account 

during decision-making. A similar observation was made in abstinent heroin-dependent users, 

who also showed a reduced loss aversion parameter (Ahn et al., 2014). Both studies highlight 
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the utility of computational models in identifying latent processes that could account for 

behavioural performances. The use of modelling was also able to pinpoint selective 

mechanistic disruptions in compulsive disorders based on common experimental paradigms 

such as reversal learning tasks (Kanen et al., 2019). Therefore, computational methods would 

be useful in elucidating reinforcement learning impairments in SUD that are still elusive.  

 

1.5 Thesis objectives and outline 

The objectives of this thesis are two-fold: First, I sought to characterise the cognitive 

characteristics and extent of impairments in reinforcement learning and its supporting memory 

processes in mild and severe substance use disorder. Second, I aim to clarify how impairments 

to the goal-directed system, as a function of reinforcement learning, impact habit predominance 

in the context of substance use disorder. Before I report the behavioural findings, I first 

contextualise, in Chapter 2, my experimental findings by providing an overview of the samples 

tested, experimental paradigms used and the general statistical approach used to analyse 

behavioural data.  

 

Chapter 3 tested the hypothesis that impaired reinforcement learning in severe SUD is due to 

disruptions to dopamine-dependent learning processes, such as the impact of feedback on 

behaviour and the tendency to pursue reward values. It reports behavioural findings from two 

independent patient samples of stimulant use disorder who completed a probabilistic 

reinforcement learning task that assessed learning from reward and punishment separately. To 

probe the neurochemical substrates of reinforcement learning impairments in these patients, 

patients in one study were subjected to pharmacological drug challenges that target the 

dopamine D2/3 receptors with selective antagonist (400 mg amisulpride) and agonist (0.5 mg 

pramipexole) in a randomised, placebo-controlled, parallel, crossover trial design. I predicted 

that dopamine receptor blockade by amisulpride would further impair task performance, whilst 

the dopaminergic receptor agonist, pramipexole, would ameliorate learning performance in 

SUD.    

 

Chapter 4 explored the notion that memory processes known to support reinforcement learning, 

namely declarative and non-declarative memory, are disrupted in cocaine use disorder. These 
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processes were measured in a well-known probabilistic category learning task, the weather 

prediction task (Knowlton et al., 1996). Participants completed two variants of this task, which 

required learning either from trial-and-error (non-declarative) or explicit memorisation 

(declarative). These learning methods are suggested to underpin striatal-dependent and 

hippocampal-dependent memory systems respectively. I also analysed participants’ response 

strategy to determine how participants learn during this task. As these patients have been 

characterised with striatal deficits, I predicted that these patients rely less on strategies that 

require the striatum such as feedback learning, and more on hippocampal-based strategies such 

as direct memorisation. 

 

Chapter 5 applied computational reinforcement learning algorithms to decompose the 

appetitive goal-directed learning performance in a published dataset and investigate its links 

with habit formation in cocaine use disorder. Whilst the view of a habit bias in addiction is 

widely discussed, the goal-directed system, which co-regulates instrumental behaviour with 

the habit system, has received comparatively less focus in human drug addiction. I tested the 

hypothesis that deficits in appetitive goal-directed learning, specifically in computational 

learning parameters, contribute to habit preponderance in patients with cocaine use disorder. 

Specifically, I predicted that impairments in computational parameters that explain appetitive 

goal-directed learning should predict the habit bias scores during the outcome devaluation 

phase.  

 

Chapter 6 continued to interrogate the habit theory of addiction by measuring goal-directed and 

habit systems via self-reported questionnaires. If, as the theory posits, the habit system 

predominates behaviour in substance use disorder, this should manifest in either an increase of 

habitual tendencies, a reduction in goal-directed actions, or both, in daily lives of patients with 

substance use disorder. I measured habitual and goal-directed tendencies with the Creature of 

Habit Scale (Ersche et al., 2017) and the Habitual Self Control Questionnaire (Schroder et al., 

2013) respectively. I also assessed the relationship between these self-reported measures and 

behavioural measures of goal-directed actions and habits. I predicted that relative to controls, 

cocaine use disorder patients would show higher scores on the subscales of the Creature of 

Habit Scale, but have lower scores on the Habitual Self Control Questionnaire. 
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In the same vein, Chapter 7 tested the habit theory of addiction with a novel behavioural 

paradigm, specifically its generalisation to a large online population characterised by harmful 

alcohol consumption. This novel behavioural paradigm places the learned instructions (goal-

directed) and learned behaviours (habits) into conflict, to directly test which system prevails in 

influencing behaviour. I hypothesised that harmful alcohol drinkers, who are not formally 

diagnosed with alcohol use disorder, show enhanced habit formation, relative to a control 

population with only social drinking. In particular, harmful alcohol drinkers would more likely 

display a bias for learned (habitual) behaviours when there is a goal-habit conflict.    

 

Finally, Chapter 8 integrates the findings from the experimental chapters and delineates the 

contributions of this thesis in elucidating reinforcement learning impairments frequently 

associated with SUD. I also discuss potential theoretical and clinical implications derived from 

these findings, as well as its limitations and directions for future research. 
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Chapter 2: Overall Methods and Analyses 

This chapter outlines the general methods and analyses used in this thesis. I first discuss the overall 

data collection strategy and inclusion criteria applied; this is followed by a brief description of the 

experimental paradigms used for this thesis. Finally, I outline the data analysis strategy, which 

includes descriptions of the conventional and computational approaches. Detailed participant 

description, technical features for the experimental task and statistical analysis will be reported in 

each experimental chapter.  

 

2.1 Data collection strategies 

This thesis mainly reports data that were collected from participants through face-to-face 

assessments. These participants were recruited from the Cambridge (UK) local community either 

through word-of-mouth, flyer and poster advertisements or College mailing lists; participants who 

expressed an interest in taking part first underwent a telephone screening to collect basic 

demographic information, identify their drug use history and their physical and mental health status. 

Those who met the inclusion criteria (see section 2.2) were then invited to physically attend the 

lab to complete a series of questionnaires and tasks in the presence of a researcher.  

 

Face-to-face assessment is the default mode for cognitive research, but this was not possible when 

the COVID-19 pandemic brought about lab closures and restricted human face-to-face contact. 

Consequently, online testing became necessary as lock-down restrictions made community 

recruitment impossible. I turned to data collection via an online research platform, Prolific 

Academic (https://www.prolific.co/), as several studies noted its reliability for behavioural 

research (Palan & Schitter, 2018; Peer et al., 2017). In general, eligible participants were identified 

through a custom filter tool and a pre-screening questionnaire, which probed for basic demographic 

information, drug use history and mental and physical health history. Those who fulfilled the 

inclusion criteria (see section 2.2) were then sent a link to complete a series of computerised tasks 

and questionnaires. All participants, recruited via the Cambridge community and online, were paid 

upon completion of the study procedures. Both face-to-face and online studies were approved by 

the local Cambridge Psychology Research Ethics Committee.   

 

https://www.prolific.co/
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Online behavioural testing is increasingly popular due to the growing ubiquity and accessibility of 

the internet, but there are notable differences between online and face-to-face behavioural 

assessments. The primary advantage of online behavioural testing is the ability to reach diverse 

populations and collect large samples within a relatively short span of time. However, the trade-

off is that screening for psychiatric disorders and drug use were only limited to self-report, unlike 

face-to-face assessments which provided the opportunity to administer structured interviews over 

the telephone and in person. As a remedy, Prolific users were required to answer more self-reported 

questions before they were given access to the study link (see section 2.2 and Chapter 7 for details). 

Moreover, whilst the automatic administration of online testing by Prolific removes the need of 

researchers to physically test every participant, saving time and effort, face-to-face assessments 

are advantageous in that they enable the researcher to ensure the quality of data: researchers can 

give clear instructions on the questionnaire or task prior to assessment, and guide participants 

through them if needed. By contrast, for online behavioural testing, researchers must rely on 

participants’ own initiatives to complete the task and questionnaires carefully by following the 

instructions, and were not simply speeding through the task. To ensure participants attend to the 

task diligently, I administered attention check questions (see Appendix A) to identify whether 

participants are responding as instructed, which are effective measures to uphold data quality  

(Meade & Craig, 2012; Oppenheimer et al., 2009). Furthermore, there is evidence that data 

collected online is comparable to that collected from face-to-face sessions, but these studies were 

limited to the general healthy population (Casler et al., 2013; Germine et al., 2012). Whether this 

is the same for a drug-using population, traditionally associated with cognitive impairments, is 

unclear. As both sampling methods are different by nature, it was necessary to make adjustments 

to the inclusion criteria for data collection approach.  

 

2.2 General inclusion criteria 

Unless specified otherwise, participants were generally included if they were aged 18 years and 

above, and possessed sufficient English proficiency to provide informed consent and understand 

the written and verbal instructions. Drug-using participants and healthy control volunteers each 

needed to satisfy different criteria. 

The definition of addictive disorders in the Diagnostic and Statistical Manual (DSM) has 

transitioned from a categorical (with or without substance dependence in DSM-IV) to a 

dimensional diagnosis (mild, moderate or severe substance use disorder in DSM-5; American 
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Psychiatric Association, 2013), which reflects a conceptual change in our understanding of 

addiction. This shift acknowledged that individuals could have different severity levels, which 

likely reflects different levels of impaired control over drug use and different intervention needs. 

Hence, there was a need to understand the cognitive profile of problematic substance use from both 

mild and severe ends of the spectrum. This thesis explored both categorical and dimensional 

identifiers of problematic drug use. On one hand, during face-to-face assessments (Chapters 3-6), 

drug-user participants underwent psychiatric screening with the Structured Clinical Interview 

(SCID; First et al., 2002), and had to meet the Diagnostic and Statistical Manual 5th edition (DSM-

5) criteria for moderate or severe stimulant use disorder. They were also actively using stimulant 

drugs at the time of the study – urine tests were conducted prior the study session to confirm the 

presence of cocaine metabolites, indicating prior use within 72 hours. On the other hand, as 

thorough screening was not possible during online testing (Chapter 7), I adopted a dimensional 

approach to studying problematic alcohol use, by identifying harmful use with the Alcohol Use 

Disorder Identification Test – a 10-item validated self-reported instrument that detects hazardous 

alcohol use within the normal population (J. B. Saunders et al., 1993). Normally, a cut-off score of 

15 on the AUDIT indicates likelihood of moderate-to-severe alcohol use disorder, but I reduced 

the cut-off to 10, which included individuals with hazardous alcohol consumption but not 

necessarily with alcohol use disorder. As alcohol was the main substance of interest, I deliberately 

excluded individuals who reported concomitant use of stimulant drugs (including cocaine, crack-

cocaine, amphetamines and methamphetamine), which could confound the behavioural 

performance. Minimal comorbid drug use was allowed in drug-user cohorts. Prescribed 

psychoactive medications such as anti-depressants or opioid maintenance therapy were allowed in 

drug user participants, but use of antipsychotics was exclusionary because they are largely 

dopaminergic by nature and could interfere with reinforcement learning.     

 

Healthy controls in general had to fulfill the following criteria: (1) good physical and mental health; 

(2) minimal drug use; and (3) no personal history of substance use disorder. These were assessed 

differently depending on the data collection approach. During face-to-face assessments, physical 

health was verified through telephone interview of medical history and medication use; the MINI 

International Neuropsychiatric Inventory (Sheehan et al., 1998) was used to screen for mental 

health; drug abstinence was confirmed with negative urine screens prior assessment. These were 

not possible during online testing, so I required participants to complete the AUDIT, questions 

about current medication use, and the Depression, Anxiety and Stress scales (DASS-21; Lovibond 
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& Lovibond, 1995), which is sensitive to subclinical levels of affective disorders. Control 

participants were included if they had low levels of alcohol use (AUDIT < 6), reported no 

psychoactive medications and did not meet the DASS-21 cut-off scores for moderate subclinical 

levels of depression (subscale < 14), anxiety (subscale < 10) or stress (subscale < 19). All 

participants were thoroughly screened and were excluded from participation if they (1) had a prior 

history of traumatic brain injury or neurological illnesses; (2) had anti-psychotic or stimulant-based 

medication; (3) current or a history of psychotic disorders; (4) had a diagnosis of Dyslexia, 

Dyspraxia, Attention Deficit Hyperactivity Disorder (ADHD), language-related disorders, or 

Autism Spectrum Disorder. Additionally, for the face-to-face sessions, we breathalysed 

participants to confirm sobriety prior to assessment; intoxicated participants were excluded from 

the study.   

 

As the theme for this thesis concerns the analysis of learning and motivated behaviour in substance 

use disorder, there are several confounding variables that merit discussion. It is plausible that 

learning ability is tightly linked to variances in intelligence quotient (IQ) and education levels (van 

den Bos et al., 2012), as well as affective states such as being depressed or anxious. In particular, 

clinically diagnosed depression and anxiety have been associated with distinct learning profiles 

(Rouhani & Niv, 2019). However, while individuals with substance use disorders are often highly 

depressed and anxious, their underlying cognitive profiles very likely differ to that of clinically 

diagnosed depression and anxiety. To determine the influence of these potential confounds on my 

data, I collected measures of estimated verbal IQ (using the National Adult’s Reading Test; (H. E. 

Nelson, 1982)) or education levels, and a measure of affective state (e.g. DASS-21). I then assessed 

the relationship between behavioural data obtained from learning tasks and these measures; if there 

is a statistically significant relationship, this measure would then be statistically controlled within 

the analyses, but not otherwise. 

 

Table 2.1 reports a breakdown of each sample by chapter. Participant descriptions are elaborated 

in detail in each respective chapter. 
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Table 2.1: Overview of samples by chapter.  

Chapter Sample Gender  

(% male) 

Age  

(years ± SD) 

Years of stimulant 

use (years ± SD) 

Alcohol use 

(AUDIT ± SD) 

Prescribed 

medication 

Comorbid diagnoses Task 

administered 
Chapter 3 

(study 1)* 

44 CUD 100 40.9 ± 9.2 13.7 ± 8.0 3.9 ± 5.9 14 methadone; 

8 buprenorphine; 

6 antidepressants; 

4 benzodiazepines; 

7 painkillers 

24 opioid; 

3 alcohol;  

6 cannabis 

Reinforcement 

Learning Task 

41 controls 100 40.1 ± 12.6 - 3.4 ± 1.7 none none 

Chapter 3 

(study 2) 

18 StimUD  

(10 cocaine, 8 

amphetamines) 

83 34.3 ± 7.2 12.3 ± 6.7 - none none 

18 controls 83 32.7 ± 6.9 - - none none 

Chapter 4* 42 CUD 100 39.3 ± 8.8 12.3 ± 7.5 4.1 ± 5.7 15 methadone; 

7 buprenorphine; 

6 antidepressants; 

3 benzodiazepines; 

4 painkillers; 

24 opioid; 

 2 alcohol; 

 7 cannabis 

Category 

Learning Task  

40 controls 100 40.9 ± 12.4 - 3.5 ± 1.7 none none 

Chapter 5 72 CUD 94 38.0 ± 8.6 15.9 ± 6.7 4.2 ± 4.8 26 methadone; 

14 buprenorphine; 

48 opioid;  

5 alcohol;  

25 cannabis 

Slips of action 

task 

53 controls 90 41.3 ± 10.5 - 4.2 ± 2.0 none none 

Chapter 6* 48 CUD 100 40.4 ± 9.1 13.4 ± 7.7 4.3 ± 5.8 15 methadone; 

8 buprenorphine; 

6 anti-depressants; 

4 benzodiazepines; 

7 painkillers 

25 opioid;  

3 alcohol; 

8 cannabis 

-a 

43 controls 100 40.0 ± 12.4 - 3.4 ± 1.6 none none 

Chapter 7 120 alcohol 52 31.9 ± 9.6 16.0 ± 10.4b 16.7 ± 5.5 18 on SSRI; 

2 painkillers 

52 anxiety; 45 depression; 

2 OCD; 9 eating disorder; 

16 alcoholism; 6 problem 

gambling; 6 suicide 

attempt; 17 self-harmc 

Goal-habit 

conflict task  

148 controls 32 32.9 ± 7.3 16.0 ± 8.6b 1.8 ± 1.5 none 10 anxiety; 4 depression; 4 

eating disorder; 1 problem 

gamblingc  

Note. CUD: cocaine use disorder; StimUD: stimulant use disorder; IQ: intelligence quotient; AUDIT: Alcohol Use Disorder 

Identification Test; SSRI: selective serotonin reuptake inhibitor; OCD: Obsessive-Compulsive Disorder; SD: standard deviation 

* these chapters are from the same sample, but vary in group sizes due to different completion rates. 
a chapter 6 assessed data on self-reported measures instead of a behavioural task.  
b number of years since first drunk episode. 
c these are self-disclosed mental health history through an online questionnaire, and were thus unverified.
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2.3 Experimental paradigms 

Task paradigms reported in this thesis measure reinforcement learning and instrumental control 

of behaviour. On one hand, reinforcement learning generally uses corrective feedback to 

inform participants of the nature of their choices. Therefore, reinforcement learning tasks 

involve trial-and-error learning from feedback to identify the best choice from an array of 

discrete options. As there are qualitative differences between learning from positive and 

negative feedback, the reinforcement learning task (Chapter 3) differentiated between positive 

and negative feedback, framed as monetary wins and losses respectively. Throughout the task, 

participants need to learn by trial-and-error to pick the stimulus that maximises their rewards 

while minimising their losses.  

 

Optimal reinforcement learning is thought to be guided by distinct memory processes, which 

can be either declarative or non-declarative. Declarative memory refers to the learning of rules 

and patterns that can be verbalized (e.g. square is bad, circle is good). By contrast, non-

declarative memory involves the incremental learning of complex actions or patterns, mostly 

acquired through trial-and-error. These memory systems were tested in two variants of a 

category learning task, also known as the weather prediction task (Chapter 4), each testing for 

declarative and non-declarative memory. On a trial-by-trial basis, participants learn to classify 

multiple stimuli combinations into one of two categories: shine or rain. These combinations 

were learnt either through feedback learning (non-declarative) or explicit memorization 

(declarative). Furthermore, it is possible to analyse the response strategy used by participants 

to solve this category learning task, thereby offering a richer analysis of learning functions.   

 

On the other hand, tasks assessing instrumental regulatory control typically involve the relative 

expression of goal-directed and habit systems. The task used in this thesis is an outcome 

devaluation paradigm adapted for humans (Chapter 5). This task consists of two stages: an 

appetitive discrimination learning stage in which participants gradually learn stimulus-action-

outcome contingencies; and an instructed outcome devaluation, where participants’ learned 

responses were tested under extinction, but with certain outcomes devalued, and should no 

longer be responded to. Responding for these devalued outcomes, also known as slips of action, 

is an indicator of habits. The original publication found a strong habit predominance in cocaine 

use disorder that was not affected by initial action-outcome learning (Ersche et al., 2016). Using 
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more sensitive measures generated through computational modelling, I sought to perform 

follow-up analyses on the latent learning factors in the first stage, to see how individual 

differences in latent variables during appetitive learning affect the expression of habits in the 

second stage.  

 

Although the outcome devaluation task is frequently used in human studies, one notable 

limitation of this task is that it cannot distinguish whether habit predominance is a result of an 

augmented habit system, or an impaired goal-directed system, or both. Each interpretation 

bears different clinical implications. For instance, if drug users exhibit an augmented habit 

system, intervention strategies should focus on training maladaptive habits by repetition. Since 

goal-directed and habit systems are viewed as dissociable processes (Balleine & O’Doherty, 

2010; de Wit & Dickinson, 2009), one possible way to directly assess the strength of each 

system is to identify which system predominates behaviour under competition. This idea 

became the basis of a novel task: the goal-habit conflict task (Chapter 7). Here, action-outcome 

and stimulus-response habits are trained over time. These learned actions are tested by 

simultaneously providing specific instructions (goal-directed actions) against a backdrop of a 

conditioned stimulus (habits), thereby producing a situation of conflict. This task enables the 

direct assessment of goal-directed and habit strength, which tests the concept of imbalance 

between instrumental control systems purported by the habit theory of addiction. 

  

2.4  Statistical analyses 

Behavioural data are analysed using both conventional and computational approaches. The 

conventional approach here refers to null hypothesis testing methods widely used within the 

psychology literature. As these inferential statistics generally evaluate the probability of the 

null hypothesis being accepted (usually with a p=0.05 criterion), they are also known as 

frequentist statistics. These statistics offer a straightforward way to analyse key relationships 

and differences in demographic and behavioural data – usually in the form of means or 

summary scores – which is common within the psychology literature. As research methods 

advances, there is an increasing demand for addressing the complexity in behavioural data, 

which is limited if data is analysed in a conventional method. An emerging counterpart to 

address this shortcoming in behavioural analysis is to adopt computational strategies – the use 

of mathematical models to deconstruct behaviour into its constituent processes. This approach 
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offers a more fine-grained analysis of hypothetical cognitive processes that contribute to 

learning, which is increasingly popular. Both conventional and computational approaches will 

be used concurrently for data analyses in this thesis.   

 

2.4.1 Conventional approach 

Frequentists statistical tests are carried out with the Statistical Package for Social Science 

(SPSS v28). Before analyses, data are usually inspected to ascertain if they conform to the 

assumptions needed for parametric analyses (e.g. t-tests, Analysis of Variance [ANOVA]), 

such as the normality and the homogeneity of variance assumption; for data that were not 

normally distributed, log-transformations were used to reduce skewness of data; when the 

homogeneity of variance assumption is violated, a non-parametric alternative was used to 

analyse the data (e.g. Mann-Whitney U-test). Mixed ANOVA models are commonly used 

throughout the thesis to identify main effects and interactions within the task performance data. 

Where applicable, Mauchley tests were used to assess sphericity; Greenhouse-Geiser 

corrections to degrees of freedom were applied if the sphericity assumption was violated. 

Where applicable, post-hoc pairwise comparisons were evaluated, and I used the Bonferroni’s 

method to correct for multiple comparisons. To examine the relationship between variables, 

Pearson’s correlational analyses were often the default method, but non-parameteric 

Spearman’s analyses were applied if the data did not meet the assumptions for parametric tests. 

For categorical data such as gender or frequency data, I used chi-squared tests to identify any 

significant associations; in cases were the expected frequency per cell was less than 5, the 

Fisher’s Exact test was used as an alternative. Details on the computation of summary scores 

for task performance varied for each task, and will be described in each chapter.    

 

2.4.2 Computational approach 

Analyses on summary scores of task performance may offer some insight into the overt 

behaviours, but these measures are somewhat limited in their explanatory power. Many latent 

processes occur in the background before an action is expressed, but these variables are not 

always observable in overt behaviours. Thus, computational learning models are increasingly 

used to bridge this gap. These models adopt mathematical frameworks to model the generative 

process of learned actions, thereby making the latent variables quantifiable. Since it is 

hypothesised that aberrant behaviour is closely related with impairments in latent cognitive 
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processes involved in generating behaviour (Huys, Maia, et al., 2016; Maia & Frank, 2011), 

analyses with computational models might offer mechanistic insights these processes that are 

otherwise inaccessible through summarised behavioural scores alone. 

 

Learning models are often used to approximate choice behaviours in participants. Individual 

differences in learning manifest within certain model parameters that capture hypothetical 

latent processes involved in learning. Typically, participants’ trial-by-trial performances are 

fitted with a learning model, and the goal is to estimate the values of free parameters that most 

closely match the participants’ actual choice behaviour. These parameters are subsequently 

used for further analyses (e.g. case-control comparisons) (Daw, 2011). Therefore, the pipeline 

for modelling behaviour consists of several important components: (1) learning model used, 

(2) parameter estimation methods, and (3) model selection process. Each component is 

described below.  

 

2.4.2.1 Learning model used 

This section describes the general learning model used in this thesis. In general, computational 

models of learning quantitatively describe the process where one learns to predict outcomes 

based on their behavioural choices (Robbins & Cardinal, 2019). The modelling of behavioural 

choices is usually a two-step process: value estimation and choice selection. First, value 

estimation is where the agent determines which stimulus/actions yield higher subjective value, 

which is intrinsically more valuable. The values of each action/stimulus are updated over time 

by the difference between expected and received outcomes, also known as prediction errors. 

One of the most widely used learning rule within the recent neuropsychiatric literature is the 

delta-rule learning algorithm, such as the Rescorla-Wagner model for classical conditioning 

(Rescorla & Wagner, 1972) or the Q-Learning model (Watkins & Dayan, 1992). In a typical 

delta rule algorithm, the value of a specific stimulus s on trial t, Vt(s), is driven by the prediction 

error: 

𝑉𝑡(𝑠) = 𝑉𝑡−1(𝑠) + 𝛼(𝑅 − 𝑉𝑡−1(𝑠)) 

 

where α is the learning rate and R is the actual reinforcement. In other words, stimulus/actions 

values are updated on a trial-by-trial basis, and are dependent on the feedback received from 
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the last trial. This value update is done for each available stimulus / action for each trial. Despite 

its simplicity, the delta-rule learning algorithm thus far has been successful in generating 

sensitive behavioural measures for psychiatry and psychopharmacological research (Robbins 

& Cardinal, 2019), and thus would be the learning rule used throughout this thesis.  

These expected values are then used to estimate actual choice behaviour, which, in the 

reinforcement learning literature, typically follows a softmax rule:  

𝑝(𝑖, 𝑡) =
𝑒𝑥𝑝(𝛽𝑉𝑡

𝑖)

∑ 𝑒𝑥𝑝(𝛽𝑉𝑡
𝑘)𝑛

𝑘=1

 

This equation gives the model’s probability of choosing choice i amongst n choices on a trial 

t. The extent to which expected values are used to drive choices is governed by the 

reinforcement sensitivity parameter, β.  

 

In its simplest form, individual differences in learning are expressed in the free parameters 

learning rate (α) and reinforcement sensitivity (β). The learning rate reflects the impact of 

reinforcement on learned values, whilst the reinforcement sensitivity (sometimes known as 

inverse temperature) governs the tendency to which stochastic choices are motivated by learned 

values. However, these algorithms are often adapted to suit the task paradigm and patient 

population to optimise data analyses in a hypothesis-driven manner. For instance, there is 

growing evidence suggesting that learning from different reinforcer types (e.g. reward or 

punishment) are subserved by dissociable neural circuits (Palminteri & Pessiglione, 2017; 

Pessiglione & Delgado, 2015). Since most of the data reported in this chapter involved 

feedback from opposing valences, the learning rate parameter is often fractionated based on 

the feedback received. For example, consider a task with four possible outcomes: reward (e.g. 

win 50p), non-reward (e.g. win 0p), punishment (e.g. lose 50p) and punishment omission (e.g. 

lose 0p). Given such task parameters, the learning rate would be fractionated based on the 

feedback received. Thus, the learning algorithm would be updated as follows:  

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑟𝑒𝑤(𝑅 − 𝑉𝑡) if feedback = “You win 50p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑛𝑜𝑛−𝑟𝑒𝑤(𝑅 − 𝑉𝑡) if feedback = “You win 0p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑝𝑢𝑛(𝑅 − 𝑉𝑡) if feedback = “You lose 50p”; 
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𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑛𝑜𝑛−𝑝𝑢𝑛(𝑅 − 𝑉𝑡) if feedback = “You lose 0p”; 

where αrew, αnon-rew, αpun, and αnon-pun, refers to the learning rates from reward, non-reward, 

punishment, and non-punishment respectively.  

 

Furthermore, tendency to perseverate – continuous inflexible repetition of past choices even 

when not reinforced – is often implicated in individuals with substance use disorder, which 

may negatively affect choice behaviour. To account for this factor in the learning model, a 

perseveration parameter τ is sometimes introduced during choice selection. This parameter is 

included as a softmax weight (along with β) and governs the extent to which choices are 

influenced by repetitive choices. Thus, the softmax rule would be modified as:  

𝑝(𝑖, 𝑡) =
𝑒𝑥𝑝(𝛽𝑉𝑡

𝑖 + τ𝐶𝑡
𝑖)

∑ 𝑒𝑥𝑝(𝛽𝑉𝑡
𝑘 + τ𝐶𝑡

𝑘)𝑛
𝑘=1

 

C denotes repeated choices, and are assigned 1 if participants repeated their choices and 0 if 

choices were not repeated. The tendency for perseveration to influence choice is governed by 

perseveration parameter, τ. 

It is noteworthy that I apply model selection procedures to ensure the best fitting model is 

selected for further data analyses (see model selection procedures section below).  

 

2.4.2.2 Parameter estimation 

In this thesis, the free parameters from the learning models were estimated with Markov Chain 

Monte Carlo sampling method with the RStan package (version 2.17.2) (Carpenter et al., 2017). 

The estimation of model free parameters was implemented in a hierarchical Bayesian 

framework. At the top-level of the hierarchy, a group-level distribution was implemented: 

participants with shared group membership (e.g. healthy controls or patients) are assumed to 

vary within the same group-specific distribution. The next level introduces variances from each 

participant (i.e. individual variability) by accounting for subject-specific deviation from the 

group-level distributions. This two-level structure ensures that each participant-specific 

posteriors for free parameters, used in the fitting of the reinforcement learning algorithm, are 

drawn from both the group-level and individual-level distributions in a mutually-constraining 
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manner. Each parameter has its own priors, which are reported in Table 2.2. These priors were 

selected on the basis of prior literature and suitability for each parameter.  

 

When analysing each model, I simulated 8 parallel chains, each with 2000 iterations, half of 

which were warmup iterations. As the chains estimate parameters in parallel, it was important 

that these estimations converge to produce reliable posteriors. Convergence was assessed with 

the Gelman-Rubin convergence statistics, R-hat. An R-hat value of 1 indicates perfect 

convergence, but any values less than 1.1 is acceptable (Brooks & Gelman, 1998). In this thesis, 

all winning models show acceptable levels of convergence as per the aforementioned criterion 

(R-hat < 1.1). 

 

The primary measures of interest are the differences in the parameters between drug-user 

groups and healthy controls. A common approach within the literature is to directly compare 

individual parameter values in a case control analyses with frequentist statistics (Daw, 2011). 

However, since the Bayesian hierarchy method enables the estimation of group-level posteriors 

that partitions out individual variability, the primary outcome measures used to report 

computational analyses in this thesis are the posterior group differences, which were directly 

sampled in RStan by subtracting one group-level posterior from the other. These posterior 

group differences were interpreted with their 95% highest density intervals (HDI), which 

encompasses the likelihood of the sampled value falling within these intervals 95% of the time 

(akin to confidence intervals of frequentist statistics). Posterior group differences with 95% 

HDI that do not overlap 0 are interpreted as a credible group difference.   

 

A Bayesian hierarchy method was favoured over the more common maximum likelihood 

estimation (MLE) approach for parameter estimation, which involves identifying point 

estimates of free parameters that produces the lowest negative log likelihood (i.e. best explains 

the data). Whilst the implementation of MLE is simpler and less computationally demanding 

than Bayesian estimation methods, the main disadvantage of the MLE approach is that it is 

disproportionately sensitive to initial starting values. Depending on the initial starting value, 

the best fitting point estimate may differ, especially in cases where there are several global 

minima i.e. multiple best-fitting parameter values within a given range (Daw, 2011). This 
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limitation is circumvented in a Bayesian hierarchy approach, where a posterior distribution of 

values, instead of a point estimate, is produced. 

 

Table 2.2: Priors for each free parameter.  

Parameter Boundaries 

(lower, 

upper) 

Prior for 

means 

Prior for 

standard 

deviation 

References 

Learning rate (0,1) Beta (1.1, 1.1) Normal(0, 0.05) Clarke et al., 2014; 

Gershman, 2016; 

Kanen et al., 2019 

Reinforcement 

sensitivity 

(0, +∞) Gamma (α = 

4.82, β = 0.88) 

Normal(0,1) Clarke et al., 2014; 

Gershman, 2016; 

Kanen et al., 2019 

Perseveration (-∞, +∞) Normal(0,1) Normal(0, 0.05) Christakou et al., 

2013; Kanen et al., 

2019 

 

 

2.4.2.3 Model selection procedures 

To ensure that the learning models adequately explain the task data, the task performance is 

often fitted with several variants of the learning model. The bridgesampling package was then 

used to determine the best fit model (Gronau et al., 2017). Designed for hierarchical models, 

Bridge sampling estimates the marginal likelihood – the probability of the observed data 

occurring given the model, p(data | model) – as the measure of model evidence (i.e. how well 

does this model produce the observed data). This is estimated by integrating over all possible 

parameters (1) the likelihood of the data given the fitted model parameters, p(data | parameters, 

model), and (2) the prior probability of the parameters given the model, p(parameters | model). 

By considering these quantities, bridge sampling’s estimation of the marginal likelihood 

favours simpler models by penalising over-complex models that do not substantially contribute 

towards model fit. A larger marginal likelihood reflects larger model evidence, and the model 

with the largest marginal likelihood is taken as the winning model.  

 

Within the cognitive modelling literature, other model comparison methods, most notably the 

Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), are more 
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widely used than bridgesampling. This thesis favours the latter for two reasons: (1) 

computationally, BIC and AIC methods, which are classed frequentist model comparison 

methods, are not suited for models with a hierarchical structure (i.e. individual parameters 

subsumed by group parameter) (Lu et al., 2017) (2) practically, although BIC and AIC methods 

are relatively simple, these methods can provide misleading approximations when the sample 

size is small, and cannot discriminate well between complex models (Hollenbach & 

Montgomery, 2020).  

 

The Bayes Factor – the relative model evidence of one model over another – was also computed 

as a secondary index for model evidence. The Bayes factor is calculated as the ratios of 

marginal likelihood between two models. According to Kass and Raftery (1995), a (log10) 

Bayes factor value of 1 or more constitutes strong evidence for one model’s superiority over 

another, whilst a value of 2 or more indicates decisive evidence (Kass & Raftery, 1995).  

 

Whilst the marginal likelihood and Bayes factor measures provide relative evidence of a single 

model over others, it is noteworthy that these are not absolute indicators of the model’s 

performance. To verify the winning model’s abilities to model choice behaviour, posterior 

predictive checks were made, whereby I simulate data from the winning model to assess 

whether the actual choice behaviour are indeed reproducible by the model. The simulated data 

were then analysed using frequentist statistics to examine if key aspects of the original data can 

be recapitulated. Additionally, where applicable, I also included data on parameter recovery 

for the winning models to show the recoverability of known simulated parameter values during 

the fitting process (Wilson & Collins, 2019). Specifically, I simulated behaviour with known 

parameter values, and fitted the simulated behaviour to the winning model to recover these 

parameter values. I then assessed the correlation between simulated and recovered parameter 

values – good parameter recovery is indexed by a strong correlation between these values. 

Generally, parameter recovery for the winning models reported in this thesis was reasonably 

well. Scatterplots of simulated versus recovered parameters can be found in the appendices of 

the relevant chapters. 
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2.4.2.4 Summary 

Reinforcement learning algorithms were generally used within this thesis to gain insight into 

the group differences between latent parameters that underpin learning from trial-and-error. 

These parameters were estimated in a hierarchical Bayesian framework, of which the primary 

output measure is the group mean difference for each estimated parameter. In most cases, 

several models were fitted to the behavioural data, and I selected the best fit model with 

bridgesampling package. The model with the largest marginal likelihood, indicating largest 

model evidence, is selected as the winning model. 
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Appendix A: Supplementary materials to Chapter 2 

Questions for attention check 

As recommended by Meade & Craig (2012), I implemented two questions to check for 

attention. Question 1 was placed at the mid-point of the study, whereas question 2 was 

embedded within a questionnaire with an identical 5-point Likert scale, administered towards 

the end of the study.  

 

Question 1: 

Now, to help with our understanding of you as a person, we are interested in certain factors 

about you. In particular, we are interested in whether you are attentive to the questions asked. 

Hence, please ignore the following sports participation question - do not provide any responses 

for this question and proceed to the next page of the study. 

Based on your understanding of the text above, which of the following activities do you engage 

in regularly? 

o Skiing 

o Hockey 

o Basketball 

o Running 

o Tennis 

o Snowboarding 

o Swimming 

o Soccer 

o Football 

o Cycling 

o Others 

 

Question 2: 

It is important that you pay attention during the study. Please select “Very often” if you have.  

o Never 

o Almost never 

o Sometimes 

o Fairly often 

o Very often 

  



 

54 

 

Chapter 3: Deconstructing reinforcement learning in stimulant use 

disorder: dopaminergic modulation 

 

This chapter has been published as: 

Lim, T. V., Cardinal, R. N., Bullmore, E. T., Robbins, T. 

W., & Ersche, K. D. (2021). Impaired Learning From 

Negative Feedback in Stimulant Use Disorder: 

Dopaminergic Modulation. International Journal of 

Neuropsychopharmacology, 24(11), 867–878. 

https://doi.org/10.1093/ijnp/pyab041 

 

3.1    Introduction 

Stimulant drug addiction, or stimulant use disorder (StimUD), is a major public health problem 

that causes significant harm to individuals, their families, and society (Degenhardt et al., 2014). 

The behaviour of chronic stimulant drug users often seems maladaptive and ill-judged, as they 

frequently behave in ways that are detrimental to their own interests, regardless of the negative 

consequences. One possibility is that drug-induced neuroadaptations may change how 

individuals learn from the consequences of their actions, an impairment that might extend 

beyond drug-taking (Maia & Frank, 2011). 

