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Abstract

Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component of gene
expression variation. A major challenge in the analysis of such studies are hidden confounding factors, such as unobserved
covariates or unknown subtle environmental perturbations. These factors can induce a pronounced artifactual correlation
structure in the expression profiles, which may create spurious false associations or mask real genetic association signals.
Here, we report PANAMA (Probabilistic ANAlysis of genoMic dAta), a novel probabilistic model to account for confounding
factors within an eQTL analysis. In contrast to previous methods, PANAMA learns hidden factors jointly with the effect of
prominent genetic regulators. As a result, this new model can more accurately distinguish true genetic association signals
from confounding variation. We applied our model and compared it to existing methods on different datasets and
biological systems. PANAMA consistently performs better than alternative methods, and finds in particular substantially
more trans regulators. Importantly, our approach not only identifies a greater number of associations, but also yields hits
that are biologically more plausible and can be better reproduced between independent studies. A software
implementation of PANAMA is freely available online at http://ml.sheffield.ac.uk/qtl/.
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Introduction

Genome-wide analysis of the regulatory role of polymorphic loci

on gene expression has been carried out in a range of different

study designs and biological systems. For example, association

mapping in human has uncovered an abundance of cis associations

that contribute to the variation of a third of all human genes [1,2].

In segregating yeast strains, linkage studies have revealed extensive

genetic trans regulation, with a few regulatory hotspots controlling

the expression profiles of tens or hundreds of genes [3,4].

Despite the success of such expression quantitative trait loci

(eQTL) studies, it has also become clear that the analysis of these

data comes along with non-trivial statistical hurdles [5]. Different

types of external confounding factors, including environment or

technical influences, can substantially alter the outcome of an

eQTL scan. Unobserved confounders can both obscure true

association signals and create new spurious associations that are

false [6,7].

Suitable data preprocessing, or careful design of randomized

studies are helpful measures to avoid confounders in the first place

[8], however they rarely rule out confounding influences entirely.

It is also relatively straightforward to account for those factors that

are known and measured. For example, it is standard procedure to

include covariates such as age and gender in the analysis [9,10].

Similarly, the effect of populational relatedness between samples, a

confounding effect that is observed or can be reliably estimated

form the genotype data [11,12], is usually included in the model.

However other factors, including subtle environmental or

technical influences, often remain unknown to the experimenter,

but still need to be accounted for. Their potential impact has

previously been characterized in multiple studies; for example

Plagnol et al. [13] and Locke et al. [14] showed that virtually any

aspect of sample handling can impact the analysis.

Several computational methods have been developed to account

for unknown confounding variation within eQTL analyses

[2,6,7,15,16]. A common assumption these methods built on is

that confounders are prone to exhibit broad effects, influencing

large fractions of the measured gene expression levels. This

characteristic has been exploited to learn the profile of hidden

confounders using models that are related to PCA [2,6,15]. Once

learnt, these factors can then be included in the analysis

analogously to known covariates. Another branch of methods

avoids recovering the hidden factors explicitly, instead correcting

for the correlation structure they induce between the samples

[7,16]. Here, the inter-sample correlation is estimated from the

expression profiles first, to then account for its influence in an

association scan using mixed linear models. Both types of methods

have been applied in a number of studies. Advantages versus naive

PLoS Computational Biology | www.ploscompbiol.org 1 January 2012 | Volume 8 | Issue 1 | e1002330



analysis include better-calibrated test statistics [16] and improved

reproducibility of hits between independent studies [7]. Perhaps

most strikingly, statistical methods to correct for hidden con-

founders have also been shown to substantially increase the power

to detect eQTLs, increasing the number of significant cis

associations by up to 3-fold [2,17].

While improved sensitivity to detect cis-acting eQTLs is an

important and necessary step, we expect that even more valuable

insights can be gained from those loci that regulate multiple target

genes in trans. The interest in these regulatory hotspots has been

tremendous in recent years, but limited reproducibility between

studies has been a concern (see for example the discussion in

Breitling et al. [18]). Accurate correction for confounding factors is

key to improve the reliability of these regulatory associations,

however statistical overlap between confounding factors and true

association signals from downstream effects can hamper the

identification and fitting of confounders. For example, methodol-

ogy that merely accounts for broad variance components, such as

PCA, is doomed to fail. If the effect size of trans regulatory hotspots

is large enough, they induce a correlation structure that is similar

to the one caused by confounding factors. As a result, true trans

regulators tend to be mistaken for confounders and are

erroneously explained away.

