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ABSTRACT 

  Ebert and Panchal introduced the ‘threshold fouling’ approach for describing the initial 

rate of crude oil chemical reaction fouling at the meeting in this series of conferences held in 

San Luis Obispo in 1995. This paper summarises reviews of developments in the threshold 

modelling approach over the last ten years, following the review by Wilson et al. at the 2005 

meeting. Three areas are considered: (i) The development of quantitative models, which has 

seen little activity but a switch toward using the threshold models to describe fouling 

dynamics. One of the reasons for the stagnation in development is the need to incorporate 

chemical understanding. (ii) The types and range of data sets which have been processed with 

these models, and an evaluation of the parameters. (iii) Applications where the models are 

used to predict fouling, or the likelihood of fouling. This is the area that has seen greatest 

activity, linked to the use of threshold models to describe fouling dynamics.  Topics for future 

research and development are discussed. 
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INTRODUCTION 

Fouling of heat exchangers processing crude oil is a long-standing challenge in oil 

refining sector. The heat exchanger networks in refinery distillation unit preheat trains are 

subject to chronic fouling, caused by different mechanisms in different parts of the train [1]. 

This reflects the nature of crude oil as a mixture, with different species promoting deposition 

under different combinations of temperature and pressure (and phase behaviour) encountered 

by the crude as it passes from storage through exchangers and a furnace before entering the 

column. Early in the preheat train, fouling is chiefly caused by deposition of entrained solids 

(sand, mineral and organic), and crystallization fouling (arising from minerals dissolved in 

any water present). Downstream of the desalter, chemical reaction fouling dominates and this 

can arise from any combination of mechanisms: autoxidation, condensation reactions 

catalyzed by FeS and other minerals present, and precipitation or gelation of asphaltenes. As 

the composition of a crude varies by source, and crudes are frequently blended to achieve a 

desired product slate, the chemical composition is often poorly known. The propensity of a 

mixture towards chemical reaction fouling is similarly poorly known: to date, most methods 

have focused on identifying compositions likely to promote precipitation of ashphaltenes and 

thereby cause acute fouling [2, 3]. While the chemistry of the mechanism remains unclear, the 

impact is understood: chemical reaction fouling effectively limits the scope for heat recovery 

in refinery preheat trains using standard technologies owing to high fouling rates [4]. 

 

 The first quantitative study of crude oil-related chemical reaction fouling was the work on 

gas oil by Watkinson and Epstein in 1969 [5]. Figure 1 summarises the development of 

chemical reaction fouling models over the intervening 5 decades [5-20]. Initial work followed 

the deterministic path, seeking to develop numerical models based on established physical 

phenomena and supported by experiments. 

 

Three strands are shown in Figure 1. The first strand, labelled ‘deterministic’ models, sought 

to build predictive quantitative models based on physical analysis, in a similar vein to parallel 

work on particulate and crystallization fouling over this period. The strand fizzles out in the 

mid 1990s, mainly due to the complexity of crude oils: this point is discussed further later. 

 

One approach to complexity is to adopt a semi-empirical approach, based on certain 

assumptions, and avoid extrapolation where those assumptions do not hold. This was the 
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approach introduced to crude oil fouling by Ebert and Panchal at the fouling and cleaning 

conference held in San Luis Obispo 20 years ago, which was published in 1997 [11]. They 

introduced the following semi-quantitative model to provide a quantitative description of the 

initial rates of fouling, dRf/dt, reported for high temperature (liquid phase) tubeside coker 

fouling studies by Scarborough et al. [6]:   
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where Re is the Reynolds number, Tf the film temperature, R the gas constant and w the wall 

shear stress. Parameters a1, b1, Ea and c1 were obtained by regression of the data sets and the 

fit is shown in Figure 2. 

 

 

Ebert and Panchal termed their equation a ‘threshold fouling’ model as it provided two types 

of quantitative result:  

 (i) Extrapolation to estimate combinations of surface temperature and shear stress which 

gave no fouling, hence the ‘fouling threshold’, and 

(ii) A framework for interpolation between measured data sets to estimate the fouling rate 

expected for different combinations of fluid velocity and surface/film temperature. 

