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Abstract

The occurrence of extreme observations in a time series depends on the heaviness of the tails

of its distribution. The paper proposes a dynamic conditional score model (DCS) for modelling

dynamic shape parameters that govern the tail index. The model is based on the Generalised t

family of conditional distributions, allowing for the presence of asymmetric tails and therefore the

possibility of specifying different dynamics for the left and right tail indices. The paper examines

through simulations both the convergence properties of the model and the implications of the link

functions used. In addition the paper introduces and studies the size and power properties of a

new Lagrange Multiplier (LM) test based on fitted scores to detect the presence of dynamics in

the tail index parameter. The paper also shows that the novel LM test is more effective than

existing tests based on fitted scores. The model is fitted to Equity Indices and Credit Default

Swaps returns. It is found that the tail index for equities has dynamics driven mainly by either the

upper or lower tail depending if leverage is taken or not into account. In the case of Credit Default

Swaps the test identifies very persistent dynamics for both the tails. Finally the implications of

dynamic tail indices for the estimated conditional distribution are assessed in terms of conditional

distribution forecasting showing that the novel model predicts more accurately expected shortfalls

and value-at-risk than existing models.
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1. Introduction

The analysis of time series is focused on identifying the time varying features of the underlying

data generating process. It has been empirically shown that unconditional distributions of market

returns are heavy tailed with evidence of volatility clustering and long memory. These features can

be partly explained if the second moment of the conditional distribution of the data is time-varying.

However this is still not sufficient to explain how the occurrence of extreme events can vary over

time. It is important to accurately take into account the potential variations of the tails’ lengths

when forecasting probability distributions of financial returns, particularly if this is done for the

purpose of minimizing portfolio risks and monitoring the stability of financial markets.

The occurrence of extreme events in financial data is described by the tail risk. The main

contribution of this paper is to show how to accurately identify and capture the dynamic variations

over time in the tails of time series distributions, which are distinct from scale variations. Moreover,

the paper intorduces a new dynamic model which is able to separate the dynamics of the upper

tail from that of the lower tail.

Given the difficulties in modelling the tails of a distribution, testing for the presence of dynamics

before attempting to model them is necessary in order to avoid spurious results. For this reason

the paper also introduces a new formal test to detect the presence of tail dynamics.

The concept of tail risk can be decomposed into two elements, the variation over time in the

overall heaviness of the tails of the distribution and the relative difference in size between the

upper and lower tails, defined as asymmetry. Figures 1 and 2 show the estimated scale, σ, the

estimated degrees of freedom, η, from fitting a static symmetric t distribution to the Dow Jones

Index returns, and the estimated left and right tail degrees of freedom parameters, η1 and η2,

from the static asymmetric t distribution (AST) of Zhu and Galbraith (2010)1. Estimates are

obtained using moving windows with 500 and 1000 observations respectively. If the degrees of

freedom exceeds 40 we assume that they approach infinity and the fitted distribution approximates

a normal distribution. As expected, the scale varies over time, which is consistent with the findings

on volatility clustering of financial data. At the same time the degrees of freedom seems also to be

time varying. Moreover, in the asymmetric case, the relative magnitude and variation of the two

degree of freedom parameters tend to differ, with periods where the lower tail is heavier than the

1The degrees of freedom parameter η are a proxy for the tail index as defined by the CDF decomposition F̄Y (y) =
cL (y) y−η, where F̄Y is the survival function, c is a non-negative constant and L (y) a slowly varying function such

that limk−>∞
L(ky)
L(y)

= 1. A lower tail index implies longer and fatter tails, and a higher occurrence of extreme
events. A distribution with a given tail index η it has only k < η finite moments.

2



29/01/1985 25/06/1987 19/11/1989 15/04/1992 10/09/1994 04/02/1997 02/07/1999 26/11/2001 22/04/2004 17/09/2006 11/02/2009 09/07/2011 03/12/2013 29/04/2016
0

10

20

30

40

29/01/1985 25/06/1987 19/11/1989 15/04/1992 10/09/1994 04/02/1997 02/07/1999 26/11/2001 22/04/2004 17/09/2006 11/02/2009 09/07/2011 03/12/2013 29/04/2016
0.005

0.01

0.015

Figure 1: Plot of estimates for static scale (Bottom) and degrees of freedom (Top) with a 500 observations
moving window. The top figure shows symmetric degrees of freedom η (Blue), asymmetric left tail degrees of
freedom η1 (Red) and asymmetric right tail degrees of freedom η2 (Black). The estimated degrees of freedom
are only reported if lower than 40.

upper tail and vice versa. On doubling the window size the magnitude of variation in the degrees

of freedom decreases but large movements can still be detected.

These variations in the tail index parameters of the two tails, and in their relative asymmetry,

implies time variations of the higher moments of the distribution. Various observation driven models

have been proposed to model directly higher moments of the conditional distribution of the data,

focusing particularly on skewness to describe asymmetry, as in Harvey and Siddique (1999), and

kurtosis for the heaviness of the tails, as in Brooks et al. (2005). However, as highlighted by Hansen

(1994), in order to have valid quasi-Maximum Likelihood properties while modelling conditional

moments it is necessary to have tighter restrictions on even higher conditional moments2. These

conditions can be difficult to be satisfied empirically. Moreover, the moments modelled need always

to exist3. For these reasons Hansen (1994) suggested that the solution should be to model directly

shape parameters of the conditional densities and outlined a general framework to do so using an

ARCH type of dynamics.

Another approach for measuring tail variations is through extreme value theory. As described

by Embrechts et al. (1997), this theory approximates the unconditional distribution of random

2For example, following the seminal paper of Lee and Hansen (1994), the GARCH(1,1) model requires the fourth
moment of the conditional distribution to exist and to be finite.

3For example if the variability in the data is too extreme the tail index might be so low up to the point of not being
able to guarantee the existence of skewness and kurtosis as well as variance (as for example in the case of a Cauchy
distribution).
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Figure 2: Plot of estimates for static scale (Bottom) and degrees of freedom (Top) with a 500 observations
moving window. The top figure shows symmetric degrees of freedom η (Blue), asymmetric left tail degrees of
freedom η1 (Red) and asymmetric right tail degrees of freedom η2 (Black). The estimated degrees of freedom
are only reported if lower than 40.

variables at the lower and upper tails. Through this approximation it is possible to focus directly on

the distribution of the observations in the tails beyond a given threshold which can be approximated

by a Generalised Pareto Distribution or linked to the tail index parameter through a power law.

Starting from this theory, Quintos et al. (2001) build formal tests to detect structural breaks

in the tail index of the unconditional distribution of data which Werner and Upper (2004) and

Galbraith and Zernov (2004) used to analyse German bonds futures’ returns and U.S. equity returns

respectively. In this framework, the occurrence of extreme events can be modelled giving dynamics

directly to the tail index parameter, as in Wagner (2005). However, given that the estimation of the

parameters of the model depends only on the observations that occur beyond a given threshold,

it is necessary to have long time series to describe accurately its dynamics. The problem with

this approach is that4 the parameters governing the dynamics of the tail, as well as other time

varying features, might not be stable over such a long time period. To overcome this issue, while

looking at the tail risk in equity indexes, Allen et al. (2012), Kelly (2014) and Kelly and Jiang

(2014) developed a dynamic power law model which focuses instead on both the time series and

the cross-sectional dimensions of the available data exploiting the information from all the stocks

traded on an index.

To model the tail index, the present paper suggests instead the use of models from the recent

4As proven for example for the dynamics of the second moments in GARCH-type of models by Lamoureux and
Lastrapes (2002) and Engle and Mustafa (1992).
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score-driven literature developed by Creal et al. (2013) and Harvey (2013). The motivation comes

from the fact that score-driven models, besides allowing for a wider choice of conditional distri-

butions for the data, focus on providing a dynamics directly to the parameters of the conditional

distribution rather than to their moments. The score that drives the dynamics is a continuous

function of the observations with an adaptive response which gives higher weights to observations

at the extreme of the distribution than to the ones close to the median. An earlier example of

a score-driven framework used for modelling the tail index parameter can be found in Lucas and

Zhang (2016), which developed an Exponentially Weighted Moving Average (EWMA) model for

the tail index assuming a strongly persistent time varying behaviour. Blazsek and Monteros (2017)

considered a Dynamic Conditional Score (DCS) model for the degrees of freedom of a t distribution

fitted to equity returns.

The main issue with all the aforementioned dynamic tail index models is that, to our knowledge,

no simulation study has been made on the effectiveness of these models in picking up the true

tail index dynamics as well as on the most effective specification for the score update function5.

Moreover, no specific formal tool has been introduced in a dynamic setting to assess the actual

presence of a dynamic tail index and to justify the use of these models.

Building on this literature, the present work focuses on modelling a dynamic tail index in the

DCS framework assuming a distribution of the Generalised t family used by Harvey and Lange

(2017).The distribution has a separate parameter to define the shape of its tails and can be further

generalised to include another parameter to describe its skewness. The paper studies empirically

the convergence properties of the odel given different average values of the tail index parameter. In

addition, a new test is introduced to detect if the tail index parameter is dynamic. The methodology

is based on the Lagrange Multiplier (LM) test, which has been introduced in score-driven models

by Harvey (2013) and Harvey and Thiele (2016) in the context of time-varying correlation. Our

test focuses on the residual correlation of the fitted scores with respect to the shape parameter of

the conditional distribution of the data under the null of static dynamics. This test differs from the

one of Quintos et al. (2001) since it focuses on the conditional distribution of the data. Other types

of LM tests for general parameters instabilities and structural breaks in the DCS framework have

been considered by Calvori et al. (2017). However, given that our test takes explicitly into account

of the cross-correlation between the scores with respect to the scale and tail index parameters under

the alternative of being dynamic, the present study shows that overall our LM test has higher power

in detecting dynamics of tail index parameters. We also provide a power and size comparison with

5For example weather to standardise or not the score by the information matrix in the dynamic equation.
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a simple version of the LM test based on the Box-Ljung test.

The final contribution of the paper is to extended the Generalised t conditional distribution to

its skewed asymmetric version to include a different independent time-varying tail parameter for

each of the tails. The reason for this is that in the presence of asymmetric data a symmetric model

would incorrectly estimate the quantiles of the conditional distribution somewhere in between the

two tails, most likely underestimating the thickness of the heavier tail. On the other hand an

asymmetric model would more accurately estimate the thickness of each tail separately and this

can be used to describe the time variation in the asymmetry of the distribution. The idea of this

dynamic asymmetry in a score-driven framework has only been considered previously in two cases:

in a static tails framework by Thiele (2020), which models a dynamic scale in presence of an AST

distribution of Zhu and Galbraith (2010), and by Massacci (2017) who, following the extreme value

theory approach, proposes a time varying tail index model for modelling directly the tails of the

conditional distribution of the data assuming they are conditionally Laplace distributed. To our

knowledge, the present study is the first work which introduces an adaptive model for modelling

the asymmetry of the full conditional distribution of the data through modelling independently its

two tail index parameters.

Finally the paper verifies the empirical relevance of both the symmetric and asymmetric speci-

fications in the modelling of market returns of Equity Index and Credit Default Swap (CDS) rates.

The analysis shows that the tail movements in the Equity Index are not particularly persistent and

are driven only by the movements either of the lower tail or upper tail depending if leverage is

taken into account or not. On the other hand for the CDS both the tails are independently time-

varying with very persistent movements. The impact of the tail variations on density forecasts is

also assessed on these datasets in terms of fitted quantiles and testing the accuracy of both models

in predicting Expected Shortfalls.

The paper is structured as follows: Section 2 introduces the theory behind the statistical frame-

work of the model presented. Section 3 presents the theory behind a formal test for detecting time

variability of the tail index parameters, which is then analysed through simulations and compared

with other relevant tests in the literature. In Section 4 the statistical framework is extended as to

introduce asymmetric tails. Section 5 presents the results from fitting the dynamic tail score-driven

models to equity index and CDS returns as well as analysing out-of-sample the quantiles of the

forecasted conditional distributions in comparison with standard models.
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2. Statistical Framework: DCS Dynamic Tail Index Model

The current study is based on the idea of modelling data series assuming dynamic scale and

shape parameters through a DCS model with a conditional distribution from the Generalised t

distribution’s family, as described in Harvey and Lange (2017). The Generalised t distribution is a

location and scale general distribution which is described by the following density

ft (εt) = K (η, υ)

(
1 +
|εt|υ

η

)− (η+1)
υ

η, υ > 0 and −∞ < εt <∞

K (η, υ) =
υ

2η1/2
1

B (1/υ, η/υ)

Where B (., .) is a beta function, εt = (yt − µ) /ϕ are the residuals, η and υ are both shape

parameters and η governs the tail index for η > 0. The Generalised t distribution is a very flexible

distribution which can accommodate many sub distributions as special cases according to different

values of η and υ. It can have fat tails for υ > 1 and heavy but not fat tails for 0 < υ < 1.

As can be seen in ?? for υ = 2 it becomes a t distribution with η degrees of freedom. Then for

η → ∞ it becomes a GED (υ) distribution which then becomes Laplace for υ = 1 and normal for

υ = 2. Harvey and Lange (2017) shows how to model the scale ϕ in a DCS framework with an

exponential link function ϕt|t−1 = eλt|t−1 deriving the score and its information matrix with respect

to the dynamic scale parameter λt|t−1.

∂ ln ft
∂λ

= (η + 1) bt − 1, Iλλ =
ηυ

υ + η + 1
, t = 1, . . . , T

where bt = |εt|υ/η
|εt|υ/η+1

is distributed as a Beta
(
1
υ ,

η
υ

)
. The dynamics of the scale parameter λt|t−1 is

then described by uλt = ∂ ln ft
∂λ I

−1
λλ . Their paper provides the asymptotic normality results for the

estimators. This model is then easily extendible to include a dynamic location parameter6.

In the present study dynamics for both the conditional scale, ϕt|t−1, and the tail index param-

eter, ηt|t−1, are assumed. As with the scale parameter, to restrict ηt|t−1 to be strictly positive it is

possible to model it using an affine exponential link function of the form η = η† + eηsϑ, where η†

is, as in Lucas and Zhang (2016), a lower-bound for the tail index parameter. This can be used to

restrict the parameter to be greater than two for example and guarantee the existence of the vari-

ance of the conditional distribution. ηs is a fixed parameter that allows us to either model directly

6Harvey (2013) described extensively how to set up a DCS model with dynamic Location and Scale parameters when
the conditional distribution allows the two parameters to be independently specified.
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Figure 3: The figure provide the plot of the raw score with respect to ϑ (Left and Middle) and with respect
to λ (Right) against different residuals values εt, for υ = 2 and η = 2 (Blue), η = 6 (Black), η = 10 (Red).

η, if ηs = 1, or its inverse η̄ = 1/η, if ηs = −17, which is often usefull to use in the derivation of

the analytical tresults of the Generalised t DCS model8. Then the conditional score, as well as its

information matrix, with respect to ϑ can be obtained as

∂ ln ft
∂ϑ

= ηs

(
ηt|t−1 − η†

)
υ

[
ψ

(
ηt|t−1 + 1

υ

)
− ψ

(ηt|t−1
υ

)
+ ln (1− bt) +

1

ηt|t−1

∂ ln ft
∂λ

]
(1)

Iϑϑ =η2s

(
ηt|t−1 − η†

υ

)2 [
ψ′
(ηt|t−1

υ

)
− ψ′

(
ηt|t−1 + 1

υ

)
−

υ
(
ηt|t−1 + 1 + 2υ

)
ηt|t−1

(
1 + ηt|t−1

) (
υ + 1 + ηt|t−1

)] ,
(2)

where ψ (x) and ψ′ (x) are the gamma and digamma functions respectively. It is interesting to

notice that the score with respect to λ appears in the last term of the score with respect to ϑ. This

highlights the close relation between the scale and the tail index parameter.

From Figure 3 it is possible to see that for values of εt close to the median the response of

the score with respect to ϑ tends to increase as η falls, while the score with respect to λ remain

unchanged. On the other hand for large positive and negative values of εt the score with respect

to ϑ is unbounded and its response increases in magnitude as η increases, while for the score with

respect to λ decreases up to the point of becoming bounded for very low values of η. This makes

sense, since, as the degrees of freedom increases, the observations very far from the median are

more informative of a variation in the behaviour of the tails and depending on how heavy the fitted

distribution is at every point in time these observations would be discounted more. Ultimately

given that both εt and ηt|t−1 vary over time, it is more helpful to consider the score response at

7This general set up of the link function nests several specifications. For instance if instead we decide to model the
inverse of the degrees of freedom, η, with a logistic function which restrict it to be 0 < η < 1, like η̄ = exp 2ϑ

1+exp 2ϑ
, then

η = 1 + e−2ϑ, which is our specification with η† = 1 and ηs = −2.
8see Harvey and Lange (2017).
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Figure 4: Three dimensional surface of score of the unbounded tail index parameter for −2 < ε < 2, and
1/2 < η < 8.

every t as a three dimensional function as showed in Figure 4.

As shown by Harvey and Lange (2017), sometimes it is easier to estimate the tail index param-

eter by estimating its inverse η. However, in modelling the tail index parameter dynamically with

our specification, modelling η means simply giving dynamics to −ϑt|t−1; the score then becomes

negative but ultimately it make no difference in the estimation of the magnitude of the dynamic

parameters of ϑt|t−1. Then the Dynamic Scale-Tail model can be described in the following way,

yt = µ+ εt exp
(
λt|t−1

)
, εt | Ft−1

iid∼ Gen-t
(
ηt|t−1; υ

)
, t = 1, . . . , T (3)

A first order DCS model for dynamic scale and tail index can be described by,


λt+1|t = (1− φλ)ωλ + φλλt|t−1 + κλu

λ
t

ϑt+1|t = (1− φϑ)ωϑ + φϑϑt|t−1 + κϑu
ϑ
t

t = 1, . . . , T, (4)

where uϑt = ∂ ln ft
∂ϑ I

−1
ϑϑ and where the information matrix with respect to the static parameters

besides µ is,

I


υ

λ

ϑ

 =


Iυυ Iυλ Iυϑ
Iλυ Iλλ Iλϑ
Iϑυ Iϑλ Iϑϑ
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Iυυ = η
υ
[
(1−η)υ

η − ln η + ψ
( η
υ

)
− ψ

(
1
υ

)]2
+ [υ + η (η + υ + 1)]ψ′

( η
υ

)
+ [η + υ (η + 1) + 1]ψ′

(
1
υ

)
υ4 (υ + η + 1)

−

− (1 + η)2

η4υ4
ψ′
(
η + 1

υ

)
−
υ2
(
1 + η2

)
+ η (η + υ + 1)

ηυ2 (η + υ + 1)

Iλϑ = ηs

(
η − η†

)[ 1

(η + υ + 1)
− 1

(η + 1)

]
Iλυ = η

ψ
( η
υ

)
− ψ

(
1
υ

)
− ln η + υ(η+1)

η

υ (η + υ + 1)

Iϑυ = −ηs
(
η − η†

)
η

ψ ( ηυ)− ψ ( 1υ)− η(υ+1)+1
η − ln η

υ (η + 1) (η + υ + 1)
+
ηψ′

( η
υ

)
− (η + 1)ψ′

(
η+1
υ

)
υ3


All its elements are independent of λ.