Here, we report an integrated probabilistic model PANAMA

(Probabilistic ANAlysis of genoMic dAta) to address these

shortcoming of established approaches. PANAMA learns a

dictionary of confounding factors from the observed expression

profiles. Unique to PANAMA is to jointly learn these factors while

accounting for the effect of loci with a pronounced trans regulatory

effect, thereby avoiding overlaps between true genetic association

signals and the covariance structure induced by the learnt

confounders. The statistical model underlying our algorithm is

simple and computationally tractable for large eQTL datasets.

PANAMA is based on the framework of mixed linear models, and

combines the advantages of factor-based methods, such as PCA,

SVA [6] or PEER [2,15] with methods that estimate the implicit

covariance structure induced by confounding variation [12,16].

The model is fully automated and can be easily adapted to include

additional observed confounding sources of variation, such as

population structure or known covariates.

We applied PANAMA to a range of eQTL studies, including

synthetic data and studies from yeast, mouse and human. Across

datasets, PANAMA performed better than previous methods,

identifying a greater number of significant eQTLs and in

particular additional trans regulators. We provide multiple sources

of evidence that the associations recovered by PANAMA are

indeed likely to be real. Most strikingly in yeast, the findings by

PANAMA can be better reproduced between independent studies

and are more consistent with prior knowledge about the

underlying regulatory network. Finally, we also give insights into

the limitations of current methods to account for confounders that

help to understand the relationship between confounding

variation, cis regulation and trans effects.

Results

Learning of confounding factors in the presence of trans
regulators

The statistical model underlying PANAMA assumes additive

contributions from true genetic effects and hidden confounding

factors. Briefly, this linear model expresses the gene expression of

gene g measured in N individuals as the sum of weighted

contributions from a set of K SNPs S~fs1, . . . ,sK g as well as Q
confounders X~fx1, . . . ,xQg, a mean term mg and a noise term

Eg (See Figure 1a)

yg~mgz
XK

k~1

vk,gskz
XQ

q~1

wg,qxqzEEEEg:

Neither the regression weights wg,q nor the profiles of the

confounding factors xq are known a priori and hence need to be

learnt from the expression data. Parameter inference in PANAMA

is done in the mixed model framework [12,19]. In this hierarchical

model, the regression weights of the hidden factors are

marginalized out, yielding a covariance structure in a multivariate

Gaussian model to capture the effect of confounders. Intuitively,

the objective during learning in PANAMA is to explain the

empirical correlation structure between samples shared across

genes by the state of the hidden factors. In the presence of

extensive trans regulation this approach leads to over-correction,

running the risk of explaining away true genetic association

signals. To circumvent this side effect, PANAMA also includes a

subset of all SNPs in the model, resulting in a more complete

covariance structure that satisfies an appropriate balance between

explaining confounding variation and preserving true genetic

signals (Figure 1b,c). In this approach, the variance contribution of

few major signal SNPs and the state of the hidden factors are then

jointly estimated. Moreover, an appropriate number of hidden

factors is determined automatically during learning. As a result,

PANAMA is statistically robust and inference of hidden factors is

feasible without manual setting of any tuning parameters.

Additional observed covariates, if available, can also be included

in the model; see Methods and the supplementary Text S1 for full

details.

Simulation study
The evaluation of methods to call eQTLs is difficult as reliable

ground truth information is not available. Following previous work

[2,20,21], we have used synthetic data to assess and compare

PANAMA with alternative approaches. To minimize assumptions

Author Summary

The computational analysis of genetical genomics studies
is challenged by confounding variation that is unrelated to
the genetic factors of interest. Several approaches to
account for these confounding factors have been pro-
posed, greatly increasing the sensitivity in recovering
direct genetic (cis) associations between variable genetic
loci and the expression levels of individual genes. Crucially,
these existing techniques largely rely on the true
association signals being orthogonal to the confounding
variation. Here, we show that when studying indirect
(trans) genetic effects, for example from master regulators,
their association signals can overlap with confounding
factors estimated using existing methods. This technical
overlap can lead to overcorrection, erroneously explaining
away true associations as confounders. To address these
shortcomings, we propose PANAMA, a model that jointly
learns hidden factors while accounting for the effect of
selected genetic regulators. In applications to several
studies, PANAMA is more accurate than existing methods
in recovering the hidden confounding factors. As a result,
we find an increase in the statistical power for direct (cis)
and indirect (trans) associations. Most strikingly on yeast,
PANAMA not only finds additional associations but also
identifies master regulators that can be better reproduced
between independent studies.