 

Reinforcement learning (RL) is an influential account of adaptive instrumental behaviour that 

provides a normative framework of how humans use past consequences to guide future 

behaviour (Sutton & Barto, 1998). Optimal RL includes multiple processes such as valuation, 

reward prediction, and action selection (Niv, 2009), and many of these processes are suggested 

to be modulated by dopamine (Bayer & Glimcher, 2005; Frank et al., 2007; Steinberg et al., 

2013) – a neurotransmitter affected by stimulant drugs such as cocaine and amphetamine. 

Chronic stimulant drug use has been associated with a downregulation in dopamine 

neurotransmission in fronto-striatal circuits (Volkow et al., 2004) that underpin learning and 

value-based decision-making (Ernst & Paulus, 2005; Glimcher, 2011; O’Doherty et al., 2017). 

Animal studies shown that cocaine exposure disrupts key aspects of RL, including reward 

prediction (A. C. Burton et al., 2018; Takahashi et al., 2019) and reinforcement value (Groman 

et al., 2020; Schoenbaum & Setlow, 2005). Although similar observations have also been 

reported in human stimulant drug users (Ersche et al., 2016; Harlé et al., 2015; Parvaz et al., 

https://doi.org/10.1093/ijnp/pyab041
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2015), the exact profile of impairments remains elusive. While it is widely assumed that 

impairments in RL in StimUD patients are dopaminergic in nature, it is unclear how these 

disruptions are modulated by dopaminergic agents. There is some evidence for modulatory 

effects of dopamine manipulations on cognitive dysfunction in StimUD (Ersche et al., 2010; 

Ersche, Roiser, Abbott, et al., 2011; Goldstein et al., 2010). However, compared with control 

participants, StimUD patients show different behavioural and neural responses following 

dopaminergic drug challenges, suggesting that such medication alters RL differentially in 

StimUD patients (Ersche et al., 2010; Ersche, Roiser, Abbott, et al., 2011; Goldstein et al., 

2010; Volkow et al., 2005). The precise actions of dopaminergic drugs are difficult to 

determine in human studies, but drug challenges may provide insight into the neurochemical 

underpinnings associated with RL in StimUD patients.   

 

A conventional approach to quantify RL performance is to compute summary scores that reflect 

performance accuracy, and analyse them with a frequentist approach (e.g. Strickland et al., 

2016). As RL impairments can also result from latent processes that are not directly measured 

by summary scores, such as motivational deficits, slower contingency learning, or 

inconsistencies in choice behaviour, complementary approaches are needed. An increasingly 

popular method is to use computational models to describe RL, allowing the quantification of 

latent RL parameters (Sutton & Barto, 1998). Individual differences in RL are then reflected 

in model parameters, which can be compared between groups (Daw, 2011). Although simple 

RL models might not perfectly capture all the RL-related cognitive processes, the model 

parameters can provide sensitive behavioural measures (Heinz et al., 2016; Robbins & Cardinal, 

2019).  

 

Here, I combine both conventional and computational approaches to address the following 

objectives: (i) to characterise the RL profile in a large community sample of StimUD patients 

using a behavioural task that assesses learning from reward and punishment separately; (ii) to 

explore the modulatory effects of a dopamine D2/3 receptor agonist and an antagonist on RL in 

an independent sample of StimUD patients. Two pharmacological agents were used to 

selectively target the D2/3 system, the dopamine receptor antagonist amisulpride and the 

dopamine receptor agonist pramipexole (Rosenzweig et al., 2002; Wright et al., 1997). For the 

computational analysis, I employed a well-established RL model (Watkins & Dayan, 1992) 
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and adopted the learning rate, the impact of reinforcement on choices, as the key outcome 

measure. I also modelled other processes that support learning, such as the extent to which 

behaviour is motivated by learned values (reinforcement sensitivity) and tendency to 

perseverate. I hypothesised that these latent learning parameters are impaired in StimUD 

patients and would be modulated differentially by dopamine agonist and antagonist agents. 

Since StimUD patients have abnormal dopamine transmission, I predicted that these 

dopaminergic agents would modulate RL performance differentially in StimUD patients 

compared with healthy controls. Specifically, task performance would be negatively affected 

by either dopaminergic receptor agent in healthy controls. By contrast, dopamine receptor 

blockade by amisulpride would further impair learning in StimUD patients, whilst pramipexole 

would ameliorate the deficits in reinforcement learning in these patients.  

 

3.2    Methods 

I studied two independent samples of stimulant-addicted individuals and matched healthy 

volunteers. For inclusion, participants had to be at least 18 years old, and able to read and write 

in English. Stimulant drug users needed to meet the DSM-IV-TR criteria for stimulant drug 

dependence (American Psychiatric Association, 2000), whereas control participants had to be 

healthy without a personal history of substance use disorders. Participants were recruited from 

the local community in Cambridge (UK) by advertisement and word of mouth. Both studies 

were approved by a Cambridge Research Ethics Committee. All participants provided written 

consent prior to enrolment and were screened for psychiatric disorders using the Mini-

International-Neuropsychiatric-Inventory (Sheehan et al., 1998); psychopathology in drug 

users was further evaluated using the Structured Clinical Interview for DSM-IV (First et al., 

2002). All StimUD patients were actively using stimulant drugs, which was confirmed by 

positive urine screens prior to testing, suggesting that they had been using the drug within the 

past 72 hours. All urine samples provided by control participants tested negative for all drugs; 

participants were also breathalysed to verify sobriety. Exclusion criteria for all participants 

included a lifetime history of a psychotic disorder, neurological illness, or traumatic head injury, 

and acute alcohol intoxication. All participants completed the National Adult Reading Test (H. 

E. Nelson, 1982) and the Barratt Impulsiveness Scale (Patton et al., 1995) to estimate the verbal 

intelligence quotient (IQ) and impulsive personality traits respectively. Participants also 

reported their monthly disposable income and rated their willingness to pick up £0.50 off the 

floor on a visual analogue scale (always—never) as a proxy for the subjective value of 
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monetary reward. StimUD participants additionally completed the Obsessive-Compulsive 

Drug Use Scale (Franken et al., 2002) as a measure of compulsive drug use. 

 

3.2.1    Study 1 

Sample: Forty-four men who met the DSM-IV-TR criteria for cocaine dependence, referred 

as cocaine use disorder (CUD), had been using cocaine for a mean of 13.7 years (standard 

deviation [SD]: ±8.0) and the majority also met criteria for dependence on another substance 

(55% opiates, 7% alcohol, 14% cannabis). Participants with co-morbid opiate dependence were 

either prescribed methadone (32%, mean daily dose: 49mg, SD: ±13.0) or buprenorphine (18%, 

mean daily dose: 7.5mg, SD: ±3.5). Some CUD patients were taking prescribed medication, 

including antidepressants (14%), benzodiazepines (9%), painkillers (16%), antibiotics (5%), 

and anticoagulants (5%). The 41 healthy control participants did not use prescribed mediation 

and reported low levels of drug and alcohol use, as reflected low total scores on the Alcohol-

Use-Disorder-Identification-Test (J. B. Saunders et al., 1993) (mean score: 3.4, SD: ±1.7) and 

Drug-Abuse-Screening-Test (H. A. Skinner, 1982) (mean score: 0.08, SD: ±0.3). CUD patients 

reported a significantly lower monthly disposable income than controls (t83=2.6, p=0.012; see 

Table 3.1).  

 

RL Task: This task evaluated learning from financial gains and losses (Bland et al., 2016) 

(Figure 3.1). Participants were presented with pairs of coloured circles and asked to learn by 

trial-and-error to select the stimulus that maximises their overall earnings. The two conditions 

of reward and punishment were differentiated by feedback. Specifically, feedback was 

explicitly framed as wins (‘you win 50p’ and ‘you win 0p’) and losses (‘you lose 50p’ and ‘you 

lose 0p’) in the reward and punishment conditions respectively. Participants completed 120 

learning trials, with each reinforcement condition represented by unique stimulus pairs and 

repeated 60 times, interspersed randomly throughout the task. Optimal choices for each 

stimulus pair were reinforced 70% of the time, either by winning £0.50 (reward) or avoid losing 

£0.50 (punishment).  
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3.2.2    Study 2 

Sample: Thirty-six volunteers were recruited from the community: 18 fulfilled the DSM-IV-

TR criteria for stimulant drug dependence (10 cocaine, 8 amphetamine), referred to as StimUD 

henceforth. The remaining 18 recruits were healthy with no personal drug-taking history. 

StimUD patients had been using stimulant drugs for an average of 12.3 years (SD: ±6.7), had 

no comorbid dependencies, and were not taking prescribed medication. The two groups did not 

differ in their disposable income (t33=-0.66, p=0.514). Data from this sample have been 

published elsewhere (Ersche et al., 2010; Ersche, Roiser, Abbott, et al., 2011; Ersche, Roiser, 

Lucas, et al., 2011; Kanen et al., 2019).  

 

RL Task: This task has a similar design with that of study 1, but has three different conditions, 

distinguished by distinct stimulus pairs and outcomes: reward, punishment and neutral (Murray 

et al., 2019). Specifically, outcomes for the reward, punishment, and neutral conditions were 

intentionally phrased as monetary gains (i.e. ‘you win 50p’), losses (i.e. ‘you lose 50p’) and no 

financial consequences (i.e. ‘no change’) respectively. Unlike study 1, reward omission (i.e. 

‘win 0p’) and punishment avoidance (i.e. ‘lose 0p’) were not explicitly signalled during the 

feedback phase; participants will not receive any explicit feedback for these outcomes (Figure 

3.1). There was one stimulus pair per condition, each repeated 40 times in randomised order. 

Optimal choices for each stimulus pair were also reinforced 70% of the time.  

 

Drug administration: Participants were administered a single dose of 400mg amisulpride or 

0.5mg pramipexole in a double-blind, placebo-controlled, crossover design. Prior to each drug 

administration, participants also took a dose of domperidone (30mg), a peripheral dopamine 

D2 receptor antagonist, as a pre-treatment to the potential side effect of nausea/vomiting. 

Initially, pramipexole was administered at a dose of 1.5mg to the first six participants (three 

StimUD and three control participants), which was tolerated by StimUD but not by control 

participants. These control participants were subsequently administered 0.5mg pramipexole on 

a separate session, which was well-tolerated. Thereafter, all remaining participants received 

0.5mg pramipexole. In total, I included data from 18 control and 18 StimUD participants, but 

subsequently excluded the three StimUD participants who received higher dose of pramipexole 

from the analysis. Participants completed the RL task approximately 1.5 hours after dosing and 

blood samples were drawn at one and 2.5 hours post-dosing.  



Reinforcement Learning in Stimulant Use Disorder 

59 

 

 

3.2.3    Statistical analyses 

Conventional analyses: Demographic and performance data were analysed using SPSS v25 

(IBM). I computed accuracy scores for the RL tasks, defined as the proportion of optimal 

choices made in 10-trial blocks. I used analysis of variance (ANOVA) models with a two-tailed 

alpha value of 0.05, with trial block and condition (reward versus punishment) as within-

subject factors, and group (control versus StimUD) as a between-subjects factor. As the two 

drugs may exert differential effects, I decided a priori to analyse the effects of amisulpride and 

pramipexole separately. Sensitivity power analyses determined that the minimum effect sizes 

(Cohen’s d) detectable with the current samples are 0.54 and 0.78 for study 1 and 2 respectively 

(α = 0.05, power = 0.8). 

 

Computational analyses: To examine latent learning parameters, I modelled trial-by-trial 

choice values using a delta-rule learning algorithm (Rescorla & Wagner, 1972), with the final 

choice selection process following a softmax rule (Sutton & Barto, 1998). Details of modelling 

procedures are reported in Appendix B. In its simplest form, a model consists of two parameters: 

learning rate (impact of feedback on choice values) and reinforcement sensitivity (how much 

choice values motivate actual behaviour). Since different neural systems are thought to 

subserve learning from different valences (Pessiglione & Delgado, 2015), I decomposed the 

learning rate by the feedback received on that trial. For example, if participant receives a reward 

(‘you win 50p’) or a punishment (‘you lose 50p’), I modelled that trial with the learning rate 

from reward and punishment respectively, whereas trials with a reward omission (‘you win 0p’) 

or punishment avoidance (‘you lose 0p’) feedback were modelled with the learning rate from 

non-reward and non-punishment respectively. However, it is not possible to model the learning 

rate from non-reward or non-punishment in study 2, because reward and punishment omission 

feedback were not explicitly framed within a win/loss domain. Thus, I modelled learning from 

these outcomes with a general extinction rate. It is noteworthy that perseveration is frequently 

reported in StimUD patients (Ersche et al., 2008) and stimulant-exposed animals (Schoenbaum 

et al., 2004). I would not expect an RL task to be optimised for investigating perseverative 

responses, unlike a probabilistic reversal learning task (Cools et al., 2002; Ersche et al., 2008; 

Ersche, Roiser, Abbott, et al., 2011; Jentsch et al., 2002; Kanen et al., 2019; Schoenbaum et al., 

2004). Nevertheless, I included parameters that model perseverative tendencies towards stimuli 
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and locations (i.e. left or right) because accounting for relevant biases might improve model-

fit (Wilson & Collins, 2019), as demonstrated in my previous work (Lim et al., 2019). Thus, 

there were eight possible parameters in the models: learning rate from reward, non-reward, 

punishment and non-punishment, general extinction rate, reinforcement sensitivity, as well as 

perseveration tendencies to stimulus and location; but not all parameters were used in any given 

model (full details reported in Appendix B Table B2). I acknowledge that differences in task 

designs can change the best-fitting models (Wilson & Collins, 2019), so I fitted several model 

variants for each study and identified the best-fit model with bridge sampling (Gronau et al., 

2017) (Appendix B, Table B2). To validate the winning model, I simulated data from the 

winning model to ensure key findings from the actual data were reproduced (Appendix B). 

Parameter recovery was also assessed for the winning models (Appendix B, Figure B2), which 

showed that the current model fitting procedure can recover the simulated parameters 

reasonably well.   

 

I estimated the posterior distribution of the best-fit model parameters within a hierarchical 

Bayesian framework in RStan (Carpenter et al., 2017). In study 1, I modelled a group-level 

posterior distribution at the top level of the hierarchy for each free parameter. With the 

inclusion of drug factors in study 2, I constructed group/drug posteriors to model the drug 

effects on free parameters separately for each group/drug combination. I also constructed a 

subject-level hierarchy for each parameter to account for any individual variations. The primary 

outcome measure was the mean differences between the group/drug posteriors, d, each with its 

associated 95% highest density intervals (HDI). A HDI that excludes zero provides strong 

evidence for a group difference (non-zero-difference, pnz>0.95).  
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Figure 3.1: Schematics for the probabilistic reinforcement learning task of study 1 and 

study 2. On each trial, participants are first presented with a pair of stimuli, and required to 

select one stimulus. After selection, the computer will present an outcome phrased in terms of 

monetary gains (positive) or losses (negative); this allowed the separate assessment of learning 

from reward and punishment. In both studies, each condition was differentiated by unique 

stimulus pairs and feedback, and were interspersed across 120 trials and presented in a 

randomised order. Optimal choices are reinforced 70% of the time, so participants need to 

accrue experience over time to determine the choices that would maximise their financial gains 

and minimise their losses.  
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3.3    Results 

Sample characteristics are shown in Table 3.1. In both studies, the groups were well-matched 

with respect to age and gender. Verbal intelligence did not differ between the groups in study 

2 (t34=-.235, p=0.816), but StimUD patients in sample 1 had a lower IQ scores than controls 

(t75=8.2, p<0.001). However, IQ scores in StimUD patients were not significantly correlated 

with learning performance (Appendix B, Table B3), and therefore were not statistically 

controlled for. In both samples, the subjective value of £0.50 did not differ between the groups 

(Study 1: t83=-1.2, p=0.232; Study 2: t34=-1.7, p=0.098), suggesting that the reinforcement 

value of monetary rewards was similar in both groups. There were no relationships between 

learning performance and stimulant-related measures, including the duration or patterns of 

stimulant use (Appendix B, Table B3). Consistent with impulsivity being a hallmark of 

addiction, both patient groups scored significantly higher on the BIS-11 compared with 

controls (Study 1: t83=-11.4, p<0.001; Study 2: t34=-7.1, p<0.001).  
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Table 3.1:  Sample demographics and task performance of the two studies.  

 Study 1 Study 2 

Groups Control  CUD  Control  StimUD  

Demographics Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Sample size (n) 41 44 18 18 

Age (years) 40.1 (12.6) 40.9 (9.2) 32.7 (6.9) 34.3 (7.2) 

Gender (% male) 100 100 83 83 

Verbal IQ (NART score) 115 (6.2) 103 (7.1) 108 (6.0) 109 (8.1) 

Disposable income (£ per month) 657 (501) 387 (462) 470 (389) 621 (866) 

Subjective value of 50 pence (% rating)  81.5 (23.0) 87.1 (19.6) 72.9 (31.0) 87.4 (18.8) 

Trait impulsivity (BIS-11, total score) 56.1 (6.7) 79.5 (11.4) 62 (7.2) 82 (9.5) 

Duration of stimulant drug use (years) - 13.7 (8.0) - 12.3 (6.7) 

Compulsive drug use (OCDUS total score) - 34.1 (10.1) - 25.6 (7.9) 

Task performance Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Total % correct (reward)     

Placebo 73.0 (21.6) 57.9 (22.5) 87.1 (24.5) 81.1 (18.6) 

Amisulpride - - 87.9 (23.7) 75.8 (27.3) 

Pramipexole - - 75.7 (30.9) 61.8 (35.2) 

Total % correct (punishment)     

Placebo 63.6 (12.0) 54.3 (10.6) 73.3 (19.3) 61.7 (13.5) 

Amisulpride - - 78.5 (17.5) 62.4 (19.8) 

Pramipexole - - 72.9 (15.2) 64.7 (18.8) 

Note. SD: standard deviation; NART: National Adult Reading Test; BIS-11: Barratt 

Impulsiveness Scale; OCDUS: Obsessive-Compulsive Drug Use Scale; CUD: cocaine use 

disorder; StimUD: stimulant use disorder 

 

3.3.1    Study 1 

Conventional analysis: Analyses of accuracy scores showed that there was a main effect of 

block (F4.1,341=14.5, p<0.001) and a block-by-group interaction (F4.1,341=3.048, p=.016), 

suggesting that although performance improved over time, control participants improved faster 

than StimUD patients. Participants learned faster from reward trials than punishment trials, 

reflected in a block-by-condition interaction (F5,415=4.123, p=.001) (Figure 3.2A), but there 

was no group-by-block-by-condition interaction (F5,415=0.234, p=.948). StimUD patients made 

more errors than controls (F1,83=18.1, p<0.001), but no group-by-condition interaction was 

observed (F1,83=1.33, p=0.252).  
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Computational analysis: As shown in Figure 3.3A, the best-fit learning model contained the 

following parameters: learning rates from reward, non-reward, punishment and non-

punishment, reinforcement sensitivity and perseveration tendencies toward location and 

stimulus. StimUD patients showed a substantially reduced learning rate from punishment (d=-

0.055, 95% HDI=-0.103 to -0.004, pnz=0.973), and reinforcement sensitivity (d=-1.93, 95% 

HDI=-3.85 to -0.035, pnz=0.953). Although the reward learning rate was reduced in StimUD 

patients, the difference was not credibly different between the groups (d=-0.078, 95% HDI=-

0.154 to 0.007, pnz=0.944). The groups did not differ on any other parameters (0 ∈95% HDI).  

 

 

 

Figure 3.2: Accuracy scores for the behavioural task. These accuracy scores (defined as the 

proportion of optimal choices made in 10-trial blocks) are plotted separately based on condition 

(reward and punishment) and group (controls and StimUD). (A) RL performance accuracy in 

study 1. (B) RL performance accuracy for the placebo condition in study 2. [Error bars denote 

standard error to the mean, and the horizontal dotted line indicates accuracy at chance level 

(50%).] 

 

3.3.3    Study 2 

Conventional analysis: On placebo, task performance improved in all participants over time 

(F3,102=6.66, p<0.001), with a significant effect of condition (F1,34=9.83, p=0.004) again 
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suggesting that participants learned better from rewarding than punishing feedback (Figure 

3.2B). Control participants learned faster than StimUD patients in the first two blocks, as 

reflected by a significant group-by-block interaction (F3,102=3.63, p=0.016). There was neither 

a group effect (F1,34=2.52, p=0.122) nor a group-by-condition interaction (F1,34=0.610, 

p=0.440). No other effects reached statistical significance (ps > 0.4).  

   

Amisulpride had no significant effect on accuracy (F1,34=0.43, p=0.517), nor there were any 

group-by-drug interaction effects (F1,34=0.619, p=0.437). There was a significant effect of 

block (F3,102=18.5, p<0.001) and condition (F1,34=15.9, p<0.001) on accuracy scores, such that 

all participants showed improved task performance over time, and better learning from reward 

than from punishment. Control participants showed improved accuracy compared with 

StimUD patients (F1,34=5.41, p=0.026), but no other effects were significant (all ps > .1).  

 

Although pramipexole also had a significant effect on accuracy (F1,31=4.31, p=0.046), there 

was a significant drug-by-condition interaction (F1,31=4.41, p=0.044). Post-hoc pairwise 

comparisons revealed a significant reduction of reward relative to punishment trial 

performance on pramipexole (p=0.022) but not placebo (p=0.627). Again, all participants 

improved performance over time (F3,93=11.1, p<0.001), but the effects of condition (F1,31=2.1, 

p=0.157), group (F1,31=3.41, p=0.074) and group-by-drug interactions (F1,34=0.526, p=0.474) 

were non-significant. Other effects were also not significant (all p>0.1). 

 

Computational analysis: The best-fit computational model for study 2 included the following 

parameters: learning rates from reward and punishment, extinction rate, and reinforcement 

sensitivity (Figure 3.3B). On placebo, StimUD patients showed markedly reduced rates of 

learning from punishment (d=-0.452, 95% HDI=-0.695 to -0.199, pnz>0.999) and marginally 

reduced learning rate from reward (d=-0.159, 95% HDI= -0.336 to 0.016, pnz=0.929). The 

groups did not differ in terms of reinforcement sensitivity (d=-1.11, 95% HDI=-2.95 to 0.940, 

pnz=0.797) or extinction rate (d=-0.039, 95% HDI = -0.142 to 0.070, pnz=0.533).  
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Learning parameters were differentially affected by the dopaminergic drugs in both groups. In 

healthy controls, amisulpride reduced the rates of learning from reward (d=-0.142, 95% HDI = 

-0.263 to -0.039, pnz=0.992) and punishment (d=-0.387, 95% HDI=-0.537 to -0.236, pnz>0.999), 

and increased reinforcement sensitivity (d=1.87, 95% HDI=0.676 to 3.19, pnz=0.995) (Figure 

3.4A). However, amisulpride improved the rate of learning from punishment in StimUD 

patients (d=0.186, 95% HDI=0.020 to 0.373, pnz=0.975); no other parameters were affected (0 

∈ 95% HDI) (Figure 3.4C). Similarly, pramipexole reduced punishment learning rates in 

controls (d=-0.270, 95% HDI= -0.440 to -0.109, pnz=0.999) (Figure 3.4B) but improved the 

punishment learning rate (d=0.463, 95% HDI=0.199 to 0.729, pnz=0.995) in StimUD patients 

(Figure 3.4D). Pramipexole also reduced the reinforcement sensitivity parameter in StimUD 

patients (d=-1.92, 95% HDI=-3.53 to -0.360, pnz=0.972); other parameters were not affected (0 

∈  95% HDI). Comparison of the drug effects between StimUD and control participants 

(Figure 3.5) revealed that, relative to controls, both amisulpride (d=0.573, 95% HDI = 0.341 

to 0.802, pnz>0.999) and pramipexole (d=0.705, 95% HDI = 0.322 to 1, pnz>0.999) greatly 

improved the punishment learning rate parameter in StimUD patients. The drug effects on the 

other parameters were not credibly different between groups (0 ∈ 95% HDI). 

 

Figure 3.3: Group mean differences for the reinforcement learning parameters. (A) In 

study 1, the learning rate from punishment and reinforcement sensitivity were significantly 

reduced in the StimUD participants, while the other parameters were no different across groups. 

(B) In the placebo condition of study 2, we found markedly reduced learning rate from 

punishment in StimUD patients. [Error bars denote 95% highest density intervals (HDI); 

parameters colored in red signify a credible group difference (95% HDI excludes zero)]. 
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Figure 3.4: Mean differences of the reinforcement learning parameters for each drug 

condition. The dopaminergic agents are directly compared with placebo. (A) Amisulpride 

reduced the learning rates in healthy controls, but increased the reinforcement sensitivity 

parameter. (B) Pramipexole selectively reduced the reward learning rate parameter in control 

participants, but had no effect on the other parameters. (C) Amisulpride improved the 

punishment learning rate in StimUD participants. (D) Pramipexole significantly increased 

punishment learning rate and reduced reinforcement sensitivity parameters in StimUD patients 

[Error bars denote 95% highest density intervals (HDI); parameters colored in red indicate a 

credible drug effect, as their 95% HDI excludes zero.] 

 

 

Figure 3.5: Comparison of the drug effects between the StimUD and control groups.  The 

posteriors for drug effects were computed by sampling the group difference between the drug 

effects (i.e. medication minus placebo) for (A) amisulpride and (B) pramipexole. Both 

dopaminergic agents had a larger effect on the punishment learning rate in StimUD patients 

than healthy controls. [Error bars denote 95% highest density intervals (HDI); parameters 

coloured in red indicate a credible effect, as their 95% HDI excludes zero.] 
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3.4    Discussion 

Behaviour in StimUD patients is thought to be driven by immediate positive outcomes, but at 

the expense of long-term negative consequences (Bechara et al., 2002; Verdejo-Garcia et al., 

2018). I investigated RL performance in StimUD patients with a task that separately assessed 

learning from immediate monetary reward and punishment. As hypothesised, computational 

analyses revealed significant RL impairments in StimUD patients, which were driven primarily 

by a reduced learning rate from punishment. I also found that dopaminergic drugs differentially 

affected RL parameters in StimUD patients and matched controls. Whilst both dopaminergic 

drugs impaired the learning rates in controls, StimUD patients benefitted from them, as both 

drugs improved their ability to learn from punishment. Here I provide converging 

computational and pharmacological evidence of significant learning impairments in StimUD 

patients which are, at least in part, related to dopamine dysfunction.  

 

3.4.1    Reinforcement learning profile in stimulant use disorder  

RL in StimUD is characterised by significant impairments in learning from immediate 

punishment, which may suggest that negative outcomes have little impact on subsequent 

behaviour. This proposal concurs with prior research in animals, demonstrating that 

psychostimulant self-administration impairs the update of learned values from negative 

outcomes (Groman et al., 2018, 2020). Moreover, some studies in StimUD patients also 

reported aberrant responses towards immediate negative outcomes, whether those outcomes 

are electric shocks or symbolic error feedback (Ersche et al., 2016; Hester et al., 2013; Parvaz 

et al., 2015; Thompson et al., 2012). Negative outcomes such as monetary losses have been 

suggested to be important in aversive instrumental learning (Jean-Richard-Dit-Bressel et al., 

2018). Consequently, the reduced impact of negative feedback during learning may hamper 

StimUD patients’ ability to avoid negative outcomes. From a theoretical perspective, reduced 

learning from negative consequences may also point towards a weakness in the goal-directed 

system, which is sensitive to the consequences of one’s actions (Balleine & Dickinson, 1998). 

In other words, blunted sensitivity towards negative outcomes may weaken the ability to adjust 

ongoing behaviour according to the situational demands and contribute to the development of 

compulsive behaviours in StimUD patients (R. J. Smith & Laiks, 2018). The hypothesis of a 

weakened goal-directed system in StimUD is supported by converging lines of evidence in 
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both humans (Ersche et al., 2020; Lim et al., 2019) and animals (Corbit, Chieng, et al., 2014; 

Zapata et al., 2010).  

 

Although several studies report reduced responses to punishment in StimUD patients (Ersche 

et al., 2016; Hester et al., 2013; Thompson et al., 2012), inconsistent findings have also been 

observed. For example, a computational analysis by Kanen and colleagues reported increased 

learning rate for punishment in StimUD patients in a serial probabilistic reversal learning task 

(Kanen et al., 2019). While this task also involves RL, it is important to consider the task 

context when interpreting these findings. In a probabilistic serial reversal learning task, 

participants are instructed to expect learned contingencies to change from time to time, and 

thus need to balance between ignoring and responding to punishment i.e. staying with or 

switching their choices, respectively. An increased learning rate from punishment in this 

context could thus also reflect an impaired ability to use negative feedback to guide behaviour 

amidst a volatile environment, leading to more errors in StimUD patients. Since there were no 

contingency reversals in my tasks, such divergence in the behavioural profile could be due to 

intrinsic differences in task design. Indeed, when I fitted the winning model from Kanen et al 

to the present data, we obtained results consistent with our model – StimUD patients still show 

a reduced learning rate from punishment (Appendix B).     

 

Compared with learning from punishment, learning from reward was less impaired in StimUD 

patients, indicating that monetary reward remains a salient reinforcer amongst stimulant drug 

users. This may suggest that behaviour in StimUD patients is more amenable to positive than 

to negative feedback and could explain why treatments based on positive reinforcement such 

as contingency management (Petry, 2000; Petry et al., 2017) are effective in StimUD. 

Accumulating evidence further suggests that contingency management with monetary 

incentives is as effective (Festinger et al., 2014), or even more effective (Stoops et al., 2010; 

Vandrey et al., 2007), in promoting cocaine abstinence and treatment retention than non-

monetary incentives (Stitzer et al., 2010). These studies jointly imply that the prospective 

knowledge of more salient rewards, such as monetary gains, improves contingency learning. 

Indeed, studies that adopted non-salient feedback (e.g. points or artificial stimuli) in RL tasks 

reported impairments in learning from reward in StimUD patients (Lim et al., 2019; Strickland 

et al., 2016), possibly reflecting the lack of a motivating reinforcer. This stands in stark contrast 
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to learning from negative consequences, which is significantly impaired regardless of its 

magnitude (Thompson et al., 2012). However, whether different modes of punishment 

differentially affect behaviour in StimUD patients remains an open question. 

 

3.4.2    Dopaminergic modulation of RL in healthy participants 

Although the involvement of dopamine in RL is undisputed, the exact mechanistic role of D2 

receptors in learning remains controversial, as reflected in the conflicting findings reported in 

the literature. For example, some studies showed that pharmacological modulation of D2 

receptors affects only reward but not punishment (Eisenegger et al., 2014; Pessiglione et al., 

2006; Pizzagalli et al., 2008), suggesting that D2 receptor signalling selectively affects reward 

learning. However, other evidence from humans (Cox et al., 2015; Frank & Hutchison, 2009) 

and preclinical studies (Alsiö et al., 2019; Hikida et al., 2010; Kravitz et al., 2012; Verharen et 

al., 2019) suggest that D2 receptor signalling plays a specific role in avoiding negative 

outcomes (Frank, 2005; Frank & O’Reilly, 2006). Whilst the selective impairment of 

punishment learning in healthy participants following the D2/3 receptor agonist is consistent 

with the latter view, the observation that the D2/3 receptor antagonist affected both reward and 

punishment does not support the hypothesis that the D2 receptor has a valence- specific role in 

learning. Such non-selective effects of D2/3 receptor antagonism have previously been reported 

(Jocham et al., 2014; McCabe et al., 2011), suggesting that these receptors are generally 

involved in normal feedback-based learning.  

 

The D2/3 receptor antagonist also increased the reinforcement sensitivity parameter in healthy 

participants, suggesting that amisulpride increased their motivation for higher valued choices. 

This proposal concurs with other pharmacological studies administering amisulpride, which 

found that the drug enhanced sensitivity to expected values (Burke et al., 2018) and increased 

medial-orbitofrontal-cortex activation during choice selection (Jocham et al., 2011; Kahnt et 

al., 2015), a region commonly associated with value representation (O’Doherty, 2004).  

 

When interpreting the drug effects, it is important to consider that dopaminergic D2/3 drugs 

may exert presynaptic actions. At low doses, D2/3 agents preferentially bind to pre-synaptic 

autoreceptors (Schoemaker et al., 1997), which inhibit dopamine transmission (Ford, 2014). 
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Thus, the D2 presynaptic autoreceptor blockade by a dopamine antagonist may actually 

enhance dopamine transmission, whereas stimulation of D2 autoreceptors by a dopamine 

agonist may result in a net reduction of dopaminergic transmission. It is therefore tempting to 

speculate whether the pramipexole-induced impairments in the learning rate and the 

amisulpride-induced enhancements in reinforcement sensitivity, as seen in the healthy 

participants, reflect such pre-synaptic actions.  

 

3.4.3    Impaired RL associated with altered dopamine system in stimulant use disorder 

The dopaminergic agents had the opposite effect in StimUD patients compared with healthy 

controls, which suggests an altered dopaminergic system in StimUD. There is considerable 

evidence from positron-emission-tomography studies that point towards downregulation of 

striatal D2 receptors and dopaminergic neurotransmission in StimUD patients (Martinez et al., 

2004, 2007; Volkow et al., 1993, 1997). Repeated stimulant drug exposure has also been 

proposed to upregulate the inhibitory activity of D2 presynaptic autoreceptors, which in turn 

may suppress dopamine signalling below normal levels (Grace, 1995). However, it is not 

possible to determine precisely the nature of the dopamine system, and the mode of action of 

the dopamine agents in StimUD patients, which depends on dopamine levels at baseline (Cools 

et al., 2001, 2009). I thus interpreted the effects of dopaminergic agents in light of StimUD 

patients’ possibly reduced dopamine activity and potential pre-synaptic effects of these agents. 

 

If D2 receptors are assumed to be important in learning from negative feedback (Frank & 

O’Reilly, 2006; Nakanishi et al., 2014), the downregulation of D2 receptors in StimUD would 

explain their reduced learning from negative outcomes, which is mirrored in healthy 

individuals with low D2 receptor levels (Jocham et al., 2009; Klein et al., 2007). It is therefore 

conceivable that amisulpride improved punishment learning in StimUD by blocking 

presynaptic D2 autoreceptors, and thus increasing dopamine signalling. Pramipexole also 

improved punishment learning in StimUD, possibly by enhancing dopamine signalling through 

post-synaptic mechanisms. It remains, however, unclear why two opposing drugs work in the 

same direction. It is noteworthy that the reinforcement sensitivity parameter, which measures 

how much choices are motivated by learned values, was reduced on pramipexole. This may 

suggest that altering the dopamine balance reduced StimUD patients’ tendency to engage in 

the RL task as the choice values became less motivating. This concurrent reduction in 
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motivation might also explain why StimUD patients did not show improvements in overall 

performance, despite an improved punishment learning.  The effects of dopaminergic agents 

seem to confirm altered dopaminergic activity in StimUD patients, which have been associated 

with learning difficulties, but the precise pharmacological actions are likely to depend on task 

context, drug dosage and baseline dopamine transmission.  

 

3.4.4    Strengths, weaknesses and outlook 

The current data provide compelling evidence for impaired learning from punishment in two 

independent samples of StimUD patients, one of which had comorbid dependencies whilst the 

other had none. Concurrent use of other drugs such as opiate, alcohol or cannabis is therefore 

unlikely to have affected the observed performance profiles. Limitations include the 

uncertainty of the nature of the drug effects i.e. whether they reflect pre-synaptic or post-

synaptic effects, which is difficult to determine in human research. Therefore, any inferences 

on the drug effects should be cautiously interpreted. Further neuroimaging evidence (e.g. 

positron-emission-tomography) is warranted to clarify the action of the dopaminergic drugs, as 

responses to dopaminergic drug may vary according to baseline dopamine synthesis capacity 

(Cools et al., 2009) and dopamine receptor density (Cohen et al., 2007; Eisenegger et al., 2014). 

Although I focused exclusively on dopamine, it is important to acknowledge that other 

neurotransmitter systems such as serotonin (Seymour et al., 2012) and glutamate (Groman et 

al., 2020) are also implicated in RL. There is also evidence that amisulpride has an affinity for 

serotonin receptors (Abbas et al., 2009), which may also modulate sensitivity to aversive events 

(Cools et al., 2011; Daw et al., 2002). Future studies using a longitudinal design are needed to 

investigate these factors. Additionally, the smaller sample size of study 2 (n=36) may be under-

powered to detect certain significant effects. Furthermore, the group difference in verbal IQ in 

study 1 (but not study 2) is noteworthy, as it might confound learning performance, since higher 

IQ would likely lead to better learning performance. Upon reflection, the difference in IQ-

matching between study 1 and study 2 may be related to differences in the volunteers. Whilst 

both studies recruited from Cambridgeshire, most control volunteers for study 1 were members 

of the University with undergraduate and postgraduate degrees i.e. a population with relatively 

higher IQ. By contrast, study 2 had access to volunteer panels for research (e.g. GSK volunteer 

panel) and was well-funded. Thus, we were able to recruit control participants from the general 

public beyond the University environment. However, in the context of this chapter, it is likely 

that the confounds from verbal IQ in study 1 would not significantly affect the interpretation 
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of the data, for two reasons: (1) there were no statistically significant associations between 

verbal IQ and task performance measures in the StimUD group, which suggests that IQ is 

unlikely to alter performance here; (2) the main finding in study 1 was replicated in study 2 

(with a matched IQ sample), which was reassuring. Nonetheless, my findings present novel 

evidence for selective learning impairments in StimUD, and highlight the utility of 

computational modelling in deconstructing complex cognitive processes, with promising 

prospects for psychiatry and psychopharmacology research (Huys et al., 2021).  
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Appendix B: Supplementary materials to Chapter 3 

Supplementary methods 

Behavioural task: additional description 

The probabilistic reinforcement learning tasks were designed to investigate learning from 

monetary feedback. In both versions, I assessed learning from reward and punishment 

separately. On each trial, participants were presented with pairs of stimuli and were required 

to learn by trial and error to select the stimulus that minimizes their financial losses or 

maximises their winnings. I differentiated between reward and punishment conditions by using 

distinct stimulus pairs and different feedback type. In the reward condition, the favourable 

choices received a ‘you win 50p’ outcome 70% of the time and a ‘you win 0p’ outcome 30% 

of the time. By contrast, unfavourable choices were punished (i.e. ‘you lose 50p’) 70% of the 

time, and not punished (‘you lose 0p’) 30% of the time.  