Given how often the tail index dynamics is bounded in the literature, in appendix Appendix A

we made an important analysis of the implications of bounding the tail index parameter by η† on

the score response. As a result we have identified that bounding the tail index can imply serious

distortions to the score response. These distortions can ultimately affect the fit since they makes

harder for the dynamic parameter, once next to the bound, to move away from it. Moreover, noting

that since the score function naturally tends to push the dynamic parameter away from very low

values, the chances of the parameter actually falling below 1 and staying there are much lower when

the tail index is unbounded than when is bounded. Therefore, for our modelling purposes we will

then assume for the rest of the paper η† = 0 and ηs = 1.

3. Detecting Time varying Dynamics in Tail Index Parameters

3.1. The LM approach

Testing techniques for detecting dynamics in parameters of a DCS model have been presented

for dynamic correlation in Harvey and Thiele (2016). Following from their approach, in the case

of a single time varying parameter, let’s say ϑ, with dynamics as in Equation (4) driven by its

unstandardised conditional score9

uϑt =
∂ ln ft
∂ϑt|t−1

, t = 1, ..., T,

9For simplicity of exposition we limit ourself in the derivation of the LM test statistic in the case of unstandardised
scores. However, while working with standardised scores, if the information matrix with respect to the time varying
parameters are only dependent on shape parameters like the tail index (which is the case for the t and Generalised t
distributions), under the null of static tail index they are fixed scalars. For this reason we could rewrite the ”update”
part of Equation (4) as κϑû

ϑ
t = κϑI−1

ϑϑ
∂ ln ft
∂ϑt|t−1

= κ̂ϑu
ϑ
t . In our case this applies to both scale and tail index.
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where ft denotes the conditional distribution of the t-th observation, yt, at time t,

A test against the presence of dynamics in an otherwise static model can be based on the

Portmanteau statistic

Qu(P ) = T
P∑
j=1

r2u(j), (5)

where ru(j) is the j-th sample autocorrelation of uϑt . The Box-Ljung modification,

Q∗u(P ) = T (T + 2)
P∑
j=1

(T − j)−1r2u(j),

may also be used. The asymptotic distribution of both statistics under the null hypothesis is χ2
P .

Remark 1. Rather than fixing P, it may be selected using a consistent information criterion, as

in Escanciano and Lobato (2009). Under the null hypothesis, only the first lag is selected in large

samples with probability one. As a result, the asymptotic distribution under the null hypothesis is

χ2
1.

Since Equation (4) is not identifiable under the null hypothesis φϑ = κϑ = 0, the Portmanteau

test may be derived as a Lagrange Multiplier (LM) test under the null hypothesis that κϑ0 =

κϑ1 = .... = κϑP−1 = 0, against the alternative κϑi 6= 0, i = 0, ..., P − 1, in its Q-MA approximate

representation

ϑt+1pt = ωϑ + κϑ0u
ϑ
t + ...+ κϑP−1u

ϑ
t+1−P , t = 1, ..., T.

defined as

LMu(P ) =
1

T

[
0′ ∂ lnL/∂κ′ϑ

]Ψθθ Ψθκ

Ψκθ Ψκκ

−1  0

∂ lnL/∂κϑ

 , (6)

where κ = (κϑ0, κϑ1, ..., κϑP−1) and θ is the vector of all the other fixed parameters, which in this

case consist only of ωϑ. Under this conditions it is shown by Harvey and Thiele (2016) that

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
= T

P∑
j=1

r2u(j) (7)

when the process is very persistent, that is when in Equation (4) the dynamic parameter φϑ is

close to one, larger values of P may yield more powerful tests. Another possibility suggested by

Harvey (2013) is to use the test proposed by Nyblom (1989), which is a general test for parameter

constancy against a random walk alternative based on the LM principle. In the present context,
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the statistic ends up being based on the same scores as in the Portmanteau test. It can be written

as

N =
1

T 2σ2ϑu

T∑
j=1

 T∑
k=j

uϑk

2

.

Under the null hypothesis of parameter constancy, N has a Cramer-von Mises distribution. Al-

though the Nyblom test is usually regarded as a test against a random walk alternative, it can also

be interpreted as a test against a very persistent, but stationary, alternative10.

However the LM test statistic simplifies to Equation (7) only if ϑt|t−1 is the only time varying

parameter under the alternative hypothesis and there are no other time invariant parameters to

be estimated in the conditional distribution of the data. When we have fitted a DCS model to the

data for a time varying parameter, let’s say λt|t−1 through a Beta-t-EGARCH model11, the LM

test statistic for detecting dynamics in another parameter, like the tail index ηt|t−1 is12

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
+

1

T

∂ lnL

∂κ′ϑ

[
Ψ−1κκΨκθ

(
Ψθθ −Ψ′κθΨ

−1
κκΨκθ

)−1
Ψ′κθΨ

−1
κκ

] ∂ lnL

∂κϑ
,

(8)

This result leads to the following

Proposition 1. If the data generating process yt is

yt | Ft−1
iid∼ Gen-t

(
ϕt|t−1, ηt|t−1; υ

)
, t = 1, . . . , T

and the dynamic scale ϕt|t−1 is fitted by a Beta-Gen t-EGARCH model13, the Lagrange Multiplier

test for the dynamics of ηt|t−1 = η† + eηsϑt|t−1 under the null of κϑ0 = κϑ1 = .... = κϑP−1 = 0,

against the alternative κϑi 6= 0, i = 0, ..., P − 1, in the dynamic model

ϑt+1pt = ωϑ + κϑ0u
ϑ
t + ...+ κϑP−1u

ϑ
t+1−P , t = 1, ..., T.,

takes the form

LMu(P ) = Qu(P ) + TI2λϑg′
(

Ψθθ −
I2λϑ
I2ϑϑ

1− a2P

1− a2
gg′
)−1

g

 P∑
j=1

rϑu (j) aj−1

2

(9)

10See, for example, Harvey and Streibel (1998) and Harvey and Thiele (2016).
11which is a DCS model for dynamic scale which assumes t as conditional distribution as described in Harvey (2013).
12For details see Harvey and Thiele (2016)
13Which is the DCS model for scale that assumes a Generalised t as a conditional distribution, as introduced by ?.
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where Qu(P ) is the standard Portmanteau statistic, rϑu (j) are the sample autocorrelations of the

fitted scores with respect to ϑ under the null, Ψθθ is the portion of the dynamic information matrix of

the joint model related to the other estimated static parameters θ = (υ, ωλ, φλ, κλ, ωϑ)′ as described

in the appendix. g =
(
κλ

(
hυ − κλhλ

1−a Iλυ
)
, κλhλ

1−φλ
1−a , 0, Iλϑ, κλ

(
hϑ − κλhλ

1−a Iλϑ
))′

. Iλϑ and Iϑϑ
are elements of the information matrix of the static model. a = φλ − κλIλλ, hυ = E

[
uϑt

∂uλt
∂υ

]
,

hλ = E
[
uϑt

∂uλt
∂λ

]
and hϑ = E

[
uϑt

∂uλt
∂ϑ

]
. Under the null hypothesis the test is distributed with a

Chi-Square asymptotic distribution with P degrees of freedom.

Remark 2. If the shape parameter υ is not estimated14, the LM test statistics can be computed in

the same way as in Equation (9) just removing from the block matrix Ψθθ and the vector g the row

and column related to υ.

In the following sections we will investigate the performance of both the simple Qu(P ) test and

the LMu (P ).

3.2. Tests Simulation Study

Here the power and size of the tests are assessed under various parameters assumptions. For

this purpose we have designed a simulation study on the same lines as the one used to assess

the implications of bounding the score in appendix Appendix A: we have generated N = 1000

samples of length T = 500, 1, 000, 2, 000 assuming that the data generating process is conditionally

distributed with a t distribution with dynamic scale, ϕt|t−1 = exp(λt|t−1), and dynamic degrees

of freedom, ηt|t−1 = exp(ϑt|t−1). The dynamics of the two parameters are modelled using an

exponential link function in a DCS framework with dynamics as described in Equation (4) with

ωλ = −4.7, φλ = 0.985, κλ = 0.03, and ωϑ, φϑ and κϑ, adjusted in each simulation to prevent

the tail index to explode towards infinity. The exact specifications are described in Figures G.14

and G.15. In particular we have ωϑ = log 2, log 8, log 15 and log 30. For the size of the test we

repeat the simulations with the same dynamic parameters just assuming that φϑ = κϑ = 0.

To perform the test, we first fit the Beta-t-EGARCH model, which is a DCS model for time

varying scale that assumes that the data are conditionally t-distributed, therefore a Generalised

t with υ = 215. From this we have obtained the fitted scale, ϕ̂t|t−1, and the fitted residuals, as

xt = yte
−λ̂t|t−1 . Then we use the estimated η̂ parameter to compute the scores with respect to ϑ

14Or fixed to υ = 2, as in the case of the t Distribution
15See Harvey (2013).
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under the null hypothesis of no dynamics, as

ûϑ†t =
η̂

2

[
ψ

(
η̂ + 1

2

)
− ψ

(
η̂

2

)
− 1

η̂
+ ln

(
1− b̂t

)
+

(1 + η̂)

η̂
b̂t

]
, t = 1, ..., T (10)

and then construct the full LM test statistic for various P .

We also compare the results from the simple Portmanteau test on the fitted scores, Q∗u (P ),

which is referred to as the simple LM test statistic, here presented in its more robust Box-Ljung

version. To do so we instead fit a static t distribution to the xt and then we use the new estimated

degrees of freedom η̂∗ to compute the ûϑ∗t and then the simple Q∗u (P ).

In Figures G.14 and G.15 we can see that, as expected, the power of the test tends to decrease

as the sample size T decreases while the implied size tends to increase slightly. Since ωϑ is the

unconditional mean of ϑt|t−1 we can see that, as the true unconditional mean of the time varying

degrees of freedom η0 = exp(ωϑ) increases, the power of the test tends to decrease while its size

tends to increase. The highest power is when η0 is close to 2. This result can be explained by the

fact that as the degrees of freedom increases the score of the likelihood with respect to ϑ tends

to flatten. Therefore, as η0 increases beyond 10 it is difficult to estimate the exact values of η

which would maximise the likelihood. This can also be noticed in the results in Tables H.3 to H.5

where it is possible to see that as ωϑ increases the standard errors of the estimates of the dynamic

parameters of ϑt|t−1 also increase, making the estimates less accurate. Overall we can see that the

model is quite reliable in estimating the correct dynamics of ηt|t−1 when ωϑ ≤ log 15.

We can also notice that fitting the dynamic tail also helps the fit of the scale. This can be seen

from the results of the Box-Ljung test in the same tables which shows how the residual correlation

in the fitted score with respect to the scale parameter, ûλt , tends to disappear when fitting the joint

model, in particular for true values of ωϑ ≤ log 8.

Comparing the two tests, overall the simple Box-Ljung test has slightly more power than the full

LM test and a lower size, with the difference becoming more apparent as we decrease the number of

observations and increase the lags P . This is because the constant I2λϑg′
(
Ψθθ −

I2λϑ
I2ϑϑ

1−a2P
1−a2 gg′

)−1
g

in Equation (9) is estimated in all the cases as negative, making the full LM test more conservative

than the simple Box-Ljung. However the magnitude of the constant is often close to zero, between

10−3 and 10−5, falling rapidly as the number of lags increase. In any case, given such a small

difference in power, the gap between the results of the two tests is expected to disappear if we were

to correct the LM test for the size16.

16Moreover the LM is only asymptotically and locally more powerful than other tests.
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Given these results we can assert that the simple Box-Ljung test is as powerful at detecting

dynamics in the tail index parameter as the full LM test, and is even more accurate in presence of

smaller sample sizes T .

3.3. Test Comparison

In this section we compare the performance of the full LM test and of the Simple LM test

with the GAS-LM test developed by Calvori et al. (2017), another test developed for dynamic

parameters in the score-driven literature. The GAS-LM test is also based on the fitted scores, with

respect to the dynamic parameter tested, under the null of static dynamics. Calvori et al. (2017)

show how the test performs generally well particularly in presence of a strong unobserved mean

reverting dynamics and that it has significantly higher power than other competitors, such as the

ones developed by Andrews (1993) and Muller and Petalas (2010).

The empirical power of the GAS-LM test is compared against the power of the full LM and the

simple Q∗ test assuming the all the tests are performed both with P = 1 and P ∗ chosen by the

automatic algorithm of Escanciano and Lobato (2009). Finally we include also the Nyblom test as

a benchmark, since is often also seen as a general test for parameter instability.

In order to do so we have performed a series of simulations of the same model used in Section 3.2

with the same dynamic specification for the parameter λt|t−1. For the dynamics of the tail index

parameter, ϑt|t−1, we used two values for its unconditional mean ωϑ = log 2, log 8. For other

dynamic parameters we have used κϑ = c/(5T ) for ωϑ = log 8 and κϑ = c/(2.5T ) for ωϑ = log 2

while φϑ =
√

1− κϑ. Then c is left to vary in between the range [1, · · · , 21]. Under this specification

we can assess the performance of the tests under various assumptions of persistence for the dynamic

tail index parameter while making sure that the simulated parameter doesn’t explode to infinity.

For each specification we perform N = 1, 000 simulations under both T = 500, 1, 000.

From the results of the tests in Figure G.18 we can see that, as showed previously, the perfor-

mances of the full LM and simple Q∗ tests are very similar. The GAS-LM(1) test tends to fail to

capture the presence of a dynamic tail index parameter in all the cases while, on the other hand

the GAS-LM(*) becomes quite competitive in most of the cases. In particular it has the highest

power, for both values of ωvatheta and sample size T , when c is low and therefore the tail index

has a very persistent dynamics. The full LM, Q∗ and Nyblom have a relative poor performance

for low c but tend to pick up quite rapidly. In particular the power of the full LM(*) and Q∗(∗)

tends to be in general higher than the power of the GAS-LM(*), particularly with T = 1, 000. The

power of the LM(1) and Q ∗ (1) is never higher than the power of the GAS-LM(*) for T = 500,

while for T = 1, 000 for both the tests is significantly higher except for some small values of c. The
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Figure 5: Plot of the ratios of the Expected Shortfall above the upper 10% (Top Left), 5% (Top Right), 1%
(Bottom Left) and 0.5% (Bottom Right) quantiles of the one-step-ahead forecasted conditional distribution
of the 5y Italian CDS Rate Returns from fitting a symmetric DCS Beta-t-EGARCH model (Black Line),
an asymmetric DCS Beta-t-EGARCH model (Blue Line), an symmetric dynamic tail DCS EGARCH model
(Green Line) over the one-step-ahead forecasted Expected Shortfall from a GARCH model.

performance of the Nyblom test is almost never better than the one of the LM-GAS(*) test. The

power of the Nybloom test is much worse when T = 500, while for T = 1, 000 tends to be more or

less the same as th one of the LM-GAS(*) test for most of the values of c.

In general we can say that the GAS-LM(*) is a good alternative when the underlying dynamics

of the tail index parameter is very persistent and we are in presence of a small sample size. On the

other hand, in the majority of the cases the LM(*) and Q ∗ (∗) are better at detecting dynamics in

tail index parameters.
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4. Extending the Statistical Framework: Asymmetric Tails Modelling

As in Harvey and Lange (2017), given a model as in Section 2, skewness in the Generalised t

distribution can be easily introduced by defining negative and positive residuals as follows,

εt =


ε−t = yt−µ

2(1−α)ϕ , yt ≤ µ

ε+t = yt−µ
2αϕ , yt > µ

where the parameter α, 0 < α < 1, governs the skewness; for α = 1/2 the distribution is symmetric.

The distribution can be further generalised to its asymmetric version as follows,

ft (yt) =


f1t (yt) = K12

ϕ

(
1 +
|ε−t |
η1

υ1
)− (η1+1)

υ1

, yt ≤ µ

f2t (yt) = K12
ϕ

(
1 +
|ε+t |
η2

υ2
)− (η2+1)

υ2

, yt > µ

Each ηi and υi governs the shape for the left and right side of the distribution. K12 = 1/ [α/K1 + (1− α) /K2],

with Ki = K (ηi, υi) for i = 1, 2. The distribution then is symmetric if η1 = η2 as well as υ1 = υ2.