Accurate Confounder Correction for eQTL Studies
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we need to impose on the simulation procedure we created an

artificial dataset that borrows key characteristics from a real eQTL

study in yeast [4] (See also Application to segregating yeast strains).

In this approach, we first fit PANAMA to the original yeast eQTL

data, thereby estimating the number of cis and trans associations,

an empirical distribution of effect sizes, and finally the character-

istics of confounding variation. Based on these estimates we

recreated an in silico eQTL dataset using standard linear

assumptions; see Text S1 for full details on the exact approach.

To rule out possible biases of this dataset towards our method, we

additionally considered a simulation setting when fitting the ICE

model [7] to the real data for estimating simulation parameters

(see below).

Given the synthetic eQTL study, we employed alternative

methods to recover the underlying simulated associations. We

compared PANAMA to standard linear regression (LINEAR),

ignoring the presence of confounders entirely, as well as SVA [6],

ICE [7] and PEER [2,15], established and widely used approaches

to correct for hidden confounders. For reference, we also

compared to an idealized model with the simulated confounders

perfectly removed (IDEAL). First, Figure 2a and 2b show the

respective number of significant cis and trans associations as a

function of the false discovery rate (FDR) cutoff. To avoid overly

optimistic association counts due to linkage disequilibrium, we

considered at most a single cis association per gene and at most one

trans association per chromosome for each gene. PANAMA found

more cis associations than any other approach and retrieved the

greatest number of trans associations among methods that correct

for hidden confounders. Notably, the linear model appeared to

find even more trans associations, however the majority of these

calls were inconsistent with the simulated ground truth and were

spurious false positives. The extent of false associations called by

the linear model is also reflected in Figure 2c, which shows the

receiver operating characteristics for each method. All approaches

that correct for confounders performed strikingly better than the

linear model. Among these, PANAMA was most accurate,

achieving greater sensitivity than any other method for a large

range of false positive rates (FPR), approaching the performance of

an ideal model (IDEAL).

Since some models, including SVA and PEER, allow to account

for additional known covariates, we investigated their performance

when adding the strongest genetic regulators as covariates. This

procedure is mimicking the central concept of PANAMA using

previous methods. However, comparative results (Supplementary

Figure S7) show that iterative learning of PANAMA still performs

significantly better.

Next, we studied the statistics of obtained p-values, checking for

departure from a uniform distribution that either indicates

inflation (genomic control lw1) or deflation (genomic control

lv1) of the respective methods (Figure 2d and Supplementary

Figure S8 for corresponding Q-Q-plots). All methods except for

ICE yielded an inflated p-value distribution. Notably, this

observation also applies to the ideal model where the effect of

confounders had been perfectly removed. Thus, in settings with

Figure 1. Illustration of the PANAMA model. (a) Representation of the linear model used by PANAMA to correct for the effect of confounding
factors. (b) Alternative settings of confounders in relation to true genetic signals: First, orthogonality between confounders and genetics. The
variation in the gene expression levels (green arrow) can be better explained by the SNP (blue arrow). Second, statistical overlap between variation
explained by confounders and the genetic variation as often found in trans hotspots. Gene expression variation can be equally well explained as
genetic or due to a confounding factor. Previous methods focus in the first setting, while PANAMA is able to handle both situations. (c) PANAMA
applied to the yeast eQTL dataset. Pronounced trans regulators that overlap with the learnt confounding factors are highlighted in red.
doi:10.1371/journal.pcbi.1002330.g001

Accurate Confounder Correction for eQTL Studies
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sufficiently strong trans regulation, inflated statistics are not

necessarily due to poor calibration because of confounders, but

instead may occur as a consequence of an excess of true biological

signals themselves. We also checked that calls by the various

methods were not overly optimistic and artificially inflated.

