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Abstract  11 
 12 
Several of the emerging technologies for electricity storage are based on some form of thermal energy storage 13 
(TES). Examples include liquid air energy storage, pumped heat energy storage and, at least in part, advanced 14 
adiabatic compressed air energy storage. Compared to other large-scale storage methods, TES benefits from 15 
relatively high energy densities, which should translate into a low cost per MWh of storage capacity and a 16 
small installation footprint. TES is also free from the geographic constraints that apply to hydro storage 17 
schemes. TES concepts for electricity storage rely on either a heat pump or refrigeration cycle during the 18 
charging phase to create a hot or a cold storage space (the thermal stores), or in some cases both. During 19 
discharge, the thermal stores are depleted by reversing the cycle such that it acts as a heat engine. The present 20 
paper is concerned with a form of TES that has both hot and cold packed-bed thermal stores, and for which 21 
the heat pump and heat engine are based on a reciprocating Joule cycle, with argon as the working fluid. A 22 
thermodynamic analysis is presented based on traditional cycle calculations coupled with a Schumann-style 23 
model of the packed beds. Particular attention is paid to the various loss-generating mechanisms and their 24 
effect on roundtrip efficiency and storage density. A parametric study is first presented that examines the 25 
sensitivity of results to assumed values of the various loss factors and demonstrates the rather complex 26 
influence of the numerous design variables. Results of an optimisation study are then given in the form of 27 
trade-off surfaces for roundtrip efficiency, energy density and power density. It is concluded that roundtrip 28 
efficiencies approaching those for pumped hydro schemes might be achievable whilst simultaneously 29 
attaining energy storage densities of around 200 MJ m–3, but this is contingent upon attaining compression 30 
and expansion efficiencies for reciprocating devices that have yet to be proven. 31 
 32 
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1. Introduction 1 

The finite nature of fossil fuel reserves together with a wide range of health and environmental concerns 2 
arising from the release of combustion products have been acting as drivers for the increasing uptake of 3 
renewable sources of energy, such as solar and wind [1]. These energy sources have the potential to reduce 4 
the overall dependence on fossil fuels and the emissions arising from their use, however, both solar 5 
(especially PV) and wind energy are associated with variable, intermittent and (particularly for wind) 6 
uncertain outputs. Beyond the economic considerations of using a significant fraction of inherently variable 7 
power generation, the intermittent nature of these energy sources has given rise to concerns regarding their 8 
reliable integration into the electric grid. These factors have led to the widely accepted recognition that 9 
energy storage forms an essential part of efficient and sustainable future energy systems, in particular ones 10 
featuring significant amounts of renewable resources. In the UK, for example, it is estimated that over the 11 
next few decades the integration of intermittent sources into the power infrastructure will require storage 12 
capacities of the order of hundreds of GWh – an order of magnitude greater than current capacity [2]. 13 
 14 
Pumped hydro storage (PHS) is currently the dominant large-scale energy storage technology, with over 15 
99% of the world’s installed storage capacity in this form. However, the high initial cost and geographical 16 
constraints of PHS mean that many new technologies are emerging, including batteries, flow batteries, 17 
compressed air storage (CAES) and, of particular interest here, thermal energy storage (TES). A 18 
comprehensive review of these technologies is given in Ref. [3]. TES systems suitable for large-scale 19 
storage (i.e., > 100 MWh)  include: cryogenic systems for which energy is stored within tanks of liquid air 20 
or liquid nitrogen; pumped heat storage where energy is stored in high temperature reservoirs, either as 21 
‘sensible heat’ or ‘latent heat’; and hybrid systems that simultaneously exploit both hot and cold thermal 22 
storage. Proposals for new types of CAES (notably ‘Advanced-Adiabatic’ CAES, or AA-CAES) also 23 
include a thermal storage component. Despite the variety of detailed arrangements, all TES systems 24 
effectively make use of some form of heat pump during the charge phase to extract thermal energy from a 25 
low temperature source and deliver it (together with the energy from the electrical work input) to a higher 26 
temperature sink. Energy flows are then reversed during discharge such that the system operates as a heat 27 
engine. Since the maximum (Carnot) efficiency of the heat engine is precisely the reciprocal of the 28 
maximum coefficient of performance of the heat pump, the round-trip efficiency is limited only by the 29 
reversibility of the system’s various processes. 30 
 31 
The present paper focuses on a form of TES system referred to here as ‘pumped thermal’ electricity storage 32 
(PTES)*, several independent patents for which seem to have emerged almost simultaneously [4]–[7]. A 33 
similar system also seems to have been proposed much earlier [8]. For the particular variant of PTES 34 
considered here, based mainly on that described in Ref. [6], the charging (heat pumping) phase is achieved 35 
by an electrically driven reverse Joule-Brayton cycle, which establishes a temperature difference between 36 
two packed-bed thermal stores. Electrical energy is thus converted to thermal energy that then resides in the 37 
stores. When electricity is required, the cycle operates in forward (heat engine) mode, returning heat from 38 
the hot to the cold store, thereby recovering electrical work.  39 
 40 
The important factors in determining the merit of any electrical energy storage technology are its round-trip 41 
efficiency (i.e., the fraction of electrical energy input retrieved upon discharge) and its capital costs per MW 42 
installed capacity and per MWh of storage. In this respect, PTES benefits from relatively high energy density, 43 
which implies a small plant footprint and low capital cost per MWh. (Comparison of a few large-scale storage 44 
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technologies suggests that PTES might achieve an energy density roughly an order of magnitude greater than 1 
that for CAES and two orders of magnitude greater than for PHS [9].) However, power density (as opposed to 2 
energy density) is also an important factor as it impinges on the size and cost of the machinery and hence on 3 
the cost per MW. Table 1 compares power densities (in terms of exergetic flow rate per unit volumetric flow 4 
rate of working fluid) for a few different technologies. The figure for PTES is relatively low, suggesting that 5 
controlling pressure losses and designing small, cheap power conversion machinery for such a system will be 6 
challenging. 7 
 8 
Previous theoretical work relating to PTES includes ‘endoreversible’ analysis of a generic system [10] and 9 
more practical studies of open [8] and closed-cycle devices [11] based on turbomachinery. For the system 10 
proposed in Ref. [6] however, compression and expansion are achieved by reciprocating devices since there 11 
is evidence that these are capable of higher polytropic efficiencies than turbomachinery. A second, crucial 12 
advantage of reciprocating devices is that, by adjusting valve timings, they can in principle be reversed 13 
such that compressors become expanders and vice versa. This means that the same devices can be used for 14 
both charge and discharge, thereby lowering the capital cost per MW and enabling a rapid switch to meet 15 
sudden increases in electricity demand. 16 
 17 
A 1.5 MW and 6 MWh system based on reciprocating devices is currently being developed in the UK funded 18 
by the Energy Technologies Institute (ETI)∗ and its proponents estimate that it will attain an overall round-trip 19 
efficiency of 75%. Achieving this will require extremely low ‘thermodynamic’ losses in the compressors and 20 
expanders, and in the other system components, notably the thermal stores. The objectives of the present 21 
paper are to estimate the feasibility of such low losses, to examine the sensitivity of system performance to 22 
the various loss parameters and to determine also the role of different operating and geometric parameters. In 23 
the following sections an account is first presented of the loss-generating mechanisms that occur throughout a 24 
PTES system. Sub-models for these components are then described and brought together into overall system 25 
calculations, which are presented in the form of parametric studies. These serve to emphasise the interplay 26 
between the different sources of loss, and how storage density and the distribution of exergetic losses depend 27 
on the various system pressures and temperatures and on other, geometric factors. Although such parametric 28 
studies provide a sound physical basis for guiding design, system optimisation remains a complex task due to 29 
the large number of operational and design parameters, the multiple and often conflicting objectives (e.g. 30 
efficiency and energy/power density) and the uncertainty associated with some aspects of the loss modelling. 31 
An evolutionary-based optimisation algorithm has thus been applied to identify promising designs. This 32 
algorithm allows trade-off surfaces (also known as a Pareto fronts) to be plotted, thereby giving insight into 33 
how the optimal design may vary when multiple objectives are considered. 34 
 35 