If the distribution is asymmetric the score is more complex and it is different for the left and right

tail, as well as the corresponding information matrices. For the dynamic scale parameter

∂ ln ft
∂λ

=


(1 + η1) b1t − 1 ; yt ≤ µ

(1 + η2) b2t − 1 ; yt > µ

, Iλλ =


η1υ1

υ1+η1+1 ; yt ≤ µ

η2υ2
υ2+η2+1 ; yt > µ

where b1t =
|ε−t |υ1/η1t|t−1

|ε−t |υ1/η1t|t−1+1
and b2t =

|ε+t |υ2/η2t|t−1

|ε+t |υ2/η2t|t−1+1
. then we have that

uλt =
[(

1 + η1t|t−1
)
b1t − 1

] υ1 + η1t|t−1 + 1

η1t|t−1υ1
1(εt≤0)+

[(
1 + η2t|t−1

)
b2t − 1

] υ2 + η2t|t−1 + 1

η2t|t−1υ2

(
1− 1(εt≤0)

)
With only the scale parameter as dynamic we have the model of Harvey and Lange (2017) and

with υ = 2 we have the AST DCS model of Thiele (2020). Now we can introduce dynamics to the
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Figure 6: Plot of the score with respect to different residuals values εt for υ1 = υ2 = 2 and η1 = η2 = 2
(Blue), η1 = η2 = 6 (Black), η1 = η2 = 10 (Red). The score with respect to η1 (Left) and the score with
respect to η2 (Right).

tail index parameters through the conditional scores

∂ ln ft
∂ϑ1

=


η̃1

(
η1t|t−1−η

†
1

)
υ1

[
α+τ1 + ln (1− b1t) + 1

η1

(
∂ ln f1t
∂λ + 1

)]
; yt ≤ µ

η̃1

(
η1t|t−1−η

†
1

)
υ1

α+τ1 ; yt > µ

, (11)

∂ ln ft
∂ϑ2

=


η̃2

(
η2t|t−1−η

†
2

)
υ2

(1− α+) τ2 ; yt ≤ µ

η̃2

(
η2t|t−1−η

†
2

)
υ2

[
(1− α+) τ2 + ln (1− b2t) + 1

η2

(
∂ ln f2t
∂λ + 1

)]
; yt > µ

, (12)

and

I1ϑϑ =



η̃21

(
η1t|t−1−η

†
1

)
υ1

([
(1− α+) τ1 + α+ (1− α+)

(
η1t|t−1−η

†
1

)
υ1

τ21 − α+

η̃1

∂τ1
∂ϑ1

]
−

−
(
η1t|t−1−η

†
1

)
η2
1t|t−1

η1t|t−1(υ1−1)−(υ1+1)

(η1t|t−1+1)(η1t|t−1+1+υ1)

)
; yt ≤ µ

η̃21

(
η1t|t−1−η

†
1

)
υ1

[
α+ (1− α+)

(
η1t|t−1−η

†
1

)
υ1

τ21 − α+

η̃1

∂τ1
∂ϑ1
− α+τ1

]
; yt > µ

, (13)

I2ϑϑ =



η̃22

(
η2t|t−1−η

†
2

)
υ2

[
α+ (1− α+)

(
η2t|t−1−η

†
2

)
υ2

τ22 −
(1−α+)

η̃2

∂τ2
∂ϑ2
− (1− α+) τ2

]
; yt ≤ µ

η̃22

(
η2t|t−1−η

†
2

)
υ2

([
α+τ2 + α+ (1− α+)

(
η2t|t−1−η

†
2

)
υ2

τ22 −
(1−α+)

η̃2

∂τ2
∂ϑ2

]
−

−
(
η2t|t−1−η

†
2

)
η2
2t|t−1

η2t|t−1(υ2−1)−(υ2+1)

(η2t|t−1+1)(η2t|t−1+1+υ2)

)
; yt > µ

, (14)

The asymmetry mixing parameter α+ is defined as

α+ =
α/K1

α/K1 + (1− α) /K2
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which as noted by Harvey and Lange (2017) is the probability of having a negative observation.

The parameters τi and their derivatives are defined as

τi =ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

∂τi
∂ϑi

=η̃i

(
ηit|t−1 − η

†
i

)
υi

[
ψ′
(
ηit|t−1 + 1

υi

)
− ψ′

(
ηit|t−1

υi

)
+

υi
η2it|t−1

]

Then it is possible to model each of the individual tail index parameters through the link function

ηit|t−1 = η†i + eη̃iϑit|t−1 , where η̃i = 1 if we are modelling the tail index parameter and η̃i = −1 if

we are modelling its inverse, and a dynamic QARMA specification for ϑit|t−1 of the form

ϑit+1|t = (1− φiϑ)ωiϑ + φiϑϑit|t−1 + κiϑu
ϑ
it t = 1, . . . , T

where uϑit = ∂ ln ft
∂ϑi
I−1iϑϑ, all for i = 1, 2. Finally, following Zhu and Galbraith (2010) we can construct

the Loglikelihood function as

L (ψλ, ψ1ϑ, ψ2ϑ, α υ1, υ2) =−
T∑
t=1

λt|t−1 +
T∑
t=1

lnK12

(
η1t|t−1, η2t|t−1, υ1, υ2

)
−

−
T∑
t=1

(
η1t|t−1 + 1

)
υ1

ln

(
1 +

|εt|υ1

η1t|t−1

)
1(εt≤0)−

−
T∑
t=1

(
η2t|t−1 + 1

)
υ2

ln

(
1 +

|εt|υ2

η2t|t−1

)(
1− 1(εt≤0)

)
where ψλ, ψ1ϑ and ψ2ϑ are the vectors containing the parameters for the dynamic specifications

of λt|t−1, ϑ1t|t−1 and ϑ2t|t−1.

Existing models in the extreme value theory literature focus only on observations which exceed

a pre-determined threshold and are therefore considered as belonging to the ”tail” of the distribu-

tion. This means that the ”non-tail observations” or, particularly in the case of asymmetric tails

modelling, the observations that fall in the opposite tail to the one modelled are treated as miss-

ing17. In the DCS framework, the score with respect to each tail index is still only directly affected

by the residuals which appear in its side of the distribution since, as can be seen in Figure 6, its

response is flat starting from the median and continuing through for all the residuals values in the

opposite side of the distribution. This is because for an observation belonging to the opposite side

17For example, at time t the residual εt > 0 would consider it as a missing observation while modelling the lower tail
parameter
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Mean St. Dev. Skewness Kurtosis Min. Max. Q(20)

FTSE 100 0,000 0,011 -0,480 12,561 -0,130 0,0934 86,201
CDS 5Y Italy 0,001 0,043 0,288 18,912 -0,437 0,429 25,395

Table 1: Descriptive Statistics

of the distribution, the last two terms of Equation (11) and Equation (12), which depends on bit,

disappear; as would happen for an observation at the median. Therefore, in this case the score

generates the same response as if the observation was at the median, instead of treating the obser-

vation as missing, and producing a response of 0. Moreover, the score in this case still depends on

both α+ and τi which use information from both the tails. Due to this structure also in this case

the score remains time varying through its dependence on both η1t|t−1 and η2t|t−1. This feature

comes directly from the conditional score of the asymmetric distribution, rather than arbitrarily

setting a treshold to define which are the ”tail obsernvations”. As a consequence, at each point in

time the DCS asymmetric tail model uses more information from the observations in both sides of

the distribution in fitting the true dynamics of each of the two tail index parameters.

5. Empirical Results

For the reminder of the paper we will be focusing only on the t distribution and its asymmetric

counterpart. Therefore we are restricting υ = υ1 = υ2 = 2 and α = 1/2.

In order to investigate the effectiveness of the new dynamic tail model on different types of data

series, we have considered returns from Equity Indexes and Credit Default Swaps, which are known

for their extreme fluctuations over time.

For the equity indexes we have considered the Dow Jones Index daily log returns. The data

are collected from Yahoo Finance and are between the 29th of January 1985 to the 29th of April

2016. For the CDS we have considered daily log returns of 5y CDS rates for the Italian sovereign

debt. The data are collected from Bloomberg and are from the 1st of March 2007 to the 21st

of September 2018. The particular choice of the CDS data series was motivated by the fact that,

among the European sovereign CDS, it was the one that exhibits the most extreme behaviour while

maintaining a relative high liquidity.

From Table 1 it is possible to see that the two series considered both have a high sample kurtosis,

higher for the CDS than for the Equity Index. The CDS series is right skewed while having a sample

standard deviation four times higher than the Equity Index, which comes out as left skewed. In all

the cases there are signs of residual correlation at lag 20.

In order to estimate the Dynamic Scale-Tail DCS model we have first fitted to both the series a
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Figure 7: Fitted degrees of freedom of the Dow Jones Index Returns in the symmetric case (Top), η̂t|t−1,
and for the Lower Tail in the asymmetric case (Bottom),η̂1t|t−1 η̄t|t−1.

beta-t-EGARCH DCS model, assuming a conditional t distribution. Than, using the fitted residuals

we have computed the scores under the null, ûϑ†t , as in Equation (10) and performed the simple

Box-Ljung test Q∗u(P )18. Then, where appropriate, we have fitted the general Dynamic Scale-Tail

DCS model19 . All the estimations are performed by maximum likelihood20. Both Conditional

Symmetric and Asymmetric t distributions specifications were considered.

Remark 3. In modelling the individual tails of the Asymmetric t distribution, the score with

respect to the dynamic tail index parameter of each of the tails depends on the observations only if

the observation falls in its tail. For this reason, the simple test Q∗u(P ) performed on each individual

tail index parameter will effectively use less observations and therefore we expect it to have a lower

power compared to a test based on the symmetric tail index parameter.

In fitting the Beta-t-EGARCH model to the Dow Jones Index returns series we had to assume a

two components dynamics for λt|t−1, as described in Harvey (2013) pg.91-92, in order to capture the

long memory feature of return’s volatility and remove all the residual correlation in the fitted scores

18Another reason for preferring the simple Box-Ljung version of the test is that, besides from its simplicity and
effectiveness, it allows for an immediate comparison with the Box-Ljung test performed on the fitted scores to
detect residual correlation after having fitted the Dynamic Tail.

19When fitting a dynamic tail index parameter the score with respect to the scale parameter λt|t−1 should also be
standardised by its static information quantity Iλλ, since this would also be time varying.

20Since the estimation of the general Dynamic Scale-Tail model is not trivial, to improve the accuracy of the param-
eters estimates we have first fitted to the standardised data a Dynamic Tail DCS model, assuming the tail index
parameter to be dynamic and the scale constant set to 1. Than we used the estimated parameters in combination
with the parameter estimates of the Beta-t-EGARCH DCS model as starting values for the parameters of full
Dynamic Scale-Tail DCS model.
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with respect to λ which could affect, through the scores with respect to the tail index parameter

uϑt , the accuracy in the detection and estimation of the tail index parameter dynamics.

Given the length of the series it raises the question if we should take into account possible

leverage effects. The problem in doing so is that we are introducing some sort of asymmetric

response to negative returns in the scale dynamics, which could affect the behaviour of our dynamic

asymmetric tail model. For this reason we provide in Table H.6 the results without and with leverage

effect, which can be added to the dynamics of the components of λt|t−1 as

λt|t−1 = ωλ + λ1,t|t−1 + λ2,t|t−1

λi,t+1|t = φi,λλi,t|t−1 + κi,λu
λ
t + κ∗i,λsgn(−yt)(uλt + 1) i = 1, 2

In Table H.7 it is possible to see that in the case of the model without leverage the Q∗u(P ) test

rejects the null of static degrees of freedom in the symmetric case, but in the asymmetric case

only for the parameter for the lower tail η1, suggesting a dynamic lower tail and a static upper

tail. This result can explain the findings of Mazur and Pipień (2018), who identified the left tail of

returns to be more variable and consistently heavier than the right tail. The Dynamic Scale-Tail

model is then fitted accordingly. From Table H.6 it is possible to see that the dynamics of the

degrees of freedom parameters are not too persistent with the parameter for the lower tail being

less persistent than the one for the symmetric tail. The Box-Ljung test results on the fitted scores

in Table H.8 suggests that the model fits the dynamic parameter well, removing all the correlation

from the Q∗u(P ) test up to lag 50. We have to notice thought that the simple Beta-t-EGARCH

with two components, either with symmetric or asymmetric tails, is not capable to remove entirely

the residual correlation from the fitted scores with respect to the scale parameter λt|t−1. However

after letting the tail parameters be dynamic, also all the residual correlation in the dynamic scale

parameter λt|t−1 is then removed. The improvement in the fit from modelling the data with a

dynamic tail is ultimately confirmed by the higher likelihood and lower information criteria.

As can be seen in Figure 7, the fitted symmetric parameter ηt|t−1 moves between 1 and 6.5 but

mostly staying around 6.5. This somehow is similar to the results found by Blazsek and Monteros

(2017); Ayala et al. (2017) on the S&P 500 and Massacci (2017) on the shape parameter behaviour

of small firms, which seemed to have a ”floor” around a constant number. Ultimately it falls below

1 only in the case of the ”Black Friday” market crash of November ’89. Figure 7 shows also the

plot of the fitted parameter η1t|t−1 for the lower tail which is on average around 6, slightly heavier

than the symmetric one but with almost identical fluctuations just slightly more pronounced.
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Figure 8: Plot of the fitted scale exp
(
λt|t−1

)
without leverage, (Red Line), and the inverse of the fitted

degrees of freedom for the Lower Tail η̄1t|t−1 of the Dow Jones Index Returns in the asymmetric case, (Blue
Line), with the confidence bounds for one and two standard deviations from the mean.

To identify the effect of the occurrence of notable market events on the lower tail movements,

in Figure 8 we have plotted the inverse of the symmetric tail parameter η̄t|t−1 against the fitted

time varying scale exp
(
λt|t−1

)
. From this is possible to see that the heaviness of the lower tail of

the returns distribution matches most of the notable market events. However its movements are

not necessary linked to volatility. As expected there are cases when volatility is high and the lower

tail is also heavier, as for the case of the ”Black Monday”. However the vast majority of extreme

movements in the lower tail happens when the volatility moves the least. From this we can identify

the ”Black Friday” November ’89 market crash which followed the ”Black Monday”, the November

’91 market crash due to congress vote on increasing the credit card rates and the February ’07

market crash at the beginning of the subprime crisis when Greenspan suggested the possibility for

the US to enter in a recession. All these were unexpected extreme events which moved the market

unidirectionally down while the volatility fitted by the Beta-t-EGARCH didn’t move much. On

the other hand events like the Leheman default are fully taken into account into the volatility of

the market leaving the heaviness of the lower tail almost unaltered.

Looking instead at the inverse of the lower tail parameter η̄1t|t−1 in Figure G.16, we can see

that there are less spikes and some of them are less pronounced. However some of the events

identified in Figure 8 are still present here, confirming the idea that most of the extreme events

tends to occur in presence of negative returns. Once introduced the asymmetric response in the

scale parameter through the leverage component in the Beta-t-EGARCH all the remaining residual

correlation in the fitted scores with respect to λt|t−1 is removed. On the other hand from Table H.9

it is possible to see that in the asymmetric tails case the Q∗u(P ) reveals residual correlation only in

the fitted scores with respect to the upper tail parameter, η2, rather than in the lower tail. This

can be explained by the fact that the inclusion of the leverage term allows the scale to capture
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Figure 9: Plot of the the fitted estimated degrees of freedom, ηt|t−1 for the symmetric model.

most of the extreme negative movements neglecting some of the positive which ultimately should be

modelled separately. All the estimated κ∗i,λ are positive and the leverage impact is mostly confined

in the less persistent component of λt|t−1, confirming the findings of Harvey and Lange (2018).

The symmetric dynamic tail model has similar fitted dynamics and paths for the parameter ηt|t−1

to the case without leverage. However, the fitted η2t|t−1 is quite persistent with a different path

from η1t|t−1 in the case without leverage. The path of its inverse in Figure G.16 reveals much less

extreme movements, partly due by its long run average around exp (ωη2) = 10.014, which occurs

at different time periods t than for η̄1t|t−1. However these are still periods when the volatility is

low. Finally, we can see from Table H.6 that there is an overall significant preference in terms

of likelihood and information criteria for the asymmetric Scale-Tail model with the leverage term,

however this fails to capture some of the residual correlation in the fitted scores with respect to scale

at earlier lags. These results can be explained by the fact that as the tail index parameter of the

conditional distribution falls, the score with respect to scale that drives its dynamics becomes more

bounded preventing extreme scale movements as long as they are not persistent in the series, see

Harvey (2013). This feature, in the score driven literature, it has been explained by the robustness

to outliers of the score with respect to scale. However, once allowed for the tails of the conditional

distribution to vary, sudden unexpected extreme events, if repeated, rather than moving the scale

tend to move the tail, which becomes more heavier and allows allows for more extreme events to

occur. The phenomenon is clearer in the asymmetric case where, for example, if the leverage effect

on scale is not taken into account the lower tail index moves to capture these rapid non persistent

falls of the series neglected by the scale, which are detected in the residual correlation of fitted scores

with respect to the tail index parameter. In this way the model can effectively distinguish between

scale movements and tail movements, either if they occur occasionally or are more persistent. In

the case of Index Returns tail movements seems to be rarely persistent, therefore the effectiveness
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Figure 10: The top figure shows a plot of the the fitted estimated degrees of freedom, η2t|t−1 and η1t|t−1,
for the upper and lower tail in the asymmetric model, (Black and Red line respectively). On the bottom
figure shows the spread between the upper and lower tail dynamic degrees of freedom of the asymmetric
distribution, η2t|t−1 − η1t|t−1.

of the dynamic tail model could be better appreciated instead with series which exhibits more

extreme and frequent occurrences of extreme events.

In fitting the scale of the Italian CDS series with the Beta-t-EGARCH model a one component

dynamics is enough to remove most of the residual correlation in the fitted scores with respect to

λt|t−1 up to lag 50, a part from lag 1 and 5. This can be noticed from the results of the Box-Ljung

test in Table H.12 where is also possible to see that the Q∗u(P ) rejects the null of static degrees of

freedom up to lag 50 in both the symmetric and asymmetric cases. To remove fully this residual

correlation from the fitted scores with respect to ϑt|t−1 we have opted in the symmetric case for a

QARMA(1,1) specification as

ϑt+1|t = (1− φϑ)ωϑ + φϑϑt|t−1 + κ1ϑu
ϑ
t + κ2ϑu

ϑ
t−1

while in the asymmetric case we have used the same QAR(1) dynamics as described in Equation (4)

for both individual tail parameters.

In Table H.11 is possible to see that all the three fitted dynamic tail index parameters are very

persistent, almost I(1). Also in this case the improved fit of the Dynamic Scale-Tail specification
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is confirmed by a higher Likelihood and lower information criteria. In Figures 9 and 10 is possible

to see that the fitted tail index parameters are much more persistent than in the case of Index

Returns21 and tend to move quite closely together between 4 and 1. In both the cases they all

stay for long periods under 2 in the early part of the sample, like around the ’08 Lehman default,

while, as can be seen in Figure 9, the symmetric tail index parameter falls also below 1 in that

same period, suggesting that the conditional distribution could at times not have variance22. This

result shows how dynamic models which focuses on moments of the conditional distribution, like

GARCH, can become invalid in this context. However, the tail index parameter only fall below

1 for short periods of time despite not being bounded since, as explained in appendix Appendix

A, the score naturally pushes the tail index parameter away from extremely low values unless in

presence of a large number of very extreme observations. The tail index parameter of the symmetric

distribution is the one that tends to move the most and seems to follow mostly the movements of

the lower tail, despite being sometimes higher than either of the two tail index parameters in the

asymmetric specification.