 

Figure 1 shows that the following decade was marked by active research into the fouling 

threshold approach. A number of variants of the original model have been developed (see 

Table A1 in appendix [11, 13-16, 21-23]). These have provided a basis for modelling crude 

oil fouling and have been employed to analyse experimental data and estimates of fouling 

obtained by reconciliation of plant operating data. Armed with these estimates of likely 

fouling rates for such streams, threshold fouling models have been adopted as a tool for 

predicting fouling rates in the design of individual exchangers, heat exchanger networks, and 

the operation (control and cleaning) thereof. 
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 The assumptions and early development of the threshold fouling approach in the ten 

years since it was introduced were reviewed by Wilson et al. at the Kloster Irsee conference 

in this series held in 2005 [24]. Readers are strongly encouraged to consult the 2005 paper as 

the material remains relevant and is not reproduced here. The Enfield conference marks 

twenty years since the ‘threshold fouling’ concept was introduced. This paper seeks to review 

the progress made as a result of the concept, and present some of the challenges which the 

authors believe should be tackled in the next decade. Two of the authors (Wilson and Polley) 

contributed to the 2005 paper, in which they made some predictions of the state of the art in 

2015: these are also reviewed. 

 

The third strand of activity in Figure 1 is labelled ‘artificial neural network’ (ANN) 

approaches. These represent a second approach to complexity, wherein families of statistical 

learning algorithms are used to construct functional relationships between different, diverse 

inputs.  The power of these techniques has grown strongly in the last decade owing to the 

speed and availability of computing capacity. ANN methods require relatively large and 

diverse training data sets. They do not assume any deterministic relationships unless the 

operator imposes these. The paper by Aminian and Shahhosseini [18] provides a useful 

account of the application of ANN methods to crude oil threshold fouling modelling. Figure 1 

shows that much of the literature in this field has been published since 2005. 

 

This paper reviews the published activity in the area of threshold fouling models for crude 

oil fouling since 2005. The results of a series of reviews are presented: (i) the development of 

quantitative models; (ii) the types and range of data sets which have been processed with 

these models, accompanied by an evaluation of the parameters reported; (iii) applications 

where the models are used to predict fouling, or the likelihood of fouling, and issues resulting 

from such applications. These lead to conclusions outlining needs for research and/or 

development. 

 

 

 

DEVELOPMENT OF THRESHOLD MODELS 

Threshold fouling models relate the observed initial (or early) linear fouling rate to 

thermal and hydraulic conditions. They feature a competition between deposition and 
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suppression terms: Ebert and Panchal originally termed the latter a removal term and this was 

challenged within the fouling community on the basis of (a) conceptually, there is no removal 

when an initial fouling layer is being formed. This can be contested on the grounds that an 

initial layer of deposit with thickness in the micron range is unlikely to be detected using 

thermal or hydraulic measurements. Hence, the term ‘early’ is used here: (b) removal of a 

crude oil deposit layer, once formed, has not been demonstrated by any systematic study to 

date.  The equations published to date are listed in Table A1. They take the form: 
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The first term on the RHS has three contributions: a scaling factor, ai; a hydrodynamic term, 

often related to Reynolds number; and a temperature sensitivity based on the Arrhenius 

relationship. It can be seen from Table A1 that there have been few new developments in 

basic threshold modelling added in the last decade. Nasr and Givi [16] proposed a 

suppression term of the form (-ciRe0.4), without any physically-based justification of the 

power 0.4. Polley [22] reviewed the existing dynamic fouling models based on Equation (1) 

and proposed a generalized form where the prefactor in the deposition term involved the film 

heat transfer coefficient, i.e. a3/hfilm. One of the reasons for taking this approach was to extend 

the results to other geometries: this is considered further below. Deshannavar et al. [25] 

presented a review of crude oil fouling models and cited most of those in Table A1. No new 

models nor data were presented.  

 

Ramaswamy and Deshannavar [26] reviewed the use of the Ebert-Panchal model (Equation 

(1)) for various data sets reported in the literature.  They found that the threshold fouling 

model did not fully explain observations reported in the literature and a new set of their own 

data. Amongst these, they reported decreasing fouling rate with increased bulk temperature 

(at constant surface temperature), which could be due to fouling precursor solubility. They 

also reported a reduction in fouling rate and higher bulk and surface temperatures, which they 
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attributed to small amounts of boiling. The latter observation is a reminder that phase 

behaviour always needs to be considered. 

 

To the authors’ knowledge, based on a systematic search of the published literature, there 

has been little development of threshold models since 2005. There are several reasons for the 

tailing off in this activity. One of these is that the number of data sets is relatively modest, 

and are rarely complete. Carefully controlled and fully documented laboratory studies are 

required to minimize uncertainty, which is essential in differentiating different models on the 

basis of regression analysis that is normally used for fitting threshold model parameters. Such 

tests are resource (time, funding, personnel) intensive. The alternative is to use data extracted 

from industrial operation, which usually features poorer precision and unquantifiable 

variation associated with changes in feedstocks.  