2. Baseline Design 36 

The outline design features of a hypothetical 2 MW PTES system with 16 MWh of storage is given in Ref. 37 
[12]. A system of this size has been adopted for the analysis presented here and it is useful to first provide 38 
estimates for the main system parameters. The power and storage capacity given below are ‘nominal’ 39 
values in the sense that they are the values that would be achieved in the absence of losses and in the 40 
(hypothetical) case where the reservoirs can be fully charged. 41 
 42 
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2.1 Operating pressures and temperatures 1 

Figure 1 shows the basic layout of a PTES system, together with T-s (temperature-entropy) diagrams for 2 
typical discharge and charge processes, which follow the standard and reverse Joule cycle respectively. The 3 
main system components are two compression-expansion devices (CE and EC) and two thermal reservoirs 4 
(one hot, HR, and one cold, CR). Following [6], the discharged state of the reservoirs is set close to 5 
ambient temperature: 310 K in the present case. With argon as the working fluid (as proposed in Ref. [5]), 6 
and with a pressure ratio of 10:1, the nominal hot and cold storage temperatures (based on isentropic 7 
compression and expansion) are then 778 K and 123 K respectively. 8 
 9 

2.2 Reservoir sizing 10 

For a reversible, adiabatic PTES system, the stored energy that can be converted back to useful work (i.e., 11 
the ‘available’ energy) is simply the difference between the stored internal energies of the two reservoirs, 12 

   E = Ms
hcs

h(T2 −T3)− Ms
ccs

c (T1 −T4 ) = Ms
hcs

h(T2 −T3 −T1 +T4 ) , (1) 13 

where Ms is the mass of storage material, cs is its average specific heat capacity over the relevant temperature 14 
range, and the superscripts h and c refer to the hot and cold reservoirs respectively. The right hand equality in 15 
Eq. (1) arises from the requirement that the two reservoirs should charge in the same period and must 16 
therefore have the same heat capacity. As discussed in Ref. [13], Fe3O4 provides a suitable storage material 17 
due to its high heat capacity per unit volume and its low fractional variation of heat capacity over the 18 
temperature ranges of interest. Data for Fe3O4 are given in Table 2, together with the required storage masses 19 
computed from Eq. (1) for 16 MWh of storage. The reservoir volumes are also given in the table, calculated 20 
on the basis that the storage material is in the form of a packed bed of spherical pebbles with an average void 21 
fraction of 0.35. Note that these volumes would correspond to ‘square’ (i.e., L/D=1) cylinders with internal 22 
diameters of 4.5 m and 5.3 m for the hot and cold stores respectively. 23 
 24 

2.3 Compression and expansion device sizing 25 

The power output for a reversible, adiabatic PTES system is given by, 26 

    
Wx = mcp{(T2 −T1)− (T3 −T4 )} . (2) 27 

Using the temperatures listed above and data for argon (cp = 520 J kg–1K–1), the mass flow rate required for 28 
a 2 MW device comes to 13.7 kg s–1. The total swept volumes for the compression-expansion cylinders are 29 
computed from, 30 

    m = ρref Vs ηv ω / 2π , (3) 31 

where the reference density ρref is at inlet for compression but at exit for expansion – i.e., ρ1 for CE and ρ4 32 
for EC. The volumetric efficiency ηv is a function of the pressure ratio, β, and clearance volume ratio of the 33 
cylinders (Vmin/Vmax). With the latter set at 0.05, the simplified model presented in Appendix A for an ideal 34 
reciprocating device gives a volumetric efficiency of 0.84 at β =10. The resulting swept volumes are shown 35 
in Table 3, together with various cylinder dimensions computed on the basis of 6-cylinder devices running 36 
at 1200 RPM, with each cylinder having an aspect ratio (stroke/diameter) of 0.25. This low aspect ratio is 37 
proposed in the designs described in Ref. [12] on the grounds that the resulting low piston velocity will 38 
give low valve pressure losses and low inertial loading. 39 
 40 
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2.4 Other design considerations 1 

In addition to the main components described above, the PTES system also requires heat exchangers (HX1 2 
and HX3 in Fig. 1), and a buffer vessel (BV in the figure). The heat exchangers are needed to counter the 3 
effects of irreversibility throughout the system and their size can only be determined, therefore, after 4 
consideration of the cycle efficiency. The buffer vessel is required because the total mass of gas within the 5 
two reservoirs changes during charge. The total change between fully charged and fully discharged for the 6 
nominal design is 142 kg, as indicated from the figures in Table 2. This requires a buffer volume of 8.7 m3 7 
if situated at Point 3 in the cycle, as in Fig. 1. 8 
 9 

3. System and Component Modelling 10 

In order to determine the influence of the various system parameters on round trip efficiency, power 11 
density and storage density, a simple system model has been developed based on quasi-steady analysis of 12 
each of the system components. Heat exchangers, compressors and expanders are treated as steady flow 13 
devices (in the time-averaged sense), but the equations governing heat transfer within the reservoirs are 14 
integrated in time in order to track the hot and cold thermal fronts. This is necessary because the stored 15 
available energy and the exergetic losses in the reservoirs are dependent upon the time-history of their 16 
operation, as described in Refs. [13,14]. For the other components, estimates are first made for various loss 17 
parameters, based on the nominal design described above. Several of these parameters are, however, 18 
subject to considerable uncertainty, either because they depend on detailed design (e.g., pressure losses 19 
within pipework) or because the underlying theory has not yet been sufficiently developed (e.g., for 20 
compression and expansion efficiencies). The approach adopted is therefore to undertake baseline 21 
calculations using best estimates for minimum values of these parameters and then to examine the impact 22 
of their variation on the overall performance. 23 
 24 