In regards to asymmetric distribution, the relative comparison of its tail parameters is presented

in form of the spread η2t|t−1 − η1t|t−1, which seems informative of periods of financial distress for

the country. Indeed the periods when the spread becomes negative23 coincides with the periods of

economic and political turbulence in Italy, when the CDS rates have increased rapidly.

5.1. Conditional Distribution Modelling under Dynamic Tails

The inclusion of dynamic tails has a direct impact on the actual modelling of the conditional

distribution of the data which can be better appreciated looking at its quantiles. Figure 11 shows

the upper and lower 0.5% quantiles fitted by the GARCH model and the asymmetric Dynamic Tail

DCS model on the Italian 5Y CDS returns data series. From this we can see that the returns data

series touches quite often the upper and lower quantiles fitted by the GARCH model. This suggests

that there have been several occasions across the dataset in which returns exhibits movements that

should happen with probability 0.5%. Precisely, across the whole sample 1.36% of the data crosses

the GARCH upper quantile and 1.19% the lower quantile, while in the case of the asymmetric

Dynamic Tail DCS model only the 0.03% for both the upper and lower tail. This suggest that the

21This is because CDS returns exhibits more frequent and extreme movements than Index returns.
22These low values coincides effectively with periods when the CDS is quite illiquid and there are many consecutive

zeros which makes the conditional distribution very heavy tailed. However the total number of zeros in the entire
sample is less than 5% and are are mainly located in these early parts of the sample.

23These are periods in which the lower tail is closer to Gaussianity than the upper tail and therefore implies more
extreme returns towards positive values.
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Figure 11: Plot of the 0.5% upper and lower quantiles of the conditional distribution of the returns series
for the Italian 5y CDS Rates (Black Line), when fitted by a GARCH model (Red Line) and a DCS with
dynamic asymmetric tails (Blue Line).

GARCH model is far less conservative than the Dynamic Tail Index model underestimating the

occurrence of extreme events. This can be clearly seen also in the occasion of the 15th of July 2008,

two months before the Leheman bankruptcy, when the 5Y Italy CDS moved from 21.167 to 32.5 in

one day. The GARCH model estimated that this event could have occurred with a probability of

0.06%, while the static Beta-t-EGARCH DCS model with a probability of 0.57% and the symmetric

and asymmetric Dynamic Tail DCS models with probabilities of 2.22% and 1.18% respectively.

In order to see if these significant differences can also be detected out-of-sample we have made a

density forecasting exercise where we have obtained one-step-ahead point and density forecasts on

the 5y Italy CDS data for the two years in the sample. A total of 730 observations out-of-sample.

The forecasts are obtained re-estimating the models using all the data up to the previous date to

one forecasted.

We define the one-step-ahead p-lower and p-upper Value-at-Risk (VaR) as the quantity

VaR1p (yT+1) = inf {x ∈ R : P (yT+1 ≤ x|FT ) ≥ p} , VaR2p (yT+1) = sup {x ∈ R : P (yT+1 ≥ x|FT ) ≤ 1− p}

which for a symmetric distribution around 0 are respectively VaR1,1−p (yT+1) = F−1YT+1|T
(p) and

VaR2p (yT+1) = −F−1YT+1|T
(p), where FYT+1|T (.) is the one-step-ahead forecasted conditional CDF of

the quantity yt. In case of an asymmetric distribution centred at 0 with one-step-ahead forecasted

conditional CDFs F1YT+1|T (.) and F2YT+1|T (.) for the distributions describing respectively the left

and right tail of the distribution of yt, we have that VaR1p (yT+1) = F−11YT+1|T
(p) and VaR2p (yT+1) =

−F−12YT+1|T
(p). On the other hand we define the one-step-ahead lower and upper Expected Shortfall

27



(ES) as

ES1p (yT+1) =E [−yT+1|yT+1 ≤ VaR1p (yT+1) , FT ] = −1

p

∫ VaR1p(yT+1)

−∞
xfYT+1|T (x) dx

ES2p (yT+1) =E [yT+1|yT+1 ≥ VaR2p (yT+1) , FT ] =
1

p

∫ ∞
VaR2p(yT+1)

xfYT+1|T (x) dx

Given these measures of one-step-ahead VaR and ES over the out-of-sample forecasting period, we

then define the hit-processes

h1T+1 (p) =1(yT+1<VaR1p(yT+1))

h2T+1 (p) =1(yT+1>VaR2p(yT+1))

hT+1 (2 ∗ p) =h1T+1 (p) + 2h2T+1 (p)

In this way we can construct both the unconditional coverage and independence likelihood ratio tests

of Christoffersen (1998) for the VaR violations for both the upper and the lower tail, individually

or jointly. The first test corresponds to the null H0 : E [hiT+1 (q)] = P (hiT+1 (p) = 1) = p, while

the second tests the null hypothesis H0 : P (hiT+1 (p) = 1|hiT (p)) = p. For both the individual tails

the tests are distributed as χ2 (1). The tests for the joint violations are described in the paper as

tests for the asymmetry of the predictive distribution which can be easily constructed also in our

framework. Since they have three possible outcomes, 2 for up violation, 1 for low violation and 0

for no violation, they are distributed with a χ2 (2) and χ2 (4) respectively.

To evaluate the ES for both the tails we have used the unconditional backtest of Du and

Escanciano (2017). These tests can be constructed from the cumulative violation processes

H1T+1 (p) =
1

p

∫ p

0
h1T+1 (q) dq =

1

p
(p− PITT+1) 1(yT+1<VaR1p(yT+1))

H2T+1 (p) =
1

p

∫ 1

1−p
h2T+1 (q) dq =

1

p
(1− p− PITT+1) 1(yT+1>VaR2p(yT+1))

Where PITT+1 = FYT+1|T (yT+1) are the conditional one-step-ahead probability integral transforms

(PIT) computed on the out-of-sample data. Du and Escanciano (2017) show that testing the correct

specification of the ES simplifies to test weather the mean of the HiT+1 (p) is equal to p/2 and can

be tested through the t statistics

tES =
¯Hi (p)− p/2√
vES (p) /Tf

where ¯Hi (p) is the sample mean of the HiT+1 (p), vES = V ar (HiT+1 (p)) = p (1/3− p/4) and Tf
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is the number of out-of-sample observations24.

From the results of the unconditional coverage test in Table H.14 we can see that in the case

of fixed tails the quantiles levels are significantly misspecified, in particular in the case of the

GARCH and for the lower tails of the DCS models. This can be explained by the fact that, given

the assumption of gaussianity of the GARCH, the time variation in the quantiles only depends

on the variation in the conditional variance which tends to spike in presence of extreme events.

As a consequence the model overestimates the quantiles closer to the median in favour to the

one in the tails, as can be seen from the results of the unconditional coverage tests. The results

of the unconditional backtests shows that in the lower tail the lower ES are underestimated for

the quantiles closer to the median and in the higher tail the upper ES are overestimated for the

quantiles further in the tails.

In the case of the symmetric fixed tail DCS model, or beta-t-EGARCH, the estimated degrees

of freedom are pushed low by the extreme movements of the upper tail overestimating the quantiles

further in the lower tail. This produce an overal good estimate of the upper ESs for the higher

tail and underestimates the lower ESs for the lower tail. In the case of the asymmetric fixed tail

DCS model, or the asymmetric t (AT) DCS model of Thiele (2020), the upper tail index parameter

is estimated smaller than the lower tail index parameter. However not taking into account of the

time variation in the tails the quantiles tend to still be overestimated in the case of the lower tail

and underestimated in the case of the upper tail, with a more significant problem for the ES of the

lower tail.

On the other hand looking at the results for the dynamic tails DCS models, the tails are much

better taken into account. However still in the symmetric model the dynamics is mainly driven by

the upper tail movements, therefore some of the quantiles further in the lower tail are significantly

overestimated in respect to the asymmetric model. In terms of unconditional independence test, we

have that the violations of the quantiles tends to be significantly dependent only for some quantiles

in upper tails of the the fixed tails models, while the dependence is completely removed in the

dynamic tail models.

The overall predictive likelihood of the DCS models is much higher than in the GARCH with

comparable sizes across the the various specifications. The only exception is for the symmetric

dynamic tail DCS model, which due to its more erratic ARMA specification in the dynamics of the

tail index parameter, has a predictive likelihood slightly lower than the other DCS models. For this

24We have also considered the conditional backtest of Du and Escanciano (2017), however the low number of rejections
was not enough to discriminate between models, therefore the results are not reported.
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reason, and the results of the tests, we can assume that the asymmetric dynamic tails DCS model

is the most appropriate to model the 5y Italy CDS dataset.

As a further illustration of the results, in Figure G.17 and Figure G.18 we can see the lower

and upper out-of-sample ES from the same analysis25 reported as ratios on the ES forecasted by

the GARCH. From these we can see that the GARCH model underestimates in both the cases the

length of the tails. The ES forecasted are for the 10% quantiles half the one forecasted with the

dynamic tails models and for the 0.1% quantile from 5 times up to in some occasions more than

35 times the ones forecasted with the dynamic tails models. In general the Expected Shortfall

ratios from the asymmetris fixed tail DCS model tends to be higher for the upper tail and lower

for the lower tail than for the symmetric fixed tail DCS model. On the other hand, the Expected

Shortfall ratios for the asymmetric dynamic tail DCS model tends to vary a lot across the sample.

For most of the out-of-sample dataset they are lower than the one of the asymmetric fixed tail DCS

model in the case of the lower tail, while they move rapidly both above and below the the one

of the asymmetric fixed tail DCS model depending on the time periods. As expected, the largest

fluctuations across the forecasted sample happen for the 0.1% quantile.

6. Conclusion

The present work studies the time variability of the occurrence of extreme events in time series.

This can be described by the fluctuations over time of the tail index of the conditional distribution

of the data.

The paper introduces a dynamic DCS model for the tail index parameter while assuming that

the data are generated by a conditional Generalised t distribution.

An LM test to detect the presence of dynamics in the tail index parameter is also introduced.

This is based on the autocorrelation of the score with respect to the tail index parameter under

the null of no variability. A closed form solution of the test is derived. The power and size of the

full LM test are then compared with a simple Box-Ljung test performed on the fitted scores of the

model under the null. The results reveal that the full LM test is a more conservative version of the

Box-Ljung with a lower probability of rejection. The difference is more pronounced in cases when

the tail index is particularly low or there are fewer observations. The comparison is then extended

to include also the GAS-LM test of Calvori et al. (2017) and the Nyblom test. The GAS-LM test,

25Here the Expected Shortfall from the Symmetric Scale-Tail model has been excluded to better appreciate the
difference between the other models given the fact that due to the its ARMA specification in the tail parameter its
tail has very large fluctuations.
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with lags automatically set by the algorithm of Escanciano and Lobato (2009), performs better

than the LM in presence of an extremely persistent tail index parameter and with a small sample

size. However in all the other cases the newly introduced tests, both LM and the simple Box-Ljung,

are superior in terms of power than all the other competitors.

The efficiency of the Dynamic Tail DCS model in estimating the dynamic parameters of the

tail index is also assessed under various parameter assumptions. As expected, the results show

that the estimation accuracy of the model falls as the sample size decrease. However, this happens

faster when the true tail index is on average around 30 or larger. On the other hand, the model is

particularly effective when the true tail index is on average smaller than 15.

Finally the Generalised t distribution is extended to its asymmetric version in order to give a

separate dynamics to the upper and lower tail index parameters.

Further implications of bounding the dynamics of the tail index parameter to guarantee the

existence of moments are also analysed in the appendix. The analysis reveal that the bounding can

imply serious distortions in the score response and therefore affect the performance of the filter in

capturing the true dynamics of the tail index.

Both the models, symmetric and asymmetric, and the tests are then empirically implemented

on market returns data from the Dow Jones Equity Index and the 5Y Italy CDS. The results show

that, in the case of the Equity Index, the tests detect a dynamics in the symmetric tail index

parameter. However if the distribution is believed to be asymmetric the dynamics is detected only

in the lower tail index parameter if we do not including a leverage term in the scale dynamics, or in

the upper tail index parameter if we include the leverage term. Moreover both the fitted dynamic

tail indexes are not too persistent and tend to be bounded from above falling only rarely below 1.

In the case of the CDS returns both the symmetric and the two asymmetric tail index parameters

are detected to be dynamic. All three parameters have a very persistent dynamics moving from

4-6 down below 1 occasionally. The analysis of the spread between the upper and the lower tail

index parameters in the asymmetric case shows how the relative heaviness of the two tails varies

considerably over time. The two parameters tends to move together for most of the data sample,

diverging mostly in the last part where, in particular between 2016 and 2017, the upper tail is heavier

than the lower tail. This is consistent with the rapid increase of the CDS price during the political

crisis in Italy. Finally, an out-of-sample analysis of the forecasted quantiles and Expected Shortfalls

have proven that the dynamic Tail DCS models are much less conservative than the GARCH in

forecasting the tails length, and therefore forecasting higher probabilities of occurrence of extreme

events with significant evidences of asymmetries and time variation in magnitudes depending on

31



the time periods.

This tails behaviours are of high interest for practitioners, therefore the model can have many

empirical applications. In particular, in the asymmetric model would be interesting to investigate

if there are cases in which an increase in magnitude of one tail can imply an increase in magnitude

in the other tail, as shown by Massacci (2017). Moreover would be interesting to investigate the

impact of the inclusion of other variables regarding the real economy as explanatory variables on the

fit of the tails for both the Equity and CDS datasets. Finally, in terms of systemic risk, would be

interesting to look at these analysis in a multivariate framework also across countries. For example,

we could try to assess the possible relation between cross-country or cross-assets tail movements.

Finally, this model could give another perspective on the idea of tail association while setting up

dynamic copulas.
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Appendix A. Bounding the Tail Index Dynamics

The score with respect to the tail index parameter is a continuous function of the residuals at

every time period t. The advantage in modelling the tail index parameter with such a score-driven

approach in comparison to the one from extreme value theory is that, rather than focusing only

on the observations that fall in the tails, it makes coherent use of all the observations in the time

series. It is important to bear in mind that in a DCS-EGARCH model, once η is estimated and

fixed for every t, the score with respect to λ is only a function of εt. On the other hand, in a

DCS dynamic tail model, once the fixed shape parameters are estimated, at every t the score with

respect to ϑ can be considered as a three dimensional function of both εt and ηt|t−1.

As can be seen also in Figure 4, the score response for observations around the median increases

as ηt becomes smaller. The reason for this is that as η decrease the t distribution becomes more

heavy tailed, with longer tails, expecting a more frequent occurrence of extreme events. Since at

low values of η events around the median should be less frequent than events in the tails, every

new non-extreme observation should contain more information on a potential tail index movement

towards Gaussianity. This is taken into account by the score which increases the tail index and

pushes the distribution more towards normality.

Given a tail index value of η a distribution has only k < η finite moments. For example, for

η = 1 the t distribution becomes a Cauchy distribution which doesn’t have finite variance. For this

reason when modelling a dynamic tail index previous studies have tried to restrict ηt not to fall

below either 2 or 1. The easier way to do so is to modify the link function η = η† + eηsϑ so that

η† = 1, 2. The problem in doing this is that it creates distortions to the score function which for

η† = 1 becomes as in Figure A.12.

Under these conditions, counter intuitively, score response towards new realization decreases

as the tail index parameter approaches 1. This means that if the tail index parameter is around

1.5, despite the fact that the conditional distribution is quite heavy tailed at that point, the tail

index parameter is much less responsive to movements of εt, taking much more time to go back to

normality even if the majority of the new observations are close to the median of the distribution.

As showed in Figure A.12 this effect can be mitigated by standardising the score by the information
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Figure A.12: Three dimensional surface of the score of the bounded tail index parameter with lower-bound
η† = 1 for residuals −2 < ε < 2, and 1 < η < 8, unstandardised (Left) and standardised (Right) by the
information quantity.

quantity Iϑϑ26, however the issue now is that, as η approaches 1, the response of the score to new

realizations is very high and can move the tail index parameter very rapidly towards infinity.

In order to better understand the implications for the score function of bounding the tail index

and standardising it by the information quantity, we have made a simulation study. We have

generated data from a conditional symmetric t distribution with a dynamic DCS model for scale

and degrees of freedom with dynamics given by Equation (4) with ωλ = −4.7, φλ = 0.985, κλ = 0.03,

ωϑ = (1/ηs) log(2− η†), φϑ = 0.99 and κϑ = 0.025.

In Table A.2 we can see the results of four simulations between bounding or not the tail index

with η† = 1 and standardising the score it by its information quantity27. In each of the cases

the results reported are the average across N = 1000 simulations of length t = 2000. From those

results it is possible to see that bounding the tail index makes its dynamics even less responsive to

variations in εt, indeed both the range and the standard deviation of the simulated paths of the

tail index decreases. On the other hand standardising the score when the tail index is bounded by

1 makes the score function very responsive to εt up to approaching an explosive behaviour which

in 20% of the simulations pushes η towards very large positive numbers, approaching infinity. On

the other hand, in both the cases of not bounding the tail index less than 1% of the simulated η

happen to fall below the bound of 1 and even in these cases the magnitude of the average violation

26The idea of standardising by the information matrix is not new in the score driven literature, Harvey (2013) and
Creal et al. (2013) have already proposed this correction to the score on the line of the method of scoring. However,
given that in general while modelling location or scale parameters the information matrices with respect to these
parameters are only dependent on the shape parameters of the conditional distribution, if these are static then also
the information matrix is time invariant. This means that the standardization simply results in scaling the time
varying scores by a constant factor having little or no effect on the score response. On the other hand, if when the
shape parameters are time varying, like the tail index, it makes a significant difference which can be appreciated
in the current study.

