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Abstract 

The egress pathway of herpes simplex virus-1 (HSV-1) is a complicated process mediated by 

co-ordinated activity of several virus glycoproteins. The virions are first assembled and 

enveloped at trans-Golgi-network (TGN) or endosome membranes and then travel through a 

guided pathway that is directed towards the cell adherent points for secretion. Once secreted 

the vast majority of virions remain associated with the extracellular membrane of cells and 

very few free virions are released into the culture medium (<1%). The mechanisms that mediate 

both the targeted secretion of newly assembled virions at cell contact points and post-secretion 

attachment of virions with the extracellular surface of cells are poorly understood, and were 

the topics of this research. 

In this thesis, an HSV-1 passage mutant of increased virion secretion phenotype had been 

studied.  Genome sequencing of the mutant virus identified mutations in three viral envelope 

proteins. Study of recombinant viruses that were constructed based on those three mutations 

revealed that a single amino acid change in glycoprotein I (gI) of glycine to arginine at residue 

39 is responsible for the increased release of virus. The result suggests the principal effect of 

this mutation is to modify the secretory pathway used by virions during their release from 

infected cells. Data also suggests a role of gC in the attachment of virions to the extracellular 

surface of cells after egress.  

In the context of HSV-1 envelopment and egress glycoprotein E (gE), which forms a 

heterodimeric complex with gI (gE/gI), is known to be important. The gE/gI complex has been 

shown to interact with many tegument proteins and have a redundant role in secondary 

envelopment. The gE/gI complex has been also proposed to colocalise with various cellular 

components and sort the nascent virions to cell contact points. However, there is little 

understanding of the cellular proteins that gE/gI interact with, or the mechanisms that mediate 

targeted secretion of virions. This research has identified a novel interactome of gE/gI by mass-

spectrometric analysis utilising stable isotope labelling with amino acids in cell culture 

(SILAC) medium. Among the cellular interactome obtained, Nipsnap1 was validated by co-

precipitation assays from both infected and transfected cells, and furthermore using cell free 

systems, suggesting gE and Nipsnap1 directly interact. Nipsnap1 and its homologue Nipsnap2 

have been proposed to contribute in vesicle transport and membrane fusion in cells. Using 

CRISPR-Cas9 technology these proteins were knocked out in a keratinocyte cell line (HaCaT) 



xi 
 

to investigate their role in HSV-1 egress. However, little or no effect on HSV-1 egress could 

be observed upon loss of either or both of these proteins suggesting the biological significance 

of gE-Nipsnap1 interaction may not be directly linked to any egress function of gE/gI. Two 

further interesting ‘hits’ from the gE/gI interactome were interferon-induced transmembrane 

protein type-2 (IFITM2), a virus restriction factor, and Myoferlin that has a putative role in 

endocytic vesicle recycling. This study could validate gE-Myoferlin interaction and co-

localisation in infected or transfected cells however, functional significance of this interaction 

remains to be determined.  

Overall, the research of this thesis has provided a better understanding of the role of the gE/gI 

complex in HSV-1 egress and investigated the role of some interesting cellular proteins in the 

context of virion egress. 
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1. Introduction 

1.1 Introduction to the Herpesviridae    

Herpesviridae is a large family of DNA viruses that contain pathogens of a wide range of hosts 

including humans. The members of this family are commonly known as herpesviruses. 

1.1.1 Classification  

Herpesviruses are structurally complex DNA viruses that belong to the family Herpesviridae, 

which is further subdivided into alpha- (α), beta- (β) and gamma- (γ) Herpesvirinae subfamilies 

(Minson et al., 2000). There are nine known human herpes viruses (HHV) (Table 1.1) and they 

share common structural features (Strauss and Strauss, 2008). All of them bear a large double-

stranded linear DNA within an icosahedral capsid which is surrounded by a lipid bilayer 

membrane. Primary infection by these viruses usually occurs in childhood with mild symptoms 

(e.g. fever and rash) to no symptoms at all. Subsequently, the virus becomes latent in specific 

cell types (e.g. neurons of the sensory nervous system for human alphaherpesviruses) and can 

be reactivated to produce recurrent disease.  

1.1.2 Important biological properties   

Members of the family Herpesviridae share four important biological properties; (i) They 

express various enzymes (e.g. thymidine kinase) important for metabolism of nucleic acid, 

synthesis of DNA (e.g. DNA helicase/primase) and protein processing (e.g. protein kinases), 

(ii) The viral genome is synthesised and the capsid is assembled in the nucleus whereas the 

envelope is obtained in the cytoplasm, (iii) During a productive lytic infection cycle they 

destroy the infected cell, and (iv) They are capable of establishing latent infections in their 

hosts and can become reactivated in response to cellular stresses. 

1.1.3 Alphaherpesvirinae subfamily   

The Alphaherpesvirinae comprises of three human viruses; HSV-1, HSV-2 and VZV. 

Although genetically very different, HSV-1 and HSV-2 are able to cause similar disease 

symptoms in humans, for example cold sores, genital infection, keratoconjunctivitis, and 

encephalitis. VZV on the other hand primarily causes chickenpox during primary infection and 

shingles upon reactivation. Pseudorabies virus (PrV) is another alphaherpesvirus that causes 

disease in pigs and has been extensively researched.  
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Table 1.1 | Characteristics of the human herpesviruses  

Sub-Family Example Pathology Trans-
Mission 

Target Cells 

Alpha (α)     
HHV-1 
 

Herpes simplex 
virus-1 (HSV-1) 

Oral herpes, genital 
herpes, keratitis, 
encephalitis, 
gingivostomatitis etc 

Oral or sexual 
 

Infect mucosal 
epithelial cells 
Latent in neurons 

HHV-2 
 

Herpes simplex 
virus-2 (HSV-2) 

Genital herpes, may 
cause oral herpes 

Oral or sexual 
 

HHV-3 Varicella-zoster 
virus (VZV) 

Chickenpox and 
shingles  

Respiratory 

Beta (β)     
HHV-5 

 
 
 
 

Human 
cytomegalovirus 
(HCMV) 
 
 
 

Congenital 
cytomegalovirus 
infection may cause 
hepatosplenomegaly, 
rash, retinitis and 
central nervous 
system damage. 
Life threatening to 
immunocompromise
d patients  

Saliva, urine, 
breast milk 
 
 
 
 

Infect various 
cell types e.g., 
epithelial cells, 
endothelial cells, 
smooth muscle 
cells and 
fibroblasts  
Latent in 
Monocytes 

HHV-6A Roseolovirus Roseola Saliva or 
respiratory 

Infect and latent 
in T-cells  HHV-6B Roseolovirus 

HHV-7 Roseolovirus 
Gamma (γ)    

HHV-4 
 

Epstein-Barr virus 
(EBV) 
 

Infectious 
mononucleosis.  
Associated with 
Burkitt’s lymphoma, 
Hodgkin disease, 
nasopharyngeal 
carcinoma 

Saliva, 
transfusion, 
tissue 
transplantation 
 

Infect epithelial 
cells and B cells 
Latent in B cells  

HHV-8 Kaposi’s sarcoma-
associated 
herpesvirus 
(KSHV) 

Kaposi’s sarcoma, 
effusion lymphoma 

Sexual contact, 
saliva 

Infect 
lymphocyte and 
other tissue 
Latent in B cells 
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1.1.4 Betaherpesvirinae subfamily   

This group includes the human viruses; HCMV, HHV-6A, HHV-6B and HHV-7. HCMV is 

well studied as it is a significant problem in immunocompromised and organ transplant 

patients, and in infants. Murid herpesvirus 1 (murine CMV) is studied as a model for HCMV 

infection. HHV-6A is associated with neuroinflammatory disease patients and may also cause 

roseola whereas HHV-6B is the cause of common childhood illness roseola infantum (high 

fever and pink rash). Although less frequent HHV-7 causes a similar kind of disease condition 

in children like HHV-6B. 

1.1.5 Gammaherpesvirinae subfamily   

Among the gammaherpesviruses EBV (causes Burkitt’s lymphoma and infectious 

mononucleosis) and KSHV (causes Kaposi’s sarcoma) are the best studied viruses in this 

group. These viruses can induce lymphoproliferative diseases, and tumours, and can remain 

latent in lymphocytes. Because of the similarities in viral structure, infectivity and latency, 

Murid herpesvirus 4 is often used as a model system to study genetics of KSHV.  

 

1.2 Human herpes virus-1 (HHV-1) 

1.2.1 Disease, treatment and therapeutic potential of HSV-1 

HHV-1, commonly known as herpes simplex virus 1 (HSV-1), is a highly contagious host-

adapted pathogen that causes a wide variety of disease conditions in human. The virus is 

transmitted by direct human to human contact and about 30-100% of the adult population aged 

over 20 is seropositive for HSV-1 (reviewed in Cunningham et al., 2006). The virus primarily 

causes cold sores and occasionally genital herpes. However, it may lead to more severe disease 

conditions like encephalitis or keratitis in some cases. An infected individual can shed the virus 

through body secretions such as tears, saliva, and genital fluids (Beauman, 2005), and direct 

contact of the infected body part or fluid of active lesions promotes virion transmission. 

Humans are the only known hosts for HSV-1 and depending on virus strain, virus entry site 

and host immune response, HSV-1 infection can be mild/asymptotic to life-threatening. HSV-
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1 like most other herpes viruses of the α-subfamily can establish latency in sensory ganglia and 

cause lifelong infection in its host (Shukla and Spear, 2001). 

Although treatment can lessen disease symptoms there is no cure for HSV. Currently acyclovir 

(ACV) or its derivatives are used to target viral DNA replication, however these drugs are 

ineffective in clearing latent infections. Other drugs like cidofovir or foscarnet can be used to 

treat HSV infections but these drugs frequently exhibit severe toxicity towards host cells hence 

are the second line of therapeutic options. Unfortunately, there is a growing problem of ACV 

resistance and this together with increasing numbers of immunocompromised patients 

worldwide warrants continued research to aid the development of effective and safe drugs 

against HSV.  

Interestingly, HSV can be modified for therapeutic purposes. First of all, HSV has a cytolytic 

life cycle in the majority of cells infected by this virus, although while it can infect a variety of 

human cells infections are usually self-limiting. Additionally, the non-essential genes of HSV-

1 can be replaced either to increase cytolytic potential, and/or to modify its envelope 

glycoproteins to alter cell tropism (Sanchala et al., 2017). This has allowed the generation of 

oncolytic HSV (oHSV) capable of eliminating target cancer cells. Recently, talimogene 

laherparepvec (T-VEC) an engineered HSV has been approved as the world’s first oncolytic 

viro-therapeutic agent for the treatment of melanoma by the US Food and Drug Administration 

(FDA) (Killock, 2015; Johnson et al., 2015).   