3.1 Compression and expansion losses 25 

The simplest approach for modelling ‘steady flow’ compressors and expanders is by either an isentropic or 26 
polytropic efficiency. For turbomachines, published data suggest polytropic efficiencies (i.e., infinitesimal 27 
stage efficiencies) of about 90% are achievable. For reciprocating devices, data is scant but compression 28 
efficiencies in the range 75 – 85% seem typical [15]. Although this is lower than the values cited for 29 
turbomachinery, much of the loss in reciprocating devices is associated with valve pressure drop and there 30 
may be scope for considerable improvement. On the other hand, the relatively long residence time of the 31 
gas within the device (compared to a turbo-compressor) means that there is often significant heat transfer to 32 
the surroundings and hence isentropic efficiency is ill-defined. As shown in Ref. [16], the effects of heat 33 
leakage and irreversibility can, however, be distinguished by combining a heat leakage factor (defined as 34 
the ratio between the instantaneous heat and work transfer, α=dq/dwx) with a polytropic efficiency (defined 35 
as η = –vdp/dwx). This leads to polytropic relations of the form, 36 

 
 
τc = βc

φc with φc =
γ −1
γ

1−αc

ηc

⎛
⎝⎜

⎞
⎠⎟

, (4) 37 

where τc and βc are the compressor temperature and pressure ratios respectively. Compressor work input is 38 
then found by straightforward application of the steady flow energy equation, giving, 39 

 
  
wc =

cpT1(τc −1)
1−αc

, (5) 40 
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where T1 here is the compressor inlet temperature. Similar expressions to (4) and (5) apply to expansion 1 
processes. Although this approach allows the impact of irreversibility and heat leakage to be studied 2 
separately, the fundamental difficulty lies in estimating values for α and η. In theory, with sufficient 3 
insulation, α could be reduced to zero, but η is difficult to estimate. The chief losses are likely to be: (i) 4 
pressure drop through the valves; (ii) cyclic heat transfer to and from the cylinder walls across finite 5 
temperature differences and (iii) mixing of fresh intake gas with the residual gas within the clearance 6 
volume. It is convenient to treat pressure losses separately as throttling losses external to the compression 7 
process, and so η is used here solely to represent heat transfer and mixing irreversibility. Rudimentary 8 
estimates of the minimum values of loss factors that might be achieved are given in Appendix A. 9 
 10 

3.2 Pressure losses 11 

Pressure losses in valves, pipework, heat exchangers and the reservoirs all contribute to the expander 12 
seeing a lower pressure ratio than the compressor. These losses are represented here by fractional pressure 13 
loss factors, fp = Δp/p, since these are most closely tied to exergetic losses. Thus a given absolute pressure 14 
loss Δp has a greater impact on performance if it occurs in the low-pressure part of the cycle. Estimates of 15 
pressure losses through the compressor and expander valves are given in Appendix A, but losses within 16 
manifolds, ducts and heat exchangers etc. cannot easily be estimated without knowledge of the detailed 17 
geometry, and so a range of fp values has been considered. It is worth noting, however, that if pressure 18 
losses are assumed to be of the order of ½ρv2, and if these are to be kept within 1% of the local pressure 19 
then this would imply ducts of the order of 0.5 m diameter at Point 1 (Fig. 1) for the nominal design. 20 
Pressure losses in the reservoirs are treated separately and calculated explicitly, as discussed below. 21 
 22 

3.3 Thermal reservoir losses 23 

The main sources of loss within the reservoirs are frictional pressure loss and heat transfer (thermal) 24 
irreversibility. Heat leakage is not considered here since, with sufficient insulation, it can be reduced to any 25 
desired level. However, estimates suggest that a 1% heat leakage to or from each reservoir would typically 26 
reduce round-trip efficiency by about 2% since leakage reduces both the stored energy and the Carnot 27 
efficiency at which that energy can be converted to work [9]. 28 
 29 
Thermal losses occur because heat exchange necessarily takes place across a finite gas-solid temperature 30 
difference. The model used to quantify these losses is based on the well-established Schumann model of 31 
heat transfer in packed beds [17], which assumes that the flow is one-dimensional and that heat transfer is 32 
limited by surface effects (i.e., the internal thermal resistance of particles is negligible). The result is that 33 
the energy equations for the gas and solid can be expressed approximately as, 34 

 
  

∂Tg

∂z
=

Ts −Tg


, (6) 35 

and 
 
∂Ts

∂t
=

Tg −Ts

τ
, (7) 36 

where the length and time scales are defined by, 37 

 
   
 = 1

St (1− ε)Sv

, (8) 38 

and 
  
τ = ρscs

St cpG Sv

. (9) 39 
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In these expressions, G is the mass flow rate of gas per unit (open-tube) area, St is the Stanton number 1 
(based on the open-tube velocity) and Sv is the particle surface-to-volume ratio, which is 6/dp for spherical 2 
particles. In practice, a number of refinements to this model are included to account for unsteady 3 
accumulation terms for the gas, temperature dependence of the solid heat capacity, and variations in 4 
density, viscosity and other gas properties. Most of these have only a minor impact, but the variation of cs 5 
can significantly affect the thermal losses. Full details of the numerical method are given in Refs. [13] and 6 
[14], and typical temperature profiles for a cold reservoir are shown in Fig. 2. The instantaneous entropy 7 
generation rate (and hence the thermal loss) is determined from the temperature profiles as, 8 

 
   
Sirr =

1
Ts

− 1
Tg

⎛

⎝⎜
⎞

⎠⎟
d Q∫ = (1− ε)A Sv h

(Tg −Ts )
2

TsTg

dz
0

L

∫ , (10) 9 

where h is the local heat transfer coefficient and A is the (open-tube) area of the packed bed. Previous work 10 
has established that the fractional exergetic loss decreases with the dimensionless length of the reservoir 11 
(   Λ = L /  ) and depends in a rather complicated manner on the inlet and exit temperatures. For periodic, 12 
cyclic operation (as opposed to one-off charge and discharge), thermal losses are also a function of the 13 
charge period expressed in the dimensionless form Π=tchg/tnom , where tnom=Λτ is the nominal charge time. 14 
This parameter is referred to here as the ‘utilisation factor’ since it is approximately equal to the stored 15 
energy as a fraction of its full-charge value. 16 
Pressure losses in packed beds are relatively straightforward and computed from, 17 

 
  

dp
dz

=
Sv (1− ε)C f G2

2ε3ρg

, (11) 18 

where Cf is the friction coefficient obtained from packed-bed correlations such as those given in Ref. [18]. 19 
 20 