27the results are identical from either setting ηs = 1 or ηs = −1
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ωϑ = log 2
η† = 1 η† = 0

Unstand Score Stand Score Unstand Score Stand Score

Mean 2,001 2,777 2,006 2,095
Std 0,041 1,371 0,159 0,662
Min 1,882 1,104 1,530 0,905
Max 2,092 11,064 2,351 4,506

Range 0,210 9,960 0,821 3,601
Avg n. per sym η ≤ 1 0,000 0,000 0,001 28,679

% η ≤ 1 0,000 0,000 0,000 0,014
Avg

∣∣ηt|t−1 − 1
∣∣ ≤ 1 - - 0,001 0,067

Avg n. per sym η ≥ 100 0,000 19,334 0,000 0,000
% η ≥ 100 0,000 0,010 0,000 0,000

Table A.2: Results of simulating from a Dynamic Scale-Tail DCS model considering the bounding and
standardising the score by the info matrix.
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Figure A.13: Simulated dynamic tail index patters with a Scale-Tail DCS model, with unbounded and
standardised score (Left), unbounded and unstandardised score (Middle), bounded and unstandardised score
(Right).

below 1 is around 0.06. This is due to the tendency of the score function to push the η higher

when is already low, therefore the number of bound violations is marginal on average and very

little in magnitude even without bounding. Looking at the results for Range and at Figure A.13

the unbounded standardised score function is the one most responsive without becoming explosive.

For al these reasons we suggest that bounding the tail index is not advisable. However if it

is found to be necessary, one should do it by standardising the score by the information quantity.

In any case our preference is to model dynamic tail indexes with an unbounded tail index and a

standardised score which appears to be the most flexible and reliable model specification.
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Appendix B. Expectations of functions of Beta functions

Given Lemma 1 in Harvey (2013), pg 23, a random variable b distributed with a beta (α, β)28

and w (b) is a function of a b with finite expectation,

E
[
bh (1− b)k w (b)

]
=
B (α+ h, β + k)

B (α, β)
E [w (b)] , h > −α, k > −β

where B (α, β) is a beta function and now the expectation on the right-hand side is now understood

to be with respect to a beta (α+ h, β + k) distribution. Then

E
[
lnh (b) lnk (1− b)

]
=

∫ 1

0
lnh (x) lnk (1− x)

xα−1 (1− x)β−1

B (α, β)
dx

=
1

B (α, β)

∫ 1

0

∂h

∂αh
∂k

∂βk
xα−1 (1− x)β−1 dx

=
1

B (α, β)

∂h

∂αh
∂k

∂βk
B (α, β)

Bearing in mind that ∂
∂αB (α, β) = B (α, β) [ψ (α)− ψ (α+ β)], and ∂(l)

∂α(l)ψ (α) = ψ(l) (α) which

are the digamma and multigamma functions respectively.

Appendix C. Derivation of the score and the information matrix with respect

to the Tail Index Parameter

Given a link function for the tail index of the form ηt|t−1 = η† + eηsϑt|t−1 , its derivative with

respect to ϑ is ∂η/∂ϑ = ηs
(
η − η†

)
.

Now given the function K (η, υ) = υ

2η
1
υ

1
B( 1

υ
, η
υ )

, its derivative with respect to ϑ is,

∂K

∂ϑ
=
υ

2

− 1

η
1
υ

(
ψ
( η
υ

)
− ψ

(
η+1
υ

))
B
(
1
υ ,

η
υ

) − 1

υ

1

η
1+υ
υ

(
η − η†

)
ηs

B
(
1
υ ,

η
υ

)


= K (η, υ)
ηs
(
η − η†

)
υ

[
ψ

(
η + 1

υ

)
− ψ

(η
υ

)
− 1

η

]

Then the log likelihood function of the Generalised t distribution for a single observation is

ln f (yt) = − lnϕ+ lnK
(
ηt|t−1, υ

)
−
ηt|t−1 − 1

υ
ln

(
1 +

1

ηt|t−1

∣∣∣∣yt − µϕ

∣∣∣∣υ)

28this means that 1− b is distributed with a beta (β, α)

39



Then its derivative with respect to ϑ is

∂ ln ft
∂ϑt|t−1

=
K
(
ηt|t−1, υ

) ηs(ηt|t−1−η†)
υ

[
ψ
(
ηt|t−1+1

υ

)
− ψ

(
ηt|t−1

υ

)
− 1

ηt|t−1

]
K
(
ηt|t−1, υ

) −

−

ηs (ηt|t−1 − η†)
υ

ln

(
1 +

1

ηt|t−1

∣∣∣∣yt − µϕ

∣∣∣∣υ)−
(
ηt|t−1 + 1

)
υ

ηs
(
ηt|t−1 − η†

) ∣∣∣yt−µϕ ∣∣∣υ
η2t|t−1

(
1 + 1

ηt|t−1

∣∣∣yt−µϕ ∣∣∣υ)


=
ηs
(
ηt|t−1 − η†

)
υ

[
ψ

(
ηt|t−1 + 1

υ

)
− ψ

(ηt|t−1
υ

)
+ ln (1− bt) +

(
ηt|t−1 + 1

)
ηt|t−1

bt −
1

ηt|t−1

]
= uϑt

Where bt =
|εt|υ/ηt|t−1

1+|εt|υ/ηt|t−1
and εt = yt−µ

ϕ . If εt is distributed Generalised t with shape parameters

ηt|t−1 and υ, then bt is distributed with a beta
(
1/υ, ηt|t−1/υ

)
. Then bearing in mind that

∂ bt
∂ϑt|t−1

= − |εt|
υ

η2t|t−1

ηs
(
ηt|t−1 − η†

)(
1 + |εt|υ

ηt|t−1

)2 = −ηs

(
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

Then the second derivative of ut with respect to ϑt|t−1.

∂2 ln ft
∂ϑ2t|t−1

=
∂uϑt

∂ϑt|t−1

= ηs
∂ ln ft
∂ϑt|t−1

+ ηs

(
ηt|t−1 − η†

)
υ

[(
ψ′
(
ηt|t−1 + 1

υ

)
− ψ′
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υ
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ηs

(
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)
υ

+ ηs

(
ηt|t−1 − η†

)
η2t|t−1

+

+
1

1− bt
bt (1− bt) ηs

(
ηt|t−1 − η†

)
ηt|t−1

− bt
η2t|t−1

ηs

(
ηt|t−1 − η†

)
−
(

1 +
1

ηt|t−1

)
ηs

(
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

]

= η2s

(
ηt|t−1 − η†

)
υ

[
τ +

1

ηs

∂τ

∂ϑ
+ ln (1− bt) +

(
1 +

1

ηt|t−1
+

(
ηt|t−1 − η†

)
ηt|t−1

−
(
ηt|t−1 − η†

)
η2t|t−1

)
bt−

−
(

1 +
1

ηt|t−1

) (
ηt|t−1 − η†

)
ηt|t−1

bt (1− bt)

]

Where τ = ψ
(
ηt|t−1+1

υ

)
−ψ

(
ηt|t−1

υ

)
− 1
ηt|t−1

while ∂τ
∂ϑ = ηs

(ηt|t−1−η†)
υ

[
ψ′
(
ηt|t−1+1

υ

)
− ψ′

(
ηt|t−1

υ

)
+ υ

η2
t|t−1

]
.
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Then, taking the expectation

E

[
∂2 ln ft
∂ϑ2t|t−1

]
= η2s

(
ηt|t−1 − η†

)
υ

(
1

ηs

∂τ

∂ϑ

)
+ η2s

(
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)
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{τ + E [ln (1− bt)] +} .(
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+
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)
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(
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)
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)
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(
1 +
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) (
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)
ηt|t−1
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]
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)
υ

[
1

ηs

∂τ

∂ϑ

]
+

+ η2s
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[(
1 +
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+

(
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)
1

1 + ηt|t−1
− 1
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−

−
(
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)
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(
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= η2s
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)
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[
1
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(
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− ηt|t−1

(
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ηt|t−1 + 1 + υ
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Therefore ultimately we have that −E
[
∂2 ln ft
∂ϑ2

t|t−1

]
= Iϑϑ in Equation (2). Now looking at the asym-

metric Generalised t distribution, given that for i = 1, 2 we have that

∂α+

∂ϑit|t−1
= (−1)i α+

(
1− α+

) ηis (ηit|t−1 − η†i)
υi

[
ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

]

and

∂ lnK12

(
ηit|t−1, ηjt|t−1, υi, υj

)
∂ϑit|t−1

= −a+i ηis

(
ηit|t−1 − η

†
i

)
υi

[
ψ

(
ηit|t−1 + 1

υi

)
− ψ

(
ηit|t−1

υi

)
− 1

ηit|t−1

]

where a+i = α+ if i = 1 and a+i = 1 − α+ for i = 2, the result in Equations (11) and (12) follows.
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Now taking the second derivative with respect to ϑit|t−1 we have that

∂2 ln ft
(∣∣εit∣∣)
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= ηis
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Than taking the unconditional expectation
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where i = 1, 2 and j = 1, 2 for i 6= j. Ultimately we have that −E
[
∂2 ln ft(|εit|)
∂ϑ2

it|t−1

]
= Iiϑϑ in

Equations (13) and (14).
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Appendix D. Derivation of the basic LM test

The derivation below is essentially as in Harvey (2013), sub-section 2.5.1, but stated in terms

of ϑ. Let the bold face vector θ denote other fixed parameters, including ωϑ, and let κ′ϑ =

(κϑ0, κϑ1, ..., κϑP−1). from the dynamic equation of ϑt|t−1 The LM test statistic is given by

LMu(P ) =
1

T

[
0′ ∂ lnL/∂κ′ϑ

]Ψθθ Ψθκ

Ψκθ Ψκκ

−1  0

∂ lnL/∂κϑ

 , (D.1)

where Ψκκ denotes the information matrix for κϑ for a single observation, Ψθθ is the corresponding

matrix for θ and Ψθκ is the cross-product matrix. All of these matrices are evaluated at κϑ = 0, as

is the score vector ∂ lnL/∂κϑ. For the illustration of the simple test we assume that all the other

fixed parameters in θ besides ωϑ are calibrated rather than estimated29

Now for the t-th observation
∂ ln ft
∂κϑ

=
∂ ln ft
∂ϑtpt−1
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∂κϑ

and so
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]
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= EEt−1

[
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κϑ

∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κ′ϑ

]
= E

[
Et−1

[(
∂ ln ft
∂ϑtpt−1

)2
]
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

]

= E

[(
∂ ln ft
∂ϑ

)2
]
E

[
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

]
= IϑϑE

[
∂ϑtpt−1
∂κ

∂ϑtpt−1
∂κ′

]
.

Under the null hypothesis, the conditional expectation of the squared score, σ2ϑu, is fixed and hence

equal to the information quantity in the static model.

We have
∂ϑt+1pt
∂κϑj

=
P−1∑
i=0

κϑi
∂uϑt−i
∂κϑj

+ uϑt−j , j = 0, ..., P − 1,

or
∂ϑt+1pt
∂κϑ

= κ′ϑ
∂uϑt
∂κϑ

+ uϑt ,

where uϑt = (uϑt , u
ϑ
t−1,..., u

ϑ
t−P−1)

′, but under the null hypothesis κϑ = 0 and so ∂ϑt+1pt/∂κϑ = uϑt .

29For example υ = 2 which would imply that the the DCS model assumes a Dynamic Conditional t-distribution for
yt.
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Hence

E

(
∂ϑtpt−1
∂κϑ

∂ϑtpt−1
∂κ′ϑ

)
= σ2ϑuIP ,

where IP is a P × P identity matrix, and Ψκκ = σ4ϑuIP = I2ϑϑIP . Furthermore30

E

[
∂ ln ft
∂θ

∂ ln ft
∂κ′ϑ

]
κϑ=0

= EEt−1

[
∂ ln ft
∂θ

∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂κ′ϑ

]
= E

[
∂ ln ft
∂θ

∂ ln ft
∂ϑ

]
E

[
∂ϑtpt−1
∂κ′ϑ

]
= 0

Note that because ωϑ appears in the dynamic equation

∂ ln ft
∂ωϑ

=
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1
∂ωϑ

but under the null hypothesis ∂ϑtpt−1/∂ωϑ = 1. Hence E(∂ ln ft/∂ωϑ.∂ ln ft/∂ϑ) = E(uϑt)
2 = σ2ϑu =

Iϑϑ. Thus Ψθκ = 0 and so

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
. (D.2)

On substituting for Ψκκ and noting that

∂ lnL

∂κϑj
=
∑ ∂ ln ft

∂ϑtpt−1

∂ϑtpt−1
∂κϑj

=
∑

uϑt u
ϑ
t−1−j , j = 0, 1, ..., P − 1,

the Q-statistic, Equation (5), is obtained.

Appendix E. Derivation of the full LM test

When some of the other parameters are time-varying or are time-invariant but have to be

estimated, the LM test becomes more complicated.

Given the block matrix decomposition in Equation (D.1) we have that.

LMu(P ) =
1

T

∂ lnL

∂κ′ϑ
Ψ−1κκ

∂ lnL

∂κϑ
+

1

T

∂ lnL

∂κ′ϑ

[
Ψ−1κκΨκθ

(
Ψθθ −Ψ′κθΨ

−1
κκΨκθ

)−1
Ψ′κθΨ

−1
κκ

] ∂ lnL

∂κϑ
,

(E.1)

In our case, the Generalised-t distribution has also an additional parameter υ to be estimated.

For these reasons, assuming also a first order dynamics for λt|t−1, our θ vector is defined as,

30Note that because ωϑ, which is treated as an element of ϑ, appears directly in the dynamic equation,

∂ ln ft
∂ωϑ

=
∂ ln ft
∂ϑtpt−1

∂ϑtpt−1

∂ωϑ
=

∂ ln ft
∂ϑtpt−1

.1.
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θ =
(
υ,ψ′λ, ωϑ

)′
, where ψλ is the vector that contains the parameters that govern the dynamics of

λt|t−1, ψ
′
λ = (ωλ, φλ, κλ)′. Starting from deriving the scores with respect to the fixed parameters,

we have that

∂ ln ft (yt | Yt−1;θ)

∂υ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂υ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂υ

+
∂ ln ft (yt | Yt−1;θ)

∂υ

∂ ln ft (yt | Yt−1;θ)

∂ψλ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂ψλ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂ψλ

∂ ln ft (yt | Yt−1;θ)

∂ψϑ
=

∂ ln ft (yt | Yt−1;θ)

∂λtpt−1

∂λtpt−1
∂ψϑ

+
∂ ln ft (yt | Yt−1;θ)

∂ϑtpt−1

∂ϑtpt−1
∂ψϑ

However, under the null hypothesis of κϑ = 0, η is estimated as fixed and is independent from λt|t−1

and υ, therefore we have that ∂ϑtpt−1/∂ψλ = ∂ϑtpt−1/∂υ = 0. Moreover if, as in Harvey and Thiele

(2016), we assume that the dynamic parameter λt|t−1 is previously fitted with a univariate DCS-

EGARCH model, λ̂t|t−1 would also be independent from the parameters governing the dynamics

of η and therefore ∂λtpt−1/∂κϑ = 0.

The first element of the block matrix in Equation (D.1) is

Ψθθ′ = E

[
∂ lnL

∂θ

∂ lnL

∂θ′

]
=


Ψυυ Ψυψ′λ

Ψυωϑ

Ψψλυ Ψψλψ
′
λ

Ψψλωϑ

Ψωϑυ Ψωϑψ
′
λ

Ψωϑωϑ


The central element Ψψλψ

′
λ

is nothing more than the information matrix with respect to the

dynamic parameters of a DCS-EGARCH model for λt|t−1 with first-order dynamic.

Ψψλψ
′
λ

= E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂ψ′λ

]
= IλλD(ψλ), (E.2)

where

D(ψλ) =
1

1− b


A D E

D B F

E F C

 , b < 1,
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as in Harvey (2013, p 37). The formulae for A to F are

A = Iλλ, B =
κ2λI2λλ(1 + aφλ)

(1− φ2λ)(1− aφλ)
, C =

(1− φλ)2(1 + a)

1− a
,

D =
aκλI2λλ
1− aφλ

, E =
c(1− φλ)

1− a
and F =

acκλ(1− φλ)

(1− a)(1− aφλ)
,

and

a = Et−1(xt) = φλ + κλEt−1

(
∂uλt
∂λtpt−1

)
= φλ + κλE

(
∂uλt
∂λ

)
= φλ − κλIλλ

b = Et−1(x
2
t ) = φ2λ − 2φλκλIλλ + κ2λE

(
∂uλt
∂λ

)2

≥ 0, (E.3)

c = Et−1(u
λ
t xt) = κλE

(
uλt
∂uλt
∂λ

)
, (E.4)

with

xt = φλ + κλ
∂uλt
∂λtpt−1

, t = 1, ...., T. (E.5)

The unconditional expectations can then replace the conditional ones because of the assumption

that they do not depend on λtpt−1, as per Condition 2 in Harvey (2013), p. 35.

Then looking now at the expectation of product of the score with respect to ψλ and υ.

Ψψλυ = E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂υ

]
= IλλE

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂υ

]
+ IλυE

[
∂λt+1|t

∂ψλ

]

where for λt+1|t starting in the infinite past, and given |a| < ∞, E
[
∂λt+1|t/∂ψλ

]
exist and, as

defined in Lemma 6 in Harvey (2013), p. 36, can be expressed as

E

[
∂λt+1|t

∂ψλ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂φλ

∂λt+1|t
∂κλ

 = E


xt
∂λt|t−1

∂ωλ
+ 1− φλ

xt
∂λt|t−1

∂φλ
+ λt|t−1 − ωλ

xt
∂λt|t−1

∂κλ
+ uλt

 =


1−φλ
1−a

0

0

 = d, t = . . . , 0, 1, ..., T.,

(E.6)

Consider now the derivative of λt+1pt with respect to υ where ut(θtpt−1) indicates that λtpt−1 is held

fixed

∂λt+1pt
∂υ

= φλ
∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ
+ κλ

∂uλt
∂λtpt−1

∂λtpt−1
∂υ

= xt
∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ
, t = 1, ..., T,
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here xt is as in Equation (E.5); see Harvey (2013), p. 35. Taking conditional expectations gives

Et−1

(
∂λt+1pt
∂υ

)
= Et−1

(
xt
∂λtpt−1
∂υ

+ κλ
∂uλt (λtpt−1)

∂υ

)
= a

∂λtpt−1
∂υ

+ κλEt−1

(
∂uλt (λtpt−1)

∂υ

)

We can take the unconditional expectation of ∂uλt /∂υ when it does not depend on λtpt−1.

