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Summary 
A genome-wide, single-cell analysis of vascular smooth muscle cell plasticity            Lina Dobnikar 

Vascular smooth muscle cells (VSMCs) possess a remarkable capacity to change phenotype in 

response to injury or inflammation. In healthy arteries, VSMCs exist in a contractile state, but 

upon vascular inflammation or injury, they can switch into an activated state, in which they 

downregulate the contractile differentiation markers and show increased migration, 

proliferation and secretion of proinflammatory cytokines. This process is termed phenotypic 

switching and can lead to VSMC accumulation within atherosclerotic plaques. Previous 

observations of clonal expansion of a small number of VSMCs in atherosclerosis suggested 

that VSMCs were functionally heterogeneous. I hypothesised that functional heterogeneity of 

VSMCs in disease may originate from VSMC heterogeneity in healthy arteries. 

In the first part of this thesis I explored the regional heterogeneity of VSMCs originating from 

different parts of the mouse aorta, as well as heterogeneity of VSMCs within a vascular bed 

using single-cell and bulk RNA sequencing. VSMCs originating from the atherosclerosis-prone 

aortic arch and atherosclerosis-resistant descending thoracic aorta were found to have 

distinct transcriptional signatures at the single-cell level. Additionally, several disease-relevant 

genes were observed to be heterogeneously expressed within both vascular beds.  

In the second chapter I identified and characterised a rare subset of VSMCs expressing Stem 

cell antigen 1 (SCA1). Single-cell RNA-seq was combined with VSMC-specific lineage tracing to 

profile gene expression in individual VSMCs from healthy mouse arteries and to compare 

SCA1-expressing VSMCs to other cells. SCA1-positive VSMCs were heterogeneous, with many 

of them expressing low levels of contractile VSMC markers. Additionally, a subset of SCA1-

positive VSMCs in healthy arteries expressed transcriptional signatures characteristic of 

activated VSMCs involved in phenotypic switching.  

In the third chapter I investigated the involvement of SCA1-positive VSMCs in phenotypic 

switching. SCA1 upregulation was found to mark the process of VSMC phenotypic switching 

following in vitro culture and in vivo vascular injury. Single-cell RNA-seq profiling of VSMCs in 

atherosclerosis and following vascular injury showed that Ly6a/Sca1-expressing VSMCs were 

present and expressed transcriptional signatures similar to activated SCA1-positive cells 

observed in healthy arteries.  
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Overall the results presented in this thesis highlight the heterogeneous nature of VSMCs in 

healthy arteries, both regionally and within a vascular bed. I identified a rare subset of SCA1-

positive VSMCs with activated transcriptional signatures in healthy arteries. I hypothesised 

that SCA1-positive VSMCs may be responsible for clonal expansion of VSMCs in 

atherosclerosis, which would have clinical implications for earlier detection and specific 

targeting of expanding VSMCs in atherosclerosis in the future. In support of this hypothesis I 

have shown that Ly6a/Sca1 is upregulated in model systems of VSMC phenotypic switching 

and that transcriptional signatures of Ly6a/Sca1-expressing VSMCs in mouse atherosclerosis 

and vascular injury resemble those of healthy activated SCA1-positive VSMCs.  
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1 Introduction 

1.1 The cardiovascular system 

Single-cell organisms uptake oxygen and nutrients and excrete waste products through 

diffusion. As the organisms get larger and more complex, their volume to surface area ratio 

increases and diffusion across the outer surface of the organism becomes too inefficient to 

supply the entire organism with the required nutrients (Monahan-Earley et al. 2013). To 

overcome this problem, complex organisms evolved a circulatory system (Monahan-Earley et 

al. 2013).  

 

In mammals, the cardiovascular system consists of the heart, the blood vessels and the blood. 

The latter acts as a carrier of oxygen, nutrients and waste products and is pumped through 

the blood vessels by the heart. The mammalian cardiovascular system is composed of two 

closed circuits; the pulmonary circuit and the systemic circuit. The role of the pulmonary 

circuit is to re-oxygenate the blood, which has returned from the systemic circuit. The right 

atrium of the heart receives the de-oxygenated blood, which is then pumped to the lungs 

through the pulmonary artery by the right ventricle. The large surface area of the lungs 

enables efficient diffusion of fresh oxygen and waste carbon dioxide between the air and the 

blood. Oxygenated blood returns to the heart through the left atrium and the left ventricle of 

the heart then pumps the freshly oxygenated blood into the systemic circuit. The blood is first 

pumped into the aorta, which branches into progressively narrower arteries and to the 

arterioles. These lead into the capillaries, where the exchange of nutrients, oxygen and waste 

takes place through diffusion. The deoxygenated blood then passes into the venules and 

returns to the right atrium of the heart through the veins (Aaronson et al. 2012).  

 

Overall, the cardiovascular system vastly increases the effective surface area through which 

the diffusion can take place and allows cells throughout the body of complex organisms to 

have a supply of oxygen. Interestingly, the largest blood vessels in human themselves have a 

network of smaller blood vessels within their walls called vasa vasorum. These supply the cells 

within the blood vessel wall with blood as the wall is too thick for sufficient diffusion to take 

place through the lumen (Williams & Heistad 1996).  
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1.2 Artery wall structure 

The large arteries need a strong and elastic wall in order to withstand and regulate the blood 

pressure. The artery wall consists of the intimal, medial and adventitial layers, which surround 

the lumen (Aaronson et al. 2012). The structure of the artery wall is shown in Figure 1.1. The 

intimal layer is the innermost layer of the artery wall. Its inner lining is formed of a single 

continuous layer of endothelial cells, which are supported by a subendothelial layer of 

connective tissue (Palotie et al. 1983). In the larger human arteries, the intimal layer also 

contains VSMCs (Aaronson et al. 2012). Endothelial cells act as a barrier between the blood 

and the rest of the artery wall and regulate the selective transport of molecules into the wall 

(Galley & Webster 2004). In addition, endothelial cells are involved in the regulation of 

vascular tone through production of vasoconstrictors and vasodilators, such as nitric oxide 

(Ignarro et al. 1987; Galley & Webster 2004). Overall, endothelial cells are involved in tissue 

homeostasis and respond to the local environment, such as shear stress induced by blood flow 

(Rajendran et al. 2013). Endothelial dysfunction contributes to many cardiovascular diseases, 

including atherosclerosis (Gimbrone & García-Cardeña 2016). 

 

The medial layer of the aorta is composed of vascular smooth muscle cells (VSMCs) and 

extracellular matrix components and is separated from the intimal layer by the internal elastic 

lamina (Aaronson et al. 2012). Within the medial layer, VSMCs are arranged circumferentially 

in concentric layers around the lumen that are separated by the extracellular matrix (Wolinsky 

& Glagov 1967; Dingemans et al. 2000). The extracellular matrix is an ordered structure 

composed largely of elastin, collagens and proteoglycans and provides strength and flexibility 

to the medial layer (Stegemann et al. 2005). VSMCs are linked to the surrounding extracellular 

matrix via adhesion receptors, such as integrins, syndecans and dystroglycan (Moiseeva 2001). 

In addition to providing structural integrity, the interaction of VSMCs with the surrounding 

extracellular matrix plays a role in maintaining VSMC contractility through mechanical 

interactions (Moiseeva 2001; Stegemann et al. 2005).  

The adventitial layer is the outermost layer of the artery wall and is separated from the medial 

layer by the external elastic lamina (Aaronson et al. 2012). Adventitia is the most 

heterogeneous layer of the vasculature and contains a diverse range of cell types and 

structures, such as fibroblasts, resident immune cells, progenitor cells, nerves as well as vasa 

vasorum in certain large vessels (Stenmark et al. 2013). Given the presence of nerves and the 
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vasa vasorum, the adventitial layer has an important function in transducing signals and 

nutrients to the inner layers of the artery wall (Stenmark et al. 2013). Adventitia has been 

observed to remodel extensively in response to injury or inflammation and is additionally 

thought to be involved in the process of vascular inflammation through resident immune cells, 

such as macrophages and dendritic cells (Maiellaro & Taylor 2007). Adventitia has also been 

identified as a niche for vascular stem cells and progenitor in recent years, which will be 

discussed in more detail in Section 1.7. 

 

 

 

 

Figure 1.1: Artery wall structure.  

Large arteries are composed of concentric intimal, medial and adventitial layers. A layer of endothelial 

cells in the intima surrounds the lumen of the artery and forms direct contact with the blood. The 

intimal layer of large arteries in some organisms also contain VSMCs. The medial layer is separated 

from the intima by the internal elastic lamina and is composed of layers of VSMCs and the extracellular 

matrix. This layer provides structural support to the blood vessel wall. The outermost layer is the 

adventitia, which contains a variety of cells and structures, such as fibroblasts and resident immune 

cells, as well as nerves and vasa vasorum. The figure is from Libby et al. (2011) 

 

1.3 Vascular smooth muscle cells (VSMCs) 

VSMCs are highly specialised cells, which play a key role in the regulation of blood flow and 

pressure through contraction (Owens et al. 2004). In healthy arteries, VSMCs generally exist 

in a so-called contractile state, in which they exhibit an elongated cell shape and contain an 

abundance of contractile filaments (Rensen et al. 2007). In this state, VSMCs express several 

characteristic marker proteins including smooth-muscle myosin heavy chain (MYH11/SM-

MHC), α-smooth muscle actin (ACTA2/α-SMA) and transgelin (TAGLN/SM22α), with MYH11 
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being the most specific VSMC marker throughout development (Miano et al. 1994; Rensen et 

al. 2007). Contractile VSMCs show low levels of proliferation and synthesis of extracellular 

matrix components (Owens 1995). 

 

The remarkable feature of VSMCs is their high degree of plasticity. Upon inflammation or 

injury, contractile VSMCs can transition to a so-called synthetic state during the process 

known as phenotypic switching or modulation (Figure 1.2). As VSMCs transition towards the 

synthetic state, they adopt a more rounded cell shape and show reduced contractile function 

and reduced expression of several VSMC markers proteins (Rensen et al. 2007). Synthetic 

VSMCs show higher levels of proliferation and migration than cells in the contractile state and 

increase the synthesis of extracellular matrix components, such as collagen, proteoglycans 

and elastin (Rensen et al. 2007). Phenotypically modulated VSMCs have been observed to 

express characteristic proteins, such as osteopontin (SPP1/OSTP), vascular cell adhesion 

molecule 1 (VCAM1), matrix Gla protein (MGP), collagen α-1(VIII) chain (COL8A1) and others 

(Rensen et al. 2007; Orr et al. 2010; Allahverdian et al. 2018). VSMC plasticity allows for 

dynamic blood vessel remodelling and injury repair. However it also poses a potential risk of 

misregulation, which may lead to cardiovascular disease (Bennett et al. 2016). 

 

 

 

 

Figure 1.2: Phenotypic modulation of VSMCs.  

In healthy vasculature VSMCs predominantly exist in the contractile state, where they express VSMC 

marker proteins and contain contractile filaments. VSMCs are capable of transitioning to a synthetic 

state after the stimulus of injury or inflammation. In the synthetic state they increase proliferation and 

migration, and decrease VSMC marker protein expression. The figure is based on Davis-Dusenbery et 

al. (2011). 
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1.4 Vascular development and the origins of VSMCs 

The initial formation of the vascular system in the embryo occurs through the process of 

vasculogenesis. This process starts with the formation of blood islands in the extra-embryonic 

mesoderm of the yolk sac, which are lined by endothelial precursors (Ferguson et al. 2005). 

The endothelial precursors throughout the yolk sac subsequently merge to form the vascular 

plexus, which is the foundation for further development of the vascular system in the embryo 

(Coward & Wells 2013; Schmidt et al. 2007). This initial network is then extensively remodelled 

and extended through the process of angiogenesis during development (Ferguson et al. 2005). 

During vascular development, VSMC precursors are recruited to the forming vasculature and 

differentiated to provide structural support (Pfaltzgraff & Bader 2015). The recruitment 

process and the differentiation of VSMCs is mediated by many factors, including secretion of  

platelet-derived growth factor (PDGF)-BB by the endothelial cells (Hellstrom et al. 1999; 

Carmeliet 2000; Yao et al. 2014). PDGF-BB is also thought to be important for the patterning 

of the outer layers of the vascular wall (Greif et al. 2012). During development, VSMCs are 

involved in the maturation of the vascular system through the synthesis of extracellular matrix 

components, proliferation and migration (Owens et al. 2004). 

 

VSMCs recruited to different parts of the vasculature have different embryonic origins 

(Majesky 2007). This observation was first made in experiments using quail and chick chimeras 

(Le Lièvre & Le Douarin 1975; Majesky 2007). In these experiments the neural tube and neural 

crest from one of the organisms were grafted into the embryo of the other and the different 

nuclear staining patterns enabled the tracking of neural cells in the recipient organism. These 

experiments revealed that VSMCs located in parts of the vasculature had neural origins (Le 

Lièvre & Le Douarin 1975). Later lineage tracing studies have confirmed that VSMCs in the 

carotid arteries and the aortic arch are derived from the neural crest (Jiang et al. 2000; 

Nakamura et al. 2006). Jiang et al. (2000) and Nakamura et al. (2006) used a Wnt1-Cre and P0-

Cre dependent reporter systems respectively to trace cells originating from the neural crest in 

mammalian development and observed that VSMCs derived from the neural crest localise to 

the ascending aorta and the aortic arch, as well as the left and right carotid arteries in mature 

vasculature. Somites, which originate from the paraxial mesoderm, have also been shown to 

give rise to VSMCs during development (Pouget et al. 2006). VSMCs derived from the paraxial 

mesoderm have been observed in the aorta after transplantation of paraxial mesoderm to 



6 
 

create quail and chick chimeras (Pouget et al. 2006). Wasteson et al. (2008) observed that 

VSMCs can also be derived from somites in mouse embryos, and that somite-derived VSMCs 

localise to the descending thoracic aorta in the mature vasculature. Advances have also been 

made in the understanding of the embryonic origins of VSMCs in several other vascular beds. 

For example it was determined that aortic root VSMCs are derived from the secondary heart 

field and VSMCs located in the abdominal aorta are derived from splanchnic mesoderm 

(Majesky 2007). The embryonic origins of VSMCs located in different part of the vasculature 

are illustrated in Figure 1.3.  

 

 

 

 

Figure 1.3: Embryonic origins of VSMCs.  

VSMCs are recruited from a variety of embryonic sources. VSMCs in the aortic root (red) are derived 

from the secondary heart field, VSMCs in the aortic arch and the carotid arteries (medium blue) are 

derived from the neural crest, the pulmonary artery VSMCs (green) are from the pleural mesothelium, 

VSMCs in coronary arteries (dark blue) originate from the proepicardium, the descending thoracic 

aorta (brown) is composed of VSMCs originating from somites, VSMCs in the abdominal aorta (light 

blue) are derived from splanchnic mesoderm and the VSMCs in renal arteries (purple) originate from 

nephrogenic stromal cells. Figure adapted from Wang et al. (2015). 
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1.5 VSMC heterogeneity 

1.5.1 Regional heterogeneity of VSMCs 

There are regional differences in susceptibility to diseases, such as atherosclerosis, between 

different parts of the vasculature (Haimovici & Maier 1971; DeBakey & Glaeser 2000; Leroux-

Berger et al. 2011). These differences are thought to originate from both the distinct 

embryonic origins of VSMCs located in different parts of the vasculature (section 1.4) and the 

unique environmental factors that various blood vessels are exposed to (Cunningham & 

Gotlieb 2005; Majesky 2007). In particular, lineage tracing studies have revealed that VSMCs 

in the aortic arch (AA) are derived from the neural crest, while VSMCs in the descending 

thoracic aorta (DT) originate from the paraxial mesoderm (Majesky 2007). The AA region is 

known to be more prone to atherosclerosis than the DT region (Van Assche et al. 2011; 

Trigueros-Motos et al. 2013; Sinha et al. 2014). This is likely to be at least partially due to 

environmental factors, with the curvature of the aortic arch and several branch sites creating 

areas of disturbed blood flow (Cunningham & Gotlieb 2005; Chiu & Chien 2011). However, 

intrinsic factors are also thought to influence different atherosclerotic susceptibilities of 

arteries from different parts of the body. VSMCs derived from the neural crest or the 

mesoderm, which were isolated from chick embryos, were observed to respond differently to 

the same culture conditions, particularly to exposure to the transforming growth factor (TGF)-

β (Topouzis & Majesky 1996). Transcriptional differences between the neural crest and 

mesodermal VSMCs isolated from the AA and DT regions respectively were also observed, 

with a number of differentially expressed genes thought to be related to distinct 

developmental origins (Van Assche et al. 2011; Trigueros-Motos et al. 2013). For example, 

several Hox genes are expressed at higher levels in the DT region compared with the AA (Van 

Assche et al. 2011; Trigueros-Motos et al. 2013). Trigueros-Motos et al. (2013) observed an 

inhibitory relationship between HOXA9 and the proinflammatory transcription factor NF-κB 

(encoded by Nfkb1) in VSMCs, which has been previously also described in endothelial cells 

(Trivedi et al. 2007). Higher NF-κB activity in the AA region may provide a possible explanation 

for higher atherosclerosis susceptibility of the AA through increased inflammation (Trigueros-

Motos et al. 2013).  

 

To address the confounding enviromental factors affecting the AA and DT regions, Cheung et 

al. (2012) used in vitro differentiation to model VSMCs with neuroectodermal or mesodermal 
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origins. Several Hox genes, including Hoxa9, were found to be expressed at higher levels in 

mesodermal VSMCs compared with neuroectodermal VSMCs, both of which have been 

derived from human pluripotent stem cells in vitro (Cheung et al. 2012; Trigueros-Motos et al. 

2013). In further support of the hypothesis that intrinsic differences between vascular beds 

party contribute to observed variation in disease susceptibility, a study in which grafts were 

transplanted from the disease-prone abdominal aorta to the disease-resistant jugular vein 

region, showed that grafts from the abdominal aorta retained a higher susceptibility for 

atherosclerosis in a different environment (Haimovici & Maier 1971). However, the 

mechanisms through which the observed intrinsic differences contribute to disease 

susceptibility are not yet fully understood. 

 

1.5.2 VSMC heterogeneity within a vascular bed 

There is also heterogeneity among VSMCs residing in the same vascular bed, despite them 

experiencing similar environmental conditions and sharing the same embryonic origin. VSMCs 

within a vascular bed show considerable cell-to-cell variability in the expression levels of 

contractile VSMC proteins, as well as adhesion molecules (Frid et al. 1994; Moiseeva 2001). 

Studies in a variety of organisms have further suggested that there were subpopulations of 

VSMCs resident in the media, which are characterised by different patterns of VSMC 

contractile marker expression or different responses to in vitro culture (Bochaton-Piallat et al. 

1996; Frid et al. 1997; Li et al. 2001; Hao et al. 2002). These studies also observed that 

individual VSMCs had different propensities for phenotypic modulation, leading to speculation 

that VSMCs which adopt the extreme synthetic state in culture may be the VSMCs involved in 

neointima formation in disease (Bochaton-Piallat et al. 1996; Frid et al. 1997). These 

observations led to the hypothesis that VSMCs may exist on a spectrum between different 

phenotypic states (Rensen et al. 2007). 

 

1.5.3 Functional heterogeneity of VSMCs  

Benditt & Benditt (1973) observed that the entire plaque caps regularly showed inactivation 

of the same X chromosome, which was not observed to be the case in the underlying media. 

This observation led to the hypothesis that VSMCs in the plaque cap may have monoclonal 

origins (Benditt & Benditt 1973). However, a later study reported that larger patches of cells 

with the same inactivated X-chromosome can also exist in the media, which could explain the 
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previous observation without the implication of monoclonal origin of the plaque cap (Murry 

et al. 1997; Schwartz & Murry 1998). Recent advances in VSMC-specific lineage tracing 

approaches support the hypothesis that a small subset of VSMCs proliferate during plaque 

development, as well as during neointima formation following injury (Feil et al. 2014; Chappell 

et al. 2016; Jacobsen et al. 2017). Using a multi-colour lineage labelling strategy to study VSMC 

proliferation after injury in mice, Chappell et al. (2016) observed that the neointima induced 

by carotid ligation was composed of monochrome patches derived from a single VSMC. 

Furthermore, atherosclerotic plaques were observed to be composed of either single 

monochrome patches or a small number of monochrome patches, suggesting that only a 

fraction of VSMCs proliferated extensively during plaque formation (Chappell et al. 2016; 

Jacobsen et al. 2017). These observations suggest that VSMCs within a vascular bed may be 

functionally heterogeneous, with only a small subset of VSMCs responding to stimuli through 

extensive proliferation and accumulation in the lesion.  

 

1.6 VSMC response to stimulus 

In healthy arteries, VSMCs predominantly exist in the contractile state. As described in Section 

1.3, certain stimuli such as inflammation, mechanical injury, or biochemical factors, can induce 

VSMC phenotypic modulation. This process occurs, for example, during in vitro culture as well 

as in vivo following vascular injury or development of atherosclerosis (Rensen et al. 2007).  

 

1.6.1 Mechanisms of VSMC phenotypic switching 

The process of VSMC phenotypic switching is regulated through a complex network of factors, 

many of which are not yet fully understood. Environmental factors, such as the surrounding 

extracellular matrix (ECM) components, biochemical factors and mechanical forces play an 

important role in influencing the phenotypic modulation of VSMCs (Rensen et al. 2007). Some 

of these factors promote the maintenance of the differentiated contractile VSMC phenotype, 

while others stimulate phenotypic modulation towards the synthetic state. The effect of the 

majority of studied ECM components on VSMC phenotype is to promote the contractile state 

(Rensen et al. 2007). For example, the deletion of heparan-sulfate side chains from the 

proteoglycan perlecan lead to increased VSMC proliferation in vitro as well as after carotid 

ligation injury in vivo (Tran et al. 2004). Collagen type IV and laminin are also thought to 
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promote the contractile state and lead to increased expression of contractile VSMC marker 

proteins when applied to cultured VSMCs (Thyberg & Hultgårdh-Nilsson 1994). There are also 

ECM components, however, which have been shown to promote the synthetic phenotype. For 

example, fibronectin and hyaluronan have both been shown to induce VSMC proliferation 

(Hedin et al. 1988; Evanko et al. 1999). Biochemical factors also influence the phenotypic state 

of VSMCs, with the most extensively studied examples being PDGF-BB and TGF-β. These two 

growth factors have diverging effects, with PDFG-BB promoting VSMC proliferation, while 

TGF-β promotes the contractile state of VSMCs (Rensen et al. 2007). Some effects of 

mechanical forces on the VSMC state are mediated through the endothelium, such as shear 

stress (Zhao et al. 2015). Mechanical stress can also act on VSMCs directly when the vessel 

wall is stretched periodically due to blood pressure. Mechanical stress has generally been 

observed to promote the contractile phenotype, with reduced mechanical stress levels, such 

as during culture, promoting phenotypic modulation towards the synthetic state (Rensen et 

al. 2007). Another environmental factor affecting VSMC phenotypic switching is vascular 

inflammation. NF-κB is one of the key inflammatory regulators in the vasculature (Brasier 

2010), and a VSMC-specific inhibition of NF-κB has been shown to result in decreased 

neointima formation following injury (Yoshida et al. 2013). 

 

Advances have also been made in the understanding of how transcriptional and epigenetic 

regulation impacts the phenotypic state of VSMCs. Transcription factors myocardin, SRF and 

KLF4 have so far been identified as central to transcriptional regulation of VSMC modulation 

(Allahverdian et al. 2018). One of the most extensively characterised models of transcriptional 

regulation in VSMCs is the SRF/myocardin regulation through CArG elements. Myocardin is 

expressed specifically in cardiac and smooth muscle cells during development and has been 

described as the master regulator of VSMC contractile phenotype (Yoshida et al. 2003; Wang 

et al. 2003). It acts by forming a complex with transcription factor SRF and promotes the 

expression of contractile VSMC genes through CArG regulatory elements (Yoshida et al. 2003; 

Wang et al. 2003). In contrast, KLF4 has been observed to be key in the process of de-

differentiation of VSMCs during phenotypic switching (Yoshida et al. 2008; Shankman et al. 

2015). KLF4 is thought to influence de-differentiation of VSMCs through multiple mechanisms, 

including disruption of the SRF/myocardin complex association with contractile gene 

promoters, repression of myocardin expression and mediation of chromatin modification (Liu 

et al. 2005; McDonald et al. 2006). The epigenetic regulation of VSMC phenotypic modulation 
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has also been investigated in recent years. For example, it has been observed that induction 

of VSMC phenotypic switching through PDGF-BB in culture resulted in increased repressive 

methylation (H3K9me3) and reduced activating histone acetylation at contractile gene 

promoters, with recruitment of histone deacetylases mediated by KLF4 (McDonald et al. 2006; 

Yoshida et al. 2007; Gomez et al. 2015). Interestingly, studies of epigenetic regulation of VSMC 

modulation have identified H3K4me2 at the contractile gene promoters as a possible lineage 

mark of VSMCs, which is retained following phenotypic switching (Gomez et al. 2015). 

Additionally, microRNAs have also been implicated in the regulation of VSMC phenotypic 

switching, with both pro-contractile and pro-synthetic effects. microRNA from cluster 143/145 

promotes the contractile state (Cordes et al. 2009), whereas several other microRNAs have 

been observed to decrease VSMC differentiation and increase proliferation (Maegdefessel et 

al. 2015). 

 

1.6.2 VSMCs in culture 

In vitro culture is a commonly used model system for studying VSMC response to stimulus and 

subsequent phenotypic modulation. In vitro culture replicates some of the hallmarks of VSMC 

phenotypic switching, such as downregulation of contractile proteins, increased proliferation 

and a change in cell shape (Chamley-Campbell et al. 1979). It provides a practical way of 

mimicking and investigating the response of VSMC to stimuli, which are thought to influence 

their involvement in disease and vascular injury repair. Culture of VSMCs has provided 

numerous important insights into the biology of VSMC phenotypic modulation, several of 

which have also been verified in vivo (Rensen et al. 2007). However, in the absence of in vivo 

validation, findings from cultured VSMCs must be interpreted with caution, since culture 

conditions do not accurately represent the physiological conditions under which VSMCs are 

phenotypically modulated. For example, mechanical forces and ECM interactions occurring in 

intact arteries generally promote the contractile phenotype (discussed in the previous section, 

Rensen et al. 2007), therefore the process of phenotypic modulation in vivo is likely influenced 

by a complex set of opposing factors, some of which promote the contractile and some the 

synthetic state.  
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1.6.3 VSMCs in atherosclerosis 

Atherosclerosis is an inflammatory disease, in which a number of different cell types are 

involved, including endothelial cells, VSMCs and immune cells (Aaronson et al. 2012). During 

atherosclerosis, plaques form in the blood vessel wall, which protrude into the lumen and may 

obstruct blood flow when advanced (Figure 1.4). The rupture of an atherosclerotic plaque can 

lead to a heart attack or a stroke (Aaronson et al. 2012). The endothelial layer plays an 

important role in mediating early development of atherosclerosis. It is thought that high lipid 

levels and disturbed blood flow in areas of increased atherosclerosis susceptibility, such as 

artery branch points, trigger atherosclerosis-promoting changes in endothelial cells (Chiu & 

Chien 2011; Libby et al. 2011). This includes increased lipid and monocyte infiltration into the 

artery wall and secretion of PDGFs, which induces increased proliferation in the endothelium 

and VSMCs (Chiu & Chien 2011; Libby et al. 2011).  

 

Phenotypic switching and proliferation of VSMCs has long been thought to play an important 

part in the development of atherosclerotic plaques (Ross & Glomset 1973). VSMCs are known 

to be involved in different processes within the plaque, such as formation of the stabilising 

plaque cap, vascular calcification and accumulation within the necrotic core of the plaque 

(Bennett et al. 2016). However, the loss of VSMC contractile markers in many plaque VSMCs 

can make unambiguous identification and characterisation of VSMC-derived plaque cells 

difficult. To overcome this problem, VSMC-specific genetic lineage tracing approaches have 

been developed in animal models of atherosclerosis, which have shed light on the widespread 

presence and diversity of VSMCs within atherosclerotic lesions (Bennett et al. 2016). 
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Figure 1.4: Development of the atherosclerotic plaque.  

a) In the early stage of atherosclerosis circulating immune cells adhere to endothelial cells (green) and 

infiltrate into the blood vessel wall, alongside lipid deposits. b) VSMCs (red) migrate into the plaque 

where they form the fibrous cap. Plaque increases in size and protrudes into the lumen. c) Advanced 

atherosclerotic plaque have a lipid core and may rupture, which leads to thrombus formation. Figure 

from Libby et al. (2011) 

 

 

The most commonly used model organism for studying atherosclerosis is the mouse, despite 

wild-type mice being relatively resistant to the development of atherosclerosis (Getz & 
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Reardon 2012). However, genetic modification led to the establishment of the ApoE-/- (Plump 

et al. 1992; Zhang et al. 1992) and Ldlr-/- models (Ishibashi et al. 1993) of atherosclerosis. The 

ApoE-/- model has been shown to develop progressive lesions, which are more similar in 

development to human atherosclerotic plaques and is the most widely used mouse model of 

atherosclerosis (Nakashima et al. 1994; Getz & Reardon 2012). Apart from enabling the use of 

genetic modifications to study progression of the disease, mouse models have the advantage 

of faster plaque development. In human, atherosclerotic plaques typically develop over many 

years, whereas in the ApoE-/- model plaques develop within 8 weeks of high fat diet, with 

advance lesions present after 15 weeks (Nakashima et al. 1994). There are, however, 

important limitations to the use of mouse models for studying atherosclerosis, which need to 

be considered when extrapolating the findings to human disease. For example, there are some 

differences in artery wall structure, such as thinner medial layer in mouse arteries and the 

absence of intimal VSMC and vasa vasorum in the mouse (Getz & Reardon 2012). Additionally, 

there are differences in atherosclerotic plaque distribution in different areas of the 

vasculature in the ApoE-/- model and in human (Nakashima et al. 1994; Getz & Reardon 2012). 

Despite these limitations, mouse models of atherosclerosis have greatly contributed to the 

understanding of this disease and have enabled investigations, such as VSMC-specific lineage 

tracing, which would not have been possible in human.  