Indeed, false discovery rate estimates from all methods but the

linear model were approximately in line with the empirical rate of

errors when taking the ground truth into account (Supporting

Figure S1), with PANAMA being the best calibrated method.

We then repeated the same analysis on a broader range of

simulated datasets, varying particular aspects of the simulation

procedure around the parameters obtained from the fit to the real

yeast data. Figure 2e shows the accuracy of alternative methods

when reducing the extent of simulated trans regulation by

subsampling from the set of initial trans effects. These results

highlight that previous methods only work well in the regime of

little trans regulation, while PANAMA provides for accurate calls

for a wider range of settings. Similarly, Figure 2f shows results for

strong trans regulation, now varying the extent of confounding

factors from weaker to stronger influences. Again, PANAMA was

found to be more robust than previous approaches, recovering

true simulated associations with great accuracy irrespectively of

the magnitude of simulated confounding.

Finally, we investigated the impact of the exact of model used to

fit the association characteristics to the initial yeast dataset.

Supporting Figure S2 shows summary results for a second

synthetic dataset fitted using ICE. As ICE tends to be the most

conservative approach among the considered methods, the extent

of trans regulation on this simulated data was severely reduced. As

a consequence, the differences between methods were consider-

ably smaller, however confirming the previously observed trends.

Application to segregating yeast strains
Having established the accuracy of PANAMA in recovering

hidden confounders, we applied PANAMA and the alternative

methods to the primary eQTL dataset from segregating yeast

strains [4]. These data cover a set of 108 genetically diverse strains

that have been expression profiled in two environmental

conditions, glucose and ethanol. First, we focused on the glucose

condition, which has previously been expression profiled [3],

providing an independent study for the purpose of comparison.

Figure 3a and 3b show the number of cis and trans associations

for different methods as a function of the FDR cutoff. Again, we

considered at most one association per chromosome to avoid

confounding the size of associations with their number. In line

with previously reported results [2,7] and the simulated setting

(Simulation study), the standard linear model identified fewer cis

associations than methods that correct for confounding variation.

The trends from the simulated dataset also carried over for trans

associations, where the linear model called many more associa-

tions than methods that account for confounders, yielding an

excess of regulatory hotspots (See Supporting Figure S3). It has

previously been suggested that many of these are likely to be false;

see for example the discussion in Kang et al. [7]. Among the

methods that correct for confounding variation, PANAMA

identified the greatest number of associations. Among the

Figure 2. Evaluation of PANAMA and alternative methods on the simulated eQTL dataset. (a,b) number of recovered cis and trans
associations as a function of the chosen false discovery rate cutoff. To circumvent biases due to linkage, at most one association per chromosome
and gene is counted. (c) Receiver Operating Characteristics (ROC) for recovering true simulated associations, depicting the true positive rate (TPR) as a
function of the permitted false positive rate (FPR). (d) inflation factors, defined as Dl~l{1, indicating either inflated p-value distributions (Dlw0) or
deflation (Dlv0) of the respective tests statistics. (e) Area under the ROC curve for alternative simulated datasets, subsampling certain fractions of
number of simulated trans association. (f) Area under the ROC curve for alternative simulated datasets, subsampling the number of simulated
confounding factors.
doi:10.1371/journal.pcbi.1002330.g002

Accurate Confounder Correction for eQTL Studies
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alternative methods, ICE appeared to be more sensitive in

recovering cis associations while PEER and SVA retrieved a

greater number of trans associations. Also note that models that

account for confounding factors yielded slightly inflated p-value

distributions (Figure 3c, Supplementary Figure S9), supporting

that also in real settings, a certain degree of inflation may be

caused by extensive trans regulation. Finally, supporting Figure S3

shows the number of associations called by different methods as a

function of the genomic position. This summary of genome-wide

eQTLs confirms that ICE is most conservative in detecting

hotspots, whereas all other methods do find multiple trans bands.

For comparison we also included a version of PANAMA that also

corrects for the trans regulators that are accounted for while

learning (PANAMAtrans , see Methods and supporting Text S1).

PANAMAtrans yields near-identical results to ICE, which explains

the differences and similarities between the two approaches, where

PANAMA can be regarded as generalization of ICE. By

accounting for pronounced regulators PANAMA circumvents

the over-conservative correction of the ICE model.