E

[
∂λt+1pt
∂υ

]
=

κλ
1− a

E

[
∂uλt (λtpt−1)

∂υ

]
=
−κλ
1− a

Iλυ., (E.7)

Furthermore, dropping (λtpt−1) from uλt (λtpt−1), we can now look at the expectations of the product

of the partial derivatives

E

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂υ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂υ

∂λt+1|t
∂φλ

∂λt+1|t
∂υ

∂λt+1|t
∂κλ

∂λt+1|t
∂υ

 , t = 0, 1, . . . , T., (E.8)

Starting form taking the conditional expectations we have

Et−1

(
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂ωλ

∂λt|t−1

∂υ

)
+ κλEt−1

(
(1− φλ)

∂uλt
∂υ

)
+

+ (1− φλ)Et−1

(
xt
∂λt|t−1

∂ωλ

)
+ κλEt−1

(
xt
∂uλt
∂υ

∂λt|t−1

∂ωλ

)
= b

∂λt|t−1

∂ωλ

∂λt|t−1

∂υ
+ κλ (1− φλ)E

[
∂uλt
∂υ

]
+ a (1− φλ)

∂λt|t−1

∂ωλ

+κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂ωλ

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂υ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂υ

)
= φλEt−1

(
∂uλt
∂υ

)
+ κλEt−1

(
∂uλt
∂λ

∂uλt
∂υ

)
= −φλIλυ + κλE

[
∂uλt
∂λ

∂uλt
∂υ

]
(E.9)

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

]
=

κλ
1− b

(
(1− φλ)E

[
∂uλt
∂υ

]
+ a

(1− φλ)

(1− a)
E

[
∂uλt
∂υ

]
+

(1− φλ)

(1− a)
E

[
xt
∂uλt
∂υ

])
(E.10)

=
κλ

1− b
(1− φλ)

(1− a)
(κλbλυ − Iλυ) , (E.11)

47



where bλυ = E
[
∂uλt
∂λ

∂uλt
∂υ

]
.

Et−1

(
∂λt+1|t

∂φλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂φλ

∂λt|t−1

∂υ

)
+ κλEt−1

((
λt|t−1 − ωλ

) ∂uλt
∂υ

)
+

+Et−1

(
xt
(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

)
+ κλEt−1

(
xt
∂λt|t−1

∂φλ

∂uλt
∂υ

)
= b

∂λt|t−1

∂φλ

∂λt|t−1

∂υ
+ κλE

[
∂uλt
∂υ

] (
λt|t−1 − ωλ

)
+

+a
(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

+ κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂φλ
,

Taking conditional expectations at Ft−2 of the third term and then unconditional expectations

given that E
[
λt|t−1 − ωλ

]
= 0 we have

Et−2

((
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

)
= Et−1

((
xt−1

∂λt−1|t−2

∂υ
+ κλ

∂uλt−1
∂υ

)(
φλ
(
λt−1|t−2 − ωλ

)
+ κλu

λ
t−1

))

= aφλ
(
λt−1|t−2 − ωλ

) ∂λt|t−1
∂υ

+ cκυ
∂λt|t−1

∂υ
+ κ2υE

[
uλt−1

∂uλt−1
∂υ

]

+κλφλE

[
∂uλt−1
∂υ

] (
λt−1|t−2 − ωλ

)
E

[(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

]
=

κ2λ
1− aφλ

(
E

[
uλt−1

∂uλt−1
∂υ

]
− c

1− a
Iλυ

)

Then taking the unconditional expectation of Et−1

(
∂λt+1|t
∂φλ

∂λt+1|t
∂υ

)
we have

E

[
∂λt+1|t

∂φλ

∂λt+1|t

∂υ

]
=

a

(1− aφλ)

κ2λ
(1− b)

(
cυ −

c

1− a
Iλυ
)

(E.12)

where cυ = E
[
uλt

∂uλt
∂υ

]
. Then

Et−1

(
∂λt+1|t

∂κλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂κλ

∂λt|t−1

∂υ

)
+ κλEt−1

(
uλt
∂uλt
∂υ

)
+

+Et−1

(
xtu

λ
t

∂λt|t−1

∂υ

)
+ κλEt−1

(
xt
∂λt|t−1

∂κλ

∂uλt
∂υ

)
= b

∂λt|t−1

∂κλ

∂λt|t−1

∂υ
+ κλE

[
uλt
∂uλt
∂υ

]
+

+Et−1

(
xtu

λ
t

) ∂λt|t−1
∂υ

+ κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂κλ
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which after taking unconditional expectations becomes

E

[
∂λt+1|t

∂κλ

∂λt+1|t

∂υ

]
=

κλ
1− b

(
cυ −

c

1− a
Iλυ
)

Therefore

Ψψλυ =
κλ

(1− b)
Iλλ


κλ

(1−φλ)
(1−a) bλυ

aκλ
(1−aφλ)cυ

cυ

− Iλυ


(1−φλ)
(1−a)

(
1− κλ

(1−b)Iλλ
)

acκ2λ
(1−a)(1−b)(1−aφλ)Iλλ

cκλ
(1−a)(1−b)Iλλ


=

κλ
(1− b)

Iλλg (υ) + Iλυd

Looking now at the expectation of product of the scores with respect to υ.

Ψυυ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂υ

∂ ln ft+1(yt+1 | Yt;θ)

∂υ

]
= Iυυ + IλλE

[
∂λt+1|t

∂υ

∂λt+1|t

∂υ

]
+ 2IλυE

[
∂λt+1|t

∂υ

]

Starting from the conditional expectation of
∂λt+1|t
∂υ

∂λt+1|t
∂υ

Et−1

(
∂λt+1|t

∂υ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
∂λt|t−1

∂υ

∂λt|t−1

∂υ

)
+ κ2λEt−1

(
∂uλt
∂υ

∂uλt
∂υ

)
+

+2κλEt−1

(
xt
∂uλt
∂υ

∂λt|t−1

∂υ

)
= b

∂λt|t−1

∂υ

∂λt|t−1

∂υ
+ κ2λE

[
∂uλt
∂υ

∂uλt
∂υ

]
+ 2κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂υ

Noticing that

Et−1

(
xt
∂uλt
∂υ

)
= κλE

[
∂uλt
∂λ

∂uλt
∂υ

]
− φλIλυ

we can then take the unconditional expectation of Et−1

[
∂λt+1|t
∂υ

∂λt+1|t
∂υ

]
to obtain

E

[
∂λt+1|t

∂υ

∂λt+1|t

∂υ

]
=

κλ
1− b

[
κ2λbυυ −

2κ2λ
(1− a)

(κλbλυ − φλIλυ) Iλυ
]

(E.13)

where bυυ = E
(
∂uλt
∂υ

)2
. Therefore

Ψυυ = Iυυ +
κ2λ

(1− b)
Iλλ

[
bυυ −

2κλ
(1− a)

Iλυbλυ
]
− κλ

[
2

(1− a)
+

φλκλ
(1− b)

Iλλ
]
I2λυ
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Now keeping in mind that ∂ϑt+1|t/∂ωϑ = 1 we can focus on the blocks which include the partial

derivative with respect to ωϑ

Ψυωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂υ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= E

[
Et−1

(
∂ ln ft+1

∂λt+1|t

∂ ln ft+1

∂λt+1|t

)
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ
+ Et−1

(
∂ ln ft+1

∂λt+1|t

∂ ln ft+1

∂ϑt+1|t

)
∂λt+1|t

∂υ
+

+Et−1

(
∂ ln ft+1

∂υt+1|t

∂ ln ft+1

∂λt+1|t

)
∂λt+1|t

∂ωϑ
+ Et−1

(
∂ ln ft+1

∂υt+1|t

∂ ln ft+1

∂ϑt+1|t

)
∂ϑt+1|t

∂ωϑ

]
= IλλE

[
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

]
+ IλϑE

[
∂λt+1|t

∂υ

]
+ IλυE

[
∂λt+1|t

∂ωϑ

]
+ Iυϑ

Consider now the derivative of λt+1pt with respect to ωϑ

∂λt+1pt
∂ωϑ

= φλ
∂λtpt−1
∂ωϑ

+ κλ
∂uλt
∂ωϑ

+ κλ
∂uλt
∂λtpt−1

∂λtpt−1
∂ωϑ

= xt
∂λtpt−1
∂ωϑ

+ κλ
∂uλt
∂ϑ

, t = 1, ..., T,

Then, for the same reasons as in Equation (E.7) we have that

E

[
∂λt+1pt
∂ωϑ

]
=
−κλ
1− a

Iλϑ, (E.14)

Then, starting from the conditional expectation of
∂λt+1|t
∂υ

∂λt+1|t
∂ωϑ

Et−1

(
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂υ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂υ
+

+κλEt−1

(
xt
∂uλt
∂υ

)
∂λt|t−1

∂ωϑ
+ κ2λEt−1

(
∂uλt
∂υ

∂uλt
∂ϑ

)

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂ϑ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂ϑ

)
= φλEt−1

(
∂uλt
∂ϑ

)
+ κλEt−1

(
∂uλt
∂λ

∂uλt
∂ϑ

)
= −φλIλυ + κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂υ

∂λt+1|t

∂ωϑ

]
=

κ2λ
(1− b)

(
E

[
∂uλt
∂υ

∂uλt
∂ϑ

]
− κ

(1− a)

(
IλυE

[
∂uλt
∂λ

∂uλt
∂ϑ

]
+ IλϑE

[
∂uλt
∂λ

∂uλt
∂υ

])
+

+
2φλ

(1− a)
IλυIλϑ

)
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Therefore

Ψυωϑ =
κ2λ

(1− b)

[
bυϑ −

κλ
(1− a)

(Iλυbλϑ + Iλϑbλυ)

]
− 2κλ

(1− a)

(
1− φλκλ

(1− b)

)
IλυIλϑ + Iυυ (E.15)

where bυϑ = E
[
∂uλt
∂υ

∂uλt
∂ϑ

]
and bλϑ = E

[
∂uλt
∂λ

∂uλt
∂ϑ

]
. Then

Ψψλωϑ = E

[
∂ ln ft(yt | Yt−1;θ)

∂ψλ

∂ ln ft(yt | Yt−1;θ)

∂ωϑ

]
= IλλE

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂ωϑ

]
+ IλϑE

[
∂λt+1|t

∂ψλ

]

We can now focus on the expectations of the product of the partial derivatives of the dynamic

parameters of λt|t−1 and ωϑ.

E

[
∂λt+1|t

∂ψλ

∂λt+1|t

∂ωϑ

]
= E


∂λt+1|t
∂ωλ

∂λt+1|t
∂ωϑ

∂λt+1|t
∂φλ

∂λt+1|t
∂ωϑ

∂λt+1|t
∂κλ

∂λt+1|t
∂ωϑ

 , t = 0, 1, . . . , T.,

Starting form taking the conditional expectations we have

Et−1

(
∂λt+1|t

∂ωλ

∂λt+1|t

∂υ

)
= Et−1

(
x2t
) ∂λt|t−1

∂ωλ

∂λt|t−1

∂ωϑ
+ (1− φλ)κλEt−1

(
∂uλt
∂ωϑ

)
+

+ (1− φλ)Et−1 (xt)
∂λt|t−1

∂ωλ
+ κλEt−1 (xt)

∂uλt
∂ϑ

∂λt|t−1

∂ωλ

Given Condition 2 of Harvey (2013, pg 35), Et−1

(
xt
∂uλt
∂ϑ

)
its independent from t. Thus

Et−1

(
xt
∂uλt
∂ωϑ

)
= −φλIλϑ + κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]

Taking now the unconditional expectations given |b| < 1 we have that

E

[
∂λt+1|t

∂ωλ

∂λt+1|t

∂ωϑ

]
=

κλ
1− b

(
(1− φλ)E

[
∂uλt
∂ϑ

]
+ a

(1− φλ)

(1− a)
E

[
∂uλt
∂ϑ

]
+

(1− φλ)

(1− a)
E

[
xt
∂uλt
∂ϑ

])
=

κλ
1− b

(1− φλ)

(1− a)
(κλbλϑ − Iλυ)
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Then

Et−1

(
∂λt+1|t

∂φλ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂φλ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
∂uλt
∂υ

)(
λt|t−1 − ωλ

)
+

+Et−1 (xt)
(
λt|t−1 − ωλ

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂φλ
,

Taking first the conditional expectations at Ft−2 of the third term and then unconditional expec-

tations given that E
[
λt|t−1 − ωλ

]
= 0 we have that

E

[(
λt|t−1 − ωλ

) ∂λt|t−1
∂υ

]
=

κ2λ
1− aφλ

(
E

[
uλt−1

∂uλt−1
∂ϑ

]
− c

1− a
Iλϑ

)

Then taking the unconditional expectation of Et−1

(
∂λt+1|t
∂φλ

∂λt+1|t
∂ωϑ

)
we have

E

[
∂λt+1|t

∂φλ

∂λt+1|t

∂ωϑ

]
=

a

(1− aφλ)

κ2λ
(1− b)

(
cϑ −

c

1− a
Iλυ
)

(E.16)

where cϑ = E
[
uλt

∂uλt
∂ϑ

]
. Then

Et−1

(
∂λt+1|t

∂κλ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂κλ

∂λt|t−1

∂ωϑ
+ κλEt−1

(
uλt
∂uλt
∂ϑ

)
+

+Et−1

(
xtu

λ
t

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂κλ

which after taking unconditional expectations becomes

E

[
∂λt+1|t

∂κλ

∂λt+1|t

∂ωϑ

]
=

κλ
1− b

(
cϑ −

c

1− a
Iλϑ
)

Therefore

Ψψλωϑ =
κλ

(1− b)
Iλλ


κλ

(1−φλ)
(1−a) bλϑ

aκλ
(1−aφλ)cϑ

cϑ

− Iλϑ


(1−φλ)
(1−a)

(
1− κλ

(1−b)Iλλ
)

acκ2λ
(1−a)(1−b)(1−aφλ)Iλλ

cκλ
(1−a)(1−b)Iλλ


=

κλ
(1− b)

Iλλg (ϑ)− Iλϑd
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Looking now at the expectation of product of the scores with respect to ωϑ.

Ψωϑωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= Iϑϑ + IλλE

[
∂λt+1|t

∂ωϑ

∂λt+1|t

∂ωϑ

]
+ 2IλϑE

[
∂λt+1|t

∂ωϑ

]

given that the conditional expectation of
∂λt+1|t
∂ωϑ

∂λt+1|t
∂ωϑ

can be expressed as follows

Et−1

(
∂λt+1|t

∂ωϑ

∂λt+1|t

∂ωϑ

)
= Et−1

(
x2t
) ∂λt|t−1

∂ωϑ

∂λt|t−1

∂ωϑ
+ κ2λEt−1

(
∂uλt
∂ϑ

∂uλt
∂ϑ

)
+ 2κλEt−1

(
xt
∂uλt
∂ϑ

)
∂λt|t−1

∂ωϑ

Noticing that

Et−1

(
xt
∂uλt
∂ϑ

)
= κλE

[
∂uλt
∂λ

∂uλt
∂ϑ

]
− φλIλϑ

we can then take the unconditional expectation of Et−1

[
∂λt+1|t
∂ϑ

∂λt+1|t
∂ϑ

]
to obtain

E

[
∂λt+1|t

∂ϑ

∂λt+1|t

∂ϑ

]
=

κλ
1− b

[
κ2λbϑϑ −

2κ2λ
(1− a)

(κλbλϑ − φλIλϑ) Iλϑ
]

(E.17)

where bϑϑ = E
(
∂uλt
∂ϑ

)2
. Therefore

Ψωϑωϑ = Iϑϑ +
κ2λ

(1− b)
Iλλ

[
bϑϑ −

2κλ
(1− a)

Iλϑbλϑ
]
− κλ

[
2

(1− a)
+

φλκλ
(1− b)

Iλλ
]
I2λϑ

The second element of the block matrix in Equation (D.1) is

Ψκθ′ = E

[
∂ lnL

∂κϑ

∂ lnL

∂θ′

]
=
[
Ψκυ,Ψκψ′λ

,Ψκωϑ

]
its first component can be represented as

Ψκϑυ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂υ

]
= E

[
Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂λt+1|t

)
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂υ
+ Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂υ

)
∂ϑt+1|t

∂κϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂υ

]
+ IϑυE

[
uϑt

]
where E

[
uϑt
]

= 0. Then starting from taking the conditional expectation of the product of the
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partial derivatives of ϑt|t−1 with respect to all the individual κϑi, for 1 = 0, 1, ..., P −1 we have first

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂υ

)
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂υ

+ κλEt−1

(
uϑt
∂uλt
∂υ

)
= Et−1

((
φλ + κλ

∂uλt
∂λ

)
uϑt

)
∂λt|t−1

∂υ
+ κλEt−1

(
uϑt
∂uλt
∂υ

)
= κλ

(
E

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂υ
+ E

[
uϑt
∂uλt
∂υ

])

Then taking unconditional expectations we have

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂υ

]
= κλ

(
hυ −

κλhλ
1− a

Iλυ
)
, (E.18)

where hλ = E
[
uϑt

∂uλt
∂λ

]
and hυ = E

[
uϑt

∂uλt
∂υ

]
. Then taking the conditional expectation with respect

to Ft−j−1 of the product of the partial derivative with respect to κϑj , by the tower property of

conditional expectation we have

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂υ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂υ
+ κλEt−1

(
∂uλt
∂υ

)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂υ
+ κλ

∂uλt−1
∂υ

)
− κλIϑλuϑt−j

)
...

= ajEt−j−1

(
xt−ju

ϑ
t−j

) ∂λt−j|t−j−1
∂υ

+ ajκλEt−j−1

(
uϑt−j

∂uλt−j
∂υ

)
−

−κλIϑλEt−j−1
(
uϑt−j

) j−1∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂υ
+ ajκλE

[
uϑt−j

∂uλt−j
∂υ

]

Taking the unconditional expectations we then get

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂υ

]
= ajκλ

(
hυ −

κλg

1− a
Iλυ
)

Therefore

Ψκϑυ = κλ

(
hυ −

κλg

1− a
Iλυ
)
Iϑλa†

where a† is the P × 1 vector defined as, a† =
(
1, a, a2, ..., aP−2, aP−1

)′
Then, given that Iυλ is

54



independent from λ we have that.