 

A second reason is the limited number of manipulated variables available. Equation (1) 

contains four adjustable parameters. In a crude oil fouling test one can adjust three variables: 

flow rate, surface and bulk temperature, so the problem is mathematically poorly defined. 

Furthermore, the underlying optimisation problem in parameter optimisation is not 

straightforward: Costa et al. [27] presented an analysis of the parameter estimation problem 

involving fouling rate models, for several threshold fouling models including Equation (1). 

They developed a procedure for addressing the problem using a computational routine called 

HEATMODEL. They compared the performance of a conventional optimization algorithm 

(Simplex) with a more complex hybrid genetic algorithm, using data from a Brazilian 

refinery. They showed that the Simplex method may become trapped in local optima in the 

parameter estimation search, owing to the complexity of the underlying optimization 

problem. This indicated the importance of using global optimization techniques for this task.  

 

Furthermore, it is not known whether the model is exact. The chemistry involved is rarely 

understood, often to the extent that the identity of the fouling precursors is not known. The 

prefactor a in Equation (2) includes all the information about process chemistry. The 

relationship between ai and ci is likely to vary from one crude to another, e.g. via the 

concentration of precursors, rendering comparison between tests at different sites or on 

different crudes difficult. In another regard, crude oil fouling differs strongly from biofouling, 

particulate and crystallization fouling, where the fouling precursor is usually known or 
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identifiable from the deposit. Chemical reaction fouling deposits, however, often undergo 

ageing which disguises the origin of the layer (Fan and Watkinson [28]). Dilution of the crude 

to try to adjust the concentration of fouling precursors is rife with challenges as the diluent 

can affect the solubility of species such as asphaltenes. 

 

It is the authors’ opinion that the development of threshold models has reached a 

pragmatic plateau, in some ways mirroring that reached in detailed chemical reaction fouling 

models in the 1990s (see Figure 1). More information about the chemistry involved in 

generating deposits with specific crudes or crude blends, at various points in a fouling test 

history, is required in order to support more detailed modelling approaches. The chemistry is, 

undoubtedly, complex as crude oils contain many components. We postulate that there is 

likely in the future to be opportunities to merge the ANN and threshold modelling 

approaches, exploiting the ability of ANN techniques to construct functional relationships 

between different chemical parameters which can then explain trends observed in threshold 

model parameters. Core chemical understanding is still required, however: the parameters 

considered by the ANN (which will require resources to measure) have to be those directly 

related to fouling precursor concentration and behaviour. 

 

Whereas the development of new threshold fouling models has effectively stalled, the last 

decade has seen more effort aimed at applying threshold modelling techniques to other 

geometries. Much of the early work focused on tube-side fouling, either because test systems 

were configured to gather this type of data or because industrial units tend to put the more 

heavily fouling stream on the tube-side as it was then simpler to clean.  

 

In many refineries, however, the crude flows on the shell-side rather than tube-side and 

individual exchangers can be fitted with tube inserts. This led to the extension of the Ebert-

Panchal model to other exchanger geometry [29]. There are a number of applications where 

shell-side and other geometries experience fouling, and there has been some success in 

developing analogues of Equation (1) to describe these.  Table A2 summarises efforts in this 

area [23, 29-35]. In pipe flows the Reynolds number can be used to estimate, via correlations, 

a number of quantities, including the wall shear stress and film heat transfer coefficient. In 

other geometries these have to be estimated separately, hence the use of wall shear stress as 

the hydraulic parameter in the suppression term and the film heat transfer coefficient, rather 
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than bulk velocity, in the deposition term. The fact that these variations of the threshold 

model give working descriptions for all the geometries listed in Table A2 indicates that it is a 

useful, even if not exact, construction. 

 

Tube-side inserts require further mention. Some types of tube insert limit the thickness of the 

fouling layer to the clearance between the insert and the tube wall. This results in asymptotic 

fouling behaviour. In an exchanger with multiple tube passes it is possible to have asymptotic 

fouling in the hottest pass and low or modest fouling in the coldest pass. Engineering insight 

is required for such configurations rather than naive application of fouling models: techniques 

for analyzing this situation were developed by Polley and Gonzales Garcia [36]. 