 

As these data were part of two separate larger studies, there were several differences between 

the task designs:  

1 I administered an additional neutral condition to the second sample as a baseline for 

performance. Like the reward and punishment trials, the neutral trials consisted of a 

unique stimulus pair, and also maintained a 70% contingency, but choosing either 

stimuli from this condition had no financial consequences (refer to Figure 3.1).  

2 There were two unique stimulus pairs for each reinforcement condition in study 1 (four 

in total), but only one unique stimulus pair for each condition in study 2 (three in total).  

3 In study 2, no explicit feedback was provided for reward and punishment omission 

outcomes i.e. only a blank screen.  

4 In study 2, participants were informed that their task earnings would be translated to 

actual monetary bonuses. By contrast, participants did not receive earnings for their 

performance in study 1, but they were nevertheless instructed to do their best.   
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Statistical analyses 

Computational modelling of behaviour 

I modelled the expected values of each choice, trial by trial, using a delta rule (Rescorla & 

Wagner, 1972): 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼(𝑅 − 𝑉𝑡) 

Vt denotes the expected value of the chosen stimulus on trial t. The update of this value is 

determined by the product of α, the learning rate, and the prediction error, the discrepancy 

between expected value and actual reinforcement received on trial t, R. Mathematically, R is 

assigned 1 for reward, -1 for punishment, and 0 otherwise. Since there is evidence for different 

neural systems subserving learning from reward and punishment (Pessiglione & Delgado, 

2015), I fractionated α based on the feedback received. In study 1, there are four possible 

outcomes: reward (i.e. you win 50p), reward omission (i.e. you win 0p), punishment (i.e. you 

lose 50p) and punishment omission (i.e. you lose 0p), hence the learning from each outcome 

was modelled with a different α as follows:  

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑟𝑒𝑤(𝑅 − 𝑉𝑡) if feedback = “You win 50p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑛𝑜𝑛−𝑟𝑒𝑤(𝑅 − 𝑉𝑡) if feedback = “You win 0p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑝𝑢𝑛(𝑅 − 𝑉𝑡) if feedback = “You lose 50p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑛𝑜𝑛−𝑝𝑢𝑛(𝑅 − 𝑉𝑡) if feedback = “You lose 0p”; 

where αrew, αnon-rew, αpun, and αnon-pun, refers to the learning rates from reward, non-reward, 

punishment, and non-punishment respectively.  

 

In study 2, reward and punishment omission outcomes were not explicitly framed within a 

win/loss domain; instead participants were not provided with explicit feedback (Figure 3.1). 

Therefore, it would not be apparent from this feedback whether participants experienced a 

loss/gain from their selection. Thus, I modelled learning from these outcomes with a general 

extinction rate, αext: 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑟𝑒𝑤(𝑅 − 𝑉𝑡) if feedback = “You win 50p”; 
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𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑝𝑢𝑛(𝑅 − 𝑉𝑡) if feedback = “You lose 50p”; 

𝑉𝑡+1 = 𝑉𝑡 + 𝛼𝑒𝑥𝑡(𝑅 − 𝑉𝑡) if no feedback given; 

Increases in α would indicate an increased rate of stimulus value update from the corresponding 

feedback. 

 

I used the expected values to model actual choice behaviour, via a softmax rule: 

𝑝(𝑖, 𝑡) =
𝑒𝑥𝑝(𝛽𝑉𝑡

𝑖)

∑ 𝑒𝑥𝑝(𝛽𝑉𝑡
𝑘)𝑛

𝑘=1

 

This equation gives the model’s probability of choosing choice i amongst n choices on a trial 

t. The extent to which expected values are used to drive choices is governed by the 

reinforcement sensitivity parameter, β. Cocaine use disorder has been associated with the 

tendency to perseverate responses irrespective of reinforcement (Ersche et al., 2008; Ersche, 

Roiser, Abbott, et al., 2011), and this may affect learning. Hence, in models where I accounted 

for perseveration, I modified the softmax equation to include the term Cstim and Cloc to indicate 

perseveration towards the previously chosen stimulus and towards the previously chosen 

location (e.g. left, right) respectively, regardless of choice value:  

𝑝(𝑖, 𝑡) =
𝑒𝑥𝑝(𝛽𝑉𝑡

𝑖 + 𝜏𝑠𝑡𝑖𝑚𝐶𝑠𝑡𝑖𝑚𝑡
𝑖 + 𝜏𝑙𝑜𝑐𝐶𝑙𝑜𝑐𝑡

𝑖)

∑ 𝑒𝑥𝑝(𝛽𝑉𝑡
𝑘 + 𝜏𝑠𝑡𝑖𝑚𝐶𝑠𝑡𝑖𝑚𝑡

𝑘 + 𝜏𝑙𝑜𝑐𝐶𝑙𝑜𝑐𝑡
𝑘)𝑛

𝑘=1

 

Cstim and Cloc are assigned 1 if participants repeated their choices for the same stimulus (e.g. 

chose stimulus A on previous trial, and choose stimulus A again on current trial) and location 

(e.g. responded ‘left’ last trial, and respond with ‘left’ again this trial) respectively, and 0 if 

choices were not repeated. The tendency for perseveration to influence choice is governed by 

perseveration parameters for stimulus, τstim, and for location, τstim. There were in total eight 

possible free parameters in the learning models (not all used in any given model): learning rate 

from reward, non-reward, punishment and non-punishment, general extinction rate, 

reinforcement sensitivity, and well as perseveration tendencies to stimulus and side. I used 

bridge sampling procedures to identify the best-fitting model from several variants of the 

learning models (see section below and Appendix B, Table B2).   
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Parameter estimation 

I estimated the posterior distribution of free parameters by analysing the best-fit model within 

a hierarchical Bayesian framework. For each parameter, I modelled a group-level distribution 

at the top of the hierarchy. For study 2, I used each group/drug combination. The posterior 

distributions of group-level (or group/drug) parameters were the main measures of interest. 

Prior distributions were assigned to all parameters (see Appendix B, Table B1). I also modelled 

inter-subject variability and accounted for the within-subject aspects of the design: for each 

parameter, subject-specific deviations from the group mean were drawn from a normal 

distribution with mean 0 and a parameter-specific standard deviation (itself estimated). 

Subject-specific parameters were then used in the reinforcement learning model to predict 

choice (what does the model predict is the probability of the subject choosing stimulus A?), 

and the model was fitted by comparing these to actual choices made (did the subject choose 

stimulus A?). I implemented the procedure in RStan (version 2.17.2), which uses a Markov 

chain Monte Carlo approach. I simulated eight parallel chains, each with 2000 iterations 

(including warmup), and directly sampled posterior distributions of the group/drug mean 

differences, d, as the primary outcome measure. Measures of dispersion for the group 

differences are indicated by the 95% highest density intervals (HDI); a 95% HDI that excludes 

zero provides strong evidence for a group difference (non-zero-difference, pnz>0.95). No 

multiple comparison corrections were applied, because Bayesian hierarchical analyses tend to 

produce more conservative comparisons by shifting point estimates towards each other (‘partial 

pooling’), making intervals more likely to include zero (Gelman et al., 2012). 

 

Model selection  

I used bridge sampling, implemented via the “bridgesampling” package in R, to determine the 

best-fit model. Given that the correct model is one of the models being considered, the posterior 

probability of a model, P(model | data), can be measured directly by taking (1) the prior 

probability of the model itself, P(model), and (2) the marginal likelihood of, or evidence for, 

the model, P(data | model), which can be estimated via bridge sampling. The marginal 

likelihood integrates, over all possible parameter values, the product of (2a) the likelihood of 

the data given the fitted model (how well the model fits the data), P(data | parameters, model), 

and (2b) the probability of the parameters given the model, P(parameters | model), thus 

incorporating Occam’s razor by penalizing over-complex models. We assumed all models were 
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equiprobable a priori. I also report the Bayes factor, defined as the ratios of marginal likelihood 

of a pair of models, as a secondary indicator for model evidence. Model comparison results are 

reported in Appendix B Table B2. Generally, a Bayes factor of more than one constitutes 

sufficient evidence that one model is better than the next (Kass & Raftery, 1995). 

 

 

Winning model validation 

 

It is important that the winning model is able to recover key aspects of the behavioural findings 

(Wilson & Collins, 2019). To that end, I performed a posterior predictive check by simulating 

data for 50 ‘virtual’ subjects per group for each study, using the posterior mean values for each 

group-level parameter. I did not incorporate subject variance, as I was interested in group 

effects instead of individual variability. The simulated data were analysed using analysis of 

variance (ANOVA) in the same way as reported in the main manuscript text, with block and 

condition (reward versus punishment) as within-subject factors, and group (StimUD versus 

controls) as a between-subjects factor.  

 

I assessed parameter recovery for the winning model to ensure that the model fitting procedure 

was able to recover the simulated parameter values. To that end, I simulated 1000 datasets with 

known parameter values (randomly generated from priors in Table B1), and fitted these data 

with the same model fitting process to recover these parameter values. Parameter recovery was 

assessed by inspecting the correlations between simulated and recovered parameter values. 

Strong correlations between simulated and recovered parameters indicate good recoverability 

(Wilson & Collins, 2019). 

 

As an extra validation step, I also fitted my data to the winning model of Kanen et al., who 

recently analysed behavioural performance of stimulant use disorder (StimUD) and obsessive-

compulsive disorder (OCD) patients on a serial probabilistic reversal learning task (Kanen et 

al., 2019). The main purpose of this analysis is to determine whether the divergence in the 

current results and Kanen et al.’s, specifically in the punishment learning rate, is due to intrinsic 

differences in the behavioural tasks or modelling procedures. The winning model in Kanen et 

al. had five parameters: reward learning rate, punishment learning rate, reinforcement 

sensitivity, stimulus stickiness and location stickiness (Kanen et al., 2019). The main difference 

between the winning models and that of Kanen et al.’s is the inclusion of extinction rate 
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parameters into the models i.e. I included parameters that modelled separately the effects of 

reward omission and punishment avoidance events. This method of modelling was not possible 

in Kanen et al’s study as their task only contained two types of feedback (reward and non-

reward). Thus, to mimic Kanen et al’s winning model as closely as possible, I removed the 

extinction rate parameters and modelled all reward trials (reward delivery + omission) with the 

reward learning rate, and all punishment trials (punishment + avoidance) with the punishment 

learning rate. The marginal likelihood for this model was also estimated with bridge sampling 

to compare it against my winning model. If this analysis produce results consistent with my 

winning model, it would suggest that any intrinsic differences between current findings and 

that of Kanen et al’s are likely attributed to difference between behavioural tasks (e.g. the 

inclusion of reversals); if not, then the divergence with the current results might be a product 

of different modelling procedures.    
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Supplementary results 

Model selection and winning model validation  

The winning model in study 1 included the following parameters: learning rates from reward, 

punishment, non-reward, and non-punishment; perseveration towards location and stimulus; 

and reinforcement sensitivity. Based on the criteria of Kass and Raftery (Kass & Raftery, 1995), 

there was overwhelming evidence that the winning model is superior to the next best model 

(Table B2). The winning model for study 2 consisted of four parameters: learning rates from 

reward and punishment, extinction rate, and reinforcement sensitivity. Again the Bayes factor 

suggests that the winning model was far superior to the next-ranked model.  

 

I was able to validate the winning models for each study. For study 1, analyses on simulated 

data from the winning model were able to recover the main effects of group (F1,98=38.5, 

p<.001), block (F5,490=60.3, p<0.001), condition (F1,98=91.1, p<0.001) as well as the lack of 

group-by-condition interaction (F1,98=1.93, p=0.168) as reported in the main text. For study 2, 

analyses on accuracy scores of simulated data from placebo recovered the main effect of 

condition (F1,98=64.4, p<0.001), block (F3,294=22.7, p<.001), and group-by-block interaction 

(F3,294=4.22, p=.006), and the lack of group effect (F1,98=0.666, p=.416) and group-by-

condition interaction (F1,98=1.05, p=.308). Simulation of amisulpride data was also able to 

reproduce all the main effects: I was able to recover the main effects of group (F1,98=9.06, 

p=.003), condition (F1,98=61.1, p<.001), block (F3,294=93.9, p<.001) as well as the lack of drug 

effect (F1,98=1.10, p=.297). The simulated data additionally yielded a group-by-drug interaction 

(F1,98=15.3, p<.001) such that amisulpride significantly reduced accuracy in StimUD patients 

(t98=3.81, p=.001), but not controls (t98=2.2, p=.123); this difference could be due to the 

removal of participant variability in the simulated data, which might have increased the effect 

size. Simulations of pramipexole data recaptured the main effect of block (F3,294=88, p<.001) 

and drug-by-condition interaction (F1,98=5.82, p=.018). The simulated pramipexole data also 

found a main effect of condition (F1,98=84, p<.001), which again may be due to reduced 

variance in simulated data; all other effects were not statistically significant (p > 0.1).  
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Figure B2 shows the scatterplots between simulated and recovered parameters for the winning 

models. All simulated and recovered parameters were strongly correlated, suggesting good 

parameter recovery.  

  

I analysed the data with the winning model in Kanen et al. as an extra confirmatory step. It is 

worth noting that bridge sampling procedures indicate that this model was ranked the 6th best 

model in both studies (Table B2), which means that results from this model do not best describe 

the current data. Nevertheless, analyses with Kanen et al.’s winning model replicated the main 

finding for the reduced punishment learning rate in both study 1 (d = -0.064, 95% HDI = -0.118 

to -0.007, pnz = 0.972) and the placebo condition in study 2 (d = -0.182, 95% HDI = -0.305 to 

-0.055, pnz = 0.995). The ability to replicate the reduced punishment learning rate with Kanen 

et al’s winning model confirms that the divergent findings on punishment-driven learning are 

due to intrinsic differences between the current RL task and one with contingency reversals.   

 

Additional correlations between demographics and task performance 

Since there was a group difference in verbal IQ in study 1, as measured with the National Adult 

Reading Test (H. E. Nelson, 1982), I further assessed the relationship between verbal IQ and 

task performance in the StimUD group. I also investigated the relationship between task 

performance measures and stimulant use duration, as well as severity of compulsive drug use 

as measured by the Obsessive-Compulsive Drug Use Scale (OCDUS). Results are shown in 

Table B3. I did not find any significant correlations between these demographic measures and 

task performance in both studies, whether measured by accuracy scores or inferred 

computational learning parameters.  
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Supplementary Tables and Figures 

 Table B1: Prior distributions for all possible parameters.  

 

Parameter Range  

(lower bound, 

upper bound) 

Group mean 

priors 

Inter-subject 

standard deviation 

priors* 

Reward learning rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

Punishment learning rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

Non-reward learning rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

Non-punishment learning rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

General learning rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

General extinction rate 0, 1 Beta(1.1, 1.1) Normal(0, 0.05) 

Reinforcement sensitivity 0, ∞ Gamma(α = 

4.82, β = 0.88) 

Normal(0, 1) 

Perseveration towards location 

(side) 

-∞, +∞ Normal(0, 1) Normal(0, 0.05) 

Perseveration towards stimulus -∞, +∞ Normal(0, 1) Normal(0, 0.05) 

Note. *all standard deviation priors are constrained to be positive.   
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Table B2: Variants of learning models and model comparison results.  

Note. Unless otherwise stated, log refers to the natural logarithm. αrew: learning rate from 

reward; αnon-rew: learning rate from non-reward; αpun: learning rate from punishment; αnon-pun: 

learning rate from non-reward; α: general learning rate; αext: extinction rate; β: reinforcement 

sensitivity; τloc: perseveration by location (“side”); τstim: perseveration by stimulus 

  

Model parameters Ranking Log 

marginal 

likelihood 

Log 

posterior 

p(model) 

Posterior 

p(model) 

Log10 Bayes 

Factor (relative 

to next-ranked 

model) 

Study 1 

αrew, αnon-rew, αpun, αnon-pun, β, τloc, τstim 1 -5586.47 -0.009 0.991 2.058 

αrew, αnon-rew, αpun, αnon-pun, β, τloc 2 -5591.21 -4.747 0.009 7.698 

αrew, αnon-rew, αpun, αnon-pun, β, τstim 3 -5608.93 -22.5 1.74 x 10-10 0.069 

αrew, αnon-rew, αpun, αnon-pun, β 4 -5609.09 -22.6 1.49 x 10-10 8.385 

αrew, αpun, β, τloc 5 -5628.40 -41.9 6.12 x 10-19 0.870 

αrew, αpun, β, τloc, τstim 6 -5630.40 -43.9 8.27 x 10-20 6.831 

αrew, αpun, β, τstim 7 -5646.13 -59.7 1.22 x 10-26 0.013 

αrew, αpun, β 8 -5646.16 -59.7 1.19 x 10-26 9.389 

αrew, αpun, αext, β, τloc 9 -5667.78 -81.3 4.84 x 10-36 1.323 

αrew, αpun, αext, β, τloc, τstim 10 -5670.82 -84.3 2.30 x 10-37 9.389 

αrew, αpun, αext, β, τstim 11 -5692.44 -105.9 9.39 x 10-47 0.005 

αrew, αpun, αext, β 12 -5692.45 -106.0 9.29 x 10-47 87.24 

α, β, τloc, τstim 13 -5893.33 -306.9 5.37 x 10-134 0.851 

α, β, τloc 14 -5895.29 -308.8 7.57 x 10-135 6.777 

α, β 15 -5910.89 -324.4 1.26 x 10-141 0.083 

α, β, τstim 16 -5911.08 -324.6 1.04 x 10-141 131.5 

αrew, αnon-rew, αpun, αnon-pun, τloc, τstim 17 -6213.89 -627.4 3.24 x 10-273 0.909 

αrew, αnon-rew, αpun, αnon-pun 18 -6215.98 -629.5 4.00 x 10-274 33.40 

αrew, αpun, τloc, τstim 19 -6292.88 -706.4 1.61 x 10-307 2.452 

αrew, αpun, αext, τloc, τstim 20 -6298.52 -712.1 5.68 x 10-310 5.742 

αrew, αpun, αext 21 -6311.75 -725.3 1.03 x 10-315 40.53 

α, τloc, τstim 22 -6405.06 -818.6 < 5 x 10-324 288.8 

None (random choice model) 23 -7070.10 - - - 

Study 2 

αrew, αpun, αext, β 1 -5887.29 -0.002 0.998 2.768 

αrew, αpun, αext, β, τstim 2 -5893.67 -6.374 0.002 3.201 

αrew, αpun, αext, β, τstim, τloc 3 -5901.04 -13.75 1.07 x 10-6 1.032  

αrew, αpun, αext, β, τloc 4 -5903.42 -16.13 9.91 x 10-8 33.96 

αrew, αpun, β 5 -5981.62 -94.33 1.08 x 10-41 4.093  

αrew, αpun, β, τstim, τloc 6 -5991.04 -103.75 8.73 x 10-46 1.656 

αrew, αpun, β, τloc 7 -5994.86 -107.6 1.93 x 10-47 5.029 

α, β 8 -6006.44 -119.1 1.80 x 10-52 6.635 

α, β, τloc 9 -6021.71 -134.4 4.18 x 10-59 450.6 

αrew, αpun, αext, τstim 10 -7059.22 -1171.9 < 5 x 10-324 0.012 

αrew, αpun, αext 11 -7059.25 -1171.0 < 5 x 10-324 6.414 

αrew, αpun, αext, τstim, τloc 12 -7074.02 -1186.7 < 5 x 10-324 4.869 

αrew, αpun, αext, τloc 13 -7085.23 -1197.9 < 5 x 10-324 608.7 

None (random choice model) 14 -8486.89 - - - 
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Table B3:  Correlations between demographics and task performance in stimulant use 

disorder patients.  
 

Task performance measure Verbal IQ  

(NART score) 

Duration of 

stimulant use 

(years) 

Compulsive drug 

use severity 

(OCDUS score) 

Study 1 

Conventional measures r p r p r p 

Accuracy score (reward) -.130 .939 -.166 .281 -.067 .664 

Accuracy score (punishment) .076 .647 -.157 .310 -.211 .169 

Computational parameters r p r p r p 

Learning rate from reward .106 .521 -.209 .173 -.141 .361 

Learning rate from punishment -.039 .812 -.194 .206 -.284 .061 

Learning rate from non-reward -.091 .580 -.005 .975 -.111 .474 

Learning rate from non-punishment .122 .458 -.169 .272 -.185 .231 

Reinforcement sensitivity .146 .377 -.140 .366 -.010 .950 

Perseveration by location -.257 .114 .263 .084 .057 .714 

Perseveration by stimulus -.204 .214 -.002 .989 -.031 .839 

Study 2 (placebo) 

Conventional measures r p r p r p 

Accuracy score (reward) .003 .991 -.086 .734 -.253 .311 

Accuracy score (punishment) -.179 .476 -.240 .337 .298 .230 

Computational parameters r p r p r p 

Learning rate from reward .066 .795 -.457 .057 -.255 .308 

Learning rate from punishment .262 .294 .013 .959 .323 .192 

General extinction rate .196 .435 .054 .832 .124 .625 

Reinforcement sensitivity .192 .446 .053 .834 -.128 .614 

Note. None of the pairwise correlations were statistically significant. [NART: National Adult 

Reading Test; OCDUS: Obsessive-Compulsive Drug Use Scale] 
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Figure B1: Group posterior distributions for each parameter of the winning model. (A) 

Group posteriors for study 1. (B) Group posteriors for the placebo condition in study 2. 

[Note: StimUD: stimulant use disorder; αrew: learning rate from reward; αnon-rew: learning rate 

from non-reward; αpun: learning rate from punishment; αnon-pun: learning rate from non-

reward; αext: general extinction rate; β: reinforcement sensitivity; τloc: perseveration by 

location (“side”); τstim: perseveration by stimulus] 
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Figure B2: Parameter recovery for the winning models in Chapter 3. The scatterplots 

between simulated and recovered parameter values for each model parameter of (A) Study 1 

and (B) Study 2. (C) The simulated-recovered pairwise correlations for each parameter.  
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Chapter 4: Declarative and non-declarative memory in cocaine use 

disorder: behavioural analyses of probabilistic category learning 

4.1 Introduction 

Cocaine use disorder (CUD) is linked with alterations to learning functions that could 

perpetuate maladaptive drug-taking patterns (Everitt et al., 2001; Hyman, 2005; Redish et al., 

2008). Converging evidence from CUD patients (e.g. Chapter 3) identified marked impairments 

in learning from reinforcing feedback. However, there are other processes that facilitate 

reinforcement learning, and are important for goal-directed behaviour. In particular, a parallel 

line of research suggests that declarative and non-declarative memory processes complement 

such learning. On the one hand, declarative memory refers to consciously accessible knowledge 

that is learned via memorisation of facts. This memory is thought to be dependent on the medial 

temporal lobe, including the hippocampus (Squire & Zola, 1996; Squire & Zola-Morgan, 1991). 

On the other hand, non-declarative memory encompasses knowledge that is learnt by practice 

and trial-and-error, and is thought to depend on the striatum (Poldrack et al., 1999). These 

memory processes facilitate the learning of associative knowledge, and can be tested 

experimentally by assessing category learning, defined as the learning of perceptual or abstract 

classifications that help guide decisions (Ashby & Maddox, 2005). Since CUD patients 

generally exhibit marked learning deficits, an open question is whether these learning 

impairments also reflect disruptions to memory processes that aid associative learning.   

 

To examine this possibility, this chapter compares the performance of CUD patients and 

controls on a well-known probabilistic category learning task – the weather prediction task 

(Knowlton et al., 1996). This is a probabilistic category learning task that assesses the learning 

of contingencies between multiple cues and outcomes. This task comes in two versions, each 

with identical probabilistic structures and task objective, but they differ in terms of the route of 

learning. The first version, known as the feedback version, requires learning of contingencies 

from trial-by-trial corrective feedback, akin to standard reinforcement learning. Participants 

cannot merely rely on remembering the outcome of a previous encounter, but instead have to 

integrate information over many trials to form an understanding of what is optimal (Knowlton 

et al., 1996). By contrast, the second version, known as the paired-associates version, eliminates 

the corrective feedback, and instead requires participants to learn via observation (Poldrack et 

al., 2001). Participants are simultaneously presented with the cues and the outcome. They then 

need to memorise the relationship between cues and weather, and predict them later during a 
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test phase. The concurrent use of these two versions of the task have enabled the dissociation 

between declarative and non-declarative memory (Poldrack et al., 2001; Shohamy, Myers, 

Grossman, et al., 2004). Prior studies in neuropsychiatric conditions have supported this 

distinction. For example, Parkinson’s Disease, characterised by an impaired nigro-striatal 

system, showed deficits in the feedback, but not the paired-associates version, suggesting a 

selective impairment to non-declarative memory whilst declarative memory remained intact 

(Shohamy, Myers, Grossman, et al., 2004). It is conceivable that CUD patients, who also show 

striatal deficits (Luijten et al., 2017; Yager et al., 2015), would have impaired non-declarative 

memory. However, the existing evidence for this is scarce and equivocal, with one study 

claiming deficits to non-declarative memory task performance in cocaine-addicted individuals 

(Vadhan et al., 2014), whilst another did not (Vadhan et al., 2008). 

 

Since CUD patients exhibit different cognitive profiles from healthy controls, one possibility is 

that patients may adopt different learning strategies. In particular, although the feedback version 

of the weather prediction task predominantly requires non-declarative processes, it is possible 

to adopt other strategies to solve this task. Gluck and colleagues (2002) showed that with the 

feedback version, participants can either rely on single cues to guide their decision, or integrate 

information of multiple cues to predict the weather. These strategies are hypothesised to map 

onto hippocampal-based declarative (verbalised rule-based strategy) and striatal-based non-

declarative (integrating cues through trial-and-error) memory respectively (Gluck et al., 2002; 

Shohamy, Myers, Grossman, et al., 2004). For instance, Parkinson’s Disease patients were more 

likely to respond with single-cue simple strategies instead of multi-cue complex strategies, 

consistent with their cortico-striatal impairments (Shohamy, Myers, Onlaor, et al., 2004). 

Analyses on response strategies could potentially yield richer insights into the learning patterns 

associated with CUD.  

  

The aims of this chapter are (1) to study the declarative and non-declarative memory processes 

in CUD patients, and (2) determine whether CUD patients use different strategies during 

learning compared to healthy controls. I administered two versions of the weather prediction 

task to CUD patients, and hypothesised that CUD patients exhibit impairments in the version 

that primarily relies on non-declarative memory. I further analysed the response strategies of 

patients during the feedback version using a modified version of Gluck et al.’s analyses. I 

hypothesised that poor feedback learning is linked with the use of suboptimal response 
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strategies during learning, and predicted that CUD patients are more likely to engage in simple 

but suboptimal responding strategies. 

 

 

4.2 Methods 

4.2.1  Sample description 

Eighty-two men were recruited from the local community through flyer advertisements and 

word-of-mouth. Participants were included in the study if they were aged at least 18 years old 

and have sufficient English proficiency. Patients were required to satisfy the Diagnostic and 

Statistical Manual (5th edition, DSM-5) criteria for cocaine use disorder, whilst control 

participants had to be healthy with no prior history of substance use disorders. All participants 

provided informed consent upon study enrolment, and were screened with the Mini 

International Neuropsychiatric Inventory (MINI, Sheehan et al., 1998) and breathalysed to 

confirm sobriety; psychopathology in CUD patients was additionally evaluated with the 

Structured Clinical Interview (First et al., 2002). All participants also underwent urine screens 

for undeclared drug use, which confirmed active cocaine use in all CUD patients, and drug 

abstinence in all control participants. Acute alcohol intoxication, or a lifetime history of 

psychotic or neurological disorders or traumatic brain injury led to exclusion from the study. 

The protocol received ethical approval from the Cambridge Psychology Research Ethics 

Committee. The final sample included 42 male CUD patients and 40 male healthy volunteers. 

Patients reported using cocaine for 12.3 years on average (standard deviation [SD]: 7.5 years); 

all CUD patients completed the Obsessive-Compulsive Drug Use Scale as a quantitative 

measure of drug use severity (Franken et al., 2002). Forty healthy volunteers reported no current 

or past history of substance use disorder, and no heavy drug use (Table 4.1). To ascertain 

whether affective status affects procedural or declarative memory, participants were also 

administered the Depression, Anxiety and Stress Scale  (DASS-21; Lovibond and Lovibond, 

1995) as a measure for subclinical levels of depression, stress and anxiety.  

 

4.2.2  Behavioural tasks 

I administered two versions of the weather prediction task: the standard feedback version and 

the paired-associates version.  
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Feedback version: On each trial participants were presented a combination of one, two or three 

out of four available tarot cards, and were asked to predict whether “sun” or “rain” is more 

likely. Feedback is immediately delivered upon choice selection to inform participants of the 

correct answer (Figure 4.1A). The unique cards each have a constant probabilistic relationship 

with the weather, such that two of the four cards predicted rain and sun 87.5% of the time, 

whereas the other two cards predicted rain and sun 75% of the time. Thirteen possible 

combinations were constructed from these cards, each with varying likelihood of outcomes. We 

followed the probabilistic structure used within prior literature (Kemény & Lukács, 2010, 2013), 

which I outlined in Table 4.1. Participants have to learn by trial-and-error to accrue knowledge 

on the relationship between card combinations and the weather. Participants first completed 

150 training trials. This was immediately followed by a 50-trial test phase, where participants 

were asked to predict the weather without receiving feedback on their choices. Rate of optimal 

choices made during learning and test phases reflect non-declarative memory performance.  

Paired-associates version: This version shares an identical probabilistic structure to the 

feedback version. On each trial, participants were presented with a combination of cards and 

the weather associated with the combination (Figure 4.1B). Instead of learning by trial-and-

error, participants were instructed to memorise the relationship between the card combinations 

and the weather. To ensure that participants were paying attention on each trial, participants 

needed to confirm whether the outcome displayed was sun or rain. After completing 150 

memorisation trials, participants also completed 50-trial test phase, where participants predict 

the weather from the card combinations. Declarative memory is measured by the rate of optimal 

choices made during the test phase. 

After the test phases for each version, I assessed participants’ declarative task knowledge 

(Figure 4.1C). For each card, participants needed to mark on a 100mm continuous visual 

analogue scale (1) the likelihood of each card in predicting sun or rain (more likely to be sunny 

– more likely to rain) and (2) how confident they were in their estimation (not confident at all 

– very confident).  
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Figure 4.1: Schematics for the weather prediction tasks. (A) In the feedback version, 

participants need to learn by trial-and-error the optimal responses for each card combinations. 

Participants are shown a card combination on each trial, and must pick whether this 

combination predicts sun or rain; upon selecting a choice, they receive immediate feedback. 

(B) In the paired-associates version, participants learn by direct memorisation. On each trial, 

both cards and weather are presented simultaneously for participants to memorise; they need 

to then confirm their attention by selecting the corresponding weather. (C) After each task, 

participants’ declarative knowledge is assessed: they were asked to rate each card on a 100 

mm continuous visual analogue scale (i) how likely does each card predicts rain and (ii) how 

confident they are in their ratings. 
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Table 4.1: Probabilistic structure of the weather prediction task. Both feedback and 

paired-associates versions share identical probabilistic structure. For each pattern, each cue is 

either present (1) or absent (0). [p(sun|pattern) reflects the probability of sun being the correct 

response for this pattern; p(pattern) reflects how often this pattern occurs on a given trial] 

Pattern Cues present P(pattern) Frequency (per 

150 trials) 

P(sun | 

pattern) 

Optimal 

response square diamond circle triangle 

A 1 1 1 0 0.04 6 1.0 Sun 

B 1 1 0 1 0.02 3 1.0 Sun 

C 1 1 0 0 0.16 24 0.875 Sun 

D 1 0 1 1 0.02 3 0 Rain 

E 1 0 1 0 0.02 3 1.0 Sun 

G 1 0 0 0 0.16 24 0.875 Sun 

H 0 1 1 1 0.04 6 0 Rain 

I 0 1 1 0 0.04 6 0.5 - 

J 0 1 0 1 0.02 3 0 Rain 

K 0 1 0 0 0.08 12 0.75 Sun 

L 0 0 1 1 0.16 24 0.125 Rain 

M 0 0 1 0 0.08 12 0.25 Rain 

N 0 0 0 1 0.16 24 0.125 Rain 

 

4.2.3 Statistical analysis 

Demographics and performance data were analysed using analysis of variance (ANOVA). The 

primary performance measure for both versions is the overall rate of optimal choices during the 

test phase, defined as the selection of the outcome most associated with the card combinations 

(“Optimal Response” column in Table 4.1). For the learning phase in the feedback version, I 

also determined the rate of optimal choices in 50-trial blocks. 

 

As a measure of declarative task knowledge, I computed likelihood estimation errors for both 

feedback and paired-associates versions. This is defined as the absolute deviation from the 

actual probabilities of each card (larger = less precise). For instance, if the square card has an 

87.5% chance of sun, and the participant indicates that it has a 100% chance of sun, then the 

likelihood estimation error for that card is 12.5 (estimate minus actual likelihood). This process 

was repeated for each card, and a total score was computed as the average across all four cards 

– higher error estimates indicates lower precision. In addition to a total score, I also calculated 

separately the average error estimates for cards with 87.5% likelihood and cards with 75% 

likelihood. The same was done for confidence ratings: a total confidence rating (averaged across 
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four cards), as well as confidence ratings for strong and weak predictor cards were calculated; 

a larger value reflects more confidence in their ratings.  

 

Relationships between declarative knowledge and task performance were explored using 

Spearman’s correlation analyses. Rate of optimal choices during the test phases, likelihood 

estimation errors and self-rated confidence were log-transformed to reduce skew, but raw 

untransformed values were presented in figures. Any post-hoc pairwise comparisons were 

adjusted for multiple comparison using the Bonferroni’s method. A sensitivity power analysis 

identified that, given the current sample, this study is sufficiently sensitive to detect a moderate 

effect size (Cohen’s d = 0.54). 

 

4.2.4 Strategy analysis 

Different people use different strategies to solve the weather prediction task. Gluck and 

colleagues (Gluck et al., 2002) conceptualised three distinctive strategies: (1) singleton strategy, 

where participants respond definitively when only one card is present (e.g. respond “rain” when 

only the triangle card is present [pattern N]), and respond randomly when more than one card 

is present; (2) one-cue strategy, where responding is based on the presence or absence of a 

single card; and (3) multi-cue strategy, where responding takes into account the whole 

combination instead of single cards. Gluck and colleagues constructed for each strategy an ideal 

data, which were defined as the expected responses if the participant fully adhered to that 

response strategy. For example, if a participant reliably followed a one-cue strategy, they should 

have responded with ‘sun’ whenever a specific card (e.g. square) was present in the combination, 

and ‘rain’ if the card was absent. They then compared actual task performance with this ideal 

data with a least mean square method to produce a model fit score. The calculation of this score 

is as follows:  

𝑀𝑜𝑑𝑒𝑙𝑓𝑖𝑡𝑠𝑐𝑜𝑟𝑒 =
∑ (#𝑠𝑢𝑛𝑖𝑑𝑒𝑎𝑙 − #𝑠𝑢𝑛𝑎𝑐𝑡𝑢𝑎𝑙)

2
𝑝

∑ (#𝑝𝑎𝑡𝑡𝑒𝑟𝑛)2𝑝
 

 

where p refers to the pattern shown, #sun_ideal denotes ideal response given pattern p, 

#sun_actual denotes actual response by participant, and #pattern presented refers to number of 

times pattern p was presented. This model fit score ranges from 0 to 1, with 0 indicating perfect 
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score i.e. participant fully adhered to that strategy. This model fit score is computed for each 

strategy; the strategy with the lowest model fit score is deemed the dominant strategy. Any 

model with a model fit score of more than 0.1 is considered as a ‘non-identifiable’ strategy 

because it means the response data does not fit well to that strategy (Gluck et al., 2002). For 

simplicity, these strategies have been grouped as simple (singleton and one-cue) and complex 

(multi-cue) strategies within prior literature (Schwabe & Wolf, 2012; Thomas & LaBar, 2008). 

However, a potential shortcoming of this simple method is that it does not account for individual 

differences in learning. This is an important consideration factor as prior work has shown 

substantial differences in learning between healthy volunteers and addicted patients (Kanen et 

al., 2019; see also Chapter 3). Neglecting these variances could under-estimate the goodness-

of-fit for each strategy in CUD patients by increasing the percentage of non-identifiable strategy 

(see Appendix C, Figure C1).  

Hence, I modified the strategy analyses in three ways: (1) I constructed learning models that 

correspond to simple (single-cue based) or complex (multi-cue based) strategies, which broadly 

follows a reinforcement learning algorithm; (2) I included basic free parameters of learning 

(learning rate and reinforcement sensitivity) during the modelling process; (3) I compared 

model fit using bridge sampling procedures. A side-by-side comparison between my strategy 

analyses and that with the Gluck et al method is presented in the Appendix C (Figure C1). 