1.2.2 HSV-1 structure 

A mature HSV-1 virion is approximately 175-225 nm in diameter and composed of four 

characteristic components; the core, capsid, tegument and envelope (Figure 1.1) (Grunewald 

et al., 2003). Viral DNA is contained in the core protected in an icosahedral capsid, with DNA-

filled capsids generally referred to as nucleocapsids. The nucleocapsid is then surrounded by 

tegument proteins and finally wrapped by a phospholipid bilayer envelope. Individual virions 

are also thought to carry some viral and cellular messenger RNAs (mRNAs) and various 

cellular proteins that help viral replication and transport process (Loret et al., 2008; Sciortino 

et al., 2002; Stegen et al., 2013).  The essential stages of the virus life cycle: attachment, entry, 

spread and egress are controlled by the proteins found in the viral capsid, teguments and 

envelope (Table 1.2). 
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HSV-1 can be grown in many standard mammalian cell types in culture and is easily titred as 

plaque-forming units (PFU) on cell culture monolayers. The particle-to-PFU ratio for wild type 

HSV-1 is commonly around 10:1, although this can vary due to differences in virus preparation 

(Brown and MacLean, 1998; Harland and Brown, 1998; Watson et al., 1963). Beside producing 

infectious virions during an HSV-1 infection many particles are released as defective virions 

due to damage or inappropriate virus maturation, lysis of cells before morphogenesis is 

complete, or as light particles. Light particles do not contain a capsid or virus DNA but are 

tegument proteins wrapped in a membrane and hence unable to cause infection (Dargan and 

Subak-Sharpe, 1997). However, light particles could function in the delivery of tegument and 

envelope proteins to surrounding cells to induce or suppress host responses. 

 

Table 1.2 | List of proteins that are found in different layers of the HSV-1 particle 

Capsid Tegument  Envelope  

pUL6, pUL17, 

pUL18 (VP23), 

pUL19 (VP5), 

VP24, pUL25, 

pUL35 (VP26), 

pUL38 (VP19c) 

pUL7, pUL11, pUL13 (VP18.8), 

pUL14, pUL16, pUL21, pUL23 (TK), 

pUL36 (VP1/2), pUL37, pUL41 (vhs), 

pUL46 (VP11/12), pUL47 (VP13/14), 

pUL48 (VP16), pUL49 (VP22), 

pUL50, pUL51, pUL55, ICP0, ICP4, 

ICP34.5, pUS2, pUS3, pUS10, pUS11  

pUL1 (gL), pUL10 (gM), 

pUL20, pUL22 (gH),  

pUL27 (gB), pUL43, pUL44 

(gC), pUL45, pUL49.5 (gN) 

pUL53 (gK), pUL56, pUS4 

(gG), pUS5 (gJ), pUS6 (gD), 

pUS7 (gI), pUS8 (gE), pUS9  

 

1.2.2.1 The core 

The HSV-1 core consists of a single piece of double stranded DNA (Figure 1.1 c). The DNA 

is linear, ~152 kb long with ~68% G+C content and has unique long (UL) and unique short 

(US) regions flanked by terminal and internal repeats (Roizman et al., 1979, Sheldrick and 

Berthelot, 1975). The genome of HSV-1 encodes over 80 protein-coding open reading frames 

of which ~65 genes are contained with the UL and ~15 genes are contained within the US 

region (Roizman et al., 2013). 
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1.2.2.2 The capsid 

The capsid of HSV-1 is 15 nm thick, 125 nm in diameter and is composed of 162 capsomers 

arranged in a T = 16 icosahedral symmetry (Newcomb et al., 1993; Schrag et al., 1989). Mature 

capsids are composed of eight proteins; VP5, VP19C, VP23, VP24, VP26, pUL6, pUL17, and 

pUL25 (Newcomb et al., 2001). VP5 is the major capsid protein (955 copies per virion) and 

makes up both the 150 hexons and 11 of the 12 penton capsomers. VP26 is also found in great 

numbers (900 copies per virion) and is located at the distal hexon tips in the capsid. VP19c and 

VP23 are found in triplexes whereas pUL17 and pUL25 form a complex found near pentons 

on capsids (often referred to as the capsid-vertex specific component (CVSC). Twelve copies 

of pUL6 form a ring at a unique vertex in the capsid for DNA entry and exit. VP24 is a protease 

that initially forms part of the capsid scaffold and plays a role during DNA encapsidation 

(Sheaffer et al., 2000).  

1.2.2.3 The tegument 

The HSV-1 tegument is asymmetrical in structure and can be viewed as more capsid-associated 

inner tegument and less capsid-associated outer tegument. Proteins found in the tegument can 

act immediately after the initiation of infection and before expression of any viral gene. At least 

24 virus-encoded tegument proteins are recruited into HSV-1 virions and they play various 

roles during the virus life cycle (Loret et al., 2008). Tegument proteins are added to the virion 

both in the nucleus and cytoplasm (Bucks et al., 2007; Read et al., 2007; Mettenleiter, 2002 

and 2004, ). Other than pUS3, VP1/2, pUL37, ICP0 and ICP4 tegument proteins, the rest are 

considered as outer tegument proteins (Delboy and Nicola, 2011; Loret and Lippé, 2012; 

Reynolds et al., 2002). However, little is known about the structure of the tegument and 

location of specific proteins within this complex structural domain, although super-resolution 

microscopy studies have begun to shed light on this (Laine et al., 2015). The tegument proteins 

shown to be present in HSV-1 particles are listed in Table 1.2. 
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Figure 1.1 | HSV-1 virion morphology, genome and envelope proteins. (a) Structure of the 

HSV-1 virion as shown by a schematic diagram, (b) transmission electron microscopy (TEM) 

image of a virion, (c) HSV-1 genome with unique long (UL) and unique short region flanked 

by terminal repeat (TR) and internal repeat (IR) regions and (d) HSV-1 membrane proteins 

with known and putative functions. The transmembrane domains are predicted regions. For gK 

either three or four transmembrane domains and for pUL43 either ten or eleven transmembrane 

domains have been predicted. Dotted lines indicate membrane protein interactions.  
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1.2.2.4 The envelope 

The HSV-1 tegument coated nucleocapsid is enclosed by a host cell membrane derived, viral 

glycoprotein (g) bearing envelope. Within the envelope at least 13 virus-encoded proteins 

including gB, gC, gD, gE, gH, gI, gJ, gK, gG, gL and gM have been identified (Figure 1.1 d) 

(Loret et al., 2008; Mettenleiter, 2004). The life cycle of HSV-1 depends on proper functioning 

of its envelope glycoproteins (Spear and Longnecker, 2003; Mettenleiter, 2002 and 2004). 

Some of those glycoproteins (gB, gD and gH/L that are the core entry factors) are essential 

while others are non-essential (Cai et al., 1988; Ligas and Johnson, 1988; Forrester et al., 1992; 

Roop et al., 1993). To cause infection HSV-1 must bind to specific receptors on the cell to 

enter. Deletion of any of the essential glycoproteins from the virus inhibits its entry in to the 

cell therefore, the incorporation of these glycoproteins on to naïve virions is important. On the 

other hand, deletion of some non-essential glycoproteins can cause a delay in virus entry, 

envelopment or egress and can alter the pathway of virion secretion. Therefore, a balanced co-

ordination between essential and non-essential glycoproteins is expected to play a critical role 

during the virus life cycle. Some of the published functions of individual envelope proteins are 

shown in Figure 1.1. 

 

1.2.2.5 Significance of envelope glycoproteins in HSV-1 life cycle 

HSV-1 envelope glycoproteins contribute to various aspect of the virus life cycle, with many 

of them having multiple functions. The currently known and proposed functions of the 

glycoproteins are listed on Table 1.3, although new functions will undoubtedly come to light 

with current and future research. 
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Table 1.3 | Summary of known and predicted functions of HSV-1 envelope glycoproteins  

Glycoprotein  
(encoding gene) 

Known or predicted function(s) References 

gB (UL27) Virion attachment 
Fusion of viral and cellular membranes  
Nuclear egress 
Syncytia formation (with gK) 

Eisenberg et al., 2012; 
Wisner et al., 2009; 
Melancon et al., 2005 

gC (UL44) Virion attachment 
Prevention of complement-mediated cell 
lysis and virus neutralisation 

Herold et al., 1991; 
Yeh et al., 2011 

gD (US6) Virus entry 
Inhibits apoptosis 
Nuclear egress  

Eisenberg et al., 2012; 
Zhou et al., 2003 

gE (US8) gI associated 
Virion envelopment  
Directional transport of virion 
Regulate membrane fusion 
Evasion of host immune system by utilising 
its FcR, located in the ectodomain when in 
complex with gI 

Dingwell and Johnson, 
1998; 
Howard et al., 2013; 
Ndjamen et al., 2014 
 

gG (US4) Virion entry 
Bind to chemokines (CC and CXC) and 
modulate their function 

Tran et al., 2000; 
Viejo-Borbolla et al., 2012 

gH (UL22) gL associated 
Virion entry/fusion 
Nuclear egress 

Eisenberg et al., 2012; 
Farnsworth et al., 2007a 

gI (US7) See gE  

gJ (US5) Inhibits apoptosis Jerome et al., 2001 

gK (UL53) pUL20 associated 
Nuclear egress 
Assists gB-mediated virus-induced cell 
fusion 
Secondary envelopment 

Jayachandra et al., 1997; 
Melancon et al., 2005 

gL (UL1) See gH  

gM (UL10) gN associated 
Intracellular targeting of membrane proteins 
Secondary envelopment 
Membrane fusion regulator  

Leege et al., 2009; 
Ren et al., 2012 

gN (UL49.5) gM associated 
gM maturation and fusion activity 
modulation 

Striebinger et al., 2016;  
Mach et al., 2007; 
El Kasmi and Lippé, 2015 

 



Chapter 1. Introduction 

 

10 
 
 

1.2.3 HSV-1 life cycle 

HSV-1 begins its life cycle by attaching to a target cell and fusing its envelope to the host cell 

membrane. Subsequently, the viral capsid is transported to the nuclear pore and viral DNA is 

delivered in to the host cell nucleus (Cheshenko et al., 2003). A temporally regulated set of 

viral genes (immediate early, early and late) are then expressed which allows viral replication, 

transcription and protein synthesis. Next, viral DNA is packaged in to newly formed capsids 

and the resulting nucelocapsids likely associate with a few tegument proteins and then undergo 

egress from the nucleus by budding at the inner nuclear membrane, to form a primary 

enveloped virion in the perinuclear space, followed by fusion with the outer nuclear membrane. 

The nucleocapsids then collect the full complement of tegument proteins in the cytoplasm and 

become enveloped by budding/wrapping at membrane compartments derived from endosomal 

compartments and/or the trans-Golgi-network (TGN) (reviewed in Johnson and Baines, 2011; 

Hollinshead et al., 2012). Release of the mature virions occurs by fusion of the virus-containing 

vesicles with the plasma membrane in a poorly understood mechanism (Figure 1.2). These 

different stages are described in more detail below. 

1.2.3.1 Attachment 

Viruses initially attach to host cell surface receptors prior to entry. HSV-1 envelope proteins 

gC and gB attach to glycosaminoglycan (GAG) chains of host cell surface heparan sulphate. 