 

Studies using VSMC-specific lineage tracing in mice have suggested that 30-70% of cells within 

atherosclerotic plaques originate from VSMCs and that the majority of VSMC-derived cells lose 

VSMC marker proteins in the plaque (Gomez et al. 2013; Shankman et al. 2015; Chappell et al. 

2016). In addition, recent studies have revealed that some macrophage-like cells within the 

atherosclerotic plaque could be derived from VSMCs as VSMC lineage-labelled cells were 

observed to express macrophage markers, such as LGALS3 and CD68 (Feil et al. 2014; 

Shankman et al. 2015; Chappell et al. 2016; Jacobsen et al. 2017).  

 

On the whole, VSMCs within the plaque are thought to play both beneficial and harmful roles 

in the development of atherosclerotic plaques. For example, VSMCs in the fibrous cap 

synthesise extracellular matrix components and their proliferation in the event of initial 

plaque rupture can lead to repair and restoration of plaque stability (Bennett et al. 2016). 

Conversely, phenotypic switching of VSMCs to a macrophage-like state is thought to 

negatively contribute to the development of atherosclerosis (Shankman et al. 2015), as VSMC-
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derived macrophages have been observed to clear lipids and apoptotic cells less efficiently 

than bone-marrow derived macrophages (Vengrenyuk et al. 2015). 

 

The current view is that VSMCs can adopt multiple phenotypes within the atherosclerotic 

plaque, such as macrophage-like cells, fibroblast-like cells in the plaque cap, mesenchymal 

stem cell-like cells, as well as calcifying-like cells contributing to vascular calcification (Figure 

1.5, Naik et al. 2012; Nguyen et al. 2013; Feil et al. 2014; Shankman et al. 2015; Chappell et al. 

2016; Jacobsen et al. 2017). Observations of the clonal nature of VSMC-derived cells within 

the plaque and the wide range of phenotypes that VSMCs are thought to adopt in the plaque 

suggest that VSMCs involved in atherosclerosis have high levels of phenotypic plasticity and 

that a single VSMC can be phenotypically modulated and proliferate to form different 

subpopulations of VSMC-derived cells within the plaque (Chappell et al. 2016).  

 

 

 

 

Figure 1.5: Phenotypic modulation of VSMCs in atherosclerosis.  

Phenotypically modulated VSMCs migrate out of the media and proliferate during plaque 

development. VSMCs can undergo extensive phenotypic changes and transition to mesenchymal stem 

cell-like cells, macrophage-like cells, foam cells or osteochondrogenic-like cells involved in vascular 

calcification (not shown) among others. Figure from Bennett et al. (2016).  
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1.6.4 VSMCs in carotid ligation injury 

Carotid ligation is a vascular injury model, which provides an acute and reproducible 

environment for studying VSMC phenotypic switching (Kumar & Lindner 1997). During carotid 

ligation surgery, the left carotid artery is mechanically tied to stop blood flow. Cessation of 

blood flow then triggers endothelial dysfunction, which induces vascular remodelling and 

VSMC response (Kumar & Lindner 1997). Alternative vascular injury models also exist, for 

example the wire injury model, where the endothelial layer is surgically removed (Lindner et 

al. 1993). However, the extent of VSMC proliferation and participation in the neointima 

formation appears to be greater in the carotid ligation model (Kumar & Lindner 1997).  

 

The model of vascular injury provides an alternative setting for the investigation of VSMC 

plasticity to the atherosclerotic plaque. Studies have shown that VSMCs are extensively 

involved in the formation of neointima following carotid ligation injury and that neointimal 

VSMCs are derived from VSMC, which were in a differentiated state prior to injury (Herring et 

al. 2014; Chappell et al. 2016). Vascular injury models also provide a suitable setting for 

investigations of VSMC heterogeneity. Clonal or oligoclonal expansion of VSMCs (discussed in 

Section 1.5.3) is also observed following carotid ligation injury, which suggests that VSMCs are 

functionally heterogeneous in their response to injury (Chappell et al. 2016).  

 

1.7 Origins of phenotypically switched VSMCs 

The origin of VSMCs involved in the atherosclerotic plaque and neointima formation has been 

extensively debated in recent years. Several studies have asked whether VSMCs within lesions 

arise from previously differentiated VSMCs, from cells migrating from other vascular layers, 

or from alternative vascular progenitor populations. In support of the latter possibility, Sata 

et al. (2002) reported that the majority of VSMCs within the atherosclerotic plaque were 

derived from circulating hematopoietic stem cells derived from the bone marrow. However, 

a later report contradicted this observation and claimed that plaque VSMCs were derived 

exclusively from the local vasculature (Bentzon et al. 2006), although ACTA2 expression has 

since been observed in some bone-marrow-derived monocytes located in the neointima 

following wire injury (Iwata et al. 2010). Alternative origins of de-differentiated VSMCs from 

within the vasculature have also been proposed. VSMCs in the neointima of a pulmonary 
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hypertension model were proposed to originate from endothelial cells based on the 

observation that Tie2-Cre lineage traced cells upregulated ACTA2 and MYH11 (Qiao et al. 

2014). Hu et al. (2004) suggested that adventitial progenitors could give rise to VSMCs within 

atherosclerotic plaques. These adventitial progenitors expressed Stem cell antigen 1 (SCA1) 

and were observed to migrate to the plaque and express VSMC markers after isolated and 

labelled adventitial SCA1+ cells were transplanted into the adventitia (Hu et al. 2004). 

Furthermore, Passman et al. (2008) reported that SCA1, CD34 and PDGFRB expressing 

adventitial cells were capable of differentiation into VSMCs in vitro. In addition, Klein et al. 

reported vascular-wall resident stem cells expressing CD44, CD90 and CD73, but not CD34 and 

CD45 markers in the adventitial layer (Klein et al. 2011). These vascular-wall resident stem 

cells upregulated VSMC markers following culture with TGF-β and were observed to 

contribute to neovascularisation after being grafted with endothelial cells in vivo (Klein et al. 

2011). More recently, Kramann et al. (2016) used an inducible lineage tracing strategy to trace 

Gli1+ cells (adventitial location in healthy arteries) following vascular wire injury. Under these 

conditions, lineage labelled cells were observed to express VSMCs marker genes (Kramann et 

al. 2016). Given that Gli1+ cells also expressed Sca1, Cd34 and Pdgfrb, these cells may overlap 

with previously reported adventitial progenitor populations (Kramann et al. 2016; Passman et 

al. 2008; Hu et al. 2004).  

 

Vascular progenitor populations have also been proposed to exist in the medial layer. Sainz et 

al. (2006) reported a SCA1-positive subpopulation of medial cells, which were capable of 

differentiating into endothelial cells and VSMCs in vitro. Additionally, Tang et al. (2012) 

suggested that mature VSMCs do not contribute to neointima formation and that a resident 

progenitor population in the medial layer gives rise to phenotypically modulated VSMCs. 

However, the findings of Tang et al. have proven controversial and were questioned by experts 

in the field (Nguyen et al. 2013). Examples of raised concerns include the severity of the 

vascular injury model, which may have killed the medial VSMCs, and a lack of definitive lineage 

tracing approaches showing that the neointimal VSMCs originate from the proposed 

progenitor population (Nguyen et al. 2013). 

 

Recent studies using inducible lineage tracing strategies have suggested that cells expressing 

differentiated VSMC markers prior to injury or atherosclerosis give rise to neointimal VSMCs. 

Nemenoff et al. (2011) used a tamoxifen-inducible Myh11-Cre lineage tracing strategy and 
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observed that VSMCs, which expressed contractile VSMC markers and thus the lineage label 

prior to injury, contributed to neointima formation. Differentiated VSMCs have also been 

reported to contribute to atherosclerotic plaques using a similar inducible lineage tracing 

strategy (Gomez et al. 2013). In addition, Gomez et al. (2013) reported that the contribution 

of VSMCs to the atherosclerotic plaque has likely been underestimated previously, as several 

VSMC-derived cells no longer expressed VSMC markers. Further studies using inducible and 

VSMC-specific lineage tracing approaches have confirmed these observations (Feil et al. 2014; 

Shankman et al. 2015; Chappell et al. 2016; Jacobsen et al. 2017). 

A recent study, which investigated the origins of neointimal cells in vascular injury models of 

different severities, may provide a partial explanation for the contradicting observations 

about the origins of neointimal VSMCs reported in the literature (Roostalu et al. 2018). 

Roostalu et al. (2018) observed that VSMC-derived cells gave rise to the neointima in a limited 

wire injury model, but that adventitial cells contributed to repair following a more severe 

microanastomosis injury. Overall, there is strong evidence that cells of the VSMC lineage can 

expand to give rise to neointimal and plaque VSMCs. Further studies are required to 

determine whether the rare expanding VSMCs possess any special characteristics and to 

determine whether they are the sole contributor to lesional VSMCs, or whether multiple 

origins may contribute to the VSMC pool in disease simultaneously. 

 

1.8 Stem cell antigen 1 (SCA1): a marker of stem/progenitor populations 

expressed by a subset of vascular cells 

Stem cell antigen 1 (SCA1) is part of the Ly6 family and is a cell surface protein encoded by the 

gene Ly6a in mice (Holmes & Stanford 2007). SCA1 is used as a marker protein for the 

enrichment of hematopoietic stem cells (Spangrude et al. 1988) and is expressed in 

stem/progenitor populations in a wide range of tissues in the mouse (Holmes & Stanford 

2007). For example, the precursor cells in adult skin tissue express SCA1 (Fernandes et al. 

2004). Skin-derived precursor cells have been shown to be capable of in vitro differentiation 

into a variety of cell types, such as adipocytes and neural cells (Toma et al. 2001; Fernandes 

et al. 2004), vascular smooth muscle cells (Steinbach et al. 2011) and hepatocytes (Rodrigues 

et al. 2014). SCA1-positive progenitors have also been observed in the cardiovascular system, 

both in the vasculature (discussed in Section 1.7) and in the heart (Oh et al. 2003; Matsuura 
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et al. 2004). SCA1-positive cardiac progenitors were observed to have the capacity to 

differentiate into cardiomyocytes in vitro (Oh et al. 2003; Matsuura et al. 2004) and an 

increase in SCA1-positive cells was observed following myocardial infarction (Wang et al. 

2006). However, recent studies suggested that SCA1-positive cells do not contribute to 

cardiomyocytes in vivo and are instead part of the endothelial cell population (Vagnozzi et al. 

2018; Zhang et al. 2018).  

 

SCA1 has no known human orthologue and its function in mice is not yet fully understood 

(Holmes & Stanford 2007). However, the relevance of SCA1 extends beyond being a marker 

of stem/progenitor populations, as demonstrated by the alterations observed in SCA1 

knockout mice in several tissues (Holmes & Stanford 2007). For example, studies carried out 

in SCA1 knockout mice suggested an impact of this gene on haematopoiesis (Ito et al. 2003; 

Bradfute et al. 2005), T-cell proliferation (Stanford et al. 1997), osteoporosis (Bonyadi et al. 

2003), as well as on cardiac function (Bailey et al. 2012). At the molecular level, SCA1 is thought 

to be involved in cell signalling, however its mechanism of action is poorly understood (Holmes 

& Stanford 2007). Better understanding of SCA1 function in mice may aid in the identification 

of its human orthologue, which may help in translating findings observed in mice to human in 

the future (Holmes & Stanford 2007).  

 

1.9 Single-cell transcriptomics as a tool for studying cell heterogeneity and 

plasticity 

Single-cell transcriptomics enables genome-wide measurements of mRNAs at the single-cell 

level, and as such can offer several advantages over the conventional population-level RNA-

seq. For example, cell-to-cell heterogeneity at a global transcriptome-wide level can be 

addressed using single-cell RNA-seq (scRNA-seq) (Stegle et al. 2015). Transcriptome-wide 

analysis of cell-to-cell heterogeneity allows for the identification and characterisation of rare 

subpopulations of cells (Stegle et al. 2015), whereas such signals are typically lost in 

conventional RNA-seq analyses of heterogeneous cell populations. Single-cell analysis also 

allows for any contaminating cells to be identified and excluded from the analysis, while this 

is not possible in population-level approaches (Kaur et al. 2017).  
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1.9.1 Approaches for scRNA-seq library generation 

scRNA-seq was first developed by Tang et al. (2009) to enable transcriptome-wide profiling in 

applications where only low amounts of biological material were available. Since then, several 

protocols for scRNA-seq have been developed and used extensively to profile tissue 

heterogeneity, characterise cell differentiation and identify new subpopulations of cells 

(Stegle et al. 2015). Several challenges needed to be addressed during the development of 

experimental protocols for wider application of scRNA-seq to become possible. These 

included the development of efficient methods for capturing single cells, and increasing the 

sensitivity of protocols to handle low amounts of mRNA present in individual cells 

(Kolodziejczyk et al. 2015).  

 

The first step in scRNA-seq protocols is the capture of single cells (Figure 1.6). Several 

approaches for single-cell capture have been developed, each of which has certain advantages 

and disadvantages. Early studies used manual isolation of cells, which was low throughput but 

enabled the inspection of each captured cell to ensure viability and that only one cell was 

captured (Tang et al. 2009). To increase throughput, automated capture methods were also 

developed and used. For example, flow cytometry has been used to sort single cells into the 

wells of a plate, which additionally allows for the enrichment of desired populations of cells 

(Jaitin et al. 2014). However, subsequent library generation may be expensive due to relatively 

large volumes of reagents required in a 96-well plate format (Kolodziejczyk et al. 2015). Single 

cells can also be captured using microfluidic approaches. The commercial Fluidigm C1 platform 

captures single-cells on a microfluidics chip and enables subsequent processing to be carried 

out in small reaction volumes. The disadvantage of this method is that cells of different sizes 

cannot be captured on one chip (Kolodziejczyk et al. 2015), and that the number of captured 

cells per chip is limited. Droplet-based microfluidic approaches, which enable extremely high 

throughput of single-cell capture, have also been developed (Macosko et al. 2015; Klein et al. 

2015). Droplet-based approaches tend to be cost effective for large numbers of profiled cells 

due to a small reaction volume and the high number of cells captured per experiment 

(Macosko et al. 2015; Klein et al. 2015). However, both the chip-based and droplet-based 

microfluidic approaches have relatively low capture efficiencies, and may not be suitable 

when the amount of starting material is the limiting factor (Kolodziejczyk et al. 2015).  
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Once single cells are captured, they are lysed and their mRNA is reverse-transcribed to 

generate cDNA (Figure 1.6). In most protocols this is achieved by exploiting the fact that most 

cellular mRNAs have poly(A) tails and efficient reverse transcription is an important step for 

the overall sensitivity of the protocol (Kolodziejczyk et al. 2015). Due to the low amounts of 

mRNA present in single-cells, resulting cDNA needs to be amplified prior to generation of 

sequencing libraries (Tang et al. 2009). Possible approaches for cDNA amplification are either 

in vitro transcription or PCR (Figure 1.6), with each method presenting certain advantages and 

disadvantages. PCR is an exponential amplification approach where amplification efficiencies 

may vary depending on sequence, while in vitro transcription is a linear amplification method 

but an additional round of reverse transcription could introduce additional 3’ coverage biases 

(Kolodziejczyk et al. 2015). In vitro transcription is used in the CEL-seq (Hashimshony et al. 

2012), CEL-seq2 (Hashimshony et al. 2016), MARS-seq (Jaitin et al. 2014) and inDrop (Klein et 

al. 2015) protocols. PCR is also used in several protocols, including the original Tang et al. 

(2009) protocol, Smart-seq (Ramsköld et al. 2012) , Smart-seq2 (Picelli et al. 2013; Picelli et al. 

2014), STRT-seq (Islam et al. 2011), Drop-seq (Macosko et al. 2015) and the commercial 10X 

Genomics Chromium (Zheng et al. 2017) protocols. During PCR amplification, adapter 

sequences are incorporated into the cDNA to enable untargeted cDNA amplification (Tang et 

al. 2009). The first adapter is typically added during the reverse transcription to the poly(T) 

primer. The second adapter can be incorporated by different methods, for example through 

addition of a poly-A tail to the reverse-transcribed cDNA (Tang et al. 2009), or through 

template switching (Islam et al. 2011) (Figure 1.6). Template switching has the advantage of 

amplifying the full length of the transcript, therefore allowing the full transcript to be 

sequenced (Ramsköld et al. 2012; Picelli et al. 2013).  
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Figure 1.6: Experimental protocols for scRNA-seq.  

The first step in scRNA-seq protocols is single-cell capture. This can be achieved using several different 

methods, including manual isolation by micropipetting, FACS, or microfluidics approaches where cells 

are captured in droplets or on a chip. After cell lysis, cellular mRNA is reverse-transcribed. Poly(A) 

tailing or template switching approaches can be used to insert barcodes into the cDNA. Resulting cDNA 

is amplified using either PCR or in vitro transcription (IVT), after which libraries are prepared for 

sequencing. Figure adapted from Kolodziejczyk et al. (2015). 

 

 

An important part of scRNA-seq protocols, which has been crucial for increasing throughput 

and reducing the cost of scRNA-seq, is multiplexing (Svensson et al. 2018). Multiplexing 

enables libraries of many single cells to be sequenced together, and can reduce labour if 

introduced early in the protocol (Svensson et al. 2018). However, early introduction of 

multiplexing prevents the full length of the transcript from being sequenced. For the full 

transcript to be analysed, multiplexing needs to take place after cDNA amplification, as each 

fragment is required to contain the cellular barcode (Ramsköld et al. 2012). Examples of 
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protocols, which sequence the full-length transcript, are the Smart-seq (Ramsköld et al. 2012) 

and Smart-seq2 (Picelli et al. 2013; Picelli et al. 2014). The downside of multiplexing following 

cDNA amplification is that library preparation may be more labour intensive (Svensson et al. 

2018). However, sequencing the full transcript can be advantageous in certain applications, 

such as when investigating alternative splicing (Ramsköld et al. 2012). Multiplexing can also 

be carried out prior to cDNA amplification, with cellular barcodes added during reverse 

transcription (Islam et al. 2011). cDNA can then be pooled for amplification. Early barcoding 

approaches also enable the addition of unique molecular identifiers (UMIs) to transcripts 

alongside the cellular barcode (Islam et al. 2014; Fu et al. 2011; Hug & Schuler 2003). Biases 

can be introduced during cDNA amplification and UMIs can be used to correct for uneven 

cDNA amplification (Islam et al. 2014). The disadvantage of this approach is that early 

barcoding is not compatible with the sequencing of full-length transcripts, as mentioned 

above. Every sequencing read needs to contain the cellular barcode to enable demultiplexing, 

therefore only the 3’ or 5’ tags of the transcript can be sequenced with early barcoding 

approaches (Svensson et al. 2018). Despite this limitation, early barcoding approaches are 

widely used and have enabled a remarkable increase in the numbers of profiled cells when 

combined with high-throughput capture methods (Svensson et al. 2018). Examples of 

protocols using early barcoding are STRT-seq (Islam et al. 2011), MARS-seq (Jaitin et al. 2014), 

CEL-seq2 (Hashimshony et al. 2016), inDrop (Klein et al. 2015), Drop-seq (Macosko et al. 2015) 

and the 10X Genomics Chromium platform (Zheng et al. 2017). 

 

With so many different scRNA-seq protocols available, the key question is which one is best 

suited to answer a particular research question. It is challenging to directly compare the 

performance of protocols, due to different cell types and varying sequencing depths used in 

published studies. A benchmarking study by Svensson et al. (2017) attempted to overcome 

this challenge by using ERCC controls, which are a panel of artificial RNA molecules frequently 

added to single cells during library preparation for quality control purposes. By comparing 

reported numbers of added ERCCs with their read counts following sequencing, Svensson et 

al. (2017) estimated the accuracies and sensitivities of several scRNA-seq protocols. When 

varying sequencing depth was accounted for, the top performing protocols were CEL-seq2, 

STRT-seq and SMARTer protocols carried out on the Fluidigm C1 platform (Svensson et al. 

2017). Droplet-based approaches, such as inDrop, Drop-seq and 10X Genomics Chromium, 

performed relatively well given their high throughput nature, particularly when varying 
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sequencing depth was accounted for (Svensson et al. 2017). However, there are differences 

between artificial ERCC controls and endogenous mRNAs, which may have impacted the 

performance of the protocols to different degrees (Svensson et al. 2017). Additionally, ERCCs 

can degrade during handling, which may have introduced technical noise to benchmarking 

(Svensson et al. 2017). Ziegenhain et al. (2017) used a different approach to benchmark the 

performance of a selection of scRNA-seq protocols. scRNA-seq libraries of mouse embryonic 

stem cells were generated for all six benchmarked protocols, which included Smart-seq2, 

Drop-seq and MARS-seq protocols (Ziegenhain et al. 2017). Smart-seq2 protocol was 

determined to have the highest sensitivity and captured the largest number of genes per cell 

(Ziegenhain et al. 2017).  

 

Overall, different protocols for scRNA-seq library generation have various advantages and 

disadvantages. The most suitable protocol depends on the research question and any practical 

limitations, such as limited biological material. There is generally also a trade-off between the 

number of cells included in the study and the sequencing depth per cell due to the cost of 

sequencing. The droplet-based 10X Genomics Chromium platform has become widely used 

for single-cell transcriptome profiling in recent years, likely due to the practical convenience 

of an optimised commercial product and relatively high data quality (Zheng et al. 2017).  

 

1.9.2 scRNA-seq data analysis approaches 

The analysis of scRNA-seq data presents several challenges, which largely originate from the 

technical noise resulting from low amounts of cellular mRNA and the resulting sparsity of the 

data (Brennecke et al. 2013). A particular problem in scRNA-seq data are dropout events, 

which occur when a transcript was present in the cell at the time of reverse transcription, but 

was not included in the resulting library due to incomplete mRNA capture, or was not 

sequenced due to a low sequencing depth (Kharchenko et al. 2014). Technical challenges of 

noise and dropouts, alongside the large number of single cells included in most studies, mean 

that analysis approaches devised for bulk RNA-seq are not always applicable to scRNA-seq 

data. Since the development of high throughput scRNA-seq protocols, numerous analysis 

methods tailored specifically to scRNA-seq data have been developed instead (Stegle et al. 

2015; Wagner et al. 2016; Kiselev et al. 2019).  
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An important early step in data analysis is quality control, as inclusion of low quality cells could 

skew the biological interpretation of the data (McCarthy et al. 2017). Quality control is 

typically carried out by filtering out cells with particularly high or low total read count, number 

of detected genes and proportion of mitochondrial reads. ERCC spike-in controls can also be 

used to eliminate poor quality cells (McCarthy et al. 2017). Good quality cells then need to be 

normalised to account for the differences in sequencing depths of individual cells and several 

different normalisation methods have been developed. Read counts of detected genes can be 

adjusted for sequencing depth based on the total library size or by additionally correcting for 

gene length using transcripts per million (TPM, Li et al. 2010), reads per kilobase million 

(RPKM, Mortazavi et al. 2008) or fragments per kilobase million (FPKM, Trapnell et al. 2010) 

approaches. Bulk RNA-seq normalisation approaches may not be well suited to scRNA-seq 

data, as the proportion of genes with zero counts is drastically higher in scRNA-seq (Vallejos 

et al. 2017). For example, the DESeq2 normalisation method (Love et al. 2014) developed for 

bulk RNA-seq estimates size factors for each sample based on the geometric mean of 

expressed genes. However, as a large proportion of genes are not detected consistently in 

scRNA-seq assays, this approach does not accurately reflect the sequencing depth in such 

sparse settings (Vallejos et al. 2017). Alternative approaches tailored specifically to sparser 

scRNA-seq datasets have been developed, for example the pooling normalisation approach, 

where size factors are estimated based on pools of single cell and subsequent deconvolution 

(Lun et al. 2016).  

 

To address the problem of dropouts in scRNA-seq data, several imputation methods have 

been developed, such as MAGIC (van Dijk et al. 2018) and scImpute (Li & Li 2018). The goal of 

imputation methods is to determine whether a zero is a technical dropout or a true biological 

readout and to correct for dropouts arising due to technical effects. However, it may not be 

straightforward to distinguish between true and false negatives, which can lead to the 

introduction of false-positive values (Tallulah S. Andrews & Hemberg 2019). Any technical 

effects resulting from different batches of scRNA-seq libraries may also need to be accounted 

for prior to biological interpretation of the data (Stegle et al. 2015). Several approaches for 

batch correction have been developed for bulk RNA-seq, such as remove unwanted variation 

(RUV) (Risso et al. 2014) or limma (Ritchie et al. 2015) workflows. However, these approaches 

may remove interesting biological variation, which could result from varying cell types present 

in different batches or varying proportion of cell types sampled in each batch (Haghverdi et 
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al. 2018). scRNA-seq specific methods have been developed to address this problem, such as 

the mnnCorrect (Haghverdi et al. 2018), which is applicable if batches contain at least one 

overlapping subpopulation of cells. An alternative approach to comparing different scRNA-seq 

datasets is to use cell projection methods, which aim to map the transcriptional profiles onto 

a reference dataset and identify which cells originate from the same biological populations. 

For example, scmap (Kiselev et al. 2018) maps the cells in a dataset to the most similar cell or 

cluster of cells within a reference dataset. Another such tool for assessing similarities between 

cell populations profiled in different datasets is MetaNeighbour (Crow et al. 2018), which is 

tailored to assessing how reliable cell type annotations are across different datasets. Cell 

projection approaches are becoming particularly powerful with the development of large-

scale reference datasets, such as the Human Cell Atlas (Regev et al. 2017) and the Tabula Muris 

(The Tabula Muris Consortium 2018). When reliable reference datasets are available, 

projection methods have the ability to assess whether cell types have been consistently 

annotated across datasets generated and analysed in different laboratories, as well as to assist 

with the assignment of cell types in newly generated datasets. Further analysis of scRNA-seq 

datasets is dependent on the biological question, but frequently includes dimensionality 

reduction to visualise the transcriptomes of profiled cells in a two or three dimensional space, 

clustering to identify subpopulations of cells, and differential expression analysis between 

identified subpopulations.  

 

To visualise the highly dimensional scRNA-seq profiles, dimensionality reduction techniques 

can be employed. Various methods have been applied to scRNA-seq data analysis, such as the 

linear principal component analysis (PCA) and independent component analysis (ICA, 

Hyvärinen & Oja 2000; Trapnell et al. 2014), as well as non-linear t-distributed stochastic 

neighbour embedding (t-SNE, Maaten & Hinton 2008), diffusion maps (Coifman et al. 2005; 

Haghverdi et al. 2015) and uniform manifold approximation and projection (UMAP, McInnes 

et al. 2018; Becht et al. 2019). Recent benchmarking of different dimensionality reduction 

approaches for scRNA-seq data suggested that PCA may be best suited for applications where 

a low number of cells has been profiled, and t-SNE may give better results in datasets with 

larger numbers of cells (Li & Li 2019). However, diffusion maps and UMAP methods have not 

been included in this comparison (Li & Li 2019). Dimensionality reduction is frequently 

performed on a set of highly variable genes, which reduces the initial high dimensionality of 

scRNA-seq data. Highly variable genes can be estimated using several approaches, for example 
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based on their variance between cells, their squared coefficient of variation (Brennecke et al. 

2013) or based on the relationship between their log mean expression and variance (Lun et 

al. 2016).  

 

An important question arising during the analysis of heterogeneous datasets is which 

populations of cells have been profiled. Unsupervised clustering is a useful tool for answering 

such questions, and can be used for characterising the heterogeneity of the dataset and for 

identifying new subpopulations of cells. Numerous approaches for clustering have been 

developed and applied to scRNA-seq, with the majority of these approaches based on 

hierarchical, k-means or graph-based clustering (Kiselev et al. 2019). Several clustering 

approaches have been specifically adapted for scRNA-seq data to take the high dimensionality 

and sparsity of the data into account. These include CIDR (Lin et al. 2017) based on hierarchical 

clustering, SC3 (Kiselev et al. 2017) and RaceID (Grün et al. 2015) based on k-means clustering 

and PhenoGraph (Levine et al. 2015) and a graph-based clustering approach implemented in 

the Seurat package (Macosko et al. 2015; Butler et al. 2018) for graph-based clustering. 

Evaluating the results of clustering algorithms often requires a degree of biological knowledge 

about profiled cells. For example, known cell type markers are frequently used for interpreting 

identified clusters (Kolodziejczyk et al. 2015). Direct comparison of different clustering 

algorithms is therefore challenging, as there is a lack of gold standard ground truth datasets, 

and different clustering algorithms may specialise in certain applications, such as rare cell 

populations or large datasets (Kiselev et al. 2019). Due to these challenges, unsupervised 

clustering of scRNA-seq data is still an active area of research. Benchmarking of developed 

approaches on a variety of real and simulated datasets suggested that SC3 clustering and 

Seurat’s graph-based clustering overall performed best, with the latter approach being faster 

and thus more applicable to larger datasets (Duò et al. 2018).  

 

Differential gene expression analysis between clusters of cells is a common technique for 

investigating the characteristics and potential function of identified subpopulations of cells. 

Due to the sparsity of scRNA-seq data and the large numbers of cells profiled, approaches 

developed for bulk RNA-seq are not widely applicable. Several tailored approaches for 

differential gene expression analysis in scRNA-seq data have been developed, such as scde 

(Kharchenko et al. 2014) and MAST (Finak et al. 2015). Several standard statistical tests, such 

as the Wilcoxon rank sum test and the student’s t-test, have also been shown to perform well 
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in identifying differentially expressed genes in scRNA-seq data (Soneson & Robinson 2018). 

Since scRNA-seq data profiles gene expression levels in individual cells, it is also possible to 

assess the relative variability in gene expression between groups of cells (Vallejos et al. 2015; 

Eling et al. 2018).  

 

With increased throughput of scRNA-seq and advances in computational analyses, unbiased 

profiling of cellular heterogeneity in many different tissues became possible. scRNA-seq 

studies revealed that the transcriptional heterogeneity within many tissues is greater than 

previously thought. For example, Jaitin et al. (2014) profiled over a thousand spleen cells and 

characterised different subpopulations of dendritic cells, and the transcriptional 

heterogeneity of cells within a tumour was highlighted by Patel et al. (2014). The extent of 

heterogeneity of cell types in the mouse cortex and hippocampus was revealed using scRNA-

seq by Zeisel et al. (2015), where several subtypes of oligodendrocytes were observed among 

what was previously thought to be a homogeneous cell population (Zeisel et al. 2015). Since 

then, many more scRNA-seq studies have been published and made their data publicly 

available, which created unprecedented resources for investigating the heterogeneity of 

different tissues and organs. 