3.4 Heat exchanger and other losses 21 

Geometric and other design details of the heat exchangers have not been included at this stage. Instead 22 
datum temperatures at Points 1 and 3 in the cycle are specified for each calculation and the heat exchange 23 
required to maintain these temperatures is then computed. As noted above, heat rejection must occur in 24 
order to counter irreversibility throughout the cycle and, because it occurs at above the environment 25 
temperature, there is a further exergetic loss associated with the heat exchangers themselves. In addition, 26 
there is a small throttling loss associated with returning the buffer volume gas to the low-pressure part of 27 
the cycle. Estimates indicate that this is very small and it has been neglected in these calculations. 28 
 29 

4. Parametric Studies 30 

Before presenting an optimisation study, it is useful to examine how the various system parameters impinge 31 
upon overall performance. Loss factors, operating conditions and geometric parameters have all been 32 
varied over the ranges shown in Table 4. As each quantity is varied, all others listed in the table are held at 33 
their nominal values, except when varying pressure ratio, as discussed further below. The effect on 34 
performance is considered in terms of: 35 

Round trip efficiency: 
  
χ = net work output

net work input
= Wdis

net

Wchg
net  (12) 36 

Energy density: 
  
ρE = net work output

reservoir volume
= Wdis

net

VCR +VHR

 (13) 37 
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Power density: 
  
ρP =

average power output
hot cylinder volume

= Wdis
net / tdis

Vs
CE  (14) 1 

The net work terms in the above are obtained by integrating the power input or output over the duration of 2 
the charge-discharge cycle. (Some variation of power occurs because the hot and cold fronts reach the exits 3 
of the reservoirs.) Note that the round-trip efficiency considered here reflects only the thermodynamic 4 
component of loss since electrical and mechanical losses will also occur. For a 2 MW machine using an 5 
induction motor-generator, electrical efficiencies of 97% (in each direction) are commonplace, but 6 
mechanical losses for a custom-built reciprocating compressor-expander are less easy to estimate. Howes 7 
[12] suggests that a mechanical efficiency of 92% (again in each direction) might be possible, which 8 
together with electrical losses would give an overall round-trip efficiency of (ηmechηelec)2χ ≈ 0.8χ. 9 

Due to space constraints, power density is not discussed in this section, but it is taken into account during 10 
the optimisation process presented in Section 5. 11 
 12 

4.1 Sensitivity to the assumed values of loss parameters 13 

Figure 2 shows the thermodynamic round-trip efficiency, χ, as a function of each of the loss factors. The 14 
trends are in line with the simplified analysis presented in Ref. [9], except that a slightly greater sensitivity 15 
to heat leakage is predicted here. (Detailed scrutiny of the loss distribution suggests that this is associated 16 
with the ‘exit loss’, which was not accounted for in Ref. [9] and which occurs when the hot and cold fronts 17 
reach the reservoir exit, as indicated in Fig. 2.) The sensitivity to α and η are both very significant, showing 18 
the importance of minimising heat leakage and emphasising the need for a better understanding of thermal 19 
irreversibility in reciprocating devices. In what follows it is assumed that η is independent of operating 20 
conditions, but arguably it should fall with pressure ratio, as described in Appendix A. 21 
 22 

4.2 Variation of performance with operating conditions 23 

Figure 4 shows the effect of various cycle operating conditions on efficiency and power density. In varying 24 
these parameters, the nominal power and storage capacity have been held constant by adjusting the size of 25 
reservoirs and the mass flow rate. Pressure losses in the reservoirs are then adjusted in accord with Eq. 26 
(11), but the nominal fp values have been retained for valve, pipework and manifold losses.  27 
 28 
At fixed pressure ratio, the efficiency and energy density are both improved by either increasing T1 or 29 
decreasing T3. Increasing the pressure ratio at fixed T1 and T3 has a similar effect, as shown in Fig. 4(a). These 30 
trends are consistent with the findings reported in Ref. [9] where it was argued that, if compression and 31 
expansion losses dominate, then the efficiency is governed mainly by the ratio T2/T3 since this determines the 32 
ratio between compression and expansion work. Increasing this ratio (as all of the above variations in T1, T3 33 
and β will achieve) thus makes the cycle less susceptible to compression and expansion losses. However, 34 
improvements along these lines will almost certainly result in increased costs and technical challenges since 35 
they imply higher top temperatures or pressures, or lower bottom temperatures. A more detailed examination 36 
of the distribution of losses also reveals that the benefits of higher work ratio are partly offset by increased 37 
thermal losses in the reservoirs. If the maximum and minimum cycle temperatures (T2 and T4) are fixed, 38 
instead of fixing T1 and T3, then variation of the pressure ratio gives trends similar to those observed for gas 39 
turbine cycles for which there are optimum pressure ratios, as shown in Fig. 4(b). The optimum pressure 40 
ratios for energy density and efficiency are, in this case, 7.6 and 9.1 respectively, but the corresponding values 41 
of T3 (3.5 and 24.5 °C) lie below ambient temperature. This precludes the possibility of rejecting heat in HX3, 42 
making it difficult to manage the thermal fronts as they emerge from the reservoirs. 43 
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 1 
Figure 4(b) also shows the influence of ‘utilisation factor’ Π and the discharge pressure ratio. Increasing Π 2 
(i.e., longer charge and discharge period) obviously increases the energy stored per cycle, but this is at the 3 
expense of lower efficiency. This is due to steeper temperature gradients within the reservoirs, which imply 4 
that gas-solid heat exchange occurs over a smaller interfacial area and hence with a larger temperature 5 
difference. Varying βdis effectively controls the balance of heat rejection between HX1 and HX3, as can be 6 
seen by examining the T-s diagram shown in Fig. 1. A sharp optimum in this pressure ratio is observed in 7 
Fig. 4(b) and occurs when heat rejection is roughly evenly divided between the two heat exchangers. 8 
  9 

4.3 Variation of performance with geometric factors 10 

The geometric parameters varied here are the hot and cold reservoir aspect ratios (L/D) and particle 11 
diameters, dp. The resulting maxima in efficiency shown in Fig. 5 reflect the trade-off, inherent in most 12 
heat exchange processes, between heat transfer losses and pressure losses. For example, small particles 13 
give large heat exchange area but increase the frictional effects. Likewise, long reservoirs give lower 14 
thermal losses [14], but the associated reduction in cross-sectional area implies higher fluid velocities and 15 
hence higher pressure drop. Due to the lower average gas density, pressure losses are more significant in 16 
the cold reservoir and hence the optimum aspect ratio is lower and optimum particle size larger than for the 17 
hot reservoir. However, it should be recalled that these results have been obtained with all other parameters 18 
fixed at their nominal values, and the picture changes when overall system optimisation is considered. 19 
 20 