However, the interaction of these glycoproteins with GAGs is not an absolute requirement for 

attachment as mutant viruses lacking either one or both of these GAG-binding activities are 

still able to infect cells in culture (Cai et al., 1988; Herold et al., 1991). In viruses lacking gC 

the GAG-binding activity of gB can take over the attachment function although overall binding 

of virion to cell surfaces decreases (Shukla and Spear, 2001). 

1.2.3.2 Entry and uncoating 

HSV-1 can enter into its target cell via direct fusion with the plasma membrane and/or fusion 

within an acidic or neutral endosome depending on the cell type (Koyama and Uchida, 1987; 

Wittels and Spear, 1991). The process of entry is dependent on gB, gD, gH and gL envelope 

glycoproteins and mutant viruses lacking these proteins are entry defective (Cai et al., 1988; 

Ligas and Johnson, 1988; Roop et al.,  1993). After initial attachment,  gD  interacts  with at-  
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Figure 1.2 | Overview of HSV-1 life cycle. 1. gB and gC binding to heparan sulphate mediate 
virion attachment to host cell. 2. gD binding to entry receptors promotes fusion complex 
formation by gB, gH/gL for nucleocapsid delivery to the cytosol. 3. Nucleocapsid is transported 
towards the nucleus. 4. Nucleocapsid docks onto the nuclear pore and injects viral DNA into 
the nucleus. 5. Viral DNA is transcribed into mRNA by host cell DNA-dependent RNA 
polymerase II and which is translated by cellular machinery and viral DNA is replicated by 
viral DNA polymerase. 6. Capsid assembles in the nucleus, genome packaging and 
nucleocapsid transport to the perinuclear space by primary envelopment. 7. Nucleocapsid is 
released in the cytoplasm after fusion of the perinuclear virion with the outer nuclear 
membrane. 8. Nucleocapsid recruits tegument proteins and becomes enveloped by 
TGN/endosome derived membrane. 9. Enveloped particle-loaded vesicles transported to the 
cell membrane for egress. 10. Vesicles fuse with plasma membrane to release the virion to the 
extracellular milieu. 
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least one of three entry receptors; herpesvirus entry mediator (HVEM), nectin-1 and 3-O 

sulphated heparan sulphate (Ligas and Johnson, 1988; Montgomery et al., 1996; Shukla et al., 

1999; Shukla et al., 2000). The binding event changes the conformation of gD which then forms 

a complex with the gH/gL heterodimer (Atanasiu et al., 2010; Krummenacher et al., 2005). 

Consequently, gB interacts with the gH/gL complex (Atanasiu et al., 2007) and forms the 

fusion machinery which effects penetrartion of the host cell membrane. Other glycoproteins 

such as gG have also been proposed to play role in virus entry. Mutant viruses lacking gG were 

able to infect neighbouring cells through the basal surface but failed to do so thorough the 

apical surface of polarised epithelial cells in culture (Tran et al., 2000). Fusion of the viral 

envelope with cell membranes releases the tegumented nucleocapsids into the cytoplasm 

(Maurer et al., 2008; Sodeik et al., 1997). The capsids are thought to shed most of their 

tegument proteins rapidly upon entry and bind to dynein motors for transportation along 

microtubules towards the microtubule organising centre (MTOC) (Sodeik et al., 1997). The 

entry process has also been shown to trigger intracellular calcium influx, which in turn 

stimulates downstream signalling to promote viral capsid transport along the microtubules 

towards nuclear pores (Cheshenko et al., 2003). Some tegument proteins (such as VP1/2), 

which remain attached to nucleocapsids, are thought to aid this process (Copeland et al., 2009). 

The capsid then docks onto nuclear pore complex (NPC) and releases viral DNA into the 

nucleus.  

1.2.3.3 Viral gene expression 

HSV-1 DNA encodes at least 80 proteins that are translated in a temporally controlled fashion 

that is regulated by both viral and cellular factors (Roizman et al., 2013). The genes expressed 

can be grouped as immediate early (IE/α), early (E/β) and late (L/γ), with late genes often 

classified as early/late (γ1) and true late (γ2) (Figure 1.3). Immediately after entry, the virion 

tegument protein VP16 (also called α-TIF) binds to host cell factor-1 (HCF-1) and enters the 

nucleus as a VP16-HCF-1 complex (La et al., 1999) which binds to cellular Oct-1 protein and 

initiates transcription of IE genes (ICP0, ICP4, ICP22, ICP27 and ICP47). These gene products 

promote expression of E and L genes, inhibit host transcription, aid splicing and transport of 

viral RNA, and facilitate viral protein synthesis. Viral genes are transcribed by host RNA 

polymerase II (RNAP II) (Alwine et al., 1974), which can be modulated by viral gene products 

for selective and efficient expression of viral genes (Fox et al., 2017). At 2-4 hours post 
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infection (hpi) when sufficient IE proteins are synthesised (Boehmer and Lehman, 1997), 

transcription of E genes is initiated. At least 13 E gene products are known and most of them 

are directly or indirectly involved in viral DNA replication. Though stimulated by viral DNA 

synthesis some γ1 gene can also express in the absence of DNA replication whereas γ2 gene 

expression strictly requires viral DNA replication to occur beforehand. Approximately, 60 

genes are considered as late genes.  

 

Figure 1.3 | Outline of herpesvirus productive replication cycle. Immediate-early gene 

products act on early genes. Early genes are also transcribed from the viral genome and these 

gene products help in viral DNA replication and late gene expression. Late gene products 

mostly contribute to the formation of the viral particle. 

 

In addition to enhancing transcription of its own genes, HSV-1 can selectively hijack host 

ribosomes and control viral protein synthesis during lytic infection. Virion host shut-off (vhs) 

(pUL41) is an example of a tegument protein that is delivered to the cytoplasm by the virus 

after its entry. The protein can selectively degrade both cellular and viral mRNA by its 

endoribonuclease activity. It is thought to target actively translating mRNAs by directly 

binding to the cellular translation initiation factor eIF4H (Feng et al., 2001). The early vhs 

activity is thought to favour viral translation by reducing competition for the translation 
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machinery while later in infection vhs is considered to promote the transition between different 

classes of viral genes (IE, E and L) by increasing mRNA turnover (Esclatine et al., 2004; 

Taddeo and Roizman, 2006). During late stage of infection, the RNase activity of vhs is reduced 

by the tegument proteins VP16 and VP22 which is thought to facilitate incorporation of vhs 

into the tegument of naïve virions. (Lam et. al., 1996; Taddeo et al., 2007). 

1.2.3.4 Genome replication 

Replication of HSV-1 DNA occurs simultaneously in the infected cell nucleus in a number of 

stages and the process involves seven viral proteins. The replication begins at one of the three 

viral origin(s) of replication (Ori) sequences, OriL in the UL region or one of the two copies 

of OriS in the repeat regions. Interestingly, deletion of either oriL or both copies of oriS have 

demonstrated little or no effect on viral replication in vitro, suggesting that oriL and oriS are 

functionally redundant (Igarashi et al., 1993; Polvino-Bodnar et al., 1987). However, studies 

in mouse models proposed important roles of oriL in HSV-1 latency (Balliet and Schaffer, 

2006). The DNA synthesis starts with the distortion of the AT-rich origin spacer region by the 

Origin binding protein pUL9 and the single-stranded DNA binding protein ICP8 (pUL29) 

(Makhov et al., 2003). Afterwards, pUL5/pUL8/pUL52 helicase-primase complexes are 

recruited to promote origin unwinding (helicase function) and generate small RNA primers to 

initiate DNA replication (primer function) (Muylaert et al., 2011). Viral DNA intermediates 

are formed by rolling circle or recombinational mechanisms by the HSV-1 polymerase 

holoenzyme (Skaliter and Lehman, 1994; Wikinson and Weller, 2003). The holoenzyme 

consists of a large catalytic and a small auxiliary subunit derived from UL30 and UL42 genes 

respectively (Lehman and Boehmer, 1999). Viral DNA synthesis is seen as early as 3 hpi, with 

maximum rate of DNA synthesis between 7-10 hpi (Weller and Coen, 2012). 

1.2.3.5 Capsid assembly and packaging of DNA 

In an HSV-1 infected cell nucleus three different capsid types are found in varying numbers. 

Firstly, precursor procapsids are formed which become matured and give rise to more stable 

forms of capsid type A, B and C. The A, B and C capsid shells share common features although 

their internal contents vary from each other. A substantial amount of viral DNA and removal 

of the majority of the internal scaffold proteins are necessary for a capsid to become an 

infectious virion. Capsid type A (incomplete DNA packaging) and B (lacks viral DNA) are 

deficient in either one or both of the characteristics and hence considered as abortive (Roos et 
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al., 2009). Capsid type C bears the correct amount of both viral DNA and scaffold proteins and 

becomes a mature virion (Perdue et al., 1976). In vitro, expression of VP5, VP19c, VP21, 

VP22a, VP23, VP24 and VP26 has been shown to reconstitute capsid assembly (Tatman et al., 

1994). The Capsid assembly process is thought to begin with the interaction of pUL6 and VP5 

(Newcomb et al., 2001). A condensation interaction among VP5 with the scaffold proteins 

pUL26 (VP21-VP24) and VP22a help the formation of a partial procapsid shell. Further 

interaction of triplex proteins VP19c and VP23 convert the partial shells into a virus procapsid 

(Newcomb et al., 1996). With the initiation of viral DNA packaging into the procapsid, pUL26 

undergoes autocleavage, separating the N-terminal VP24 protease and C-terminal VP21 

scaffold domain. This cleavage also converts the shape of the procapsid into a polyhedral and 

angular capsid which becomes icosahedral with 150 hexons (VP5), 12 pentons (VP5) and 320 

triplexes (VP19c and VP23) (Newcomb et al., 1996).     

DNA encapsidation occurs in the nucleus of infected cells and begins with the interaction of a 

set of viral proteins with newly synthesised viral DNA. At least seven viral proteins are 

essential for the cleavage and packaging stage: the two CVSC proteins (pUL17 and pUL25), 

pUL6, pUL15, pUL28, pUL32 and pUL33. Deletion of any of these proteins results in 

maturation defects in HSV-1 and only B capsids are formed (Cockrell et al., 2011). The UL32 

gene product has been reported to transport the assembled capsids to DNA encapsidation sites 

(Lamberti and Weller, 1998). pUL15, pUL28 and pUL33 act as a terminase complex which 

docks onto the pUL6 portal to bind, scan and cleave viral DNA at specific positions. pUL17 

and pUL25 help to keep DNA in the capsid through stabilisation of the DNA filled capsid 

structure (Lamberti and Weller, 1998). The DNA-filled capsid (termed nucleocapsid) is then 

associated with a limited number of tegument proteins and egresses from the nucleus by 

budding.  

1.2.3.6 Egress pathway 

Once packaging is complete, nucleocapsids travel to the cytoplasm for maturation and egress. 

At least three different mechanisms have been postulated about how HSV-1 traverses the 

nuclear envelope and gains access to the cytoplasm for final maturation followed by exit. 