 

 

THRESHOLD MODELS FOR FOULING DYNAMICS 

Ebert and Panchal’s name for the modelling approach that they introduced in 1995 

indicated the intended primary use, namely the identification of combinations of operating 

parameters (flow velocity and wall temperature) that would result in low fouling rates and 

thus allow exchangers to be operated for long periods before cleaning, or even mitigate 

fouling completely. As more crudes were tested, it became apparent that the threshold regions 

in temperature and velocity space varied between crudes and between crudes and crude 

blends, so a single design was likely to be resilient. This is illustrated by Figure 3, which 

shows the threshold locus calculated from fitting the Panchal et al. model [13], Equation [A] 

in Table A1, to Rf-time data obtained from reconciliation of refinery operating data. The 

model parameters are given in Table 1, alongside values reported by some previous studies 

using this model. 

 

Figure 3 shows a marked difference in fouling thresholds for the different datasets, which 

involved different feedstocks and unit design. Similar variation was also evident when 

comparing thresholds generated by analysis of laboratory fouling data, see [24]. 

 

The values of a1 and Ea in Table 1 vary noticeably [13, 15, 37-40]. The Ea values are all less 

than 50 kJ mol-1, whereas Ebert and Panchal reported a value of 68 kJ mol-1. This difference 

is usually attributed to the original Scarborough et al. [6] study involving temperatures at 

which coking (and reaction control) were important. Coking reactions are not usually 
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observed at the temperatures encountered in preheat trains, and reaction control results in 

their activation energies being greater than those reported for fouling mechanisms involving 

mixed reaction and diffusion. Direct comparison of these parameters is not recommended as 

they are not independent (see [41]). Instead, Figure 4 compares the fouling rate predicted by 

each parameter set for a set of conditions typical of those encountered in a preheat train. 

There is no evident correlation with Ea. There is an appreciable range in values and the need 

for chemical insight to explain these variations is the dominant research need.  

 

One feature of Table 1 is the absence of new published laboratory data sets, as there have 

been few new studies in the last decade with the exceptions of propriety work at oil 

companies (e.g. [42]) and Heat Transfer Research Inc. (HTRI), and at the University of Bath 

(e.g. [23, 43]). The Bath stirred cell device allows tests to be performed with smaller volumes 

and associated lower costs. Most new data sets have come from analysis of refinery units of 

sidestream monitors. At this point we introduce a caveat: fouling models usually provide a 

prediction of fouling at a ‘point’ condition. In reality the controlling factors (temperatures and 

wall shear) vary along the length of the exchanger. Recognition of this problem led to the 

development of an integrated form of Ebert-Panchal equation (Ishiyama et al. [44]) and 

ultimately to the detailed simulation approach of Coletti and co-workers [45-47]. 

 

Over the last decade, the application of threshold fouling models then moved in two 

directions: 

 

(i) Identification of fouling-resilient designs, using the threshold model to identify heat 

exchanger configurations and networks that would experience acceptably low fouling 

rates for a number of candidate crudes. This was discussed at length in the 2005 paper. 

 

(ii) Using the fouling threshold model equation to describe fouling dynamics. 

 

The latter direction constitutes an important shift in focus. The early work on fouling 

thresholds used measurements of fouling rates related to the early development of a fouling 

layer, in order to extrapolate back to when the layer was first formed and thus identify the 

relationships between temperature and hydraulics controlling the initial deposition step(s). 

More recently, the threshold fouling model equations have been used to describe and to 
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predict fouling behaviour when the fouling layer is well established, i.e. as a growth law. As a 

growth law it can then be used to estimate how changes in operating parameters, including 

the change in deposit surface temperature resulting from the growth of the layer itself, affect 

the deposition process. This has become accepted practice and is rarely challenged. In effect, 

it accepts the earlier statement that fouling rate measurements are not accurate enough to 

monitor the initial process of deposit formation, so that early rate measurements relate to the 

lay down of material on an already fouled surface. 

 

Threshold-fouling-dynamics (to differentiate it from true threshold modelling) has proved 

to be a very useful approach for managing crude oil fouling. It has provided a quantitative 

tool to calculate fouling rates for use in static and dynamic analyses of heat transfer systems 

subject to fouling. The effect of absolute temperature and flow conditions can now be 

incorporated, allowing the field to move away from the TEMA (Tubular Exchangers 

Manufacturers Association) approach. Fouling rates can now be included in design tools, 

network analyses (including pinch technology) and detailed simulations of plant and unit 

operations. 