5. Preliminary Optimisation Studies 21 

The design space for a PTES system is multi-dimensional and is possibly multi-modal and disjoint due to the 22 
large number of design variables, objectives and constraints. This makes optimisation by systematic 23 
parameter variation a complex task. A stochastic optimisation algorithm has therefore been applied to identify 24 
promising designs. The routine chosen for this purpose is a ‘non-dominated sorting genetic algorithm’ 25 
(NSGA-II) as described in Ref. [19]. Like other stochastic methods, this is well suited to the current problem 26 
as it is able to traverse the entire design space with limited risk of becoming trapped in local optima.  27 
 28 
Full optimisation clearly requires consideration of economic factors, material limits, and other practical 29 
issues that lie outside the scope of the present paper. Nonetheless, a preliminary indication of useful design 30 
trends can be obtained on the basis of thermodynamics alone by simultaneously maximising the round trip 31 
efficiency and the energy and power densities. (Strictly, the optimiser minimises the negative of each of 32 
these quantities.) Since increasing cost is associated with higher pressures and extremes of temperature, 33 
limits are set for β, T2 and T4. Likewise, a lower limit is set on both T1 and T3 of 10 °C above the ambient 34 
temperature in order that HX1 and HX3 can both reject heat to the environment. This is necessary in order 35 
to manage the thermal fronts as they emerge from the reservoirs. Ranges for all the design variables under 36 
consideration are given in Table 5. Two design scenarios are considered: an optimistic scenario, for which 37 
η=0.99, and a standard scenario with η=0.90 (i.e., achievable in principle with turbomachinery). Nominal 38 
values have been retained for the other loss factors. 39 
 40 

5.1 Pareto fronts and parallax plots 41 

The best designs emerging from the optimisation are shown in Fig. 6 in the form of ‘Pareto fronts’. These 42 
are the leading edges of the design space in that all other solutions lie either below or to the left of these 43 



 10 

fronts. The Pareto fronts thus show the trade-off between the different objective functions and allow the 1 
designer to see the entire range of potential solutions.  2 
 3 
As expected, there is a trade-off between efficiency and energy density (Fig. 6(a)), whereas Fig. 6(b) 4 
indicates that efficient designs are consistent with high power density. It is notable that roundtrip efficiency 5 
changes by only a small amount over a wide range of energy density for both the optimistic and standard 6 
scenarios. Thus, for example, a thermodynamic efficiency of 85% and energy density of 200 MJ/m3 could 7 
be achieved simultaneously in the optimistic case. 8 
 9 

5.2 Parallax plots  10 

Figure 7 is a so-called parallax plot, which compares values of the different design variables of the optimal 11 
solutions. To avoid overcrowding, only four designs have been plotted (Points 1 through 4 on Fig. 6), but 12 
by examining a parallax plot for the full Pareto front it is possible to draw out information about the best 13 
designs. For example, if all solutions converge on a narrow range of a particular parameter it suggests that 14 
the objective functions are sensitive to that parameter. (Note that the parameter ranges shown in the figure 15 
are taken from the full Pareto front.) From Fig. 7 it is apparent that:  16 

(i) The main factor controlling the trade-off between efficiency and energy density is the utilisation, Π.  17 

(ii) High polytropic efficiency, (η=0.99), seems to correlate with low pressure ratio (typically around 7.5:1) 18 
and high T1. A further parametric study, centred on the optimal designs, indicated that the optimiser had not 19 
quite converged: increasing the pressure ratio to 10:1 with a commensurate reduction in T1 gave a very 20 
slight (0.1%) improvement in efficiency. Nonetheless, the results shown in Fig. 7 suggest that almost the 21 
same performance can be achieved at lower cost – lower pressure ratio and higher T1 imply cheaper 22 
components, notably CE, EC, HR and HX1. 23 

(iii) Optimum discharge pressure ratios lie slightly below the charge pressure ratio. 24 

(iii) Some parameters, notably the top temperature T2 and hot reservoir discharged temperature, T3 , are 25 
‘saturating’ at their limiting values, particularly for low η cases. Although this suggests that the bounds on 26 
these parameters should be relaxed, this should only be done whilst also considering economic and other 27 
practical factors.  28 
 29 
Some of these observations could have been deduced from the parametric studies or from simple thermo-30 
dynamic considerations, but others (notably Point (ii)) are not so obvious and highlight the benefits of 31 
optimisation techniques. 32 
 33 

5.3 Comparison of loss distributions 34 

The optimal designs in the optimistic scenario have considerably higher efficiency than the nominal design 35 
(even when account is taken of the higher assumed value for η) and it is interesting to see how this has been 36 
achieved. Figure 8 compares the breakdown of losses for the nominal design (but with η=0.99) and for the 37 
design corresponding to Point 3 in Fig. 6. Most of the improvement evidently occurs by optimisation of the 38 
thermal store geometries and particle sizes. The associated reduction in heat exchanger loss is really due to 39 
the avoidance of exit losses that occur when the thermal fronts emerge from the stores (these losses are passed 40 
on to the heat exchangers, rather than being associated with the stores themselves). As expected, optimisation 41 
of the stores for high efficiency (i.e., Point 3) results in roughly a half-and-half split between thermal and 42 
pressure losses. The resulting geometry is perhaps a little unrealistic in that the short, fat reservoirs would be 43 
prone to uneven flow distributions through the packing, would require a larger footprint and would lead to 44 



 11 

manifold and pipework complications. Such difficulties need to be explored further, but it is possible that they 1 
can be mitigated by the use of segmented stores, as proposed by Crandall and Thatcher [20].  2 
 3 
It is also apparent from Fig. 8 that a substantial part of the overall loss is due to heat leakage to and from 4 
the compressors and expanders. This merely reflects the assumed heat leakage factors of 2% for both CE 5 
and EC, and it is possible that lower heat leakage could be achieved in practice. Based on estimates from 6 
early prototypes and approximate (not fully non-dimensionalised) scaling, Howes [12] argues that heat 7 
leakage for a 2 MW machine should be negligible, which according to Fig. 8 would reduce thermodynamic 8 
losses by another 3.5%.  9 
 10 