Firstly, the single-envelopment or luminal model suggests virions present in the perinuclear 

space between the inner and outer nuclear membranes (INM and ONM), which is contiguous 

with the lumen of the endoplasmic reticulum, exit the cell using the secretory pathway without 
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the need for de-envelopment and re-envelopment (Campadelli-Fiume, 2007; Enquist et al., 

1998). However, if viral glycoproteins are artificially re-targeted to the ER they can no longer 

be incorporated into virions, suggesting the perinuclear particles are not the mature virions and 

so an alternative mechanism of HSV-1 egress is likely to occur (Skepper et al., 2001). 

Additionally, EM analysis of the mature and perinuclear HSV-1 particles showed difference in 

their morphology (Granzow et al., 2001), also biochemical analysis detected the pUL31/pUL34 

complex in the perinuclear virions but not in the mature virions (Hagen et al., 2015). These and 

many other studies suggest that during maturation and egress HSV-1 loses its perinuclear 

envelope and acquire an envelope from post-ER cytoplasmic compartments. Hence, a second 

hypothesis, the envelopment-deenvelopment-reenvelopment (dual envelopment) model has 

been proposed and is widely accepted (Figure 1.4). In this model the nucleocapsid buds through 

the INM forming a primary enveloped particle in the perinuclear space (Klupp et al., 2007; 

Mou et al., 2007; Kato et al., 2008), then becomes de-enveloped by fusion with the ONM 

(Reynolds et al., 2002; Farnsworth et al., 2007a; Wisner et al., 2009) and finally re-enveloped 

(secondary envelopment) in the cytoplasm to complete the process of virion maturation 

(Hollinshead et al., 2012; Albecka et al., 2016) (described in detail below). A third mechanism 

based on electron microscopy (EM) observations hypothesised that the dilation of nuclear pores 

could allow egress of viral capsids from the nucleus (Leuzinger et al., 2005). However, this 

hypothesis lacks biochemical or genetic experimental evidence and was not supported by other 

researchers, particularly because nuclear pores normally only allow transport of cargo up to 36 

nm in size (Pante and Kann, 2002) whereas the HSV-1 nucleocapsid is 125 nm and the 

morphological integrity of nuclear pores appear unaffected until very late stages of infection 

(Hofemeister and O’hare, 2008; Mettenleiter and Minson, 2006). 

1.2.3.6.1 Primary envelopment  

In the dual envelopment model, HSV-1 pUL31 and pUL34 form the nuclear egress complex 

(NEC) (Klupp et al., 2007), which interacts with nucleocapsids to drive their budding through 

the INM in to the perinuclear region for primary envelopment. During this process the nuclear 

lamina (lamins A, B and C), a meshwork of dense microfilaments providing structural rigidity 

to the nucleus, acts as a barrier to the capsids and need to be disrupted. In addition to local 

disruption of the lamina by pUL31 and pUL34, several other viral and cellular mechanisms 

likely to contribute this process. During HSV-1 infection, two protein kinase C (PKC) isoforms 

(PKCδ and PKCα) are thought to phosphorylate lamin B (Leach and Roller, 2010) whereas the 
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virally encoded pUS3 kinase can phosphorylate lamin A and lamin C (Mou et al., 2007). 

Phosphorylation is thought to cause a thinning of the lamina due to reduced binding efficiency 

of the lamina to their target receptors on the INM (Morris et al., 2007; Leach et al., 2007; Leach 

and Roller, 2010). The interaction of pUL31 and pUL34 with lamin A and C may also prevent 

or reduce lamin-lamin binding and contribute to lower density of lamina meshwork (Reynolds 

et al., 2004; Leach and Roller, 2010).  Localisation of pUL31 and pUL34 to NEC has been also 

shown to be regulated by pUL13 kinase activity, in either a pUS3-dependent or -independent 

mechanism (Kato et al., 2008).   

 

Figure 1.4 | HSV-1 egress pathway.  1. Viral nucleocapsid passes through the nuclear lamina 

and interacts with the INM. 2. The nucleocapsid buds in to the perinuclear space for primary 

envelopment. 3. The primary envelope fuses with the ONM for de-envelopment of the 

nucleocapsid. 4. The capsid acquires tegument proteins and undergoes secondary envelopment 

by budding/wrapping at membranes derived from the TGN/endosomes. 5. Cargo vesicles carry 

the virion towards the cell-to-cell contact points, 6. Fusion of the cargo vesicle with the plasma 

membrane releases the virion at the cell junction where the particles remain attached utilising 

envelope glycoproteins and/or enters a neighbouring cell.  
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Beside lamina disruption during nuclear egress, pUL31/pUL34 has been also proposed to select 

C-capsids specifically by interacting with the higher copy number of pUL25 present on C- 

compared to A- or B-capsids (Newcomb et al., 2006; Sheaffer et al., 2001; Yang and Baines, 

2011; Yang et al., 2014). Importantly pUL31/pUL34 also induces membrane curvature for 

primary envelopment (Klupp et al., 2007; Mou et al., 2009; Roller et al., 2010; Hagen et al., 

2015; Zeev-Ben-Mordehai et al., 2015). Interestingly, deletion of either UL31 or UL34 gene 

can still produce cytosolic virions but in severely reduced number, suggesting other mechanism 

of nuclear egress can take place during infection (Chang et al., 1997; Fuchs et al., 2002; Klupp 

et al., 2000; Roller et al., 2000; Ye and Roizman, 2000). However, no role of pUL31/pUL34 

has been noted for during secondary envelopment and these proteins are not incorporated into 

mature virions. 

HSV-1 gB, gD, gM and gH/gL have been reported to be present in the INM and perinuclear 

virions although a direct involvement of these envelope protein during primary envelopment 

has not been documented (Baines et al., 2007; Fransworth et al., 2007a; Padula et al., 2009; 

Stannard et al., 1996; Torrissi et al., 1992). The NEC possibly interacts with gM and gD in the 

INM and pUL34 is thought to bind gD either recruiting it or retaining it into INM. Whether or 

not these glycoproteins play partial roles in connecting the INM to the nucleocapsid during 

primary envelopment is unknown. For HSV-1, the entry glycoproteins gB and gH have been 

proposed to play an active role during de-envelopment, suggesting they are incorporated into 

the perinuclear virion (Farnsworth et al., 2007a) (detailed in section below).  

1.2.3.6.2 De-envelopment 

The perinuclear virion rapidly fuses with the ONM releasing the de-enveloped nucleocapsid 

into the cytoplasm and leaving behind the NEC proteins by a mechanism which is poorly 

understood (Reynolds et al., 2002). The process of fusion to ONM for de-envelopment has 

been proposed to engage the same fusogenic protein complex of gB, gD and gH/gL heterodimer 

that is required during virion entry into the cell (Wisner et al., 2009; Baines et al., 2007; 

Farnsworth et al., 2007a; Torrisi et al., 1992). Although there is no evidence for a role of gD 

during de-envelopment, a mutant virus lacking both gB and gH has been shown to accumulate 

in large numbers in perinuclear regions often observed in large INM derived vesicles termed 

‘herniations’ that project into the nucleoplasm (Farnsworth et al., 2007a). Formation of such 

herniations is also seen with the deletion of pUS3 (Reynolds et al., 2002; Ryckman and Roller, 
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2004). pUS3 may act in multiple ways to promote de-envelopment, including the 

phosphorylation of pUL31 and the gB cytoplasmic domain. Inhibition of the kinase activity of 

pUS3 also enhances herniations and reduces de-envelopment (Wisner et al., 2009; Mou et al., 

2009).  

However, the potential role of gB and gH/gL in de-envelopment is unclear and alternative 

mechanisms for de-envelopment can occur. For example, a mutant virus lacking both gB and 

gD did not demonstrate a deficiency in nuclear egress (Johnson et al., 2011), making it difficult 

to rationalise a direct fusion role of gB and gH/gL in de-envelopment because gB is widely 

believed to be the fusogen. Additionally, PrV double deletion mutants lacking any two of gB, 

gH and gD showed no defects in nucleocapsid egress into the cytoplasm (Klupp et al., 2008). 

Whether gB and gH play some sort of redundant, facilitatory role in HSV-1 nuclear egress, and 

what activity they play in this process remains to be determined. 

1.2.3.6.3 Tegument acquisition  

HSV-1 capsids are released into the cytoplasm with only a limited number of tegument proteins 

associated (e.g. pUS3) and rest of the tegument proteins are added to the virion before or during 

secondary envelopment. The assembly of the tegument layer involves a complex and intricate 

network where tegument proteins interact with each other, with capsid proteins and also with 

envelope proteins. Because of the complexity of tegument interactions, functional redundancy 

is common in the network. Tegumentation is thought to begin in the nucleus with at least some 

tegument proteins (pUS3, VP1/2, pUL37, ICP0, ICP4, vhs, VP16, and VP22) proposed to 

associate with nucleocapsids in the nucleoplasm or with perinuclear virions. However, with the 

possible exception of pUS3 that has a clear function during nuclear egress, the actual 

acquisition sites for the rest of these proteins is a matter of dispute (reviewed in Johnson and 

Baines, 2011). One of the first tegument proteins likely to be associated with the nucleocapsid 

is VP1/2, which has been shown to directly interact with VP5 and/or pUL25 (component of 

CVSC) (Cardone et al., 2012; Coller et al., 2007). Once such scaffolds are formed other 

tegument proteins can be recruited, either sequentially or via redundant interactions with each 

other, and this process is likely to continue until secondary envelopment is complete (Figure 

1.5).  

 



Chapter 1. Introduction 

 

20 
 
 

 

Figure 1.5 | Interaction network of tegument proteins with capsid and envelope 

glycoproteins. The tegument assembles via a complex network of protein-protein interactions 

during secondary envelopment. Only a subset of tegument proteins and their known 

interactions are shown. 

 

1.2.3.6.4 Secondary envelopment 

The final stage of virion maturation is to become re-enveloped by budding into, or wrapping 

at, cytoplasmic membrane by a process called secondary envelopment. Though the exact site 

of this process has not been confirmed, experimental data shows the lipid composition of 

mature virion envelope is similar to that of Golgi-derived membrane (van Genderen et al., 

1994). Other studies based on immunological techniques have also suggested that the 

secondary envelopment process occurs in the TGN (Granzow et al., 2001). Alternatively, the 

virus has been reported to be re-enveloped in endocytic membranes which are abundant and 

more available in the cell than the smaller TGN (Hollinshead et al., 2012; Albecka et al., 2016). 
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Another study in this regard hypothesised multivesicular bodies are important in HSV-1 

envelopment (Calistri et al., 2007). Endosomal sorting complexes required for transport 

(ESCRT) components are also shown to be involved in secondary envelopment as inhibiting 

the activity of the ESCRT protein Vps4 caused accumulation of nucleocapsids in the 

cytoplasm, which failed to become enveloped (Crump et al., 2007). During late stages of 

infection HSV-1 dramatically rearranges the Golgi, TGN and endocytic vesicles distributing 

them throughout the cytoplasm. This makes it difficult to determine where in the cell secondary 

envelopment happens, and the disruption of the normal pathways of secretory and endocytic 

transport by virus infection suggests the normal definitions of subcellular compartments may 

not be completely applicable to infected cells (Campadelli et al., 1993). Many studies to 

determine the precise sites of herpesvirus envelopment have utilised electron microscopy-

based techniques, which only provides a static snapshot of this highly dynamic event, and many 

of the intracellular trafficking compartments like the TGN, Golgi and endosomes can be 

difficult to distinguish as they tend to cluster around the microtubule organising centre 

(MTOC). However, HSV-1 has been co-fractionated with both TGN and endosomes (Harley 

et al., 2001) suggesting capsids are wrapped at different sites depending on where in cell they 

meet the envelope.   