 

scRNA-seq is also a valuable tool for investigating continuous transitions between cell states 

or cell types, such as differentiation trajectories. Several analytical approaches for modelling 

differentiation trajectories tailored to scRNA-seq data have been developed, including 

Monocle (Trapnell et al. 2014), TSCAN (Ji & Ji 2016), diffusion pseudotime (Haghverdi et al. 

2016) and Slingshot (Street et al. 2018). These analytical approaches have been applied to 

various biological systems. For example, Trapnell et al. (2014) gained insight into the 

transcriptional regulation of myoblast differentiation by constructing a differentiation 

trajectory of profiled cells and investigating the transcriptional changes along the resulting 

trajectory. Important insights using similar approaches have also been made in other systems, 

such as haematopoiesis (Paul et al. 2015). Paul et al. observed that there was a higher level of 

heterogeneity among myeloid progenitors than was previously known and that different 

progenitor populations were primed towards certain lineages, while retaining a degree of 

plasticity when the system was perturbed. Advancements in the understanding of 

differentiation and cell state transitions have also been made in many other biological 
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processes, including dendritic cell differentiation, T cell commitment and lymphoid 

differentiation (Papalexi & Satija 2018).  

 

Computational analysis of scRNA-seq data is an area of active research and significant 

advances in performance and usability of the tools have been made in recent years. 

Comprehensive and user-friendly workflows, such as Seurat (Butler et al. 2018), scanpy (Wolf 

et al. 2018) and ASAP (Gardeux et al. 2017) have been developed, with Seurat in particular 

becoming widely used in scRNA-seq data analysis. Overall, single-cell transcriptomics is an 

exciting and rapidly developing field and the advances in the experimental and analytical 

approaches have enabled unprecedented resolution, coverage and scale in transcriptional 

profiling studies.  

 

1.10 Aims and hypotheses 

In this thesis I focused on the heterogeneity and plasticity of VSMC, both in healthy arteries, 

as well as during their response to injury and disease. I have taken advantage of scRNA-seq 

and lineage labelling approaches to investigate these questions at the single-cell level. 

Specifically, the aims of this thesis are: 

 

1) Investigate the regional heterogeneity of VSMCs between the atherosclerosis-prone 

AA and atherosclerosis-resistant DT regions of the aorta, and to establish whether the 

observed population-level differences are detectable at the single-cell level. 

 

2) Characterise the transcriptional heterogeneity of VSMCs within a vascular bed, with 

the aim of identifying potential sources of functional heterogeneity, which has been 

observed in VSMC response to injury and atherosclerosis. I hypothesised that the 

observed functional heterogeneity may stem from VSMC heterogeneity in healthy 

arteries. 

 

3) Investigate the heterogeneity of VSMCs during phenotypic switching in the 

atherosclerotic plaque and following vascular injury.  
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2 Methods 

2.1 Animal models and tissue processing 

Animal work and tissue processing was carried out by H.F. Jørgensen, A.L. Taylor, J.L. Harman 

and J. Chappell. For VSMC-specific lineage tracing, both single-colour ROSA26-eYFP and multi-

colour ROSA26-Confetti systems were used in combination with the tamoxifen-inducible 

Myh11-CreERt2 in C57Bl/6 mice (Wirth et al. 2008; Gomez et al. 2013; Chappell et al. 2016). 

To create a Myh11-CreERt2 construct, CreERt2 was inserted into the ATG codon of a bacterial 

artificial chromosome (BAC) carrying the Myh11 gene (Wirth et al. 2008). The construct was 

injected into mouse oocytes, where it integrated into the Y chromosome (Wirth et al. 2008). 

Studies have suggested that CreERt2 expression is confined to mature VSMCs in healthy 

animals (Wirth et al. 2008; Nemenoff et al. 2011), however since CreERt2 is not under the 

control of the endogenous Myh11 promoter, it should be noted that there may be differences 

in the activities of the endogenous and transgenic Myh11 promoters (Chakraborty et al. 2019). 

CreERt2 has been mutated to bind tamoxifen, after which it is translocated to the nucleus, 

where recombination at the reporter allele takes place (Feil et al. 1996; Feil et al. 1997). Since 

CreERt2 is expressed selectively in VSMCs, reporter expression following induction of lineage 

labelling by tamoxifen is VSMC-specific.  

 

For the analysis of VSMCs within atherosclerotic plaques, the Myh11-CreERt2/Confetti lineage 

tracing system was crossed with ApoE-/- mice, which has been described (Chappell et al. 2016). 

Carotid ligation experiments were carried out using Myh11-CreERt2/eYFP lineage traced mice 

containing the Ki67-RFP reporter (Basak et al. 2014). Sca1-GFP animals used have been 

described previously (Ma et al. 2002). As the Myh11-CreERt2 transgene is Y-linked, only male 

mice were used in this study. Tamoxifen (10 mg/animal) was administered intraperitoneally 

at 6-8 weeks of age over a 10 day period to induce recombination for lineage labelling. For 

analysis of VSMCs in atherosclerotic arteries, Myh11-CreERt2/Confetti/ApoE-/- mice were 

tamoxifen labelled as described and subsequently fed a high-fat diet (21% fat, 0.2% 

cholesterol) for 14-18 weeks (Chappell et al. 2016). For analysis of VSMCs following carotid 

ligation (Kumar & Lindner 1997), tamoxifen-treated Myh11-CreERt2/eYFP/Ki67-RFP mice 

underwent carotid ligation surgery, during which the left carotid artery was tied with a 6-0 silk 

suture to cease blood flow (Chappell et al. 2016). Prior to surgery the mice received analgesic 
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(Temgesic) and were anaesthetised using 2.5-3% isofluorane inhalation (Chappell et al. 2016). 

Prior to analysis, aortas or carotid arteries were isolated by dissection and the surrounding 

fatty tissue was removed.  

 

2.2 Bulk RNA-seq analysis 

2.2.1 Experimental protocol 

Generation of bulk RNA-seq libraries was carried out by J.L. Harman. Dissected aortas were 

incubated in RNAlater, separated into the AA and DT sections and the adventitial and 

endothelial layers were removed. Medial layers from 3-5 animals were lysed in Trizol and 

RNeasy column (Qiagen) was used to clean the isolated RNA. 550 ng of total RNA was used to 

prepare sequencing libraries (TruSeq Stranded mRNA Library Prep Kit, Illumina), which were 

sequenced on the MiSeq sequencer (Illumina). Three independent libraries were generated 

from the medial layers of each of the AA and DT regions. 

 

2.2.2 Data processing and analysis 

Raw reads were processed through the Babraham Institute Bioinformatics pipeline, during 

which they were aligned to the GRCm38 mouse genome using TopHat aligner v2.1 (Trapnell 

et al. 2009). SeqMonk software was used to count the number of aligned reads per gene 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk, SeqMonk analysis was 

performed by P. Oldach). I used the R statistical environment for subsequent analysis. 

Differential gene expression analysis was carried out using the DESeq2 Bioconductor R 

package v1.12 (Love et al. 2014). Specifically, functions DESeqDataSetFromMatrix (with design 

corresponding to the AA or DT origin of the samples) and DESeq (with default parameters) 

were used for the analysis. Genes were considered differentially expressed if their log2 fold 

change between regions was > 1 and their FDR-adjusted p-value was < 0.01 (Benjamini-

Hochberg multiple testing correction).  
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2.3 Flow cytometry analysis and scRNA-seq experimental methods 

Experimental work was carried out by H.F. Jørgensen, A.L. Taylor, J.L. Harman and J. Chappell, 

unless otherwise stated. In case of the carotid arteries and the whole aorta 10X Genomics 

Chromium experiments, the entire artery was dissociated to a single-cell suspension by 

incubation with collagenase type IV (2.5 mg/ml) and porcine pancreatic elastase (2.5 U/ml) for 

1-2h, followed by filtering through a 40 µm cell strainer to remove any remaining clumps of 

cells. In other experiments, the adventitial and endothelial layers were removed prior to 

dissociation of medial cells to a single-cell suspension as described above. 

 

For SCA1 antibody staining, single-cells were incubated with TruStain FcX (1:100, BioLegend) 

prior to staining with the APC-conjugated isotype control antibody (1:10 Miltenyi 130-102-

655) or the anti-SCA1 antibody (1:10 Miltenyi 130-120-343). SCA1 antibody staining was 

analysed using an Accuri C6 (wild type and the single-colour reporter) or a Fortessa (multi-

colour reporter) flow cytometer.  

 

2.3.1 Fluidigm C1 platform 

Medial layers of the AA and DT aortic sections from 5-7 male C57Bl/6 mice were isolated and 

dissociated to a single-cell suspension, as described above. Samples (100 cells/µl) were 

processed using the Fluidigm C1 Auto Prep Arrays system with medium-sized chips (17-25 µm) 

in line with manufacturer’s instructions. Visual inspection of the chips was performed to select 

successfully captured single-cells. SMARTer Ultra Low RNA Kit (Clontech) was used to generate 

amplified cDNA. Sequencing libraries were then prepared using the Nextera Library Prep Kit 

(Illumina) and sequenced on a HiSeq 2500 sequencer (Illumina) using the 50bp paired-end 

sequencing protocol. Single cells from both the AA and DT regions were analysed in two 

independent experiments.  

 

For the pooled VSMC and adventitial samples, single-cell suspension was prepared from the 

medial and adventitial layers of the aorta, as described above. Total RNA from 2000-4000 cells 

was then extracted with the RNeasy Plus Micro Kit (Qiagen). Amplified cDNA was generated 

using the SMARTer Ultra Low RNA Kit (Clontech) according to the tube control protocol. 

Nextera Library Prep Kit (Illumina) was used to prepare sequencing libraries from the amplified 
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cDNA. Libraries were then sequenced on a HiSeq 2500 sequencer (Illumina) using the 50bp 

paired-end sequencing protocol. 

 

2.3.2 Smart-seq2 platform 

Medial layers of 5-7 Myh11-CreERt2/Confetti male mice were dissociated to a single-cell 

suspension and stained for SCA1 as described above. Cells were additionally stained with 

Zombie-NIR (1:100, BioLegend) to identify dead cells. Aria-Fusion flow cytometer (BD 

Bioscience) was used to sort live single cells, which were lineage-labelled and/or SCA1-

positive, into individual wells of a 96-well plate. Lineage-labelled cells were required to 

express only one of the four confetti colours to reduce the chances of profiling doublets of 

cells. Amplified cDNA was generated using the Smart-seq2 protocol (Picelli et al. 2014), with 

these modifications: for the reverse transcription Primescript (Clontech) was used, cDNA was 

amplified in 24 PCR cycles and ERCC controls (Invitrogen) were added at 1:40,000,000 or 

1:80,000,000 dilution into the reverse transcription (RT) mix. Sequencing libraries were 

prepared with the Nextera Library Prep Kit (Illumina) and sequenced on a HiSeq 2500 

sequencer (Illumina) through the 50bp paired-end sequencing. Analysed cells were from 3 

independent experiments, with SCA1-positive, lineage-labelled cells included in all three 

experiments and cells, which were only positive for either SCA1 or the lineage label, included 

in two of the experiments.  

 

2.3.3 10X Genomics Chromium platform 

The 10X Genomics Chromium platform with the Gene Expression v2 kit was used to generate 

the datasets described in this section.  

 

2.3.3.1 VSMCs in healthy aorta and whole aorta analysis 

For both the whole aorta and VSMC-only samples, aortas of three tamoxifen-labelled Myh11-

CreERt2/Confetti males were processed to a single-cell suspension as described above and 

stained with Zombie-NIR (1:100, BioLegend). Aria-Fusion flow cytometer (BD Bioscience) was 

used to isolate 20,000 live single cells for both samples. In case of the whole aorta sample, 

selection based on lineage label expression was not performed, while expression of one of the 

four fluorescent proteins was required for the VSMC-only sample to reduce the chances of 

profiling doublets. Samples were then processed through the 10X Genomics Chromium 
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platform. Sequencing libraries were sequenced on a HiSeq4000 instrument (Illumina) using 

paired-end sequencing. 

 

2.3.3.2 Carotid ligation injury 

The carotid ligation surgery has been performed on the left carotid artery as described 

previously and above (Kumar & Lindner 1997; Chappell et al. 2016). Left carotid arteries from 

5 male tamoxifen-labelled Myh11-CreERt2/eYFP/Ki67-RFP mice were dissected 7 days 

following carotid ligation and dissociated to a single-cell suspension as described above. An 

Aria-Fusion flow cytometer (BD Bioscience) was used to isolate 20,000 live single eYFP+ cells. 

Due to the rare nature of RFP+ cells, the sample was enriched for about 100 eYFP+RFP+ cells. 

Isolated cells were processed through the 10X Genomics Chromium system and their libraries 

were sequenced on a HiSeq4000 sequencer (Illumina) using paired-end sequencing.  

 

2.3.3.3 VSMCs in atherosclerotic arteries  

Myh11-CreERt2/Confetti/ApoE-/- tamoxifen-labelled male mice were fed a high fat diet for 

either 14 or 18 weeks as described above. Aortas of 2-3 mice per time point were used, with 

atherosclerotic plaques manually isolated, dissociated essentially as described previously 

(Butcher et al. 2011), with the addition of porcine pancreatic elastase (2.5 U/ml) to the 

digestion cocktail, and passed through a 40 µm cell strainer to remove clumps. 20,000 single 

lineage-labelled cells, which expressed only one of the four fluorescent proteins, were isolated 

from each time point using an Aria-Fusion flow cytometer (BD Bioscience). Samples were 

processed through the 10X Genomics Chromium platform and sequenced using pair-end 

sequencing on a HiSeq4000 machine (Illumina). Experiment performed jointly with H.F. 

Jørgensen.  

 

 

2.4 Processing, quality control and normalisation of scRNA-seq data 

2.4.1 Fluidigm C1 and Smart-seq2 platforms 

Raw reads were processed through the Babraham Institute Bioinformatics pipeline, during 

which they were aligned to the GRCm38 mouse genome using TopHat aligner v2.1 (Trapnell 

et al. 2009). Htseq-count v0.8 (Anders et al. 2015) was used to count the number of read 

alignments per gene in the resulting bam files. The idattr parameter was set to “gene_id” and 
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the stranded parameter to “no”. Single cells processed through the Fluidigm C1 platform were 

considered of good quality if their total read count was over 1 million and less than 3.5 million, 

the number of genes detected in the cell was between 5000 and 9500 and the proportion of 

mitochondrial reads was less than 20%. Additionally, over 80% of reads were required to map 

to genes and over 50% to exons. The percentage of reads mapping to genes and exons was 

calculated using the SeqMonk software v1.42 from the aligned bam files 

(http://www.bioinformatics.babraham.ac.uk/projects/seqmonk). Single cells processed using 

the Smart-seq2 protocol (Picelli et al. 2014) were considered of good quality if the total read 

count per cell exceeded 100,000, the number of genes detected exceeded 1500 and the 

percentage of ERCC control reads did not exceed 30%.  

 

Prior to normalisation, the genes with mean expression levels below 1 count per cell were 

filtered out to reduce noise. The function computeSumFactors from the Bioconductor R 

package scran (Lun et al. 2016) was then used to compute the normalisation factors for 

individual cells (scran v1.2 for Fluidigm C1 data and v1.8 for Smart-seq2 data). For the PCA 

comparison of single VSMC transcriptomes with the pooled adventitial and VSMC samples, 

the normalisation method estimateSizeFactorsForMatrix from the R Bioconductor package 

DESeq2 v1.12 was used, with the method locfunc = “shorth” from the genefilter R 

Bioconductor package v1.6.  

 

Batch correction methods were not applied to Fluidigm C1 profiles of AA and DT VSMCs due 

to unbalanced experimental design, despite batch effects being noticeable for DT VSMCs. 

Batch correction could have introduced artificial differences between the AA and DT VSMC 

profiles, since individual batches contained transcriptional profiles from a single region. 

Instead, these technical issues were considered during downstream analyses to ensure that 

any conclusions drawn from the analyses were supported by all batches. 

 

2.4.2 10X Genomics Chromium platform 

10X Genomics cellranger pipeline (v2.0 for atherosclerosis samples and v2.1 for healthy aorta 

and carotid ligation samples) was used to demultiplex the raw BCL files, align the reads to the 

GRCm38 mouse genome using the STAR aligner (Dobin et al. 2013) and count the UMIs 

detected per gene (cellranger pipeline run by F. Krueger). I imported the gene-count matrices 

into R using the Seurat v2.3 package function Read10X (Butler et al. 2018).  
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Cells isolated from healthy arteries were considered of good quality if their total UMI count 

was between 1000 and 8000, the number of genes detected was between 500 and 2500 and 

the cell contained less than 8% of mitochondrial reads. VSMCs isolated from carotid arteries 

following ligation surgery were required to have at least 5000 UMIs and 2000 genes detected 

and to not exceed 6% of mitochondrial reads. VSMCs isolated from atherosclerotic plaques 

were required to have 5000-20,000 UMIs, 1000-5000 genes and less than 9% of mitochondrial 

reads detected. The remaining good quality cells were then normalised using the 

NormalizeData (method = “LogNormalize”, scale.factor = 10,000) and ScaleData functions 

from the Seurat R package v2.3 (Butler et al. 2018). 

 

2.5 Processing and analysis of publicly available cultured VSMC transcriptomes 

Fastq files were downloaded from the Gene Expression Omnibus (GSE79436, Adhikari et al. 

2015). Downloaded data was processed using the Babraham Institute Bioinformatics pipeline, 

which included alignment using TopHat v2.1 (Trapnell et al. 2009). Htseq-count v0.8 (same 

parameters as decribed above for the Fluidigm C1 and Smart-seq2 profiles) was then used to 

count the number of reads per gene. Transcriptomes from cultured and ex vivo VSMCs were 

normalised together using the computeSumFactors function from the Bioconductor R package 

scran v1.2 (Lun et al. 2016). 

 

2.6 Log transformation and PCA dimensionality reduction 

Normalised read counts were log2-transformed and a pseudocount of 1 was added to all 

counts to avoid log-transforming 0 counts. Principal component analysis of the Fluidigm C1 

and Smart-seq2 profiles was carried out using the plotPCA function from the scater R 

Bioconductor package v1.8 (McCarthy et al. 2017) with the underlying prcomp R method. The 

features were scaled and the top 500 most variable genes were used for the analysis, apart 

from PCA based on the random forest predictors, where the 30 random forest predictor genes 

were used. For the 10X Genomics Chromium data PCA was carried out using the Seurat R 

package v2.3 (Butler et al. 2018). Specifically the function RunPCA was used and the JackStraw 

function (num.replicate = 100) was used to estimate whether PCs explained more variance 

than expected at random.  
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2.7 Random forest analysis 

AA and DT cells were first split into the training (75% or 108 cells) and test (25% or 35 cells) 

sets randomly using the createDataPartition function from the CRAN R package caret v6.0. 

Recursive feature elimination was carried out on the training dataset using the rfe function 

from the caret R package with 10-fold cross validation. Performance of the random forest 

model based on the top 25, 30, 35, 40, 45, 50 features identified during recursive feature 

elimination was evaluated, with 30 predictor genes selected for further model training. The 

random forest model based on the identified 30 top predictor genes (1000 trees) was trained 

using the train function from the caret R package with the “rf” method from the randomForest 

R package v4.6. Following grid search optimisation the mtry parameter was set at 2. Repeated 

10-fold cross-validation (10 repeats) was used during training. The performance of the final 

model on the test data was evaluated using the predict function from the stats R package. ROC 

plot was generated using the ROCR R package v1.0.  

 

2.8 Highly variable gene and co-expression analysis 

Highly variable gene analysis was performed using the highly variable gene identification 

workflow in the R Bioconductor package scran (Lun et al. 2016) v1.2 for Fluidigm C1 data and 

v1.8 for Smart-seq2 data. Analysis was carried out separately for the AA, DT and SCA1-positive, 

lineage-labelled (S+L+) cells. The design parameter in the trendVar and decomposeVar 

functions was used to account for differences between the batches. For the AA and DT VSMCs 

the technical variance for a given mean log expression level was estimated using the trendVar 

(method = “loess”) function based on all genes under the assumption that the majority of the 

genes were not highly variable. For highly variable gene identification in S+L+ cells, ERCC 

controls were available and were used to estimate the technical variance using the trendVar 

(method = “loess”) function. Based on the estimated relationship between technical variance 

and the mean log expression levels of a gene, the variance of each gene was then decomposed 

into the technical and biological components using the decomposeVar function. A gene was 

identified as highly variable if the biological component of variance was significantly greater 

than zero (FDR-adjusted p-value < 0.05, Benjamini-Hochberg correction for multiple testing) 

and greater than 0.5.  
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For increased stringency in highly variable gene identification, I repeated the highly variable 

gene analysis in S+L+ cells 1000 times using 90% of randomly selected cells during each 

iteration. To combine the p-values from the iterations, a method based on the work of Licht 

and Rubin (Licht 2010) was implemented by M. Spivakov. In this method, p-values from each 

sample were transformed into z-scores using the quantile function of the normal distribution. 

The combined z-score for each gene was computed as the mean z-score for this gene across 

iterations divided by the total variance of the gene’s z-scores across the iterations. The 

probability density function of the normal distribution was then used to compute the p-values, 

which were adjusted for multiple testing using the Benjamini-Hochberg method. A gene was 

considered highly variable if the adjusted p-value was below 0.05.  

 

Gene correlations within the cVSMC network of S+L+ cells from healthy arteries, as well as 

Ly6a/Sca1 co-expressed genes in VSMCs post carotid ligation surgery, were identified using 

an approach based on the Spearman’s rho implemented in the R Bioconductor package scran 

v1.8 (Lun et al. 2016). Function correlatePairs was used to assess the pairwise correlations 

either among the genes within the cVSMC network (S+L+ cells) or between Ly6a/Sca1 and the 

remaining profiled genes (VSMC in injury). Gene pairs with Benjamini-Hochberg FDR-adjusted 

p-value < 0.05 (cVSMC network) or < 0.01 (VSMC in injury) and a positive rho value were 

considered to be positively correlated.  

 

2.9 Network analysis and visualisation 

Network analysis and visualisation of the resulting modules was performed by M. Spivakov. 

Network analysis was used to identify co-expressed modules of highly variable genes in S+L+ 

cells and was carried out using the blockwiseModules (power = 3, TOMType = “unsigned”, 

minModuleSize = 5, reassignThreshold = 0, mergeCutHeight = 0.25) function of the R package 

WGCNA v1.63 (Langfelder & Horvath 2008). The soft-thresholding power was chosen using 

the pickSoftThreshold function. Resulting ME1 (cVSMC module) and ME2 modules were 

visualised using Cytoscape v2.6.1 (Shannon et al. 2003). The WGCNA co-expression weight of 

gene pairs is encoded by the edge thickness in visualised modules.  
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2.10 Summarising expression levels of gene signatures using PC1 scores 

To summarise the overall expression levels of gene signatures, PC1 scores were used. Firstly, 

PCA was performed based on the genes contained in the gene signature using the prcomp 

(center = TRUE, scale. = TRUE) function from the R package stats. Since the sign of the PC 

values is arbitrary, PC1 values of individual cells were multiplied by -1 if the PC1 values 

correlated negatively with the total expression levels the gene signature.  

 

2.11 Identification of the cVSMCneg and cVSMCpos signatures 

Identification of genes that were positively or negatively correlated with the cVSMC score 

(summarised expression of module ME1) of S+L+ cells was carried out by M. Spivakov. A 

modified version of the approach for identification of trajectory associated genes from the 

monocle R Bioconductor package (Trapnell et al. 2014) was used. The loess (family = 

“symmetric”) R function was used to estimate the mean-variance relationship of mean log 

expression levels and the log squared coefficient of variation. Negative binomial regression 

implemented in the VGAM R package v1.0 was then used to model the dependence of the 

expression level of a gene and the cell’s cVSMC score. The size parameter of the negative 

binomial distribution was assumed to be the inverse fitted squared coefficient of variation 

described above. Likelihood-ratio test was used to assess the significance of the binomial 

regression fit compared with the intercept-only model. P-values were adjusted for multiple 

testing using the Benjamini-Hochberg procedure. Genes were considered significantly 

positively or negatively correlated if their adjusted p-values were below 0.05.  

 

2.12 Clustering analysis and t-distributed Stochastic Neighbour Embedding (t-

SNE) visualisation 

Clustering analysis and t-SNE visualisation were performed using the R package Seurat v2.3 

(Butler et al. 2018; Maaten & Hinton 2008). The dimensionality of the dataset was first 

reduced using PCA as described above. The principal components included in further analysis 

were chosen based on the elbow plot showing the standard deviations of calculated principal 

components, whether they explained biologically meaningful variation among the profiled 

cells, or whether they explained significantly more variance than expected at random (as 
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described above). Graph-based clustering implemented in the FindClusters function was used 

for the analysis. The resolution parameter was set based on the biologically meaningful 

outcomes of identified clusters as follows: at 0.6 for the analysis of the whole aorta and VSMC-

only datasets and the initial analysis of plaque VSMCs; at 0.8 for re-analysis of plaque VSMCs 

following the removal of low quality cells (initial cluster 4) and for analysis of VSMCs following 

carotid ligation injury. t-SNE analysis implemented in the RunTSNE function was used to 

visualise profiled cells and the results of the clustering analysis. The same number of principal 

components was used to calculate t-SNE scores as for the clustering analysis in each dataset.  

 

2.13 Differential gene expression analysis 

Differential gene expression analysis between the identified clusters of cells in the 10X 

Genomics Chromium datasets was carried out using functions FindMarkers and 

FindAllMarkers of the R package Seurat (Butler et al. 2018), using the method “wilcox”. For 

the analysis of differentially expressed genes between the VSMC clusters of the whole aorta 

and VSMC-only datasets from healthy arteries, each VSMC cluster was compared with the 

remaining VSMC clusters using the FindMarkers function. Genes expressed in at least 10% of 

the cells in either population and showing log2-fold change > 0.5 between populations were 

included in the analysis. Function FindAllMarkers was used for identifying cluster markers in 

the vascular injury and atherosclerosis datasets with log2 fold change required to be at least 

0.5 between the compared populations of cells. Genes were required to be expressed in either 

of the compared populations in at least 10% of the cells. In all cases tested genes were 

considered differentially expressed if the Bonferroni adjusted p-value was < 0.05 according to 

the Wilcoxon rank sum test.  

 

Differential gene expression analysis between cultured and ex vivo VSMCs was carried out 

using the R package scde (Kharchenko et al. 2014). Genes with greater than 10 read counts in 

at least 5 cells were included in the analysis. scde.error.models and scde.expression.prior 

functions were used to compute the error models and expression priors and the function 

scde.expression.difference (n.randomisations = 100) was used to analyse differential 

expression of genes between conditions. Genes were considered differentially expressed if 

their log fold change between conditions was greater than 1 and their absolute corrected Z 

score was greater than 1.96.  
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2.14 Gene ontology analysis  

Gene ontology analysis of the differentially expressed genes between the AA and DT regions 

according to bulk RNA-seq, as well as of the identified highly variable genes within the AA and 

DT regions, was performed using the PANTHER overrepresentation test, with the gene 

ontology database released on 1/1/2019 (Mi et al. 2019). Gene ontology analysis of genes 

differentially expressed in the VSMC cluster 6 of the whole aorta and VSMC-only datasets and 

between cultured and ex vivo VSMCs was also performed using the PANTHER 

overrepresentation test, but with gene ontology databases released on 3/7/2019 and 

8/10/2019 respectively. Gene ontology “biological process complete” was used for all 

analyses and the gene lists were analysed against the Mus musculus genome-wide 

background, unless otherwise stated. Fisher’s exact test and the Bonferroni correction for 

multiple testing were used for determining whether a gene ontology term was significantly 

overrepresented (adjusted p-value < 0.05). Gene ontology analysis of cVSMCpos and 

cVSMCneg signatures was carried out by M. Spivakov based on the “biological process” gene 

ontology using the clusterProfiler R package v3.8 (Yu et al. 2012).  

 

2.15 Fisher’s exact test 

Fisher’s exact test was used to determine whether prediction of only AA regional identities 

would be expected at random, given the bias towards AA predictions when the random forest 

model was applied to the 10X Genomics Chromium profiles of VSMCs. The fisher.test function 

in the R package stats was used, with the contingency table constructed based on the number 

of predicted AA or DT cells in cluster 6 (136 and 0 respectively) and the number of predicted 

DT or AA cells in other VSMC clusters (690 and 4343 respectively).  

 

2.16 Data availability 

Next generation sequencing datasets used in this thesis are publicly available (GSE117963, 

GSE79436), with the exception of the VSMCs in carotid ligation injury dataset, which is 

unpublished.  
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3 Regional differences between the aortic arch (AA) and 

descending thoracic aorta (DT) VSMCs 

3.1 Introduction 

In this chapter I focused on exploring the regional heterogeneity of VSMCs. Regional 

heterogeneity among VSMCs is thought to stem partly from the environmental differences 

experienced by the different areas of the vasculature, as well as from diverse embryonic 

origins of VSMCs located in different parts of the organism (Cunningham & Gotlieb 2005; 

Majesky 2007). For example, VSMCs located in the AA are derived from the neural crest, while 

VSMCs in the neighbouring DT region of the aorta have mesodermal origins (Majesky 2007). 

In addition, the environmental factors related to the curvature of the AA section and branch 

sites of the aorta are thought to impact VSMC heterogeneity (Cunningham & Gotlieb 2005; 

Chiu & Chien 2011). Together, these factors likely underpin the observations that the AA and 

DT sections of the aorta have different susceptibilities for atherosclerosis, with AA being more 

susceptible to atherosclerotic plaque development (Van Assche et al. 2011; Trigueros-Motos 

et al. 2013; Sinha et al. 2014). 

 

This chapter compares VSMCs from the AA and DT regions at the single-cell as well as at the 

population-wide level. The transcriptional differences between VSMCs derived from the AA 

and DT regions have been previously investigated at the population level (Van Assche et al. 