6. Conclusions 11 

A study of thermodynamic aspects of pumped thermal electricity storage (PTES) has been presented, based 12 
on steady flow analysis of the compression and expansion devices coupled with a Schumann-style model of 13 
the hot and cold thermal stores. Parametric studies reveal that there are optimum values for some design 14 
variables, whilst others either lead to a trade-off between efficiency and energy density or can be varied so 15 
as to improve both these quantities together. Sensitivity of performance to the various loss factors has also 16 
been considered. Since the charge-discharge cycle for a PTES system involves two compressions and two 17 
expansions, the roundtrip efficiency is (not unexpectedly) sensitive to the loss factors for these processes. 18 
In this respect, a better understanding is required of the various sources of irreversibility within 19 
reciprocating devices. 20 
 21 
Multi-objective optimisation has been applied to generate trade-off surfaces known as Pareto fronts. These 22 
show that curves of roundtrip efficiency vs. energy density are relatively flat over a considerable range, so 23 
that high energy density can be attained with only a modest efficiency penalty. In the optimised designs, 24 
losses associated with pressure drop and irreversible heat transfer in the stores are only a few percent, so 25 
the success of PTES is likely to hinge upon compressor and expander performance. Predicted efficiencies 26 
and storage densities obviously depend on the assumed loss factors; with an ‘optimistic’ set of parameters 27 
that might be achievable with reciprocating devices, the thermodynamic round-trip efficiency could exceed 28 
85% whilst the system simultaneously achieves an energy density almost an order of magnitude greater 29 
than that for CAES. With reasonable estimates for mechanical and electrical losses, this would give an 30 
overall roundtrip efficiency (i.e., electricity out over electricity in) of just under 70%. On the other hand, if 31 
the compressors and expanders could only achieve efficiencies typical of turbomachinery then the overall 32 
roundtrip efficiency is unlikely to exceed 50%.  33 
 34 
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Nomenclature 1 

A area, m2  heat leakage factor, dq/dw 
cs solid specific heat capacity, J kg–1K–1  gas thermal diffusivity, m2s–1 

cp gas specific heat capacity, J kg–1K–1  pressure ratio 
Cf friction coefficient in packed bed  ratio of specific heats 
D reservoir diameter, m  roundtrip efficiency 
dp particle diameter, m  void fraction or clearance ratio 
E stored energy, J  polytropic, volumetric efficiency 
fp fractional pressure loss  dimensionless reservoir length 
G mass flow per unit area, kg s–1m–2  reservoir utilisation factor 
h local heat transfer coefficient  density, kg m–3 

 length scale, m  energy density, J m–3 
L reservoir length, m  power per unit flowrate, J m–3 
Ms mass of storage material, kg  valve-to-piston open area ratio 
  m  gas mass flow rate, kg s–1  time scale, s, or temperature ratio 
p pressure, Pa   
q heat transfer per unit mass Subscripts and superscripts 
rv volume (compression) ratio   

   
Sirr  entropy generation rate, J K–1s–1 c, h cold, hot 

St Stanton number chg charge 
Sv surface area to volume ratio, m–1 dis discharge 
t time, s g gas 
T temperature, K s solid 
Vs swept volume, m3 CE compressor-expander 
w specific work, J kg–1 EC expander-compressor 
  W  power input/output, W 1 – 4 points on cycle, as shown in Fig. 1 
 2 
Other symbols are defined in the text where they are used. 3 

Appendix A: Estimation of Loss Parameters 4 

The intention of this section is to estimate minimum values of the various loss factors that might be 5 
achieved with custom-built reciprocating devices. These estimates are rather approximate and further work 6 
is clearly required, some of which is currently underway (see, for example, Ref. [21]). 7 
 8 
A1 Volumetric efficiency 9 

Figure 9 shows a p-V diagram for an ideal reciprocating device. As shown, the device is operating as a 10 
compressor; the direction of the processes would be reversed for an expander. In the absence of heat loss 11 
and irreversibility, Processes A-B and C-D are isentropic. The volumetric compression ratio is thus, 12 

 
  
rv =

VA

VB

= VD

VC

= β1/γ . (A1) 13 

If inlet valve pressure losses are small (see Section A2 below) then the mass of gas entering the cylinder 14 
during the induction stroke (D-A) is, 15 

   m = ρi (VA −VD ) = ρiVA(1− εrv ) , (A2) 16 



 13 

where ρi is the inlet density and ε is the clearance volume ratio, (VC/VA). The volumetric efficiency is thus, 1 

 
  
ηv =

m
ρiVs

= 1− εrv

1− ε
, (A3) 2 

where Vs=(1–ε)VA is the swept volume. The same expression may be applied to expanders provided the 3 
density in Eq. (A3) is replaced with the exit value. Eq. (A3) effectively gives the pressure ratio / mass flow 4 
characteristic of the device. In real devices, Eq. (A3) would need to be modified to account for valve 5 
pressure losses, mixing of the induced and residual gas, and non-isentropic Processes A-B and C-D. 6 
 7 
A2 Valve pressure losses 8 

Valve losses will be minimised if the valves open and close rapidly and are actuated when there is zero 9 
pressure difference across them. Pressure traces for the prototype devices reported in Ref. [12] bear a 10 
remarkable similarity to the p-V diagram of Fig. 9 and suggest that this ideal might well be achievable in 11 
practice. Under these circumstances, the instantaneous total pressure drop may be estimated as, 12 

 
  
Δp = 1

2 ρvp
2 1− σ

σ
⎛
⎝⎜

⎞
⎠⎟

2

, (A4) 13 

where vp is the instantaneous piston speed and σ is the ratio of the valve free-flow area (including the 14 
effects of venae contractae) to piston area. Strictly, Δp should be flow-averaged by integrating over the 15 
valve open period but, in the spirit of engineering estimates, it is computed here on the basis of the piston 16 
maximum velocity. Normalising by the local pressure then gives, 17 

 
  
f p =

Δp
p

= ω2s2

8RT
1− σ
σ

⎛
⎝⎜

⎞
⎠⎟

2

. (A5) 18 

The fractional pressure losses for the valves computed from Eq. (A5) for the nominal design are 19 
approximately 0.5% at exit from CE and inlet to EC (States 2 and 3 respectively in Fig. 1), 1% at inlet to 20 
CE (State 1) and 1.4% at exit from EC (State 4). 21 
 22 
A3 Heat transfer losses in the compressors and expanders 23 

In theory, the time-mean heat leakage to or from the compressors and expanders can be reduced to very 24 
small levels with sufficient insulation and so heat leakage factors have been arbitrarily set to 2% for 25 
baseline calculations. However, even if the processes are globally adiabatic, an efficiency loss will still be 26 
incurred due to time-varying irreversible heat transfer to and from the cylinder walls. To estimate the 27 
magnitude of this loss, the irreversibility is divided into three parts as follows (estimates are made only for 28 
compression and it is assumed that similar loss factor apply for expanders). 29 
 30 
(i) Heat transfer during induction and delivery. The gas entering the compressor is preheated by the cylinder 31 
walls prior to compression. Likewise, it is also cooled during the delivery stroke. The net effect is that heat is 32 
transferred from the high exit temperature down to the low inlet temperature, as illustrated schematically in 33 
Fig. 10. For simplicity it is assumed that the complete process (1 to 2 in the figure) is adiabatic and that the 34 
compression (1′ to 2′) is isentropic. Writing the wall temperature as Tw = T1 + θ (T2 – T1), where 0 < θ  < 1, 35 
the heat transferred to the gas during induction can be expressed as, 36 