Envelope proteins are required for secondary envelopment as they interact with capsid or 

tegument proteins to connect the membrane to capsids, and there is substantial evidence of 

envelope protein involvement in virion envelopment including gB (Johnson et al., 2011), gD, 

gE and gI (Farnsworth et al., 2003), gM (Ren et al., 2012), gK (Melancon et al., 2005) and 

pUL20 (Foster et al., 2004). However, deletion of a single glycoprotein (gB, gC, gD, gE, gH, 

gI, or gL) often has little or no effect on secondary envelopment, and deletion of two or three 

glycoproteins together is often required to cause more substantial defects in secondary 

envelopment. For example, mutant viruses lacking gB and gD were shown to be defective for 

cytoplasmic envelopment, and similar defects were observed with deletion of the cytoplasmic 

tails of gE and gD or gE and gM (Brack et al., 2000; Farnsworth et al., 2007a and b; Johnson 

et al., 2011). Likewise, triple deletion of gD, gE and gI caused large aggregates of unenveloped 

capsids surrounded by layers of tegument proteins to accumulate in the cytoplasm (Farnsworth 

et al., 2003). Studies with gK and pUL20 deletion viruses also demonstrated large 

accumulations of cytoplasmic capsids that are unenveloped (Foster et al., 2004; Melancon et 
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al., 2005; Lau and Crump, 2015) suggesting their importance in secondary envelopment, 

possibly by interacting with tegument or other glycoproteins.  

Tegument proteins also play a significant role in secondary envelopment in linking the 

glycoprotein studded envelope to the nucleocapsid. For example mutant viruses lacking VP22 

have been shown to incorporate less gD or gE/gI into the virion (Duffy et al., 2006), and a 

VP22 mutant that is unable to interact with gE/gI localises differently and does not accumulate 

in perinuclear regions (Stylianou et al., 2009) suggesting that VP22 interacts with gE/gI and 

gD to promote envelopment in the cytoplasm. Evidence also suggests VP22 interacts with gM 

(Maringer et al., 2012), pUL11 with gD and gE (Farnsworth et al., 2007b), pUL16 with gE 

(Chadha et al., 2012), VP16 with gB, gD and gH (Gross et al., 2003; Kamen et al., 2005; Zhu 

and Courtney, 1994), and pUL37 with gK (Jambunathan et al., 2014). It is interesting to note 

that tegument and glycoproteins by themselves are able to complete the secondary envelopment 

process, and the nucleocapsid is not necessary, as observed by the production of light particles 

of HSV-1, which appear to contain all tegument and envelope proteins but are devoid of capsid 

proteins (McLauchlan and Rixon, 1992; Szilagyi and Cunningham, 1991).  

1.2.3.6.5 Directed virion secretion 

Once secondary envelopment is complete the virion is contained in a large vesicle which 

interacts with cellular microtubule motors and moves towards the cell surface (Radtke et al., 

2010). The virion-loaded vesicle membrane likely contains viral membrane proteins with their 

sorting motifs facing towards the cytoplasm and ecto-domains inside the vesicle lumen, 

although whether all or just some of the viral membrane proteins are present on the vesicle 

membrane is unclear. The virion-loaded vesicles eventually fuse with the plasma membrane to 

release the virions outside of the cell. Clearly, vesicle fusion with the plasma membrane will 

not involve the fusion activity of the viral entry glycoprotein as the fusion domains are on the 

opposite (luminal) side of the vesicle membrane. However, the cytoplasmic tails of certain viral 

membrane proteins are thought to interact with cellular mediators of vesicle fusion and 

exocytosis. In HSV-1 and PrV cellular regulators of vesicle transport and fusion including Rab 

GTPases 3A, 6A, 8a and 11a, the microtubule motor kinesin-1 and the soluble N-

ethylmaleimide-sensitive factor activating protein receptor (SNARE)-family vesicle fusion 

protein synaptosomal-associated protein 25 (SNAP-25) have been shown to be co-trafficked 

with viral tegument and glycoproteins to egress sites (Hogue et al., 2014; Saksena et al., 2009). 
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Knockdown of selected Rab molecules (6A, 10 and 13) was shown to be somewhat inhibitory 

for HSV-1 replication (Griffiths et al., 2013). Specifically, Rab6A is known to involve in 

membrane transport from the Golgi to the plasma membrane and has been shown to be 

important for HSV-1 capsid envelopment, suggesting Rab6A-mediated trafficking to plasma 

membrane is important for targeting glycoproteins to virion assembly compartments 

(Hollinshead et al., 2012; Johns et al., 2014). Protein kinase D (PKD), which is a membrane 

trafficking mediator that can control the departure of secretory cargo from TGN, has also been 

shown to be important for HSV-1 egress (Rémillard‐Labrosse et al., 2009). Furthermore, 

myosin Va (MYO5a) is activated upon HSV-1 infection and has been proposed to facilitate the 

transport of virion- and glycoprotein-loaded vesicles through the cortical actin network to the 

plasma membrane (Roberts and Baines, 2010).  

After fusion of the virion-containing vesicle with the plasma membrane, the majority of the 

progeny virions remain attached to the host cell surface rather than becoming free particles in 

the extracellular medium, at least in cultured cell monolayers (Mingo et al., 2012). In polarised 

epithelial cells virions are preferentially delivered to the lateral surfaces and cell junctions 

where they become concentrated (Johnson et al., 2001). Viral glycoproteins are thought to 

mediate remodelling of TGN or endosomal compartments to direct the targeting of virion 

secretion. The gE/gI complex has been proposed to function with other HSV proteins within 

TGN subdomains to promote virion assembly and subsequent egress to cell junctions (Johnson 

and Huber, 2002). Such directed secretion is thought to promote cell-to-cell spread of virions 

and help bypass detection by the host immune system. When gE was deleted, HSV-1 was 

shown to be secreted more randomly from the apical surface of infected cells rather than at cell 

junctions, contributing less cell-to-cell spread (Johnson et al., 2001; Wisner et al., 2000; 

McMillan and Johnson, 2001).   

Studies using the non-polarised Vero cell line reported similarly directed virion egress at 

adherent surfaces of cell-cell or cell-culture plate contacts (Mingo et al., 2012). However, other 

studies in non-polarised HEp-2 cell line conducted at late time point of infection (17 h) reported 

a random release of virion (Johnson et al., 2001). Such differences could be either due to cell 

line specific factors that control vesicle transport and fusion or due to the time post infection 

used in these studies: in Vero cells by 12 hpi virions were found to have already transfered into 

neighbouring un-infected cells (Mingo et al., 2012), and thus 17 h is quite a late time point to 
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study directed virion egress. Because non-polarised cells do not form strong cell-to-cell 

junctions, the state of being adherent to a substrate (e.g. plastic culture dishes) or more loosely 

attached to neighbouring cells may suffice to stimulate directional virion egress in some cell 

types, and the process could be linked to the organisation of the cytoskeleton and specific cell 

surface attachment proteins.   

Directed egress of alphaherpesivrus is also seen in neurons where upon reactivation of latent 

HSV-1 the newly synthesised particles are transported in an anterograde direction from the 

neuronal cell body along the axon to the axon tip and spread to other neurons or epithelial cells. 

Currently two models describe the axonal transport of virus particles: the ‘Married model’ 

when virions are enveloped in the neuron cell body and transported as complete particles along 

the axon, and the ‘Separate model’ when virion capsid and glycoprotein containing envelope 

are transported separately and secondary envelopment occurs at axon termini (Kratchmarov et 

al., 2013). Studies have shown HSV-1 gE/gI and pUS9 promote anterograde transport of 

capsids, other glycoproteins, and enveloped virions (Ch'ng and Enquist, 2005; Snyder et al., 

2008; Lyman et al., 2007). The cytoplasmic domain of both gE and pUS9 has been also shown 

to interact with kinesin motors to transport glycoprotein containing vesicles along axons 

(Howard et al., 2013; Kramer et al., 2012). The gE/gI complex and pUS9 seem to cooperate 

with each other in this process as deletion of gE, gI or pUS9 was shown to reduce axonal 

transport of virion capsids and glycoproteins (Saksena et al., 2015). Additionally, a pUS9 

deletion showed a marked defect in virus assembly and egress in the axon terminus inhibiting 

epithelial cell transfer (Saksena et al., 2015). Similarly, deletion of the ecto-domain of gE/gI 

contributed to partial inhibition of capsid transport along axons, and deletion of both gE and 

pUS9 completely blocked axonal transport of capsids and virion spread (Howard et al., 2013; 

Howard et al., 2014).   

1.2.3.7 Spread of virus 

The progeny HSV-1 particles released into the extracellular space at or near cell contact points 

can directly spread to adjacent cells in a process termed cell-to-cell transmission. Alternatively, 

an indirect transmission mechanism can occur where the virions are released from the surface 

of the producing cells and diffuse in the extracellular matrix to infect both adjacent and distal 

cells. This mechanism is seen in most wild-type (sometimes termed syn+ in the literature) 

strains. However, the extracellular virions that infect distal cells can be targeted by host 
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neutralising antibodies. Alternatively, HSV-1 can spread to neighbouring cells directly by 

forming syncytia (sometimes termed syn−), a process whereby viral glycoproteins expressed 

on the infected cell surface induce an uninfected cell to fuse with it, by a mechanism thought 

to be similar but not identical to that of virus entry during primary infection (Roizman and 

Sears, 1996; Spear, 1993). Studies have demonstrated that HSV-1 gB, gD, and gH/gL are 

essential for both free virus particle entry and syncytia formation, and viruses lacking any of 

these glycoproteins are defective in both processes (Cai et al., 1988; Forrester et al., 1992; 

Ligas and Johnson 1988; Roop et al., 1993).  

Despite having no role in the entry of free virus, several other HSV-1 envelope proteins have 

been shown to be important for cell-to-cell spread, including the gE/gI complex, pUS9, gG, 

gM, and pUL45 (Farnsworth and Johnson, 2006; Wisner et al., 2000; Polcicova et al., 2005; 

Balan et al., 1994; Haanes et al., 1994; Carmichael et al., 2018; Kim et al., 2013). The gE/gI 

complex has been shown to localise to cell-to-cell junctions and has therefore been proposed 

to assist virion spread across cell junctions in both epithelial cells and neurons (Dingwell et al., 

1995 and 1998; Johnson et al., 1988). Deletion of gE from HSV-1 was shown to markedly 

reduce plaque size on infected cell monolayers suggesting cell-to-cell spread is hampered 

(Maringer et al., 2012; Balan et al., 1994; Wisner et al., 2000). pUS9 has been proposed to 

regulate the microtubule-based transport of virion-containing vesicles to the cell surface in 

neurons. The role of other HSV-1 envelope proteins in cell-to-cell spread is unclear and may 

be specific to the spread of syncytial strains. HSV-1 can also induce filopodia formation in 

infected cells, which may help the spread of released virions still attached to the extracellular 

surface of cells (Clement et al., 2006; Roop et al., 1993). Studies have shown that HSV 

trafficking along filopodia is mediated by myosin-dependent F-actin retrograde flow (Lehmann 

et al., 2005).  