2011; Trigueros-Motos et al. 2013). In this chapter I extended the understanding of regional 

VSMC heterogeneity in the aorta by showing that the transcriptional differences are 

consistently expressed at the level of single cells. Additionally, I explored the heterogeneity of 

VSMCs within both vascular regions and observed heterogeneous expression of several 

disease-relevant genes. 

 

3.2 Results 

3.2.1 Single-cell analysis of VSMCs from the AA and DT aortic regions  

In collaboration with H.F. Jørgensen and M. Spivakov, we profiled individual ex vivo VSMCs 

from the AA and DT aortic regions of healthy mice using scRNA-seq. This approach allowed us 



43 
 

to address the differences between VSMCs from two regions of the aorta, as well as VSMC 

heterogeneity within a vascular bed. To obtain single ex vivo VSMCs, the aortas were first 

dissected from healthy mice and the endothelial cells were removed. The aorta was then 

separated into the AA and DT regions and the adventitial layer was removed from both 

regions. VSMCs resident in the medial layer were then dissociated to a single-cell suspension 

using enzymatic digestion separately for each region. We then used the Fluidigm C1 platform 

to capture single cells and to prepare the amplified cDNA for subsequent sequencing library 

preparation and sequencing (Figure 3.1).  

 

 

 

 

Figure 3.1: Schematic of the approach.  

To obtain a single-cell suspension of VSMCs, the medial layer of the aorta from the AA and DT regions 

was dissected and enzymatically digested. Single cells were then captured and cDNA libraries were 

prepared followed by sequencing and data analysis. Microscopy images were prepared by H.F. 

Jørgensen. Experimental work was carried out by M. Spivakov and H.F. Jørgensen and the figure was 

adapted from Dobnikar and Taylor et al. 2018. 

 

 

We obtained single-cell profiles of 173 cells. Raw sequencing reads were processed through 

the Babraham Institute pipeline and aligned to the GRCm38 mouse genome (details in 

Methods). I then generated the raw read count matrix and performed quality control to 

ensure that low quality cells do not affect the results of the analysis. Cells with very low or 

very high total read count (< 1,000,000 and > 3,500,000) and number of genes detected per 

cell (< 5000 and > 9500) were filtered out. This excluded the cells which may have burst and 

lost cytoplasmic mRNA, or were not sequenced to sufficient depth (low values) or could be 

doublets (high values). In addition, cells considered to be good quality had > 80% of reads 

mapping to genes, > 50% of reads mapping to exons and < 20% of mitochondrial reads (Figure 

3.2). In total, 143 cells (79 AA and 64 DT) passed the quality control filters.  
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Figure 3.2: Quality control of scRNA-seq data of ex vivo VSMCs.  

Violin plots showing distributions of total read count, number of genes detected, and the percentage 

of reads in genes, exons and mitochondria for the profiled AA and DT single cells. Red lines indicate 

quality control filtering thresholds. The figure is from Dobnikar and Taylor et al. 2018. 

 

 

The transcriptional profiles of good-quality cells were normalised, with only genes showing 

mean expression > 1 read included in the normalised dataset to reduce noise. All profiled cells 

expressed key VSMC marker genes Myh11, Acta2 and Tagln at high levels. Myocd, Smtn, Vcl 

and Cnn1, which were expressed at lower levels, were also detected in most cells (Figure 3.3, 

top panel). The fact that a few of the cells were negative for some of the VSMC marker genes 

may be due to dropout events, which are more frequent for lowly expressed genes. Dropout 

events can occur when a transcript is present in the cell, however it is not detected due to 

insufficient sequencing depth or imperfect mRNA capture and low amounts of starting 

material in single cells (Kharchenko et al. 2014). In agreement with this notion, detection rates 

of VSMC marker genes were comparable to housekeeping genes of similar expression levels 

(Figure 3.3, bottom panel). 
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Figure 3.3: Profiled AA and DT single cells express VSMC contractile marker genes.  

Violin plots showing the log2-transformed normalised read count distributions of VSMC marker genes 

Myh11, Acta2, Tagln, Myocd, Smtn, Vcl and Cnn1 (blue) and housekeeping genes Actb, Ppia, Eef2, 

Rpl13a, Gapdh (purple) in profiled AA and DT single cells. The figure is from Dobnikar and Taylor et al. 

2018. 

 

 

To further verify that all of the profiled single cells were VSMCs, I compared the scRNA-seq 

transcriptomes with profiles generated from pooled medial and adventitial cells. Pooled 

samples were prepared by H.F. Jørgensen and involved pooling 2000-4000 cells prior to library 

preparation (details in Methods). Principal component analysis and unsupervised k-means 

clustering showed that all single VSMCs clustered with the pooled medial samples, suggesting 

a similarity of their transcriptomes, and away from pooled adventitial cell samples (Figure 3.4a 

and b). This suggested that none of the profiled single cells were likely contaminants from the 

neighbouring adventitial tissue. I additionally compared the averaged scRNA-seq 

transcriptomes with conventional bulk RNA-seq measurements of VSMCs from the AA and DT 

regions of the aorta. Although there were some discrepancies among lowly expressed genes, 

averaged scRNA-seq transcriptomes generally correlated with averaged bulk RNA-seq 

measurements (R2 = 0.56, genes with mean expression greater than 3 log-transformed counts 

were included in the calculation, Figure 3.4c). 
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Figure 3.4: Profiled AA and DT single cells are distinct from pooled adventitial samples and share 

similarities with bulk RNA-seq VSMC profiles.  

a) Principal component analysis comparing single-cell transcriptomes (yellow and red circles) to pooled 

medial (green squares), adventitial SCA1+ (dark blue squares) and adventitial SCA1-- (light blue 

squares) samples. PC1 explained 9% and PC2 explained 5% of the variance. b) Results of k-means 

clustering (k=2) of the pooled and single-cell samples presented in panel a. Pooled samples are 

represented by squares and single-cell samples by circles. c) A scatterplot showing the correlation 

between averaged scRNA-seq profiles and averaged bulk RNA-seq profiles from ex vivo AA and DT 

regions (R2 = 0.56, where genes with mean expression greater than 3 log-transformed counts were 

included in the calculation).  

 

 

Having established that the profiled single-cells were VSMCs, I next investigated whether the 

processing of the ex vivo samples had significant effect on the transcriptional profile of the 

cells. During culture, VSMCs acquire characteristics of the synthetic state and cultured VSMCs 

are frequently used as a model for phenotypic switching (Rensen et al. 2007). To assess 

whether VSMCs profiled in our study retained their contractile phenotype during sample 

preparation, I compared the transcriptional profiles of ex vivo single VSMCs with publicly 
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available transcriptional profiles of single cultured VSMCs (GEO accession GSE79436, Adhikari 

et al. 2015). Both the ex vivo and cultured datasets were generated using the Fluidigm C1 

platform and the sequencing data was processed in an analogous way (details in Methods). 

The read counts were normalised jointly to account for differences in sequencing depth. 

Principal component analysis showed that transcriptional profiles of ex vivo and cultured 

VSMCs were clearly different, as the two populations clustered separately (Figure 3.5). 

Separate clustering of the cultured and ex vivo VSMCs may also be due to batch effects, as the 

two datasets were prepared in different laboratories. Although care has been taken to ensure 

that the data processing steps, such as alignment, counting the number of reads in genes and 

normalisation were carried out in the same way, batch effects cannot be ruled out. 

 

 

 

 

Figure 3.5: Transcriptional profiles of AA and DT ex vivo single cells are distinct from those of cultured 

VSMCs.  

PCA comparing ex vivo VSMCs (blue) with cultured VSMCs (green). Colour-coded circles represent 

individual cells and PCA was carried out based on 500 most variable genes. PC1 explained 25% of the 

variance and PC2 explained 4%. Transcriptional profiles of cultured VSMCs are publicly available at the 

Gene Expression Omnibus (GSE79436, Adhikari et al. 2015). The figure is adapted from Dobnikar and 

Taylor et al. 2018. 

 

 

To address this, I compared the expression of contractile marker genes as well as 

housekeeping genes between the ex vivo and cultured datasets. Cultured VSMCs showed 

reduced VSMC marker gene expression levels compared to ex vivo VSMCs (Figure 3.6a), while 
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the expression levels of all assessed housekeeping genes were comparable (Figure 3.6b). 

Differential gene expression analysis between the cultured and ex vivo cells identified 1278 

genes as upregulated in cultured VSMCs and 2647 genes as upregulated in ex vivo VSMCs 

(details in Methods). Gene ontology analysis of the 200 most upregulated genes for each 

condition identified “muscle structure development”, “muscle tissue development” and 

“potassium ion transport” as the three most overrepresented gene ontology terms for the ex 

vivo upregulated genes and “mitotic cell cycle”, “mitotic cell cycle process” and “cell division” 

as the three most overrepresented gene ontology terms for the genes upregulated in cultured 

cells. This suggests that the differences between the samples are likely driven by biological 

rather than technical factors and that VSMCs profiled in our study retained their contractile 

phenotype and did not undergo significant phenotypic switching during experimental 

procedures. Overall, the results presented in this section show that profiled AA and DT single 

cells are of good quality and have the characteristics expected of contractile VSMCs.  

 

 

 

 

Figure 3.6: Ex vivo VSMCs retained higher levels of VSMC contractile marker gene expression than 

cultured VSMCs.  

Boxplots show the log2-transformed normalised read count levels of VSMC marker genes (a) and 

housekeeping genes (b) in ex vivo (blue) and cultured (green) VSMCs. Transcriptional profiles of 

cultured VSMCs are publicly available at the Gene Expression Omnibus (GSE79436, Adhikari et al. 

2015). The figure is from Dobnikar and Taylor et al. 2018. 
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3.2.2 Population-level differences in gene expression between the AA and DT regions 

Given the low amounts of starting material and dropout events in single-cell data, bulk RNA-

seq can give a clearer picture of the average gene expression differences between two regions 

and can be a useful resource to guide scRNA-seq data analysis. We therefore performed 

conventional bulk RNA-seq of the two regions to obtain a robust set of genes, which are 

differentially expressed between the AA and the DT regions (collaboration with J. L. Harman). 

I performed the differential gene expression analysis, which revealed 442 differentially 

expressed genes (adjusted p-value < 0.01, log2 fold change > 1), of which 386 were 

upregulated in the AA and 56 upregulated in the DT region (Figure 3.7a). Among the genes 

upregulated in the AA were Pde1c and Spp1, which have been associated with the synthetic 

state of VSMCs (Lesauskaite et al. 2001; Cai et al. 2015, Figure 3.7a). Gene expression 

differences between the two regions were validated using RT-qPCR in independent samples 

for Dcn, Lum, Pde1c, Gpc3, Hoxa7 and 3632451O06Rik, with RT-qPCR showing consistent 

changes in expression between regions with RNA-seq for all tested genes (Figure 3.7b, 

collaboration with A.L. Taylor).  

 

 

 

 

Figure 3.7: Differentially expressed genes between the AA and DT regions.  

a) Volcano plot showing the –log10(p-value) versus log2 fold change for all genes detected using bulk 

RNA-seq. Genes identified as upregulated in the AA are shown in red and genes upregulated in DT are 

shown in yellow. Names of selected genes are indicated. b) Bar chart showing log2 fold change 

between the DT and AA as determined RT-qPCR (grey) compared with bulk RNA-seq (white).  A.L. 

Taylor performed the RT-qPCR analysis and the figure was adapted from Dobnikar and Taylor et al. 

2018. 

 



50 
 

Gene ontology (GO) analysis of genes upregulated in the DT region showed enrichment for 

GO terms related to regionalization and patterns specification, which was driven by higher 

expression levels of several Hox genes (Figure 3.8). Genes upregulated in the AA region 

showed enrichment for GO terms “regulation of cell population proliferation” and 

“inflammatory response” among others (Figure 3.8). This is consistent with previous reports 

of neural crest derived VSMCs (AA) being more responsive to treatment with inflammatory 

cytokines compared with mesoderm-derived (DT) VSMCs (Owens et al. 2010; Topouzis & 

Majesky 1996; Gadson et al. 1997; Cheung et al. 2012).  
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Figure 3.8: Enrichment for gene ontology terms (biological process) among genes upregulated in the 

AA and DT regions.  

Bar plots show the top 15 gene ontology terms, for which there was the strongest enrichment among 

the genes upregulated in the AA (a) and DT (b) regions. Shown gene ontology terms are ranked 

according to their adjusted p-values (details in Methods). 

 

 

Gene expression differences between the AA and DT regions were previously explored using 

microarrays (Trigueros-Motos et al. 2013). Consistent with previous findings (Trigueros-Motos 

et al. 2013), several Hox genes were found to be upregulated in the DT region (Figure 3.7a). 

Overall, the overlap between differentially expressed genes identified with microarrays and 

RNA-seq was relatively low, with 88 genes identified with both methods out of 442 and 246 

genes identified as differentially expressed with RNA-seq and microarrays respectively (Figure 
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3.9a). This could be due to a large proportion of genes identified as differentially expressed 

only using microarrays showing low expression levels, with 70% of these genes showing log2-

transformed read count < 4 in RNA-seq data (Figure 3.9b). Cross-hybridization and non-

specific background hybridization of probes limit the accuracy of transcript detection with 

microarrays (Zhao et al. 2014). This is particularly problematic for lowly expressed genes, 

which could explain the discrepancy between the RNA-seq and microarray measurements for 

the genes expressed at low levels.  

 

 

 

 

Figure 3.9: Comparison of the genes identified as differentially expressed using microarrays in a 

previous study (Trigueros-Motos et al. 2013) and bulk RNA-seq in our study.  

a) Scatterplot showing log2 fold change in expression between the AA and DT versus log2-transformed 

mean expression levels for all genes detected using RNA-seq. Genes identified as differentially 

expressed using RNA-seq only (red), microarrays only (green) and with both methods (blue) are 

indicated. b) Bar plot showing the percentages of differentially expressed genes detected using 

microarrays only (green), RNA-seq only (red) or both methods (blue) for different expression level 

thresholds. The figure is from Dobnikar and Taylor et al. 2018.  

 

 

In summary, I identified a refined list of differentially expressed genes between the AA and DT 

regions using bulk RNA-seq. I next explored how the region-specific gene expression is 

reflected at the single-cell level. 
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3.2.3 Transcriptional signatures of AA and DT regions are detectable at the single-cell 

level 

Genes identified as differentially expressed using bulk RNA-seq had a variety of expression 

profiles at the single-cell level. For example, some genes showed almost exclusive expression 

in one region only (Figure 3.10, top panel), whereas others were expressed in different 

proportions of AA and DT cells (Figure 3.10, bottom panel). This led us to question whether 

each individual cell expressed a regional signature or whether population level differences 

might be reflected in different proportion of cells expressing the observed gene signatures 

associated with each region.  

 

 

 

 

Figure 3.10: Examples of expression patterns of genes identified as differentially expressed in bulk 

RNA-seq at the single-cell level.  

Boxplots showing log2-transformed normalised read counts for single VSMCs from the AA (red) and 

the DT (yellow). Top panel shows examples of genes, where only one of the regions shows appreciable 

expression. Examples of genes, which are expressed by different proportions of AA and DT cells, are 

shown in the bottom panel. The figure is from Dobnikar and Taylor et al. 2018. 

 

 

To address this question, I assessed whether regional identity of VSMCs could be predicted 

with machine learning based on the transcriptomes of single cells. If a reliable predictive 

model could be built, this would suggest that each individual cell bears a signature of regional 

identity. I used a random forest model to classify each VSMC as either belonging to the AA or 
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the DT region. I chose to use a random forest approach as it provided insight into which genes 

were important for classification, in addition to the high performance of the random forest 

model in this setting. Firstly, single cells were randomly assigned to the training (75% of the 

cells) and test (25% of the cells) datasets (Figure 3.11). The test dataset was withheld during 

model construction and optimisation, and was only used to test the final model.  

 

 

 

 

Figure 3.11: Schematic of the random forest approach.  

A schematic showing the proportions of cells included in the training (75%) and test (25%) datasets 

during random forest model construction. The figure is adapted from Dobnikar and Taylor et al. 2018. 

 

 

Due to a limited number of samples available for model training, it was necessary to select a 

reduced set of genes, on which the model would be based. This step removed redundant 

genes and ensured that the model was interpretable and not overly complex. I started with 

the list of genes identified as differentially expressed using bulk RNA-seq and then used the 

recursive feature elimination algorithm to reduce the number of genes further. Recursive 

feature elimination first constructs a random forest model and ranks the genes based on their 

importance for model accuracy. Further random forest models are then constructed based on 

a series of predetermined numbers of genes found to be most important for model accuracy. 

The performance of these models is then evaluated to assess which sets of genes lead to good 

performance. Using this approach, I identified a set of 30 genes with a strong predictive power 

and constructed the final random forest model based on the training data. Several of the 30 

top predictive genes were among the most differentially expressed genes in bulk RNA-seq 

data (for example Pde1c, Hand2, Hoxa7, Gpc3 and 22104C18Rik), however the selection of 

other genes by recursive feature elimination was less obvious. This is likely due to gene 

expression differences between the bulk and single-cell datasets and the non-linear nature of 

the random forest algorithm, where performance is dependent on the whole set of genes used 
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in training rather than individual genes. The importance of the top 30 predictive genes for the 

accuracy of the final model is shown in Figure 3.12a.  

 

Next, the cells initially withheld for model testing were used to evaluate the performance of 

the model on unseen data. The model showed high levels of accuracy, correctly predicting 

17/18 AA cells and 14/15 DT cells from the test set. The accuracy of the random forest model 

is also demonstrated in Figure 3.12b, which shows that high levels of correct predictions are 

achieved while maintaining low levels of false positives. Consistent with the observation that 

the 30 genes used for random forest construction have the predictive power to classify cells 

as originating from the AA or DT regions, principal component analysis based on these genes 

showed a separation of the AA and DT cells (Figure 3.12c). Furthermore, Figure 3.12c shows 

that VSMCs from the test set (highlighted with black circles) were evenly distributed along the 

principal components 1 and 2 and thus form a representative test set. To examine whether 

the random forest model may be overfitting I performed an additional negative control. The 

regional labels of AA and DT single cells were randomly permuted and split into training and 

test datasets. An equivalent random forest model was than trained and tested on the 

transcriptomes with randomised regional labels. The performance of the random forest model 

on randomised data was markedly reduced compared with the original random forest model, 

and was only marginally better than random (Figure 3.12d), suggesting that significant 

overfitting during model training did not occur. 

 

Ex vivo VSMCs from the both of the AA and DT regions were profiled in two separate 

experiments. VSMCs from both of the batches were present in both the training and test 

datasets and were accurately classified as originating from the AA or DT regions. However, for 

VSMCs originating from the DT region, batch effects were apparent on the PCA plot based on 

the 30 random forest predictor genes (Figure 3.13). I have chosen not to apply batch 

correction to single-cell transcriptomes to ensure that any technical factors, which have likely 

affected one of the DT batches, would not introduce artificial differences between the AA and 

DT profiles. Instead I have ensured that VSMCs from both experiments were accurately 

predicted in the test dataset before making conclusions about the effectiveness of the random 

forest model and kept the technical issues in mind during further analysis.  
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Figure 3.12: Random forest analysis distinguishes ex vivo VSMCs from the AA and DT regions at the 

single-cell level.  

a) Bar plot showing the importance for model accuracy of genes used to construct the random forest 

model. b) Receiver operating characteristics curve showing the level of true positive rate of 

classification for a given level of false positive rate. The area under the curve (AUC) is indicated. c) PCA 

based on the 30 genes used for random forest construction. VSMCs from the AA are shown in red and 

VSMCs from the DT are shown in yellow. VSMCs assigned to the test set are circled in black. PC1 

explained 17% and PC2 8% of the variance. d) Results of a randomised negative control, where the AA 

and DT regional labels of transcriptional profiles were randomly permuted for both the training (left) 

and test (right) datasets. Panels a-c are from Dobnikar and Taylor et al. 2018. 
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Figure 3.13: Examination of batch effects in ex vivo VSMCs profiled in separate AA and DT 

experiments.  

PCA is based on the 30 predictor genes used in the random forest model. VSMCs from the AA are 

shown in dark red (batch 1) and pink (batch 2) and VSMCs from the DT are shown in orange (batch 1) 

or yellow (batch 2). PC1 explained 17% and PC2 8% of the variance. 

 

 

Overall, high performance of the random forest classifier suggested that each individual cell 

within the AA and DT region could be assigned to the region of origin based on its 

transcriptional profile. If population level differences in gene expression profiles between the 

AA and DT regions were due to different proportions of cell populations present in each 

region, an accurate classification model would not be expected. These results therefore 

suggest that the regional identity signature is expressed at the level of individual cells.  

 

3.2.4 Heterogeneity of VSMCs within the AA and DT vascular beds 

My next objective was to explore whether VSMCs from the AA and DT regions showed 

heterogeneity within each vascular bed and if so, which genes were highly variable. Variability 

in observed gene expression levels between cells from the same vascular bed is due to both 

technical and biological effects. Low amount of starting material is one of the main technical 

factors contributing to the resulting cell-cell variability (Brennecke et al. 2013). Such technical 

variability is dependent on the mean expression level of a gene and decreases for highly 
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expressed genes as higher transcript levels are captured more consistently across cells and 

dropout effects become less dominant. I was interested in the genes, which showed variability 

in expression levels beyond the technical noise, given their mean expression level.  

 

To assess which genes were expressed heterogeneously, I adopted an approach for identifying 

highly variable genes (Lun et al. 2016) based on the relationship between variance and mean 

log expression of profiled genes. To estimate the background technical variation I fitted a 

parametric trend to the variance of log expression levels versus mean log expression levels of 

all genes. The assumption of this method was that a large majority of genes were not variably 

expressed between the cells, therefore the minority of genes that were expressed 

heterogeneously should not skew the background estimation. Technical background variation 

was then subtracted from the total variance of each gene. A gene was identified as highly 

variable if the remaining biological component of variance was significantly greater than zero 

(adjusted p-value < 0.05, details in Methods, Lun et al. 2016). This resulted in 176 genes being 

identified as highly variable in the AA region and 120 in the DT region (Figure 3.14), with 65 of 

them common to both regions. Interestingly, only two of the genes identified as highly 

variable in at least one region (Wif1 and Lum) were also identified as differentially expressed 

between AA and DT (Section 3.2.2), suggesting that heterogeneity within each vascular region 

is largely driven by factors independent of regional identity.  

 

 

 

Figure 3.14: Highly variable genes in AA and DT regions. 

Scatterplots showing the variance of log2-transformed normalised read counts versus mean log2-

transformed normalised read counts, with each black dot representing a gene. Genes identified as 

highly variable in the AA (red, left) and the DT (yellow, right) are indicated. Blue line represents the 

estimation of technical variance. The figure is from Dobnikar and Taylor et al. 2018. 
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To assess the nature of the genes, which were identified as highly variable, I used gene 

ontology analysis. Highly variable genes within the AA region showed enrichment for “positive 

regulation of vasculature development” (genes Pdgfd, Hspb6, Nras, Hk2, Efnb2, Adm, Anxa1, 

F3, Rapgef2, Myocd) and “regulation of cell growth” (genes Cd44, Thrb, Fn1, Rab11a, Rtn4, 

Ddx3x, Tram1, Rbbp7, Gja1, Sdcbp, Sgk1, Myocd, Efna5, Rgs4) among enriched gene ontology 

terms (Figure 3.15). Highly variable genes within the DT region showed enrichment for gene 

ontology term “regulation of cell population proliferation” (genes Cd44, Thrb, Itga1, Stat1, 

Tes, Wisp2, Pdgfd, Atf3, Rtn4, Anxa2, Dsp, Gpx1, Nfkbia, Fth1, Rgs5, Efnb2, Nupr1, Ctnnb1, 

Asph, Cdh13, Anxa1, Gja1, Cnbp, Hipk1, Rps6kb1). In addition, a number of genes identified as 

highly variable were involved in processes which play an important role in VSMC biology in 

disease, such as proliferation and migration. While gene ontology terms “regulation of cell 

proliferation” and “regulation of cell migration” were not significantly enriched among the 

highly variable genes in the AA or DT regions, a number of highly variable genes were 

associated with these gene ontology terms. Forty of the genes identified as highly variable 

were associated with the gene ontology term “regulation of cell proliferation”, including Rgs5, 

Gja1, Pdgfd, Irf1, Anxa1, Anxa2, Myocd, Fn1 and Nfkbia. 21 of the highly variable genes in 

either region mapped to the go term “regulation of cell migration”, including Pdgfd, Anxa1, 

Anxa3, Myocd, Fn1, Adamts1, Gja1 and Postn among others. Expression profiles for some of 

the highly variable genes are shown in Figure 3.16. 
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Figure 3.15: Gene ontology analysis of highly variable genes in the AA and DT regions.  

Enrichment for gene ontology terms (biological process) among genes identified as highly variable in 

the AA (a) and DT (b) regions. Bar plots show the significantly enriched gene ontology terms, ranked 

by their adjusted p-values (details in Methods). 

 

 

Several of the genes identified as highly variable within the AA or DT regions were previously 

investigated in the context of cardiovascular disease. For example, Anxa1 has been observed 

to be expressed at lower levels in VSMCs isolated from asymptomatic compared with 

symptomatic human plaques (Viiri et al. 2013). Pdgfd is an activator of the PDGF receptor β 

and overexpression of Pdgfd in transgenic mice was observed to lead to increased VSMC 

proliferation and vascular remodelling (Pontén et al. 2005). Rgs5 was observed to promote 

atherosclerotic plaque formation and its expression was found to be increased during arterial 

remodelling (Arnold et al. 2014). Rgs5 is also involved in the regulation of blood pressure and 

VSMC contraction (Gunaje et al. 2011). Overall, this analysis shows that VSMCs from the same 

vascular region show heterogeneous expression of a range of genes related to biological 

functions, which are important for VSMC biology in healthy arteries as well as in disease. 
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Figure 3.16: Expression levels of highly variable genes in profiled VSMCs.  

Violin plots showing the distribution of log2-transformed normalised read counts of selected highly 

variable genes across the cells from the AA (red) and the DT (yellow). The median is marked with a 

grey line.  

 

 

3.2.5 Highly variable gene expression in independent VSMC profiles 

Highly variable gene analysis in Section 3.2.4 identified individual genes which showed 

heterogeneity in expression levels among VSMCs. I was next interested in examining whether 

subsets of highly variable genes showed coordinated variability between individual VSMCs. 

However, the number of cells profiled using the Fluidigm C1 platform was too low to detect 

clear co-expression patterns. Instead, I examined the expression patterns of highly variable 

genes in independent VSMC profiles. To this end, I used two scRNA-seq datasets of thousands 

of aortic cells generated using the 10X Genomics Chromium platform in collaboration with A.L. 

Taylor. Both datasets were generated using aortas of mice on a VSMC lineage traced 

background (details in Methods). The first dataset was generated only from medial cells FACS-

sorted for VSMC-lineage label expression. The second dataset was generated from the whole 

aorta and contains adventitial and endothelial cells alongside VSMCs. 

 

3.2.6 Processing of the 10X Genomics Chromium VSMC transcriptomes 

Sequencing data of single-cell transcriptomes generated using the 10X Genomics Chromium 

platform was processed through the 10X Genomics pipeline (details in Methods). I then 

filtered the transcriptomes based on the number of UMIs detected per cell, the number of 

genes detected and the proportion of mitochondrial reads (Figure 3.17, details in Methods) 
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and normalised the profiles of the remaining 5686 cells. I then used principal component 

analysis to identify the major sources of variability between the cells. To reduce noise and 

dimensionality, clustering analysis was based on the results of principal component analysis, 

rather than on the expression levels of individual genes. It is desired to exclude non-

informative principal components from the analysis to reduce noise and overfitting, however 

care needs to be taken that important aspects of heterogeneity are not excluded from the 

analysis. The standard deviation of identified principal components and the clusters of cells 

they delineate are shown in Figure 3.18. The first 15 principal components, all of which 

explained significantly more variance between the cells than would be expected at random, 

were included in the final clustering analysis (details in Methods). In total, 9 clusters were 

identified. Clusters 0, 1, 2, 3, 5 and 6 expressed VSMC marker genes, such as Myh11, and all 

contained cells from both the whole aorta and the VSMC-only datasets (Figure 3.19). Cells 

within clusters 4 and 7 expressed adventitial marker gene Pdgfra or the endothelial marker 

gene Cdh5 and were assigned adventitial and endothelial identities respectively (Figure 3.19).  

 

 

 

 

Figure 3.17: Quality control of the VSMCs only (red) and whole aorta (blue) 10X Genomics Chromium 

datasets.  

Violin plots show the distribution of values for total UMI count, number of genes detected and 

proportion of mitochondrial reads. Black dots represent individual cells and red lines indicate the 

quality control thresholds. Cells were considered to be of good quality if total UMI count was between 

1000 and 8000, number of genes detected was between 500 and 2500 and the percentage of 

mitochondrial reads was below 8%. 
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Figure 3.18: Principal component analysis and selection of principal components for further analysis.  

Top left plot shows the standard deviation of principal components 1-20. The higher the standard 

deviation, the more variance is explained by that component. The other plots show the values of 

principal components 1-16 for profiled cells. Each cell is represented by a circle and is coloured-coded 

by cluster membership. PC1 separated VSMCs (clusters 0, 1, 2, 3, 5 and 6) from other profiled cells, 

PC2 separated the endothelial cells (cluster 7), P3 further separated endothelial cells as well profiles 

likely originating from resident immune cells (cluster 8), while PCs 4 and 5 further separated cluster 8.  
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Figure 3.19: Clustering analysis and identification of cell types within the VSMC-only and whole aorta 

10X Genomics Chromium datasets.  

a) Results of clustering analysis (details in Methods) with adventitial, endothelial and VSMC clusters 

indicated on a t-SNE plot. b) Distribution of cells from the VSMC-only and whole aorta datasets, which 

confirmed assignemnt of VSMC cluster identities. Cells from the VSMCs-only dataset are shown in red 

and whole aorta dataset cells in blue. (c-d) Expression levels of VSMC marker Myh11, adventitial 

marker Pdgfra and endothelial marker Cdh5 are colour coded on a t-SNE plot, with darker gray 

representing higher expression levels.  