Reproducibility of eQTLs between studies. To objectively

shed light on the validity of the associations called, we considered

the consistency of calls between two independent studies. The

glucose environment from Smith et al. [4] has previously been

studied [3], sharing a common set of segregants. We checked the

consistency in calling genes with a cis association for increasing FDR

cutoffs (Figure 3d). Alternatively, focusing on the consistency of

regulatory hotspots, Figure 3e shows the ranking consistency of

polymorphisms ordered by their regulatory potential on multiple

genes. Reassuringly, for both cis effects and trans regulatory hotspots,

PANAMA yielded results with far greater consistency than any

other currently available method. In particular the consistency of

trans hotspots suggest that PANAMA achieved an appropriate

balance between explaining away spurious signals as confounding

variation and identifying hotspots that are likely to have a true

genetic underpinning.

Consistency of trans regulatory hotspots with respect to

known regulatory mechanisms in yeast. As a second means

of validating trans eQTLs, we investigated to what extent poly-

morphisms that regulate multiple genes in trans can be interpreted as

indirect effects that are mediated by known transcriptional regulators.

For this analysis we considered an established regulatory network of

transcription factors extracted from Yeastract [22]. Although we do

not expect trans associations to be exclusively mediated by direct

transcriptional regulation, the degree of associations that are con-

sistent with this regulatory structure is nevertheless an informative

indicator for the validity of eQTL calls from different models.

For each transcription factor, we considered polymorphisms in

the vicinity of the coding region of the transcription factor

(+10 kb around the coding region), and tested the fraction of

associations with genes that are known targets of the transcription

factor versus other associations with genes that are no direct

targets. Table S1 shows the F-score (harmonic mean between

precision and recall) for each of 129 transcription factors that had

at least one SNP in the local cis window. For half of the 129 TFs,

PANAMA yielded a higher F-score than any of the other methods

considered. Interestingly, the standard linear models performed

second best under this metric, achieving the greatest F-score in

36% of all cases, followed by PEER (28%), SVA (15%) and ICE

(6%). Among the methods that correct for confounders, PANAMA

consistently yielded the highest F-score.

Figure 3. Evaluation of alternative methods on the eQTL dataset from segregating yeast strains (glucose condition). (a,b): number of
cis and trans associations found by alternative methods as a function of the chosen FDR cutoff. (c) Inflation factors of alternative methods, defined as
Dl~l{1. (d) Consistency of calling cis associations between two independent glucose yeast eQTL datasets. (e) Consistency of calling eQTL hotspots
between two independent glucose yeast datasets, where SNPs are ordered by the extent of trans regulation as determined by v{log(pv)w.
doi:10.1371/journal.pcbi.1002330.g003
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Detecting eQTLs that are shared across environ-

ments. Finally, we considered the full expression dataset from

Smith et al. [4], combining expression measurement in an ethanol

and glucose background. Because each yeast strain was profiled

twice, the set of samples was not independent, but instead had a

replicate population structure. Similarly as done in previous work

[16], we accounted for this genetic relatedness in PANAMA by

adding a population covariance term (Material and Methods).

Supporting Figure S4 shows the number of associations retrieved

by PANAMA and alternative methods on this joint yeast dataset.

Because PANAMA accounted for the replicate structure of the

dataset, the increase in the number of associations compared to

the analysis of the single-condition analysis was modest. Other

methods, not accounting for the replicate structure of the

genotypes, yielded severely inflated test statistics, identifying a

trans effect for the great majority of all genes. To check the impact

of the population structure covariance, we also applied PANAMA

without the correction for artificial genetic relatedness, yielding

similarly inflated results (data not shown).

The complete set of eQTL calls from PANAMA, on the glucose

condition alone and the joint analysis on both conditions, are available

as Supporting Dataset S1 and Supporting Dataset S2 respectively.

Application to further eQTL studies
We successfully applied PANAMA to additional ongoing and

retrospective studies. For example, on a dataset from inbred

mouse crosses [23], PANAMA identified a greater number of

associations than other methods (Supplementary Figure S5). In

contrast to the yeast dataset, the distribution of p-values on this

dataset was almost uniform, suggesting that the extent of true

trans regulation is lower. We also investigated parts of a dataset of

the genetics of human cortical gene expression [24]. On

chromosome 17, methods that account for confounders identified

more genes in associations than a linear model, with SVA and

PANAMA retrieving the greatest number (see supporting Figure

S6). Results on other four other chromosomes were similar (data

not shown).