 

1) Learning model: Consistent with prior literature, I used a simple learning model and a 

complex learning model to reflect response strategies (Gluck et al., 2002; Schwabe & Wolf, 

2012; Thomas & LaBar, 2008). As singleton and one-cue strategies are rule-based strategies 

that are easily verbalised, they are treated as simple strategies (Gluck et al., 2002; Shohamy et 

al., 2008). By contrast, developing a multi-cue strategy requires the integration of knowledge 

over many trials, and is thought to be implicit (Shohamy et al., 2008), so it is treated as a 

complex strategy. Both simple and complex strategies are updated using delta rule: 

𝑉(𝑠, 𝑎)𝑡+1 = 𝑉(𝑠, 𝑎)𝑡 + 𝛼(𝑅 − 𝑉𝑡) 

𝛼 {
𝛼𝑝𝑜𝑠𝑤ℎ𝑒𝑛𝑅 = 1

𝛼𝑛𝑒𝑔𝑤ℎ𝑒𝑛𝑅 = −1
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where V(s,a) reflects value of action a given state s on trial t, α reflects learning rate (itself 

fractionated according to feedback) and R denotes reinforcement. Actual choice selection is 

computed following a softmax rule: 

𝑝(𝑎|𝑠) =
𝑒𝑥𝑝(𝛽𝑉𝑡

𝑎)

∑ 𝑒𝑥𝑝(𝛽𝑉𝑡
𝑘)𝑛

𝑘=1

 

where p(a|s) is the probability of making choice a given state s, and β is the inverse temperature 

parameter that governs sensitivity to action values.  

 

An important distinction between simple and complex models is how card-weather 

relationships are learnt. In the simple model, I constructed rule-based learner models, where 

learning is based on the presence or absence of a single cue (Gluck et al., 2002). In other words, 

the choice values are updated based on only two possible state spaces: (1) when card is present, 

and (2) when card is absent (s = {shape absent, shape present}). The simple model was 

constructed for each of the four unique cards (square, diamond, circle, triangle). By contrast, in 

the complex model, I assumed that participants develop unique S-R contingencies towards each 

unique pattern. Thus, delta rule updates choice values for each of the 13 unique combinations 

as reported in Table 4.1 (s = {pattern 1, pattern 2, … pattern 13}). 

 

2) Individual differences during learning: Individual differences are accounted for by 

modelling the learning rates, α, and the inverse temperature, β, in above mentioned equations. 

The fitting process for trial-by-trial data was conducted with RStan (Carpenter et al., 2017). In 

both models, I allowed free parameters such as the α and β to vary from each participant to 

account for the individual variation. The parameters α and β had priors of beta (shape 1=1.1, 

shape 2=1.1) and gamma (shape=4.82, rate=0.84) distributions respectively. It is noteworthy 

that the free parameters here only serve the purpose of accounting for individual differences in 

learning with each strategy, and are not of interest in this chapter. Instead, I am interested in the 

dominant strategy used during learning. 

 

3) Model comparison for strategies: The primary outcome measure was the dominant strategy 

used during the learning and test phases of the feedback condition. The dominant strategy is the 
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winning model (i.e. log marginal likelihood closest to 0) as identified by bridge sampling model 

selection procedure described in the model selection section in Chapter 2 (Gronau et al., 2017). 

During model comparison, I also compared the performance of the two models against a 

random choice model, where selection of rain or shine is equally likely regardless of the cues 

presented (chance performance). Any task performance during learning for which the random 

choice model was the winning model suggests “guessing” behaviour, and was excluded from 

any subsequent analysis. I modelled strategy only for the feedback version, because the paired-

associates version did not involve any feedback-based learning or overt behaviour, so the 

learning process cannot be modelled. To assess the reliability of the model selection process 

and the specificity of the models, I performed model recovery checks to assess whether a 

simulated response based on a specific strategy can be recovered by the model selection process 

(Wilson & Collins, 2019). I found that model recovery for these strategies was extremely well, 

suggesting that we can clearly arbitrate between these responding strategies using the current 

method (see Appendix C, Figure C3).   

 

4.3 Results 

4.3.1 Demographics and clinical data 

Sample characteristics are reported in Table 4.2. Both groups were matched on age and gender, 

but the cocaine group had significantly lower verbal IQ than that of the control group. However, 

as verbal IQ scores were not correlated with any task performance measures in either group (all 

p > 0.05; see Table 4.3), verbal IQ was not statistically controlled for in the analyses. Consistent 

with prior findings, patients also demonstrated significantly higher levels of impulsivity and 

reduced propensity for goal pursuit. However, neither demographics nor clinical measures 

within CUD patients correlated with task performance (all p > 0.1) 
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Table 4.2: Sample demographics for Chapter 4.  

Demographics Group Group comparison 

Control Cocaine t p-value 

Sample size 40 42 - - 

Age (years) 40.1 (12.4) 39.3 (8.8) 0.675 .502 

Gender (% male) 100 100 - - 

Verbal IQ (NART score) 115 (6.1) 103 (7.4) 7.73 < .001 

Compulsive drug use (OCDUS score) - 33.7 (9.3) - - 

Drug use (DAST-20 score) 0.08 (0.3) - - - 

Alcohol use (AUDIT score) 3.5 (1.7) 4.1 (5.7) -0.69 .492 

Depression (DASS-21 subscale) 3 (3.3) 17 (11.4) -7.72 < .001 

Anxiety (DASS-21 subscale) 2 (2.4) 12 (7.0) -9.30 < .001 

Stress (DASS-21 subscale) 6 (4.9) 17 (8.7) -7.54 < .001 

Note. NART: National Adult’s Reading Test; BIS-11: Barratt Impulsiveness Scale; OCDUS: 

Obsessive-Compulsive Drug Use Scale; HSCQ: Habitual self-control questionnaire; DAST-

20: Drug and Alcohol Screening Test; AUDIT: Alcohol Use Disorder Identification Test; 

DASS-21: Depression, Anxiety, and Stress Scale; standard deviation reported in parentheses. 

 

Table 4.3: Summary scores for weather prediction tasks performance measures and 

their associations with verbal IQ. 

Task performance Mean (SD) Pearson’s r with verbal IQ (p) 

 Control Cocaine Control Cocaine 

Feedback    

learning phase (% correct) 84.6 (6.9) 67.2 (11) 0.090 (0.597) 0.100 (0.557) 

test phase (% correct) 93.1 (8.9) 71.3 (21) 0.107 (0.528) 0.115 (0.499) 

Likelihood estimation errors (%) 12.9 (11) 24.5 (16) 0.069 (0.687) -0.136 (0.421) 

Confidence rating (%) 77.2 (9.8) 61.7 (20) 0.244 (0.145) -0.019 (0.910) 

Paired-Associates    

test phase (% correct) 91.5 (12) 70.1 (22) 0.205 (0.224) 0.285 (0.087) 

Likelihood estimation errors (%) 11.3 (7.3) 29.7 (17) -0.067 (0.694) -0.268 (0.109) 

Confidence ratings (%) 70.2 (18) 67.0 (18) -0.047 (0.782) 0.240 (0.153) 

Note. SD: standard deviation; Verbal IQ measured by the total score on the National Adult’s 

Reading Test. 
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4.3.2 Task performance and knowledge 

Behavioural summary scores are reported in Table 4.3. In the training phase of the feedback 

version (Figure 4.2A), although there was a main effect of block (F2,160=18.3, p<0.001) that 

suggests overall training performance improved over time, the cocaine group performed 

significantly worse than the control group (F1,80=70.1, p<0.001). There was no group-by-block 

interaction (F2,160=1.1, p=0.345).  

To assess participants’ performance on the test phase (Figure 4.2B), I analysed the rate of 

optimal choices during test phase, with condition (Feedback versus Paired-Associates) as a 

within-subject factor and group (Control versus Cocaine) as a between-subject factor. Analyses 

revealed that cocaine-addicted patients performed significantly worse than healthy controls in 

both versions (F1,80=78.3, p<0.001). However, the effects for condition (F1,80=0.629, p=0.430) 

and group-by-condition interaction (F1,80=0.14, p=0.709) were not statistically significant 

(Figure 4.2B).   

 

Figure 4.2: Task performance for the weather prediction tasks. (A) During the learning 

phase of the feedback condition, all participants steadily improved their task performance over 

time, but CUD patients’ performance consistently fell behind that of control participants. (B) 

Analyses on the rate of optimal responses during the test phase revealed that CUD patients 

performed significantly worse than control participants, irrespective of task version. [* indicates 

statistical significance at p < 0.05] 
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I analysed explicit task knowledge as indexed by the likelihood estimation error (Figure 4.3A). 

A mixed ANOVA model with condition (Feedback versus Paired-Associates), card probability 

(87.5% versus 75%) and group (Control versus Cocaine) as factors found that patients made 

larger errors when estimating the likelihood than controls (F1,80=37, p<.001), suggesting that 

overall declarative knowledge is weaker in patients, irrespective of the task condition. There 

was a main effect of card probability (F1,80=19.5, p<.001), such that participants estimated 

likelihoods better for the 87.5% cards, but there was a condition-by-card probability interaction 

effect (F1,80=9.27, p=.003). Post-hoc pairwise comparisons revealed that all participants made 

more precise estimations for the 87.5% cards than the 75% cards in the feedback condition 

(p<.001). However, this effect was absent in the paired-associates condition (p=.186). Other 

effects did not reach statistical significance (all p > 0.1). Likelihood estimation error was 

correlated with test phase performance on both feedback (ρ=-0.683, p<.001) and paired-

associates version (ρ=-0.738, p<.001).  To determine whether declarative knowledge alone can 

account for task performance, I re-analysed test phase performance with group as a between-

subject factor, and included declarative knowledge as a covariate in an ANCOVA model. 

Analyses revealed no group differences in paired-associates test performance (F1,79=1.6, 

p=0.208), but the group difference remains significant in the feedback phase condition 

(F1,79=18.2, p<0.001) – confirming that the paired-associates condition strongly depends on 

declarative knowledge, but the feedback condition does not.  

 

Analyses on the confidence ratings with a similar ANOVA model found that overall, CUD 

patients were less confident than controls of their knowledge (F1,80=7.66, p=0.007) (Figure 

4.3B). However, there was a condition-by-group interaction (F1,80=7.1, p=0.009). Post-hoc 

analyses revealed that the groups differ in their confidence only in the feedback condition 

(p<0.001), but not the paired-associates condition (p=.471). There was a main effect of card 

probability (F1,80=5.66, p=.020), in which all participants were more confident on their 

estimates for the 87.5% cards compared with the 75% cards. Additionally, I found a card 

probability-by-group interaction (F1,80=4.85, p=.031), such that control participants were more 

confident than CUD patients on their estimates for the 87.5% predictive cards (p=.002), but 

were equally confident with patients for the 75% predictive cards (p=.210). There was also a 

condition-by-card-probability interaction (F1,80=5.38, p =.023), which showed that the 

difference in confidence for the 87.5% and 75% predictive cards was significant in the feedback 

(p=.002), but not the paired-associates condition (p=.518).  All other effects were not 
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statistically significant (p>0.1). A positive relationship was observed between mean knowledge 

confidence and task performance in both feedback (ρ=.583, p<.001) and paired-associates 

version (ρ=.289, p=.008) of the task. However, the group differences remained significant after 

statistically controlling for confidence levels in both feedback (F1,79=16.8, p<0.001) and paired-

associate versions (F1,79=28.4, p<0.001), suggesting that confidence levels did not modulate 

task performance.  

 

 

Figure 4.3: Post-task measurements of declarative knowledge. (A) Likelihood estimation 

error, categorised by task version, group and the card probability. (B) Confidence on ratings, 

categorised by task version, group and the card probability.  

 

4.3.3 Strategy analysis 

During the training phase of the feedback version, the random model was the winning model 

for three cocaine-addicted patients (7%), suggesting that they did not develop any strategy 

during the course of learning. These data were excluded from any further analyses in this section. 

Figure 4.4A shows the proportion of participants for each dominant strategy during learning. I 

identified a significant association between group and dominant strategy (Fisher’s exact = 19.9, 

p<.001), such that 37 healthy controls (93%), as opposed to only 20 patients (51%), used a 

complex strategy. The remaining controls (n=3, 7%) and patients (n=19, 49%) adopted the 

simple strategy. It is noteworthy that analyses of block-by-block strategy during learning found 



Category learning in cocaine use disorder 

101 

 

that each group consistently maintained these strategies throughout learning (see Appendix C, 

Figure C2). Additionally, strategy analysis on the test phase (Figure 4.4B) revealed almost 

identical patterns to the training phase, suggesting that most participants maintained their 

strategy adopted during test phase. Again, for most patients’ responding, the simple strategy 

was the winning model (n=21, 54%), while in the majority of healthy controls’, the complex 

strategy was the winning model (n=34, 85%) – this group difference was also statistically 

significant (Fisher’s exact = 17.7, p<.001).  

 

 

Figure 4.4: Dominant response strategies in the feedback version of the weather 

prediction task. (A) Strategy use during feedback learning significantly differed across groups; 

whilst controls mostly adopted a more complex, multi-cue strategy, almost half of CUD patients 

engaged in more simple memorisation strategy while learning the task. (B) Participants largely 

retained their strategy use during the test phase, with most controls adopting a complex strategy, 

whereas CUD patients were more likely to use simple strategy.  

 

As an added exploratory analyses, I wanted to identify whether any demographic or clinical 

measures differed between those CUD patients who used a simple versus a complex response 

strategy. A multivariate ANOVA model with the between-subject factor, strategy (simple 

versus complex), and age, verbal IQ, compulsive drug use, and affective measures (DASS-21 

subscores) as dependent variables did not find a main effect of strategy on any of these measures 

(all p > 0.05). This suggests that different strategy users do not differ significantly on any of 

the collected demographic and clinical measures.  
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4.4    Discussion 

I sought to test declarative and non-declarative learning systems in CUD patients with two 

versions of the weather prediction task, each representing measures of learning from feedback 

or from explicit memorisation. The findings showed that regardless of the task version, CUD 

patients were impaired in their learning performance. Closer examination of participants’ 

response strategy during feedback learning revealed that while most controls adopted a more 

optimal complex (multi-cue) strategy that is thought to reflect striatal-dependent learning, half 

of cocaine-addicted patients relied on the simple (single-cue) strategy, which suggests a reliance 

on a suboptimal strategy. Together these findings suggest that learning deficits in CUD may 

extend beyond feedback learning, possibly due to their use of suboptimal strategies.  

 

4.4.1 CUD is linked with impaired declarative and non-declarative memory 

In this study, the weather prediction task was manipulated such that categories were learnt either 

from corrective feedback or explicit memorisation. Learning from feedback is known to be 

impaired in cocaine addiction, so the former findings are in line with extant literature. This 

particular impairment was especially highlighted in Chapter 3, where stimulant-dependent 

individuals showed reduced learning from negative feedback. Chronic cocaine use is known to 

interfere with normal reward prediction error signalling (A. C. Burton et al., 2018; Saddoris et 

al., 2017), a reinforcement signal that “stamps-in” learned contingencies (Wise, 2004). This is 

also consistent with reports in human drug users who show blunted striatal prediction errors 

(Parvaz et al., 2015; Tanabe et al., 2013). One study has provided evidence for dopamine release 

during learning of the feedback version, but not the paired associates version, of the weather 

prediction task (Wilkinson et al., 2014), implying that dopamine is critical for feedback learning. 

Thus, it is logical to expect CUD, associated with dopaminergic dysfunction, to show reduced 

behavioural performance during feedback learning.  

 

Reduced performance of the paired-associates version suggests that cocaine-addicted patients 

were also impaired in declarative memory. The declarative memory system, which is thought 

to be supported by the medial temporal lobe (including hippocampus), mediates acquisition of 

contextual information, most notably in encoding contingencies among environmental stimuli 

(Boorman et al., 2016; Eichenbaum et al., 1994; Garvert et al., 2017). Indeed, patients with 

medial temporal lobe damage are impaired in contingency learning (Bradfield et al., 2020; 

Palombo et al., 2019; Vilà-Balló et al., 2017). The paired-associates task is thought to simulate 

the learning of such contingencies (i.e. cue-weather relationship) (Poldrack et al., 2001). Since 
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cocaine exposure affects hippocampal-dependent declarative memory encoding (Sudai et al., 

2011; Yamaguchi et al., 2004), it is conceivable that medial temporal lobe function is impaired 

in cocaine addiction. Further corroborating evidence can be found in prior studies which 

demonstrated inferior performance of stimulant-addicted patients on learning tasks that are 

sensitive to medial temporal lobe function (Ersche et al., 2006; van Gorp et al., 1999). However, 

this is speculative as I did not have evidence for medial temporal lobe impairments in this study. 

 

Additional evidence for a weakened declarative system was also provided by patients’ reduced 

task knowledge, as reflected by the lower precision than healthy controls while estimating the 

predictive values of each cue. However, whilst reduced precision in estimating the cue-weather 

probabilities has been interpreted as reduced task knowledge in previous studies (Lagnado et 

al., 2006; Price, 2005), I cannot discount the possibility of impaired probability encoding in 

cocaine addiction. A plethora of studies using probabilistic learning paradigms have identified 

impairments in cocaine-addicted subjects, but probability encoding has never been explicitly 

explored. It was suggested that dopamine codes for degrees of uncertainty (Fiorillo et al., 2003), 

and dopaminergic areas such as the anterior cingulate cortex track and update the predictive 

value of reward in humans (Behrens et al., 2007). Again, dopaminergic dysfunction linked with 

cocaine addiction also alludes to the possibility of aberrant probability encoding in cocaine-

addicted patients, reflected in the estimation of cue-weather probabilities. However, this is only 

speculative, and future studies are needed to confirm this hypothesis. 

 

4.4.2 CUD patients use suboptimal strategies during category learning  

Half of CUD patients rely on cue-based simple declarative strategy when learning the weather 

prediction task. Prior data from healthy volunteers showed that while completing the weather 

prediction task, participants were more inclined to use simple memorisation strategies during 

initial stages of learning, and gradually transitioned to the complex multi-cue strategy during 

late learning (Gluck et al., 2002). This is also consistent with the notion that declarative 

knowledge was available to participants during early learning of the weather prediction task, as 

it is easily and rapidly acquired (Knowlton et al., 2017; Poldrack et al., 2001). Interestingly, 

unlike the profile reported in Gluck et al (2002), my analyses on block-by-block response 

strategy during learning revealed that both controls and CUD patients are consistent in their 

strategy use throughout the task (Appendix C, Figure C2). This lack of transition is likely due 

to the differences in the probabilistic relationships: the probability used in this study (strong 

predictor = 87.5% versus weak predictor = 75%) is much easier than the one used in (Gluck et 
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al., 2002) (strong predictor = 75.6% versus weak predictor = 57.5%), which may have 

facilitated quicker transitions to the more complex strategy during early learning. But what is 

clear, is that most control participants adopted the more complex multi-cue strategy during 

learning. By contrast, only half of the patient sample used the complex strategy, suggesting that 

there might be differences in how patients engage this task. It is noteworthy that I have explored 

whether any demographic traits might predict the use of simple strategy within cocaine-

addicted patients during learning, but did not find any significant differences. Thus, the current 

data do not provide any clear indications why some patients adopt a simpler strategy.  

 

I speculate that the lack of switching to the complex strategy seen in some cocaine-addicted 

patients may be due to their inability to integrate cue-weather information during the course of 

learning. Such integration is reminiscent of the striatum’s function in combining well-learned 

motor or cognitive action sequences to allow a more efficient expression, a process known as 

“chunking” (Graybiel, 1998; Graybiel & Grafton, 2015). In this vein, it is plausible that the use 

of the complex strategy, characterised by the integration of multiple cue-weather relationships, 

is mediated by the striatum. Indeed, inactivation of dorsal striatum with a dopamine D2 

antagonist abolishes chunking in rats (Levesque et al., 2007), suggesting a direct role of striatal 

dopamine in the formation of chunks. Thus, the lack of switch from single-cue to multi-cue 

strategy might reflect a deficiency in chunking. This deficit in chunking is also observed in 

Parkinson’s disease patients (Tremblay et al., 2010), mirroring the finding that these patients 

never switched to a more complex strategy despite extensive training (Shohamy, Myers, Onlaor, 

et al., 2004).  

 

4.4.3 Limitations and conclusion 

The current findings should be interpreted in light of several limitations. First, although the 

weather prediction task has well-established neural substrates, the lack of neuroimaging 

methods precludes any conclusive inferences drawn about the neural substrates that underpin 

cocaine-addicted patients’ strategy use and task performance, and should be cautiously 

interpreted. Moreover, there is little evidence for the neural circuits underpinning different 

strategy use within the literature, so whether relying on simple strategies reflect a compensatory 

response for poor feedback learning in patients is unclear. Furthermore, as neither task 

performance nor task knowledge correlated with clinical measures, it remains an open question 

whether category learning deficits observed is a by-product or a predisposing risk factor of 
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addiction. Future longitudinal research should investigate whether these category learning 

deficits predate the development of maladaptive drug-seeking behaviour.  

 

Notwithstanding these limitations, this chapter provided evidence for impaired feedback and 

observational learning in cocaine addiction using a well-established category learning task. 

These findings add to the growing body of evidence for aberrant goal-directed learning in 

cocaine addiction.  
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Appendix C: Supplementary materials to Chapter 4 

 

 

Figure C1: Comparison of strategy analyses between (A) original method by Gluck and 

colleagues, and (B) current method that accounted for individual differences for each strategy. 

The method by Gluck et al gave rise to a significant minority of non-identifiable strategies, 

which was reduced greatly when analysed after accounting for individual differences in learning.  
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Figure C2: Dominant strategy for each 50-trial block during feedback learning. Control 

participants consistently engaged the task with a complex strategy, as opposed to cocaine use 

disorder patients, who mostly use a simple rule-based strategy during learning.  
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Figure C3: Confusion matrices of strategy modelling for the Weather Prediction Task as 

indices of model recovery. I simulated 1000 responding patterns based of the three strategies 

as outlined in the chapter. I then fitted these responses to each strategy and identified the 

winning model with two methods: (A) the original fitting and model selection methods as 

suggested by Gluck et al (2002) [N.B. using the terminology in Gluck et al (2002), complex, 

simple, and random strategies refer to multi-cue, one-cue and non-identifiable strategies 

respectively.]; (B) the current method as reported in the main text i.e. by accounting for 

individual differences in the learning parameters (randomly generated from the priors reported 

in section 4.2.4) during model fitting, and using bridgesampling to identify the winning 

model. The numbers in the matrices denote the probability of recovering the strategy from a 

simulated strategy – higher indicates better recovery. Evident from the diagonals of both 

matrices, both methods showed excellent recoverability. This suggests that we can arbitrate 

between these strategies extremely well.   
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Chapter 5: The relationship between reinforcement learning and habit 

formation in cocaine use disorder 

 

This chapter has been published as: 

Lim, T. V., Cardinal, R. N., Savulich, G., Jones, P. S., Moustafa, A. A., 

Robbins, T. W., & Ersche, K. D. (2019). Impairments in reinforcement 

learning do not explain enhanced habit formation in cocaine use disorder. 

Psychopharmacology, 236(8), 2359–2371. 

https://doi.org/10.1007/s00213-019-05330-z 

 

Pertaining to this work, I would like to declare that: 

Mr P.S. Jones analysed the neuroimaging data and contributed to the 

following: 

 5.2.4    Neuroimaging data 

 Figures 5.3A and 5.3B 

 

Dr R.N. Cardinal performed the confirmatory modelling analyses and 

contributed to the following: 

 5.2.3.5 Confirmatory modelling of goal-directed action and 

habitual responding 

 Appendix D: General two-system computational model of goal-

directed and habitual responding 

 

5.1    Introduction 

Cocaine addiction is a global health problem that contributes to major economic and health 

burdens and is difficult to treat (Degenhardt et al., 2014). Although the initial positive 

reinforcing effects of cocaine are mediated by dopaminergic neurotransmission in the 

mesolimbic dopaminergic system, subsequent drug-seeking is guided by conditioning 

processes in a wider neural network (Everitt & Robbins, 2005). Instrumental learning 

paradigms have provided a theoretical framework of impaired behavioural control for drug 

addiction (Everitt & Robbins, 2005, 2016), as well as other psychiatric disorders (Heinz et al., 

2016; Robbins et al., 2012). Instrumental learning is thought to be regulated by two distinct 

systems, namely the goal-directed and habit systems (Adams & Dickinson, 1981). The goal-

directed system, which is subserved by frontostriatal regions (de Wit et al., 2009; Tanaka et al., 

2008; Valentin et al., 2007), controls voluntary instrumental behaviour by evaluating the 

potential consequences of actions. The habit system, which is subserved by corticostriatal 

circuits (Brovelli et al., 2011; de Wit et al., 2012; Tricomi et al., 2009; Zwosta et al., 2018), 

regulates automatic impulses in response to stimulus-response associations that have been 

formed over repeated experiences. Both systems are needed in everyday life, and optimal 

https://doi.org/10.1007/s00213-019-05330-z
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behavioural performance has been shown to require a balance between the joint regulation of 

these two systems (Balleine & O’Doherty, 2010). A growing body of literature suggests that 

drug addiction develops through drug-induced disruption in corticostriatal subsystems that 

underlie these learning processes (Belin & Everitt, 2008; Corbit, Chieng, et al., 2014; Gourley 

et al., 2013; A. Nelson & Killcross, 2006). In most cases, drug-taking is initiated in a 

recreational setting and used in a goal-directed manner to experience pleasure. However, 

prolonged drug use in the same context may become habitual. As such, the initiation of drug-

taking becomes triggered by environmental cues, irrespective of whether the experience of the 

drug is pleasurable (Miles et al., 2003; L. Vanderschuren & Everitt, 2004). At the final stage 

of addiction, drug-taking habits predominate and may even continue in spite of harmful 

consequences (Everitt & Robbins, 2005, 2016). It has been suggested that when habits spiral 

out of control, drug seeking is characterized by a failure to revert control towards the goal-

directed system when the situational demands require it and becomes compulsive (Ersche et 

al., 2012). 

 

A classic task to assess the balance between goal-directed and habit learning is the Slip-of-

Action task (de Wit et al., 2007), which is based on an outcome devaluation paradigm to model 

the transition between behaviours that are initiated when obtaining reward and responses to a 

previously learned stimulus-response association. The extent to which participants maintain 

their previously learned behaviour despite outcome devaluation is considered an index of habit. 

Chronic cocaine and alcohol users (Ersche et al., 2016; Sjoerds et al., 2013), but not chronic 

tobacco smokers (Luijten et al., 2019), have been shown to develop a predominance of habits 

on this task, but the nature of their bias remains unclear. It has been hypothesised that either 

difficulties with goal-directed learning facilitate the transition of control from the goal-directed 

toward the habit system, or an augmented control by the habit system results in habit 

predominance (Robbins & Costa, 2017; Vandaele & Janak, 2018). Whilst the bulk of prior 

work has focused on cocaine’s influence on the transition of control from the goal-directed to 

the habit system, less attention has been given to its influence on goal-directed learning. 

 

Reinforcement learning algorithms implement learning and action selection in response to 

motivationally relevant reinforcement (Russell & Norvig, 1995; Sutton & Barto, 1998). Basic 

parameters in a typical reinforcement learning model are learning rate (α) and reinforcement 

sensitivity (also known as choice inverse temperature, β). Learning rates modulate the extent 

to which information is learnt, with higher rates indicating that feedback is integrated more 
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rapidly in order to inform future choices. Reinforcement sensitivity regulates the influence of 

associative strength during action selection, with higher sensitivity reflecting a greater impact 

of action values on choices. Such reinforcement learning models can be fitted to the observed 

behaviour, yielding estimates of the model’s parameters, and different models can be compared, 

allowing learning to be investigated in a hypothesis-driven manner (Daw, 2011). One 

additional parameter relevant to drug addiction is the tendency for perseverative responding 

(sometimes termed ‘stickiness’). As chronic cocaine use has been associated with profound 

reversal learning deficits in both animals and humans exposed to cocaine (Calu et al., 2007; 

Ersche et al., 2008; Ersche, Roiser, Abbott, et al., 2011; Schoenbaum et al., 2004), it is possible 

that inflexible contingency evaluations may also contribute to their learning deficits. 

 

In the present study, I apply an hierarchical Bayesian approach to previously published data 

using the Slip-of-Action task in both healthy volunteers and patients with cocaine use disorder 

(CUD) (Ersche et al., 2016). I hypothesise that overall poor learning performance in CUD 

patients can be explained by abnormalities in at least one of the following parameters: learning 

rate, reinforcement sensitivity, perseveration and extinction. The latter parameter, extinction, 

was included in the model in light of its relevance for subsequent habit learning. Extinction 

describes the ability to learn from non-rewarding events. Given that habit formation has also 

been described in terms of behavioural autonomy (Dickinson, 1985), it is conceivable that 

habits form more easily in individuals who are resistant to extinction. Previously, it has been 

shown that individual differences in corticostriatal structural connectivity accounted for the 

balance between goal-directed and habitual behaviours in an outcome devaluation task (de Wit 

et al., 2012). This suggests a candidate neurobiological substrate that may explain a habit bias 

in CUD. Therefore, as an adjunct to the behavioural analyses, I also investigated, in a subset 

of participants, the white matter integrity of the two networks investigated by de Wit et al 

(2012): the anterior caudate – medial orbitofrontal cortex and the premotor cortex – posterior 

putamen; these networks are thought to underpin goal-directed and habitual behaviours 

respectively (de Wit et al., 2012). It was hypothesised that CUD patients have abnormalities in 

the structural connectivity of these systems. I further predict that white matter integrity of the 

goal-directed system is required for successful action-outcome learning and that deficiencies 

would facilitate the formation of habitual responding. 
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5.2 Methods  

 

5.2.1 Sample description 

Fifty-five healthy control volunteers (94.3% male) and 70 patients with CUD (90.3% male) 

were recruited for the study. Full details of the sample can be found elsewhere (Ersche et al., 

2016). All CUD patients were recruited from the local community and satisfied the DSM-IV 

criteria for cocaine-dependence (American Psychiatric Association, 2013). Forty-eight CUD 

patients also met DSM-IV criteria for opiate dependence, 25 for cannabis dependence and five 

for alcohol dependence. Twenty-six CUD patients were prescribed methadone (mean dose 

48.7ml, SD ± 18.0) and 14 were prescribed buprenorphine (mean dose 7.2ml, SD±4.8). 

Although significantly more CUD patients (94%) reported smoking tobacco compared with 

control volunteers (11%) (Fisher’s p < 0.001), nicotine dependence was not assessed using the 

DSM-IV criteria. CUD patients had been using cocaine for an average of 16 years (7.7SD) 

and were at the time of the study all active users of the drug, as verified by urine screen. Two 

CUD patients were excluded due to incomplete data sets. Healthy control volunteers were 

partly recruited by advertisement and partly from the BioResource volunteer panel 

(www.cambridgebioresource.group.cam.ac.uk). None of the healthy volunteers had a history 

of drug or alcohol dependence. The following exclusion criteria applied to all participants: no 

history of neurological or psychotic disorders, no history of a traumatic brain injury, no acute 

alcohol intoxication (as verified by breath test), and insufficient English proficiency. All 

volunteers consented in writing and were screened for current psychiatric disorders using the 

Mini-International Neuropsychiatric Inventory (Sheehan et al., 1998). Psychopathology in drug 

users was further evaluated using the Structured Clinical Interview for DSM-IV (First et al., 

2002). All participants completed the National Adult Reading Test (NART) (H. E. Nelson, 

1982) to provide an estimate of verbal IQ and the Alcohol Use Disorders Identification Test 

(AUDIT) (J. B. Saunders et al., 1993), to evaluate the pattern of alcohol intake. The study was 

conducted under UK National Health Service Research Ethics Committee approvals 

(12/EE/0519; principal investigator: KDE). 

 

5.2.2 Slip-of-Action Task 

Details of the task are reported elsewhere (Ersche et al., 2016). In brief, in the first part of the 

task, participants complete an appetitive discrimination task in which they learn over 96 trials 

the associations between a response (left or right button press) and a rewarding outcome 
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(gaining points or no points). On each trial, participants were presented with one of six animal 

pictures and were instructed to learn by trial-and-error which button to press in order to gain 

points (Figure 5.1). Feedback was provided immediately. The rewards were delivered 

deterministically, i.e. there is only one correct response for each stimulus. Correct responses 

were recorded as an index of learning from positive reinforcement.  

 

Completion of the first phase led to the second phase, in which participants were instructed to 

select the correct response for each animal picture as quickly as possible. However, some 

outcomes were devalued such that participants were told that responses for certain animal 

pictures were no longer valuable, and they should not be selected (i.e. participants had to 

withhold their response). No feedback was provided during this phase, which consisted of nine 

12-trial blocks, which at the start of each block, informed participants about the devalued 

outcomes. Responses toward devalued animal pictures are considered ‘slips of actions’ and 

have been suggested to reflect habitual control (de Wit et al., 2007, 2009). I calculated a ‘habit 

bias’, based on responding to devalued stimuli minus responding to value stimuli. Participants 

who respond in a goal-directed fashion, will follow the instruction to only respond to the stimuli 

that carry a value. However, sometimes they may fail to do so, making a ‘slip of action’ such 

that they respond to devalued stimuli although they do not carry any more points. For these 

participants, their habit bias will be low or even negative. By contrast, participants who respond 

in a habitual manner will not make this distinction between valued and devalued outcome, as 

they continue responding equally often to devalued and the value stimuli, making frequent slips 

of action, so that their habit bias (or slip-of-action score) is likely to be high and close to zero. 
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Figure 5.1: Outline of the appetitive discrimination learning task. Participants were 

required to learn by trial and error which response associated with an animal picture gained 

them points. Feedback was provided by a picture of another animal coupled with either a 

number of points or an empty box with no points. 

 

 

5.2.3 Statistical analysis and computational modelling  

5.2.3.1 Demographic and behavioural data  

Data were analysed using the Statistical Package for the Social Sciences, v.22 (SPSS, Ltd.). 

Group differences regarding demographics and fractional anisotropy (FA) values of the goal 

directed, as well as the habit system pathway were analysed using independent samples t-tests. 

The white matter tracts between the medial orbitofrontal cortex and the anterior part of the 

caudate nucleus have previously been shown to underlie goal-directed control, whereas the tracts 

between the posterior putamen and the premotor cortex is thought to subserve habit control (de 

Wit et al., 2012). To determine the learning parameters that subsequently affected habitual 

responding, I performed a stepwise regression model, in which I included the three relevant 

learning parameters of the model (learning rate, reinforcement sensitivity, perseveration), group 

status, and white matter integrity between the medial orbitofrontal cortex and the anterior 

caudate nucleus (as reflected by FA values). I also calculated Pearson’s correlation coefficients 

to evaluate putative relationships between these learning parameters, demographic variables and 

the duration of cocaine use. To address the question as to whether proneness to habits in CUD 

patients is due to deficits in goal-directed learning, I fitted an ANCOVA model and included the 

parameter learning rate as a covariate. All statistical tests were two-tailed and significance levels 

were set at 0.05. The minimum effect size detectable here is 0.51 (Cohen’s d), as determined by 

a sensitivity power analysis. 

 

 

5.2.3.2 Reinforcement learning algorithm 

I fitted trial-by-trial performance on the appetitive learning phase with a delta rule to model the 

choice selection process. Since there are two possible responses for each stimulus (i.e. ‘respond 

right’ and ‘respond left’), the associative strength for the chosen stimulus-response pairing on 

a given trial, Vt, was updated, using the following algorithm:  

𝑉𝑡+1 = 𝑉𝑡 + 𝛼(𝑅𝑡 − 𝑉𝑡) 
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When a particular response is positively reinforced, the associative strength for the stimulus–

response association increases. This associative strength for each stimulus–response pairing is 

updated on a trial-by-trial basis via prediction errors that represent discrepancies between 

expected outcome, Vt, and actual outcome, Rt. Larger prediction errors thus lead to greater 

changes in associative strength. The sensitivity to this prediction error is regulated by the free 

parameter, α. Higher α represents increased sensitivity to prediction errors, resulting in quicker 

updating of associative strengths and enhanced learning. 

 

There is evidence for differential neural processing of reward and non-reward (Kim et al., 

2006), suggesting that these two processes may be dissociable. To account for this possible 

distinction, I tested two classes of computational models. In one class, I fractionated α based 

on the context. Trials that are positively reinforced were updated by an appetitive learning rate, 

αrew, whereas trials that were not reinforced were regulated by an extinction rate, αext. (Increases 

in αrew would indicate increased learning from reinforcement, and increases in αext similarly 

from non-reinforcement.) In a second class, I used a single α value, termed learning rate, to 

modulate prediction errors irrespective of outcome. I also allowed for the fact that a subject 

may “stick with” or perseverate to the response that they selected on the previous trial. For trial 

t and response k, I defined Ck
t to be 1 if the subject chose response k on the previous trial (trial 

t – 1), and 0 otherwise. I then defined a perseveration parameter τ through which a putative 

tendency to perseverate influenced behaviour, alongside the reinforcement learning process. 