 

 

3.2.7 Highly variable genes show co-expression in VSMCs profiled using the 10X 

Genomics Chromium platform  

Next I investigated whether highly variable genes identified in the Fluidigm C1 dataset showed 

differential expression in specific clusters of VSMCs. I performed differential expression 

analysis for each VSMC cluster relative to the remaining VSMCs (log2 fold change > 0.5 and 

adjusted p-value < 0.05, details in Methods) and examined the overlap of upregulated and 

downregulated genes in each cluster with previously identified highly variable genes (Table 

3.1).  
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 Cluster 

0 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

5 

Cluster 

6 

Total upregulated genes 0 0 64 19 3 62 

Of which highly variable 

genes 

0 0 17 1 0 3 

Total downregulated genes 55 3 1 0 0 42 

Of which highly variable 

genes 

13 0 1 0 0 5 

 

Table 3.1: Table shows the numbers of upregulated and downregulated genes within each of the VSMC 

clusters (details in Methods), which overlap with highly variable genes identified in either the AA or DT 

region.  

 

 

One of the most highly variable genes in the Fluidigm C1 dataset Rgs5, was found to be 

upregulated in cluster 6 and downregulated in cluster 2 (Figure 3.20a). Several genes were 

identified as differentially upregulated or downregulated in Cluster 6, suggesting that its 

expression profiles differed more substantially than the remaining VSMC clusters (Table 3.1). 

Clusters 1 and 5 did not differentially express any of the highly variable genes and the only 

highly variable gene upregulated in cluster 3 was Gnb1 (Table 3.1). VSMCs in cluster 2 

expressed 17 highly variable genes at higher levels and 13 highly variable genes were 

downregulated in cluster 0 (Table 3.1). Notably, 12 of the highly variable genes upregulated 

in cluster 2 were also downregulated in cluster 0 (Figure 3.20b). Expression patterns of the 

most strongly upregulated genes in cluster 2 (Nfkbia, Wsb1 and Ppp1r15a) and downregulated 

genes in cluster 0 (Nfkbia, Gadd45b and Ppp1r15a) are shown in Figure 3.20c. Observed 

differences in expression levels of highly variable genes between clusters 0 and 2 are not 

explained by quality control parameters, such as the total normalised log-transformed 

expression levels or the number of genes detected per cell (Figure 3.20d). Overall, this analysis 

suggests that a subset of highly variable genes is co-expressed in VSMCs from healthy arteries.  
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Figure 3.20: Highly variable gene expression in VSMC profiled as part of the 10X Genomics Chromium 

whole aorta and VSMCs-only datasets.  

a, c) Expression levels of highly variable genes Rgs5 (a), Nfkbia, Wsb1, Gadd45b and Ppp1r15a (c) are 

colour coded on a t-SNE plot, with darker gray representing higher expression levels. b) Barplots 

showing the highly variable genes, which are upregulated in cluster 2 (left, green) and downregulated 

in cluster 0 (right, left). The log2 fold change of each gene within clusters 2 and 0 is shown. d) Violin 

plots representing the quality control parameters of total normalised log expression and the number 

of genes detected per cell, shown separately for each cluster, as defined in Figure 3.19a. Black dots 

represent individual cells.  
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3.2.8 Application of the random forest model to independent VSMC profiles  

I was next interested in how generalizable the findings from the random forest analysis were 

to independent datasets. While the random forest model achieved high accuracy for 

predicting regional identity of aortic VSMCs within the Fluidigm C1 dataset, I wanted to 

explore how versatile the model was for predicting regional identity in sparser datasets. I used 

the scRNA-seq datasets of aortic cells generated using the 10X Genomics Chromium described 

in Section 3.2.6, to explore the predictive power of the random forest classifier. It is important 

to note that the AA and DT regional identity of the cells in these datasets was not known in 

advance, therefore they could not be used as a formal validation of the random forest 

classifier. Instead, I applied the classifier to these datasets to learn whether it has any 

predicative power based on expression levels of known differentially expressed genes.  

 

I first checked the expression of random forest predictor genes in VSMCs profiled using the 

10X Genomics Chromium platform. While all 30 predictor genes were expressed at 

appreciable levels in the Fluidigm C1 dataset, expression was much sparser in the 10X 

Genomics Chromium dataset, with 11 out of 30 genes expressed in less than 1% of VSMCs. 

The median percentage of VSMCs expressing a particular predictor gene was 56% for Fluidigm 

C1 cells and 4% for 10X VSMCs (Figure 3.21a). Additionally, the number of random forest 

predictor genes expressed per cell was drastically lower in the 10X Genomics Chromium 

dataset compared with the Fluidigm C1 dataset (Figure 3.21b). Such sparsity in random forest 

predictor genes’ expression is expected to affect the classifier performance. This was 

particularly problematic for DT cells, as there were only 9 predictor genes, which were 

upregulated in the DT region according to bulk RNA-seq, as opposed to 21 AA predictors.  
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Figure 3.21: Random forest predictor genes are expressed sparsly in VSMCs-only and whole aorta 

10X Genomics Chromium datasets.  

a) Violin plot showing the proportion of cells that express a random forest predictior, with dots 

representing individual predictor genes. Median levels for 10X Genomics Chromium (light grey) and 

Fluidigm C1 (dark grey) are indicated with a black bar. b) Barplots showing the distribution of the 

number of random forest predictors expressed in an individual cell in the 10X Genomics Chromium 

(top) and Fluidigm C1 (bottom) datasets. 

 

 

The random forest classifier predicted that 690 VSMCs were of DT origin and 4479 VSMCs 

from the AA. The outcome was likely biased towards AA predictions due to a higher number 

of random forest predictor genes identified as upregulated in the AA with bulk RNA-seq. As 

an initial check of the regional predictions, I examined the expression levels of random forest 

predictor genes Hand2, Sfrp2, Hoxa7 and Ccdc3 (Figure 3.22a). As expected, Hand2 and Sfrp2 

were overall expressed at higher levels in VSMCs predicted to be of the AA origin, while Hoxa7 

and Ccdc3 showed higher expression levels in VSMCs predicted to originate from the DT 

region. Since Hand2, Sfrp2, Hoxa7 and Ccdc3 were part of the random forest model, the fact 

that higher expression of these genes was observed in the appropriate region was not 

verification of whether the regional identity predictions were sensible. To partially overcome 

the limitation of not knowing the regional identity of VSMCs in advance, I examined the 

expression levels of all genes, which were identified as differentially expressed in either the 

AA or DT regions according to bulk RNA-seq. Figure 3.22b shows that overall single cells with 

predicted AA identity showed higher expression levels of genes upregulated in the AA region 
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than DT-predicted cells. Similarly, cells predicted to originate from the DT showed overall 

higher expression levels of genes upregulated in the DT region.  

 

 

 

 

Figure 3.22: Random forest model applied to 10X Genomics Chromium datasets.  

a) Boxplots showing the expression levels of AA-upregulated random forest predictors Hand2 and 

Sfrp2 and DT-upregulated predictors Hoxa7 and Ccdc3 in 10X profiled VSMCs, which were predicted to 

originate from either the AA or DT region. b) Boxplots showing the PC1 score in VSMCs segregated 

based on their predicted regional identity. Principal component analysis is based on all genes identified 

as upregulated in either AA (left) or DT (right) using bulk RNA-seq. Higher PC1 score represents higher 

overall expression in a cell (details in Methods). c) t-SNE plot colour coded by the random forest 
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prediction for each VSMC. AA predictions are shown in red and DT predictions in blue. d) Barplot 

showing the log2 fold change in expression between cluster 6 and other VSMCs for genes differentially 

expressed in cluster 6 as well as in bulk RNA-seq. Genes included in the random forest model are 

indicated in grey. e, f) Barplots showing the top 10 overrepresented gene ontology terms ranked by 

adjusted p-value, which were found to be significantly enriched among the genes upregulated (e) or 

downregulated (f) in cluster 6 relative to other VSMCs.  

 

 

The majority of VSMC clusters contained cells which were predicted as originating from both 

the AA and the DT regions. Cluster 6, however, contained only cells predicted to originate from 

the AA region (Figure 3.22c). Despite the fact that more VSMCs were predicted as originating 

from the AA than the DT region, observing 0% of DT predictions in cluster 6 and 16% of DT 

predictions in other VSMCs would not be expected at random (Fisher’s exact test, p = 4e-9, 

details in Methods). Differential gene expression analysis discussed in Section 3.2.7 identified 

62 genes as upregulated and 42 genes as downregulated in cluster 6 relative to other VSMC 

clusters. Of the 62 genes identified as upregulated in cluster 6, 16 were upregulated in the AA 

bulk RNA-seq profiles, while none of the 62 genes were expressed at significantly higher levels 

in the DT bulk RNA-seq profiles. Additionally, one of the genes downregulated in cluster 6 was 

found to be upregulated in the DT region in bulk RNA-seq (Figure 3.22d). Importantly, 11 of 

the 16 AA genes upregulated in cluster 6 and in bulk AA profiles were not part of the random 

forest model, which supported the assignment of AA identities to VSMCs in this cluster by the 

classifier (Figure 3.22d). Gene ontology analysis of genes upregulated in cluster 6 showed 

overrepresentation of genes involved in extracellular matrix organisation, regulation of cell 

population proliferation and regulation of ossification, among other functions (Figure 3.22e). 

Downregulated genes showed overrepresentation for genes involved in positive regulation of 

cell migration and cell adhesion, as well as other gene ontology terms (Figure 3.22f). These 

functions are relevant for VSMC biology, suggesting that cluster 6 may have a functional role 

within the AA region. Since VSMCs within cluster 6 comprise only 3% percent of all VSMCs 

profiled using the 10X Genomics Chromium platform, this subpopulation of cells was likely to 

rare to have been detected in the Fluidigm C1 dataset, where only 79 AA cells were profiled.  

 

In conclusion, this analysis suggested that the random forest model may be able to identify 

the AA or DT affiliation of cells in the 10X Genomics Chromium dataset, however the sparsity 

of the data is likely a limiting factor for the performance of the model. Overall, further 
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validation where the regional identities of VSMCs are known in advance is required to form 

concrete conclusions about the performance of the model in this setting. Two separate 10X 

Genomics Chromium datasets of the AA and DT VSMCs would also enable the validation of 

the observation that VSMCs in cluster 6 appear to originate only from the neural crest-derived 

AA region. Interestingly, a similar cluster of VSMCs was observed after carotid ligation injury 

in carotid arteries, which are also derived from the neural crest (Section 5.2.2). 

 

3.3 Discussion 

In this chapter I used single-cell transcriptomics to probe the heterogeneity of VSMCs. In 

particular, I focused on the regional heterogeneity between parts of the aorta with distinct 

developmental origins, as well as on the heterogeneity within an aortic region. All profiled 

VSMCs shared common features, such as expression of VSMC marker genes. However, 

consistent differences in gene expression profiles were observed between individual VSMCs 

originating from the AA or DT aortic regions. Moreover, I observed significant cell-to-cell 

heterogeneity with respect to genes involved in VSMC biology and disease within a vascular 

bed. This suggests that VSMC heterogeneity in the healthy state may contribute to differential 

responses to stimuli of VSMCs.  

 

3.3.1 Regional heterogeneity of VSMCs 

Several studies have described the regional differences in susceptibility to vascular disease, 

such as atherosclerosis and vascular calcification (Haimovici & Maier 1971; DeBakey & Glaeser 

2000; Leroux-Berger et al. 2011). In this section I studied the transcriptional differences 

between the atherosclerosis-susceptible AA and atherosclerosis-resistant DT regions, in which 

the VSMC populations are of distinct embryonic origins (Trigueros-Motos et al. 2013; Majesky 

2007). Transcriptional variation between the AA and DT regions has been previously 

investigated using microarrays (Trigueros-Motos et al. 2013; Van Assche et al. 2011). Bulk 

RNA-seq analysis replicated the key findings of higher levels of Hox gene expression in VSMCs 

from the DT region. Among the genes identified as upregulated in the DT region according to 

bulk RNA-seq and previous microarray experiments was Hoxa9, which has been previously 

reported to reciprocally inhibit the proinflammatory transcription factor Nfkb1 in VSMCs 

(Trigueros-Motos et al. 2013). Trigueros-Motos et al. (2013) further reported higher levels of 
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Nfkb1 activity in the AA, which provides a possible explanation of higher susceptibility for 

atherosclerosis through increased inflammation. In agreement with this, gene ontology 

analysis of AA upregulated genes according to bulk RNA-seq revealed enrichment for genes 

involved in the inflammatory response.  

 

Distinct embryonic origins of the neuroectoderm-derived AA and mesoderm-derived DT 

VSMCs are one of the factors affecting the transcriptional differences between the two 

regions. However, there are other factors which could be underpinning the observed 

differences. For example, environmental factors including the local hemodynamic forces and 

the levels of mechanical stress experienced in a given vascular bed may play a role. For 

instance, atherosclerotic plaques frequently develop at branching sites or in areas 

experiencing high mechanical forces (Cunningham & Gotlieb 2005; Chiu & Chien 2011). In this 

analysis it was not possible to separate the confounding effects of differing local environments 

and distinct embryonic origins. To isolate the effects of embryonic origin on the susceptibility 

to atherosclerosis, grafts from the atherosclerosis-susceptible canine abdominal aorta have 

been transplanted into the jugular vein in a previous study (Haimovici & Maier 1971). The 

grafts retained higher susceptibility for atherosclerosis in the lower pressure environment of 

the jugular vein, suggesting an intrinsic difference in disease susceptibility (Haimovici & Maier 

1971). More specifically, the transcriptional differences between VSMCs from the AA and DT 

regions have previously been addressed in the context of environmental factors. Advances in 

in vitro programming of pluripotent stem cells have enabled in vitro differentiation of VSMCs 

of the neuroectodermal or the mesodermal lineages (Cheung et al. 2012). Higher expression 

levels of several Hox genes, including Hoxa9, have been observed in VSMCs of mesodermal 

lineage compared to neuroectodermal VSMCs, both of which have been derived from human 

pluripotent stem cells in vitro (Cheung et al. 2012; Trigueros-Motos et al. 2013). This finding 

suggests that differences in expression between the two regions are not entirely due to 

environmental factors, and indicates that observed transcriptional differences between the 

VSMCs from the AA and DT regions may apply in human VSMCs.  

 

Bulk RNA-seq analysis has provided a refined list of differentially expressed genes between 

the two regions. However, population-level profiling approaches are unable to determine 

whether the observed differences are uniformly present in individual cells or whether they 

are due to differential composition of VSMCs in the two regions. The work in this chapter, 
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enabled by recent advances in single-cell transcriptomics, has looked at regional 

heterogeneity of aortic VSMCs at the single-cell level. The fact that it was possible to construct 

an accurate classifier suggests that the transcriptional signatures of the AA and DT regions are 

present at the level of individual cells, as reliable classification would not be possible 

otherwise. 

 

The application of the random forest model to aortic VSMCs profiled using the 10X Genomics 

Chromium platform indicates that the random forest has some discerning power between the 

AA and DT VSMCs in sparse datasets. This suggests that such an approach could be useful for 

assigning regional identities to VSMCs within larger datasets such as the mouse single-cell 

atlas (The Tabula Muris Consortium 2018), where AA and DT regions were not profiled 

separately. Interestingly, the application of the random forest classifier to the whole aorta and 

VSMC-only datasets profiled using the 10X Genomics Chromium platform highlighted a subset 

of VSMCs, which were predicted to originate exclusively from the AA region and expressed 

Rgs5 at higher levels than average for VSMCs. However, further validation in settings where 

the AA and DT identities of VSMCs are known in advance is required to test the performance 

of the model in sparser datasets, and to validate whether the subset of cells with increased 

Rgs5 expression is present exclusively in the AA region.  

 

3.3.2 Highly variable genes 

High variability in levels of VSMC marker proteins between VSMCs resident in the same 

vascular bed has been previously observed during response to injury (Frid et al. 1994; Rensen 

et al. 2007). Rensen et al. (2007) proposed that VSMCs exist in a spectrum of phenotypes 

ranging from contractile to synthetic within healthy tissue. I hypothesised that variability in 

the healthy state may underpin this differential response of VSMCs to stimulus. Despite the 

uniform expression of regional signatures in single cells, I observed significant cell-to-cell 

heterogeneity within each vascular bed. Several genes identified as highly variable within a 

vascular bed are known to be involved in VSMC biology and disease. Interestingly, there was 

a low overlap between genes identified as highly variable and those identified as differentially 

expressed between the AA and DT regions using bulk RNA-seq. This suggests that cell-to-cell 

heterogeneity within a vascular bed is largely driven by factors independent of the regional 

identity. 
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The approach taken to identify highly variable genes in this chapter relies on the estimation 

of the background technical variation level and identifying genes with significantly higher 

variability. This approach does not exclude genes which may show true cell-to-cell variation at 

the time of profiling, but where such variation does not necessarily have functional 

implications. Such examples of stochastic variation include transcriptional bursts (Raj & van 

Oudenaarden 2008). Additionally, variable expression of a gene does not necessarily reflect 

variable activity levels of the corresponding protein product. There is potential for post-

transcriptional regulation, which is not captured with the single-cell RNA-seq approach. Since 

the variability of expression of individual genes could be driven by factors which do not 

influence the functional activity levels of the resulting protein, it would be informative to look 

for coordinated variability within a set of highly variable genes. The numbers of cells profiled 

using the Fluidigm C1 method were too low to detect co-expression patterns within highly 

variable genes. However, examining the VSMCs profiled using the 10X Genomics Chromium 

platform revealed that a subset of highly variable genes are co-expressed.  

 

Heterogeneity between single VSMCs at the transcriptional level is in agreement with previous 

observations that several G-protein coupled receptor genes are heterogeneously expressed 

in different vascular regions as well as among aortic VSMCs (Kaur et al. 2017). This study was 

based on single-cell RT-qPCR and further investigated the differences between aortic VSMCs 

from healthy vessels and atherosclerotic arteries. The authors observed that the 

transcriptional profiles of a subset of healthy VSMCs matched the profiles of atherosclerotic 

VSMCs. This subset of healthy VSMCs showed upregulation of a number of G-protein coupled 

receptor genes, including Gprc5b, and was reported to be localised at the inner curvature of 

the AA, which is at increased risk of plaque development due to disturbed blood flow in the 

region (Kaur et al. 2017; Chiu & Chien 2011). No clear segregation of VSMCs with analogous 

expression profiles was observed in either the 10X Genomics Chromium or the Fluidigm C1 

datasets, possibly due to lower sensitivity of the method compared to the RT-qPCR approach 

taken by Kaur et al. (2017). Gprc5b was only detected at low levels in a small numbers of cells, 

and its expression levels may be too low to reliably detect it with scRNA-seq.  
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3.3.3 Conclusion 

In conclusion, the work in this chapter delineated the transcriptional heterogeneity of VSMCs 

between different regions, as well as between individual VSMCs from the same vascular bed. 

I have shown that reliable regional classification of individual VSMC transcriptomes is possible, 

and identified a putative population of cells present only in the AA by applying the classifier 

to an independent dataset. The analysis of highly variable genes within each vascular bed 

revealed significant cell-to-cell heterogeneity of many disease-relevant genes. Furthermore, a 

subset of highly variable genes was co-expressed within the 10X dataset. In the future, it 

would be interesting to investigate the spatial positioning of VSMCs expressing highly variable 

genes at different levels. Single-molecule fluorescence in situ hybridisation or immunostaining 

for a subset of co-expressed highly variable genes could reveal whether there are any areas of 

the aorta, where consistently higher signal is observed. In particular, it would be informative 

to explore whether areas of disturbed flow, such as the branch sites, express increased levels 

of disease-relevant highly variable genes in healthy arteries. This may aid in the investigation 

of the early transcriptional changes in VSMCs, which are involved in atherosclerosis and 

provide direction for future investigations into early targeting of VSMCs involved in disease. 
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4 Rare subpopulation of SCA1-positive VSMCs detected in 

healthy arteries 

4.1 Introduction 

VSMCs possess a remarkable capacity to switch from a contractile muscle phenotype to a 

proliferative synthetic state in response to injury or inflammation (Rensen et al. 2007). 

However, recent studies have challenged the assumption that the majority of VSMCs generate 

the phenotypically modulated VSMC populations under these conditions. For example, it has 

been found that only very few VSMCs undergo extensive proliferation in atherosclerosis, 

which results in clonal or oligoclonal VSMC patches in atherosclerotic plaques (Chappell et al. 

2016; Jacobsen et al. 2017).  

 

There have been previous reports of progenitor populations within the vasculature, which 

have been proposed to differentiate towards VSMCs and to contribute to atherosclerotic 

plaque formation and blood vessel calcification (Hu et al. 2004; Passman et al. 2008; Kramann 

et al. 2016). However, several studies showed that VSMCs within the atherosclerotic plaque 

originated from VSMCs, which expressed contractile differentiation markers prior to 

atherosclerosis plaque development (Nemenoff et al. 2011; Gomez et al. 2013; Feil et al. 2014; 

Shankman et al. 2015; Chappell et al. 2016; Jacobsen et al. 2017).  

 

Jointly, these findings have suggested that VSMCs are functionally heterogeneous with 

respect to their response in atherosclerosis. In collaboration with H.F. Jørgensen’s group, we 

pursued the hypothesis that the differential VSMC response to injury and inflammation may 

be underpinned by the heterogeneity of VSMCs already present in healthy arteries. To 

characterise this heterogeneity, we combined scRNA-seq with a VSMC-specific lineage 

labelling system and profiled the transcriptomes of single VSMC-lineage cells isolated from 

healthy arteries. The analysis revealed a rare subpopulation of VSMCs expressing the 

progenitor marker SCA1, which expressed transcriptional signatures characteristic of the 

synthetic VSMC state.  
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4.2 Results 

4.2.1 Detection of SCA1-positive cells of VSMC lineage in healthy arteries 

Analysis of the transcriptomes of ex vivo VSMCs from the AA and DT regions revealed that one 

of the DT cells co-expressed VSMC marker genes as well as the Ly6a transcript (Ly6a/Sca1) at 

high levels, which encodes the SCA1 protein (Figure 4.1a). Subsequent flow cytometry analysis 

of medial aortic cells stained using the anti-SCA1 antibody showed that 0.5-1% of medial cells 

were SCA1-positive (Figure 4.1b, collaboration with H.F. Jørgensen). SCA1 is a progenitor 

marker (Holmes & Stanford 2007) and was previously found to be expressed in progenitor cell 

populations within the vasculature (Hu et al. 2004; Passman et al. 2008). This prompted us to 

explore the subpopulation of medial SCA1-positive cells further.  

 

 

 

 

Figure 4.1: Ly6a/Sca1 transcript and SCA1 protein is expressed in a small number of medial cells.  

a) Violin plots showing log2-transformed normalised read counts of Myh11, Acta2, Myocd and 

Ly6a/Sca1 in ex vivo VSMCs from the AA and DT regions profiled using the Fluidigm C1 platform. The 

cell co-expressing VSMC marker genes and Ly6a/Sca1 is shown in red. b) Flow cytometry analysis of 

SCA1 protein expression in medial cells. Medial cells were stained either with allophycocyanin (APC) 

conjugated to IgG control (left) or the SCA1 antibody (right). Flow cytometry was carried out by H.F. 

Jørgensen and all panels are from Dobnikar and Taylor et al. 2018. 

 

 

We next used a VSMC-specific lineage tracing system to establish whether SCA1-positive 

medial cells are of the VSMC lineage. We used Myh11-CreERt2 transgenic animals in 

combination with the eYFP single-colour or the R26-Confetti multi-colour reporter (Chappell 
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et al. 2016) to induce permanent fluorescent protein expression in VSMCs after tamoxifen 

injection (Figure 4.2, details in Methods). As Myh11 is a specific marker of VSMCs, tamoxifen 

exposure lead to Cre expression and subsequent recombination at the R26-Confetti/eYFP 

locus in VSMC.  

 

 

 

 

Figure 4.2: Schematic representation of the single-colour (top) and multi-colour (bottom) VSMC 

lineage labelling approaches.  

Upon Myh11 expression Cre-mediated recombination at the Rosa26 locus occurs. This results in stable 

expression of eYFP in the single-colour reporter or of one of the fluorescent proteins (GFP, YFP, RFP or 

CFP) in the multi-colour reporter. Resulting fluorescent label is passed on during cell proliferation and 

is retained if expression of Myh11 is subsequently lost, for example during phenotypic switching. 

Figure adapted from Dobnikar and Taylor et al. 2018. 

 

 

Flow cytometry analysis of medial cells from the aortas of mice on single-colour VSMC lineage 

tracing background revealed that 7.4% of medial SCA1-positive cells express the VSMC lineage 

label (Figure 4.3, collaboration with A.L. Taylor and H.F. Jørgensen). Since the VSMC lineage 

labelling efficiency has been estimated to be at 40-90% for the eYFP reporter, the proportion 

of SCA1-positive cells of VSMC lineage in the media may be higher.  
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Figure 4.3: A proportion of medial SCA1-positive cells express the VSMC lineage label.  

Scatterplots show the forward scatter (FSC) of analysed medial aortic cells from mice on single-colour 

VSMC lineage tracing background against their eYFP VSMC lineage label expression. All medial cells 

(left) or SCA1-positive medial cells only (right) are shown. Rectangular boxes represent the eYFP-

positive cells. Flow cytometry analysis was carried out by A.L. Taylor and H.F. Jørgensen and the figure 

was adapted from Dobnikar and Taylor et al. 2018. 

 

 

To further validate the existence of a VSMC-lineage SCA1-positive subpopulation within the 

medial layer we analysed the medial cells of transgenic Sca1-GFP mice (Ma et al. 2002). Flow 

cytometry analysis showed that 0.2-1.6% of medial cells were GFP-positive (Figure 4.4a, 

collaboration with A.L Taylor), which is in agreement with SCA1 immunostaining analysis 

(Figure 4.1b). To verify that GFP-positive medial cells have a VSMC identity we sorted GFP-

positive medial as well as GFP-positive adventitial cells and immunostained them for the 

contractile VSMC marker ACTA2. As expected, none of the adventitial GFP-positive cells 

expressed ACTA2, whereas 25-86% of medial GFP-positive stained positive for ACTA2 (Figure 

4.4b, collaboration with A.L Taylor). Overall, this approach has provided complementary 

evidence for the existence of a rare medial subpopulation of VSMCs, which express SCA1.  
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Figure 4.4: A subset of medial cells from transgenic Sca1-GFP animals co-express GFP and VSMC 

marker ACTA2.  

a) Medial cells from wild-type as well as transgenic Sca1-GFP animals were analysed for the expression 

of GFP using flow cytometry. None of the wild-type medial cells were positive for GFP, whereas 0.2-

1.6% of medial cells from Sca1-GFP animals expressed GFP across four experiments. The average GFP 

expression in adventitial cells pooled from four animals is shown for reference. b) Plot showing the 

percentage of sorted GFP-positive medial and adventitial cells, which stained positive for ACTA2. GFP-

positive adventitial samples are represented by red circles and GFP-positive medial samples by green 

squares. Flow cytometry analysis and ACTA2 immunostaining was carried out by A.L. Taylor and the 

panels are from Dobnikar and Taylor et al. 2018. 

 

 

To investigate whether the transcriptional signatures of SCA1-positive VSMCs showed 

increased potential for phenotypic switching, we next profiled cells from the whole aorta as 

well as only the cells positive for the VSMC lineage label (L+) using the 10X Genomics 

Chromium platform (Zheng et al. 2017, collaboration with A.L. Taylor). This approach allowed 
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us to profile thousands of cells and enabled us to capture the rare SCA1-positive 

subpopulation of VSMCs. The transcriptomes of profiled cells in the whole aorta and L+ only 

datasets have been processed and analysed jointly as described in Chapter 3, Section 3.2.6. 

This analysis identified three main populations of cells; the VSMCs, adventitial and endothelial 

cells. I observed several Ly6a/Sca1 expressing cells within the VSMC cluster of the whole aorta 

dataset (Figure 4.5a), which further confirmed the existence of SCA1-positive VSMCs. Within 

the L+ only dataset I observed a total of five cells expressing low levels of Ly6a/Sca1 (Figure 

4.5b). Three of these cells were located in the core VSMC cluster with the remaining two cells 

showing different transcriptional profiles. One of these cells was located within the 

endothelial cluster otherwise composed of endothelial cells profiled as part of the whole aorta 

dataset. Plasticity between the mesenchymal and endothelial cells has been proposed to 

occur both in vitro and in vivo (Sainz et al. 2006; Ubil et al. 2014; Evrard et al. 2016; Chen et 

al. 2016), however the VSMC lineage cell located in the endothelial cluster is more likely to be 

a contamination from the neighbouring endothelial layer. This could either be as a result of 

imperfect flow cytometry sorting or due to unspecific VSMC-lineage label expression. 

Microscopy analysis of 72 aortic sections carried out by A.L. Taylor showed a total of seven 

VSMC lineage-positive cells in the adventitial layer and one VSMC lineage-positive cell in the 

endothelial layer. This shows that the VSMC lineage label generally shows high specificity, 

however there are rare cases of lineage-labelled cells located in the neighbouring adventitial 

and endothelial layers. 
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Figure 4.5: Ly6a/Sca1 transcript is expressed in a subset of VSMCs.  

Expression levels of Ly6a/Sca1 in the whole aorta (a) and the VSMC lineage-labelled (L+) cells only (b) 

datasets generated using the 10X Genomics Chromium platform are colour coded on t-SNE plots, with 

darker gray representing higher expression levels. VSMC, adventitial and endothelial clusters were 

defined in Chapter 3, Figure 3.19. 

 

 

Overall we have detected a rare subpopulation of VSMCs, which expressed Ly6a/Sca1. 

However, due to the rarity of these cells, the numbers of Ly6a/Sca1-expressing L+ cells 

captured with the unbiased 10X Genomics Chromium platform were too low to robustly 

investigate their characteristics and heterogeneity. Additionally, the low number of transcripts 

detected per cell in these experiments may pose challenges in detecting differences in 

expression, particularly for lowly expressed genes (Figure 3.17).  