Ψψλκ
′
ϑ

= E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ψ′λ

]
= E

[
Et−1

(
∂ ln ft+1

∂ϑt+1|t

∂ ln ft+1

∂λt+1|t

)
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]

where

E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ψ′λ

]
= E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωλ
,
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂φλ
,
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂κλ

]
, t = . . . , 0, 1, ...., T.,

(E.19)

Starting from the conditional expectations of the individual terms we have first,

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂ωλ
+ 1− φλ

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂ωλ

+ (1− φλ)Et−1

(
uϑt

)
= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂ωλ

which after taking the unconditional expectation becomes

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωλ

]
= κλhλ

1− φλ
1− a

Then taking the conditional expectation with respect to Ft−j−1 of the product of the derivative

with respect to κϑj , by the tower property of conditional expectation we get

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωλ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂ωλ
+ (1− φλ)uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂ωλ
+ (1− φλ)

)
+ (1− φλ)uϑt−j

)
...

= ajEt−j−1

(
xt−ju

ϑ
t−j

) ∂λt−j|t−j−1
∂ωλ

+ Et−j−1

(
uϑt−j

)
(1− φλ)

j∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂ωλ
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Which after taking the unconditional expectation becomes

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωλ

]
= ajκλhλ

1− φλ
1− a

Therefore

E

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωλ

]
= κλhλ

1− φλ
1− a

a†

Then

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂φλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂φλ
+ λt|t−1 − ωλ

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂φλ

+
(
λt|t−1 − ωλ

)
Et−1

(
uϑt

)
= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂φλ

Which after taking unconditional expectation becomes 0. By the tower property of the conditional

expectation, the same result applies also to all the products of the partial derivatives with respect

to the other κλj , therefore E
[
∂ϑt+1|t
∂κϑ

∂λt+1|t
∂φλ

]
= 0. Moreover

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂κλ

)
= Et−1

(
uϑt

(
xt
∂λt|t−1

∂φλ
+ uλt

))
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂κλ

+ Et−1

(
uϑt u

λ
t

)
= κλE

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂κλ
+ Iϑλ

which after taking unconditional expectations becomes

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂κλ

]
= Iϑλ

Then taking the conditional expectation with respect to Ft−j−1 of the product of the derivative
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with respect to κϑj , by the tower property of conditional expectation we get

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂κλ
+ Et−1

(
uλt

)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂κλ
+ uλt−1

))
...

= ajEt−j−1

(
xt−ju

ϑ
t−j

) ∂λt−j|t−j−1
∂κλ

+ ajEt−j−1

(
uλt−ju

ϑ
t−j

)
= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂κλ
+ ajIλϑ

which after taking unconditional expectations becomes

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

]
= ajIϑλ

Therefore

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂κλ

]
= Iϑλa†

The last component can be represented as

Ψκϑωϑ = E

[
∂ ln ft+1(yt+1 | Yt;θ)

∂κϑ

∂ ln ft+1(yt+1 | Yt;θ)

∂ωϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωϑ

]
+ IϑυE

[
∂ϑt+1|t

∂κϑ

∂ϑt+1|t

∂ωϑ

]
= IϑλE

[
∂ϑt+1|t

∂κϑ

∂λt+1|t

∂ωϑ

]
+ IϑϑE

[
uϑt

]
where E

[
uϑt
]

= 0. Then starting from taking the conditional expectation of the product of the

partial derivatives of ϑt|t−1 with respect to all the individual κϑi, for 1 = 0, 1, ..., P −1 we have first

Et−1

(
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωϑ

)
= Et−1

(
xtu

ϑ
t

) ∂λt|t−1
∂ωϑ

+ κλEt−1

(
uϑt
∂uλt
∂ϑ

)
= κλ

(
E

[
uϑt
∂uλt
∂λ

]
∂λt|t−1

∂ωϑ
+ E

[
uϑt
∂uλt
∂ϑ

])

Then taking unconditional expectations we have

E

[
∂ϑt+1|t

∂κϑ0

∂λt+1|t

∂ωϑ

]
= κλ

(
hϑ −

κλhλ
1− a

Iλϑ
)
, (E.20)

where hϑ = E
[
uϑt

∂uλt
∂ϑ

]
. Then taking the conditional expectation with respect to Ft−j−1 of the prod-
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uct of the partial derivative with respect to κϑj , by the tower property of conditional expectation

we have

Et−j−1

(
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωϑ

)
= Et−j−1

(
Et−1 (xt)u

ϑ
t−j

∂λt|t−1

∂ωϑ
+ κλEt−1

(
∂uλt
∂ϑ

)
uϑt−j

)
= Et−j−1

(
auϑt−j

(
xt−1

∂λt−1|t−2

∂ωϑ
+ κλ

∂uλt−1
∂ϑ

)
− κλIϑλuϑt−j

)
...

= ajEt−j−1

(
xt−ju

ϑ
t−j

) ∂λt−j|t−j−1
∂ωϑ

+ ajκλEt−j−1

(
uϑt−j

∂uλt−j
∂ϑ

)
−

−κλIϑλEt−j−1
(
uϑt−j

) j−1∑
i=0

ai

= ajκλE

[
uϑt−j

∂uλt−j
∂λ

]
∂λt−j|t−j−1

∂υ
+ ajκλE

[
uϑt−j

∂uλt−j
∂υ

]

Taking the unconditional expectations we then get

E

[
∂ϑt+1|t

∂κϑj

∂λt+1|t

∂ωϑ

]
= ajκλ

(
hϑ −

κλhλ
1− a

Iλϑ
)

Then

Ψκϑυ = κλ

(
hϑ −

κλhλ
1− a

Iλϑ
)
Iϑλa†

Therefore

Ψκθ′ = Iλϑ
(

a†·
[
κλ

(
hυ −

κλhλ
1− a

Iλυ
)
, κλhλ

1− φλ
1− a

, 0, Iλϑ, κλ
(
hϑ −

κλhλ
1− a

Iλϑ
)])

= Iλϑa†g′

From these results, once evaluated the conditional expectations, the full form of the test which can

be expressed as

LMu(P ) = Qu(P ) +
1

T

I2λϑ
I2ϑϑ

∂ lnL

∂κϑ′
a†g′

(
Ψθθ −

I2λϑ
I2ϑϑ

ga†′a†g′
)−1

ga†′
∂ lnL

∂κϑ

= Qu(P ) +
1

T

I2λϑ
I2ϑϑ

g′

(
Ψθθ −

I2λϑ
I2ϑϑ

(
P−1∑
i=0

a2i

)
gg′

)−1
g

P−1∑
j=0

uϑt u
ϑ
t−1−ja

j

2

= Qu(P ) + TI2λϑg′
(

Ψθθ −
I2λϑ
I2ϑϑ

1− a2P

1− a2
gg′
)−1

g

 P∑
j=1

rϑu (j) aj−1

2

This methodology can be easily used in any DCS model to construct a test not only for testing

the presence of a time varying tail but more in general for testing the presence of a second time
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varying parameter once a first on it has been already fitted.

Appendix F. Expectations of scores for the Generalised t distribution

The expression for E
(
∂uλt
∂λ

)2
in b in Equation (E.3) can be obtained as

E

(
∂uλt
∂λ

)2

= (1 + η)2 υ2E
[
b2t (1− bt)2

]
=

ηυ2 (1 + η) (1 + υ) (υ + η)

(η + 1 + 3υ) (η + 1 + 2υ) (η + 1 + υ)

The expression for E
[
uλt

∂uλt
∂λ

]
in c in Equation (E.4) can be obtained as

E

[
uλt
∂uλt
∂λ

]
= (1 + η) υ

(
E [bt (1− bt)]− (1 + η)E

[
b2t (1− bt)

])
=

υη

(η + 1 + υ)
− ηυ2 (1 + η) (1 + υ)

(η + 1 + 2υ) (η + 1 + υ)

=
ηυ2 (1− η)

(η + 1 + 2υ) (η + 1 + υ)

The expression for hλ in Equation (E.18) can be obtained as

E

[
uϑt
∂uλt
∂λ

]
= −ηs

(
η − η†

)
(1 + η)

(
τE [bt (1− bt)] + E [ln (1− bt) bt (1− bt)] +

(1 + η)

η
E
[
b2t (1− bt)

])
= −ηs

(
η − η†

){ (1 + υ) (1 + η)

(η + 1 + υ) (η + 1 + 2υ)
− η

(η + 1 + υ)

[
ψ

(
η + 1

υ

)
− ψ

(
η + 1

υ
+ 2

)
−

−
(
ψ
(η
υ

)
− ψ

(η
υ

+ 1
))]}

= −ηs
(
η − η†

) (1 + υ) (2 + 3υ + 6η) + η2 [2− υ (4 + υ + η)]

(1 + η + 2υ) (1 + η + υ)2 (1 + η)

where τ = ψ
(
η+1
υ

)
−ψ

( η
υ

)
− 1
η Noticing that when εt is distributed with Generalised t distribution

with shape parameters η and υ then ln |εt| = [ln bt − ln (1− bt) + ln η] /υ, where bt is distributed

beta (1/υ, η/υ).

59



The expression for hυ in Equation (E.18) can be obtained as

E

[
uϑt
∂uλt
∂υ

]
= ηs

(
η − η†

) (1 + η)

υ
(τE [ln (|εt|) bt (1− bt)] + E [ln (|εt|) ln (1− bt) bt (1− bt)] +

+
(1 + η)

η
E
[
ln (|εt|) b2t (1− bt)

])
=
ηs
(
η − η†

)
υ2

η

(η + 1 + υ)

{
τ

[
ln η + ψ

(
1

υ
+ 1

)
− ψ
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υ

+ 1
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+

+
(1 + υ) (1 + η)
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[
ln η + ψ

(
1

υ
+ 1

)
− ψ

(η
υ

+ 1
)

+
υ

1 + υ

]
−

−
[
ln η + ψ

(
1

υ
+ 1

)
− ψ

(η
υ

+ 1
)
− ln η

][
τ +

υ

(η + 1 + υ) + υ
1+η

+
1− υ
η

]
− ψ′

(η
υ

+ 1
)}

= ηs

(
η − η†

)[ η ln η

υ2 (η + 1 + υ)
τ+

+
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[
2η (1 + υ) + υ + υ2 (1 + η)− η3

]
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[
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]
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+
(1 + η)
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+
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υ2 (1 + η) (η + 1 + υ)2
ln η

]

The expression for hϑ in Equation (E.20) can be obtained as

E

[
uϑt
∂uλt
∂ϑ

]
=
η2s
(
η − η†

)2
υ

(
τE [bt] + E [bt ln (1− bt)] +
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η
E
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]
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η
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E
[
b2t (1− bt)
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}
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Then the expression for cυ in Equation (E.12) can be obtained as

E

[
uλt
∂uλt
∂υ

]
=
(
E
[
ln |εt| b2t (1− bt)

]
− E [ln |εt| bt (1− bt)]
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(
1

υ
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Then the expression for cϑ in Equation (E.16) can be obtained as

E

[
uλt
∂uλt
∂ϑ

]
= ηs

(
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)(
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η
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E
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(
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The expression for bυυ in Equation (E.13) can be obtained as

E
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∂uλt
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[
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]
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Then expression for bλυ in Equation (E.11) can be obtained as
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Then expression for bλϑ in Equation (E.15) can be obtained as
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Then expression for bυϑ in Equation (E.15) can be obtained as
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Then expression for bϑϑ in Equation (E.17) can be obtained as
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Appendix G. Figures
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Figure G.14: Plot of the empirical Power of the LM test (Blue Line) and Q∗ test (Red Line) for different
lags, obtained from N = 1000 symulations of the Dynamic Scale-Tail model. The solid lines are for sample
size T = 2000, the dashed lines for T = 1000 and the dotted lines for T = 500.
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Figure G.15: Plot of the empirical Size of the LM test (Blue Line) and Q∗ test (Red Line) for different lags,
obtained from N = 1000 symulations of the Dynamic Scale-Tail model. The solid lines are for sample size
T = 2000, the dashed lines for T = 1000 and the dotted lines for T = 500.
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Figure G.16: Plot of the fitted inverse tail index parameters η̄t|t−1 and scale parameter ϕt|t−1 for the Dow
Jones dataset in case of Asymmetric Lower Tail Dynamics without Leverage(Top), Symmetric Tail Dynamics
with leverage (Mid) and Asymmetric Upper Tail Dynamics with Leverage (Bottom).
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Figure G.17: Plot of the ratios of the Expected Shortfall above the lower 10% (Top Left), 5% (Top Right), 1%
(Bottom Left) and 0.5% (Bottom Right) quantiles of the one-step-ahead forecasted conditional distribution
of the 5y Italian CDS Rate Returns from fitting a symmetric DCS Beta-t-EGARCH model (Black Line),
an asymmetric DCS Beta-t-EGARCH model (Blue Line), an symmetric dynamic tail DCS EGARCH model
(Green Line) over the one-step-abead forecasted Expected Shortfall from a GARCH model.
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Figure G.18: Plot of the ratios of the Expected Shortfall below the upper 10% (Top Left), 5% (Top Right), 1%
(Bottom Left) and 0.5% (Bottom Right) quantiles of the one-step-ahead forecasted conditional distribution
of the 5y Italian CDS Rate Returns from fitting a symmetric DCS Beta-t-EGARCH model (Black Line),
an asymmetric DCS Beta-t-EGARCH model (Blue Line), an symmetric dynamic tail DCS EGARCH model
(Green Line) over the one-step-abead forecasted Expected Shortfall from a GARCH model.
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Appendix H. Tables

ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 2000
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
4,633 1,017 0,760

0,021
2,901 3,182 0,972

0,033
7,684 16,476 2,588

0,133
12,895 9,559 2,875

0,076(0,031) (0,313) (0,383) (0,089) (0,074) (0,324) (0,006) (0,000) (0,108) (0,000) (0,002) (0,090)

Q(5)
20,204 4,879 3,978

0,031
11,947 7,664 4,054

0,048
21,428 31,076 10,623

0,201
32,203 18,083 12,047

0,116
(0,462) (0,961) (0,979) (0,715) (0,672) (0,965) (0,175) (0,006) (0,763) (0,024) (0,089) (0,719)

Q(10)
38,057 9,924 8,122

0,027
22,697 12,907 7,896

0,061
29,593 42,149 18,570

0,241
43,636 23,515 22,063

0,143
(0,000) (0,447) (0,617) (0,012) (0,229) (0,639) (0,001) (0,000) (0,046) (0,000) (0,009) (0,015)

Q(15)
53,361 15,204 12,331

0,029
32,464 18,058 11,934

0,062
36,102 53,139 25,901

0,259
50,814 28,798 31,550

0,149
(0,000) (0,437) (0,654) (0,006) (0,260) (0,684) (0,002) (0,000) (0,039) (0,000) (0,017) (0,007)

Q(25)
78,734 25,757 20,858

0,028
48,790 28,550 20,291

0,07
48,775 75,217 40,019

0,269
63,117 39,127 48,588

0,149
(0,000) (0,421) (0,701) (0,003) (0,283) (0,731) (0,003) (0,000) (0,029) (0,000) (0,036) (0,003)

Q(35)
100,182 36,224 29,937

0,025
62,381 39,088 29,502

0,083
60,259 96,736 52,598

0,264
74,225 49,320 65,097

0,154
(0,000) (0,411) (0,711) (0,003) (0,291) (0,730) (0,005) (0,000) (0,028) (0,000) (0,055) (0,001)

Q(50)
128,365 51,868 43,896

0,033
81,934 55,127 42,569

0,081
77,820 129,303 70,945

0,274
89,406 64,611 87,234

0,156(0,000) (0,401) (0,716) (0,003) (0,287) (0,763) (0,007) (0,000) (0,027) (0,001) (0,080) (0,001)

η̂
1,903

-
8,795

-
20,756

-
59,181

-(0,286) (15,198) (33,762) (88,537)

exp(ω̂ϑ) -
2,048

-
8,828

-
19,858

-
37,361

(0,179) (0,355) (0,596) (0,638)

φ̂ϑ -
0,984

-
0,921

-
0,934

-
0,919

(0,030) (0,262) (0,216) (0,208)

κ̂ϑ -
0,025

-
0,011

-
0,003

-
0,003

(0,008) (0,006) (0,008) (0,006)

Table H.3: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS
model on 1000 simulations of length T = 2000 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.
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ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 1000
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
2,799 1,051 0,755

0,021
2,205 0,983 1,748

0,076
2,516 3,463 2,192

0,15
5,742 4,547 1,329

0,08(0,094) (0,305) (0,385) (0,138) (0,322) (0,186) (0,113) (0,063) (0,139) (0,017) (0,033) (0,249)

Q(5)
14,551 5,051 3,828

0,033
9,412 5,150 6,868

0,112
8,541 8,232 7,955

0,222
18,834 12,075 5,378

0,129
(0,731) (0,958) (0,980) (0,820) (0,964) (0,883) (0,774) (0,629) (0,822) (0,332) (0,474) (0,932)

Q(10)
27,307 10,259 8,099

0,038
18,034 10,445 12,705

0,14
14,743 13,141 13,693

0,241
27,362 20,471 9,725

0,141
(0,002) (0,418) (0,619) (0,054) (0,402) (0,241) (0,142) (0,216) (0,187) (0,002) (0,025) (0,465)

Q(15)
38,637 15,447 12,313

0,036
25,247 15,582 18,159

0,148
20,468 18,316 19,861

0,264
33,299 28,426 13,964

0,151
(0,001) (0,420) (0,655) (0,047) (0,410) (0,254) (0,155) (0,246) (0,177) (0,004) (0,019) (0,528)

Q(25)
58,617 25,626 21,154

0,037
39,688 25,834 28,506

0,162
31,982 28,596 30,165

0,266
43,907 44,002 22,605

0,171
(0,000) (0,428) (0,684) (0,031) (0,417) (0,285) (0,159) (0,281) (0,218) (0,011) (0,011) (0,601)

Q(35)
75,253 36,019 30,291

0,039
52,428 36,327 38,080

0,172
43,278 38,884 39,999

0,272
54,043 59,672 31,011

0,173
(0,000) (0,421) (0,695) (0,029) (0,407) (0,331) (0,159) (0,299) (0,258) (0,021) (0,006) (0,661)