Associative strengths and perseverative tendencies were then used to select actions. This 

process followed a softmax rule, according to the following equation: 

𝑝(𝑖, 𝑡) =
𝑒𝛽𝑉𝑡

𝑖+𝜏𝐶𝑡
𝑖

∑ 𝑒𝛽𝑉𝑡
𝑘+𝜏𝐶𝑡

𝑘𝑛
𝑘=1

 

This softmax equation gives the model’s predicted probability of a given choice i on a given 

trial t. Associative strengths (calculated as above) drive choices, and the degree to which they 

influence the final choice is determined by the reinforcement sensitivity parameter β. A 

tendency to perseverate can also influence choice, and the degree to which this happens is 

determined by the perseveration parameter τ. As outlined in Table 5.1, there are four possible 

free parameters that were modelled: learning rate, extinction rate, reinforcement sensitivity and 

perseveration. 
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The task design involved an explicit instruction of a different task context and different 

performance rules in the second phase, gave no feedback, and relies for successful performance 

on explicit representations of instrumental value that can be instructed. These limitations 

prevented accurate trial-by-trial modelling of behaviour from the second phase within this 

model. An additional confirmatory model, representing goal-directed action and habit learning 

explicitly, was therefore used to check the effects of outcome devaluation (see below). 

 

 

Table 5.1: Summary of the reinforcement learning models tested.  

Free parameters Model selection 

Learning 

ratea 

Extinction 

rate, αext 

Reinforcement 

sensitivity, β 

Perseveration, 

τ 

Log 

marginal 

likelihood 

Log 

posterior 

p( model) 

Posterior 

p(model) 

Log10 

Bayes 

factor 

(relative to 

next-ranked 

model) 

Ranking 

✓  ✓ ✓ -6718.8 -0.578 0.561 0.106 1 

✓ ✓ ✓ ✓ -6719.0 -0.823 0.439 18.03 2 

✓ ✓ ✓  -6760.5 -42.33 0 0.407 3 

✓  ✓  -6761.5 -43.27 0 140.71 4 

✓ ✓  ✓ -7085.5 -367.27 0 20.04 5 

✓ ✓   -7131.6 -416.40 0 492.78 6 

    -8266.3 -1548.06 0 N/A 7 b 

Note. Several models with different parameter combinations were assessed via bridge sampling. 

I show the included posterior probabilities for each model, i.e. the probability of each model 

given the data (and given that they were equiprobable before the data). Models were ranked 

accordingly and I found that the best-fit model used three parameters: learning rate, 

reinforcement sensitivity and perseveration. I have also included log Bayes factors for 

comparisons between the ranked models. According to the criteria of Kass & Raftery (1995), 

there was overwhelming evidence that the top two ranked models were superior to all other 

models. Though the difference between the top two models was marginal, I have selected the 

model that was more likely, which was also the more parsimonious of the two. [Notes: Logs 

are natural logarithms unless stated. 

a For some models, the learning rates were fractionated into learning from reward (αrew) or non-

reward (i.e. extinction rate, αext), as shown. If extinction rate is not defined in the model, then 

the learning rate should encompass learning from both reward and non-reward (α).  

b To verify that these results were not spurious findings, I included a random choice model, 

which assumes that choices were selected at random (p = 0.5 for each of the two possible 

responses). These results suggest that all tested models fit the data better than the random 

choice model.] 
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5.2.3.3 Parameter estimation 

Free parameters from reinforcement learning algorithms were estimated using a hierarchical 

Bayesian approach. This approach produces a posterior distribution for all parameters of 

interest. I defined prior distributions for all parameters. The learning rate parameters alpha (α, 

αrew, αext), which have the range [0, 1], were given a prior beta (1.1, 1.1) distribution. 

Reinforcement sensitivity, β, was given a prior gamma(4.82, 0.88) distribution (Gershman, 

2016). Perseveration, τ, was given a normal(0, 1) prior; perseverative parameters can be 

negative, indicating anti-perseveration (switching behaviour) (Christakou et al., 2013). 

 

At the top level of the hierarchy, for each parameter I defined a separate distribution for each 

group (CUD and controls). These were the primary measures of interest. Each individual 

subject’s parameter was drawn from a distribution about their group-level parameter, with the 

assumption that individual subjects’ differences from their group mean had a normal 

distribution with mean 0 and a parameter-specific standard deviation (necessarily positive). For 

α and τ, this standard deviation was drawn from a prior half-normal (0, 0.17) distribution. For 

β, the standard deviation of inter-subject variability was drawn from a prior half-normal (0, 2) 

distribution. Final subject-specific parameters were bounded as follows: α ∈ [0,1]; β ∈ [0,+∞]; 

τ ∈ [–∞, +∞]. These final subject-specific parameters were then used in a reinforcement 

learning model, whose output was the probability of selecting each of the two actions on any 

given trial. The model was fitted (yielding posterior distributions for each parameter) by fitting 

these probabilities (arbitrarily, the probability of choosing the right-hand response) to actual 

choices (did the subject choose the right-hand response?).  

 

I conducted the Bayesian analysis in RStan (Carpenter et al., 2017), which uses a Markov chain 

Monte Carlo method to sample from posterior distributions of parameters. Primary values of 

interests were posterior distributions of the group difference (CUD – control) for each free 

parameter. Measures of dispersion of posterior distributions were denoted as 95% highest 

density intervals (HDI). Given the assumptions (priors, model) and data, there is a 95% 

probability that the true value lies within the 95% HDI. An HDI of the group difference that 

does not overlap with zero indicates credible group differences. Parameter recovery was 

assessed for the winning model, which showed satisfactory recovery (Appendix D, Figure D3). 
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5.2.3.4 Model selection 

As shown in Table 5.1, several variants of the models were tested against each other. The best 

model was determined using bridge sampling (Gronau et al., 2017), which estimates model fit. 

The bridge sampling procedure computes the probability of the observed data given the model 

of interest, the marginal likelihood P(D | M), which encompasses both the probability of the 

data given specific values of the model’s parameters, the likelihood P(D | θ, M) (is there a good 

fit?) and the prior probability of the parameter values given the model, P(θ | M) (thus 

encapsulating a penalty for over-complex models; Occam’s razor). The marginal likelihoods 

P(D | Mi) can be combined with prior model probabilities P(Mi) to obtain posterior model 

probabilities P(Mi | D). I report posterior probabilities for the models, which indicate evidence 

for the model; a higher probability indicates a better model. Additionally, I also report the log 

Bayes factor as a second indicator of model evidence, Bayes factors being ratios of marginal 

likelihoods of a pair of models. I assumed models were equiprobable a priori. 

 

5.2.3.5 Confirmatory modelling of goal-directed action and habitual responding 

To analyse more directly the question of whether the balance between goal-directed and 

habitual systems was altered in the CUD group, as assessed by the outcome devaluation 

procedure, a full two-system model of instrumental learning was developed and simulated as 

an additional check. This model implemented outcome devaluation via instantaneous 

instruction (see Appendix D). The behavioural task (Ersche et al., 2016) was incompletely 

specified for this fuller instrumental model in some respects, in that it did not permit 

independent evaluation of the learning rate for habit and goal-directed systems, though it 

permitted evaluation of the relative expression of those two systems via the outcome 

devaluation phase. The behavioural task was also ambiguous as to whether the framing of the 

task was likely to have allowed further S–R habit learning (as distinct from expression) during 

the outcome devaluation phase, given that the response instructions were altered substantially 

in this phase; we therefore tested models with and without S–R learning during this test phase 

(“habit learning at test”, HLAT, or “no habit learning at test”, NHLAT; see Appendix D), with 

the caveat that the HLAT model had the potential to confound the effects of outcome 

devaluation and extinction in the measurement of learning rate. 
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5.2.4 Neuroimaging data  

To address the critical question of whether abnormal learning performance is associated with 

variations in frontostriatal connectivity, neuroimaging data was obtained from almost 70% of 

the participants (44 controls, 44 CUD). The selection of this subgroup was based on MRI-

suitability and availability for the acquisition of the scan. The subgroup was representative of 

the entire sample, as no significant group differences in their demographic profiles were 

identified. 

 

5.2.4.1 MRI data acquisition, pre-processing and ROI generation 

The brain scans were acquired at the Wolfson Brain Imaging Centre, University of Cambridge, 

UK. T1-weighted MRI scans were acquired at by a T3 Siemens Magenetom Tim Trio scanner 

(www.medical.siemens.com) using a magnetization-prepared rapid acquisition gradient-echo 

(MPRAGE) sequence (176 slices of 1 mm thickness, TR=2300ms, TE=2.98ms, TI=900ms, flip 

angle=9°, FOV=240 x256). One CUD scan was removed due to excessive movement. All 

images were quality controlled by radiological screening. The MPRAGE images were 

processed using the recon-all Freesurfer (v5.3.0, recon-all, v 1.379.2.73) pipeline to generate 

individually labelled brains using the standard subcortical segmentation and Destrieux atlas 

surface parcellations. Two regions of interest (ROIs) were created in both the left and right 

hemispheres: the combined caudate and nucleus accumbens, and the medial orbitofrontal 

cortex, as well as the premotor cortex (BA6) (thresholded version) and posterior putamen 

(defined as the putamen for y <= 2mm in MNI space (see de Wit, Watson et al. 2012)). A mask 

was created in MNI space for y>2mm. The inverse MNI transform for each individual was 

applied to the mask to put it in native conformed space, which was then used to split the 

putamen into posterior and anterior portions. The anterior caudate – medial orbitofrontal cortex 

mask (Figure 5.3A) and the premotor cortex – posterior putamen mask (Figure 5.3B) were 

based on a prior tractography analysis by de Wit and colleagues (2012), and is thought to be 

implicated in the goal-directed and habit systems respectively. In addition, two exclusion 

masks were created comprising each hemisphere and all ventricles. All ROIs were transformed 

into diffusion-weighted imaging data (DWI) space for the subsequent tractography analysis.  
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5.2.4.2 DWI data acquisition and pre-processing 

Due to excessive movement, four scans had to be excluded from the analysis (1 control, 3 

CUD). DWI volumes were successfully acquired from 84 participants (43 controls, 41 CUD). 

All DWI scans were acquired within the same scan session as the MPRAGE data set. Sequence 

details were as follows: TR=7800ms, TE=90ms, 63 slices of 2mm thickness, 96x96 in-plane 

matrix, FOV=192x192mm. DWI data were acquired with a 63 direction encoding scheme. 

These 63 volumes were acquired with a b-value of 1000 s/mm2 following an initial volume 

with a b-value of 0 s/mm2.  

 

The DWI-images were processed using the standard FSL (FMRIB Software Library; Release 

5.0.6) tractography pipeline. First, eddy correct was performed to correct head motion and 

distortion, and align the series to the b0 image. Next a brain mask was created by applying bet 

to the b0 image. Then diffusion parameters were estimated using bedpostX. BedpostX uses a 

Bayesian framework to estimate local probability density functions on the parameters of an 

automatic relevance detection multicompartment model. In this case two fibers per voxel were 

modelled. Following bedpostX, probabilistic tractography was applied to the diffusion 

parameters using probtrackx2. Probtrackx2 computed streamlines by repeatedly generating 

connectivity distributions from voxels in seed ROIs. The default settings of 5000 samples per 

voxel and 0.2 curvature threshold were used. Analyses were performed from seed ROIs to 

waypoint targets in each hemisphere separately with an exclusion mask defined for each 

analysis comprising the combined contralateral hemisphere and ventricles. The first seed-target 

path interrogated was caudate and nucleus accumbens to medial orbitofrontal cortex, and the 

second seed-target path interrogated was posterior putamen to the premotor cortex, which made 

a total of four analyses per participant. Each analysis generated a waytotal, which is the number 

of tracts surviving the inclusion and exclusion criteria. Each participant’s waytotals were 

normalized by the individual seed ROI volumes (x5000) to produce single measures of tract 

strength between the seed and target.  

 

In addition to the waytotal each tractography analysis produced a connectivity distribution path. 

A summary group path distribution was produce to illustrate each tract. Each individual path 

was thresholded above 5% or 10 hits, whichever was the higher value. These paths were then 

transformed into MNI-space using a non-linear warp and a mean path created. Individual seed 

and target regions were also transformed into MNI-space using the combined Freesurfer to 
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diffusion-space affine transformation and the non-linear diffusion to MNI-space warp. A 

summary binary region of interest was created representing the path from the combined caudate 

and nucleus accumbens to medial orbitofrontal cortex. The ROI comprised voxels containing 

thresholded paths from at least half the participants.  

 

FA maps were created using FSL's dtifit and were then processed according to the standard 

Tract-based spatial statistics (TBSS) pipeline to create a 4D volume containing each 

participant's skeletonised FA image. Mean FA values were calculated for each participant 

within the group ROI from each tractography path (anterior caudate to medical OFC and 

putamen to premotor cortex) and imported into SPSS for post hoc analyses.  

 

5.3 Results 

5.3.1 Group characteristics  

Sample demographics are presented in Table 5.2. The groups were matched in terms of age, 

gender, and alcohol intake but differed significantly in terms of verbal IQ. However, only in 

control volunteers IQ scores were correlated with learning rate (r=.29, p=0.034) and 

reinforcement sensitivity (r=.30, p=0.029), but not in CUD patients (both p>0.1). I also found 

that in CUD patients, the duration of cocaine use correlated significantly with the degree of 

response perseveration (r=.29, p=0.014), but prolonged cocaine use showed no relationship 

with either learning rate (r=-.14, p=0.254) or reinforcement sensitivity (r=-.19, p=0.118). 

 

Table 5.2: Sample demographics for Chapter 5.  

 Mean (SD) Statistics 

 Control CUD t p 

Group size (n) 55 70 - - 

Age (years) 41.3 (10.5) 38.0 (8.6) 1.9 0.06 

Gender (% male) 94.3 90.3 - - 

Alcohol use severity (AUDIT score) 4.2 (2.0) 4.3 (4.8) -0.4 0.97 

Verbal IQ (NART score) 114 (7.4) 102 (8.1) 8.8 <0.001 

Duration of cocaine use (years) - 15.9 (6.7) - - 

Note. CUD: cocaine use disorder; AUDIT: Alcohol Use Disorder Identification Test; NART: 

National Adult’s Reading Test; SD: Standard deviation 
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5.3.2 Instrumental learning performance  

As shown in Table 5.1, the winning model contained three parameters: a single learning rate, 

reinforcement sensitivity, and perseveration (‘stickiness’). Relative to healthy control 

volunteers, CUD patients demonstrated reduced learning rates (see Figure 5.2; posterior mean 

difference, d = -0.035, 95% HDI = -0.064 to -0.010, posterior probability of non-zero difference, 

pnz = 0.999). There were no group differences for reinforcement sensitivity (d = 1.58, 95% HDI 

= -1.02 to 4.51, pnz = 0.69) or perseverative responding (d = -0.02, 95% HDI = -0.141 to 0.089, 

pnz = 0.367).  

In light of the high prevalence of co-morbid opiate use in cocaine addiction, I also subdivided 

the CUD sample into CUD participants with (n=22) and without co-morbid opiate dependence 

(n=48), and fitted the winning model with data of these two subgroups. As shown in Table D1 

(Appendix D), the two subgroups did not differ on any performance parameter.  

 

 

Figure 5.2: The mean group differences of the posterior distributions for each learning 

parameter in the model. Parameters that have group differences (indicated in red) have 95% 

highest density intervals that do not overlap zero. Compared with healthy control volunteers, 

patients with CUD show a reduced learning rate. Both mean differences in reinforcement 

sensitivity and perseveration did overlap with zero. (Note: the reinforcement sensitivity 

parameter is placed on a different axis due to scale differences). 
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In the additional model examining goal-directed actions and habits across both task phases, 

whether or not S–R learning was assumed to occur during the test (second) phase influenced 

the sign of the difference in learning rate observed in this two-system model (see Appendix D, 

Table D4), rendering interpretation of learning rates difficult. In the NHLAT model, the CUD 

group showed lower learning rates than controls; this is entirely consistent with the lower 

learning rates found via the main computational model confined to the first phase of the task 

(since in that model and the NHLAT model, learning rates were only measured during the 

initial learning phase). In the HLAT model, learning rates were higher in the CUD group; this 

likely reflects a confound between measuring the impact of outcome devaluation and 

measuring extinction in the second phase, altering the estimates of learning rates. 

 

However, other aspects of the additional two-system models were consistent. Both the NHLAT 

and HLAT models showed a reduced impact of the goal-directed action system in the CUD 

group; no difference in the impact of the habitual system; and a somewhat greater tendency to 

perseverate (or lesser tendency to switch response) in the CUD group (Appendix D, Table D4). 

These results are therefore consistent with a reduction in the relative efficacy of goal-directed 

action and an increase in the relative (if not absolute) efficacy of habitual learning in patients 

with CUD. Moreover, since the goal-directed system was consistently less effective in CUD 

patients, in addition to and independent of changes in learning rate, the results of both the 

NHLAT and HLAT models support the conclusion that excessive dominance of the habit 

system (due to impaired goal-directed action) in CUD patients is not explicable purely in terms 

of changes in learning rates. 

 

5.3.3 Relationships between learning performance and white matter integrity  

I compared the two groups with respect to white matter integrity, as reflected by fractional 

anisotropy (FA) values, within both the goal-directed and the habit pathways. Whilst FA values 

between the anterior caudate - medial OFC (goal-directed) pathway did not significant differ 

between CUD patients and control volunteers (t81=1.57, p=0.122), I identified significant group 

differences in white matter integrity in the putamen - premotor cortex (habit) pathway as FA 

in the CUD group was significantly reduced compared with controls (t81=2.19, p=0.031). I first 

correlated, separately for each group, the learning rates with mean FA values of the goal-

directed pathway and then the slip-of-action scores with mean FA values in the habit pathway 



Reinforcement learning and Habits in Cocaine Use Disorder 

124 

 

(see Figure 5.3). Learning rates showed a positive correlation only in control volunteers (r 

= .406, p =.007), but not in CUD patients (r= .070, p=.668), whereas the slip-of-action score 

was not correlated with the FA values in either group (controls: r=-.25, CUD: r=.05; both p>0.1) 

 

Figure 5.3: Structural connectivity of a priori brain networks implicated in the goal-

directed and habit systems, and their relationship with the learning rate. (A) Brain regions 

involved in the goal-directed system has been linked with interactions between the medial 

prefrontal cortex, the anterior caudate nucleus and ventral parts of the striatum. (B) The habit 

system depends on interactions between pre-motor cortex (BA6) and the posterior putamen. 

(C) Scatter plot depicting the significant relationships in healthy control volunteers between 

learning rates and mean FA values within the neural pathway that has been suggested to 

underlie goal-directed learning. Scatter plot showing the lack of such a relationship in CUD 

patients.  
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To further examine the extent to which learning performance accounted for individual variation 

in habitual responding, I employed a stepwise regression model analysing habit bias (slip-of-

action) scores. The model revealed that group status accounted for 12% of the variance in 

habitual responding (βgroup = 0.362, R2=0.12, F1,121=18.24, p<0.001). When reinforcement 

sensitivity was entered in the model, about a quarter of the variance (25%) were explained by 

the two factors (βgroup = 0.358, βreinf = -0.355, R2=0.25, F2,120=20.77, p<0.001); learning rate and 

perseveration had no explanatory value (i.e. the addition of these parameters did not significantly 

improve the model). When I subsequently entered the neural correlates of the goal-directed 

pathway, which were available in 70% of the sample, the results did not change. In this smaller 

sample, group status explained 17% of the variance (βgroup = 0.425, R2=0.17, F1,81=17.82, 

p<0.001), and together with reinforcement sensitivity, explained 30% of the variance of habitual 

responding (βgroup = 0.403, βreinf = -0.365, R2=0.30, F2,80=18.23, p<0.001), suggesting that the 

strong habit bias in CUD was not fully explained by the deficits in discrimination learning. This 

was further supported by the fact that the strong habit bias in CUD was also seen when the 

learning rate was included as a covariate in the analysis (F1,120=20.2, p<0.001). Given that the 

groups also differed in white matter integrity in the habit pathway, I added FA values of the 

putamen-premotor (habit) pathway as a second covariate in the ANCOVA model, but this did 

not affect the significant habit bias in CUD patients (F1,79=16.9, p<0.001). 

 

Although the groups did not differ with respect to FA within the goal-directed pathway (t81=1.57, 

p=0.122), I aimed to evaluate the putative relationships between the three learning parameters 

and FA. I calculated Pearson’s correlation coefficients, which revealed relationships between 

the learning rate (r=.41, p=0.007) and reinforcement sensitivity (r = .34, p = 0.026) only in the 

control volunteers but not in CUD patients (both p > 0.5). Using Fisher’s Z transformation, I 

found that the correlations between learning rate and FA were not significantly different between 

groups (Z = 1.56, two-tailed p=0.119).  

 

5.4 Discussion 

Drug addiction has been described as a disorder of learning and memory (Hyman, 2005), where 

behavioural choices become biased toward highly reinforcing drug-rewards which persist even 
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if the anticipated rewarding outcome does not materialise. Here I deconstructed the process of 

appetitive discrimination learning in a non-drug related context in both healthy control 

participants and patients with CUD using a computational modeling approach, which yielded 

two important findings. Firstly, I demonstrated that CUD patients exhibit significant deficits in 

reinforcement learning as reflected by a reduced learning rate, possibly indicating problems 

with making accurate reward predictions and/or updating these predictions based on feedback. 

Secondly, I demonstrated that the reduced learning rate in CUD patients did not, however, fully 

explain their proneness for stimulus-response habits during instrumental learning. Habitual 

response tendencies, as measured by reward devaluation, were partly explained by the 

diagnosis of CUD and individual variation in reinforcement sensitivity, but were not 

sufficiently explained by deficits in learning. These conclusions were supported by additional 

analyses across discrimination and devaluation phases using a two-system model representing 

goal-directed action and habit learning, which showed a reduced learning rate in CUD patients 

in the discrimination phase, and a reduced impact of the goal-directed system; changes in 

learning rate were not sufficient to explain the relative predominance of the habit system in 

CUD patients. 

 

5.4.1 Deficits in learning from positive feedback impair appetitive discrimination learning 

The findings are strikingly consistent with previous reports in both animals and humans 

suggesting that chronic cocaine use is associated with deficits in the processing of positive 

feedback (Lucantonio et al., 2015; Morie et al., 2016; Strickland et al., 2016; Takahashi et al., 

2016). By changing the neuronal signaling patterns, chronic cocaine use has been suggested to 

alter the encoding of outcome information such as value, timing, and size of the outcome, 

thereby hampering predictions about the consequences of one’s actions (Takahashi et al., 2019). 

Current findings are also consistent with work by Kanen et al. (2019), who also identified in 

another sample of stimulant-addicted individuals a reduced learning rate from positive 

feedback. It is noteworthy that those authors further showed that the learning deficits were 

amenable to dopaminergic modulation, thus supporting the notion of mediation via alterations 

in the firing patterns of dopamine neurons. The nature of the hypothesized cocaine-induced 

neuroadaptive changes of appetitive learning may also explain why I did not find changes in 

white matter integrity within the goal-directed pathway. I found a statistically significant 

relationship between learning from positive feedback and structural integrity in control 

participants, but not CUD patients. However, these correlations did not significantly differ with 
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one another, possibly due to lack of power, and thus need to be cautiously interpreted. There 

were, however, no significant structural alterations in the CUD group. It must also be 

emphasized that CUD patients’ ability to learn from positive feedback was not entirely 

impaired. All participants in the study were able to learn the stimulus-reward association, but 

CUD patients learned them less well than healthy control participants. Their ability to learn 

from positive feedback also stands in stark contrast from that of learning from negative or 

punishing feedback, which has been repeatedly shown to be severely impaired in CUD patients 

(Hester et al., 2013; Tanabe et al., 2013). Such an imbalance in the ability to process reinforcing 

feedback has important ramifying effects on patients’ decisions and behavioural choices, and 

therefore should be recognized as a treatment need.  

 

5.4.2 Diagnosis of CUD and variation in reinforcement sensitivity partly explain habit bias 

The mechanism that renders CUD patients prone to developing stimulus-response habits is not 

fully understood. The weaker white matter integrity in the habit pathway in CUD patients was, 

however, unrelated to behaviour, suggesting that that the increased habit bias cannot simply be 

attributed to structural variations. However, it has been previously suggested that a strong habit 

bias could reflect a compensatory response to a weakened goal directed system (Robbins & 

Costa, 2017; Vandaele & Janak, 2018). Here I demonstrate that reduced learning rate in CUD 

patients does not account sufficiently for their proneness to form stimulus-response habits. 

Other psychiatric disorders, such as obsessive-compulsive disorder, exhibit a habit bias on this 

task alongside unimpaired discrimination learning (Gillan et al., 2011). It is conceivable that 

the regulatory balance between goal-directed or habitual control is disrupted in CUD patents, 

indicating a failure to revert control to the goal-directed system following a rule change. 

Alternatively, but not mutually exclusively, it is also possible that habitual control is generally 

more predominant in cocaine addiction. Whilst there is ample evidence showing failure of 

CUD patients to adjust cognitive or behavioural responses to changing situational demands 

(Ersche et al., 2008; Ersche, Roiser, Abbott, et al., 2011; Lane et al., 1998; McKim et al., 2016; 

Verdejo-García & Pérez-García, 2007), far less research has addressed the predominance of 

the habit system.  

 

Our data further indicates that one learning parameter in particular, reinforcement sensitivity, 

does seem to be involved in habit formation. This observation is not surprising given that habit 
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learning in this study was assessed using a reward devaluation paradigm, which deliberately 

manipulates the value of the expected outcome of an instrumental response to make the 

outcome less desirable, and the behavioural response less likely. If these manipulations, 

however, do not impact on performance, it may indicate that behaviour is not controlled by the 

anticipated consequences but by antecedent stimuli; or in other words, their behaviour has 

become habitual. Although reinforcement sensitivity values in this study did not differ between 

the groups, it is noteworthy that correct responses were reinforced by points gain, which CUD 

patients may not have perceived as rewarding in the first place. Future research may thus need 

to evaluate whether the use of more reinforcing incentives such as monetary gain or the 

prospects of desirable benefits would be more appropriate for a reward devaluation paradigm 

than points gain, possibly making devaluation more noticeable to induce a behavioural change. 

 

5.4.3 Neural substrates of appetitive discrimination learning  

These data also indicate that the diagnosis of CUD, rather than individual learning parameters, 

critically account for the facilitated transition from goal-directed to habitual responding. The 

diagnosis may thus reflect disorder-related changes within corticostriatal networks that 

subserve associative learning, which is likely to promote the devolution of control from the 

goal-directed to the habit system (A. Nelson & Killcross, 2006; Takahashi et al., 2007). 

Cocaine addiction has been associated with numerous changes within dopaminergic pathways 

such as low D2 receptor density in the striatum and reduced orbitofrontal metabolism (Volkow 

et al., 1993), blunted stimulant-induced dopamine release (Martinez et al., 2007), reduced white 

matter integrity in the inferior frontal gyrus (Ersche et al., 2012), and altered cognitive 

responses to dopamine agonist challenges (Ersche et al., 2010). Loss of white matter integrity 

specifically in the inferior frontal gyrus might also play a role in disinhibited behaviour whereas 

action selection is undermined by alterations in dopaminergic transmission. More research is 

warranted to investigate the neuromodulatory effects of specifically dopaminergic agents on 

associative learning. Work reported in Chapter 3 and by Kanen et al (2019) already shows some 

promising results, suggesting that selective learning parameters are differentially modulated by 

dopaminergic agonists and antagonist treatments. Functional neuroimaging may provide 

valuable insight into how chronic cocaine use might change the neural networks implicated in 

associative learning.  
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5.4.4 Conclusion  

I show that patients with CUD have deficits in the reinforcement learning parameter of learning 

rate, which were neither related to structural connectivity in the ‘goal-directed’ pathway nor 

explained their strong habit bias. Moreover, I also identified significantly reduced integrity in 

white matter structure in brain structures implicated in habit formation, which also did not 

explain CUD patients’ strong habit bias. These results are relevant to the hypothesis that drug 

addiction results in an imbalance between goal-directed and habitual control over behaviour. 
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Appendix D: Supplementary materials to Chapter 5 

 

CUD: Patients with cocaine without opioid use disorder (n=22) 

HC: healthy control volunteers (n=55) 

CUD+: Patients with cocaine + opioid use disorder (n=48) 

*probability of non-zero difference, pnz > 0.95 (0 ∉ 95% HDI)   

Table D1: Results for reinforcement learning analyses including patients with comorbid 

opioid use disorder. To ascertain whether opioid use disorder contributed towards 

reinforcement learning impairments, we fitted the winning reinforcement learning model, but 

with an extra a priori defined subgroup: patients with cocaine and opioid use disorder. 

Importantly, results show that there were no group differences within patients on all 

parameters. Although there is a group difference observed between the groups HC and 

CUD+, this difference may largely be driven by the sample size. 

 

 

 

 

Parameters Posterior differences [mean (95% HDI)] 

CUD – HC CUD+ – HC CUD+ – CUD 
Learning rate -0.027 (-0.062, 0.004) -0.039 (-0.071, -

0.012)* 

0.012 (-0.013, 0.041) 

Reinforcement sensitivity 1.57 (-1.55, 4.88) 0.701 (-1.80, 3.69) 0.868 (-2.52, 4.57) 

Perseveration 0.040 (-0.111, 0.193) -0.058 (-0.185, 0.065) 0.098 (-0.051, 0.248) 
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A 

 
B 

 
 

Figure D1: correlations between group-level parameter values from the winning model 

across iterations. Each point represents one iteration of the winning model. The “lp__” value 

is Stan’s lp__ variable, the log posterior density up to a constant. (A) Control subjects. (B) 

CUD subjects. 
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Figure D2: Scatter plot of the relationship between the reinforcement sensitivity 

parameter (from the winning model) and slip-of-action score (habit bias; behavioural 

response to outcome devaluation). As reported in the main text, reinforcement sensitivity, 

along with group status, jointly explained 25% of the variance in habitual responding. 
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Simulation of behavioural data 

To determine the validity of the winning RL model, I simulated trial-by-trial data for 200 

participants (100 participants per group) from the group means of the posteriors. The 

simulated data share an identical structure with the original task setup. Each simulated 

participant data has 96 trials with random assignments of stimulus–correct response mapping. 

Trial-by-trial responses were generated based on choice probabilities from the RL and 

softmax equations as reported in the main text of the manuscript. Following the analysis in 

Ersche et al. (2016), percentage learning accuracy was computed for each participant. 

Independent-samples t-test confirmed that I replicate the findings – appetitive discrimination 

learning performance in the CUD group was poorer to that of healthy volunteers (t198 = 5.08, 

p < .001). 

 

 

 

Parameter recovery for the winning model 

I have assessed parameter recovery for the winning model of this chapter by simulating parameter 

values, and repeating the model fitting procedure to recover these parameter values. The scatterplots 

between simulated and recovered parameters are presented in Figure D3. Overall, parameter recovery 

is satisfactory, as the learning rate (α, r=0.723, p<0.001), reinforcement sensitivity (β, r=0.672, 

p<0.001) and perseveration (τ, r=0.904, p<0.001) parameters had strong correlations between 

simulated and recovered values. However, the recovery for α and β seems to be better in the lower 

range, which corresponds to the values in our data.  

   

Figure D3: Parameter recovery for the winning model in Chapter 5.  
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General two-system computational model of goal-directed and habitual responding 

We implemented a computational model representing the core features of instrumental 

learning, namely goal-directed action and stimulus–response (S–R) habits (but not including 

Pavlovian–instrumental transfer), plus response perseveration as before. 

We define notation as shown in Table D2. 

 Table D2: notation for the two-system instrumental computational model 

Term Description Category (LTM long-term 

memory, WM working 

memory) 

nS Number of stimuli. Integer. Constant 

nA Number of actions (including one for “no action”, required to predict the consequences of 

inaction and to choose not to act, if permitted). Integer. 

Constant 

nO Number of outcomes. Integer. Constant 

αO Outcome (action–outcome contingency) learning rate for the goal-directed action system. Scalar. Parameter 

αH Learning rate for the habit system. Scalar. Parameter 

βG Inverse temperature parameter representing the effectiveness of the goal-directed action system 

at driving behaviour. Scalar. 

Parameter 

βH Inverse temperature parameter representing the effectiveness of the habit system. Scalar. Parameter 

βP Inverse temperature parameter representing the effectiveness of the response perseveration 
system. Scalar. 

Parameter 

t Current trial number. Integer. Time 

G Current goal-directed action–outcome (A–O) contingencies. An nS × nA× nO matrix, mapping 
discriminative stimuli to A–O contingencies. Starting values are 0. 

Subject LTM 

v Current instrumental outcome values. Vector of size nO. The value of outcome o is denoted vo. 

Starting values are 0. 

Subject LTM 

H Current stimulus–response (S–R, stimulus–action) habit strengths. An nS × nA matrix mapping 

stimuli to “action values” (Q values). Starting values are 0. 

Subject LTM 

s Stimuli: vector of length nS representing stimulus presence (0) or absence (1) for all stimuli on 

trial t. 

World → subject 

C Action–outcome contingencies predicted on trial t by the stimuli currently present, from the 

tensor dot product of s and G; these contingencies can exceed the conventional contingency 

range [–1, +1]. An nA × nO matrix. 

Subject WM 

qG Action “values” (expected value of the action; Q values) for trial t: goal-directed component. 

Vector of size nA. 

Subject WM 

qH Action “values” for trial t: habit component. Vector of size nA. Subject WM 

qP Action “values” for trial t: perseverative component. Vector of size nA. Defined to contain zeros 

for all actions, except 1 for the action chosen on the preceding trial (if there was a preceding 
trial). 

Subject WM 

a Action tendencies for trial t. Vector of size nA. Subject WM 

p Probability of making each action on trial t. Vector of size nA. Subject WM 

a The selected action (as an index). Integer. Subject → world 

o Representation of which outcomes were obtained on trial t. Binary vector of length nO containing 
1 for outcomes that were obtained and 0 for those that were not. 

World → subject 

r Reinforcement value of the outcome(s) obtained. Scalar. Subject WM 

dH Reinforcement prediction error (d for discrepancy) for the habit system on trial t. Scalar. Subject WM 

dO Outcome prediction error for the goal-directed system on trial t. Vector of size nA. Subject WM 
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Actions were determined as follows. Discriminative stimuli (SDs) present (s) were combined 

with previous knowledge of SD-dependent contingencies (G) to predict the action–outcome 

contingencies currently operative (C). Combining these contingencies with the value of the 

outcomes (v) gives the declarative expected value of each goal-directed action (qG). 

Simultaneously, the same environmental stimuli (s) act via S–R associations (H) to drive 

actions habitually (qH); this is a procedural rather than a declarative representation but the 

quantity qH reflects the “expected value” of actions based on past experience (in a different 

sense to a declarative expectation). Perseveration produces a further direct drive (qP) towards 

the most recently selected action. 

𝐶 = 𝑠 ⋅ 𝐺
𝑞𝐺 = 𝐶 ⋅ 𝑣

𝑞𝐻 = 𝑠 ⋅ 𝐻

𝑎 = 𝛽𝐺𝑞𝐺 + 𝛽𝐻𝑞𝐻 + 𝛽𝑃𝑞𝑃

𝑝 = softmax(𝑎) =
𝑒𝑎

∑𝑒𝑎

 

For constrained choices, such as two-choice trials not permitting a “non-response” action, the 

softmax was calculated across valid responses only (with pa = 0 for all actions not permitted). 

The goal-directed system learned as follows. Instrumental contingency learning was driven 

by calculating an outcome prediction error dO for all outcomes, as the difference between 

obtained outcomes (o) and predicted outcomes (action–outcome contingencies for the chosen 

action: Ca,*). A–O contingencies predicted for the chosen action by stimuli currently present 

(Gs,a) were then updated using this prediction error: 

𝑑𝑂 = 𝑜 − 𝐶𝑎,*
Δ𝐺𝑠,𝑎 = 𝛼𝑂𝑑𝑂

 

A more general form might include instrumental incentive learning in which values for 

obtained outcomes are changed (Δvo) according to an outcome value error (dV, the obtained 

reinforcement r minus the total value predicted for the obtained outcomes, o⋅ v) and a 

learning rate αV: 

𝑑𝑉 = 𝑟 − 𝑜 ⋅ 𝑣
Δ𝑣𝑜 = 𝛼𝑉𝑑𝑉

 

In the situation of a single outcome and αV = 1, this reduces to direct assignment of the 

reinforcement value to the obtained outcome. However, in the present task and model, the 

situation was even simpler: outcomes values were directly instructed, and so αV was not 

considered. 

Habit learning was as follows. S–R associations between stimuli present (s) and the action 

performed (a) were updated according to the reinforcement prediction error dH, the difference 

between the reinforcement obtained (r) and the reinforcement predicted by the chosen action 

(qH
a): 
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𝑑𝐻 = 𝑟 − 𝑞𝑎
𝐻

Δ𝐻𝑠,𝑎 = 𝛼𝐻𝑑𝐻
 

Specific implementation for the slips-of-action task 

We modelled data from both relevant phases of the original task (Ersche et al., 2016) (phase 

A, appetitive learning, and phase C, slip-of-action responding following outcome 

devaluation). We did not model the outcome–action contingency assessment (phase B), 

which did not not involve reinforcement feedback. We did not analyse the control task in 

phase D (responding to discriminative stimuli that themselves were or were not “devalued”). 

Reinforcing outcomes were given a notional and arbitrary value of +5 points. As described 

above, outcome devaluation was represented by direct instantaneous instruction in the model, 

reflecting the direct instruction in the slips-of-action task (“these animals are sick, avoid 

them”); these outcomes were temporarily devalued to –5 points. As feedback was not 

provided in this phase of the task and the behavioural task was framed to avoid learning, the 

goal-directed system was prevented from learning during these trials. The task was framed as 

a go/no-task and choosing the “originally correct” side was scored as a “response” (as per 

Figure 1C[right] of Ersche et al. (2016)). Choosing the other side, or not acting at all, was 

scored as a “non-response”. A goal-directed subject will respond less when the relevant 

outcome is devalued; a habit-based subject will not alter its behaviour. 