 

Table A3 lists papers where threshold-fouling-dynamics models have been used in studies 

of individual exchangers [44-46, 48-51]. Table A4 summarises papers where these have been 

employed in analyses of plant or preheat train design and operation [38, 49, 52-60]. These are 

not intended to be exhaustive lists, as the intention is to illustrate the range of activity that has 

been facilitated by the concept. In the age where simulation has become a standard tool for 

process engineering, these Tables demonstrate that the threshold-fouling-dynamics approach 

has provided the quantitative tool for inclusion in numerical calculations. 

 

 Typically a plant’s own operating data records are interrogated to generate fouling 

resistance-time data sets. These are compared with a fouling model (such as one of those in 

Table A1) and a set of parameters obtained by regression analysis (see [15]). This provides 

the operators with a locally tuned fouling model which should allow them to predict how 

their system will respond to changes in operating parameters, as long as the crude or crude 

slate does not change substantially.  Examples of this approach include the studies by 

Ishiyama et al. [38], and Ratel et al. [61]. Some of the results are included in Table 1 and 

Figure 4. 
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Coletti and co-workers (e.g. [46, 47]) have employed a different approach to interrogate 

plant operating data. Rather than calculating the overall heat transfer coefficient from plant 

data and estimating the fouling resistance from this parameter, which introduces uncertainty 

from the intermediate calculation, they have used model-based parameter estimation 

techniques to determine Ebert-Panchal model parameters from temperature and flow 

measurements.  This represents a more efficient use of the data but is still subject to the 

fundamental uncertainty associated with the accuracy of the Ebert-Panchal model. 

 

Over the last five years these methods have become available in new commercial software 

tools such as SmartPMTM from IHS and Hexxcell StudioTM, which have joined the family of 

monitoring and simulation. It should be noted that some monitoring packages contain data 

reconciliation techniques and exchanger heuristics that lead to final readings that are 

incorrect. Individual instrument readings always provide a safer source of performance 

measurements. Work needs to be directed at how errors in individual measurements (such as 

drift and off-set) can be identified and corrected.  

 

FUTURE PROSPECTS: TEN MORE YEARS? 

The title of this section is deliberate. In the medium to long term the dominance of distillation 

for separation of crude oil mixtures is likely to be challenged on the grounds of energy 

consumption and separation efficiency. Even if new technologies are used, fouling is still 

likely to happen, and many of the findings from thermal fouling research are likely to apply! 

 

The use of threshold fouling models to quantify fouling dynamics has enabled work in crude 

oil fouling to catch up with developments in other branches of fouling research. The 

availability of numerical tools to calculate the likely rate of crude oil fouling and its impact on 

unit (and plant) thermal and hydraulic performance opens up the field to engineering analysis 

and decision making. Broadly put, it provides a basis for replacing the TEMA approach 

which is a static method aimed primarily at heat exchanger design. We expect the methods 

and approaches described above to become more widely used over the next decade. 
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Threshold fouling models have evolved since 1995 and this evolution is expected to continue, 

particularly for complex flow patterns and complex geometries. Particular targets for these to 

meet (our ‘wish list’) include: 

 

Properties of an Ideal Fouling Model 

A good fouling model provides the following: 

 (i) Predictions of fouling rates across individual operational exchangers to an accuracy better 

than 20% (a typical value being  10%). 

 (ii) It predicts how changes in operating conditions or geometry affect the fouling rate, to the 

same accuracy. 

 (iii) It can be fitted to data easily, so that rapid changes in monitored fouling rate can be 

identified and the change attributed to a known input. 

 (iv) Plant data are subject to noise and this affects data fitting. It is highly desirable to have a 

small number of adjustable parameters in the model, which still retain the essential physics 

of the system, in order to retain the reliability of the result. 

 

It must be appreciated that the fouling mechanism can change along the length of a pre-heat 

train. Consequently, the model user, whether an operator, plant engineer or design needs to 

understand the various mechanisms and remember that one model will not fit all crudes. 

 

Important fundamental questions remain. The importance of chemical mechanisms has been 

highlighted, as these determine the fouling mechanism and the validity of the assumptions in 

the derivation of the threshold fouling model equations. More work needs to be done to 

establish the link between crude composition and fouling behaviour. This will require 

fundamental studies in chemistry, rheology, fluid mechanics and surface materials science in 

order to elucidate the interactions involved (see [19, 62]). The long term goal here would be 

to be able to anticipate the likely fouling behaviour of a crude or crude mixture based on its 

composition, to the extent that only a small number of heat transfer tests would be needed to 

determine the fouling parameters. This would bring crude oil fouling to a point of parity with 

crystallization fouling in aqueous streams. There, the theory is mature but there are still 

considerable uncertainties in calculating nucleation rates and the strength of deposits (which 



14 

 

determine asymptotic fouling behaviour) as well as fouling from mixtures of inverse 

solubility salts. 