1.3 Intracellular Protein Trafficking Compartments 

Eukaryotic cells are highly compartmentalised which enables efficient separation of functions 

in different organelles. Cell materials can shuttle outward (exo-) and inward (endo-) utilising 

two major cellular pathways (Figure 1.6). In the exocytic pathway, proteins are co-

translationally inserted into the lumen or membrane of the endoplasmic reticulum (ER) and 

then transported from the ER to the cis-Golgi apparatus within membranous vesicles. The 
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proteins become post-translationally modified as they are transported forward through medial 

and trans-Golgi to the TGN and eventually packaged into secretory vesicles to be either 

secreted into the extracellular matrix or presented on the plasma membrane. Vesicular transport 

also occurs from the Golgi and TGN to endosomes and lysosomes, or back to the ER (reviewed 

in Tokarev et al., 2009). In the endocytic pathway, proteins are internalised from the 

extracellular environment/plasma membrane in endocytic vesicles which fuse with early 

endosomes. From here cargo/receptors can be transported back to the plasma membrane either 

directly, or via the recycling endosome, or remain in the endosome as it matures into a late 

endosomes/multivesicular bodies (MVB) and become degraded by fusion with a lysosome 

(reviewed in Tokarev et al., 2009).  

There are several mechanisms of endocytosis which are generally divided into the well-studied 

clathrin-dependent pathway or the less well understood variety of clathrin-independent 

pathways (Doherty and McMahon, 2009; Hansen and Nichols 2009). There is also much cross-

talk between exocytic and endocytic pathways with vesicle transport between most if not all 

compartments of the secretory and endocytic pathways that can occur bi-directionally 

(Stoorvogel et al., 2002; Ghosh et al., 2003). Furthermore, in polarised cells the distinct apical 

and basolateral domains have somewhat independent secretory and endocytic pathways 

between the TGN and plasma membrane, although there is also cross-talk between these 

pathways, for example endocytic vesicles from apical surface can incorporate into basolateral 

early endosomes and be recycled to the basolateral plasma membrane (Mostov et al., 2000). 

Cell organelles communicate with each other utilising vesicular transport where cargo-loaded 

vesicles are released from donor compartment utilising coat and adaptor proteins (Bonifacino 

and Glick, 2004). The well-characterised vesicle coats are clathrin, coat protein I (COPI) and 

coat protein 2 (COPII) which are utilised in different transport steps. COPI- and COPII- coated 

vesicles mediate transport from the ER and the Golgi whereas clathrin-coated vesicles mediate 

transport from the TGN and plasma membrane.  Once vesicles are formed, the coats are 

dissociated and the vesicles are transported towards their target membrane with the guidance 

of Rab GTPase family proteins (Stenmark, 2009). Upon reaching their target site the vesicles 

dock on to a tethering complex and SNARE proteins help fusion of those vesicles to the 

membrane.  



Chapter 1. Introduction 

 

27 
 
 

 

 

Figure 1.6 | Overview of secretory and endocytic trafficking pathways. Molecules from the 

extracellular milieu are taken up by either clathrin- or caveolin- dependent, or independent 

pathways. Endocytic vesicles fuse with early endosome (EE) and from there cargo is sorted for 

either recycling or degradation. Proteins mentioned in the box have demonstrated/proposed 

functions in the indicated transport steps. ER: endoplasmic reticulum, MVB: multivesicular 

body, ESCRT: endosomal sorting complexes required for transport, LAMP1 lysosome-

associated membrane glycoprotein 1, EXPH5: exophilin, STYL4: synaptotagmin-like protein 

4.  
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1.4 Overview of viral and cellular proteins relevant to this thesis 

The primary focus of this thesis was to understand the role of HSV-1 gE/gI complex during 

virion secretion and the following host proteins were investigated as potential interactors of 

gE/gI.   

 

1.4.1 The gE/gI complex of HSV-1 

Much of this thesis focuses on the gE/gI complex of HSV-1, which was identified as a Fc-

binding heterodimer (Baucke and Spear, 1979; Johnson and Feenstra, 1987; Johnson et al., 

1988). gI and gE are encoded by US7 and US8 genes respectively. Full length gI is composed 

of 383 amino acids, whereas full length gE contains 550 amino acids and these proteins have 

a predicted molecular mass of 40 KDa, and 59 KDa respectively (Uniprot:Q702Y4 and 

Uniprot:P04488). However, both proteins become glycosylated (three potential N-linked 

glycosylation sites in the gI sequence and two in the gE sequence), contributing to higher 

molecular mass of both proteins (Chapman et al., 1999). Early studies with US7 and US8 genes 

suggested that the glycosylated products are ~65 KDa and ~80 KDa respectively (Baucke and 

Spear, 1979; Longnecker et al., 1987; Sullivan and Smith, 1988, Collins and Johnson, 2003), 

although the observed molecular mass for each protein can vary due to differences in glycan 

chain processing depending on the cell type. Both gE and gI are type-I membrane glycoproteins 

with extended N-terminal ecto-domains (residues 1-419 and 1-266 respectively) that contain a 

short signal sequence at their N-terminus that is co-translationally cleaved during translocation 

across the ER membrane, a single transmembrane domains (residues 420-440 and 267-289 

respectively) and relatively long C-terminal cytoplasmic tails (residues 441-550 and 289-383 

respectively) (Figure 1.7). The Fc-binding domain within the N-terminal domain of gE 

(residues 213–390) has been shown to be a β-sheet rich, Ig-like domain by X-ray 

crystallography, and this domain of gE can bind Fc in the absence of other gE or gI domains 

(Sprague et al., 2006).  
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When co-expressed gE and gI form a heterodimeric complex in infected and transfected cells 

as well as in virus particles. The gI binding site on gE has been predicted to be between 235-

264 amino acid residues (Dubin et al., 1994; Basu et al., 1995), although protease cleavage 

studies on gE have revealed that the N-terminal 1-188 residues of mature gE ectodomain forms 

a stable complex with gI (Rizvi and Raghavan, 2001). The gE interaction site within gI is not 

known but the domain of gI that has been predicted to be important for IgG binding is between 

amino acids 128-145 (Basu et al., 1997). Although gE alone can bind to the Fc region of human 

IgG, the affinity is 100 times less strong compared to that of gE/gI complex (Sprague et al., 

2004). However, gI alone is not able to interact with IgG molecules (Basu et al., 1997).  The 

IgG binding activity of gE/gI ectodomain has been shown to involve in immune evasion and 

viral pathogenesis (Ndjamen et al. 2014). 

 

 

Figure 1.7 | Cartoon of the HSV-1 gE/gI complex and it’s proposed functions. HSV-1 gE 

and gI form a heterodimeric complex and the extracellular domain can act as a Fc receptor. The 

IgG binding site on gE and gI have been predicted. Both extracellular- and cytoplasmic 

domains of the gE/gI complex exhibit some important functions in the virus life cycle as have 

been indicated.  
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At the lateral surfaces of the cell the gE/gI extracellular domain has been proposed to interact 

with cellular receptors to promote entry of the virus into neighbouring uninfected cells. 

However, fusion of the virion envelope with the recipient cell requires HSV gD, gB, and gH/gL 

and is unlikely to directly involve gE/gI (McMillan and Johnson, 2001). The interaction 

between gC and heparin sulphate has also been shown to trigger pUL16 release from the capsid 

possibly by interacting with gE ectodomain because pUL16 also binds to gE CT-domain (Yeh 

et al., 2011; Meckes and Wills, 2008). Such a trigger may facilitate capsid uncoating and/or 

activate the fusion apparatus for virus entry (Figure 1.8).  

 

 

Figure 1.8 | Cartoon of HSV-1 gE/gI complex together with potential viral protein 

interactions. The CT-domain of gE has been proposed to bind pUL11, pUL16 and pUL49 

(VP22) whereas the ectodomain is thought to send signals to pUL16 during virion attachment 

mediated by gC-heparan sulphate binding. (Adapted from Yeh et al., 2011). 
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As has been mentioned previously, the gE/gI complex has a role during secondary envelopment 

of the virion, albeit redundant with other viral envelop proteins. The process of secondary 

envelopment of HSV may involve distinct phases of gE/gI involvement. A number of tegument 

proteins (VP22, pUL11, pUL16, pUL21) have been found to interact with gE/gI complex and 

these interactions may be important for processing, transport, and function of gE (Maringer et 

al., 2012; Farnsworth et al., 2007b; Han et al., 2012). Additionally, gE/gI accumulation in the 

TGN is thought to be facilitated by the interaction between the cytoplasmic domain of gE and 

proteins of cellular sorting machinery such as phosphofurin acidic cluster sorting protein 1 

(PACS-1) and clathrin adapters (McMillan and Johnson, 2001). The cytoplasmic dileucine 

motif of gI is thought to assist in these trafficking processes such as endocytosis, localisation 

to the TGN and basolateral sorting (Wisner and Johnson, 2004; reviewed in McMillan and 

Johnson, 2001). In cells infected with a gI deletion virus both gE and TGN46 remained trapped 

in the TGN suggesting that gI plays an important role in the localisation of gE (McMillan and 

Johnson, 2001). gE may also interact with pUS9 forming a tripartite complex important for the 

recruitment of kinesin motors and virion egress in neurons (Howard et al., 2013; reviewed in 

Johnson and Baines 2011).  