We constrained the general computational model further, via the restriction αG = αH, as the 

behavioural task did not permit differential assessment of the learning rates of instrumental 

and habitual systems (such that separate alpha values would lead to overfitting and did so in 

pilot modelling); different contributions of the two systems are therefore reflected primarily 

in βG and βH. 

The behavioural task, involving explicit instructions to humans, is ambiguous as to whether it 

would lead to ongoing habit learning during the test phase (arguments might include: 

responding is to the same manipulanda, so ongoing habit learning might be expected; or, the 

instruction change sets up a different context, sharply altering the stimuli participating in S–R 

learning). Consequently, we tested two versions of the task: in one, habit learning was 

assumed to continue during the slips-of-action phase (“habit learning at test”, HLAT); in 

another, it was assumed that no further habit learning occurred (“no habit learning at test”, 

NHLAT). 

 

Bayesian hierarchy and simulations 

The group-level structure of the Bayesian model was as before, with a per-group mean and a 

common intersubject standard deviation for each parameter. 

Priors were as shown in Table D3. 
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 Table D3: priors for the two-system instrumental computational model. 

Parameter Prior for parameter Prior for intersubject standard 

deviation 

α Beta(1.2, 1.2) Half-normal(0, 0.17) 

βG,  βH Gamma(shape = alpha = 4.82, 

rate = beta = 0.88) 

Half-normal(0, 2) 

βP Normal(0, 1) Half-normal(0, 2) 

 

We used a variational Bayes approximation to obtain posterior parameter distributions, via 

Stan’s ADVI [automatic differentiation variational inference] algorithm. 
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Results 

Results are shown in Table D4. The behavioural task was ill-specified as to whether further 

S–R learning would occur in the outcome devaluation test phase, and this had a potentially 

important impact on the assessment of learning rates in the two-system model: if learning was 

assumed to occur, the model suggested faster learning in the CUD group, and if not, it 

suggested slower learning. Interpretation of learning rate from this model is therefore more 

complex (see main text for discussion) but the results reflect slower learning in the first phase 

and a likely confound between the effects of outcome devaluation and those of extinction in 

measuring the effect of learning in the second phase. The models were consistent, however, 

in showing a reduced impact of the goal-directed action system (lower βG) in the CUD group; 

no difference in the impact of the habitual system (no difference in βH); and a greater 

tendency to perseverate (βP) (or, strictly, a lesser tendency to avoid a recently chosen option, 

since βP estimates were negative). Interparameter scatterplots are shown in Figure D3. 

 

 Table D4: results for the two-system instrumental computational model. 

Condition Parameter Control group (posterior 

mean and 95% HDI) 

CUD group (posterior 

mean and 95% HDI) 

CUD – control (posterior 

mean and 95% HDI); 

bold indicates an HDI 

excluding zero (posterior 

probability >95% of a 

difference between 

groups) 

No S–R learning 

during assessment 

phase (“no habit 

learning at test”; 

NHLAT) 

    

 α 0.100 [0.090, 0.111] 0.041 [0.037, 0.045] –0.059 [–0.070, –0.049] 

 βG 0.323 [0.297, 0.351] 0.280 [0.247, 0.316] –0.043 [–0.083, –0.001] 

 βH 0.004 [0.002, 0.007] 0.008 [0.004, 0.013] 0.004 [–0.001, 0.010] 

 βP –0.215 [–0.251, –0.172] –0.024 [–0.059, 0.011] 0.190 [0.138, 0.240] 

S–R learning allowed 

during assessment 

phase (“habit learning 

at test”; HLAT) 

    

 α 0.035 [0.031, 0.038] 0.096 [0.085, 0.109] 0.062 [0.050, 0.074] 

 βG 0.653 [0.616, 0.693] 0.182 [0.166, 0.199] –0.471 [–0.514, –0.433] 

 βH 0.002 [0.001, 0.004] 0.001 [0.000, 0.003] –0.000 [–0.002, 0.002] 

 βP –0.255 [–0.293, –0.215] –0.096 [–0.134, –0.057] 0.159 [0.105, 0.213] 
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Figure D4: correlations between group-level parameter estimates from the two-system 

instrumental NHLAT model. Each point represents an iteration of the simulation. 
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Chapter 6: Assessment of goal-directed and habitual tendencies in cocaine 

use disorder via self-report 

6.1 Introduction 

Substance use disorder is linked with an imbalance in behavioural control, where habitual 

control is favoured over goal-directed control. Conventional methods of studying habits, such 

as outcome devaluation and contingency degradation, have found supporting evidence for a 

habit bias in cocaine use disorder, which explains, to some degree, the insensitivity to the 

consequences of their actions (Ersche et al., 2016, 2021). However, to what extent are patients’ 

daily behaviours affected by habit biases, or a reduced goal-directed system? This chapter 

attempts to explore these constructs using self-reported questionnaires, which provide the 

opportunity to reflect on their day-to-day behaviours.  

 

Although goal-directed and habit systems theoretically control instrumental action, individual 

differences in personality could facilitate these systems. Take goal-directed actions as an 

example. A more goal-oriented person would likely display higher tendencies for goal-directed 

actions, as they are more motivated by goals, even when said action is difficult or lacks any 

short-term benefits. The notion of working towards a prospective goal is consistent with the 

principles of goal-directed actions, whereby actions are driven by the final outcome (de Wit & 

Dickinson, 2009). A particularly relevant tool that captures this goal pursuit tendency is the 

Habitual Self-Control Questionnaire (HSCQ; Schroder et al., 2013). If goal-directed control is 

reduced in cocaine users, it is logical to expect that intentions or outcomes have a reduced 

influence in motivating actions, especially when the task at hand is difficult. 

 

Much like how humans differ in the extent to which goals modulate their behaviour, they also 

vary in their proneness to develop habits. Some people identify themselves as ‘creatures of 

habit’ and find comfort in familiar environments and stable routines, whereas others hate 

sticking to rigid schedules and like to vary their day-to-day behaviour. It is difficult to capture 

habits with self-report methods due to their highly personal and unconscious nature (Robbins 

& Costa, 2017). However, it is possible to enquire about some aspects of habits such as routine 

behaviours and tendency to automatise certain actions (e.g. autopilot). These traits are captured 

by the Creature of Habit Scale (COHS), a self-report instrument developed to gauge habitual 
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engagement in everyday life (Ersche et al., 2017, 2019). The subscales of the COHS 

differentiates between propensity for automatic actions when entering a specific environment 

despite the lack of intentions (the automaticity subscale), and volitional actions done regularly 

for functional purposes (the routine subscale). If there is a habit predominance in behavioural 

control, patients with substance use disorder should demonstrate a predilection in engaging 

with habits in daily life, especially actions that were rewarded in the past. 

 

The primary aim of this chapter is to determine the individual differences in habitual and goal-

oriented traits with self-reported measures such as the HSCQ and the COHS. It is noted that 

behavioural measures might measure different constructs compared to self-reported measures 

(Allom et al., 2016; B. Saunders et al., 2018), so this chapter also tests whether these self-

reported measures are related to experimental measures of goal-directed and habitual 

behaviours. Accordingly, I assess the relationship between these self-reported measures and 

behavioural data on goal-directed (i.e. reinforcement learning task) and habitual actions (i.e. 

contingency degradation task). These behavioural data were reported in Chapter 3 (study 1) 

and Ersche et al (2021) respectively. Based on the habit theory of addiction, I hypothesised that 

individuals with cocaine use disorder display increased habitual tendencies and reduced 

readiness for goal-directed actions. In the context of this study, I predicted that these tendencies 

would manifest in the form of reduced scores in the COHS subscales, and increased scores in 

the HSCQ scale respectively.   

 

6.2 Methods 

6.2.1 Sample description 

The sample consisted of 48 male patients who met the Diagnostic and Statistical Manual (5th 

version; DSM-5) criteria for cocaine use disorder (CUD) and 42 male controls without a 

personal history of substance use disorder. Data from these participant were collected via in-

person assessment as part of a larger study, some of which were reported in Chapter 3 (study 

1) and Chapter 4 of this thesis, as well as in Ersche et al (2021). The cocaine group used cocaine 

for an average of 13.4 years (±SD: 7.7 years) and reported high levels of compulsive drug use, 

as indexed by the Obsessive-Compulsive Drug Use Scale (OCDUS mean total score: 34, ±SD: 

10); the control group did not have any prior history of substance abuse, as indexed by the low 

scores on the Drug Abuse Screening Test (mean: 0.1, ±SD: 0.3).  
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6.2.2 Self-reported measures of goal-directed and habit tendencies 

Habitual Self-Control Questionnaire (HSCQ): This 14-item scale measures the strength of 

persistent goal pursuit, a trait that reflects intrinsic drive to achieve planned outcomes, even 

under difficult circumstances. Statements describing intentions and commitments to complete 

difficult tasks (e.g. “I find it easy to motivate myself even if I do not enjoy a task at all.”) are 

rated on a 5-point Likert scale (1 = disagree strongly, 5 = agree strongly). A higher total score, 

calculated by summing the response from all items, reflects stronger commitments to strive for 

goals. Questionnaire is available in Appendix E.       

Creature of Habit scale (COHS): This is a 27-item self-reported questionnaire assessing 

proneness for habitual behaviours in daily life. Participants were required to rate each statement 

on a 5-point Likert scale, ranging from strongly disagree (1) to strongly agree (5). This 

questionnaire consists of two subscales: a routine subscale that captures preferences for regular 

rituals or routines (e.g. “I like to park my car or bike always in the same place.”), and an 

automaticity subscale, which reflects proneness to eliciting automatic behaviours when in an 

associated environment – the central tenet of stimulus-response habits (e.g. “I often find myself 

finishing off a packet of biscuits just because it is lying there.”). Higher scores on the 

automaticity and routine subscales reflect higher tendency for cue-driven behaviours and 

preference for routine, respectively. As reported in Ersche et al. (2016), the Mokken 

Homogeneity modelling and confirmatory factor analysis both converged, suggesting that the 

COHS exhibited good construct validity. The automaticity (ω=0.91, α=0.86) and routine 

subscales (ω=0.92, α=0.89) showed good reliability, as evidenced by their high McDonald’s 

omega and Cronbach’s alpha. Questionnaire is made available in Appendix E.  

 

6.2.3 Behavioural measures for goal-directed and habitual actions 

Reinforcement Learning Task: This task assesses learning from financial consequences of 

one’s choices, a suitable measure for goal-directed learning. Detailed description of this task 

and its results were elaborated on in methods section in Chapter 3 (study 1). In brief, 

participants need to, by trial-and-error, learn to choose a stimulus that maximizes their financial 

gains whilst minimizing their financial losses. The primary measures used from this task are 

the accuracy scores for task performance and the latent RL parameters derived from 

computational modelling, which include parameters that account for value-driven (all learning 
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rates and reinforcement sensitivity) and non-value-driven processes (perseveration to stimulus 

and location). CUD patients in this sample are impaired on overall task performance, which 

were driven by reduced learning rate from negative feedback and reinforcement sensitivity 

parameters.  

Contingency Degradation Task: Experimentally, habits are operationally defined as the 

absence of goal-directed actions. The contingency degradation task is one such task that tests 

habit strength by disrupting action-outcome relationships, a pre-requisite for goal-directed 

actions (Balleine & Dickinson, 1998). In this task, participants are over-trained to 

instrumentally respond for financial rewards, thereby developing an action-outcome 

contingency. After establishing an action-outcome contingency, this contingency is then 

degraded such that participants receive free rewards irrespective of whether they responded. In 

other words, instrumental responses are no longer required for financial rewards. If participants 

continued responding even though actions are rendered unnecessary, these actions are deemed 

habitual as they are not driven by the causal relationship between actions and outcomes. The 

primary measure from this task is the goal-to-habit ratio, calculated as the ratio of response 

under fully contingent condition (non-degraded) versus non-contingent condition (fully 

degraded). A lower value reflects elevated bias towards habitual responding. Data from this 

behavioural task have been analysed and reported in Ersche et al (2021), which showed that 

CUD patients had significantly lower goal-to-habit ratio values, suggesting that their responses 

are more habitual (i.e. less affected by the disruption of action-outcome contingency).     

 

6.2.4 Statistical analysis 

The primary measures are the propensity for habits and goal-directed actions, as indexed by 

the COHS subscales (routine and automaticity) and HSCQ total score respectively. Group 

differences were assessed using ANCOVA models with group as a between-subject factor and 

demographic variables that differed across groups entered as covariates; Pearson’s correlation 

analyses were used to identify relationships between self-reported measures, behavioural 

measures, duration (years of cocaine use) and severity of drug use (OCDUS score). Given the 

current sample size of this study, the minimum effect size detectable is 0.60 (Cohen’s d).     
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6.3 Results 

Both groups did not differ in age (t88=-0.08, p=0.936), but significantly differed in years of 

education (group means denoted as M) (Mcontrol=15.7 years [±SD: 2.6], MCUD=11.0 years [±SD: 

1.5], t65.1=10.5, p<0.001) and verbal IQ (Mcontrol=116 [±SD: 6.1], MCUD=103 [±SD: 7.2], t80=8.3, 

p<0.001). An ANCOVA model with group as a between-subject factor, and years of education 

entered as a covariate revealed that CUD patients had significantly increased levels of COHS 

automaticity (Mcontrol=30.3 [±SD: 7.3], MCUD=39.2 [±SD: 7.0], F1,87=20.9, p<0.001), and 

reduced goal pursuit tendency, as indicated by reduced HSCQ total score (Mcontrol=51.8 [±SD: 

5.6], MCUD=43.5 [±SD: 8.5], F1,87=6.43, p=0.013) (Figure 6.1A). CUD patients engaged in 

similar levels of routine behaviour to controls (Mcontrol=54.5 [±SD: 10.3], MCUD=54.3 [±SD: 

9.8], F1,87=0.22, p=0.640). As an additional check, I ran a similar ANCOVA model but with 

verbal IQ as the sole covariate – this did not change the main results. Within these patients, 

duration of cocaine use was positively correlated with automaticity levels in the cocaine group 

(r=0.334, p=0.020; Figure 6.1B), but were not related to either routine behaviour (r=0.230, 

p=0.116) or goal pursuit (r=-0.146, p=0.321). Associations between compulsive cocaine use 

and automaticity (r=0.250, p=0.087), routine (r=-0.133, p=0.368) and goal pursuit (r=-0.231, 

p=0.114) were also not significant. I assessed the relationships between self-report and 

behavioural measures separately in control and cocaine groups. However, there were no 

significant relationships found. Specifically, neither the HSCQ scores nor COHS automaticity 

were significantly correlated with any of the relevant behavioural measures. Table 6.1 reports 

the correlations coefficients for these relationships.   

Table 6.1: Correlations between self-report and behavioural measures by group.  

 HSCQ total score COHS automaticity 

 Control CUD Control CUD 

 r p r p r p r p 

RL total accuracy  0.104 0.524 0.017 0.914 -0.021 0.897 0.198 0.197 

RL parameters         

Learning rate from reward 0.107 0.510 0.133 0.390 0.003 0.987 0.129 0.405 

Learning rate from punishment 0.092 0.574 0.005 0.976 -0.123 0.450 0.095 0.541 

Learning rate from non-reward 0.085 0.602 0.062 0.689 0.028 0.866 0.113 0.466 

Learning rate from non-punishment -0.229 0.155 -0.270 0.076 0.295 0.064 0.006 0.972 

Reinforcement sensitivity 0.246 0.127 0.105 0.498 -0.138 0.396 0.094 0.546 

Perseveration (location) -0.057 0.726 -0.096 0.537 -0.058 0.722 0.147 0.341 

Perseveration (stimulus) 0.095 0.562 0.028 0.858 0.116 0.474 -0.214 0.163 

Contingency Degradation Task         

Goal-to-habit ratio -0.235 0.162 -0.175 0.234 -0.068 0.669 -0.216 0.141 

Note. CUD: cocaine use disorder; RL: reinforcement learning; HSCQ: Habitual Self-Control 

Questionnaire; COHS: Creature of Habit Scale. 
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Figure 6.1: Self-reported measures for goal-directed and habitual personalities. (A) The 

cocaine group showed significantly elevated levels of automaticity, reduced levels of goal-

oriented personality (HSCQ total score), but comparable levels of routine behaviour to the 

control group. (B) Increases in automaticity were positively related with duration of cocaine 

use. [HSCQ: Habitual Self-Control Questionnaire; COHS: Creature of Habit Scale; SEM: 

standard error of the mean; * denotes statistical significance at p < 0.05] 

 

6.4 Discussion 

Consistent with the behavioural findings, validated questionnaires of habitual and goal-directed 

traits identified that CUD patients had elevated automaticity, which increased as a function of 

cocaine use duration, and reduced tendency for goal-pursuit. These self-reported measures are 

also significantly correlated to the behavioural measures of goal-directed and habitual actions, 

demonstrating that these constructs overlap to some degree. Together these findings provide 

complementary evidence, in the form of self-report, that supports the habit theory of addiction.  

 

Cocaine exposure is thought to disrupt the balance in behavioural control, either by increasing 

habit formation or reducing top-down goal-directed control or both (Vandaele & Janak, 2018). 

Studies showed that rodents exposed to cocaine over long periods had increased habits even in 

non-drug-related actions, such as food-seeking, in devaluation experiments (LeBlanc et al., 

2013; Nordquist et al., 2007). By using an alternative self-reported approach, this study 

provides complementary evidence that in human CUD, environmental cues readily trigger 

automatic habits in daily life, suggesting an increased susceptibility for stimulus-driven actions. 

Indeed, prior work has shown that the automaticity subscale was jointly modulated by prior 

stimulant use and stressful life experience (Ersche et al., 2017), in line with the notion that 

exposure to stimulants and stress exacerbate habit formation in rodents (Corbit, Chieng, et al., 

2014; Dias-Ferreira et al., 2009; A. Nelson & Killcross, 2006). Further, this tendency for 

automatic habits also increases as a function of cocaine use duration, which implies that the 
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habit construct is relevant to the chronicity of addiction, contrary to what has been argued 

(Hogarth, 2020). It is possible that cocaine use further exacerbates the tendency to engage 

habitually in life, but this needs further investigation. On the other hand, CUD patients also 

show a reduced tendency for goal-oriented behaviour, which indicates that intentions and goals 

are less likely to influence behaviour in human CUD – a recurring finding throughout this thesis. 

A recent study also reported an interesting disconnect between food choices and their perceived 

value in CUD patients, suggesting that at least in the appetitive domain, these patients’ choices 

are not driven by subjective value, but by familiarity instead (Breedon et al., 2021). Originally 

designed to assess commitments to healthy lifestyle, the HSCQ scores have significantly 

predicted an increased cultivation of healthy behaviours that are related to self-control and 

persistence (e.g. exercise, dieting). Hence, the HSCQ score is thought to be a reasonable proxy 

of how strongly actions are driven by a prospective outcome (e.g. to lose weight) (Schroder et 

al., 2013). 

 

The key strength of the current data is that behavioural and self-reported measures converge, 

thereby providing multi-layered evidence for impaired behavioural control. Although a 

positive relationship between years of cocaine use and self-reported automaticity suggests that 

increases in habitual engagement are related to cocaine use, the current study cannot 

definitively confirm whether increased self-reported automaticity and reduced goal pursuit 

precedes or follows substance use disorder development. However, the current study has some 

limitations. As this is a male-only sample, these results may not be generalisable to female 

users. Additionally, although this study is sensitive enough to detect moderate effect sizes, 

given its sample size, it might be under-powered to detect the associations between behavioural 

and self-report measures when analysed separately by group. Thus, the data should be 

interpreted with this in mind. Another limitation of this study is that both groups were not 

matched on education level (and IQ). But, covarying for these variables did not change the 

main results of this chapter. This suggests that, at least in this dataset, education levels (and IQ) 

did not have a noticeable effect on self-report measures of habitual and goal-directed tendencies. 

Moreover, the generalisability of this theory to other substance users remains unclear. Whilst 

there is an abundance of evidence for psychostimulants, surprisingly little consensus has been 

reached with other substances. The next chapter focuses on testing the habit theory of addiction 

in a community sample characterised by harmful alcohol use. Nevertheless, current findings 
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provide ancillary evidence for the hypothesised imbalance between goal-directed and habitual 

processes in CUD that could also be measured via self-report. 
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Appendix E: Supplementary materials to Chapter 6 

The Habitual Self Control Questionnaire (Schroder et al., 2013) 
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The Creature of Habit Scale (page 1/3) (Ersche et al., 2017) 
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The Creature of Habit Scale (page 2/3) 
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The Creature of Habit Scale (page 3/3) 
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Chapter 7: Goal-directed and habitual control in problematic alcohol use 

7.1 Introduction 

Alcohol is one of the most commonly used substances, with an estimated 83% of the population 

reported recent alcohol consumption in the UK alone (R. Burton et al., 2017). Whilst occasional 

drinking has some positive aspects, most notably in facilitating social interactions and 

relaxation, excessive drinking is consistently linked with poor health outcomes and social as 

well as economic burden to society at large (World Health Organization, 2018). Recent UK 

estimates suggest that over 10 million people drink alcohol at harmful levels (Public Health 

England, 2017), which puts them at a higher risk in developing alcohol use disorder, a condition 

characterised by a loss of control over their drinking (American Psychiatric Association, 2013). 

However, not everyone who drinks large amounts of alcohol develop alcohol use disorder. In 

that respect, behavioural markers that predict the transition from harmful drinking habits into 

alcohol use disorder would be useful for early interventions. One such candidate may be the 

regulation of instrumental actions. Problematic alcohol use is hypothesised to disrupt goal-

directed and habitual control processes, such that behaviours are biased towards habitual 

control after prolonged alcohol use (Barker et al., 2015; Corbit & Janak, 2016). However, the 

question of whether problems in regulatory control exist already in a community population 

that drinks hazardously, but not formally diagnosed with alcohol use disorder, remains elusive. 

This chapter aims to test this hypothesis in a UK population characterised by harmful drinking.  

 

Animal studies provided widespread support for disrupted regulatory control after extended 

exposure to alcohol. Rats that were chronically exposed to ethanol demonstrate reduced 

sensitivity to outcome devaluation, which is indicative of habitual control over seeking 

responses (Corbit et al., 2012; Corbit, Nie, et al., 2014; Hopf et al., 2010; Lesscher et al., 2010; 

Lopez et al., 2014; Mangieri et al., 2012). Habitual seeking responses only developed following 

extensive alcohol exposure (Corbit et al., 2012), but these habits occur irrespective of training 

with sucrose or alcohol rewards, which implies an overall increase in habitual control that 

extends beyond alcohol (Corbit, Nie, et al., 2014; Lopez et al., 2014). Whether this overall shift 

towards habitual control is caused by an impaired goal-directed system or by an overall 

augmented habit system is still a matter of ongoing debate. There is some evidence to suggest 

that alcohol impairs brain regions implicated in goal-directed actions. A recent study showed 
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that ethanol administration attenuates orbitofrontal input to the striatum, a region that putatively 

mediates value and contingency learning (Renteria et al., 2018).  

 

Although evidence for habitual predominance is compelling in the animal literature, findings 

from human studies have been equivocal. Extant research in humans has largely focused on 

patients with alcohol use disorder (AUD), most of which probed instrumental control with one 

of two paradigms. The first is the outcome devaluation paradigm, which generally tracks 

sensitivity to outcome values by devaluing certain outcomes. Two studies used this paradigm, 

each reported conflicting findings. Sjoerds and colleagues (2013) used the slips of action task 

(de Wit et al., 2007; de Wit & Dickinson, 2009), a version of a devaluation test which uses 

instructed devaluation. They found that patients with AUD had diminished sensitivity towards 

devalued outcomes, as indexed by persistent responding towards devalued outcomes. By 

contrast, van Timmeren et al. (2020) used taste aversion as their devaluation strategy but found 

that sensitivity to devaluation was intact in AUD. Such equivocal findings were also present 

when studying instrumental control with the second paradigm: the two-step task (Daw et al., 

2011). The task is thought to simulate goal-directed and habitual processes in computational 

terms, enabling the dissociation of the two. Goal-directed control is formalised as a model-

based process, which accurately tracks values and the transitions that lead to rewards, akin to 

sensitivity towards values and contingency; habitual control is formalised as a model-free 

process, which only learns the most rewarding response based on past reinforcement, and is 

more rigid, thus less sensitive to immediate value updates (Dayan & Daw, 2008; Dolan & 

Dayan, 2013). Some studies using this task found, in AUD patients and binge drinking cohorts, 

a reduced model-based control but intact model-free control, suggesting that an impaired goal-

directed system but not an increased habit system in these individuals (Doñamayor et al., 2018; 

Sebold et al., 2014). However, other studies with larger samples sizes and more heterogeneous 

AUD patients found neither an impaired model-based, nor augmented model-free control over 

behaviour (Sebold et al., 2017; Voon et al., 2015). Moreover, a handful of studies did not find 

any evidence for a relationship between model-based or model-free control and the 

severity/chronicity of alcohol use (Doñamayor et al., 2018; Nebe et al., 2018; Patzelt et al., 

2019), though there are exceptions (see Gillan et al. (2016)).  
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One of the challenges in studying instrumental control in humans is to simulate reliably goal-

directed actions and habits in behavioural tasks. Whilst outcome devaluation and the two-step 

tasks are popular paradigms to study instrumental learning, these tasks have noteworthy 

limitations in approximating goal-directed and habitual processes. First, outcome devaluation 

procedures operationalise habits indirectly by the absence of goal-directed actions. As such, 

the main test for habits (i.e. devaluation phase) is designed to measure how likely the 

conditioned stimulus elicits habits when the associated outcome has lost its original value. This 

design can only test for the relative balance between, but not the contributions from, the two 

systems (Watson & de Wit, 2018). Consequently, an augmented habit system or an impaired 

goal-directed system should both lead to the same behaviour profile. Second, the two-step task 

defines goal-directed and habitual actions computationally with model-based and model-free 

processes respectively (Dolan & Dayan, 2013). This allows the dissociation of goal-directed 

and habitual processes, but the construct validity of these computational processes have 

recently been questioned in at least three ways: First, several studies found that increased 

habitual tendencies, as modelled by outcome devaluation tests, were not related to model-free 

processes in the two-step task, suggesting that these constructs do not overlap with one another, 

as previously assumed (Friedel et al., 2014; Gillan et al., 2015; Sjoerds et al., 2016). Second, 

the development of model-free control does not rely on extensive repetition, which is identified 

as a key prerequisite for the development of habits (Dickinson, 1985). Third, there are also 

conceptual differences between habits and model-free learning. Specifically, habits, once 

established, are thought to be elicited by environmental cues and have no direct relationship 

with outcome values. By contrast, model-free learning, even after long periods of learning, still 

depends on the expected outcome value, albeit less flexible than model-based processes (Miller 

et al., 2019). Thus, considering the shortcomings of existing behavioural tasks, there is a need 

for a novel behavioural paradigm that fractionates the nature of goal-directed and habitual 

processes in humans more clearly.  

 

To address these issues, I co-developed a novel behavioural task – the goal-habit conflict task 

– that can model the expression of both goal-directed actions and habits directly. Goal-directed 

and habit systems usually work in conjunction to regulate behaviour, but in some cases, 

especially when both systems are placed in conflict, these systems can compete for expression 

(Balleine & O’Doherty, 2010; Bradfield & Balleine, 2013; Zwosta et al., 2018). Based on this 

aspect, our novel task challenges behavioural systems by creating a conflict between habits and 
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goal-directed responses. These conflicts would enable us to observe which system prevails. For 

instance, if the habit system is stronger, I would expect habitual responses made during this 

conflict (and vice versa). In the goal-habit-conflict task, participants first learn instrumental 

responses to a set of instructions (goal-directed actions), then acquires stimulus-response (S-R) 

habits through overtraining using monetary rewards and punishments. Once these responses 

have been learned, they are placed in conflict with one another, i.e. participants are told to 

follow instructional cues (goal-directed) in the presence of conditioned stimuli, which have 

previously elicited a habitual response. Goal-directed responses are defined as responses 

associated with the instructional cues; habits are defined as the responses consistent with 

learned S-R habits.  

 

The aim now is to test whether behavioural control has shifted towards the habit system in 

participants who drink alcohol at harmful levels. Based on animal studies, it is hypothesised 

that chronic alcohol use facilitates the shift of behavioural control towards the habit system. If 

this hypothesis is true, I would predict that heavy drinkers exhibit more habitual responses 

during a conflict situation. 

 

7.2 Methods 

7.2.1 Sample description  

I recruited participants with and without harmful alcohol use via Prolific Academic 

(https://www.prolific.co/) – an online crowdsourcing platform designed for academic research. 

For an online study, the possibilities to screen for psychiatric disorders and drug use were 

limited. Prolific Academic provides a screening tool to identify the targeted population, which 

I set as follows: (1) age range between 18 and 48 years, (2) both genders, (3) native English 

speaker, (4) UK residence, (5) no diagnosis of Dyslexia, Dyspraxia or Attention Deficit 

Hyperactivity Disorder (ADHD), including literacy difficulties, (6) no language-related 

disorders (e.g. aphasia), (7) no diagnosis of Autism Spectrum Disorder, and (8) no diagnosis 

of mild cognitive impairments or dementia. As the Prolific tool does not include alcohol use 

disorder, I decided to ask all eligible prolific users to complete the Alcohol Use Disorder 

Identification Test (AUDIT, (J. B. Saunders et al., 1993)), the Depression, Anxiety and Stress 

Scale (DASS-21, (Lovibond & Lovibond, 1995)) and to report their current medication. This 

allowed me to identify healthy individuals and chronic alcohol users. Chronic alcohol users 

https://www.prolific.co/
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were participants who exhibit harmful levels drinking in the AUDIT (score > 10). By contrast, 

controls were only recruited if they drink socially; social use was defined as an AUDIT score 

of 6 or less. Participants were excluded if they had any lifetime exposure to stimulant drugs 

(e.g. cocaine, crack-cocaine, amphetamines and methamphetamine), or indicated that they had 

a history of addiction. Control participants were excluded if they reported any use of 

psychoactive medication (e.g. antidepressants, antipsychotics), or met the cut-off for 

subclinical levels of depression, anxiety or stress, as indexed by the DASS-21. Chronic alcohol 

users who use antidepressant were not excluded, but those who reported antipsychotic 

medication were excluded. The final sample consisted of 120 harmful alcohol users with a 

mean AUDIT score of 16.7 (±SD: 5.5) and 148 controls with an AUDIT score of 1.8 (±SD: 

1.5). As I have argued in Chapter 6, individual differences in personality related to goal-

directed and habitual actions may modulate behavioural performance. Thus, all participants 

also completed self-reported questionnaires of goal-directed and habitual tendencies, namely 

the Habitual Self Control Questionnaire (HSCQ, (Schroder et al., 2013)) and the Creature of 

Habit Scale (COHS, (Ersche et al., 2017)) respectively.  

 

7.2.2 Goal-habit conflict task (The Fishing Expedition Task) 

This is a novel behavioural task that measures preferences for goal-directed and habitual 

actions by placing them in conflict. This task adopted a cover story of a beginner fisher learning 

to sort various catches into different categories, and consisted of three stages: 

Stage 1: Establishing goal-directed behaviour (Figure 7.1A). Goal-directed responses are 

deliberate responses made with a goal in mind (Balleine & Dickinson, 1998). In this stage, 

participants were trained to respond according to instructions. Participants were instructed to 

sort their catches (fishes or crabs) based on specific coloured cues (e.g. “orange accept” or 

“blue reject”; the colours were counterbalanced across all participants). On each trial, 

participants were first informed whether they had to accept or reject a catch, followed by one 

of two types of catches (fish or crab). Depending on the instruction and the catch, participants 

were required to respond with one of four keyboard buttons: “X” or “M” to accept fishes or 

crabs respectively, or “C” and “N” to reject fishes and crabs respectively (Figure 7.1A). 

Positive feedback was provided if participants sorted their catch correctly, negative feedback 

if they made an error. For each wrong response, that trial was repeated until participants made 

a correct response – this was to ensure that participants knew the instructed response. This 
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stage consisted of 120 trials and had 12 stimuli (6 fishes and 6 crabs), which were presented in 

random order.  

Stage 2: Habit formation (Figure 7.1B). Habits are actions that, though initially learned with 

a reinforcement schedule, develops autonomy after extensive training over a prolonged period 

(Dickinson, 1985). Here, participants develop stimulus-response (S-R) habits via overtraining. 

Participants were told to sell their catches at a fish market, and should learn to maximise their 

earnings by gaining subsidies and avoiding taxes. Instrumental responses were over-trained 

either with rewarding (subsidy) or punishing (tax) feedback, thus facilitating the development 

of appetitive and avoidance habits respectively. On each trial, participants were shown a picture 

of their catch, labelled with the term “tax” or “subsidy”. For subsidised catches, correct 

responses were reinforced by winning money (+50p), whereas wrong responses were not (+0p). 

By contrast, for taxed catches, correct responses led to the avoidance of money losses (-0p), 

whereas wrong responses led to money loss (-50p). Feedback in this stage was purely 

deterministic i.e. only one correct response for each fish or crab, and participants had to learn 

by trial-and-error which were the correct button presses (X, C, N or M). Participants were 

encouraged to respond quickly (< 2000 ms), as quick responses were met with larger gains 

(+50p instead of +10p) or smaller losses (-10p instead of -50p). This manipulation is meant to 

reduce tendency for conscious deliberation, which should  promote habit formation (Watson & 

de Wit, 2018). This stage consisted of 240 trials and had 12 stimuli (6 tax, 6 subsidy). Of the 

12 stimuli, 8 stimuli (4 fishes and 4 crabs) were re-used from stage 1, while 4 stimuli (2 fishes 

and crabs) were novel.  

Stage 3: Goal-habit conflict (Figure 7.1C). Here, goal-directed responses from stage 1 and 

learned S-R habits from stage 2 were placed in competition with one another to assess which 

system dominates over overt behaviour. Participants were told to continue sorting their catches, 

as they did in stage 1, but would no longer receive trial-by-trial feedback on their responses. 

The trial design is similar to stage 1: participants first receive coloured cue instructions (“accept” 

or “reject”), followed by a picture of their catch (fish or crab), and they would need to respond 

with the appropriate button. However, stimuli from phase 2 were re-used here, such that the 

learned S-R habit from phase 2 could either be congruent or incongruent with the instructed 

response. In the congruent condition, the instructed response is consistent with the learned habit 

from phase 2. By contrast, the goal-directed and habitual responses differ in the incongruent 

trials (see Figure 7.1C for schematics). Incongruence between the two responses enables us to 

test which system prevails during situations of conflict. Additionally, there is also another trial 
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condition, termed free choice trials. In these trials, participants were shown a picture of their 

catch, which has a conditioned S-R habit from phase 2, but no instructional cues. In these trials, 

participants could respond with whichever key they preferred. The rationale for this condition 

is to elicit stimulus-triggered habits in the absence of any interfering goal-directed instructions. 

In all trials during this stage, participants were given only 2000ms to respond – time pressure 

is thought to facilitate the expression of habits (Watson & de Wit, 2018). Trials with missed 

responses were repeated at the end of each block. There were in total six trial conditions with 

20 trials each: trials where the instructed response is congruent with previously rewarded 

response (approach congruent) or avoidance response (avoid congruent); trials where the 

instructed response is incongruent with previously rewarded (approach incongruent) or 

avoidance response (avoid incongruent); and free choice trials which showed stimuli linked 

with either appetitive (free choice approach) or avoidance S-R habits (free choice avoid). This 

phase comprised of 12 stimuli (6 fished and 6 crabs): eight stimuli were used in both phase 1 

and 2 for the congruent and incongruent trials; the remaining 4 stimuli (2 fishes and 2 crabs) 

for the free choice trials were only used in stage 2. Examples of trials are shown in Figure 7.1C.  

Post-task questionnaire: At the end of task, participants were assessed of their S-R and A-O 

knowledge by indicating via button presses the correct responses pertaining to each stimulus 

and outcome.  



Instrumental learning in problem alcohol use 

159 

 

 
Figure 7.1: Schematics for the Goal-Habit Conflict Task. (A) In the first phase, participants 

learn to sort the fishes and crabs based on instructional cues. Correct responses are 

deterministic, and feedback is provided for each trial. (B) Participants are told that they will be 

selling their catches at the market, and need to learn the responses that would maximise their 

subsidies (reward) and minimise their taxes (loss). Thus, they need to learn by trial-and-error 

the correct response associated with each stimulus, which are deterministic. Quick responses 

are encouraged as this could increase their subsidies or reduce their taxes. (C) In the third phase, 

participants return to sorting fishes like in phase 1, but this time, they do not receive feedback 

on their responses. Here, instructed responses from cues (accept or reject) could either be 

consistent with learnt S-R habits (congruent trials) or differ from learnt S-R habits (incongruent 

trials), which allows the assessment of which system is stronger when there is a conflict. In 

addition, there is a free choice condition, where participants were presented with stimuli 

associated with an S-R habit, but without any instructional cues. Thus, participants can freely 

respond with any key.   
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7.2.3 Statistical analysis 

I assessed the self-reported questionnaires and demographic measures for group differences 

with frequentist statistics. I also assessed the relationship between alcohol use severity (AUDIT 

score) and task performance.   