 

4.2.2 Targeted profiling of the medial SCA1-positive subpopulation 

To obtain sufficient numbers of cells for in-depth analysis of the characteristics of SCA1-

positive VSMCs, we decided to use a targeted approach. We selected cells based on the 

expression of the VSMC lineage label and/or SCA1 using flow cytometry and used the Smart-

seq2 protocol (Picelli et al. 2014) to profile their transcriptomes. Typically, aortas from 5-6 

mice needed to be pooled to obtain 100 SCA1-positive and VSMC-lineage positive cells for 

scRNA-seq analysis. Since the number of SCA1-positive VSMCs recovered from primary tissue 

was the limiting factor in this experiment, we decided to use a lower throughput approach, 
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which can generate higher coverage transcriptomes. We used the Smart-seq2 protocol, rather 

than the Fluidigm C1 technology, as it can be combined with index-sorting by flow cytometry. 

Information on whether each individual cell expressed VSMC lineage label/SCA1 could be used 

later to guide the data analysis. In addition, this protocol enabled different subpopulations of 

cells to be combined on a single 96-well plate during index-sorting, which reduced the impact 

of batch effects on differences between subpopulations.  

 

We isolated the following three subsets of cells from the medial layer of aortas, in which 

VSMCs were labelled using the multi-coloured VSMC lineage tracing strategy: (1) cells 

expressing the VSMC lineage label and SCA1 protein (S+L+); (2) cells that expressed SCA1 

protein, but were negative for the VSMC lineage label (S+L-); as well as (3) cells that were 

VSMC lineage-positive and SCA1-negative (S-L+). To reduce the chances of profiling doublets 

of cells, expression of only one of the four fluorescent labels was required in index-sorted 

cells. After preparation of cDNA libraries using the Smart-seq2 protocol (Picelli et al. 2014), 

the samples were sequenced and processed through the Babraham Institute pipeline (Figure 

4.6, details in Methods, experimental work including flow cytometry analysis and Smart-seq2 

profiling was a collaboration with J. Chappell, A.L. Taylor and H.F. Jørgensen). 

 

 

 

 

Figure 4.6: Schematic representation of the approach used for profiling medial VSMC-lineage (L) 

and/or SCA1 (S) positive subpopulations of cells.  

Medial cells from mice on multi-colour VSMC lineage tracing background were dissociated to a single-

cell suspension. After SCA1 staining, flow cytometry index-sorting was used to isolate individual cells. 

Their transcriptomes were profiled using the Smart-seq2 protocol (Picelli et al. 2014). Microscopy 

image was prepared by A.L. Taylor and the schematic is adapted from Dobnikar and Taylor et al. 2018. 
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4.2.3 Processing and quality control of Smart-seq2 transcriptional profiles 

In total, we profiled 187 single cells in three experiments, of which 109 were S+L+, 40 were S-

L+ and 38 were S+L-. To exclude low-quality cells, I filtered the single-cell transcriptomes based 

on the total reads detected (>100,000), total number of genes detected (>1500) and the 

percentage of reads mapping to ERCC controls (< 30%, Figure 4.7). In this analysis, I decided 

to retain the cells with high total read count and high number of genes detected. This was 

because expression of only one of the four fluorescent proteins from the multi-colour lineage 

labelling system was required during flow cytometry index-sorting, which reduced the chances 

of profiling doublets. At the same time, the subpopulations of cells profiled in this experiment 

could show large differences in gene expression profiles and such filters could exclude 

interesting cells from the analysis. In total, 155 cells passed quality control (92 S+L+, 36 S-L+ 

and 27 S+L-).  

 

Genes which were expressed below the mean expression level of 1 count per cell were filtered 

out of further analysis to reduce noise. Transcriptional profiles were then normalised using 

the pooling normalisation method (Lun et al. 2016, details in Methods) to account for different 

sequencing depths of individual cells.  

 

 

 

 

Figure 4.7: Quality control of scRNA-seq profiles generated using the Smart-seq2 protocol.  

Violin plots show the distributions of total read count, number of genes detected, and the percentage 

of reads mapping to ERCC controls. Red lines indicate the quality control filter thresholds. The figure is 

from Dobnikar and Taylor et al. 2018. 
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I next assessed the expression of Myh11 and Ly6a/Sca1 in the profiled subpopulations of cells. 

I observed that all S-L+ cells expressed Myh11, as did most of the S+L+ cells (Figure 4.8). The 

majority of S+L- cells expressed Myh11 at low levels, with a handful of cells showing high 

Myh11 expression (Figure 4.8). VSMC lineage labelling efficiency of the multi-colour reporter 

system has been estimated to be 70-95% in our study and in a previous study from the 

Jørgensen lab (Chappell et al. 2016), so there is a possibility that the S+L- cells showing high 

Myh11 expression were of the VSMC lineage, but did not express the VSMC lineage label. The 

majority of S+L- cells expressed Ly6a/Sca1, as did several S+L+ cells, although overall, the 

Ly6a/Sca1 expression levels in this category were lower. A small number of the S-L+ cells 

showed low levels of Ly6a/Sca1, but none of these cells expressed high levels of Ly6a/Sca1 

(Figure 4.8a). Overall, Ly6a/Sca1 mRNA expression was detected in only 34% of the cells which 

were identified as Sca1-positive during flow cytometry index-sorting. This may be due to 

dropout events of Ly6a/Sca1, which would be particularly probable in cells where Ly6a/Sca1 

expression is low. Alternatively, although the profiled cells expressed SCA1 protein, the mRNA 

transcript may not have been present at the time of profiling. Ly6a/Sca1 showed a higher 

percentage of zero read counts among the profiled cells than expected according to a linear 

relationship between the percentage of zeroes and mean expression levels on a log scale 

(Figure 4.8b). This likely reflects the fact that Sca1 is expressed at differing levels among 

profiled subpopulations of cells. However, the percentage of zero counts of Ly6a/Sca1 did not 

stand out as unusually high and therefore suggests that Ly6a/Sca1 does not show 

unexpectedly high dropout levels compared with other profiled genes (Figure 4.8b). 
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Figure 4.8: Myh11 and Ly6a/Sca1 expression levels in profiled cells.  

a) Boxplots show the log2-transformed normalised read counts of Myh11 and Ly6a/Sca1 transcripts 

across profiled S+L+ (orange), S+L- (cyan) and S-L+ (magenta) cells. Dots represent individual cells and 

the median expression level is indicated by the thick black line. The first and third quartiles are 

represented by the box boundaries and the whiskers show 1.5 of the interquartile range. b) Scatterplot 

shows the relationship between the log2 percentage of zero read counts and the mean log2 expression 

levels of profiled genes. Individual genes are represented by black dots and Ly6a/Sca1 is highlighted in 

red. Blue line shows the results of linear regression (R2 = 0.78). The analysis is based on the feature 

selection approach developed in the M3Drop and scmap tools (Tallulah S Andrews & Hemberg 2019; 

Kiselev et al. 2018).  Panel a is from Dobnikar and Taylor et al. 2018. 

 

4.2.4 Heterogeneity of the medial SCA1-positive subpopulation of cells 

To further explore the transcriptional differences between the profiled subpopulations of 

medial cells, I performed principal component analysis (PCA, Figure 4.9a). PCA based on 500 

most variable genes resulted in a main cluster of cells expressing high levels of VSMC marker 

genes, including Myh11 (Figure 4.9b). The main cluster contained most of the S-L+ cells, a 

proportion of S+L+ cells, as well as a small number of S+L- cells. S+L- cells located within the 

main cluster expressed Myh11 and the lack of VSMC lineage label expression may be due to 

incomplete recombination of the multi-colour reporter. The majority of the remaining S+L- 

cells clustered at the opposite end of the principal component analysis plot, showing low 

Myh11 expression and higher Ly6a/Sca1 expression levels (Figure 4.9b and c). The S+L+ 

subpopulation showed a large degree of heterogeneity, with cells located both in the main 

cluster of cells as well as spreading out towards the S+L- cluster (Figure 4.9a).  
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As the cells presented in this Chapter were profiled in three independent experiments, I next 

examined whether there were any differences between the experiments that may be driving 

the observed heterogeneity. All three subpopulations of cells were profiled in the first 

experiment, S+L+ and S-L+ were included in the second, and S+L+ and S+L- in the third 

experiment. Figure 4.9d shows the distribution of profiled subpopulations of cells along the 

first two principal components. 

 

 

 

 

Figure 4.9: Principal component analysis of profiled subpopulations of cells.  

Scatterplots show the PC1 and PC2 values for individual cells, based on the 500 most variable genes. 

PC1 explained 10% of the variance and PC2 explained 6%. a) Cells are colour-coded based on the 

presence of the VSMC lineage label (L) and/or SCA1 (S), as identified by flow cytometry. S+L- cells are 

represented by cyan circles, S-L+ cells by red triangles and S+L+ cells by yellow squares. b, c) Log2-

transformed normalised expression levels of Myh11 (b) and Ly6a/Sca1 (c) are colour coded on the PCA 
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plot, with darker grey representing higher expression levels. d) Cells profiled in experiment 1 (red), 

experiment 2 (green) and experiment 3 (blue) are indicated on the PCA plot. Experiment 1 contained 

cells from all three subpopulations, experiment 2 contained cells from the S-L+ and S+L+ 

subpopulations, and experiment 3 contained cells from the S+L- and S+L+ subpopulations. Panel a is 

adapted from Dobnikar and Taylor et al. 2018. 

 

 

Overall, PCA highlighted the heterogeneity of the S+L+ subpopulation of medial cells. I next 

examined which genes were expressed heterogeneously among the S+L+ subpopulation. I 

used an approach which examines the relationship between the variance and mean log 

expression of genes, and decomposes the variance into the technical and biological 

components (Lun et al. 2016, similar to Chapter 3, section 3.2.4). To estimate the technical 

component of variation I used the ERCC controls, which were added to profiled single cells. I 

first fitted a parametric trend to the variance versus mean expression levels of normalised log-

transformed counts of the ERCC controls. I then subtracted the estimated technical variation 

form the total variance of each gene, and identified a gene as highly variable if the resulting 

estimated biological variance was significantly greater than zero (adjusted p-value < 0.05, 

details in Methods, Lun et al. 2016). This approach identified 424 genes as highly variable 

among the S+L+ cells (Figure 4.10a).  

 

Figure 4.10a shows that while most of the ERCCs agreed with the background technical 

variance estimation, two of the ERCC controls showed higher variability than expected at their 

mean expression level, and overlapped with a portion of the genes identified as highly 

variable. This suggested that the identification criteria for highly variable genes may not have 

been stringent enough, as no biological variability is expected for ERCC controls. To address 

this problem, I modified the approach for the identification of highly variable genes. I 

randomly selected 90% of the S+L+ cells at a time and preformed the highly variable gene 

expression analysis as described above. I repeated this approach 1000 times and collected a 

distribution of p-values for individual genes as determined in each iteration. I then used a 

method implemented by M. Spivakov (details in Methods) to combine the collected p-values. 

Performing iterative analysis on a subset of cells increased the robustness of the approach, as 

a gene was required to be consistently highly variable across the majority of the iterations. 

This excluded the genes showing large variation in a small number of cells, which was more 

likely to be observed due to technical factors. The limitation of this approach was that the 
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heterogeneity due to rare subpopulations of cells may have been missed. This approach 

resulted in a more stringent set of 52 highly variable genes (Figure 4.10b). Figure 4.10c shows 

the expression profiles of the top 6 highly variable genes. 

 

 

 

 

Figure 4.10: Highly variable genes among the S+L+ cells.  

a, b) Scatterplots show the mean log expression of genes versus their variance. The blue line represents 

the estimated technical component of variance at a given mean log expression level. ERCC controls are 

highlighted in red and the identified highly variable genes are shown in green. a) Highly variable genes 

were identified as such if their biological component of variance was significantly greater than zero 

(adjusted p-value < 0.05, details in Methods). b) Iterative validation of highly variable genes was 

performed 1000 times with 90% of the cells randomly selected at each iteration. p-values for a given 

gene from individual iterations were then combined using a method devised by M. Spivakov (Dobnikar 

and Taylor et al. 2018). Genes were then identified as highly variable if their adjusted p-value was 

below 0.05 (details in Methods). c) Violin plots showing the log2-transformed normalised expression 

levels of the most highly variable genes. Dots represent individual cells and the black bars indicate the 

median expression levels. Panels b and c are adapted from Dobnikar and Taylor et al. 2018. 
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I next investigated whether any of the identified highly variable genes show coordinated 

variability across the S+L+ cells. Co-expression analysis based on the Spearman’s rank 

correlation coefficient (Lun et al. 2016) revealed high levels of correlation between identified 

highly variable genes. I identified 281 pairs of positively and 25 pairs of negatively correlated 

genes, with all of the highly variable genes identified as significantly correlated with at least 

one other highly variable gene. Myh11, Acta2 and Tagln showed the highest number of 

correlations with other highly variable genes (23, 25 and 25 respectively), with the majority of 

the genes correlated with all three of these VSMC contractile markers. This indicated that 

there may be a contractile VSMC signature which is expressed heterogeneously among the 

profiled cells.  

 

To assess the overall expression levels of the contractile signature, I performed PCA based on 

the 29 genes correlated with either Myh11, Acta2 or Tagln. I used the PC1 scores of each cell, 

oriented such that higher PC1 score generally aligned with higher expression of the genes, as 

a measure of the summarised expression levels of this signature in individual cells. Figure 

4.11a shows that overall the PC1 score of individual cells correlated strongly with the total 

sum of normalised read counts of the genes identified as co-expressed with Myh11, Acta2 and 

Tagln (R2 = 0.96). As expected, PC1 scores were higher in the main cluster of cells, which 

contained the contractile S-L+ subpopulation (Figure 4.11b).  

 

 

 

 



91 
 

 

 

Figure 4.11: Highly variable genes identified in S+L+ cells show high levels of co-expression and 

contain a contractile VSMC signature.  

a) Scatterplot showing the relationship between the total expression levels of genes identified as co-

expressed with Myh11, Acta2 and Tagln and the PC1 scores from principal component analysis based 

on these genes. Black points represent individual cells. b, g) Principal component analysis of profiled 

subpopulations of cells, based on 500 most variable genes. Scatterplots show the PC1 and PC2 values 

for individual cells. Cells are colour coded based on their PC1 score summarising the expression levels 

of Myh11, Acta2 and Tagln co-expressed genes (b) or their cVSMC score (g), with blue indicating low 
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and red indicating high overall expression levels. c, d) Network graphs representing the identified 

networks of co-expressed genes, which were identified using WGCNA among the 52 highly variable 

genes detected in S+L+ cells. Correlation strength of gene pairs is encoded by the edge thickness. e) 

Boxplot showing the PC1 scores of WGCNA modules 1 and 2 for the profiled S+L+ (yellow), S+L- (cyan) 

and S-L+ (red) subpopulations of cells. The median is represented by the thick black line and the first 

and third quartiles by the box boundaries. Whiskers show 1.5 of the interquartile range. f) Scatterplot 

showing the relationship between the PC1 scores summarising the overall expression levels of Myh11, 

Acta2 and Tagln co-expressed genes and the cVSMC network, with back points representing individual 

cells. Panels c, d, e and g are adapted from Dobnikar and Taylor et al. 2018 and WGCNA network 

analysis was a collaboration with M. Spivakov. 

 

 

High levels of correlation between highly variable genes suggested that substructure may be 

present among the profiled S+L+ cells. To obtain a more comprehensive picture of the highly 

variable gene co-variability we used network analysis (implemented by M. Spivakov). Network 

analysis performed using the WGCNA approach (Langfelder & Horvath 2008) revealed two 

modules of genes (Figure 4.11c and d, details in Methods). Module 1 contained several 

contractile marker genes, such as Myh11, Acta2, Tagln and Cnn1, and showed strong overlap 

with the genes previously found to be correlated with VSMC markers Myh11, Acta2 and Tagln. 

In total, 20 out of 24 of module 1 genes overlapped with VSMC marker correlated genes. We 

therefore termed this module the contractile VSMC (cVSMC) network. 

 

I next assessed the overall expression levels of the identified gene modules across the profiled 

cells. I performed PCA based on the genes contained within each of the modules and used the 

PC1 scores positively aligned with the total expression levels to summarise the overall 

expression in each cell. Figure 4.11e shows that PC1 scores of module 2 did not vary 

considerably across the profiled subpopulations of cells. In contrast, the cVSMC network was 

expressed highly in the S-L+ population, at low levels in S+L- cells and heterogeneously in S+L+ 

cells (Figure 4.11e). Overall, there was a strong correlation between the PC1 scores across 

cells between the genes correlated with Myh11, Acta2 and Tagln and the cVSMC network 

(Figure 4.11f, R2 = 0.98).  
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4.2.5 Transcriptional signatures of SCA1-positive VSMCs expressing low levels of 

contractile markers 

We were next interested in the transcriptional differences between the S+L+ cells expressing 

low or high levels of the contractile VSMC signature. Figure 4.11g shows that the S+L+ cells, 

which clustered away from the main contractile cluster scored particularly low for the cVSMC 

network expression. To delineate their transcriptional differences, we used negative binomial 

regression to find the genes which correlated positively and negatively with the cVSMC scores 

of individual S+L+ cells. This approach identified 312 positively and 303 negatively correlated 

genes (Figure 4.12a, adjusted p-value < 0.05, collaboration with M. Spivakov, details in 

Methods). 

 

The genes which correlated positively with the cVSMC score (cVSMCpos) showed high 

expression levels in the S-L+ population, low levels in the S+L- cells and variable levels in S+L+ 

cells (Figure 4.12b). Gene ontology analysis identified “muscle system process”, “muscle 

contraction”, “regulation of muscle system process” as the top three overrepresented gene 

ontology terms, which is in agreement with cVSMCpos representing a differentiated 

contractile VSMC signature. In contrast, the top three overrepresented gene ontology terms 

among the genes correlated negatively with the cVSMC network (cVSMCneg) were “positive 

regulation of cell migration”, “angiogenesis” and “wound healing”, which are processes 

associated with the synthetic state of VSMCs. This signature was expressed at particularly high 

levels in a subset of S+L+ cells (Figure 4.12b). This suggested that there may be a subset of 

VSMC-lineage cells in healthy arteries which show a less differentiated and a more activated 

transcriptional signature characteristic of synthetic VSMCs. In agreement with this, the 

cVSMCneg signature contained markers of the VSMC synthetic phenotype, such as Col8a1, 

Vcam1 and Spp1 (Allahverdian et al. 2018). The expression of these genes was sparse but 

overall higher in the S+L+ cells, which expressed lower levels of the cVSMC signature (Figure 

4.12c).  

 

Taken together, the results presented in this chapter suggest that there is a rare 

subpopulation of VSMCs resident in healthy arteries which has a less differentiated 

transcriptional profile and shows some characteristics of a synthetic VSMC phenotype.  
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Figure 4.12: A subset of S+L+ cells shows characteristics of a synthetic VSMC phenotype.  

a) Heatmap showing the expression levels of cVSMCpos genes (red block) and cVSMCneg genes (blue 

block) in S+L+ cells, with darker blue representing higher expression levels. Cells are ordered according 

to their cVSMC score, which is colour coded from white (low) to purple (high). Identification of genes 

correlated positively and negatively with the cVSMC scores in S+L+ cells was a collaboration with M. 

Spivakov. b) Boxplots show the PC1 scores summarising the expression levels of cVSMCpos genes (left) 

and cVSMCneg genes (right) in profiled S+L+ (yellow), S-L+ (red) and S+L- (cyan) subpopulations of cells. 

The median score is represented by a thick black line, the first and third quartiles by box edges and the 

1.5 interquartile range by the whiskers. c) Scatterplots showing the relationship between the cVSMC 

score and the normalised expression levels of Myh11, Col8a1, Vcam1 and Spp1 in S+L+ cells. Yellow 

dots represent individual S+L+ cells. Figure adapted from Dobnikar and Taylor et al. 2018.  
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4.3 Discussion 

In this chapter I explored whether VSMC heterogeneity in healthy artery walls may underpin 

the observed functional heterogeneity among VSMCs in atherosclerosis and vascular injury. I 

detected a rare subpopulation of medial cells which expressed the progenitor marker SCA1. 

Lineage tracing has enabled us to confirm the VSMC-lineage identity of a subset of medial 

SCA1+ cells and we have combined it with scRNA-seq to profile gene expression in individual 

medial cells from healthy mouse arteries. I found that the SCA1-positive VSMC subpopulation 

is heterogeneous, with some of these cells resembling contractile VSMCs and others showing 

a less differentiated transcriptional profile, devoid of the expression of classic VSMC markers 

and additionally showing some characteristics of the synthetic VSMC state. The existence of 

VSMCs expressing transcriptional signatures characteristic of the synthetic VSMC state in 

healthy arteries is in agreement with a previous hypothesis that VSMCs exist on a spectrum 

between the contractile and synthetic phenotypes (Rensen et al. 2007). 

 

4.3.1 SCA1-positive cells within the adventitial and endothelial layers 

SCA1-positive cells have been previously observed to reside in the endothelial and adventitial 

vascular layers (Psaltis & Simari 2015) and consistent with this, we have observed high levels 

of Ly6a/Sca1 expression among the adventitial and endothelial clusters of cells profiled using 

the 10X Genomics Chromium platform. SCA1-positive subpopulations from both the 

endothelial and adventitial layers were previously observed to have progenitor potential 

(Psaltis & Simari 2015). For example, endothelial cells positive for SCA1 among other markers 

have been shown to have higher potential for clonal expansion than conventional endothelial 

cells, and were capable of forming functional blood vessels in vivo (Fang et al. 2012; Naito et 

al. 2012).  

 

Adventitial SCA1-positive cells have been shown to be capable of differentiating towards 

vascular smooth muscle cells in vitro and to contribute to neointima formation in vivo (Hu et 

al. 2004; Passman et al. 2008; Kramann et al. 2016). Transcriptional profiling of adventitial 

SCA1-positive cells (marked by Gli expression) using single-cell qPCR showed that these cells 

shared some of the transcriptional signatures with S+L+ cells and some of these adventitial 

cells expressed the VSMC marker gene Tagln (Kramann et al. 2016). There were, however, 

some differences in the transcriptional profiles the adventitial cells and S+L+ cells profiled in 
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our study. For example, many of the profiled adventitial cells expressed Cd29, Vegfr2 and Sox2 

(Kramann et al. 2016), which were not expressed by S+L+ cells. Myh11 was not profiled by 

Kramann et al. (2016), therefore it cannot be concluded whether or not these adventitial cells 

would be likely to express the VSMC lineage label and thus potentially overlap with the S+L+ 

population. However, S+L+ cells presented in this chapter appear to be generally distinct from 

adventitial SCA1-positive cells, as highlighted by the flow cytometry and ACTA2 staining 

experiments using Sca1-GFP transgenic mice. The GFP-positive cells we isolated from the 

medial layer had high levels of ACTA2 expression by immunostaining, in contrast to GFP-

positive cells isolated from the adventitia, which stained negative for ACTA2. 

 

Plasticity between adventitial cells and VSMCs has also been suggested in the reverse 

direction, with mature VSMCs described as capable of giving rise to a proportion of SCA1-

positive adventitial cells. Majesky et al. (2017) reported that mature VSMCs migrate to the 

adventitial side of the medial-adventitial layer interface in vivo. These VSMC-derived 

adventitial SCA1-positive cells were then observed to expand following vascular injury 

(Majesky et al. 2017). Using lineage tracing approaches, the authors observed the transition 

of VSMCs towards adventitial SCA1-positive cells within healthy arteries and suggested this 

process helps to maintain the vascular progenitor niche within the vasculature (Majesky et al. 

2017). The extent to which these VSMC-derived adventitial SCA1-positive cells resemble the 

activated S+L+ VSMCs isolated from the medial layer in this project remains to be explored. 

Although we have manually removed the adventitial and endothelial layers during dissection, 

contamination of cells from the neighbouring layers, particularly from cells located at the 

borders, cannot be ruled out. Therefore, given that the VSMC-derived adventitial SCA1-

positive cells were observed to localise on the adventitial side of the adventitial-medial border 

and they would be expected to retain the VSMC lineage label expression, these cells may have 

been included in our study. However, examination of VSMC lineage label expression in the 

adventitial and endothelial layers carried out by A.L. Taylor, showed only very rare expression 

of the VSMC lineage label in the adventitia.  

 

4.3.2 SCA1-positive VSMCs within the medial layer 

A previous study has identified and isolated a subpopulation of cells within the medial layer 

of the aorta, which had progenitor potential and expressed SCA1 (Sainz et al. 2006). Using flow 



97 
 

cytometry the authors estimated that the SCA1+ subpopulation of cells represented 6% of all 

medial cells. They observed that after culturing these cells in the presence of TGF-β1 and 

PDGF-BB, these cells acquired a VSMC phenotype whereas an endothelial phenotype was 

acquired after culture with VEGF (Sainz et al. 2006). This SCA1-positive medial subpopulation 

was identified on the basis of reduced Hoechst staining, which is characterised by the 

presence of the ABCG2 transporter. A small number of S+L+ cells profiled in our study (6/92) 

expressed Abcg2, suggesting that there may be some overlap between the previously 

identified medial SCA1+ cells and the S+L+ cells profiled in this project. At the transcriptional 

level we observed expression of the endothelial cell marker Vcam1 in several S+L+ cells and it 

would be interesting to attempt similar in vitro culture experiments with VEGF to assess 

whether S+L+ cells have a potential to differentiate towards endothelial cells. The rarity of 

S+L+ cells, however, presents technical challenges in conducting such experiments, as it would 

be difficult to isolate sufficient numbers of S+L+ cells for successful in vitro culture.  

 

4.3.3 SCA1-positive cells of VSMC lineage within atherosclerotic plaques 

Interestingly, SCA1-positive cells of VSMC lineage were observed previously within 

atherosclerotic lesions, where they were suggested to mark a mesenchymal stem cell-like 

population (Shankman et al. 2015). These SCA1-positive cells downregulated the expression 

of VSMC markers and VSMC-specific lineage tracing has been used to confirm that these cells 

originated from VSMCs (Shankman et al. 2015). These findings suggested that SCA1-positive 

VSMCs may have relevance in disease and prompted us to further investigate S+L+ cells in 

atherosclerosis (see next chapter).  

 

A recent study of VSMCs in healthy and atherosclerotic vessels has confirmed our observation 

of a small proportion of VSMCs in healthy arteries expressing transcriptional signatures 

characteristic of phenotypically switched VSMCs (Wirka et al. 2019). Wirka and colleagues 

profiled the transcriptomes of lineage-traced VSMCs in healthy aortic root as well as in 

atherosclerotic plaques and observed that 1.3% of healthy VSMCs clustered with 

phenotypically modulated VSMCs from the atherosclerotic plaques, some of which expressed 

Ly6a/Sca1 (Wirka et al. 2019).  
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4.3.4 Conclusions 

Overall in this chapter I have identified and characterised a rare subpopulation of VSMCs, 

which expressed Ly6a/Sca1. The scRNA-seq approach has been invaluable in the analysis of 

medial cell heterogeneity, as it enabled the identification of a rare subpopulations of cells, 

which could not have been detected with bulk RNA-seq methods. Combining scRNA-seq with 

VSMC-specific lineage labelling has enabled us to confirm that a proportion of SCA1-positive 

medial cells were of the VSMC lineage and to ensure that profiled cells were not a 

contamination from the neighbouring adventitial and endothelial layers. scRNA-seq has 

further enabled the characterisation of the transcriptional signatures of SCA1-positive VSMCs, 

which indicated that VSMCs showing a less differentiated transcriptional profile and 

expressing transcriptional signatures characteristic of the synthetic VSMC state are present in 

healthy arteries. These observations motivated us to further investigate the expression of 

SCA1 in model systems of VSMC phenotypic switching, which will be discussed in the next 

chapter.  
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5  SCA1-positive VSMCs in model systems of VSMC phenotypic 

switching 

5.1 Introduction 

VSMCs play an important role in the development of atherosclerotic plaques and in neointima 

formation following vascular injury (Bennett et al. 2016). Previous studies observed that 30-

70% of cells within atherosclerotic plaques originate from VSMCs (Shankman et al. 2015; 

Chappell et al. 2016). Despite extensive accumulation of VSMCs within lesions, multicolour 

lineage tracing studies suggested that only a very small proportion of VSMCs proliferate and 

expand during atherosclerotic plaque and neointima formation (Chappell et al. 2016; Jacobsen 

et al. 2017). A possible explanation for this observation is that VSMCs are functionally 

heterogeneous. 

 

In Chapter 4, I presented evidence for a rare subset of SCA1-positive VSMC, which expressed 

transcriptional signatures characteristic of the activated synthetic state of VSMCs. Here, I 

hypothesised that these SCA1-positive VSMCs may be more primed for expansion in 

atherosclerosis and injury. SCA1-positive cells of the VSMC lineage have been previously 

observed within atherosclerotic plaques (Shankman et al. 2015) and the aim of this chapter is 

to investigate whether the transcriptional profiles of Ly6a/Sca1-expressing VSMCs within 

plaques share similarities to healthy S+L+ cells, which expressed transcriptional signatures 

characteristic of synthetic VSMCs. Additionally, I investigated how the transcriptional profiles 

of SCA1-positive VSMCs detected in healthy arteries compare with phenotypically modulated 

VSMCs induced in vivo and in vitro.  

 

To investigate the transcriptional signatures of VSMCs during phenotypic switching I used 

three separate mouse models, in which VSMC phenotypic switching has been extensively 

documented. In vitro culture is a simple but frequently used model system of VSMC 

phenotypic switching, in which some of the hallmarks of the process, such as downregulation 

of VSMC marker protein expression and proliferation, are replicated (Chamley-Campbell et al. 

1979; Rensen et al. 2007). The ApoE-/- mouse atherosclerosis model system provided a 

disease-relevant setting for the investigation of VSMC phenotypic switching (Getz & Reardon 
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2012). Additionally, the carotid ligation injury model (Kumar & Lindner 1997) enabled an in 

vivo investigation of VSMC phenotypic switching in a more acute setting compared with the 

mouse atherosclerosis model. Together, these model systems provided a range of 

environments for the study of VSMC phenotypic switching and additionally enabled the use 

of VSMC-specific genetic lineage tracing, which would not be possible in human 

atherosclerotic plaques. The analysis presented in this chapter revealed that SCA1 and 

Ly6a/Sca1 upregulation marks VSMC phenotypic switching and that the transcriptional 

signatures of SCA1-positive VSMCs in healthy arteries are similar to those observed in model 

systems of VSMC phenotypic switching.  

