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Supplementary Materials 

Clinically interpretable radiomics-based prediction of histopathologic 

response to neoadjuvant chemotherapy in high-grade serous ovarian 

carcinoma 

 

Characteristics of Patient Cohorts 

 

Figure S1: Examples of input CT images with the delineated omental lesions: (A) and (B) are the pre-NACT and 

pre-DPS CT scans, respectively, for a patient of the discovery dataset classified as CRS3; (C) and (D) are the pre-

NACT and pre-DPS CT scans, respectively, for a patient of the external test dataset classified as CRS2 (incomplete 

response). The whole tumor and the solid/soft tissue (i.e., intermediately dense) components are represented by 

dashed yellow and solid cyan contours, respectively. 
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Figure S2: Study flowchart. Patients were included at the (A) Cambridge University Hospitals NHS Trust in the 

discovery set and (B) at the Barts Health NHS Trust in the external test set. 

  



 

3 

Training and testing methodology 

The use of nested k-fold CV allows for model training where its hyperparameters also need to be 

optimized (1). The hyperparameter selection (𝜆 in the case of the Elastic Net regularization) by means 

of non-nested CV could yield a biased model, leading to over-optimistic performance. With more 

details, the selection of a model without nested CV uses the same data to tune model hyperparameters 

and evaluate model performance. As a result, the model could be affected by overfitting on the training 

data with poor generalization capability (on ‘unseen’ data) (2,3). 

The models were trained in the inner CV loop and selected according to the maximum Area Under the 

receiver operating characteristic Curve (AUC). To improve the estimated performance of the developed 

machine learning models, the fitting was repeated 100 times with different random permutations of the 

discovery dataset, thus resulting in 500 distinct models in CV. Performance metrics were averaged 

across these independent repetitions. 

During the inner CV loop, the optimal operating point of the receiver operating characteristic (ROC) 

curve was estimated by using the slope s according to Equation (1): 

𝑠 = !"#$(&|()*!"#$((|()
!"#$((|&)*!"#$(&|&)

⋅ (
&

, (1) 

where 𝐶𝑜𝑠𝑡(𝑁|𝑃) and 𝐶𝑜𝑠𝑡(𝑃|𝑁) are the costs of misclassifying a positive class as a negative class 

and a negative class as a positive class, respectively, while P and N denote the total numbers in the 

positive and negative class, respectively. Therefore, the optimal operating point is defined by the 

intersection of the straight line with slope s from the upper left corner of the ROC axes (False Positive 

Ratio = 0, True Positive Ratio = 1) and the ROC curve (4). 
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Volumetric Analyses 

 

 

 

 

Figure S3. Comparison between the volume-based models based on the whole tumor and solid components. 

  

Radiomics Analyses 

Radiomic feature extraction, calibration and pre-processing 

For the quantization, required in radiomic feature extraction, we used the Freedman-Diaconis rule, an 

extension of Scott's rule to non-Gaussian distributions, to find the optimal bin width of a distribution 

(i.e., histogram) for an unbiased estimation of the underlying probability density function. The 

Freedman-Diaconis rule is based on the interquartile range (IQR) and states that the optimal bin width 

of a distribution X can be defined as: 

𝑤𝑖𝑑𝑡ℎ+,-#	 = 2 /01(2)
(!/#

, (2) 

where N is the number of voxels in the distribution X. 
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Considering a median bin number of 133.369 and 101.401 for whole tumor and solid tumor, 

respectively, we achieved a median bin width of 1.881 and 1.646. Therefore, the most suitable solution 

was a bin width of 2 for both whole and solid tumor VOIs.  

The adopted pre-processing are listed in what follows: 

 

●  Intrinsic dependency analysis: to take into account the acquisition characteristics that might 

affect radiomic feature extraction, we calculated the Spearman correlation coefficient for 

each radiomic feature against each considered CT acquisition and reconstruction parameter, 

namely: (i) scanner vendor, (ii) scanner model, (iii) convolution kernel, (iv) KVP, (v) slice 

thickness, and (vi) pixel spacing. In particular, we considered p<0.001 (without multiple-

comparison correction to keep a reasonable number of features) as a cut-off to discard the 

features correlated with the CT acquisition characteristics; 

●  Feature robustness analysis: Aiming at identifying the features robust against VOI 

variations (5), the ICC was considered to determine the most robust features extracted on 

whole tumor and solid/soft tissue tumor component VOIs obtained by an automated tissue-

specific sub-segmentation method developed previously (6). Let k be the number of 

raters/measurements, The two-way random-effects model (or mixed-effects), consistency, 

single rater/measurement, ICC(3,1) was used (7): 

𝐼𝐶𝐶(3,1) 	= 34$*	34%
34$	5	(6*7)	34%

, (3) 

where 𝑀𝑆1 and 𝑀𝑆8  are the mean square for rows and mean square for error, respectively. 