   Q = hS(Tw −T1)τ = hSθ(T2 −T1)τ , (A6) 37 

where h is some average heat transfer coefficient, S is the average internal surface area and τ is the duration 38 
of the induction stroke. This heat transfer increases the enthalpy of the induced mass according to, 39 



 14 

   Q = mcp (T1
′ −T1) = ρ1vp Acp (T1

′ −T1)τ , (A7) 1 

where vp is the average piston speed during induction and A is the piston face area. Equating these two 2 
expressions for Q gives, 3 

 
  
T1
′ −T1 = Stθ S

A
(T2 −T1) = T2

′ −T2 , (A8) 4 

where St is the Stanton number (based on the average piston speed) and the right hand equality stems from 5 
specifying that the overall process is adiabatic. By inspection of the T-s diagram of Fig. 10, and making use 6 
of Eq. (A8), the isentropic efficiency is simply, 7 

 
  
η = T2

′ / T1
′ −1

T2 / T1 −1
= 1− f (β(γ−1)/γ −1) where f = St θ S

A
. (A9) 8 

Note that f represents the heat transferred during induction as a fraction of the work transfer and this fraction 9 
is independent of the pressure ratio, as expected. The efficiency loss is larger at high pressure ratio, however, 10 
since the heat is then transferred across a higher temperature difference. The factor f is difficult to determine 11 
with any confidence, but a crude estimate may be obtained by setting θ = ½ and approximating the Stanton 12 
number from turbulent pipe flow correlations. For the nominal design conditions given in Table 2, this gives 13 
f=0.0025, which translates to an efficiency loss of approximately 0.4% at a pressure ratio of 10:1.  14 
 15 
(ii) Heat transfer during the compression and expansion strokes. Heat transfer also occurs during processes 16 
A-B and C-D of Fig. 9, but the use of a simple heat transfer coefficient is no longer appropriate in this case 17 
because of the interaction between heat and work transfers, and the inherently unsteady-state process that 18 
takes place during these processes. An excellent explanation of the underlying physics is given by Lawton 19 
[22], and a number of studies have attempted to quantify the effect in the context of gas springs. Early work 20 
by Lee [23] lead to the development of a simple analytical expression for the so-called hysteresis loss in 21 
gas springs. This has proved to fit experimental data to a reasonable extent, as reported by Kornhauser and 22 
Smith [24]. In recent work by Mathie et al. [21] an extended semi-analytical model was proposed for the 23 
full conjugate (solid-gas) thermal problem in gas-springs. The finite conductivity of the walls was shown to 24 
play a role, exacerbating losses in some cases. However, given the uncertainty associated with other loss 25 
parameters presented in this section, it suffices here to consider Lee’s simpler approach. Lee’s result is 26 
shown in Fig. 11, expressed as a decrement in polytropic efficiency by attributing half the hysteresis loss to 27 
the compression stroke, A-B. The horizontal axis in this figure is the Peclet number,   Pe = ωDh

2 / 2α t , where 28 
Dh is the cylinder mean hydraulic diameter and αt is the mean thermal diffusivity of the gas. Based on the 29 
dimensions and conditions listed in Tables 2 and 3, the Peclet number for the hot cylinder is 34 000, 30 
suggesting an efficiency loss of just 0.3 %. However, the thermal dissipation loss in a real compressor (as 31 
opposed to a gas spring) may be considerably larger because the eddying and turbulent motion generated 32 
by the inlet valve is likely to enhance the effective diffusivity. In this context, Lawton [22] found that good 33 
agreement between theory and experiment for heat transfer rates in a motored piston engine could be 34 
obtained by multiplying the gas conductivity by 25. This would have the effect of reducing the Peclet 35 
number to 1360 and thereby increasing the loss to 1.6%. It should be cautioned that other models (notably 36 
that presented in Ref. [21]) predict higher losses than this. 37 
 38 
(iii) Mixing loss. Due to irreversibility and heat transfer during Process A→D, the residual gas may end up 39 
at a different temperature to that entering the cylinder, thereby giving rise to an additional mixing loss. 40 
With the small losses suggested by (i) and (ii) above, this mixing loss can be shown to be extremely small 41 
(less than one tenth of a percent), but it may be significant if there were heat losses to the surroundings.  42 

43 
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FIGURE CAPTIONS 1 

Figure 1: Layout of PTES system and corresponding T-s diagram. Key: BV buffer vessel; HR/CR hot/cold reservoir; 2 
CE/EC reversible compressor-expanders; HX1/HX3 heat exchangers. The T-s diagram shows the discharge cycle 3 
operating at a lower pressure ratio, with heat rejection from both HX1 and HX3. 4 

Figure 2: Typical temperature profiles in a cold reservoir for cyclic operation with a utilisation factor of Π=0.75. The 5 
profiles are shown at various stages through the cycle. Differences between the solid and chain lines highlight the 6 
impact of the temperature-dependent solid heat capacity. 7 

Figure 3: Sensitivity of thermodynamic round-trip efficiency to compressor and expander loss parameters.  8 

Figure 4: Variation of roundtrip efficiency and energy density with operational parameters. Left: variation with T1, T3 9 
and charging pressure ratio, βchg (T1 and T3 fixed). Right: variation with βchg (T2 and T4 fixed), discharge pressure 10 
ratio, βdis, and utilisation factor Π. For each curve the open and solid square symbols indicate the minimum and 11 
maximum values of each parameter in accord with Table 4. 12 

Figure 5: Variation of thermodynamic roundtrip efficiency with geometric parameters. Minimum, nominal and 13 
maximum values of the parameters are given in Table 4. 14 

Figure 6: Pareto fronts (trade-off surfaces) emerging from the optimisation.  15 

Figure 7: ‘Parallax’ plots showing the combinations of design parameters for the ‘best’ designs, as defined by data 16 
Points 1 to 4 in Fig. 6. 17 

Figure 8: Comparison of loss distributions for the nominal design (but with η=0.99) and an optimised design (Point 3 18 
in Fig. 6). Thermal losses refer to heat transfer irreversibility; heat leakage losses are due to heat exchange with the 19 
environment above or below ambient temperature. 20 

Figure 9: p-V diagram for an ideal reciprocating device. As shown the device is operating as a compressor; the cycle 21 
would be reversed for an expander.  22 

Figure 10: simplified model of the irreversibility associated with preheating during induction and cooling during 23 
delivery, shown for a compression process. The overall Process 1-2 is assumed adiabatic. 24 

Figure 11: Estimate of the hysteresis loss during the compression and expansion processes of Fig. 9, based on the 25 
model of Lee [23]. 26 