 

The need to establish whether deposit removal can occur – and hence how to promote this – 

has also been mentioned. 

 

Fundamental research requires long-term commitment of resources (funding, time and 

personnel). Variations in the price of crude oil tend to dictate the research agenda in the oil 

industry, so that the emphasis in the last few years has switched from dealing with fouling 

caused by ‘opportunity crudes’ (cheaper but more prone to fouling) to lean operation. 

Somehow fouling needs to be kept on the research agenda. 

 

 

CONCLUSIONS 

 Developments in the use of the threshold fouling approach to model fouling rates in crude 

oil over the last ten years have been reviewed and discussed. The field has seen some 

significant changes, which can be summarised as 

1. There have been few laboratory experimental studies of crude oil fouling published in the 

open literature since 2005. An increasing number of studies based on reconciliation of 

refinery data have been reported, indicating that the threshold fouling approach has 

become an accepted tool for analyzing fouling data.  

2. There have been few developments in threshold fouling models per se. One reason is the 

need to link thermal behaviour with chemical composition and mechanisms. 

3. Extension of the threshold fouling approach to geometries other than pipe flows has 

allowed fouling in these cases to be quantified. 

4. The threshold fouling approach allows crude oil fouling to be predicted quantitatively, 

albeit with some uncertainty. This has enabled simulation and modelling tools for fouling 

mitigation to finally supplant the static TEMA approach. 

5. Fundamental challenges still remain which require concerted, combined research effort to 

solve. Such activity will generate more data sets, preferably of high quality, which will 

both allow (i) further development of deterministic models, and (ii) identification of key 
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parameters for ANN modelling. The latter has considerable potential for interrogating 

complex data fields such as arise in crude oil fouling. 
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NOMENCLATURE 

ai  parameter in fouling model, units vary 

bi  parameter in fouling model, -  

ci  parameter in fouling model, units vary 

di  parameter in fouling model, -  

ei  parameter in fouling model, m13/3 s8/3 kg2/3 K-2/3 

Ea  fouling model activation energy, J/mol 

f  Fanning friction factor, - 

hfilm film transfer coefficient, m2K/W 

P  absolute pressure, bar 

Pr  Prandtl number, - 

R  gas constant, J/mol K 

Re  Reynolds number, - 

Rf   fouling resistance, m2K/W 

Sp  sticking probability, - 

t  time, s 

Tf  film temperature, K 

Ts  surface temperature, K 

u  mean velocity, m/s 

Greek symbols 

μ  viscosity, Pa s 

  bulk density, kg/m3 

w  wall shear stress, Pa 
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Tables 

 

Table 1. Threshold fouling model parameters obtained from regression of refinery fouling 

data to the Panchal et al. model [13], Equation [A] in Table A1. 

 

Data Set Source a1 

m2 K kW-1h-1 

Ea 

kJ mol-1 

c1 

m2K kWh-1 Pa-1 

1 Ishiyama et al. [37] 900 21 8.110-8 

2 Ishiyama et al. [37] 900 21 8.110-8 

3 Ishiyama et al. [38] 926 36.4 4.310-8 

4 Kiat [39] 1.09106 47 5.910-8 

5 Ishiyama et al. [40] 50,000 40 3.010-8 

6 Panchal et al. [13] 53,000 48 1.4510-4 

  

Yeap et al. [15] 

   

7     Data set A 640 29 2.4110-5 

8     Data set B 1,800 29 2.3510-5 

9     Data set C 940 29 2.4610-5 

10     Data set D 4,100 28 2.6310-5 

11     Data set E 2,900 29 2.6310-5 

12     Data set F 6,400 28 2.5310-5 

13     Data set G 6,000 31 3.0210-6 
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List of Figure captions 

 

Fig. 1 Summary of quantitative chemical reaction-related fouling model studies. Left strand - 

deterministic models; central strand –artificial neural network approaches; right strand - 

threshold fouling models. 

 

Fig. 2 The Ebert-Panchal model, Equation (1), fitted to Scarborough et al.’s data [6], 

reproduced from Ebert and Panchal [11]. Loci plotted for parameters a1 = 30.2106 

K m2/kW h; b1 = -0.88, c1 = 1.4510-4 m2 K m2/kW Pa h and Ea = 68 kJ/mol. 