In epithelial cells gE and gI expressed by recombinant adenovirus vectors were found to 

become accumulated at lateral surfaces rather than on apical or basal surfaces (Dingwell and 

Johnson, 1998). Mutant viruses lacking gE are unable to be targeted to cell junctions and so 

spread poorly from cell-to-cell in polarised epithelial cell line (Johnson et al., 2001). In non-

polarised cells however, gE/gI and other glycoproteins such as gB, gD and gH have been found 

to accumulate at sack-like areas of the plasma membrane at the basal surfaces of the cell prior 

to HSV-1 particles being released at these specific sites. In these non-polarised cells, gE deleted 

viruses showed increased viral egress from the sack-like sites (Mingo et al., 2012; Wisner and 

Johnson, 2004). gE/gI deletion mutants form smaller plaques in Vero cell monolayers and in 

vivo studies also suggest that gE is important for the virus to spread from primary infection 

sites to sensory ganglia and from infected ganglia back to epithelial cells (Dingwell et al., 1995; 

Dingwell et al., 1995; Johnson et al., 2001; McGraw and Friedman, 2009; Mingo et al., 2012; 

Saldanha et al., 2000).  
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1.4.2 IFITM 

Interferon induced transmembrane (IFITM) proteins are type II transmembrane proteins in 

vertebrates with a conserved cytosolic loop (reviewed in Bailey et al., 2014). IFITMs have been 

demonstrated to restrict the replication of many enveloped and non-enveloped viruses (Alber 

and Staeheli, 1996; Zhu and Liu, 2003; Huang et al., 2011). So far, five IFITMs (IFITM1, 2, 

3, 5 and 10) have been identified in humans, among which IFITM1-3 can act as restriction 

factors for many viruses because of their capacity to block viral entry. For example, IFITM1 

has been reported to restrict vesicular stomatitis virus (VSV), IFITM1 and IFITM3 inhibit Zika 

virus, IFITM2 and 3 are reported to restrict Rift Valley fever virus (RVFV), and IFITM3 is 

reported to restrict both hepatitis C virus (HCV) and influenza A virus (Savidis et al., 2016; 

Alber and Staeheli, 1996; Mudhasani et al., 2013; Zhu and Liu, 2003; Desai et al., 2014). 

However, an inhibitory effect of IFITMs on DNA virus replication has only been demonstrated 

for African swine fever virus (ASFV), with overexpression of IFITM 2 and 3 in Vero cells 

suggested to directly affect ASFV entry/uncoating (Muñoz-Moreno et al., 2016). Although the 

exact mechanisms of virus inhibition by IFITMs are not known, these proteins are thought to 

either modify endosomal or lysosomal compartments or alter the rate of intracellular vesicle 

trafficking thereby rendering the host environment inhospitable for virus replication (Feeley et 

al., 2011; Huang et al., 2011). Interestingly, IFITMs have been suggested to have a pro-viral 

role for HCMV during viral morphogenesis because knock down of IFITM proteins inhibited 

HCMV replication, whereas HSV-1 was unaffected (Xie et al., 2015).  

1.4.3 Nipsnap 

Nipsnap1 and Nipsnap2 (GBAS) proteins are member of evolutionarily well-conserved protein 

family with unclear functions in the cell. The other members of the family include Nipsnap3 

and Nipsnap4. All these proteins have a 4-nitrophenylphosphatase (NIP) domain and a non-

neuronal SNAP-25-like protein homology domain. SNAP-25 is a neuronal SNARE protein that 

is involved in docking and fusion of synaptic vesicles to the plasma membrane and therefore 

Nipsnaps have been proposed to be involved in vesicle trafficking in cells (Seroussi et al., 

1998; Lee et al., 2002). However, a vesicle trafficking role of Nipsnap1 and 2 has yet to be 

formally shown. Nipsnap1 has been shown to bear a mitochondrial targeting sequence at its N 

terminal region and interact with mitochondrial translocation machinery (Mootha et al., 2003; 

Tummala et al., 2010). Nipsnap1 and 2 have over 66% sequence identity (Figure 1.9) and 

likewise Nipsnap3 and 4 are 87% identical, although the Nipsnap1 amino acid sequence is only 

~22% identical to that of Nipsnap3 and 4.  
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Both Nipsnap1 and 2 have a predicted molecular weight of 33 KDa. However, full-length 

Nipsnap1 (33 KDa) has been shown to become truncated at the N terminus and generate a 

mature protein of 29 KDa (Behrends et al., 2010; Nautiyal et al., 2010; Okuda-Ashitaka et al., 

2012; Tummala et al., 2010). Nipsnap1 has been shown to be expressed in brain, spinal cord, 

heart, liver and kidney, whereas Nipsnap2 was identified in brain but can also be found in other 

tissues (Okuda-Ashitaka et al., 2012; Nautiyal et al., 2010; Seroussi et al., 1998; Schoeber et 

al., 2008; Okuda-Ashitaka et al., 2012; Tummala et al., 2010; Wang et al., 1998). Nipsnap3 and 

4 have been shown to be expressed in brain, muscle, and testis (Buechler et al., 2004; Lee et 

al., 2002). Nipsnap1 and Nipsnap2 have both been detected in the inner membrane space of 

mitochondria, however a fraction of both proteins can also be detected in the outer membrane 

of mitochondria, and in the cytoplasm as they can interact with cytosolic protein P62/SQSTM1 

(Yamamoto et al., 2017 (a) and (b); Shanmughapriya et al., 2015). 

The exact physiological role of Nipsnap1 and 2 proteins are yet to be determined though a 

number of functions have been predicted for Nipsnap1. Recent discoveries suggest Nipsnap1 

can interact with 1) the neuropeptide nocistatin (NST) and possibly play role in pain 

transmission (Okuda-Ashitaka et al., 2012), 2) the transient receptor potential vanilloid channel 

6 (TRPV-6) and modulate TRPV6-mediated Ca2+ entry (Schoeber et al., 2008) and 3) the 

branched-chain α-keto acid (BCKA) dehydrogenase enzyme complex possibly to provide 

structural stability to the protein (Nautiyal et al., 2010). On the other hand, amyloid precursor 

protein (APP) has been shown to bind and modulate the level of Nipsnap1 in cells (Tummala 

et al., 2010). Nipsnap1 may also act as negative regulators for multiple ATG8 family members 

thereby affecting autophagy (Behrends et al., 2010). Nipsnap1 and 2 has been also shown to 

exert a positive role in pattern recognition receptor (PRR) induced signalling and NF-κB 

activity in response to lipopolysaccharides (LPS) (Yamamoto et al., 2017a).  
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Figure 1.9 | Similarity between human Nipsnap1 and Nipsnap2 protein sequence. Human 

Nipsnap1 and 2 protein sequences were copied from Uniprot (http://www.uniprot.org) database 

(ID Q9BPW8 and O75323 respectively) and run on the ‘EMBOSS Needle’ program 

(https://www.ebi.ac.uk/Tools/psa/emboss_needle/) for comparative analysis. 

 

1.4.4 Myoferlin and other ferlins  

Myoferlin (MYOF) is a 235 KDa protein (2061 aa) that belongs to the evolutionarily conserved 

ferlin protein family. The other members of the family are dysferlin (DYSF), and otoferlin 

(OTOF). The ferlins are type II membrane proteins characterised by multiple C2 domains 

(second constant sequence of 'classical' protein kinase C (PKC) isoform) facing the cytoplasm 

and a C terminal transmembrane domain (Chapman, 2002; Achanzar and Ward, 1997; Davis 

et al., 2002; Bansal and Campbell, 2004; Doherty and McNally, 2003). MYOF, which has 

~60% amino acid similarity to DYSF, has been proposed to contain six C2 domains and 

additional Src-homology-3 (SH3) domains (Figure 1.10) (Doherty et al., 2008; Pangršič et al., 

2012; Davis et al., 2000). The C2 domains in the ferlin protein family are thought to act the 
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same way as has been predicted for membrane associated synaptotagmins (Syts), which is to 

trigger exocytosis in response to increasing Ca2+ (Chapman et al., 2002; Davis et al., 2002; 

Bansal and Campbell, 2004; Doherty and McNally, 2003; Therrien et al., 2009). However, C2 

domains can also interact with phosphatidylserine, zwitterionic lipids, and phosphotyrosines in 

a Ca2+ -dependent or -independent manner (Cho and Stahelin, 2006; Rizo and Sudhof, 1998; 

Fernandez-Chacon et al., 2001; Davis et al., 2002; Chapman et al., 2002). Overall, the ferlin 

protein family is thought to participate in the regulation of membrane fusion events in cells 

(Bansal and Campbell, 2004; Doherty and McNally, 2003; McNeil and Kirchhausen, 2005). 

The role of ferlin-specific domains FerI, FerA and FerB are not known (Glover and Brown, 

2007). 

 

Figure 1.10 | Synaptotagmin and myoferlin structure. (a) Synaptotagmin is a small 

transmembrane protein with two C2 domains found on synaptic vesicles. (b) Myoferlin is a 

2061 amino acid long protein with six C2 domains, some Fer (I, A, B) domains, a SH3 domain 

and dysferlin domains.  
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MYOF is expressed in skeletal muscle sarcolemma and can also be found in spleen, kidney, 

lung, heart and other muscle tissues (Britton et al., 2000; Davis et al., 2000). Within a cell 

MYOF can be found in the nucleus, the nuclear membrane, cytosolic vesicles and also in the 

plasma membrane (Davis et al., 2000). Human MYOF has been proposed to take part in 

different cellular processes like myoblast fusion, endocytosis, growth factor receptor stability 

and cell membrane repair (Doherty et al., 2008; Bernatchez et al., 2007 and 2009; Demonbreun 

et al., 2010). During myoblast fusion MYOF binds directly with EHD2, a member of Eps15 

homology domain (EH domain) protein family implicated in endocytosis and endosome 

recycling to the plasma membrane (Doherty et al., 2008; Posey et al., 2011). 

In endothelial cell signalling MYOF has been shown to modulate vascular endothelial growth 

factor/vascular endothelial growth factor receptor (VEGF/VEGFR-2) by stabilising VEGFR-2 

(Bernatchez et al., 2007). In cancer cells MYOF has been shown to stabilise epidermal growth 

factor receptor (EGFR) to control EGF/EGFR signalling (Turtoi et al., 2013). Likewise, MYOF 

binds to the insulin growth factor receptor-1 (IGFR-1) (Demonbreun et al., 2010). Figure 1.11 

outlines the proposed role of MYOF in endocytosis: in the absence of MYOF endocytic vesicle 

recycling and fusion with the plasma membrane slows down leading to an increased chance of 

receptors being targeted to the lysosomal degradation pathway (Doherty et al., 2008; 

Demonbreun et al., 2010). MYOF has been also shown to co-localise with the tight junction 

protein zonula occludens-1 (ZO-1), and siRNA knock down of MYOF contributed to a loss of 

cell adhesion of airway epithelial cells (Leung et al., 2012). Conversely, in breast cancer cells 

MYOF depletion has been shown to increase phosphorylation of focal adhesion kinase and 

paxillin, and enhance cell-matrix adhesion (Blackstone et al., 2015). MYOF has also been 

proposed to contribute to both clathrin-dependent and caveolin-mediated endocytosis, and it 

can be observed to co-localise with dynamin 2 and caveolin 1. The SH3 domain in MYOF has 

been shown to form a complex with dynamin-2 and VEGFR-2 (Bernatchez et al., 2007). This 

indicates a potential role of MYOF in both membrane fission in addition to the proposed role 

in vesicle fusion events (Doherty et al., 2008; Bernatchez et al., 2009). Therefore, the roles of 

MYOF may be diverse and cell type dependent.  
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Figure 1.11 | Model for the role of myoferlin during receptor endocytosis. Myoferlin is 

thought to be an important regulator of bidirectional membrane turnover events (endocytosis 

and exocytosis). Myoferlin seems to protect the surface receptors and in the absence of 

myoferlin surface receptors follow degradative pathways. 
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1.5 Aims of this thesis 

The aims of this thesis were to provide further understanding of the egress mechanism of HSV-