Q(50)
97,089 51,714 43,777

0,05
69,943 51,655 52,148

0,159
59,242 54,354 54,245

0,254
68,553 83,185 43,558

0,172(0,000) (0,407) (0,720) (0,033) (0,409) (0,390) (0,174) (0,312) (0,316) (0,042) (0,002) (0,728)

η̂
1,938

-
10,323

-
35,463

-
94,880

-(0,495) (20,535) (70,487) (126,017)

exp(ω̂ϑ) -
2,120

-
10,421

-
24,091

-
43,993

(0,340) (0,654) (0,897) (0,855)

φ̂ϑ -
0,974

-
0,947

-
0,923

-
0,913

(0,077) (0,175) (0,232) (0,224)

κ̂ϑ -
0,024

-
0,007

-
0,000

-
0,002

(0,013) (0,014) (0,011) (0,008)

Table H.4: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS
model on 1000 simulations of length T = 1000 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.
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ωϑ = log 2, φϑ = 0.99, κϑ = 0.25 ωϑ = log 8, φϑ = 0.99, κϑ = 0.01 ωϑ = log 15, φϑ = 0.99, κϑ = 0.005 ωϑ = log 30, φϑ = 0.98, κϑ = 0.005

T = 500
Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail Beta-t-EGARCH Dynamic Scale and Tail

ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P ) ûλ ûλ ûϑ % Rej ruϑ(P )

Q(1)
1,699 1,097 0,833

0,02
1,149 0,846 3,484

0,109
1,541 2,096 7,235

0,17
2,472 3,817 2,568

0,12(0,192) (0,295) (0,361) (0,284) (0,358) (0,062) (0,214) (0,148) (0,007) (0,116) (0,051) (0,109)

Q(5)
9,610 5,080 4,223

0,051
5,850 4,955 12,588

0,155
5,791 7,518 28,958

0,23
9,400 12,876 9,861

0,18
(0,889) (0,954) (0,975) (0,950) (0,974) (0,626) (0,908) (0,836) (0,204) (0,781) (0,576) (0,766)

Q(10)
18,330 10,190 8,492

0,061
12,315 10,393 21,432

0,179
10,786 14,327 49,986

0,241
15,491 24,211 17,460

0,18
(0,050) (0,424) (0,581) (0,265) (0,407) (0,018) (0,374) (0,159) (0,000) (0,115) (0,007) (0,065)

Q(15)
26,038 15,292 12,739

0,056
17,779 15,637 28,435

0,195
16,022 21,417 67,902

0,249
20,140 34,947 24,059

0,173
(0,038) (0,431) (0,622) (0,274) (0,407) (0,019) (0,381) (0,124) (0,000) (0,167) (0,003) (0,064)

Q(25)
40,342 25,508 21,927

0,067
28,976 26,176 40,786

0,193
26,207 34,763 95,830

0,241
30,107 55,668 37,284

0,185
(0,027) (0,434) (0,640) (0,265) (0,398) (0,024) (0,397) (0,093) (0,000) (0,220) (0,000) (0,054)

Q(35)
53,253 35,617 30,991

0,064
39,467 36,782 51,242

0,178
36,229 47,508 117,822

0,237
39,457 75,138 48,140

0,168
(0,025) (0,439) (0,662) (0,277) (0,386) (0,038) (0,411) (0,077) (0,000) (0,277) (0,000) (0,069)

Q(50)
70,635 51,067 44,514

0,066
54,049 52,250 65,948

0,169
50,419 65,881 144,210

0,225
53,312 101,293 63,758

0,164(0,029) (0,432) (0,692) (0,322) (0,387) (0,065) (0,457) (0,065) (0,000) (0,348) (0,000) (0,091)

η̂
2,077

-
25,047

-
63,319

-
124,676

-(0,746) (64,449) (106,959) (143,219)

exp(ω̂ϑ) -
2,275

-
14,335

-
31,182

-
49,877

(0,464) (1,027) (1,077) (0,944)

φ̂ϑ -
0,947

-
0,928

-
0,916

-
0,907

(0,161) (0,224) (0,258) (0,211)

κ̂ϑ -
0,018

-
0,000

-
-0,002

-
0,000

(0,031) (0,022) (0,016) (0,016)

Table H.5: Estimation results and residual correlation of the fitted scores ût after fitting to the data a Beta-t-EGARCH and a Dynamic Scale and Tail DCS
model on 1000 simulations of length T = 500 generated by a conditional t distribution with dynamic scale and tail with different ωϑ assumptions.
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Mean Static Tail Index Dynamic Tail Index Dynamic Scale Fit
µ η1 η η2 ωϑ1 φϑ1 κϑ1 ωϑ φϑ κϑ ωϑ2 φϑ2 κϑ2 ωλ φ1,λ κ1,λ κ∗1,λ φ2,λ κ2,λ κ∗2,λ Logl AIC BIC

Dow Jones

0,001 6,588 - - - -4,884 0,996 0,027 - 0,958 0,041 -
25.974,76 - 51.935,51 - 51.886,71(0,000) (0,072) - - - (0,081) (0,002) (0,009) - (0,015) (0,009) -

0,001 - 1,829 0,792 0,020 -4,900 0,987 0,062 - 0,257 -0,058 -
25.993,16 - 51.968,32 - 51.905,57

(0,000) - (0,071) (0,087) (0,005) (0,056) (0,003) (0,006) - (0,158) (0,013) -

0,001 5,460 9,625 - - - - - - -4,869 0,996 0,028 - 0,958 0,040 -
25.987,40 - 51.958,79 - 51.903,02

(0,000) (0,076) (0,129) - - - - - - (0,082) (0,002) (0,009) - (0,015) (0,009) -
0,001 - 8,718 1,651 0,643 0,022 - - - -4,884 0,986 0,068 - 0,182 -0,048 -

25.996,86 - 51.973,71 - 51.904,00
(0,000) - (0,114) (0,073) (0,206) (0,008) - - - (0,056) (0,003) (0,006) - (0,185) (0,013) -

0,000 6,900 - - - -4,919 0,984 0,061 0,024 0,656 -0,049 0,057
26.094,38 - 52.170,76 - 52.108,02

(0,000) (0,072) - - - (0,050) (0,003) (0,007) (0,004) (0,073) (0,014) (0,007)
0,000 - 2,000 0,789 0,012 -4,919 0,984 0,061 0,024 0,656 -0,049 0,057

26.103,70 - 52.185,41 - 52.108,72
(0,000) - (0,076) (0,166) (0,004) (0,050) (0,003) (0,007) (0,004) (0,072) (0,014) (0,007)

0,001 5,741 10,379 - - - - - - -4,889 0,985 0,062 0,023 0,690 -0,041 0,053
26.106,53 - 52.193,06 - 52.123,34

(0,000) (0,138) (0,076) - - - - - - (0,053) (0,003) (0,007) (0,005) (0,081) (0,016) (0,006)
0,001 5,644 - - - - 2,304 0,932 0,007 -4,893 0,986 0,058 0,024 0,718 -0,041 0,058

26.115,57 - 52.207,13 - 52.123,47
(0,000) (0,074) - - - - (0,136) (0,066) (0,003) (0,053) (0,004) (0,008) (0,006) (0,097) (0,020) (0,007)

Table H.6: Parameter Estimates for the Beta-t-EGARCH Model and dynamic Scale-Tail model without and with leverage term.
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Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
8,548 8,500 4,950 14,302 0,727

(0,003) (0,004) (0,026) (0,000) (0,394)

Q(5)
11,240 11,366 33,731 47,049 3,492
(0,047) (0,045) (0,000) (0,000) (0,625)

Q(10)
20,647 20,418 43,360 58,038 7,150
(0,024) (0,026) (0,000) (0,000) (0,711)

Q(15)
24,014 24,240 45,655 61,841 11,375
(0,065) (0,061) (0,000) (0,000) (0,726)

Q(25)
35,783 35,313 51,467 70,176 14,336
(0,075) (0,083) (0,001) (0,000) (0,956)

Q(35)
53,120 51,983 61,708 82,916 20,714
(0,025) (0,032) (0,004) (0,000) (0,974)

Q(50)
66,658 64,915 70,645 94,310 31,717
(0,058) (0,076) (0,029) (0,000) (0,980)

Table H.7: Box-Ljung test on fitted scores with respect
to scale ûλt and Simple LM Dynamic Tail test after
fitting the Beta-t-EGARCH model without leverage.
Symmetric and Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
0,328 0,051 0,880 0,772 -

(0,567) (0,822) (0,348) (0,380) -

Q(5)
1,542 1,329 5,104 3,270 -

(0,908) (0,932) (0,403) (0,658) -

Q(10)
7,732 6,090 7,744 9,250 -

(0,655) (0,808) (0,654) (0,509) -

Q(15)
11,935 11,594 10,043 12,869 -
(0,684) (0,709) (0,817) (0,612) -

Q(25)
27,855 27,761 17,909 26,831 -
(0,315) (0,319) (0,846) (0,364) -

Q(35)
42,576 42,450 27,576 41,042 -
(0,177) (0,181) (0,810) (0,223) -

Q(50)
55,279 54,382 37,417 53,944 -
(0,282) (0,311) (0,906) (0,326) -

Table H.8: Box-Ljung test on fitted scores with
respect to scale ûλt and with respect to the dy-
namic tail index parameter ûϑt after fitting the
dynamic Scale-Tail DCS Model without lever-
age. Symmetric and Asymmetric case.

Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
2,010 2,630 0,161 7,415 6,853

(0,156) (0,105) (0,688) (0,006) (0,009)

Q(5)
4,261 5,007 7,494 17,652 39,557

(0,512) (0,415) (0,186) (0,003) (0,000)

Q(10)
8,648 10,279 15,332 24,899 44,202

(0,566) (0,416) (0,120) (0,006) (0,000)

Q(15)
13,580 15,123 17,811 30,765 47,115
(0,558) (0,443) (0,273) (0,009) (0,000)

Q(25)
28,016 29,337 24,349 40,167 53,347
(0,307) (0,250) (0,499) (0,028) (0,001)

Q(35)
44,776 45,720 33,544 52,373 58,706
(0,125) (0,106) (0,538) (0,030) (0,007)

Q(50)
60,699 60,564 45,243 68,478 65,242
(0,143) (0,146) (0,664) (0,042) (0,073)

Table H.9: Box-Ljung test on fitted scores with re-
spect to scale ûλt and Simple LM Dynamic Tail test
after fitting the Beta-t-EGARCH model with leverage.
Symmetric and Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
5,759 4,091 - 0,010 0,462

(0,016) (0,043) - (0,920) (0,497)

Q(5)
6,354 6,850 - 0,545 0,705

(0,273) (0,232) - (0,990) (0,983)

Q(10)
10,741 12,297 - 6,685 1,836
(0,378) (0,266) - (0,755) (0,997)

Q(15)
15,373 17,416 - 11,352 2,462
(0,425) (0,295) - (0,727) (1,000)

Q(25)
28,406 31,453 - 24,444 3,295
(0,290) (0,174) - (0,494) (1,000)

Q(35)
44,028 46,797 - 34,282 8,213
(0,141) (0,088) - (0,503) (1,000)

Q(50)
59,805 61,075 - 45,775 12,197
(0,161) (0,136) - (0,644) (1,000)

Table H.10: Box-Ljung test on fitted scores
with respect to scale ûλt and with respect to
the dynamic tail index parameter ûϑt after fit-
ting the dynamic Scale-Tail DCS Model with
leverage. Symmetric and Asymmetric case.
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Mean Shape Dynamic Tail Index Dynamic Scale Fit
µ η1 η η2 ωϑ1 φϑ1 κϑ1 ωϑ φϑ κ1ϑ κ2ϑ ωϑ2 φϑ2 κϑ2 ωλ φλ κλ Logl AIC BIC

5Y CDS Italy

-0,001 2,491 - - - - -3,862 0,957 0,105
6.102,32 - 12.194,64 - 12.164,58

(0,000) (0,063) - - - - (0,067) (0,011) (0,013)
0,000 - 0,693 1,000 -0,034 0,056 -3,872 0,974 0,116

6.155,18 - 12.294,36 - 12.246,27
(0,000) - (0,990) (0,001) (0,014) (0,013) (0,083) (0,007) (0,019)
-0,001 2,687 2,330 - - - - - - -3,856 0,957 0,104

6.103,80 - 12.195,60 - 12.159,54
(0,000) (0,078) (0,072) - - - - - - (0,067) (0,011) (0,013)
-0,001 - - 0,933 0,997 0,014 0,693 0,998 0,014 -3,853 0,969 0,100

6.129,02 - 12.238,05 - 12.177,94
(0,000) - - (0,235) (0,002) (0,004) (0,415) (0,002) (0,003) (0,090) (0,009) (0,013)

Table H.11: Parameter Estimates for the Beta-t-EGARCH Model and dynamic Scale-Tail model

Res Corr Scale Tail Q∗u(P ) Test
Sym Asym η1 η η2

Q(1)
7,914 8,204 6,692 38,982 7,613

(0,005) (0,004) (0,010) (0,000) (0,006)

Q(5)
15,141 15,234 11,898 53,813 20,050
(0,010) (0,009) (0,036) (0,000) (0,001)

Q(10)
16,703 16,780 16,693 57,667 27,637
(0,081) (0,079) (0,081) (0,000) (0,002)

Q(15)
19,310 19,196 25,445 63,566 27,723
(0,200) (0,205) (0,044) (0,000) (0,023)

Q(25)
24,325 24,389 62,917 83,861 47,803
(0,501) (0,497) (0,000) (0,000) (0,004)

Q(35)
41,287 40,884 66,260 101,423 63,028
(0,215) (0,228) (0,001) (0,000) (0,003)

Q(50)
60,458 60,138 74,762 111,105 72,515
(0,148) (0,154) (0,013) (0,000) (0,020)

Table H.12: Box-Ljung test on fitted scores with respect to scale ûλt
and Simple LM Dynamic Tail test after fitting the Beta-t-EGARCH
model. Symmetric and Asymmetric case.

Res Corr Scale Res Corr Tail
Sym Asym η1 η η2

Q(1)
0,671 5,731 1,808 0,180 2,656

(0,413) (0,017) (0,179) (0,671) (0,103)

Q(5)
5,531 13,130 3,653 1,589 4,317

(0,355) (0,022) (0,600) (0,903) (0,505)

Q(10)
7,421 14,335 5,535 6,390 8,827

(0,685) (0,158) (0,853) (0,782) (0,549)

Q(15)
10,433 18,315 10,005 11,071 11,896
(0,792) (0,246) (0,819) (0,748) (0,687)

Q(25)
18,073 24,792 22,558 19,460 16,635
(0,839) (0,474) (0,603) (0,775) (0,895)

Q(35)
30,594 39,927 25,979 27,431 24,432
(0,681) (0,260) (0,866) (0,815) (0,909)

Q(50)
45,491 58,419 34,687 39,593 33,604
(0,655) (0,194) (0,951) (0,854) (0,964)

Table H.13: Box-Ljung test on fitted scores with respect to scale ûλt
and with respect to the dynamic tail index parameter ûϑt after fitting
the dynamic Scale-Tail DCS Model. Symmetric and Asymmetric case.
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GARCH DCS Sym Tails DCS Asym Tails

p 0.15 0.1 0.05 0.01 0.15 0.1 0.05 0.01 0.15 0.1 0.05 0.01

Fixed Tail

Independence
L&U 6.031 8.550∗ 6.913 3.314 2.910 7.844 2.747 7.139 2.137 8.988 4.109 7.980∗

L 0.015 0.542 0.763 0.250 1.888 0.247 1.701 0.016 0.180 0.573 1.701 0.016
U 2.320 2.262 3.331∗∗ 0.306 1.060 3.018∗ 0.162 0.116 1.361 4.191∗∗ 0.642 0.055

Coverage
L&U 77.468∗∗∗ 38.194∗∗∗ 19.410∗∗∗ 1.290 1.467 2.621 5.234∗ 5.728∗ 5.180∗ 6.207∗∗ 7.137∗∗ 7.311∗∗

L 41.078∗∗∗ 25.146∗∗∗ 15.209∗∗∗ 0.372 0.067 1.589 5.100∗∗ 5.460∗∗ 0.068 1.931 5.100∗∗ 5.460∗∗

U 25.516∗∗∗ 9.800∗∗∗ 3.519∗ 0.904 1.464 0.768 0.066 0.249 4.773∗∗ 3.658∗ 1.740 1.802

Backtesting
L −5.185∗∗∗ −4.126∗∗∗ −1.910∗ 1.380 −2.271∗∗ −2.505∗∗ −2.378∗∗ -1.262 −2.160∗∗ −2.357∗∗ −2.194∗∗ -1.212
U −1.945∗ 0.988 9.426∗∗∗ 109.527∗∗∗ -1.037 -0.841 -1.082 -0.688 -1.072 -0.772 -0.752 0.996

Pred Lik 1,573.58 1,709.59 1,709.12

Dynamic Tail

Independence
L&U 4.353 1.524 3.215 0.278 3.860 6.912 3.194 4.993

L 0.839 0.230 0.104 0.016 1.864 0.003 2.485 0.200
U 0.620 0.276 0.131 0.200 1.804 4.004 0.264 0.055

Coverage
L&U 0.708 0.420 1.763 5.516∗ 2.772 2.621 2.189 1.862

L 0.593 0.060 1.740 5.460∗∗ 0.321 0.768 1.740 0.066
U 0.220 0.389 0.007 0.066 2.690 1.589 0.365 1.802

Backtesting
L -0.136 -1.082 -1.489 -1.336 -0.436 -0.871 -0.650 -0.092
U -0.398 -0.338 0.512 -0.058 -0.887 -0.378 -0.165 0.868

Pred Lik 1,686.39 1,709.24

Table H.14: Results of the unconditional coverage and independence likelihood ratio tests of Christoffersen (1998) for the upper tail, lower tails one-step-
ahead quantiles and joint interval violations, as well as the results for the unconditional backtest of Du and Escanciano (2017) to evaluate the upper and
lower one-step-ahead ES accuracy. ∗, ∗∗, ∗ ∗ ∗ define rejections with confidence levels of 0.1, 0.05, and 0.01 respectively.
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