 

5.2 Results 

5.2.1 SCA1 is upregulated in VSMCs cultured in vitro 

To investigate the gene expression changes that occur in VSMCs during phenotypic switching 

in culture, I used a publicly available single-cell transcriptomics dataset of cultured VSMCs, 

which was generated on the Fluidigm C1 platform (GSE79436, Adhikari et al. 2015). I 

compared the transcriptomes of cultured VSMCs with our profiles of ex vivo VSMCs from the 

AA and DT regions of the aorta, which were generated using the same platform. The ex vivo 

and cultured VSMC transcriptomes were processed in an analogous way and the read counts 

were normalised jointly to account for differences in sequencing depth (details in Methods). 

PCA (originally presented in Section 3.2.1) resulted in separate ex vivo and cultured VSMC 

clusters. VSMC contractile markers, such as Myh11, were downregulated in cultured VSMC, 

as expected. Interestingly, I observed increased levels of Ly6a/Sca1 expression among 

cultured VSMCs (Figure 5.1).  
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Figure 5.1: Ly6a/Sca1 expression levels are increased in cultured compared with ex vivo VSMCs.  

PCA of cultured (squares) and ex vivo (triangles) VSMC transcriptomes with expression levels of Myh11 

(left) and Ly6a/Sca1 (right) colour coded from low (grey) to high (black). PC1 explained 25% of the 

variance and PC2 explained 4%. Transcriptional profiles of cultured VSMCs are publicly available at the 

Gene Expression Omnibus (GSE79436, Adhikari et al. 2015). Ly6a/Sca1 panel was adapted from 

Dobnikar and Taylor et al. 2018. 

 

 

Our next question was whether contractile SCA1-negative VSMCs were capable of 

upregulating SCA1 after stimulus, or whether pre-existing SCA1-positive VSMCs selectively 

expanded in culture. To address this we cultured VSMCs isolated from Sca1-GFP animals (Ma 

et al. 2002) and observed that sorted GFP-negative medial cells upregulated GFP after 10 days 

in culture (Figure 5.2, collaboration with A.L. Taylor). In contrast, we did not observe any GFP-

positive cells after culture of VSMCs from wild-type animals, as expected. Overall, these 

experiments indicated that mature VSMCs have the capacity to upregulate SCA1 during 

phenotypic switching in culture.  
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Figure 5.2: SCA1 is upregulated in sorted GFP-negative medial cells during culture.  

Medial GFP-negative (n=4), adventitial GFP-negative (pooled tissue from four animals) and adventitial 

GFP-positive (pooled tissue from four animals) cells from Sca1-GFP reporter transgenic animals were 

sorted using flow cytometry and cultured in vitro. As a negative control, medial GFP-negative cells from 

a wild type mouse were also isolated and cultured (n=1). a) Images show the GFP expression in isolated 

cell populations after 3 and 10 days in culture. b) Quantitation of the percentages of GFP-positive cells 

among isolated populations after 11 days of culture. Collaboration with A.L. Taylor and the figure is 

from Dobnikar and Taylor et al. 2018. 

 

 

We next investigated whether VSMCs also upregulated SCA1 in vivo using lineage-labelled 

animals. We analysed the proportion of S+L+ VSMCs using flow cytometry after varying time 

periods between tamoxifen injection and flow cytometry analysis in single-colour lineage-

labelled animals (collaboration with A.L. Taylor and M. Spivakov). Logistic regression analysis 

suggested that there was a small but significant increase in the proportion of S+L+ VSMCs with 

longer time periods between the induction of lineage labelling and analysis (Figure 5.3a), and 

this effect did not appear to originate from the confounding factor of varying animal age 

(Figure 5.3b and c). This analysis therefore suggests that VSMCs upregulate SCA1 in vivo, 

although the increase in the proportion of S+L+ VSMC over time is small.  
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Figure 5.3: The proportion of S+L+ VSMCs increases with increased time period between lineage 

labelling and analysis.  

a) Scatterplot showing the relationship between the proportion of S+L+ VSMCs, and the time period 

between tamoxifen injection and flow cytometry analysis. The age of individual animals is colour-

coded, with darker grey dots representing higher age. The trendline was estimated using logistic 

regression, with the proportion of S+L+ VSMCs as the response variable and the labelling time period 

as the explanatory variable (logit-link regression coefficient = 0.016 (mean) ± 0.005 (95% confidence 

interval), Student’s distribution p-value = 2.56e-10). b, c) Bivariate logistic regression analysis using the 

labelling time period and animal age as explanatory variables and the proportion of S+L+ VSMCs as the 

response variable. Blue lines represent the trendline and shaded areas represent 95% confidence 

intervals. b) Effect of labelling time, logit-link regression coefficient = 0.042 ± 0.014, Student’s 

distribution p-value = 2.72e-9. c) Effect of age, logit-link regression coefficient = -0.028 ± 0.015, 

Student’s distribution p-value = 3.07e-5). Partial correlation analysis was used as an alternative 

approach to determine the influence of animal age on the relationship between labelling time and 

proportion of S+L+ VSMCs (pcor function of R package ppcor). While controlling for animal age, there 
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was a positive and significant correlation between the proportion of S+L+ VSMCs and labelling time 

(partial correlation = 0.66, p-value = 0.0069). The correlation between animal age and the proportion 

of S+L+ VSMCs while controlling for labelling time was negative (partial correlation = -0.46). 

Collaboration with A.L. Taylor (experimental work) and M. Spivakov (statistical analysis). The figure is 

adapted from Dobnikar and Taylor et al. 2018.  

 

I next investigated whether the overall transcriptional signatures of cultured VSMCs 

resembled those of the S+L+ cells identified in healthy arteries, which expressed high levels of 

the cVSMCneg transcriptional signature (described in Chapter 4). Figure 5.4 shows that the 

overall expression level of the cVSMCneg signature was markedly higher in cultured VSMCs 

compared with ex vivo VSMCs. This observation prompted us to investigate SCA1 expression 

levels and the transcriptional signatures of VSMCs in models, where VSMC phenotypic 

switching is observed in vivo.  

 

 

 

 

Figure 5.4: Cultured VSMCs express transcriptional signatures of activated S+L+ cells from healthy 

arteries.  

PCA of cultured and ex vivo VSMC transcriptomes with the summarised expression levels of the 

cVSMCneg response signature colour coded from low (blue) to high (red) overall expression levels. To 

summarise the overall gene expression levels, the PC1 score of PCA based on the genes within the 

cVSMCneg signatures has been used (details in Methods). Transcriptional profiles of cultured VSMCs 

are publicly available at the Gene Expression Omnibus (GSE79436, Adhikari et al. 2015) 
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5.2.2 SCA1 is upregulated in VSMCs after carotid ligation injury 

Next we investigated whether SCA1 expression is upregulated in VSMCs after carotid ligation 

injury, which is an in vivo model of VSMC phenotypic switching (Kumar & Lindner 1997). In no 

injury control carotid arteries, we observed a very low proportion of VSMCs positive for both 

the VSMC lineage label and SCA1 (Figure 5.5a), as expected based on previous analysis of 

aortic VSMCs (Chapter 4). After carotid ligation, the proportion of lineage labelled cells which 

also stained positive for SCA1 expression, increased to over 25% on average (Figure 5.5b and 

c, collaboration with J.L. Harman).  

 

 

 

Figure 5.5: SCA1 is upregulated in VSMCs 8 days after carotid ligation injury.  

a,b) Flow cytometry scatter plots showing the expression of the VSMC lineage label (eYFP) on the x 

axis and the expression of SCA1 on the y axis. Whole carotid arteries in no injury control (a) and 8 days 

after carotid ligation (b) were analysed. c) Percentages of eYFP-positive cells, which stained positive 

for expression of SCA1 in no injury controls and 8 days after carotid ligation are shown (5 animals per 

group). Collaboration with J.L. Harman and the figure is from Dobnikar and Taylor et al. 2018.  

 

 

We were next interested in the overall transcriptional changes in VSMCs after carotid ligation 

injury. We used the 10X Genomics Chromium platform to profile the transcriptomes of 

individual VSMC-lineage labelled cells 7 days after carotid ligation (collaboration with A.L. 

Taylor and J. Chappell). In order to capture as many cells involved in phenotypic switching as 

possible, we initially used a reporter inserted into the Mki67 locus to enrich for the cells 

involved in the response to injury. For this experiment we combined the single-colour eYFP 
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VSMC lineage tracing system with the Ki67-RFP reporter allele (Basak et al. 2014, details in 

Methods). Using FACS, we isolated eYFP lineage labelled cells and additionally enriched for 

RFP-positive cells, which also expressed the eYFP lineage label. cDNA libraries were then 

prepared from sorted cells using the 10X Genomics Chromium platform. After sequencing, the 

reads were processed using the 10X Genomics cellranger pipeline, which recovered a total of 

1335 cells (as detailed in Methods).  

 

 

Quality control of captured single-cell transcriptomes showed that the majority of profiled 

cells were of good quality. The remaining cells, which were not profiled to sufficient depth or 

showed a high proportion of mitochondrial reads, were removed from further analysis (Figure 

5.6). To pass quality control, over 5000 UMI counts and over 2000 genes had to be detected 

in a cell. Additionally, cells were required to contain less than 6% of mitochondrial reads in 

order to exclude the cells that may have burst during processing. Cells with particularly high 

total UMI count or high number of detected genes were not removed from this dataset as 

larger differences in these parameters were expected between VSMCs undergoing phenotypic 

switching and contractile VSMCs. Removing such cells could therefore lead to loss of 

interesting cell populations. Additionally, the number of cells captured in this experiment was 

relatively low for the 10X Genomics Chromium platform, which reduced the chances of 

profiling doublets (Zheng et al. 2017). Overall 1126 out of 1335 cells passed quality control 

and the transcriptomes of good quality cells were normalised (details in Methods).  

 

 

 

 

Figure 5.6: Quality control of VSMCs profiled 7 days after carotid ligation injury.  
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Violin plots show the distribution of total UMI count, the number of genes detected and the proportion 

of mitochondrial reads across profiled VSMCs. Red lines represent the filtering thresholds and grey 

dots represent individual cells. Cells with total UMI count over 5000, over 2000 detected genes and 

less that 6% of mitochondrial reads passed quality control.  

 

 

To understand the heterogeneity among the profiled cells I next performed principal 

component analysis. The first principal component separated the cells which expressed 

Ly6a/Sca1 as well as cells showing increased Mki67 expression from the cells expressing the 

contractile VSMC marker Myh11 (Figure 5.7). The second principal component further 

differentiated the cells, which expressed the proliferative marker Mki67 (Figure 5.7).  

 

 

 

 

Figure 5.7: Principal components 1 and 2 separate cells showing lower expression levels of the 

contractile marker Myh11 and higher expression levels of Ly6a/Sca1 and Mki67.  

Top: the log2-transformed normalised expression levels of Ly6a/Sca1 (left), Mki67 (middle) and Myh11 

(right) are colour-coded from grey (low) to red (high) on the PCA plot. The first two principal 

components, which explained the most variance are shown. PC1 explained 25% and PC2 explained 

10% of the variance. Bottom: scatterplots showing the pairwise gene expression relationships between 

Ly6a/Sca1, Myh11 and Mki67. Histograms show the distribution of cells along the x and y axes.  
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To explore the profiled subpopulations of VSMCs and identify the overall differences between 

the cells I performed clustering analysis. Clustering was based on the first 11 principal 

components, all of which explained significantly more variance than expected at random 

(details in Methods). While further principal components also explained significantly more 

variance than expected at random, there was a sharp drop in significance levels after the 11th 

principal component and examination of further principal components did not reveal that they 

highlighted biologically meaningful differences among profiled cells. Overall, clustering 

analysis revealed 7 clusters of cells (Figure 5.8).  

 

Clusters 0, 1, 3 and 5 expressed high levels of contractile VSMC markers, such as Myh11 and 

Acta2 (Figure 5.9). These VSMCs may represent the contractile cells from the non-remodelled 

parts of the carotid artery, as the entire artery was included in scRNA-seq profiling. Cluster 4 

contained the majority of Mki67-positive cells and the majority of Ly6a/Sca1-positive cells 

were located in cluster 2 (Figure 5.10).  

 

 

 

 

Figure 5.8: Clustering analysis of profiled VSMCs after carotid ligation injury.  

Clusters of cells were identified using the graph-based clustering method from the Seurat package 

(Butler et al. 2018) and the clustering analysis was based on the top 11 principal components. In total, 

7 clusters of cells were identified and are colour coded on a t-SNE representation of profiled cells.  
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Figure 5.9: Expression levels of VSMC marker genes Myh11 and Acta2 in VSMCs profiled following 

carotid ligation injury.  

t-SNE plot showing the expression levels of Myh11 and Acta2 in profiled cells following carotid ligation 

injury. The expression levels are colour-coded in individual cells with grey representing low and red 

high log2-transformed normalised expression levels.  
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Figure 5.10: Mki67 and Ly6a/Sca1 expression levels among the cells profiled after carotid ligation 

injury.  

Top: t-SNE plot show the expression levels of Mki67 and Ly6a/Sca1 in profiled cells following carotid 

ligation injury. The expression levels are colour-coded in individual cells with grey representing low 

and red high log2-transformed normalised expression levels. Bottom: scatterplot showing the 

relationship between expression levels if Ly6a/Sca1 and Mki67 in profiled cells. Histograms show the 

distribution of cells along the x and y axes.  

 

 

To obtain a more comprehensive view of the transcriptional differences between the clusters, 

I performed differential gene expression analysis between each of the identified clusters and 

the remaining cells. Cluster 0 showed particularly high levels of expression of VSMC contractile 

markers Myh11 and Acta2, which were identified as significantly upregulated in this cluster 

(Figure 5.11). Cluster 1 expressed higher levels of several genes which we observed to form 

module 2 among highly variable genes identified in healthy S+L+ cells (Section 4.2.4). Examples 

of these genes include Egr1, Fos and Nfkbia, indicating that heterogeneity observed among 
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VSMCs in the healthy arteries was also present following carotid ligation surgery (Figure 5.11). 

Additionally, cluster 1 VSMCs expressed higher level of Klf4, which has previously been shown 

to play a key role in VSMC phenotypic switching (Shankman et al. 2015). This suggests that 

VSMCs in cluster 1 may be in a primed state for the early stages of response to injury compared 

with other contractile VSMCs. Cluster 3 did not express a distinct signature, with only 5 genes 

found to be upregulated in this cluster. Similarly, no genes were found to be significantly 

upregulated in the smallest identified cluster 6 (Figure 5.11).  

 

Interestingly, cluster 5 expressed transcriptional signatures resembling the AA-only cluster 

identified during the application of random forest analysis to the 10X Genomics Chromium 

datasets of VSMCs from healthy aortas. The gene with highest log2 fold change in expression 

in cluster 5 was Rgs5 and additionally this cluster upregulated several other genes, which were 

also observed to be upregulated in the AA only cluster (Section 3.2.8), including Sfrp2 and 

Prxx2 (Figure 5.11).  

 

Cluster 2 showed upregulation of several known markers of VSMC phenotypic switching, such 

as Spp1, Col8a1, Vcam1 and Mgp. Ly6a/Sca1 was also upregulated in cluster 2 (Figure 5.11). 

Cluster 4 showed higher expression levels of the proliferative marker Mki67, which we used 

to enrich for VSMCs undergoing phenotypic switching (Figure 5.11). Additionally this cluster 

showed upregulation of the proliferative markers Pcna and Mcm7 (Juríková et al. 2016) and 

likely represented actively proliferating VSMCs. 
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Figure 5.11: Transcriptional signatures of identified clusters of VSMCs following carotid ligation 

injury.  

Heatmap showing the scaled expression levels of genes, identified as significantly upregulated in at 

least one cluster of cells (adjusted p-value < 0.05 and log2 fold change > 0.5, details in Methods). All 

differentially expressed genes are shown and their scaled expression levels are colour-coded from 

purple (low) to yellow (high). Cells are shown in columns and are grouped by cluster memberships and 

genes are shown in rows. Selected genes are indicated on the right.  

 

 

Evaluation of the quality control metrics in individual clusters showed that VSMCs displaying 

signs of phenotypic switching in clusters 2 and 4 had higher total UMI counts and higher 

numbers of detected genes in individual cells, as would be expected for activated VSMCs 

(Figure 5.12). Thus, removing the cells with high UMI counts and large numbers of detected 

genes during quality control would have removed a significant proportion of cells of interest.  
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Figure 5.12: Quality control metrics in identified clusters of cells following vascular injury.  

Violin plots show the distributions of quality control metrics of total UMI count, number of genes 

detected and the proportion of mitochondrial reads per cell in identified clusters of cells. Individual 

cells are represented as black dots and only the cells, which passed the quality control thresholds, are 

included. 

 

 

I was next interested in understanding whether the cells which showed transcriptional profiles 

characteristic of VSMCs undergoing phenotypic switching resembled the S+L+ cells expressing 

high levels of the cVSMCneg signature in healthy arteries. I visualised the summarised 

expression levels of the cVSMCneg and cVSMCpos transcriptional signatures, which were 

identified as genes which correlated negatively or positively with the cVSMC contractile 

network in healthy S+L+ cells (described in Chapter 4). I used the PC1 values derived from PCA 

based on the cVSMCneg or cVSMCpos signatures to summarise the expression levels of these 

two sets of genes in VSMCs following carotid ligation (details in Methods).  

 

The Ly6a/Sca1-positive cluster of cells (cluster 2) expressed particularly high levels of the 

cVSMCneg signature, which contained genes characteristic of the synthetic state of VSMCs 

(Figure 5.13). In addition, this subset of cells expressed low levels of the contractile cVSMCpos 

signature (Figure 5.13). This suggested that Ly6a/Sca1-positive VSMCs after carotid ligation 

injury shared transcriptional similarities with activated S+L+ cells previously observed in 

healthy arteries.  
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Figure 5.13: Summarised expression levels of the cVSMCneg and cVSMCpos signatures among cells 

profiled after carotid ligation injury.  

t-SNE plots show the summarised expression levels of the cVSMCneg (left) and cVSMCpos (right) 

transcriptional signatures (details in Methods). Summarised expression levels are encoded from blue 

(low) to red (high) in individual cells, which are represented by dots.  

 

 

VSMCs in cluster 2, which contained Ly6a/Sca1-positive cells, also expressed higher levels of 

Col8a1 and Spp1, which are characteristic of the synthetic VSMC state (Figure 5.14). Overall, 

this analysis suggested that Ly6a/Sca1-positive VSMCs were among the phenotypically 

modulated subpopulation of cells following carotid ligation injury.  
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Figure 5.14: Col8a1 and Spp1, which are characteristic of the synthetic state of VSMCs, are expressed 

among the Ly6a/Sca1-positive cells.  

Top: t-SNE representations show the expression levels of Col8a1 and Spp1 in profiled VSMCs following 

carotid ligation injury. The log2-transformed normalised expression levels are colour-coded in 

individual cells with grey representing low and red high expression levels. Bottom: scatterplots show 

the relationship between the expression levels of Ly6a/Sca1, Col8a1 and Spp1. Histograms show the 

distributions of cells along the x and y axes. 

 

 

5.2.3 Transcriptional signatures of VSMCs within the atherosclerotic plaque 

I next investigated the transcriptional signatures of VSMCs undergoing phenotypic switching 

in atherosclerotic plaques. The inflammatory environment of the atherosclerotic plaque has 

been described to drive VSMC phenotypic modulation towards a range of different 

phenotypes, such as calcifying-like cells, macrophage-like cells and mesenchymal stem cell-

like cells, which have been observed to express SCA1 (Shankman et al. 2015; Bennett et al. 

2016; Durham et al. 2018). To understand the transcriptional changes which occur in VSMCs 
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undergoing phenotypic modulation to these states, we profiled the lineage-labelled VSMCs 

isolated from atherosclerotic plaques of ApoE-/- mice, which were fed a high fat diet for either 

14 or 18 weeks (jointly in collaboration with H.F. Jørgensen). 

 

In total we profiled 3346 VSMCs from 14-week plaques and 2757 VSMCs from 18-week 

plaques. The quality of profiled cells was assessed based on their total UMI count, the number 

of genes detected and the proportion of mitochondrial reads. The distribution of the total UMI 

count among the profiled cells was bimodal and closer examination of the relationship 

between the total UMI count and the proportion of mitochondrial reads per cell showed that 

there was a group of cells with relatively low UMI counts and a high proportion of 

mitochondrial reads (Figure 5.15a and b). The lower threshold for acceptable total UMI count 

was therefore set at 5000 UMI counts and cells were required to express less than 9% of 

mitochondrial reads to pass quality control. Cells with particularly high total UMI count (over 

20000) and number of genes detected (over 5000) were removed from this analysis, as the 

higher number of captured cells increased the chances of profiling doublets (Figure 5.15a).  

 

The transcriptomes of good-quality VSMCs were then normalised (details in Methods). I next 

performed principal component analysis to reduce the dimensionality of the dataset prior to 

clustering. Subsequent clustering analysis and t-SNE visualisation initially identified 7 clusters 

of cells (Figure 5.16a, details in Methods). When I performed differential gene expression 

analysis among the identified clusters I noticed that several mitochondrial genes were 

upregulated in cluster 4, which contained VSMCs from both 14- and 18-week atherosclerotic 

plaque stages (Figure 5.16b). Inspection of the quality control metrics for individual clusters 

showed that cluster 4 displayed lower total UMI counts and a higher proportion of 

mitochondrial reads than the other identified clusters (Figure 5.16c). This indicated that 

VSMCs in cluster 4 were of poorer quality and were excluded from further analysis. Clustering 

analysis and t-SNE visualisation was then repeated with remaining VSMCs (Figure 5.16d). 

Although there was some variability in the proportions of VSMCs from different stages of high-

fat diet between the clusters, all clusters contain cells from both the 14- and 18-week stages 

(Figure 5.16e).  
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Figure 5.15: Quality control of single-cell transcriptomes of VSMCs from atherosclerotic plaques.  

a) Violin plots showing the distribution of the quality control metrics of total UMI count, number of 

genes detected and the proportion of mitochondrial reads per cell. Individual cells are represented by 

black dots and the red lines represent the cut offs for good quality cells. b) Scatterplots showing the 

relationship between the total UMI count and the proportion of mitochondrial reads in profiled cells. 

All cells are included on the right, while the left scatterplot shows a zoomed-in view between 0 and 

15000 UMIs and 0 to 0.2 proportion of mitochondrial reads.  
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Figure 5.16: Clustering analysis of VSMCs from atherosclerotic arteries.  

a, b, d, e) t-SNE representation of profiled VSMCs. Individual cells are represented by dots, which are 

colour coded according to cluster membership (a, d) or by the duration of high fat diet prior to analysis 

(b, e). c) Violin plots showing the distribution of total UMI count, the number of genes detected and 

the proportion of mitochondrial reads within identified clusters of VSMCs in panel a. Clusters of cells 

were identified using the graph-based clustering method from the Seurat package (Butler et al. 2018). 

Panel d is adapted from Dobnikar and Taylor et al. 2018. 
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Differential gene expression analysis between the identified clusters of VSMCs showed varying 

levels of transcriptional differences between the clusters. Cluster 9 was transcriptionally the 

most distinct cluster and showed increased expression levels of several macrophage marker 

genes, such as Cd68 and Lgals3 (Figure 5.17). There have been several previous reports of 

VSMC lineage-labelled cells within the plaque co-expressing macrophage markers (Feil et al. 

2014; Shankman et al. 2015; Chappell et al. 2016; Albarrán-Juárez et al. 2016). Differential 

gene expression analysis suggests that the transcriptional profiles of VSMC-derived 

macrophages are substantially different from other plaque VSMCs, beyond the expression of 

a handful of macrophage markers. It is, however, not possible to rule out that observed 

macrophage-like cells could be a contamination from bone marrow-derived macrophages. 

Possible contamination is supported by the fact that Ptprc, which encodes the bone marrow 

marker Cd45, was identified as upregulated in cluster 9 (Figure 5.17), although VSMC lineage-

labelled cells have also been observed to express Ptprc within the plaque previously (Albarrán-

Juárez et al. 2016). Myh11 and Acta2 transcripts were detected at low levels in cluster 9 

(Figure 5.18a), however, this could be explained through background ambient mRNA 

contamination (Macosko et al. 2015), which may be particularly likely for genes expressed at 

high levels by the majority of profiled cells. Due to possible technical factors it is therefore not 

possible to conclusively describe the origin of observed macrophage-like cells.  
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Figure 5.17: Differential gene expression among identified clusters of VSMCs from atherosclerotic 

arteries.  

Heatmap showing the scaled expression levels of genes, identified as significantly upregulated in at 

least one cluster of cells (adjusted p-value < 0.05 and log2 fold change > 0.5, details in Methods). Cells 

are grouped by cluster and represented in columns and the differentially expressed genes are shown 

in rows. Selected upregulated genes are indicated on the right. Scaled expression levels are colour 

coded from purple (low) to yellow (high). 
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Figure 5.18: Contractile VSMC marker and Ly6a/Sca1 expression in profiled cells from atherosclerotic 

arteries.  

t-SNE visualisations of profiled VSMCs with individual cells colour-coded for the log2-transfromed, 

normalised expression levels of Myh11 and Acta2 (a) and Ly6a/Sca1 (b), with light grey representing 

low and dark grey high expression levels. c) Scatterplot showing the relationship between expression 

levels of Myh11 and Ly6a/Sca1. Histograms show the distribution of cells along the x and y axes. Panel 

b is adapted from Dobnikar and Taylor et al. 2018. 

 

 

VSMCs in cluster 7 showed upregulation of Ly6a/Sca1 (Figure 5.18b) as well as several markers 

of VSMC phenotypic switching, such as Vcam1, Col8a1 and Spp1 (Figure 5.17). Cluster 8 shared 

some of the transcriptional signatures of cluster 7 and additionally upregulated several genes 

which mark osteochondrocytes, such as Sox9, Acan and Bglap (Figure 5.17). This cluster of 

VSMCs may therefore be involved in arterial calcification. Clusters 0-6 expressed high levels 
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of VSMC contractile markers such as Myh11 and Acta2 (Figure 5.18a). Differential gene 

expression analysis revealed some differences among the contractile clusters of VSMCs. 

Clusters 2, 4 and 6 showed similar transcriptional signatures, with increased expression of 

several genes including Nfkbia and Klf4. Cluster 0 showed a small increase in expression of 

several genes marking phenotypic activation of VSMCs, such as Vcam1 and Mgp (Figure 5.17). 

These and other genes marking VSMC phenotypic switching were also more strongly 

upregulated in the adjacent cluster 7. Overall, there was a degree of overlap in the 

transcriptional signatures of clusters 0-6 (Figure 5.17), and not all of these clusters showed 

large transcriptional differences. As such, identified clusters likely do not represent distinct 

subpopulations of VSMCs and could be merged. Nevertheless, this analysis did reveal 

interesting heterogeneity within contractile VSMCs, with several biologically relevant genes 

identified as differentially expressed in the identified clusters of cells.  

 

I next investigated the similarity of VSMCs showing transcriptional signatures characteristic of 

phenotypic switching in atherosclerotic plaques to the activated healthy S+L+ cells. Cells in 

clusters 7, 8 and 9 all expressed low levels of the cVSMCpos signature (Figure 5.19), which 

positively correlated with the contractile cVSMC network in healthy S+L+ cells (described in 

Chapter 4). At the same time, the overall expression levels of the negatively correlated 

cVSMCneg signature were higher in clusters 7, 8 and 9 than in the contractile clusters 0-6 

(Figure 5.19). This suggested that Ly6a/Sca1-positive VSMCs, as well as other clusters showing 

signatures of phenotypic modulation shared similarities with healthy S+L+ cells, which 

expressed high levels of the cVSMCneg signature.  
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Figure 5.19: Summarised expression levels of the cVSMCpos and cVSMCneg signatures in plaque 

VSMCs.  

t-SNE representations of VSMCs isolated from atherosclerotic arteries are colour-coded for the 

summarised expression levels of the cVSMCpos (left) and cVSMCneg (right) signatures, which were 

originally identified in healthy S+L+ cells. PC1 values positively aligned with the total expression levels 

of cVSMCpos and cVSMCneg genes were used to summarise the overall expression levels (details in 

Methods), with red representing high and blue low expression. The figure is adapted from Dobnikar 

and Taylor et al. 2018. 

 

 

5.2.4 Alternative marker genes of Ly6a/Sca1-expressing VSMCs in models of 

phenotypic switching 

So far in this chapter I have shown that Ly6a/Sca1-positive VSMCs are present in model 

systems of VSMC phenotypic switching and that the transcriptional signatures of Ly6a/Sca1-

positive VSMCs following in vitro culture, carotid ligation injury and atherosclerosis share 

similarities with healthy S+L+ cells, which express high levels of the cVSMCneg signature. SCA1 

protein, however, has no known human orthologue, which presents challenges for identifying 

a similar population of VSMCs in human atherosclerotic plaques. Knowing the wider 

transcriptional signatures of VSMCs undergoing phenotypic switching in mice is valuable for 

investigating potential analogous VSMC subpopulations in atherosclerotic plaques from other 

organisms using transcriptomics approaches. To further facilitate the isolation of the desired 

subpopulations of VSMCs in other organisms I next aimed to identify a set of alternative 
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marker genes of Ly6a/Sca1-positive VSMCs in model systems of VSMC phenotypic switching. 

To investigate which genes would be suitable candidates for alternative markers of Ly6a/Sca1-

positive VSMCs, I used co-expression analysis to identify a set of genes, which showed a similar 

pattern of expression to Ly6a/Sca1. This analysis identified a set of 708 genes as co-expressed 

with Ly6a/Sca1 in VSMCs following carotid ligation injury (adjusted p-value < 0.01, details in 

Methods). For a gene considered to be a suitable alternative marker of Ly6a/Sca1-positive 

VSMCs, it was also required to be upregulated in cluster 2 of the carotid ligation injury dataset, 

which contained Ly6a/Sca1-positive VSMCs. Additionally, I required suitable alternative 

markers of the Ly6a/Sca1-positive VSMCs to be present in the cVSMCneg signature. This 

approach resulted in a set of 17 genes, which shared expression patterns with Ly6a/Sca1 

(Figure 5.20). The majority of these genes were clearly expressed at higher levels in the 

Ly6a/Sca1 cluster 2 post carotid ligation injury (Figure 5.20).  