The cut-off value θ (θ∈{0.8, 0.9}) was optimized as a hyperparameter. 

●  Near-zero variance analysis was aimed at removing the features that do not convey 

information content (8). This operation considers a cut-off for the ratio of the most common 

value to the second most common value and a cut-off for the percentage of distinct values 

out of the number of total samples. We used the default values 95/5 and 10 for the two cut-

offs, respectively. 

Starting from the original 107 features (listed in Table S4) extracted by PyRadiomics, six features were 

found to be highly correlated with at least one CT acquisition parameter (in brackets): 

●  First Order: 90th Percentile (KVP) 

●  First Order: Median (KVP) 

●  GLCM: Inverse Difference (slice thickness & pixel spacing) 

●  GLCM: Inverse Difference Moment (slice thickness & pixel spacing) 

●  GLCM: Inverse Variance (pixel spacing) 
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●  GLSZM: Large Area Low Gray Level Emphasis (slice thickness) 

We performed a feature robustness analysis on the remaining 101 features. Features were deemed robust 

based on the ICC(3,1) – with 𝜃=0.8 – between the radiomic features computed on the whole tumor 

against the solid tumor VOIs. This step was motivated by the experimental findings in Fig. 4. By doing 

so, 42 features were highly robust. Lastly, the near-zero variance analysis did not identify any feature 

to remove. 

 

Elastic Net modeling and hyper-parameter optimization 

The predictive modeling made use of the Elastic Net regularization for logistic regression with the 

dichotomized CRS as the response variable (9). Elastic Net uses a mixture between ℓ1 and ℓ2 

regularization: the ℓ1 regularization – also known as Least Absolute Shrinkage and Selection Operator 

(LASSO) (10,11) reduces the coefficients of certain features to zero, thus reducing the number of 

variables in a sparse model; the ℓ2 penalty term – also called ridge regression (12) – constrains the 

magnitude of the feature coefficients so that a model is not dominated by any single feature. Let α be 

the weight for ℓ1 and ℓ2 penalties, also known as the mixing parameter. 

As a hyperparameter tuning, we considered 𝛼∈{0.10, 0.25, 0.50, 0.75, 0.90, 1.0}. A hyper-parameter 

optimization process was performed by considering 30 repetitions for each configuration (Fig. S4); 

even though the performance is generally robust against the hyper-parameter variations, the best 

configuration was provided by the pair <𝜃=0.8, 𝛼=0.9>. 

 

Figure S4: Hyper-parameter optimization of the radiomic models in terms of 𝛼 (Elastic Net ℓ1/ℓ2 regularization 

parameter) and cut-off value θ=0.8 (A) and θ=0.9 (B). The Elastic Net models were trained in 5-fold nested CV 

and the process was repeated 30 times for each configuration. The considered evaluation metrics were AUC and 

accuracy. The bar graph and error bars denote the average value and the standard deviation, respectively. 
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Post-processing and relevant feature analysis 

 

Figure S5: Relevant radiomic feature analysis of the Elastic Net models considering the features selected after 

100 repetitions on the nested 5-fold CV on the discovery cohort. A total of 500 models were trained. 

 

 

Figure S6: Relevant radiomic features of the Elastic Net models trained on the most-relevant feature subset 

considering the features selected after 100 repetitions on the nested 5-fold CV on the discovery cohort. A total of 

500 models were trained. 
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Figure S7: Boxplots of the five most relevant radiomic features and volume, for the discovery cohort. Brackets 

indicate significant differences between patients with complete and non-complete response. Notation: * p<0.05. 

 

 



 

10 

Figure S8: Boxplots of the five most relevant radiomic features and volume, for the external test cohort. No 

significant differences were found between patients with complete and non-complete response.  

Patient Demographics 

Table S1. Comparison of patient characteristics between patients with histopathologic response and response in 

patients with high grade serous ovarian cancer (A) in the discovery (NeOv) and (B) external testing (Barts) set. 

Data are given as absolute numbers and the proportion of patients, with the median and IQR, or mean ± standard 

deviation. 