 

I assessed goal-directed performance by computing the accuracy rate during the first phase, 

defined as the percentage of correct responses. A-O knowledge was also assessed in 

participants by computing the accuracy score for the post-task questionnaires. These measures 

were entered into an ANOVA with group as a between-subject factor.  

 

To assess reinforcement learning performance in phase 2, block-by-block accuracy rates were 

computed in 24-trial bins. As learning from positive and negative feedback are thought to be 

dissociable processes, accuracy rates of both tax and subsidies conditions were evaluated 

separately. It is important for participants to acquire the correct contingencies for a fair 

interpretation of their performance during a goal-habit conflict. Thus, participants who 

performed at or below chance level during the last block (accuracy ≤ 25%) were excluded from 

the analyses. I also computed an accuracy score for explicit S-R knowledge. The accuracy 

scores for reinforcement learning and explicit S-R knowledge were entered into a mixed 

ANOVA with group as a between-subject factor, and block (blocks 1-5) and valence (tax versus 

subsidies) as within-subject factors. A reinforcement learning algorithm was also fitted to trial-

by-trial learning performance to ascertain the latent parameters that underpin task performance. 

Parameters of interest in this phase include value-driven processes such as the learning rates 

from reward, non-reward, punishment, and non-punishment, reinforcement sensitivity; and 

non-value-driven process such as the tendency to perseverate – to account for repeated 

responses that are not driven by learned values. Parameter recovery for a similar model with 

these parameters was reasonably well, as demonstrated in Chapter 3 Appendix B (Figure B2). 

Parameter estimation and model fitting procedures followed those reported in computational 

methods section in Chapter 2. 
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Three primary measures were devised to reflect task performance in stage 3, namely switching 

score, number of goal-directed to habitual actions, and habit proneness. Each measure will be 

explained in turn below: 

Switching scores: When situational demands change, it is imperative for the goal-directed 

system to take control over behaviour from the automatic habit system. The switching score 

reflects the ability to switch from habitual to goal-directed responding, which is computed as 

the difference in errors between trials with a goal-habit conflict (incongruent trials) and those 

without (congruent trials). I also computed a switching score for response times for correctly 

responded trials. If an individual is able to effectively switch between goal-directed and 

habitual responses, their switching errors and response times would be close to zero, as there 

would be little to no switch costs involved i.e. no difference between conditions. By contrast, 

a habitual person would find overriding a habitual response more effortful – this would result 

in a higher (more positive) switching error rates or response time when responding under 

conflict relative to baseline.  

Number of habits/goal-directed responses: This measure tests the strength of the goal-

directed and habit systems under conflict by counting the number of goal-directed and habitual 

actions made during the incongruent condition. A response is considered goal-directed when 

the participants’ response is consistent with the instructions (i.e. correctly accepting or rejecting 

the stimulus); if participants instead respond with a learned response during phase 2, then that 

action is considered habitual, as it is not driven by the instructions, but instead by the learned 

S-R contingency. This measure was calculated separately for stimuli associated with approach 

and avoidance behaviours. 

Habit proneness: The key feature of a S-R habit is that these well-learnt actions are 

automatically elicited by an associated cue. The habit proneness score measures this aspect by 

calculating the number of habitual responses made under the free choice conditions – when 

there is no need to deliberately select an instructed response. A habitual person would more 

readily elicit well-learnt responses when prompted with its associated cue, and thus would have 

a higher score. Again, this measure was calculated separately for approach and avoidance 

stimuli.   

All measures were analysed with mixed ANOVA models, with group as the between-subject 

factor, and stimulus type (approach versus avoid) as the within-subject factor. For each habit 

measure, I also assessed its relationship with goal-directed learning (stage 1), reinforcement 
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learning parameters (stage 2) and individual differences in self-reported automaticity (COHS 

subscale). Post-hoc sensitivity power analysis indicated that this study is sensitive to a 

relatively small effect size (Cohen’s d = 0.34). 

 

7.3 Results 

7.3.1 Sample characteristics and questionnaire data 

Thirty-seven control participants (25%) and 27 alcohol users (23%) performed at or lower than 

chance level during the final learning block of stage 2, and were thus excluded from any 

subsequent analyses. The final sample consisted of 111 controls and 93 alcohol users. There 

was no statistically significant difference between the number of controls or alcohol users 

excluded (χ2=0.2, p=0.622). The excluded group also did not differ with the resultant sample 

in terms of education level (χ2=3.7, p=0.446) or AUDIT scores (t266=-0.814, p=0.416), but the 

excluded group was older (t266=2.2, p=0.026) and had more women (χ2=4.5, p=0.034) than the 

final sample.  

 

Sample demographics of the final sample are reported in Table 7.1. The groups were 

comparable on age, education levels and employment status, but there were more females in 

the control group than the alcohol group. Consequently, gender was included as a covariate for 

subsequent frequentist analyses. Fourteen individuals in the alcohol group (15%) considered 

treatment for their alcohol use, but these individuals did not differ with other alcohol users in 

terms of behavioural performance (all p > 0.1), and thus were not excluded from the analyses. 

Although the alcohol group showed higher levels of depression, anxiety and stress than controls, 

as measured by the DASS-21, these were not statistically controlled for, because (1) increased 

levels of depression, anxiety and stress often co-occur with increased alcohol use (Swendsen 

et al., 1998); (2) these measures are not significantly correlated with any task performance 

measures (all p > 0.05), and hence did not affect learning in this sample. However, whilst none 

of the control participants were on any psychoactive medication, 15 individuals from the 

alcohol group (16%) reported current use of antidepressants (5 sertraline, 5 citalopram, 1 

fluoxetine, 2 mirtazapine, 1 imipramine, 1 duloxetine). These individuals also did not differ 

with other alcohol users in their behavioural performance and demographics (all p > 0.1), and 

were included in the main analysis. As reported in Table 7.1, the alcohol group showed 
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marginally increased automaticity, reduced goal directedness and comparable routine 

behaviour to controls. 

 

 

Table 7.1: Sample demographics for Chapter 7.  

 Mean (SD) Statistics 

 Control Alcohol t / χ2 p 

Group size (n) 111 93 - - 

Age (years) 32.3 (7.0) 31.1 (9.5) 0.971 0.333 

Gender (% male) 36 55 7.24 0.007 

Education level (% completed)   7.75 0.101 

Completed secondary school 14 10 

Completed Sixth form 15 16 

Started university 11 25 

Bachelor’s degree 38 33 

Postgraduate degree 22 16 

Employment status (%)   0.18 0.669 

Not in paid work 11 14 

Paid work / studying 89 86 

Considered treatment (n) 0 14 - - 

Alcohol use severity (AUDIT) 1.8 (1.4) 16.9 (5.4) -28.4 < 0.001 

Depression (DASS-21 subscore) 3.0 (3.3) 14.0 (11.5) -8.97 < 0.001 

Anxiety (DASS-21 subscore) 1.5 (2.1) 7.4 (7.1) -7.83 < 0.001 

Stress (DASS-21 subscore) 4.5 (4.7) 12.3 (9.2) -7.98 < 0.001 

Automaticity (COHS subscore) 31.6 (9.0) 34.0 (9.1) -1.84 0.068 

Routine (COHS subscore) 58.2 (9.6) 57.2 (9.1) 0.753 0.452 

Goal-directedness (HSCQ) 49.9 (8.9) 42.3 (8.4) 6.23 < 0.001 

Note. COHS: Creature of Habit Scale; HSCQ: Habitual Self-Control Questionnaire; AUDIT: 

Alcohol Use Disorder Identification Test; DASS-21: Depression, Anxiety and Stress Scale; SD: 

Standard deviation 
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7.3.2 Goal-directed learning (stage 1) 

All participants demonstrated high levels of accuracy during action-outcome learning and 

adequate action-outcome knowledge during the post-task questionnaire (Figure 7.2). 

Importantly, task performance (F1,201=2.6, p=0.107) and explicit knowledge (F1,201=0.568, 

p=0.452) did not significantly differ between groups, indicating that action-outcome learning 

per se is not impaired in harmful alcohol users. Alcohol use severity was not correlated with 

either action-outcome learning (r=-0.100, p=0.155) or action-outcome knowledge (r=-0.029, 

p=0.685). 

 

 

Figure 7.2: Goal-directed learning performance (stage 1). High levels of both performance 

accuracy and action-outcome knowledge indicate all participants learnt the responses 

associated with the instructional cues well. However, the groups did not significantly differ in 

their learning, indicating that action-outcome instructions were well learnt in both groups.  

 

7.3.3 Habit formation (stage 2) 

As shown in Figures 7.3A and 7.3B, all participants improved their performance over time 

(F2.1,429.1=22.6, p < 0.001), and learned better in response to reward (subsidy) relative to 

punishing (tax) feedback (F1,201=10.7, p=0.001). Both groups learned at similar speeds, as 

evidenced by a lack of group-by-block interaction (F2.1,429.1=0.267, p=0.780). There were no 

effects of group (F1,201=0.002, p=0.968) or group-by-valence interaction (F1,201=1.21, p=0.307). 

All remaining interactions were also not statistically significant (all p > 0.1). Tests on explicit 

S-R knowledge also did not reveal any effects of group (F1,201=0.64, p=0.800), valence 
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(F1,201=1.02, p=0.313) or interaction (F1,201=0.188, p=0.665). Both task performance (r=-0.002, 

p=0.972) and explicit S-R knowledge (r=0.012, p=0.870) also did not correlate with AUDIT 

scores.  

 

Computational modelling of reinforcement learning did not reveal any group differences on 

any learning parameters (Figure 7.3C), which means that the alcohol group was not impaired 

on any latent parameters of reinforcement learning. A multiple regression with all learning 

parameters as predictors and accuracy scores as the outcome variable revealed that the 

parameters accounted for 78% of the variance, suggesting that the model explains the data well. 

The AUDIT scores were not significantly related with any reinforcement learning parameters 

in either the control or the alcohol group (all p > 0.05).  

 

Figure 7.3: Reinforcement learning task performance and explicit S-R knowledge (stage 

2). Both the alcohol and the control group did not differ in task performance and explicit S-R 

knowledge in both learning from rewarding (A) or punishing feedback (B). (C) Modelling of 

trial-by-trial reinforcement learning also did not reveal and significant impairments in the free 

parameters of individuals with harmful alcohol use. [Error bars in (A) and (B) denote standard 

error to the mean, whereas horizontal error bars in (C) denote 95% highest density intervals.]   
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7.3.4 Test for habit predominance (stage 3) 

One-sample t-tests identified that the overall switching error rates did not significantly differ 

from zero for both control and alcohol group (both p > 0.5), suggesting that all participants 

generally were able to switch to goal-directed responding as instructed. A mixed ANCOVA 

with group (control versus alcohol), stimulus (approach versus avoidance) as factors and 

gender as a covariate revealed neither a main effect of group (F1,201=0.038, p=0.845), valence 

(F1,201=0.005, p=0.942) or group-by-stimulus interaction (F1,201=0.03, p=0.861) on switching 

error rates (Figure 7.4A). The overall switching response time also did not significantly differ 

from zero (both groups p > 0.5), nor there were significant effects of group (F1,201=0.54, 

p=0.464), valence (F1,201=0.49, p=0.486), or group-by-stimulus interaction (F1,201=0.70, 

p=0.404) on switching response times (Figure 7.4B). Switching error rates were positively 

correlated with goal-directed learning performance in stage 1 (r=0.184, p=0.008), but not with 

reinforcement learning performance in stage 2 (all p > 0.1); whereas switching response time 

was not correlated to any stage 1 or stage 2 measures (all p > 0.1). However, neither measures 

were related to self-reported automaticity, nor AUDIT scores (all p > 0.05).  

 

In terms of habitual / goal-directed responses (Figures 7.4C,D), a mixed ANCOVA with the 

factors type (habit versus goal-directed behaviour), group (control versus alcohol) and stimulus 

(approach versus avoidance) showed that whilst participants’ responses were overwhelmingly 

goal-directed (F1,201=482, p<0.001), there were no statistically significant effects of group 

(F1,201=1.19, p=0.278), valence (F1,201=0.256, p=0.613), or group-by-stimulus interaction 

(F1,201=1.24, p=0.267); all other effects were also not statistically significant (all p > 0.2). 

Within the overall sample, those who performed better during goal-directed learning in stage 

1 were more likely to respond in a goal-directed manner (ρ=0.411, p<0.001) and less likely to 

elicit habitual responses (ρ=-0.233, p=0.001). Those with higher reward learning rates also had 

higher goal-directed responses (ρ=0.161, p=0.021); there were no other relationships with 

reinforcement learning parameters (all p > 0.05). Individuals with higher self-reported 

automaticity had lower number of goal-directed responses (ρ=-0.153, p=0.029), but were not 

related to the number of habits (ρ=0.076, p=0.204). The relationships between AUDIT scores 

and number of goal-directed actions (ρ=0.031, p=0.660) and habits (ρ=-0.047, p=0.501) were, 

however, not significant.  
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Similarly, the number of habitual responses under free choice conditions also did not differ 

between stimuli (F1,201=1.97, p=0.162) or groups (F1,201=0.244, p=0.622; Figure 7.4E). There 

was also no evidence for an interaction effect (F1,201=0.098, p=0.754). Those who performed 

better during goal-directed learning were less likely to make habitual responses (ρ=-0.152, 

p=0.030); interestingly, the reinforcement sensitivity parameter from stage 2 was positively 

related to this habit measure (ρ=0.179, p=0.010). The total number of habitual responses was 

positively correlated with self-reported automaticity but only in the alcohol group (ρ=0.258, 

p=0.013; Figure 7.4F), not in the control group (ρ=-0.154, p=0.108); comparison between these 

two correlations with Fisher’s Z-transformation identified a statistically significant difference 

between the alcohol and control groups (Z = 2.94, p=0.003). Additionally, the total number of 

habitual responses was not significantly associated with the AUDIT scores in both control 

(ρ=0.014, p=0.886) and alcohol groups (ρ=-0.014, p=0.896).  

 

 

Figure 7.4: Task performance during the goal-habit conflict (stage 3). (A, B) Switching 

scores showed that errors and response time (RT) not significantly differ between groups 

(control versus alcohol) or condition (approach versus avoidance). (C, D) Both control and 

alcohol participants responded to the incongruent trials in a goal-directed manner, 

irrespective of approach or avoidance stimuli. (E) The groups also did not differ in terms of 

freely elicited S-R habits during the free choice trials. (F) The number of stimulus-response 

(S-R) habits elicited during free choice conditions is positively correlated with self-reported 

automaticity in harmful alcohol users. [all error bars denote one standard error to the mean] 
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7.4 Discussion 

Changes to the regulatory systems of goal-directed and habitual actions are thought to underpin 

altered behaviour following chronic alcohol use (Corbit & Janak, 2016). I tested this hypothesis 

with a task that could directly measure goal-directed and habitual actions in an online sample 

characterised by harmful alcohol use, but not formally diagnosed with alcohol use disorder. 

Contrary to my predictions, this study did not find behavioural evidence for impaired 

regulatory control in harmful alcohol users. Three different task measures of habit 

predominance did not find any habit biases in the alcohol group, nor were they related to 

alcohol use severity. This suggests that when prompted with conflicting responses, these users 

were able to respond in a goal-directed manner, and were not more likely to elicit habitual 

responses than controls. Whilst there is some evidence that individuals with better goal-directed 

learning were more likely to respond in a goal-directed manner during the habit tests 

(irrespective of group membership), neither the learning of goal-directed instructions nor S-R 

habits through reinforcement learning significantly differ between alcohol and control groups, 

nor were they related to alcohol use severity. Interestingly, the tendency to elicit habitual 

responses (free choice trials) was significantly related with self-reported automaticity only in 

alcohol users, alluding to the notion that increased habit biases might be related to habitual 

traits.  

 

7.4.1 Goal-directed and habitual actions not measurably affected in problematic alcohol 

users 

The goal-directed system plays a key role in modifying behaviours such that they align with 

situational demands. This is especially important when actions are no longer beneficial, or even 

cause harm. This process is thought to be disrupted following long term alcohol use, which 

could pave the way for developing uncontrolled use in due course (Gillan, Robbins, et al., 

2016). The current task operationalizes goal-directed actions as the ability to initiate an 

instructed response, despite the interference from habits, and found that alcohol users who 

drink at hazardous levels retain the ability to regulate behaviours in a goal-directed manner. It 

is noteworthy that the goal-directed measures were not related to AUDIT scores, suggesting 

that alcohol use is unrelated to the ability to adapt to situational demands. This is consistent 

with prior studies operationalising goal-directed control in terms of model-based behaviour, 

which also did not find any alterations to this process as a function of alcohol use severity 

(Doñamayor et al., 2018; Nebe et al., 2018; Patzelt et al., 2019). Even when there is no need to 
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obey any goal-directed instructions (free choice trials), alcohol users were also not more likely 

than controls to elicit habitual behaviours. In other words, there is no evidence that the habit 

system dominates behaviour after excessive alcohol consumption within the current sample. 

Notably, this null finding could not be explained by differences in the acquisition of S-R habits, 

as both task performance and S-R knowledge (i.e. phase 2) were comparable between groups. 

It is possible that dysregulation between goal-directed actions and habits only occurs at the 

severe AUD, where alcohol use dominates their lifestyle. Indeed, the vast majority of the 

alcohol users in the current data were under paid employment or studying, and not actively 

considering treatment, suggesting that their alcohol use does not interfere substantially with 

their lives, unlike severe AUD. However, current data and the mixed findings in the literature 

might suggest that this disrupted balance in instrumental regulatory control in alcohol users 

might not be as straightforward as previously conceived. Alcohol exposure alone may not be 

sufficient to increase habitual control, and other modulatory factors may be involved. 

 

One candidate process that could subserve enhanced habit formation in alcohol users is the 

individual differences in habitual traits. This is supported by the positive correlation between 

self-reported automaticity and number of stimulus-elicited habits within the alcohol group, but 

not controls. Automaticity, as measured by the Creature of Habit Scale, reflects the tendency 

to elicit automatic behaviours within an associated environment (Ersche et al., 2017). 

Previously, automaticity was shown to be jointly modulated by stimulant exposure and 

negative childhood experience, but not by stimulant exposure alone (Ersche et al., 2017). In 

this case, it is likely that habitual traits exacerbated habitual behaviours only in individuals with 

harmful alcohol users. Nevertheless, such interactions are only speculative, and further 

investigations are required to clarify the mechanisms involved.  

 

7.4.2 Reinforcement learning intact in alcohol users 

Chronic alcohol use in humans is thought to alter cognitive systems critical for learning, 

including reward anticipation (Wrase et al., 2007), sensitivity to negative feedback (Galandra 

et al., 2020; L. D. Nelson et al., 2011), cognitive flexibility (Jokisch et al., 2014; Reiter et al., 

2016), and circuits involved in prediction error signaling (Deserno et al., 2015; Park et al., 

2010). Disruptions to these processes would likely have some negative impact on AUD patients’ 

ability to adapt behaviour from prior experience. This process is usually modelled with 
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reinforcement learning tasks in prior studies, which generally found slower learning in AUD 

patients (Huys, Deserno, et al., 2016; Jokisch et al., 2014; Park et al., 2010; Vanes et al., 2014). 

My current analyses on reinforcement learning performance, irrespective of conventional or 

computational approaches, did not reveal any measurable differences in learning speed or 

performance between individuals with hazardous levels of alcohol use and controls. While my 

findings stand in stark contrast with prior studies, it is noteworthy that participants in the 

current sample widely varied in terms of alcohol use (as evidenced by their AUDIT scores) and 

were (as indexed by self-report) not formally diagnosed with AUD. This is in contrast with the 

vast majority of the prior data that assessed aspects of reinforcement learning in patients with 

a confirmed AUD diagnosis. Thus, considering this difference, it is conceivable that marked 

reinforcement learning impairments would only emerge at the severe end of the spectrum when 

control over behaviour is compromised, but not as a function of alcohol chronicity. Indeed, this 

notion is supported by the lack of any statistically significant relationships between 

reinforcement learning parameters and AUDIT scores in the alcohol group. Interestingly, a 

recent study on at-risk youths found that whilst there were no relationships between AUDIT 

and reinforcement learning task performance – consistent with the current data – functional 

imaging of task-related activations revealed that striatal and prefrontal brain activity in youths 

with higher AUDIT scores did not differentiate between positive and negative feedback (Aloi 

et al., 2020). This suggests that possible dysfunctions in the neural regions underpinning 

reinforcement learning that precede AUD may not manifest behaviourally (Aloi et al., 2020). 

Interestingly, this finding is reminiscent of a large-scale fMRI study that identified neural, but 

not behavioural, markers in adolescents at risk of impulsivity disorders (Whelan et al., 2012). 

This relatively understudied area warrants further attention.   

 

7.4.3 Divergence between animal and human studies of habit formation  

Whilst animal studies provide convincing evidence for a general shift towards automatic habits 

following alcohol exposure, findings from humans with AUD have not always been consistent 

with this narrative. Theoretically, the current behavioural task is conceived to improve on 

existing habit tests (e.g. outcome devaluation) by providing a direct way to assess the extent of 

goal-directed and habitual control in humans. This was in contrast with the human version of 

the outcome devaluation task (de Wit et al., 2007, 2009), which only models habits as the 

absence of goal-directed actions. However, even with this improved setup, I did not find any 

evidence for increased habitual control in alcohol users, which again diverges from findings in 
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animals. Upon reflection, it is possible that the differences seen here may be related to the 

differences in training habits between animals and humans. The psychological concept of 

habits originated from seminal work by Dickinson and colleagues (Adams & Dickinson, 1981; 

Dickinson, 1985). These works defined habits as an over-trained instrumental response that 

develops autonomy, to the point where the trained action is reliably elicited by the 

environmental stimulus that previously predicted reward, and is no longer sensitive to changes 

in outcome value or action contingency. Whilst this seems to hold true in humans in some cases 

(Tricomi et al., 2009), the volume of overtraining it takes to induce habits in animals might not 

be practically feasible to adopt in human studies – Tricomi et al (2009) trained participants 

with 12 sessions over the course of three days to induce habits. Even so, with five independent 

sets of behavioural data from existing human outcome devaluation tasks, de Wit and colleagues 

(2018) failed to replicate the findings of Tricomi et al (2009), which led them to argue that 

habits in humans might not necessarily emerge as a function of behavioural repetition. This 

suggests that developing habits via overtraining in humans might not be as straightforward as 

in rodent studies, and existing tasks for humans are inadequate in reliably inducing habits. 

Moreover, habits in humans are arguably far more complex than single-lever-response habits 

commonly represented in rodent studies. Therefore, paradigms inspired by animal studies, such 

as outcome devaluation, might not be optimised to study habits in humans. Indeed, attempts to 

translate the outcome devaluation paradigm to humans are argued to only be partially 

successful in modelling habits (Watson & de Wit, 2018). Although the two-step task is a 

promising attempt to model the dual-processes of instrumental learning, the lack of 

correspondence between model-free processes and habits needs to be considered. It is likely 

that habits are multi-faceted in humans, as exemplified by the various constructs identified in 

the development of self-reported instruments of habits, such as routine and automaticity 

(Ersche et al., 2017), as well as compulsivity, preferences for regularity, and aversion to novelty 

(Ramakrishnan et al., 2021). Perhaps the complexity of the habit construct in humans is one of 

the reasons why inducing habits in human experiments is deemed a difficult endeavour, and 

the reconciliation between animal and human studies of habit formation is not perfect.  

 

7.4.4 Limitations and conclusion 

There are several noteworthy limitations that should be considered when interpreting these 

results. Despite the large sample sizes from online data collection, I was unable to control 

whether the task was completed under conducive conditions (e.g. in a quiet room with minimal 



Instrumental learning in problem alcohol use 

172 

 

distractions). I was also unable to monitor task engagement and concentration, as one would in 

an in-person assessment session (e.g. participants may be multi-tasking, or distracted by social 

media when completing the study). As a result, these problems might compromise data quality. 

Furthermore, I did not have further data on the pattern or frequency of alcohol use in this sample, 

which could differ to those with addicted use (cf. cocaine use of drug users in previous 

chapters). Thus, the potential differences in usage between the current sample and those 

reported in prior chapters need to be considered. Furthermore, it is noteworthy that a small 

proportion of alcohol users (16%) were on prescribed antidepressants. Whilst this small 

proportion is unlikely to significantly alter the interpretations of the data, they need to be 

acknowledged nonetheless. Additionally, the habit learning stage, which involved the learning 

of many S-R contingencies, likely required a high working memory load. Consequently, some 

participants might only focus on some stimuli during habit learning but not others, resulting in 

the goal-directed performance on certain trials to be much easier (in the absence of a competing 

S-R habit). Indeed, working memory is thought to be important in developing initial 

contingencies during reinforcement learning (Collins & Frank, 2012), but this measure was not 

assessed in this study. Additionally, the possibility of goal-directed instructions being easier to 

learn than habits cannot be entirely ruled out. It might also be entirely possible that this 

behavioural task required more training trials in stage 2 to sufficiently induce habits, though it 

is notable that increasing training trials in humans have not increased habit strength in the past 

(de Wit et al., 2018). Future behavioural and neuroimaging studies might be needed to replicate 

and extend the current findings. In conclusion, using a novel task to simulate goal-habit 

conflicts, I did not find evidence for dysregulation between goal-directed and habitual control 

over instrumental actions in individuals who consume alcohol at harmful levels.  
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Chapter 8: General Discussion 

Maladaptive behaviours in substance use disorder (SUD) can be understood in terms of 

disruptions to the learning processes that normally contribute towards adaptive behaviour. 

Specifically, it was hypothesised that (1) reinforcement learning is impaired in SUD; and (2) 

behaviours in SUD are associated with an imbalance between goal-directed and habitual 

control systems. This thesis sought to characterise these impairments in substance use disorder 

from multiple perspectives. In this final chapter, I start by highlighting the key findings from 

the previous experimental chapters. I then discuss how these findings inform our current 

understanding of reinforcement learning, as well as goal-directed and habitual control in 

addictive behaviours. As computational analyses are a burgeoning method in neuropsychiatry, 

I also briefly discuss its potentials and pitfalls in studying neurocognitive processes. In closing, 

I also outline the limitations to, and future considerations from, my thesis.   

 

8.1 Summary of key findings 

The first set of computational analyses on probabilistic reinforcement learning in Chapter 3 

revealed that moderate-to-severe stimulant use disorder patients have a selective impairment 

in learning from negative feedback in the form of monetary losses. This impairment is further 

shown to be linked with dopamine D2 receptors, as pharmacological modulation of these 

receptors in patients ameliorated this impairment. These findings are highly consistent with the 

risky behaviours reported in SUD (American Psychiatric Association, 2013), and explain in 

part why maladaptive behaviours are maintained. Specifically, negative outcomes that 

supposedly signal harm and promote avoidance (Jean-Richard-Dit-Bressel et al., 2018) have a 

reduced effect on patients’ behaviour, which in turn makes it less likely for them to adjust 

behaviour accordingly. The selective effects of dopaminergic modulation on negative feedback 

learning in these patients confirm the neurobiological link between aberrant learning and 

dopamine dysfunction, which previously have only been assumed in human SUD.  

 

Associative learning is supported by multiple memory systems, namely declarative and non-

declarative memory (Poldrack & Foerde, 2008). It is possible that impairments in these 

memory systems affect reinforcement learning in neuropsychiatric conditions like SUD (Seger 

& Miller, 2010). I tested this possibility in Chapter 4 by analysing task performance and 
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response strategy on two variants of an established probabilistic category learning task – the 

weather prediction task – each variant testing the integrity of declarative and non-declarative 

memory. Analyses of task performance showed that cocaine use disorder (CUD) patients had 

reduced performance in both task variants, whether learning declaratively (through 

memorisation) or non-declaratively (through feedback), suggesting that both memory systems 

are impaired. Closer inspection of the response strategy analyses (Gluck et al., 2002) during 

feedback learning revealed an interesting pattern. Control participants mostly adopted a more 

complex integrative strategy during learning, while patients were more likely to engage with 

simple but suboptimal memorisation strategies during learning. These findings also highlight 

aberrant engagement with memory systems in SUD, which may compromise learning. In the 

context of this task, the striatum is critical in integrating past experiences of reinforcement, and 

therefore supports non-declarative memory (Poldrack et al., 1999; Shohamy, Myers, Grossman, 

et al., 2004). Thus, these findings are consistent with the notion that SUD patients show marked 

striatal dysfunctions (Yager et al., 2015). Parkinson’s disease patients, characterised by striatal 

deficits, also exhibit the same behavioural profile as the current SUD patients, despite extensive 

training (Shohamy, Myers, Onlaor, et al., 2004). However, since these memory systems are 

dissociable (Packard & Knowlton, 2002), they allude to the possibility that learning in SUD 

patients may be more effective when it involves simple rule-based memorisations, rather than 

complex decision-making that requires averaging from prior experiences.  

 

A contemporary theory suggests that SUD is associated with an imbalance between goal-

directed and habit systems of behavioural control, favouring the latter (Everitt & Robbins, 2005, 

2016). This theory is thought to explain why behaviour is not amenable to consequences in 

SUD. It is suggested that habit biases are a result of an impaired top-down goal-directed system, 

though an augmented habit system or a combination of these two hypotheses are also possible 

(Robbins & Costa, 2017; Vandaele & Janak, 2018). Findings from Chapters 3 and 4 have 

highlighted that the goal-directed system is impaired in SUD. However, upon re-analysing an 

appetitive instrumental learning task with computational modelling in Chapter 5, I discovered 

that the findings did not wholly support the notion that an impaired goal-directed learning 

system contributes substantially to a habit bias. Specifically, although there is evidence for 

impaired goal-directed learning in CUD patients, in the form of reduced impact of positive 

feedback on behaviour, this impairment was insufficient to account for the increased slips of 

action (habits) in these patients. This finding calls for the renewal of our understanding of the 
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mechanisms behind accelerated habit formation in SUD, suggesting that there might be other 

factors at play. Certainly, a reduced goal-directed system diminishes one’s capacity to monitor 

habits (Balleine, 2019), but the current data suggest that this is unlikely the primary reason that 

led to increased habits in human SUD. Indeed, when completing a contingency degradation 

task that does not heavily depend on learning and motivation, CUD patients still exhibit 

increased habitual responding (i.e. reduced sensitivity to action-outcome contingencies) 

(Ersche et al., 2021). 

 

I was then interested in whether habitual tendencies extend beyond laboratory paradigms, 

which prompted the examination of self-reported questionnaire measures of habits and goal 

pursuit in CUD patients in Chapter 6. These measures provided evidence that CUD patients 

were more likely than their healthy peers to engage in automatic habits. They were also less 

likely to pursue difficult goals, suggesting a generally reduced goal-directed motivation. 

Together, they provide converging evidence for the validity of the habit construct in SUD, 

which has recently been controversial (Hogarth, 2020). An increased disposition for automatic 

habits in CUD patients would mean that they are more prone to fall back on familiar behaviour 

when under stress or challenged. Consequently, this might explain why abstinence is difficult, 

especially under stressful conditions (Sinha, 2001), as environmental cues are more likely to 

elicit habitual responses in these patients. The reduced goal motivation also reflects a 

diminished tendency to exert goal-directed deliberate control, especially when it involves 

difficult actions such as changing behaviour.  

 

While SUD has been linked to increased habit formation (as measured behaviourally and by 

self-report), as of yet, it is unknown whether habit predominance is also present in harmful – 

but not dependent – drug users. I address this knowledge gap in Chapter 7 with an online study, 

where I investigated instrumental regulatory control in a large, heterogeneous, online 

population of harmful alcohol drinkers with a novel task I co-developed. Contrary to 

expectations, I did not find any evidence for changes in behavioural control systems in 

individuals who drink hazardously. There was no evidence for impaired goal-directed learning 

or enhanced habit control in these individuals. The lack of statistically significant relationships 

between alcohol use severity (as indexed by AUDIT total scores) and behavioural measures 

suggest that deficits in instrumental control likely arise only when one transitions into severe 
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SUD. These findings suggest that harmful drug use itself may not lead to disruptions in 

regulatory control associated with addictive behaviours. However, it is likely that regulatory 

control is affected when drug use interacts with other factors such as chronicity, pattern of use, 

familial and environmental risk factors. These factors could potentially mediate or moderate 

the transition into SUD, but were not addressed in the present study.  

 

Taken together, this thesis identified in severe SUD impairments in learning from negative 

feedback and integrating learned experiences to inform future choices, both of which could 

negatively affect adaptive behaviour. Whilst these impairments support the notion of an 

impaired goal-directed system in SUD, they are insufficient to fully account for the increased 

habit system that dominates instrumental behaviour in severe SUD. However, impairments in 

reinforcement and instrumental learning may be limited to severe SUD, as a population of 

alcohol drinkers with harmful use (not formally diagnosed with SUD) did not show any 

measurable deficits in either reinforcement learning or instrumental control. This alludes to the 

notion that the transition from volitional to habitual, and eventually compulsive drug use in 

humans is a complex phenomenon and likely does not depend on drug use alone.   

 

8.2 The role of reinforcement learning in substance use disorder 

Reinforcement learning is an influential model of adaptive and goal-directed behaviour. Risky 

drug use is prevalent in SUD and is seen as a consequence of a breakdown in reinforcement 

learning processes (Redish et al., 2008). In view of the extant literature and my current findings, 

I argue that maladaptive behaviour in SUD is associated with a selective deficit in learning 

from negative outcomes and difficulties in integrating memory from past experiences, which 

might be relevant to our understanding of inflexible behaviours seen in these patients. However, 

this thesis finds that reinforcement learning deficits are unlikely to arise when alcohol 

consumption is harmful, but does not interfere with day-to-day functioning.    

 

8.2.1 Altered reinforcement learning processes in substance use disorder 

Humans are innately driven to avoid aversive or negative consequences (B. F. Skinner, 1963). 

This tendency is meant to promote functional behaviours, as individuals who do not learn from 

these events run the risk of repeating them and risk future harm or injury. Yet in the context of 



General Discussion 

177 

 

SUD, harmful use persists despite knowledge of the health, social and legal consequences that 

ensue (American Psychiatric Association, 2013). Considering that individuals with SUD do 

not modify behaviour following punishing consequences, there is an increasing body of work 

attempting to study and characterise the processes related to learning from punishment in SUD 

(Jean-Richard-Dit-Bressel et al., 2018; L. J. Vanderschuren et al., 2017), though relatively less 

work has been conducted in humans. Prior studies in CUD patients have shown that they do 

not adjust behaviour after multiple modalities of punishment, including symbolic errors (Hester 

et al., 2013), disgusting cues (Ersche et al., 2014), or even electric shocks (Ersche et al., 2016). 

However, it is noteworthy that these patients still exhibit normal autonomic signals (e.g. skin 

conductance responses) in response to these cues (Ersche et al., 2014, 2016). This suggests that 

aversive conditioning is not impaired in SUD, but rather the systems that control instrumental 

actions following negative feedback. Supporting evidence for this comes from animal studies, 

which identified a selective deficit in adapting instrumental behaviour from negative feedback 

in stimulant-exposed rats (Groman et al., 2018; Zhukovsky et al., 2019). In particular, Chapter 

3 translated these findings in humans, implying that stimulant-addicted patients have a reduced 

tendency to use negative feedback to inform subsequent behaviour, which might sustain 

compulsive behaviours.  

 

Although human and animal research seems to suggest a reduced impact of negative 

reinforcement on behaviours in general, there is less consensus on positive reinforcement 

learning. It is thought that reinforcing properties of addictive drugs over time hamper normal 

reward pathways in the brain (Volkow et al., 2004), which reduces the salience of non-drug 

reinforcers (Garavan et al., 2000; Goldstein et al., 2007). However, the behavioural evidence 

for an impaired positive (reward) reinforcement learning system is mixed, with some studies 

showing impaired reward learning (Morie et al., 2016; Strickland et al., 2016), but others 

showing intact performance (Stewart et al., 2014a, 2014b). The mixed findings present in the 

SUD literature are also reflected in this thesis, wherein Chapter 3 did not identify any 

measurable group difference in reward learning, but Chapter 5 identified a reduced impact of 

positive feedback during appetitive learning. However, one possible explanation that could 

reconcile these discrepant findings might be the differences in motivational salience of the 

reward. Multiple strands of evidence suggest that reward responses are modulated by how 

motivationally salient cues and rewards are to SUD patients. For example, a prior study found 

that although SUD patients exhibit similar behavioural and neural response towards monetary 
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incentive cues, SUD patients showed exacerbated behavioural and neural (striatal and 

prefrontal) responses towards drug incentive cues (Zhukovsky et al., 2020). Another study 

found that cocaine-related pictures are more favourable than other pleasant non-drug pictures 

in a sample of CUD patients (Moeller et al., 2009). These studies collectively suggest an altered 

baseline motivational factor in SUD, and that this may affect reinforced behaviour. This 

difference in motivation may not only be relevant for drug versus non-drug-related cues, it may 

extend to other modalities as well. For instance, when learning involves monetary reinforcers, 

a type of secondary reinforcer, SUD patients did not differ significantly with controls on their 

learning rate in Chapter 3, presumably because money remains a salient reinforcer to SUD 

patients. By contrast, the use of symbolic points, an arbitrary reinforcer specific only to the 

task, yielded a marked reduction of reward learning rate in Chapter 5. Other studies with 

arbitrary reinforcers also demonstrated this deficit in reward learning (Morie et al., 2016; 

Strickland et al., 2016), whereas participants incentivised with monetary payment did not show 

this pattern (Stewart et al., 2014a, 2014b). It seems that positive feedback can still modulate 

behaviour in SUD, but its effectiveness might be highly dependent on salience. Contingency 

management – a behavioural intervention rooted in positive reinforcement – is a real-world 

example that demonstrates the effectiveness of incentives in facilitating abstinence in cocaine 

users (Petry, 2000; Petry et al., 2017).  