Finally, results of PANAMA applied to an RNA-Seq eQTL

study on Arabidopsis [25] indicate that expression heterogeneity as

accounted for by PANAMA is also present on expression estimates

from short read technologies, which is consistent with previous

reports in human RNA-Seq studies [26]. This suggests that

statistical challenges due to confounding variation are not specific

to a particular platform for measuring gene expression.

Discussion

We have reported the development of PANAMA, an

advanced statistical model to correct for confounding influences

while preserving genuine genetic association signals. We have

shown that this approach is of substantial practical use in a

range of real settings and studies. The correction approach of

PANAMA, for the first time, is able to not only find more cis

eQTLs, but also greatly improves the statistical power to

uncover true trans regulators. PANAMA finds a greater number

of associations, and calls eQTLs that are more likely to be real,

as validated by means of realistic simulated settings and an

analysis of eQTL consistency between independent studies.

Most notably, PANAMA identified several strong trans hotspots

on yeast, out of which at least 40% could be reproduced on a

replication dataset.

There are several previous approaches to correct for confound-

ing influences in eQTL studies. These methods can be broadly

grouped into factor-based models like PCA, SVA [6] and PEER

[2,15], and approaches that employ a mixed linear model [7,16],

estimating a covariance structure that captures the confounding

variation. An important reason why PANAMA performs well is

the intermediate approach taken here, that is, learning a

covariance structure within a linear mixed model (LMM), but at

the same time retaining the low-rank constraint which yields an

explicit representation of factors. Moreover, PANAMA systemat-

ically exploits the flexibility provided by the representation in

terms of covariance structures, jointly accounting for genetic

regulators while estimating the confounding factors. Our approach

is stable and robust, avoiding the need to first subtract off the

genetic contribution greedily, as for example suggested and

implemented in SVA [6] and PEER [2,15]. Although this is not

the focus of this work, we have shown how our approach can be

combined with additional measures to correct for observed sources

of confounding variation, such as known covariates or popula-

tional relatedness. The utility of such measures has been illustrated

in the joint analysis on data from two environmental conditions. A

more specialized approach that is aimed at the combined

correction for expression confounders and population structure

has recently been proposed by Listgarten et al. [16]. This LMM-

EH approach is methodologically related to what is done here, as

the contribution from multiple sources of variation are combined

within a single covariance structure. Importantly, the main

contribution in PANAMA is an integrated model that does not

include additional confounders but true genetic regulators. Unique

to PANAMA, these regulators are jointly identified and accounted

for during learning of the confounding factors. Our analysis shows,

that this approach yields a significant improvement in the

sensitivity of recovering trans associations and plausible regulatory

hotspots. A tabular overview of the relation between alternative

methods is shown in Supporting Table S2.

In conclusion, PANAMA is an important step towards

exhaustively addressing common types of confounding variation

in eQTL studies. The number of datasets that benefit from careful

dissection of true genetic signals and confounders, as done here, is

expected to rise quickly. Growing sample sizes and expression

profiling in more than one environment allow for the estimation of

more subtle confounding influences and at the same time provide

the statistical power to detect many more trans effects than possible

as of today.

Materials and Methods

PANAMA is based on a linear additive linear model,

accounting for effects from K observed SNPs S~(s1, . . . ,sK )
and contributions from a dictionary of Q hidden factors

X~(x1, . . . ,xQ). The resulting generative model for G gene

expression levels Y~(y1, . . . ,yG) can then be cast as

Y~mzSVzXWzEEEE: ð1Þ

We assume that expression levels and SNPs are observed in each

of n~1, . . . ,N individuals, m~(m1, . . . ,mG) is a vector of gene-

specific mean terms and e denotes Gaussian distributed observa-

tion noise, En,g*N (0,s2
e). The matrices V and W represent the

weights for the SNP effects and hidden factor effects respectively.