 

  A 

Discovery, n=61 

B 

External test, n=48 

CRS No response, 

n = 36 

Response, 

n = 25 

p-value No response, 

n=38 

Response, 

n=10 

p-value 

Age (years) 
63± 12 62 ± 11 .70 62 ± 12 64 ± 13 .76 

FIGO     .27     .25 

  IIIC 27 (75%) 15 (60%)   27 (71%) 8 (80%)   

  IV 9 (25%) 10 (40%)   11(29%) 3 (20%)   

CA125 pre-therapy, U/mL 950 (1635) 1693 (3158) .31 899 (1451) 1663 (2046) .58 

Omental tumor volume pre-

therapy, cm³ 

85 (170) 37 (84) .007 167 (209) 65(194) 0.005 

BRCA germline mutation     .51     .74 

  Unknown 11 (31%) 4 (16%)   34 (87%) 8 (80%)   

  BRCA1 4 (11%) 4 (16$)   3 (8%) 2 (20%)   

  BRCA2 2 (6%) 3 (12%)   1 (3%) 0 (0%)   
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  Wild type 19 (52%) 14 (56%)   0 (0%) 0 (0%)   

Number of NACT cycle     .33     .51 

  3 25 (69%) 18 (72%)   24 (64%) 8 (80%)   

  >3 11 (31%) 7 (28%)   14 (36%) 2 (20%)   

Outcome of IDS     .008     .45 

  No residual disease 13 (36%) 20 (80%)   28 (74%) 9 (90%)   

  ≤1cm 15 (42%) 4 (16%)   5 (13%) 1 (10%)   

>1cm 8 (24%) 1 (4%)   5 (13%) 0 (0%)   

       

IDS, interval debulking surgery; NACT, neoadjuvant chemotherapy; FIGO, Fédération Internationale de 

Gynécologie et d'Obstétrique. 

 

Table S2. Univariable analysis of the influence of clinical and radiological variables on progression-free survival 

in patients with high grade serous ovarian cancer in the (A) discovery and (B) external test set. 

  A 

Discovery, n=61 

B 

External test, n=48 

  HR 95% CI p-value HR 95% CI p-value 

Noncomplete response  2.0 1.15-3.47 .01 2.23 0.98-5.01 .057 

Age (years) 1.01 0.99-1.04 .44 1.01 0.98-1.04 .59 

FIGO (IIC vs. IV) 1.16 0.66-2.05 .60 0.77 0.37-1.63 .45 
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Pre-treatment CA125 
(per U/ml)  

1.0 1.0-1.0 .54 1.0 1.0-1,0 .37 

NACT cycles (per 
cycle) 

1.06 0.85-1.33 .59 1.13  0.76-1.69 .54 

Outcome of DPS (>1cm 
vs. NRD) 

3.47 1.51-7.94 .003 2.89  0.99-8.45 .053 

Omental tumor volume 
pre-therapy (per cm³) 

1.0 1.0-1.0 .50 1.0  1.0-1.0 .13 

HR, hazard ratio; CI, confidence interval; NA, at applicable; NRD, no residual disease 

        

  

Table S3. Univariable analysis of the influence of clinical and radiological variables on overall survival in patients 

with high grade serous ovarian cancer in the (A) discovery and (B) external test set. 

  A 

Discovery, n=61 

B 

External test, n=49 

  HR 95% CI p-value HR 95% CI p-value 

No pathologic 
response 

1.71 0.96-3.06 .07 2.97 0.89-9.92 .08 

Age (years) 1.0 0.98-1.03 .79 1.01 0.97-1.04 .81 

FIGO (IIC vs. IV) 0.79 0.43-1.45 .44 1.55 0.66-3.66 .31 

Pre-treatment CA125 
(per U/ml) 

1.0 1.0-1.0 .44 1.0 1.0-1,0 .53 

NACT cycles (per 
cycle) 

0.99 0.78-1.25 .90 1.05  0.64-1.71 .85 

Outcome of DPS (>1cm 
vs. NRD) 

1.8 0.78.4.28 .17 7.56  2.61-21.91 <.001 
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Omental tumor volume 
pre-therapy (per cm³ ) 

1.0 1.0-1.0 .79 1.0  1.0-1.0 .01 

HR, hazard ratio; CI, confidence interval; NRD, no residual disease 

 

CT Imaging Acquisition and Radiomic Feature Extraction 

Table S4. CT acquisition and reconstruction parameters for the development and external test datasets. 