 

Another possible explanation that could account for the discrepant results in the reward 

learning rate is the subtle difference between the behavioural tasks used in Chapters 3 and 5. 

Whilst the reinforcement learning task in chapter 3 adopted a probabilistic design (the 

optimal choices were rewarded 70% of the time), the task in Chapter 5 had a deterministic 

design (correct choices were always rewarded). Therefore, the probabilistic design may have 

promoted more exploration during choice selection, i.e. switching between choices (Feher da 

Silva et al., 2017), and thus could have obscured the effects of the rewarding feedback on 

behaviour.  

 

It is possible that impaired reinforcement learning in SUD is linked to suboptimal memory 

systems during learning. In particular, when decomposing response strategy during learning in 

Chapter 4, SUD patients were more likely to use a simpler, rigid rule-based strategy that 

depends on declarative memory, instead of flexibly integrating learned knowledge, which 
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depends on the non-declarative memory system. Healthy participants usually can rely on both 

declarative and non-declarative systems, depending on task demands (Foerde et al., 2006; 

Poldrack et al., 2001). However, unlike their healthy peers, SUD patients seem to rely more on 

simple learning strategies. Since non-declarative and declarative systems are dissociable, this 

response strategy could be interpreted as a compensatory response to adjust for poor non-

declarative learning. This might imply that one system could compensate for another under 

neuropathological conditions, such as in Parkinson’s Disease or Huntington’s Disease (Holl et 

al., 2012; Shohamy, Myers, Onlaor, et al., 2004), possibly due to deficits in neural functions 

(discussed later).  

 

8.2.2 Reinforcement learning and inflexible behaviour 

The understanding of reinforcement learning in SUD is also relevant to perseverative 

behaviours, a behavioural marker of compulsivity (Figee et al., 2016) and a recurring feature 

in SUD (Ersche et al., 2008; Ersche, Roiser, Abbott, et al., 2011; Jentsch et al., 2002; 

Schoenbaum et al., 2004). Perseveration is thought to be a manifestation of impaired 

reinforcement learning (Lucantonio et al., 2012), yet only recently it has been understood in 

computational terms. Specifically, in an uncertain environment, there is a trade-off between 

maximising reward values and ignoring spurious outcomes that could be noise (Gershman, 

2020). As such, perseveration could be expressed as aberrant persistence towards prior reward 

values irrespective of changes in current value (i.e. stickiness), or an inability to update or 

override learned responses in light of new information (Gershman, 2020); both of which 

implicate the reinforcement learning systems. A prior analysis on probabilistic reversal 

learning task performance in populations of OCD and SUD patients supported both views: 

those with compulsive disorders not only aberrantly updated choice values in response to 

symbolic positive and negative feedback, but they also showed increased stickiness (Kanen et 

al., 2019). Another recent study has also identified impaired contingency learning as the reason 

why behavioural change during reversal learning is difficult in methamphetamine-addicted 

users (A. H. Robinson et al., 2021). Although the behavioural tasks reported in my thesis are 

not optimised to measure perseverative behaviours, unlike probabilistic reversal learning 

paradigms, the current findings generally align well with the notion of impaired adjustments to 

behaviour, even when negative feedback instructs us otherwise.  
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8.2.3 Reinforcement learning impairments not present in early stages of substance use 

disorder 

Most studies that identified reinforcement learning impairments in SUD (including Chapters 

3-5) were conducted in severe SUD, where drug use becomes so dysfunctional that it dominates 

daily life. A question I attempted to address was whether these impairments manifest 

themselves in individuals with early signs of pathological alcohol use, which has implications 

on early detection and interventions. However, analysis on a large online population of harmful 

alcohol drinkers, who were not formally diagnosed with SUD, did not lead to any observable 

reinforcement learning impairments in Chapter 7. The lack of relationship between alcohol use 

severity (as reflected by AUDIT scores) and reinforcement learning impairments, as well as 

between compulsive use (as measured by OCDUS score) and learning performances (chapters 

3-5) do not support the notion of a dose-dependent effect. These findings seem to imply that 

while addictive drugs may interfere with reinforcement learning pathways in the brain, 

behavioural impairments might only be a characteristic in severe SUD. Inferring from the data 

presented in Chapter 7, it seems likely that harmful drinkers nevertheless retain most of their 

cognitive and social functioning to live functional lives, as the majority of them were studying 

or pursuing paid work, and were not actively considering treatment. Further, it is also possible 

that the COVID-19 pandemic might have contributed to temporary increases in drinking. 

Nevertheless, this is one of the first studies that probes reinforcement learning in an at-risk 

group, and future work is needed to replicate this finding.  

 

8.2.4 Sex differences in substance use disorder and reinforcement learning 

This thesis reported data on samples that were predominantly male, as most cocaine users 

recruited from Cambridgeshire (at the time of these studies) were overwhelmingly male. 

However, it is noteworthy that there are disparities between men and women with SUD (Becker 

et al., 2017; Greenfield et al., 2010; Lynch et al., 2002). Multiple studies have shown that 

women escalate from controlled to compulsive drug use more rapidly than men (Haas & Peters, 

2000; Johnson et al., 2005; Piazza et al., 1989; Wagner & Anthony, 2007). Women also showed 

greater propensity than men to relapse following exposure to stress or triggering cues (al’Absi 

et al., 2015; Kennedy et al., 2013; Torres & O’Dell, 2016). These observations are suggested 

to be associated with sex differences in the neurobiological substrates that mediate drug 

reinforcement (Becker & Chartoff, 2019; Becker & Hu, 2008; Becker & Koob, 2016). 

Preclinical studies have shown that female rats have generally upregulated dopamine release 
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and uptake (Walker et al., 1999) and greater amphetamine-induced dopamine release in the 

nucleus accumbens (Becker, 1999), suggesting a clear sexual dimorphism in dopamine 

signalling. Behaviourally, animal models of psychostimulant self-administration have 

identified that ovariectomized female rats (i.e. removed ovaries) were more likely to exhibit 

increased locomotor sensitisation towards, and motivation for, psychostimulants (Hu et al., 

2004; Hu & Becker, 2003; Lynch & Carroll, 1999). Moreover, the administration of estrogen 

further augments the reinforcing properties of psychostimulants in female rats, but not male 

rats (Hu & Becker, 2008; Jackson et al., 2006; Lynch et al., 2001). These studies offer 

compelling evidence for the organizational and activational effects of sex hormones on drug 

reinforcement. Considering that male and female rats have different biological responses to 

reward, it stands to reason that there would be sex differences in cognitive processes such as 

reinforcement learning and memory as well (Dalla & Shors, 2009). Human evidence for this 

hypothesis is scarce, but a recent study noted that women had augmented reward-prediction-

error related brain activity compared to men, suggesting that there may indeed be sex 

differences in reinforcement learning (Joue et al., 2021). Although it remains unclear how 

exactly chronic use of addictive drugs differentially alters reinforcement learning pathways in 

men and women, these putative sex differences in reinforcement learning need to be considered 

when interpreting the current results. Given the male-dominant samples in my thesis, the 

current findings may have limited generalisability to women with SUD.  

 

8.2.5 Section summary 

In brief, reinforcement learning in SUD can be characterised by marked impairments in 

learning from negative feedback and deficits in integrating past experiences effectively to 

inform future behaviour. Deficits in these processes may lead to inflexible behaviour common 

in SUD, though notably these deficits may only manifest behaviourally in severe SUD, and not 

in the earlier stages where behaviour is largely under control. Although there are notable sex 

differences in SUD, most chapters only reported behavioural findings from male-dominant 

samples, so this should be considered when interpreting these results.  

 

8.3 Putative neural substrates of reinforcement learning in substance use disorder 

The chronic use of addictive drugs is thought to cause neuroadaptive changes within the 

reinforcement systems in the brain (Everitt et al., 2001; Hyman et al., 2006), which interferes 
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with normal reinforcement learning processes (Maia & Frank, 2011). In this section, I discuss 

the putative changes in the brain that are likely to underpin these deficits in SUD, which include 

the role of dopamine and the fronto-striatal brain pathways implicated in incentive values and 

integrating learned knowledge. I acknowledge that different addictive drugs may differentially 

affect the brain, so I also discuss the possibility of common reinforcement learning impairments 

across addictive disorders.  

 

8.3.1 The role of dopamine D2 receptors in human substance use disorder 

A growing body of studies in human SUD have shown compelling evidence for a 

downregulation of striatal dopamine D2 receptors in SUD (Martinez et al., 2004; Volkow et al., 

1996, 1997, 2001). This downregulation putatively affects responses to reward, as individuals 

with alcohol, cocaine and opioid use disorder have reduced responsiveness towards non-drug 

reinforcers (Garavan et al., 2000; Heinz et al., 2004; Lubman et al., 2009). Whilst these studies 

suggest that reinforcement is blunted in SUD, they have not specifically investigated its effects 

on learning. The novel aspect of my findings in Chapter 3 is that it identified a relationship 

between aberrant dopamine D2 receptors and impaired negative feedback learning in SUD. 

This is likely because D2 receptors are implicated in aversive learning, possibly due to their 

role in signalling negative prediction errors (Frank & Hutchison, 2009; Frank & O’Reilly, 

2006). Consequently, a downregulation in dopamine D2 receptors may reduce the salience of 

negative feedback in SUD. This is mirrored in individuals with genetically determined 

reductions in D2 receptor density, who also showed behavioural deficits in learning from errors 

(Klein et al., 2007). Other pharmacogenetic studies confirmed the link between D2 receptor 

polymorphisms (e.g. Taq1A) and altered avoidance behaviours (Frank & Hutchison, 2009; 

Jocham et al., 2009).  

 

Several studies have identified an allelic association between reduced D2 receptors and 

increased risk for SUD (Blum et al., 1990; Noble et al., 1993). Would this imply that genetically 

determined deficits in learning from errors, for example from Taq1A polymorphisms, could 

constitute a vulnerability pathway to developing SUD? The answer to this question is not 

straightforward for two reasons. First, reduced D2 receptors can be both a cause and a 

consequence of SUD: in non-human primates, reduced pre-morbid striatal D2 receptor levels 

were negatively related to the rate of cocaine self-administration, and subsequent chronic self-
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administration of cocaine reduces striatal D2 receptors further (Moore et al., 1998; Nader et al., 

2006; Nader & Czoty, 2005). Second, D2 receptors’ role in behaviour is likely multi-faceted: 

animal and human studies have shown that reduced D2 receptors are also linked to increased 

sensitivity to drug reinforcement (Bello et al., 2011; Volkow et al., 1999) and elevated trait 

impulsivity (Buckholtz et al., 2010; Dalley et al., 2007) – both of which are vulnerability factors 

to SUD that may interact with learning too. Consequently, it is unclear to what extent 

reinforcement learning impairments in SUD can be explained by pre-morbid neurobiological 

or other (e.g. socioeconomic status, IQ) factors, and this question remains largely unexplored 

in the literature. To the best of my knowledge, there are no existing studies that address this 

question directly – a paucity also highlighted in several recent reviews (Gueguen et al., 2021; 

R. Smith et al., 2021). Future longitudinal studies in either humans or animals would be needed 

to elucidate whether impaired reinforcement learning precedes SUD development, and whether 

other modulatory factors such as impulsivity, which notably predicts SUD development, 

interact with learning.  

 

8.3.2 Aberrant fronto-striatal systems in substance use disorder 

Reinforcement learning depends on the integrity of fronto-striatal systems (Averbeck & Costa, 

2017; Averbeck & O’Doherty, 2021; Haber & Behrens, 2014). Accumulating evidence from 

both animals and humans suggests that addictive drugs alter the structure and function of these 

pathways critical for incentive value and contingency learning (Calu et al., 2007; Ersche et al., 

2005; Meunier et al., 2012; Moreno‐López et al., 2015; Schoenbaum et al., 2004). An ancillary 

analysis on white matter connectivity in Chapter 5 found that whilst the structural integrity of 

the anterior caudate-medial OFC pathway did not differ between CUD patients and controls, 

the learning rate (impact of feedback on actions) was only significantly correlated in control 

participants, not in CUD patients. However, it should be noted that the difference between these 

correlational analyses was not statistically significant. One possibility could be that learned 

values were not effectively communicated in the brain. This interpretation would be consistent 

with findings from prior studies with alcohol use disorder patients, which showed that their 

functional connectivity within the fronto-striatal network during reward learning was reduced 

(Deserno et al., 2015; Park et al., 2010).  
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Furthermore, this thesis also provided some indirect evidence for striatal function deficits in 

SUD, namely from analysing response strategies in the weather prediction task, a well-

established probabilistic category learning task that reliably recruits the striatum (Knowlton et 

al., 1996; Poldrack et al., 1999, 2001; Shohamy, Myers, Grossman, et al., 2004). Analyses of 

response strategy from Chapter 4 identified that half of the SUD patients were unable to 

effectively integrate and synthesise past experiences to guide behaviour, but instead relied on 

simple rule-based strategy during learning. Detecting regular occurrences and integrating 

learned experiences is a known function of the striatum (Seger & Spiering, 2011). In particular, 

my results from Chapter 4 are reminiscent of those in Parkinson’s Disease patients 

(characterised by marked striatal impairments), who also exhibited the same behavioural 

profile as CUD patients in the current data (Shohamy, Myers, Grossman, et al., 2004; Shohamy, 

Myers, Onlaor, et al., 2004). It is unclear, though, why some SUD patients adopt a striatal-

dependent strategy, given SUD patients who used a more optimal strategy did not differ in 

demographical or clinical characteristics from those who used a simple strategy. There could 

be subtle functional or structural differences in the neural pathways that discriminate between 

those who adopt a complex strategy and those who use a simple strategy, which could be the 

basis for future investigations. 

 

8.3.3 Generalisability of impaired reinforcement learning  

It is noteworthy that different classes of addictive drugs differentially affect the neurobiology 

in humans (Badiani et al., 2011; Lüscher & Ungless, 2006). Hence, a pertinent question is 

whether impairments in reinforcement learning are common across all addictive behaviours? 

All SUDs are equally characterised by persistent pathological drug-taking patterns despite the 

negative effects (American Psychiatric Association, 2013), so it is logical to presume that 

negative feedback learning is affected in SUD, albeit to various extents. Further, most addictive 

drugs modulate dopamine levels both in the short and long term (Di Chiara & Imperato, 1988; 

Nestler, 2005; Pierce & Kumaresan, 2006; Saal et al., 2003), which may affect reinforcement 

learning. I argue that it is likely that reinforcement learning is impaired in all SUDs, but a 

paucity in research studies precludes us from reliably addressing this question at this stage. 

Current evidence in SUD populations does not reveal a unifying picture. For example, although 

cocaine and alcohol use disorder patients are consistently impaired in learning and memory 

(Fernández-Serrano et al., 2011), in opioid use disorder the evidence is mixed: opioid users 

have been found to exhibit both exaggerated (Myers et al., 2016) and impaired punishment 
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learning (Myers et al., 2017) in different studies. In cannabis use disorder, only one paper 

showed a relationship between cannabis use disorder and impaired reward learning (Lawn et 

al., 2016), but none addressed whether punishment learning is affected. The issue is further 

complicated when we consider behavioural addictions such as gambling disorder, which lacks 

the neuro-adaptive influences from addictive drugs (L. Clark et al., 2019). The aetiology of 

brain-induced changes in gambling disorder is not clear, but recent studies do support the 

notion of impaired reinforcement learning in gambling disorder patients (Perandrés-Gómez et 

al., 2021; Wiehler et al., 2021). Ultimately, it is premature to draw any conclusions about a 

common reinforcement learning profile in addictive disorders, as more work is needed. 

 

8.3.4 Section summary 

Reinforcement learning impairments in SUD can be, at least in part, attributed to dopaminergic 

dysfunctions such as D2 receptor downregulation and abnormal structure and function in 

fronto-striatal brain pathways that mediate reinforcement learning. However, whether these 

behavioural and neural impairments are common across addictive behaviours warrants further 

investigation.  

 

8.4 Goal-directed and habitual control in substance use disorder 

Chronic exposure to addictive drugs is suggested to alter the balance between goal-directed 

and habitual control over learned actions, favouring the latter (Everitt & Robbins, 2005, 2016). 

This hypothesis has been used to explain why drug-taking in SUD becomes autonomous and 

not amenable to the consequences associated with it. However, despite a host of evidence 

supporting the notion of habit predominance in animal and human SUD (Corbit et al., 2012; 

Ersche et al., 2016, 2021; Nordquist et al., 2007; Zapata et al., 2010), some studies suggest that 

habits are less essential in the development of addictive-like behaviours (Hogarth et al., 2019; 

Singer et al., 2018; Vandaele et al., 2019). In this section, I discuss the ongoing debate about 

the relevance of habits in understanding pathological behaviour in SUD, and suggest some 

potential pathways that lead to habit predominance in SUD.  
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8.4.1 Goal-habit controversy in substance use disorder 

The role of habits in SUD has generated considerable debate. Recently, Hogarth (2020) 

suggested that an enhanced habit bias does not explain addictive behaviours, and that in the 

extant human data, habit predominance may be a by-product of poor contingency learning. In 

lieu of maladaptive habits, Hogarth posited that addictive behaviours are driven by an excessive 

goal-directed preference for drugs because drug choices are highly valued and sought after. As 

choices to initiate and maintain drug use are driven by value (Hogarth & Field, 2020), 

maladaptive drug use cannot be construed as a habit. I argue that whilst addictive behaviours 

can reflect an exaggerated motivation towards drugs, there is convincing evidence for increased 

habitual control in SUD, which cannot be fully accounted for by poor contingency learning, as 

Hogarth argued (2020). So, discarding the relevance of habits in SUD now might be premature. 

 

On the one hand, there is indeed evidence to suggest that drug-seeking can be goal-directed. 

For example, rats that compulsively self-administer cocaine can flexibly navigate through a 

complex puzzle in order to gain access to cocaine (Singer et al., 2018). The effort and flexibility 

demonstrated in puzzle-solving requires careful planning and deliberation, and thus cannot be 

a habit-like behaviour. This is also consistent with human drug users beyond the lab. For 

instance, certain news outlets have reported that drug users use creative means to score and 

distribute while evading the authorities (Munro, 2019; Schrager, 2015). During data collection, 

some SUD patients even recounted that they willingly “fasted” (i.e. withheld drugs to 

themselves) and endured withdrawal symptoms in order to experience a more intense euphoria 

when using. Again, these planned behaviours cannot be habitual either. It is possible that these 

behaviours might actually reflect goal narrowing, where the drugs have “hijacked” the goal-

directed system to intensify efforts to obtain and use them, while displacing all other non-drug 

related aspects (Volkow et al., 2019). As such, drugs are highly sought after, but other 

reinforcer types are less motivating. This goal-narrowing phenomenon has been shown in a 

recent study, where CUD patients valued drugs more highly than food, and were willing to 

incur more costs to procure them (Breedon et al., 2021).  

 

On the other hand, there is compelling evidence that human SUD is associated with increased 

habit formation, and that the observed habit bias in SUD cannot simply be accounted for by 

poor learning. In particular, the experimental findings of Chapter 5 have demonstrated that 
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impaired appetitive learning is insufficient to account for habit formation in CUD. Additionally, 

in a contingency degradation paradigm that involves minimal reinforcement learning, CUD 

patients still demonstrated a habit bias (Ersche et al., 2021). Beyond the lab, SUD patients in 

real life also display habit-like behaviours when it comes to drug use. For example, I noticed 

during data collection that patients often describe drug-taking as a very ‘mindless’ and 

automatic behaviour, and they show no explicit desire to use drugs. Indeed, when asked, most 

drug users even reported spontaneously that they “don’t know” why they use drugs (Breedon 

et al., 2021), suggesting an autonomous quality to that action. I also showed in Chapter 6 that 

this bias towards automatic habits was also found when measured by self-report. This self-

reported automaticity also increased the longer they were using cocaine. These results indicate 

that a habitual propensity does pervade non-drug-using behaviour in human SUD as a function 

of cocaine use. However, it is notable that the evidence for habit predominance is consistent in 

cocaine users, but less so for other substances such as alcohol (Sjoerds et al., 2013; van 

Timmeren et al., 2020). This discrepancy may be due to potential differences in habit formation 

between human cocaine and alcohol users, but the equivocal state of research precludes any 

conclusive inferences. Regardless, future studies are needed to replicate these effects.  

 

Taken together, it seems that the habit theory of addiction does not perfectly explain all 

addictive behaviours, but it should not be discarded prematurely. Some stages of SUD (e.g. 

drug-seeking) may be goal-directed, whilst others (e.g. drug-taking) may be driven by habitual 

processes. As Epstein (2020) argues, there may not be a one-size-fits-all theory to address the 

incredibly complex and multi-faceted nature of SUD, and theories should therefore move away 

from the “winner-take-all” approach (Epstein, 2020).  

 

8.4.2 Possible pathways to a habit predominance in substance use disorder 

I alluded earlier that enhanced habit formation is assumed to be a consequence of poor goal-

directed learning (Hogarth, 2020; Vandaele & Janak, 2018). However, data from this thesis 

suggests otherwise. Specifically, findings in Chapter 5 suggest that, despite impaired goal-

directed learning during initial stages, these deficits do not account for the enhanced habit 

formation seen in CUD. This is also supported by findings in Chapter 7, which found a lack of 

relationship between learned habits and goal-directed control. These data imply that there are 
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other factors at play that could contribute to the predominance of the habit system. Here, I 

speculate on two candidate factors: individual differences in automaticity and effort. 

 

The current data seem to suggest that individual differences in automaticity might underpin 

habitual behaviours in SUD. As I have demonstrated in Chapter 6 with self-reported measures, 

CUD patients were more susceptible to elicit automatic habits when in an associated 

environment. Moreover, I showed a similar relationship in Chapter 7: the self-reported 

propensity for automatic habits is positively correlated with task-related habitual responses in 

users who drink at harmful levels. These findings provide supporting evidence for a 

relationship between enhanced propensity for stimulus-driven habits and lab measured habits. 

However, although an elevated habit system may contribute to the development of addictive 

behaviours, thus far the mechanisms that support this remain unclear, and to the best of my 

knowledge, no studies have so far attested to this relationship. In particular, I offer two caveats 

with respect to my current findings: (1) whether self-reported automaticity and habitual 

behaviours reflect the same construct needs further validation; and (2) it is unclear whether 

self-reported automaticity precedes or follows the development of SUD.   

 

Alternatively, habit biases in SUD could be related to a reduction in effort or engagement with 

difficult tasks. A distinctive feature of habits is that they are easily executed, as opposed to 

goal-directed actions which require more cognitive resources (Balleine, 2019; Balleine & 

O’Doherty, 2010). The tendency to disengage with difficult activities would logically result in 

the falling back on well-learned behaviours that are more easily executed. This is most apparent 

when under stress, which is known to bias actions towards the habit system, plausibly by 

reducing top-down prefrontal engagement (Schwabe & Wolf, 2009). I showed with the 

Habitual Self Control Questionnaire (HSCQ) (Chapter 6) that CUD patients were less willing 

or uninterested to engage in difficult activities that require will and motivation, which is also 

dependent on the goal-directed system. Further supporting evidence can be seen in Chapter 4 

where, during category learning, approximately half of CUD patients adopted the easier 

strategy instead of the difficult but more optimal one. The interpretation of effort coincides 

with the computational framework on model-based versus model-free behaviour. According to 

this perspective, the complexity of the actions is a crucial determinant of behavioural control 

(Dolan & Dayan, 2013). Model-based behaviours are effortful, require taxing computations, 
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and are meant to represent goal-directed action; by contrast, model-free behaviours only rely 

on prior rewards, and easily executable, and are meant to reflect habits (Daw, 2014; Dayan & 

Daw, 2008). In tasks that simulate model-based and model-free behavioural strategies (e.g. the 

two-step task, (Daw et al., 2011; Gläscher et al., 2010)), SUD patients are thought to engage 

more in model-free behaviours, perhaps because they are simpler and easily executed, and 

require lower cognitive demand (Voon et al., 2017). However, as of now, it is not clear whether 

this tendency to “take the easy road” reflects changes in disposition or motivational circuits in 

SUD.  

 

8.4.3 Section summary 

The habit theory of addiction is useful for explaining certain aspects of SUD, but contrary to 

assumptions, deficits in goal-directed control cannot fully account for the increased tendency 

for habits. Extenuating factors such as individual differences in habitual propensities and 

willingness to expend effort may contribute towards habit biases, but future studies are needed 

to test these hypotheses.  

 

8.5 Computational modelling of behaviour in neuropsychiatry 

Computational modelling of behaviour capitalises on the advances in data analytics to 

decompose cognitive processes into its constituent latent processes (Daw, 2011), which was 

previously not possible. The use of precise mathematical frameworks enables us to define 

“algorithmic hypotheses” about how behaviour is specifically generated (Wilson & Collins, 

2019). This thesis in particular used reinforcement learning algorithms to identify individual 

differences within the latent parameters of those with or without SUD, which arguably has 

provided more insight than that of summary scores alone (Robbins & Cardinal, 2019). Perhaps 

one of the major advantages of computational modelling is its ability to test mechanistic 

hypotheses that previously could only be conducted in preclinical studies (Robbins & Cardinal, 

2019). Ample examples are provided in this thesis: the use of a delta rule learning algorithm 

isolated a specific deficit in the impact of feedback on overt behaviour that translated prior 

animal work (Chapters 3 and 5). I also used model comparison methods to identify models that 

best explained choice behaviour (Chapter 4). There are also many examples beyond this thesis, 

some of which significantly advanced our knowledge of human cognition. For instance, the 

advent of reinforcement learning algorithms have allowed the identification of prediction errors 
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in the human brain (D’Ardenne et al., 2008; Pagnoni et al., 2002) that were previously found 

in non-human primates (Schultz et al., 1997). Another apt example is the use of modelling to 

tease apart the dissociable contributions of striatal versus prefrontal dopamine in multiple 

aspects of reinforcement learning (Doll et al., 2016; Frank et al., 2007). Indeed, the burgeoning 

application of computational methods in psychiatry has led to the emergence of computational 

psychiatry: the use of computational models to make mechanistic inferences on behaviour in 

psychiatric disorders (Corlett & Fletcher, 2014; Huys, Maia, et al., 2016).  

 

However, as much as computational modelling has the potential to significantly advance the 

field of psychiatry and psychopharmacology, there is a need to acknowledge certain caveats 

within the field. First, the interpretation of similar model parameters may be different across 

studies, and needs to be contextualised within the behavioural task. For example, a higher 

learning rate parameter – i.e. a larger and more rapid update from feedback – allows the 

participants to reach a learning asymptote quickly, which could be beneficial in a stable 

environment (Behrens et al., 2007), such as the probabilistic reinforcement learning task. 

However, for a more volatile situation (e.g. where learned contingencies are constantly 

switching), such as those in serial probabilistic reversal learning paradigms, optimal 

performance requires a trade-off between ignoring rare events and flexibly updating actions 

when contingencies change. In this respect, a higher learning rate may not be beneficial, as a 

stable representation may not be reached if one acts on all spurious events. This is aptly 

demonstrated in Chapter 3 (Appendix B) – fitting the winning model of Kanen et al’s (2019) 

reversal learning task to the current data revealed contrasting results, presumably due to the 

absence of a reversal component, which reduced volatility in my task. Second, for models to 

be informative, it is imperative for mathematical models to be grounded in psychological and 

neurobiological theory, which is not necessarily the case in the field of SUD. In particular, 

some theories that attempt to explain aberrant drug use in SUD (e.g. actor-critic models 

(Takahashi et al., 2008) and hierarchical control models (Keramati et al., 2017; Schwöbel et 

al., 2021)) are inspired by theoretical abstractions posited in computer science, which have not 

yet been shown to be biologically plausible in humans (Mollick & Kober, 2020). Given the 

complexity and heterogeneity of addictive disorders, it is likely that there will not be a unifying 

“one-size-fits-all” computational framework that addresses SUD holistically. Nevertheless, 

computational models, especially those grounded in psychological theory e.g. the Rescorla-
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Wagner model (Rescorla & Wagner, 1972), have proved useful in psychiatry research, and are 

likely here to stay for the long haul.   

 

8.6 General implications  

Findings from this thesis argue against the notion of SUD as a consequence of moral failure, 

but a complex brain disorder with significant neurobiological and psychological underpinnings. 

Yet, many of the current drug policies continue to be motivated by the extremely damaging 

moral failure narrative, which focuses on enacting punitive measures against drug users 

(Volkow, 2021). Impaired learning from negative feedback in SUD (Chapter 3) highlights the 

ineffectiveness of punitive measures against addicted users. While negative consequences may 

act as a preventative deterrent under normal circumstances, they do little in the context of SUD. 

On the contrary, sentencing addicted individuals with certain punishments (e.g. imprisonment), 

or socially ostracising them so they will “learn their lesson” might do more harm than good. A 

clear example of this is the failure of the “war on drugs” campaign by the United States 

Government, of which punitive measures have not only failed to reduce the prevalence of drug 

addiction, but also resulted in an increase of preventable deaths by drug overdose. 

Imprisonment has been shown to actually increase the risk of overdose in former inmates 

(Binswanger et al., 2007). Moreover, a more recent analysis suggests that there is no 

relationship between punishment and drug misuse (The Pew Charitable Trusts, 2018). Instead 

of punitive measures, it may be more productive to adopt positive reinforcement-based 

treatment approaches with suitable incentives that promote abstinence and self-control. One 

such example is contingency management, an intervention based on positive reinforcement, 

which showed some efficacy in promoting abstinence and behavioural change in addicted 

individuals (Petry et al., 2017).  

 

In light of the habit predominance in SUD, it has been suggested that behavioural interventions 

can focus on the training of new habits to replace maladaptive ones. Since SUD patients have 

an elevated tendency for automatic habits (Chapter 6) and a reduced goal-directed system 

(Chapters 3, 4, 5), interventions that promote positive habits may be more effective than 

strategies that that require the goal-directed system (e.g. punishment or inhibition). Further, 

simple but repetitive strategies may be easier to apply in SUD, considering that a subset of 

these patients favour a simpler rule-based strategy during learning. 
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8.7 Limitations 

This thesis mainly focused on the behavioural aspects of reinforcement learning in human SUD. 

However, there are several methodological and conceptual limitations that need to be 

considered when interpreting the findings. First, the lockdown that followed the COVID-19 

pandemic has forced me to conduct an online study on alcohol and habits (Chapter 7). Although 

the convenience and speed of online recruitment is advantageous, it should be noted that the 

data quality might differ to other studies where in-person screening and data collection were 

more stringent.   

 

Second, the work presented here lacks functional neuroimaging methods to elucidate the neural 

processes of reinforcement learning. This is especially important, given that the hypothesis for 

reinforcement learning impairments in SUD is derived from the putative neuroadpative 

changes in learning circuits in the brain. At times, I have speculated about the neural substrates 

involved in these impairments, but without functional neuroimaging, these speculations need 

to be cautiously interpreted.  

 

Third, this thesis reported primarily on data in cocaine use disorder. Although cocaine use 

disorder is representative of SUD, it may be qualitatively different to other substances such as 

alcohol and opioids. Although the prevailing assumption is that addictive behaviours in SUD 

share certain neurobiological (e.g. altered dopaminergic pathways) and psychological 

characteristics (e.g. risky use) (Fernández-Serrano et al., 2011; Nestler, 2005), the current 

findings need to be interpreted in view of the potential differences between different classes of 

substances.  

 

Fourth, in most chapters, the IQ levels were not matched between the control and drug-user 

groups. This posed a problem for the interpretation of the reinforcement learning data, given 

that higher IQ plausibly leads to better learning performance (van den Bos et al., 2012). 

However, in the context of this thesis, statistically controlling for IQ during analyses would not 

be appropriate because lower verbal IQ seems to be an inherent feature of the drug-user groups. 
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Most SUD patients in my samples originated from socio-economically disadvantaged cohorts, 

and some dropped out of school early due to drug abuse problems – a common observation 

amongst youths with problematic substance use (Annis & Watson, 1975; Townsend et al., 

2007). Whilst statistical treatments to account for IQ differences may not be strategic here, the 

replication of the main findings in an IQ-matched sample (i.e. Chapter 3) and the lack of 

association between IQ and learning performance in several chapters is reassuring. 

Nevertheless, these IQ differences need to be borne in mind when interpreting the data.   

 

Fifth, my work here on reinforcement learning only investigates symbolic or monetary 

reinforcement, which, although common within the literature, is a limited view of 

reinforcement. The effects of primary reinforcers (e.g. food) and social reinforcers (e.g. peer 

approval) are sparsely studied in SUD. This is worth considering because drug-taking in SUD 

can sometimes involve a social component, which could also differ depending on the classes 

of substances (e.g. cocaine at parties, heroin at home) (Badiani et al., 2011). Whether social 

reinforcement, for example, modulates behaviour more successfully than conventional 

reinforcement, remains an open question.  

 

Sixth, although this thesis investigates reinforcement learning carefully, the role of working 

memory was not assessed here. Working memory is thought to play a role in reinforcement 

learning, particularly in early learning (Collins & Frank, 2012). One study has found that SUD 

patients have impairments in working memory, presumably due to prefrontal deficits 

(Goldstein et al., 2004). Other work also showed that individuals with poorer working memory 

capacity performed less well in complex reinforcement learning when under stress, which in  

itself is known to impair prefrontal working memory (Otto et al., 2013). Whilst I am primarily 

interested in reinforcement learning as a whole, the influence of working memory on learning 

should be acknowledged.   

 

Lastly, it should be acknowledged that aberrant learning does not explain every aspect of 

maladaptive behaviours in SUD. Although work in this thesis has contributed to our 

understanding from multiple perspectives, it only addresses the tip of the iceberg, as addictive 

disorders are multidimensional. For example, the mechanisms behind dysregulated affective 
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states in SUD (Albein-Urios et al., 2014; Fox et al., 2007) may not be sufficiently understood 

with reinforcement learning alone.   

 

8.8 Future outlook 

In view of the conceptual and methodological limitations, as well as unanswered questions 

from this thesis, I propose the following to be considered as the premise for future work: 

(1) Future studies of reinforcement learning in SUD should expand beyond categorical 

diagnoses and adopt a more continuous approach. Whilst categorical diagnostic tools 

have been immensely useful in facilitating classification and treatment of psychiatric 

disorders, they are limited by the lack of predictive value in treatment prognosis, 

possibly due to the vast heterogeneity within a singular diagnosis (Insel, 2014). Further, 

these symptoms-based diagnoses may not capture the underlying mechanisms that 

could be dysfunctional (Insel, 2014). One promising approach is to adopt a trans-

diagnostic approach in studying reinforcement learning, such as those proposed by the 

Research Domain Criterion (RDoC) (Insel et al., 2010). 

(2) The effects of different classes of drugs on reinforcement learning (i.e. cannabis, 

opioids) should not be ignored, and there is a need to study them extensively as 

evidence is scarce. 

(3) As alluded to earlier, the characterisation of reinforcement learning would not be 

complete without understanding the effects of different modalities of reinforcers. 

Future reinforcement learning studies in SUD should thus consider comparing the 

effects of social (e.g. peer approval or exclusion) or primary reinforcers (e.g. palatable 

foods or bitter solutions). 

(4) The influence of contexts in modulating learned behaviours, as exemplified by 

Pavlovian-to-Instrumental Transfer (PIT), is unexplored in human SUD. This is 

especially relevant in the study of relapse, where environmental cues associated with 

drugs are thought to attain motivational salience, which triggers drug use (Hogarth et 

al., 2013). Given the role of Pavlovian-conditioned drug cues in invigorating drug-

taking in animal models (Corbit & Janak, 2007; LeBlanc et al., 2012), it is of particular 

importance to translate these findings in human SUD. There is already preliminary 

work is this direction in alcohol use disorder (Chen et al., 2021; Garbusow et al., 2014), 

which is promising, but a more concerted and substantive effort is needed.  
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(5) The accelerated habit formation in SUD is thought to underpin the transition to 

compulsions in SUD (Everitt & Robbins, 2005). Yet how or whether this transition 

occurs in human SUD is unknown. One approach that can be used to test this hypothesis 

is to study, with neuroimaging, the process of habit formation in SUD. I acknowledge 

that studying habit formation in humans is notoriously difficult, but promising efforts 

have been made, at least in healthy humans, to understand the dynamics of goal-directed 

and habit systems over the course of learning (Zwosta et al., 2018).  

(6) Not everyone who uses drugs becomes addicted. Given that there are genetic 

vulnerabilities that could exacerbate SUD development (e.g. weakened learning from 

errors (Klein et al., 2007)), it is possible that there are reinforcement learning 

impairments that precede the development of SUD. To the best of my knowledge, this 

has not been explored in the literature.   

 

8.9 Concluding remarks 

This thesis attempted to address a gap in the literature, namely the characterisation of 

maladaptive behaviour in SUD with a reinforcement learning framework. The synthesis of my 

current findings led me to conclude that learning and memory processes that facilitate goal-

directed behaviour are impaired in severe SUD, which provides a putative explanation for why 

maladaptive behaviours persist in SUD. However, these deficits are not only insufficient to 

account for habit predominance in human SUD, they also do not manifest behaviourally at 

early stages of harmful drug use. Future work should be focused on elucidating the 

neurobiological mechanisms that underpin behaviour, which could lead to promising findings 

that are clinically informative. 
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