 

I next checked the expression levels of these genes in VSMCs isolated from atherosclerotic 

plaques of ApoE-/- mice to ensure that potential alternative markers of Ly6a/Sca1-positive 

VSMCs were representative across different model systems of VSMC phenotypic switching. In 

the atherosclerotic plaque dataset Ly6a/Sca1 was expressed in cluster 7 and while the 

majority of the tested genes were expressed at higher levels in this cluster, only Fbln2 and 

Slco2a1 were specific to VSMCs in this cluster. The majority of other genes were also 

upregulated in clusters 8 or 9 (Figure 5.20).  
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Figure 5.20: Identification of alternative markers of Ly6a/Sca1-positive VSMCs.  

Heatmaps showing the expression levels of genes, which were identified as correlated with Ly6a/Sca1 

in the injury dataset, were upregulated in cluster 2 of post injury VSMCs and were part of the 

cVSMCneg signature. The expression levels in the carotid ligation injury (left) and the atherosclerotic 

plaque (right) datasets are colour-coded with darker red representing higer expression. Genes are 

ordered in rows according to the results of hierarchical clustering and cells are grouped by cluster 

membership in columns.  

 

 

Closer examination of Ly6a/Sca1, Fbln2 and Slco2a1 expression patterns showed that these 

genes were generally expressed in the same subpopulations of VSMCs in model systems of 

VSMC phenotypic switching. However, in the carotid ligation injury model, Fbln2 and Slco2a1 

were expressed in a larger proportion of cluster 2 VSMCs than Ly6a/Sca1, while in cultured 

VSMCs Fbln2 marked a larger proportion of cells than both Ly6a/Sca1 and Slco2a1 (Figure 

5.21). There was a tighter overlap in the expression of Ly6a/Sca1, Fbln2 and Slco2a1 within 

atherosclerotic plaques (Figure 5.21). However, a small proportion of VSMCs located in the 

contractile VSMC clusters in all three models of VSMC phenotypic switching also expressed 

Ly6a/Sca1, Fbln2 or Slco2a1. An alternative and targeted approach for isolation of Ly6a/Sca1-

positive VSMCs would therefore require selecting for reduced expression levels of contractile 

markers alongside higher expression of Fbln2 or Slco2a1. Taken together, Fbln2 or Slco2a1 

may be suitable alternative markers of Ly6a/Sca1-positive VSMCs for the investigation and 

isolation of an analogous population of VSMCs. However, further testing of expression and 

specificity at the protein-level is still required. 
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Figure 5.21: Expression levels of Fbln2 and Slco2a1 overlap with Ly6a/Sca1 expression in model 

systems of VSMC phenotypic switching.  

The expression levels of Ly6a/Sca1, Fbln2 and Slco2a1 are visualised after carotid ligation injury (top), 

in the atherosclerotic plaque (middle) and in cultured VSMCs (bottom). Expression levels are colour-

coded on t-SNE or PCA visualisations and pairwise gene expression relationships between of 

Ly6a/Sca1, Fbln2 and Slco2a1 are shown in scatterplots. Histograms show the distributions of cells 

along the x and y axes of shown scatterplots.  

 

5.3 Discussion 

In this chapter I characterised the transcriptional signatures of phenotypically switching 

VSMCs in three model systems of phenotypic switching. The proportion of VSMCs which 

expressed Ly6a/Sca1 was higher in all three model systems of phenotypic switching compared 

with healthy artery walls. Closer examination of the transcriptional signatures of Ly6a/Sca1-

expressing VSMCs following phenotypic switching revealed similarities with SCA1-positive 

VSMCs from healthy arteries, which expressed transcriptional signatures characteristic of 

synthetic VSMCs. Additionally, I identified a set of putative alternative markers of SCA1-

positive VSMCs to facilitate the investigation of a similar population in human atherosclerosis.  

 

5.3.1 VSMC phenotypic switching in culture 

I initially used in vitro culture as a model system of VSMC phenotypic switching, as single-cell 

transcriptomes of cultured VSMCs were publicly available (GSE79436, Adhikari et al. 2015). As 

expected, I observed downregulation of VSMC marker gene expression in cultured VSMCs 

compared with the ex vivo VSMCs we profiled, which is a hallmark of VSMC phenotypic 

switching. Cultured VSMCs also upregulated Ly6a/Sca1 and showed higher expression of the 

cVSMCneg transcriptional signature. In vitro culture is a simple model system, with clear 

differences to the physiological environment, in which VSMC phenotypic switching occurs in 

vivo (Rensen et al. 2007). However, further in vivo work presented in Sections 5.2.2 and 5.2.3 

showed that these findings were replicated in phenotypically switching VSMCs in the carotid 

ligation injury or atherosclerosis mouse models.  

 



128 
 

5.3.2 Induction of VSMC phenotypic switching after carotid ligation injury 

VSMC proliferation and accumulation in the neointima is reproducibly and acutely induced 

following the cessation of blood flow through carotid ligation surgery (Kumar & Lindner 1997). 

Only a small number of VSMCs were previously observed to expand extensively following 

carotid ligation injury, similar to the observations of clonality in the mouse atherosclerotic 

plaque (Chappell et al. 2016). Consistent with in vitro culture, we observed increased 

frequency of Ly6a/Sca1 transcript expression in VSMCs following carotid ligation injury 

compared with healthy arteries. In addition, we confirmed that SCA1 is upregulated in VSMCs 

at the protein level following carotid ligation using flow cytometry. Similarly to cultured 

VSMCs, Ly6a/Sca1-expressing VSMCs following carotid ligation injury also expressed high 

levels of the cVSMCneg signature originally identified in healthy S+L+ cells. 

 

VSMCs showing signs of phenotypic switching expressed lower levels of contractile VSMC 

genes than other profiled cells. Previous studies have reported extensive downregulation of 

VSMC contractile genes following vascular injury (Regan et al. 2000; Herring et al. 2017). 

Herring et al. (2017) reported a significant decrease in VSMC marker gene expression as early 

as 3 days following carotid ligation injury and Regan et al. (2000) observed nearly complete 

downregulation of VSMC contractile genes in the neointima 7 days after vascular wire injury, 

which is the same time point used for scRNA-seq analysis presented in this chapter. I observed 

downregulation of VSMC contractile marker genes in the transcriptomes of VSMCs showing 

characteristics of phenotypic switching, however, the majority of profiled cells did express 

contractile markers, such as Myh11 and Acta2. The discrepancy in observed contractile gene 

expression levels may be due to different models of vascular injury, as well as the fact that the 

entire carotid artery was profiled in our study, and VSMCs expressing contractile genes may 

have originated from the non-remodelled parts of the artery. Herring et al. (2017) also 

investigated transcriptional changes in carotid arteries following carotid ligation and observed 

upregulation of a number of inflammatory cytokines, such as Il6, Il1b and Ccl2. Herring et al. 

(2017) profiled gene expression changes in the entire carotid artery and not specifically in 

VSMCs. Ccl2 was among the upregulated genes in cluster 2 of our dataset, however Il6 and 

Il1b were only expressed very sparsely and at low expression levels. This observation suggests 

that VSMCs partly contribute to the observed upregulation of inflammatory cytokines 

following injury. Additionally, Spp1 was observed to be upregulated after injury (Herring et al. 
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2017), which is consistent with higher expression levels of Spp1 observed among 

phenotypically modulated VSMCs presented in this chapter. 

 

Carotid ligation injury model (Kumar & Lindner 1997) provided a setting for investigation of 

VSMC phenotypic switching in an alternative and more acute environment to the 

atherosclerotic plaque. Interestingly, I observed a lower level of diversity of VSMC phenotypic 

modulation after injury compared with atherosclerosis. The phenotypically switching VSMCs 

in the carotid ligation dataset showed the transcriptional signatures of both the calcifying and 

the Ly6a/Sca1-positive clusters identified in the atherosclerotic plaque. This may be either due 

to environmental differences or due to the shorter timeframe of lesion development, with 7 

days passing from carotid ligation to scRNA-seq analysis in case of injury and 14-18 weeks of 

high-fat diet duration prior to the analysis of VSMCs within atherosclerotic plaques.  

  

5.3.3 VSMCs are phenotypically modulated towards a variety of phenotypes in 

atherosclerosis 

Single-cell transcriptional profiling of lineage-labelled VSMCs from the atherosclerotic plaques 

revealed distinct subpopulations of phenotypically modulated VSMCs, which expressed low 

levels of contractile VSMC marker genes. This finding is in agreement with previous reports of 

VSMC modulation towards a range of different phenotypes, such as macrophage-like cells and 

calcifying cells (Naik et al. 2012; Nguyen et al. 2013; Feil et al. 2014; Shankman et al. 2015; 

Chappell et al. 2016; Jacobsen et al. 2017). In addition, VSMC-derived mesenchymal stem cell-

like cells, characterised by the expression of Ly6a/Sca1 and Eng, have been observed 

previously within atherosclerotic plaques by Shankman et al. (2015). I detected a cluster of 

Ly6a/Sca1-positive VSMCs showing signs of phenotypic switching within atherosclerotic 

plaques, which is in also agreement with a recent report confirming expression of Ly6a/Sca1 

among phenotypically modulated VSMCs within the plaque (Wirka et al. 2019). Eng was, 

however, expressed sparsely in all detected clusters of cells and was not specific to the 

Ly6a/Sca1 cluster in our dataset.  

 

VSMC involvement in arterial calcification through transition to an osteochondrogenic state 

has been established in recent years (Naik et al. 2012; Nguyen et al. 2013; Durham et al. 2018). 

VSMCs transitioning towards a calcifying phenotype were found to be marked by upregulation 
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of Sox9, Spp1 (encodes osteopontin), Bglap (encodes osteocalcin) and Runx2 among others 

(Durham et al. 2018). In agreement with this, I detected a cluster of VSMCs isolated from the 

atherosclerotic plaques, which showed transcriptional signatures characteristic of VSMCs 

involved in vascular calcification, including differential expression of Sox9, Spp1 and Bglap.  

I also observed a cluster of plaque cells expressing transcriptional signatures characteristic of 

macrophages. VSMC-lineage cells expressing macrophage markers have been documented in 

several studies in mice (Feil et al. 2014; Shankman et al. 2015; Chappell et al. 2016; Albarrán-

Juárez et al. 2016). Additionally, in vitro cholesterol loading experiments have suggested that 

VSMCs can upregulate macrophage markers, as well as a selection of other genes 

characteristic of the macrophage phenotype (Rong et al. 2003; Vengrenyuk et al. 2015). 

Macrophage-like cells detected in our study showed extensive transcriptional differences 

compared with contractile VSMC as well as other phenotypically modulated VSMC 

subpopulations. This may suggest that VSMCs are phenotypically modulated towards a 

macrophage state in atherosclerosis, and that transcriptional changes are global rather than 

confined to the the expression of a handful of macrophage markers. All cells included in the 

atherosclerotic plaque datasets were selected for VSMC lineage label expression by FACS, 

however possible contamination from bone-marrow derived macrophages cannot be ruled 

out. Observed macrophage-like cells expressed low levels of Ptprc, which encodes the bone 

marrow-derived cell marker Cd45. However, low expression levels of Ptprc have been 

previously observed in VSMC lineage-labelled cells within the plaque (Albarrán-Juárez et al. 

2016), therefore expression of Ptprc may not necessarily imply contamination. Observed 

macrophage-like cells did express low levels of VSMC markers, such as Myh11 and Acta2, 

however this may be due to background contamination from cell-free mRNA released from 

damaged cells (Young & Behjati 2018). The fact that the majority of profiled VSMCs expressed 

these genes at high levels would make the presence of cell-free Myh11 and Acta2 transcripts 

particularly likely. A method for removing ambient mRNA from droplet-based scRNA-seq 

datasets has been developed (Young & Behjati 2018), however its requirement for prior 

specification of cluster markers could result in incorrect removal of contractile VSMC markers 

from the phenotypically switching populations. Interestingly, VSMC-derived macrophages 

were not captured in a recent study which characterised mouse atherosclerotic plaques using 

scRNA-seq, although low level lipid uptake was observed in plaque VSMCs (Wirka et al. 2019). 

Wirka and colleagues reported that Lgals3 was the only marker typically used to study 

macrophages which was upregulated in phenotypically switching VSMCs. This is in agreement 
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with our data, where I observed higher Lgals3 expression in non-macrophage phenotypically 

switching VSMCs in atherosclerosis and following injury. Overall, it is difficult to draw 

conclusions about the origins of macrophage-like cells observed in this chapter. Further 

studies will be required to reconcile the discrepancies in the literature on whether VSMCs 

transition to a macrophage-like state within the plaque, and if so, what is the extent of such a 

transition. For example, the list of significantly upregulated genes in the macrophage-like 

cluster 9 could be used to inform further immunostaining experiments in the plaque, where 

co-expression of the VSMC lineage label and previously untested cluster 9 markers could be 

investigated.  

 

In our analysis, we included VSMCs isolated from atherosclerotic arteries of mice fed a high-

fat diet for either 14 or 18 weeks. These time points represent an intermediate and advanced 

stage of atherosclerosis in the ApoE-/- mouse model (Nakashima et al. 1994). We did not 

observe large differences between the samples, however, with all of the clusters containing 

cells from both stages. During dissection we observed a large amount of heterogeneity in the 

sizes of atherosclerotic plaques within a single animal as well as between animals, which were 

fed a high fat diet for the same duration. This may explain the fact that significant differences 

were not present between VSMCs isolated from 14 or 18 week stage plaques. We did observe 

some differences in the proportions of VSMCs from each plaque stage present in certain 

clusters. However further replicates at each time point would be required to substantiate 

these observations.  

 

Studies of the clonality of VSMCs within the atherosclerotic plaque have shown that a single 

VSMC is capable of giving rise to the full range of phenotypes VSMCs adopt within 

atherosclerotic plaques (Feil et al. 2014; Chappell et al. 2016; Jacobsen et al. 2017; Misra et 

al. 2018). One of these studies has investigated VSMC localisation within atherosclerotic 

plaques throughout their early development (Misra et al. 2018). Misra and colleagues 

observed that VSMCs first populated the plaque cap, in which they were highly proliferative. 

They suggested that a currently unknown progenitor expressing contractile VSMC markers 

may initially form the cap and later enter the plaque core where VSMCs would be further 

modulated towards other phenotypes. Wirka et al. (2019) however observed that Lum, which 

marked phenotypically switching VSMCs in their study, was expressed in VSMCs located in the 



132 
 

plaque cap, suggesting that VSMCs in the plaque cap may at least in part show characteristics 

of phenotypically modulated VSMCs.  

 

In light of the observations of the clonality of atherosclerotic plaques, the presence of 

phenotypically switched VSMCs in the plaque and rare S+L+ VSMCs in healthy arteries, which 

share aspects of transcriptional signatures with phenotypically switched VSMCs, it is a 

compelling hypothesis that activated S+L+ cells undergo selective expansion in atherosclerosis 

and following injury. At present, there is however no direct evidence to evaluate this 

hypothesis. Further experimental validation with Myh11 and Sca1 dual lineage tracing is 

required to establish whether it is the healthy S+L+ VSMCs that expand after stimulus.  

 

5.3.4 Alternative markers of Ly6a/Sca1-positive VSMCs 

In order to extend the findings from this chapter to the clinically relevant setting of the human 

atherosclerotic plaque, alternative markers of SCA1-positive VSMCs are required, as there is 

no known human orthologue of SCA1. Knowing the wider transcriptional signatures of 

Ly6a/Sca1-positive VSMCs in healthy as well as atherosclerotic arteries may enable 

identification of analogous subpopulations of VSMCs in human in transcriptome-wide studies. 

Transcriptional signatures of phenotypically switching VSMCs in human plaques have recently 

been established and have been broadly matched to mouse plaque VSMCs (Wirka et al. 2019). 

Ly6a/Sca1 was expressed in a subset of phenotypically switching VSMCs both in our dataset 

as well as in the recent study by Wirka and colleagues (2019), where it appeared to show less 

advanced signatures of phenotypic modulation to VSMCs expressing calcifying signatures. 

Ly6a/Sca1-expressing VSMCs may therefore represent an intermediate state along 

phenotypic modulation of VSMCs. Identifying specific alternative markers of Ly6a/Sca1-

positive VSMCs within the plaque may therefore be valuable to study the heterogeneity of 

phenotypically switching VSMCs in human. In this chapter I have identified Fbln2 and Slco2a1 

as putative alternative markers of Ly6a/Sca1-positive VSMCs. These genes were expressed in 

equivalent subpopulations of VSMCs as Ly6a/Sca1 following in vitro culture, carotid ligation 

injury as well as in atherosclerosis. Experimental validation of co-expression with SCA1 at the 

protein level is ongoing in collaboration with A.L. Taylor.  
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5.3.5 Conclusion 

Overall in this chapter I presented evidence for the existence of Ly6a/Sca1-positive VSMCs 

following induction of phenotypic switching in three separate model systems. I observed a 

higher proportion of Ly6a/Sca1-positive VSMCs in all three models of phenotypic switching 

compared with healthy arteries. Phenotypically switching VSMCs showed similar 

transcriptional profiles to healthy S+L+ VSMCs, which expressed high levels of the cVSMCneg 

signature. These findings, as well as the observation that Ly6a/Sca1-positive VSMCs in 

atherosclerosis appear to represent an intermediate state of phenotypic switching, are in 

support of the hypothesis that Ly6a/Sca1-positive VSMCs may be responsible for clonal 

expansion of VSMCs in atherosclerosis and following injury. However, further validation using 

dual Sca1 and Myh11 lineage tracing systems is required to test this hypothesis 

experimentally.  

 

Recent work by Wirka and colleagues (2019) has confirmed our observation of Ly6a/Sca1-

positive VSMCs within the atherosclerotic plaque and additionally identified a population of 

phenotypically modulated VSMCs in human atherosclerotic plaques. To overcome the lack of 

human SCA1 orthologue, I have identified two alternative markers of Ly6a/Sca1-positive 

VSMCs, which may aid in further understanding of VSMC heterogeneity in human plaques. 

Despite the challenges in translating the findings from this chapter to human VSMCs due to 

lack of a SCA1 orthologue, the use of mouse models has been invaluable in this study. Genetic 

VSMC-specific lineage tracing systems, which could not have been used in human, have 

enabled us to identify the transcriptional signatures of phenotypically switching VSMCs, which 

have lost the expression of VSMC marker genes. 
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6 General Discussion 

In this thesis I explored the heterogeneity of VSMCs and their transcriptional profiles in 

disease. I found that VSMCs located in the atherosclerosis-prone AA and atherosclerosis-

resistant DT regions have distinct transcriptional signatures at the single-cell level and 

additionally identified the heterogeneous expression of several disease-relevant genes within 

both vascular beds. I also identified and characterised a rare subset of VSMCs in healthy 

arteries which expressed the progenitor marker SCA1 and showed that these cells express 

transcriptional signatures characteristic of the synthetic state of VSMCs. Examination of the 

VSMC response to in vitro culture and injury suggested that SCA1 upregulation marks the 

process of VSMC phenotypic switching. Furthermore, the transcriptional profiles of 

Ly6a/Sca1-positive VSMCs in atherosclerotic plaques were similar to those of SCA1-positive 

VSMCs detected in healthy arteries. I therefore hypothesise that SCA1-positive VSMCs may be 

the rare subset of cells which undergoes clonal expansion of VSMCs in atherosclerosis, which 

would have clinical implications for specific targeting of clonally expanding VSMCs and earlier 

detection of the disease in the future.  

 

VSMCs were previously proposed to exist on a spectrum of contractile and synthetic states 

(reviewed in Rensen et al. 2007). In line with this hypothesis, I observed diverse VSMC 

transcriptional profiles both in healthy arteries and after response to stimulus. In healthy 

arteries the phenotypic spectrum was heavily biased towards the contractile state, with the 

vast majority of VSMCs expressing the contractile transcriptional signature. S+L+ VSMCs, 

however, showed progressively higher expression levels of transcriptional signatures 

associated with the synthetic state. Following stimulus in the form of vascular injury or 

induction of atherosclerosis, the proportion of VSMCs expressing signatures characteristic of 

phenotypic switching increased, even though the majority of VSMCs in profiled arteries 

retained the expression of contractile VSMC genes. Previous studies have described distinct 

subpopulations of VSMC-derived cells within atherosclerotic plaques (Feil et al. 2014; 

Shankman et al. 2015; Bennett et al. 2016; Durham et al. 2018). However, our data suggested 

that the transcriptional signatures of Ly6a/Sca1-positive VSMCs and calcifying-like VSMCs 

share a degree of similarity. A very recent study by Wirka et al. (2019) observed a continuous 

axis of phenotypic modulation of VSMCs within the plaque, which suggests that there may be 
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a continuity in the transcriptional profiles of phenotypically modulated VSMCs within the 

plaque rather than distinct subpopulations of cells.  

 

The findings presented in this thesis have shed light on the transcriptional signatures of VSMCs 

located within the atherosclerotic plaques. Atherosclerosis is a complex disease and many 

different cell types are involved in plaque formation. scRNA-seq approaches are particularly 

well suited to the exploration of cellular heterogeneity within a complex environment, where 

population-level analysis would obscure the diversity of cells involved. The power of scRNA-

seq for studying the atherosclerotic plaque is illustrated by recent studies of macrophages, 

which have revealed heterogeneity among this population in the plaque (Winkels et al. 2018; 

Cochain et al. 2018). Characterisation of the transcriptional profiles of identified macrophage 

subpopulations also shed light on the putative functions of different macrophage 

subpopulations identified within the plaque (Winkels et al. 2018; Cochain et al. 2018). 

Increased understanding of VSMC and macrophage heterogeneity in atherosclerosis highlights 

that the composition of atherosclerotic plaques may be even more complex than previously 

thought, with not only several cell types involved but there also being significant 

heterogeneity within each cell type. Further studies will be required to understand the role of 

different subpopulations of VSMCs in the plaque and to understand how different 

subpopulations of cells interact with one another. If it is confirmed that the diversity of VSMCs 

in the plaque is generated from SCA1-positive VSMCs, it will be important to understand how 

potential elimination of plaque-accumulating VSMCs would impact disease progression, given 

that VSMCs are currently thought to possess both protective and destabilising properties 

within the plaque (Bennett et al. 2016; Basatemur et al. 2019).  

 

Our study used dissociated tissue for analysis, however recent advances in spatial 

transcriptomics have made high-resolution measurements possible within intact tissue 

samples at transcriptome-wide or near transcriptome-wide coverage (Eng et al. 2019; Vickovic 

et al. 2019). The spatial architecture of the atherosclerotic plaque is disrupted during 

dissociation of tissue to a single-cell suspension, which leads to loss of spatial positioning 

information for individual cells. Availability of spatial information from the atherosclerotic 

plaques would enable a detailed characterisation of plaque architecture and characterisation 

of any subpopulations of cells, which may localise or co-localise in specific areas of the plaque. 

Additionally, applying spatial transcriptomics to healthy arteries may shed light on whether 
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VSMCs showing signs of phenotypic switching in healthy arteries localise in areas of increased 

atherosclerotic risk, such as near branch sites. Another advantage of using spatial 

transcriptomics as a complementary approach to scRNA-seq would be that any artefacts 

induced during tissue dissociation could be eliminated. A recent study observed that 

dissociation of tissue could induce a stress response in cells, which included upregulation of 

several genes identified as heterogeneously expressed in several analyses in this thesis, such 

as Egr1, Nfkbia, Fos and Atf3 (O’flanagan et al. 2019). O’flanagan et al. (2019) further observed 

that the precise effects of dissociation-induced stress response on transcriptional profiles 

varied between different cell types. Since VSMCs were not included in the analysis there is still 

the need to understand the specific effects that the tissue dissociation approach used in our 

study had on the transcriptomes of profiled VSMCs. However, I cannot rule out the possibility 

that some of the observed heterogeneity may have originated from a dissociation-induced 

stress response. Any dissociation-induced gene expression changes may also impact future 

investigations of early transcriptional changes during VSMC phenotypic switching using 

scRNA-seq. Dissociation-induced transcriptional changes would likely be similar to early 

changes induced by in vitro culture, which is a model system for VSMC phenotypic switching. 

Spatial transcriptomics approaches, which would enable investigation of gene expression 

directly in primary tissues, would therefore provide a valuable alternative in such studies.  

 

It is currently not possible to determine whether healthy VSMCs showing signs of phenotypic 

switching in healthy arteries are primed for response to stimulus and subsequently expand, 

or whether phenotypic switching is a homeostatic process, which happens to a lesser extent 

in healthy than stimulated arteries and does not impact on clonal expansion. To validate 

whether SCA1-positive VSMCs in healthy arteries expand in atherosclerosis and after vascular 

injury, dual VSMC/Sca1 lineage tracing systems would be required. A tamoxifen-inducible 

Sca1-Cre tracing approach for tracking SCA1-positive cells has been developed (Vagnozzi et al. 

2018). However, since the Cre approaches used in Myh11-Cre and Sca1-Cre lineage tracing 

systems are not independent, it would not be possible to use a combined Sca1-Cre and 

Myh11-Cre tracing system for such validation. This is because the induction of Cre expression 

under the control of either the Myh11 or Sca1 promoter would in both cases trigger the 

recombination at a Cre-reporter allele. A potential way around this problem would be to 

combine the Sca1-Cre (Vagnozzi et al. 2018) and Myh11-Dre (available from Shanghai Model 

Organisms) mouse lines, where the Cre-loxp and Dre-rox recombination systems would act 
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independently upon tamoxifen induction (Anastassiadis et al. 2009). This approach would 

require characterisation of the specificity and efficiency of the Myh11-Dre system and 

subsequent establishment of a dual Myh11-Dre/Sca1-Cre mouse line. Such a model could be 

used in conjunction with the Ai66 reporter, which requires recombination at both the rox and 

loxp sites to induce expression of the fluorescent reporter (Rosa26-rox-stop-rox-loxp-stop-

loxp-tdTomato) (Madisen et al. 2015).  

 

In order to avoid the extensive crossing required to establish the dual lineage tracing system, 

an alternative approach could be taken to substantiate the hypothesis that SCA1-positive 

VSMCs may expand after stimulus. Independent animals traced through the Myh11-Cre or 

Sca1-Cre systems coupled with fluorescent reporters could be used in conjunction with the 

carotid ligation model, which would not require the establishment of a Sca1-Cre/ApoE-/- 

model. This experiment would involve scRNA-seq profiling of four samples; the entire carotid 

arteries from both Myh11-Cre and Sca1-Cre mice serving as reference points, as well as 

isolated lineage-labelled cells from each of the Myh11-Cre and Sca1-Cre mice. Joint analysis 

of profiled cells could then reveal whether the phenotypically switching VSMC population is 

found within both the Myh11-traced and Sca1-traced samples. However, for unambiguous 

validation, dual lineage tracing experiments would likely be required in the future. 

 

Myh11-Cre used throughout chapters 4 and 5 of this thesis was inserted into the Y 

chromosome (Wirth et al. 2008). A limitation of this work is therefore that only male mice 

were studied. However, there are some differences in the presentation and risk factors of 

atherosclerosis between men and women (Han et al. 2008; Yahagi et al. 2015) and inclusion 

of both sexes is important for reducing the sex bias of research findings and potential future 

clinical implications. Studies have shown that there are widespread gene expression 

differences between female and male mice (Yang et al. 2006) and that sex bias in biomedical 

research may result in poorer clinical outcomes for women (Beery & Zucker 2011). The 

tamoxifen-inducible Myh11-Dre mouse line mentioned above is not linked through the Y 

chromosome, and the use of this model would enable investigation of whether the findings in 

this thesis can be extended to female mice and to generate future findings by investigating 

both sexes. Due to the Y-linked Myh11-Cre, only male mice were also used in the recent study 

by Wirka et al. (2019), which confirmed our observations of a population of VSMCs in healthy 

arteries showing characteristics of phenotypic switching, as well as of Ly6a/Sca1-positive 
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VSMCs with similar transcriptional signatures within atherosclerotic plaques. Wirka and 

colleagues have extended their observations to human VSMCs by jointly analysing their 

transcriptomes with those of mouse VSMCs, which enabled the lineage-traced mouse VSMCs 

to act as a guide in interpreting human atherosclerotic cells. One of the four human 

atherosclerotic samples used by the authors was female, however they have not reported on 

whether the conclusions were supported by each individual sample (Wirka et al. 2019). 

Inclusion of more female samples and a specific comparison between male and female 

samples would have enabled an assessment of whether the findings applied to both sexes. A 

similar strategy of joint data analysis to that employed by Wirka et al (2019) could also be used 

to test the existence of Ly6a/Sca1-positive VSMCs in healthy as well as diseased arteries in 

unlabelled female mice in absence of the Myh11-Dre system in the future.  

 

Advances in scRNA-seq and lineage tracing approaches have enabled investigations of cellular 

heterogeneity and plasticity in many different tissues. Investigations at the single-cell level are 

highlighting the extent of cellular heterogeneity within tissues. It is becoming apparent that 

numerous cell types, which were previously thought to be relatively homogeneous, are in fact 

heterogeneous and are composed of many different subtypes of cells (Zeisel et al. 2015; Villani 

et al. 2017; Chen et al. 2017; Papalexi & Satija 2018; Guo et al. 2019), which is consistent with 

observed heterogeneity in VSMCs. In addition, it is becoming clear that plasticity of resident 

differentiated cells in response to injury is common to many different tissues (Merrell & 

Stanger 2016). De-differentiation of mature cells under such circumstances is thought to have 

the function of tissue repair (Merrell & Stanger 2016). Transitioning of contractile VSMCs to 

the synthetic state can be seen as de-differentiation and the observation of VSMC-lineage cells 

expressing transcriptional signatures associated with synthetic VSMCs in healthy arteries 

suggests that this process may also occur during tissue homeostasis, albeit to a lesser extent.  

 

Overall the findings presented in this thesis highlight that the heterogeneity of VSMCs at the 

single-cell level is a widespread phenomenon, both in healthy arteries as well as in disease. 

Additionally, the transcriptional signatures expressed by VSMCs appear to be dynamic both in 

healthy arteries and following stimulus, suggesting VSMC plasticity may be observed both 

during homeostasis and after injury or in disease. Future investigations will further the 

understanding of the role that the heterogeneity and plasticity of VSMCs play in cardiovascular 

disease. 
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