Parameter Discovery dataset External test dataset 

Scanner vendor GE, Siemens, Toshiba GE, Siemens, Toshiba, Philips 

Matrix size (pixels) 512×512 512×512 

Pixel spacing (mm) 0.53-0.93 (mean 0.70) 0.61-0.95 (mean 0.77) 

Slice thickness (mm) 2.0-5.0 3.0,5.0 

Reconstruction kernel Multiple Multiple 

KVP 100, 120, 130, 140 100, 120 

Table S5. Radiomic features extracted from the VOIs in this study. All radiomic features were extracted 

using PyRadiomics and the radiomic feature formulation can be found on the online PyRadiomics 

documentation (https://pyradiomics.readthedocs.io/en/latest/) 

  

# Radiomic feature 

First-order 

1 10th Percentile 

2 90th Percentile 

3 Energy 

4 Entropy 

5 Interquartile Range 

6 Kurtosis 

7 Maximum 
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8 Mean Absolute Deviation 

9 Mean 

10 Median 

11 Minimum 

12 Range 

13 Robust Mean Absolute Deviation 

14 Root Mean Squared 

15 Skewness 

16 Total Energy 

17 Uniformity 

18 Variance 

Shape-based (3D) 

19 Mesh Volume 

20 Voxel Volume 

21 Surface Area 

22 Surface Area to Volume ratio 

23 Sphericity 

24 Maximum 3D diameter 

25 Maximum 2D diameter (slice) 

26 Maximum 2D diameter (column) 

27 Maximum 2D diameter (row) 
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28 Major Axis Length 

29 Minor Axis Length 

30 Least Axis Length 

31 Elongation 

32 Flatness 

Gray Level Co-occurrence Matrix (GLCM) 

33 Autocorrelation 

34 Cluster Prominence 

35 Cluster Shade 

36 Cluster Tendency 

37 Contrast 

38 Correlation 

39 Difference Average 

40 Difference Entropy 

41 Difference Variance 

42 ID: Inverse Difference 

43 IDM: Inverse Difference Moment 

44 IDMN: Inverse Difference Moment Normalized 

45 IDN: Inverse Difference Normalized 

46 IMC 1: Informational Measure of Correlation 1 

47 IMC 2: Informational Measure of Correlation 2 
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48 Inverse Variance 

49 Joint Average 

50 Joint Energy 

51 Joint Entropy 

52 MCC: Maximal Correlation Coefficient 

53 Maximum Probability 

54 Sum Average 

55 Sum Entropy 

56 Sum Squares 

Gray Level Dependence Matrix (GLDM) 

57 Dependence Entropy 

58 Dependence NonUniformity 

59 Dependence NonUniformity Normalised 

60 Dependence Variance 

61 Gray Level NonUniformity 

62 Gray Level Variance 

63 High Gray Level Emphasis 

64 Large Dependence Emphasis 

65 Large Dependence High Gray Level Emphasis 

66 Large Dependence Low Gray Level Emphasis 

67 Low Gray Level Emphasis 
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68 Small Dependence Emphasis 

69 Small Dependence High Gray Level Emphasis 

70 Small Dependence Low Gray Level Emphasis 

Gray Level Run Length Matrix (GLRLM) 

71 Gray Level NonUniformity 

72 Gray Level NonUniformity Normalised 

73 Gray Level Variance 

74 High Gray Level Run Emphasis 

75 Long Run Emphasis 

76 Long Run High Gray Level Emphasis 

77 Long Run Low Gray Level Emphasis 

78 Low Gray Level Run Emphasis 

79 Run Entropy 

80 Run Length NonUniformity 

81 Run Length NonUniformity Normalised 

82 Run Percentage 

83 Run Variance 

84 Short Run Emphasis 

85 Short Run High Gray Level Emphasis 

86 Short Run Low Gray Level Emphasis 

Gray Level Size Zone Matrix (GLSZM) 
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87 Gray Level NonUniformity 

88 Gray Level NonUniformity Normalised 

89 Gray Level Variance 

90 High Gray Level Zone Emphasis 

91 Large Area Emphasis 

92 Large Area High Gray Level Emphasis 

93 Large Area Low Gray Level Emphasis 

94 Low Gray Level Zone Emphasis 

95 Size Zone NonUniformity 

96 Size Zone NonUniformity Normalised 

97 Small Area Emphasis 

98 Small Area High Gray Level Emphasis 

99 Small Area Low Gray Level Emphasis 

100 Zone Entropy 

101 Zone Percentage 

102 Zone Variance 

Neighboring Gray-Tone Difference Matrix (NGTDM) 

103 Busyness 

104 Coarseness 

105 Complexity 

106 Contrast 
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107 Strength 
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