To improve the parameters estimation, we introduce a hierarchy

on the weights of genetic influences and hidden factors in Equation

(1). We marginalize out the effect of the latent factors, X and a

subset of the SNPs with a strong regulatory role (see below),

resulting in a mixed linear model. We choose independent

Gaussian priors for the factors weights wq and the weights of

respective SNPs vk

Accurate Confounder Correction for eQTL Studies

PLoS Computational Biology | www.ploscompbiol.org 6 January 2012 | Volume 8 | Issue 1 | e1002330



p(W)~ P
Q

q~1
N (wq 0,a2

qI
��� ),

p(V)~ P
K

k~1
N (vk 0,b2

kI
�� ),

and integrate them out. The corresponding marginal likelihood,

conditioned on the state of the confounding factors X is now

factorized across genes

p(Y X,Hj )~ P
G

g~1
N yg 0,

XK

k~1

b2
ksksT

k z
XQ

q~1

a2
qxqxT

q zs2
eI

�����
 !

: ð2Þ

For notational convenience we dropped the mean term m and we

have defined H~ffb2
kg,fa2

qg,s2
eg, the set of all hyperparameters

of the model.

Known covariates
If available, additional covariates can directly be included in the

background covariance structure from Equation (2)

p(Y Xj ,H)~ P
G

g~1
N yg 0,

XK

k~1

b2
ksksT

kz
XQ

q~1

a2
qxqxT

qzc2K0zs2
eI

�����
 !

,ð3Þ

where K0 denotes the covariance induced by these additional

covariates and c2 the corresponding scaling parameter. Examples

for possible choices of this covariance include the covariance

induced by a fixed covariate vectors, i.e. K0~ccT or a kinship

matrix that accounts for the genetic relatedness (see for example

Kang et al. [12] and Listgarten et al. [16]).

Model fitting
The most probable state of the latent variables X and the

hyperparameters H can be identified via a straightforward

maximum likelihood approach

f
^

H,
^

Xg~ arg max p(Y X,Hj
H,x

), ð4Þ

for example employing a gradient-based optimizer. In practical

applications of PANAMA, this model fitting (Equation (4)) is not

carried out with the set of all genome-wide SNPs included in

Equation (1), because the number of weight parameters b2
k for each

SNP would be prohibitive. Only those genetic regulators with strong

effects on multiple genes do play a role during the estimation of

hidden factors and thus need to be accounted for. Our inference

scheme determines the set of relevant regulators in an iterative

procedure. The number of hidden factors to be learnt, Q is not set a

priori and instead Q is set to a sufficiently large value. During the

optimization, the individual variance parameters for each factors, a2
q,

automatically determine an appropriate number of effective factors,

switching off unused ones. For full details of the algorithm and

analysis of the robustness of this approach see Supporting Text S1.

Significance testing
Once the confounding-correcting covariance structure is

determined from the maximum likelihood solution of Equation

(4), significance testing can be carried out in the framework of

mixed linear models. The association between a SNP k and gene g
to be tested is treated as fixed effect, allowing to construct a

likelihood ratio statistics of the form

LODg,k~log
N yg hsk,s2

kKzs2
eI

��� �
N yg 0, s2

kKzs2
eI

��� � : ð5Þ

Here, the covariance matrix K denotes the covariance structure

explaining confounding variation, which is derived from the fitted

PANAMA model. Computationally, the likelihood ratio tests

(Equation (5)) can be efficiently implemented using recently

proposed computational tricks [19], allowing for application to

large-scale genomic data (Supporting Text S1).

In PANAMA, this correction covariance structure K only

accounts for the confounding factors, excluding the genetic

regulators (See Equation (2))

K~
XQ

q~1

a2
qxqxT

q :

In PANAMAtrans, also correcting for the trans factors, the

covariance equals to

Ktrans~
XK

k~1

b2
ksksT

k z
XQ

q~1

a2
qxqxT

q :

For computational efficiency we fix the covariance structure K that

is learnt from the full expression dataset upfront. The relative

weighting of the covariance (s2
k) and the noise term (s2

e ) are then

adjusted on the background and null model (Equation (5)) for

every single test carried out, using recent advances for efficient

mixed model inference [19].

Yeast datasets
We used the yeast expression dataset from Smith et al. [4]

(GEO accession number GSE9376), which consists of 5,493

probes measured in 109 segregants derived from a cross between

BY and RM. The authors provided the genotypes, which consisted

of 2,956 genotyped loci.