 

Fig. 3 Threshold fouling loci obtained by fitting the Panchal et al. model [13] to different sets 

of refinery fouling data (Labels identified in Table 1). 

 

Fig. 4 Fouling rate predicted for benchmark conditions (velocity 2 m s-1, Re = 17100, Pr = 10, 

Tf = 503 K, w = 7.2 Pa) using the parameters reported in Table 1 (labels given in Table 

1). Equation [A] predicted negative values for 6, 7 and 9 so these are plotted as zero.  
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Fig. 3 Threshold fouling loci obtained by fitting the Panchal et al. model [13] to different sets 

of refinery fouling data (Labels identified in Table 1). 
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Fig. 4 Fouling rate predicted for benchmark conditions (velocity 2 m s-1, Re = 17100, Pr = 10, 

Tf = 503 K, w = 7.2 Pa) using the parameters reported in Table 1 (labels given in Table 

1). Equation [A] predicted negative values for 6, 7 and 9 so these are plotted as zero.  
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Appendices 

Table A1.  Threshold and related fouling models, listed in chronological order. Equations [A] and [B], referred to in the text, are highlighted. 
 

Source Expression Justification Comments 

Ebert and Panchal [11] w

f

abf
c

RT

E
a

dt

dR
11 expRe 1 













 
  Original threshold fouling model 

w is wall shear stress, Re is the bulk 

Reynolds number 

Panchal et al. [13] w

f

af
c

RT

E
a

dt

dR
2

33.066.0

2 expPrRe 












 
 

 [A] Adaption of Ebert and Panchal [11] Pr is the Prandtl number 

Polley et al. [14] 
8.0

3

33.066.0

3 expPrRe uc
RT

E
a

dt

dR

f

af














 
 

 
Suppression term based on mass 

transfer argument 
 

Saleh et al. [21] 












 


f

adbf

RT

E
Pua

dt

dR
exp44

4   P is the absolute pressure 

Yeap et al. [15] 

8.0

5

3/23/13/123

5

3/43/23/2

5

exp1

uc

RT

E
Tfue

fuTa

dt

dR

s

a

s

sf






















 

Deposition term based on Epstein 

model [9], written in terms of 

physical properties 

 

f is the Fanning friction factor,  the 

liquid density,  the viscosity 

Nasr and Givi [16] 
4.0

66 ReexpRe 6 c
RT

E
a

dt

dR

f

abf














 
  

Modification of Polley et al. [14] 

model 
 

Polley [22]  wp

f

a

film

f
S

RT

E

h

a

dt

dR














 
 exp7  

Film heat transfer term to give 

length-scale. Sticking probability, Sp, 

rather than suppression. 

Film heat transfer coefficient, hfilm: 

Sp is a function of w, with 0 < Sp < 1 

Polley et al. [14] w

f

a

film

f
c

RT

E

h

a

dt

dR
8

8 exp 












 
  Modification of Panchal et al. [13]  

Yang and Crittenden [23]  
w

s

a

s

sf
c

RT

E
Tfue

fuTa

dt

dR





9

3/23/13/123

9

3/43/23/2

9

exp1




















 Modification of Yeap et al. [15] 

model 
 

Ts is the surface temperature; Tf is the film temperature (an average of bulk and surface temperatures). 

[B] 
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Table A2. Models for predicting crude oil fouling in different geometries, listed in 

chronological order. 
 

Reference Geometry Modification to Ebert-Panchal (E-P) equation 

Master et al. [30] Helical baffle  

(shell-side) 

Use of E-P model where the shear stress is calculated based on 

shell-side uniform velocity. Ebert-Panchal model is not fitted 

to monitoring data.  

Bombardelli et 

al. [31] 

Distillation 

columns 

Coking in distillation columns is related to operating 

conditions.  A new dynamic fouling model is introduced with 

variables relating to the viscous sub-layer thickness, mean 

fluid velocity, adherence probability and operating 

temperature. 

Panchal et al. 

[32] 

Fired heater E-P model with Reynolds number calculated using the two-

phase flow viscosity. 

Aquino et al. [29] Turbotal tube-

inserts 

E-P model is modified to describe fouling rates in tubes 

equipped with tube inserts. 

Polley et al. [33] Tube inserts, 

Segmental baffle 

shell-side, 

CompablocTM  

Proposes a new fouling model called the Asphaltene 

Precipitation Mode, using a sticking probablity instread of a 

suppression term in the Ebert-Panchal model.  