 27 

TABLE CAPTIONS 28 

Table 1: Comparison of maximum exergetic flows per unit mass and per unit volume of working fluid for various 29 
technologies. (The dead state is taken as 20 °C and 1 bar.) 30 

Table 2: Hot and cold reservoir details for a nominal 16 MWh PTES system. The storage material is Fe3O4 (density 31 
5.175 tonne/m3) in the form of a packed bed with an assumed void fraction of 0.35  32 

Table 3: Details of the compression-expansion devices for a nominal power of 2 MW. A clearance ratio (Vmin/Vmax) of 33 
0.05 and a cylinder aspect ratio (stroke/diameter) of 0.25 and have been assumed for both devices.  34 

Table 4: Nominal, minimum and maximum values of quantities varied for the parametric study. Note that the loss 35 
factors are for each compressor/expander, CE and EC, with half the pressure loss assigned to each side of the device. 36 

Table 5: Lower and upper bounds for parameters used in optimisation. Ambient temperature is T0=298 K. 37 

 38 
39 
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TABLES 1 

Table 1: Comparison of maximum exergetic flows per unit mass and per unit volume of working fluid for various 2 
technologies. (The dead state is taken as 20 °C and 1 bar.) 3 

 CAES  PHS  PTES (Joule)  Rankine Cycle 
Working fluid air water argon steam 
Operating conditions 20 °C, 100 bar 500 m 500 °C, 10.5 bar 500 °C, 100 bar 
Exergy per unit mass 390 kJ/kg 4.9 kJ/kg 250 kJ/kg 1400 kJ/kg 
Exergy per unit volume 46 MJ/m3 4.9 MJ/m3 1.6 MJ/m3 43 MJ/m3 
 4 
Table 2: Hot and cold reservoir details for a nominal 16 MWh PTES system. The storage material is Fe3O4 (density 5 
5.175 tonne/m3) in the form of a packed bed with an assumed void fraction of 0.35.  6 

  

(bar) 

 

(K) 

 

(kg m–3) 

 

(kg) 

  

(J kg–1K–1) 

 

(tonne) 

 

(m3) 

Chg 10.5 bar 778  6.5 162 HOT 
Dis. 10.5 bar 310 16.3 405 

860 238 71 

Chg. 1.05 bar 123 4.1 168 COLD 
Dis. 1.05 bar 310 1.63 67 

520 394 117 

 7 
Table 3: Details of the compression-expansion devices for a nominal power of 2 MW. A clearance ratio (Vmin/Vmax) of 8 
0.05 and a cylinder aspect ratio (stroke/diameter) of 0.25 and have been assumed for both devices.  9 

  Speed 
(RPM) 

Vs (total) 
(m3) 

Ncyl  D 
(m) 

 Stroke 
(m) 

Clearance 
(mm) 

Hot cylinders (CE) 1200 0.50 6 0.75 0.19 10 
Cold cylinders (EC) 1200 0.20 6 0.55 0.14 7.4 
 10 
Table 4: Nominal, minimum and maximum values of quantities varied for the parametric study. Note that the loss 11 
factors are for each compressor/expander, CE and EC, with half the pressure loss assigned to each side of the device. 12 

 Loss Factors Operating Conditions Geometric Parameters 
 fp 1–η α T1 

(K) 
T3 

(K) 
βchg βdis Π (L/D)CR (L/D)HR   dp

CR  

(cm) 
  dp

HR  

(cm) 

Nominal 0.02 0.02 0.02 310  310 10.0 10.0 0.75 1.00 1.00 2.0 2.0 
Min 0.00 0.00 0.00 273 273 5.00 5.00 0.50 0.10 0.10 0.5 0.5 
Max 0.04 0.04 0.04 347 347 15.0 15.0 1.00 1.90 10.0 3.5 3.5 
 13 
Table 5: Lower and upper bounds for parameters used in optimisation. Ambient temperature is T0=298 K. 14 

 L/D dp (cm) Π β T1 (K) T2 (K) T3 (K) T4 (K) 

Lower bound 0.10 0.50 0.10 2.00 T0+10 T3+50 T0+10 103 
Upper bound 10.0 10.0 0.99 20.0 773 873 773 T1–50 

15 
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FIGURES 1 

 2 

 3 
 4 
Figure 1: Layout of PTES system and corresponding T-s diagram. Key: BV buffer vessel; HR/CR hot/cold reservoir; 5 
CE/EC reversible compressor-expanders; HX1/HX3 heat exchangers. The T-s diagram shows the discharge cycle 6 
operating at a lower pressure ratio, with heat rejection from both HX1 and HX3. 7 
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 10 
 11 
Figure 2: Typical temperature profiles in a cold reservoir for cyclic operation with a utilisation factor of Π=0.75. The 12 
profiles are shown at various stages through the cycle. Differences between the solid and chain lines highlight the 13 
impact of the temperature-dependent solid heat capacity. 14 
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 2 

Figure 3: Sensitivity of thermodynamic round-trip efficiency to compressor and expander loss parameters. 3 

 4 
 5 

 6 
 7 
Figure 4: Variation of roundtrip efficiency and energy density with operational parameters. Left: variation with T1, T3 8 
and charging pressure ratio, βchg (T1 and T3 fixed). Right: variation with βchg (T2 and T4 fixed), discharge pressure 9 
ratio, βdis, and utilisation factor Π. For each curve the open and solid square symbols indicate the minimum and 10 
maximum values of each parameter in accord with Table 4. 11 

12 
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 2 
Figure 5: Variation of thermodynamic roundtrip efficiency with geometric parameters. Minimum, nominal and 3 
maximum values of the parameters are given in Table 4. 4 
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Figure 6: Pareto fronts (trade-off surfaces) emerging from the optimisation. 9 
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 2 

Figure 7: ‘Parallax’ plots showing the combinations of design parameters for the ‘best’ designs, as defined by data 3 
Points 1 to 4 in Fig. 6. 4 
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 7 
 8 
Figure 8: Comparison of loss distributions for the nominal design (but with η=0.99) and an optimised design (Point 3 9 
in Fig. 6). Thermal losses refer to heat transfer irreversibility; heat leakage losses are due to heat exchange with the 10 
environment above or below ambient temperature. 11 
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 2 
Figure 9: p-V diagram for an ideal reciprocating device. As shown the device is operating as a compressor; the cycle 3 
would be reversed for an expander.  4 
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 6 

 7 
Figure 10: Simplified model of the irreversibility associated with preheating during induction and cooling during 8 
delivery, shown for a compression process. The overall Process 1-2 is assumed adiabatic. 9 
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 11 

 12 
Figure 11: Estimate of the hysteresis loss during the compression and expansion processes of Fig. 9, based on the 13 
model of Lee [23]. 14 