An association was defined as cis if the location of the SNP and the

location of the opening reading frame (ORF) of the gene were within

10 kb, and trans otherwise. In order to validate the associations found,

we also used data from Brem et al. [3] (GEO accession number

GSE1990), which consisted of 7,084 probes and 2,956 genotyped loci

in 112 segregants. For the purpose of comparison, we defined cis

associations in the same way as we did for the previous dataset.

Mouse dataset
We used the data described in Schadt [23], consisting of 23,698

expression measurements and 137 genotyped loci for 111 F2

mouse lines.

Human dataset
We used the dataset from [24] (GEO accession number

GSE8919), which consists of 14,078 transcripts and 366,140 SNPs

genotyped on 193 human samples.

Yeastract
We used data from Yeastract [22], which contains information

about the regulatory network between 185 transcription factors

and 6,298 genes. Out of these 189 transcription factors, we
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selected the 129 TFs that had a polymorphism in the vicinity

(10 kb) of the coding region.

Supporting Information

Dataset S1 List of eQTL calls from PANAMA, on the glucose

condition alone in the yeast dataset.

(CSV)

Dataset S2 List of eQTL calls from PANAMA in the joint

analysis of both conditions (ethanol, glucose) in the yeast dataset.

(CSV)

Figure S1 Comparison of the calibration accuracy of false

discovery estimates for alternative methods. Shown is the

estimated false discovery rate (E(FDR)) as a function of the

empirical false discovery rate for associations called on the

simulated dataset. In summary, PANAMA is better calibrated

than any other method, neither underestimating nor overestimat-

ing the FDR.

(PDF)

Figure S2 Receiver operating characteristics for an alternative

simulated dataset based on a fit of ICE to the original yeast

dataset. While the general performance differences are smaller, the

general trends remain. The kink in ICE is due to deflation of the

model. See the main paper Figure 2 for complementary results on

a dataset simulated from PANAMA.

(PDF)

Figure S3 Number of associations called as a function of the

genomic position for alternative methods on the eQTL dataset

from segregating yeast strains (glucose condition).

(PDF)

Figure S4 Evaluation of alternative methods on the eQTL

dataset from segregating yeast strains (glucose and ethanol

jointly). (a,b) number of recovered cis and trans associations as

a function of the false discovery rate cutoff. At most one

association per chromosome and gene was counted. (b) inflation

factors, defined as Dl~l{1. Note that PANAMA included a

covariance term that accounts for the genetic relatedness of

identical individuals profiled in two conditions. As a result,

PANAMA yielded better calibrated results, calling fewer

associations than other methods.

(PDF)

Figure S5 Evaluation of alternative methods on the eQTL

dataset from mouse. (a) Number of cis and trans associations found

by alternative methods as a function of the FDR cutoff. (b)

Inflation factors of alternative methods, defined as Dl~l{1.

(PDF)

Figure S6 Number of associations as a function of the false

discovery rate cutoff on the human dataset.

(PDF)

Figure S7 Receiver operating characteristics (ROC) curve

comparing PANAMA to a modified version of SVA that models

the most prominent genetic regulators as covariates.

(PDF)

Figure S8 Comparison of theoretical PV statistics with empirical

distribution. Figure shows the quantile-quantile plots for alterna-

tive methods evaluated on the simulated dataset.

(PDF)

Figure S9 Comparison of theoretical PV statistics with empirical

distribution. Figure shows the quantile-quantile plots for alterna-

tive methods evaluated on the yeast dataset.

(PDF)

Table S1 Comparison of the different models that account for

confounders (SVA,PEER, ICE, LMM-EH, PANAMA) and

LINEAR. A mark indicates that the model exhibits that property.

The properties are: Low rank: is the model using a low-rank

representation of the confounders? LMM: is it a linear mixed

model? Preserve genetic signal: is the model explicitly preserving the

genetic signal or is it greedily subtracting the confounding effects?

PANAMA is the only model that spans all the different properties,

since it imposes a low-rank structure for the confounders, but is

efficiently implemented as a linear mixed model. Moreover, the

latent confounders are learned in conjunction with the genetics,

thereby preserving true genetic signals.

(PDF)

Table S2 F-score (F~
2:precision:recall

precisionzrecall
) for alternative meth-

ods in recovering known regulatory mechanisms from Yeastract.

(PDF)

Text S1 Supplementary methods.

(PDF)
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