Yang and 

Crittenden [23] 

Fouling in tubes 

with HITRAN 

tube-inserts 

Modified the model presented in [15], with suppression term 

amended to include shear stress rather than average fluid 

velocity (equation [B]) in Table A1). 

Morales-Fuentes 

et al. [34] 

Fired heater The deposition term is presented via the two-phase flow film 

transfer coefficient (equation [B) in in Table A1). 

Brignone et al. 

[35] 

Fouling on the 

shell-side 

(EMBaffle) 

The deposition term is presented via the film transfer 

coefficient. Equivalent shear stress used to evaluate the 

suppression constant (equation [B) in Table A1). 
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Table A3 Applications where threshold fouling dynamics are used to predict or explain 

individual heat exchanger performance 

 

Reference System Description 

Ishiyama et al. [44]  Shell-

and-tube 

exchanger 

The thermal and hydraulic impacts of tube-side fouling is analysed 

for cases where a centrifugal pump and control valve determine 

the throughput. The phenomenon of 'thermo-hydraulic 

channelling', caused by fouling coupling thermal and hydraulic 

performance in parallel units, is discussed, including its control. 

Over-design of exchangers, using guidelines such as those 

provided by TEMA, is shown to be capable of exacerbating 

fouling problems.  

Coletti and 

Macchietto [45, 46] 

Shell-

and-tube 

exchanger 

Threshold fouling models are incorporated in detailed numerical 

simulations of a heat exchanger where local temperature and flow 

behaviour are calculated. Local and overall fouling behaviour can 

be compared. This distributed approach avoids the effects of 

averaging across the exchanger on the estimation of fouling 

behaviour. 

Ishiyama et al. [48], 

Coletti et al. [49], 

Ishiyama et al. [50, 

51] 

Shell-

and-tube 

units 

The effect of deposit ageing on fouling behaviour is considered. 

Threshold fouling models are used to calculate the rate of 

deposition of ‘fresh’ material, which is then converted to a more 

conductive ‘aged’ material. Implemented in simple and detailed 

exchanger simulations, and also in models for scheduling cleaning 

by more than one method. 

 

 



31 

 

Table A4 Examples of use of threshold fouling approaches to identify fouling-resilient 

network design and operation 

 

Reference Description 

Rodriguez and Smith [52] 

The influence of operating variable such as wall temperature and 

velocity on fouling rates are incorporated in optimal preheat train 

operation, including cleaning actions.  

Ishiyama et al. [53] Crude preheat train simulation with fouling dynamics including 

temperature and flow rate dependent fouling rates, pressure drop, 

throughput variation and flow split optimisation.  Robust algorithm for 

cleaning schedule optimisation. 

Kumana et al. [54] The use of dynamic fouling models to mitigate fouling for individual 

units and networks is discussed. Case studies show fitting dynamic 

fouling models to plant data, to predict future performance. 

Ishiyama et al. [38] Control of preheat train operation, including constraints imposed by 

desalter temperature operating ranges, are included in a simulation 

which optimises cleaning schedules and hot stream bypassing. Includes 

fouling analysis based on refinery operating data. 

Coletti and Macchietto 

[55]; Coletti et al., [49] 

The dynamic distributed fouling model is applied to units in a network, 

so that the thermo-hydraulic performance of the system can be 

simulated. 

Pan et al. [56] Retrofitting networks with tube-inserts for heat transfer intensification 

and fouling mitigation.  

Polley et al. [57] Considers the use of dynamic fouling models (including crude oil and 

cooling water systems) in thermo-hydraulic simulations to identify 

industrially relevant and practically viable solutions to fouling. This is 

combined with analysis of heat recovery networks when considering 

retrofits in order to generate robust solutions. 

Ishiyama et al. [58] Demonstrates methods of extracting dynamic fouling model parameters 

from plant monitoring data and utilizing dynamic fouling simulations to 

optimize heat exchanger network performance. 

Wang and Smith [59] A novel design approach is used to solve heat-exchanger network retrofit 

problems on the basis of heat transfer enhancement. Simulated annealing 

is used to optimize the retrofit problem including fouling considerations. 

The results show that heat-transfer enhancement is a very attractive 

option for retrofitting when fouling is considered.  

Coker [60] Summarizes the importance of using dynamic fouling models in heat 

exchanger fouling mitigation. References are made on how 

EXPRESSplus and SmartPM software uses dynamic fouling models in 

fouling mitigation. 
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