1 with specific interest in identifying cellular proteins assisting in these processes. The research 

was divided into two major parts. The first section involved characterisation of an HSV-1 

passage mutant selected for increased release into cell culture medium and identification of 

viral genes and mutations responsible for the observed release phenotype of the strain. In the 

second section of the thesis, screens and functional validation experiments were conducted to 

investigate cellular proteins that interact with the HSV-1 gE/gI complex and understand their 

potential roles in virion replication and egress. 
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2. Studying an HSV-1 passage mutant to understand what factor 

leads to increase virion secretion property during infection 

2.1 Introduction 

HSV-1 egress is the outcome of a series of intricate events. In cell culture models of infection, 

most progeny virus particles remain cell-associated and very few particles are present in the 

cell culture medium until late stages (15 hpi) of infection (Newcomb and Brown, 2012; Abaitua 

et al., 2013). This is thought to be at least partly due to newly secreted virions becoming or 

remaining attached to the extracellular surface of the plasma membrane after they are secreted 

from the producing cell. Additionally, virions have been shown to be delivered to cell-to-cell 

contact points, which is thought to help mediate rapid spread to neighbouring cells and evade 

the host immune system (Al-Mubarak et al., 2004; Johnson and Huber 2002; Johnson et al., 

2001; Collins and Johnson, 2003). The trapping of viruses at the cell junctions, whether or not 

they are physically attached to the plasma membrane, is likely to also contribute towards fewer 

virions being secreted into the culture medium. The effect of successful cell-to-cell spread of 

virus can be observed on cell-culture monolayers by the formation of distinctive plaques. Virus 

cell-association, targeted virion secretion to cell contacts, and consistent plaque spread all rely 

on proper functioning of viral envelope glycoproteins during infection (Abaitua et al., 2013; 

Spear and Longnecker, 2003; Mettenleiter, 2002 and 2004).   

The studies in this thesis have been mainly conducted using the KOS strain of HSV-1. The 

KOS strain was originally isolated from a lip lession of Kendall O. Smith and is commonly 

used for laboratory studies (Smith, 1964). The KOS strain was chosen for this study because 

an isolate of this strain that had cloned as a bacterial artificial chromosome (BAC) was already 

available in laboratory. To investigate viral activities that contribute to the cell-associated 

nature of HSV-1, the KOS strain was serially passaged in the laboratory by repeatedly 

collecting cell free virus from culture medium of infected cells and using this to infect fresh 

cells. After twenty-two passages, a plaque purified isolate was generated that was found to 

secrete substantially more infectious virus into the culture medium of infected cells compared 

to the parental strain. The aim of this chapter was to characterise the passage mutant strain to 

understand it’s genetic changes, identify the mutation(s) that may contribute to the altered 

phenotype and generate recombinant viruses containing individual or multiple mutations that 
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were observed in the passage mutant for further studies on the mechanism of virus release from 

infected cells.   

 

2.2 Results  

2.2.1 Assessing the proportion of cell-associated virus for different HSV-1 strains 

HSV-1 is generally considered to be predominantly cell-associated. To investigate whether the 

proportion of infectious virus present as cell-associated virus or free extracellular virions in the 

culture medium varies between different strains of HSV-1, two cell lines commonly used for 

HSV-1 research, Vero (primate kidney epithelial) and HaCaT (human keratinocyte), were 

infected with four different wild type (WT) laboratory strains of HSV-1: KOS, StH2, Sc16, 

Strain 17 (S17) and a clinical isolate MG at 10 plaque forming unit (PFU)/cell. At 18 hpi culture 

supernatants were carefully collected and cellular debris was removed by two consecutive 

centrifugation steps. Cells were harvested by scraping in fresh medium, and cell-associated 

virus was released by freeze-thawing the samples. The amount of infectious virus present in 

cell-associated and supernatant fractions was determined by plaque assay on Vero cell 

monolayers (Figure 2.1 a). The proportion of infectious virus released into the culture medium 

was determined as supernatant titre divided by total titre (cell-associated titre plus supernatant 

titre) (Figure 2.1 b). For all strains of HSV-1 the majority of infectious virus was present in the 

cell-associated fractions for both cell types (>99% in most conditions). This demonstrates that 

relatively little infectious virus is released from infected cells into the medium (<1%) by late 

stages of the HSV-1 replication cycle in both of these cell types, irrespective of the strain of 

WT HSV-1. One exception to this was the SC16 strain in HaCaT cells where the percentage of 

virus release reached ~3% (Figure 2.1 b), although subsequent experiments suggested this 

value was aberrantly high. These findings are consistent with previous research demonstrating 

that the majority of the HSV-1 particles remain attached to the extracellular surface of the 

plasma membrane after egress (Mingo et al., 2012).  
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Figure 2.1 | Growth assay of different WT HSV-1 strains on different cell lines. Vero and 

HaCaT cell lines were infected with KOS, StH2, Sc16, S17 and MG strains of WT HSV-1 

viruses at 10 PFU/cell. Cell-associated and supernatant virus fractions were harvested at 18 hpi 

and infectious titres were determined by plaque assay in Vero cells. (a) log(10) value of the 

cell-associated and supernatant virus titre and (b) percentage of released virus titre (supernatant 

titre/(cell-associated titre+supernatant titres)x100) on the cell lines utilized. Error bars 

represent standard errors of the means of 3 biological replicates. 
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2.2.2 Isolation of an HSV-1 strain with enhanced virion release into the cell culture 

medium 

To select for HSV-1 variants that releases a greater proportion of virions into the medium of 

cultured cells a serial passage of WT HSV-1 (strain KOS) was conducted by infecting COS-7 

cell monolayers at low (0.01 PFU/cell)  multiplicity of infection (MOI), incubating for 2-3 days 

and then using the media from the infected cells, clarified of cell debris by centrifugation, to 

innoculate fresh COS-7 monolayers (Figure 2.2).  

The relative amounts of cell-associated and supernatant virus produced by virus stocks at 

different passage numbers was measured and compared to that of the WT strain. At 22 passages 

the virus population demonstrated a marked increase in the proportion of infectivity present in 

the culture media. A single plaque-purified isolate was generated from this passaged population 

(V22a). The serial passage and plaque purification were conducted by Susanne Bell prior to 

commencing this research.  

To investigate the release properties of the cloned passage mutant, the V22a isolate and the 

parental WT KOS strain were used to infect Vero, COS-7, HeLa, HaCaT, HFF-hTERT and 

A549 cells. At 18 hpi infectious virus titres present in the supernatant and cell-associated 

samples were determined by plaque assay on Vero cell monolayers (Figure 2.3 a and b). Both 

of the viruses replicated efficiently in all cell lines with the exception of HeLa cells where both 

the viruses grew relatively poorly, and HaCaT cells where the V22a strain showed poorer 

growth than WT. A substantial increase in the proportion of total infectious virus released into 

the media was observed for V22a compared to WT HSV-1 in all cell lines, with an approximate 

18-fold increase for HFF-hTERT, 31-fold increase for COS-7, 30-fold increase for Vero, 11-

fold increase for both HaCaT and A549 cell lines. However, on HeLa cells only 1.6-fold 

increase in virion release was observed (Figure 2.3 c).  

It could be argued that the greater amount of infectious virus in the supernatant fraction of the 

V22a strain is due to a lower particle:PFU ratio compared to the WT HSV-1. If this was the 

case, then the V22a strain would have been expected to show a correspondingly similar 

increase in the amounts of cell-associated virus infectivity compared to WT. However, as can 

be seen in Figure 2.3 b, there was not a consistently greater total infectious virus titre produced 

for V22a compared to WT in the different cell lines, with some cell types showing lower total 

infectivity but higher released infectivity for V22a than WT, suggesting a decrease in 

particule:PFU ratio is unlikely to be the reason for these observations. To investigate this 

further, additional techniques such as qPCR (to quantify viral genome), and electron 

microscopy or immunofluorescence microscopy (to quantify virus particle numbers) could be 

conducted to determine genome:PFU and particle:PFU ratios for supernatant fractions of V22a 

compared to WT virus more directly.  
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Figure 2.2 | Generation of a virus strain with increased secretion by serial passage of 

infected cell supernatant. A COS-7 cell monolayer was infected with low MOI (0.01 

PFU/cell) of WT HSV-1 KOS strain. Viruses released in the supernatant was clarified and 

transferred to fresh cells periodically. Passaged virus stocks were titred on Vero cells at various 

intervals until a population of sufficiently increased secretion was achieved. From the 

population, single plaque-purified V22a passage mutant was isolated by limiting dilution. 
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Figure 2.3 | Growth and release properties of HSV-1 strains on different cell lines. Vero, 

COS-7, HeLa, HaCaT, HFF-hTERT and A549 cells were infected with WT HSV-1 strain KOS 

and the passage mutant V22a. At 18 hpi supernatant media and cell-associated virus samples 

were collected, and virus titres were determined by plaque assay on Vero cells. (a)  log(10) 

value of the cell-associated and supernatant virus titre, (b) total amount of virus being made on 

individual cell line and (c) percentage of virus release titre. Each experiment was repeated at 

least three times. Data presented here is from a single representative experiment containing 

duplicate samples. Error bars indicate standard error of the two biological replicates. 
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To understand the possible genetic changes in the V22a strain that could cause the increased 

virus release, viral genome sequences were obtained by next-generation sequencing (NGS) 

using DNA isolated from cells infected with WT or V22a. NGS and sequence analysis was 

kindly performed by Rory Bowden (University of Oxford, UK). Greater than 2 million reads 

were mapped to the HSV-1 genome (Strain 17 reference sequence; NC_001806.2) for both 

samples, giving 95.7% and 93.7% coverage for WT and V22a respectively. Alignment and 

pairwise comparison analysis of the consensus sequences demonstrated a 2890 bp deletion and 

27 single nucleotide differences in the V22a sequence compared to the parental WT HSV-1 

(KOS strain). The deletion (corresponding to nucleotides 94889-97778 in NC_001806.2) spans 

the majority of the UL43 and UL44 genes, which encode a multi-pass transmembrane protein 

of unclear function (pUL43) and glycoprotein C (gC) respectively. This deletion  leaves  only  

the  first  30  codons  of  UL43  and  the  last  22  codons of  UL44,  which  could  conceivably  

result  in  the  expression  of  a  short  fusion  protein  of the N terminus of pUL43 and the C 

terminus of gC 

(MLRNDSHRAVSPEDGQGRVDDGRPHLACVG^VLVVTAIVYVVRTSQSRQRHRR). 

Out of the single nucleotide differences there were 11 intergenic, 10 non-synonymous and 6 

synonymous changes (Table 2.1). The intergenic changes will not translate into protein and the 

synonymous changes will incorporate the same amino acid into the protein. Of the non-

synonymous mutations UL16 (AV), UL38 (AV) and US12 (VG) are relatively 

conservative changes which would be predicted to have little effect on overall protein activity. 

Among the other viral genes with a coding sequence difference UL12, UL30 and UL52 encode 

non-structural proteins involved in DNA replication and so are unlikely to be directly involved 

in virion egress. ICP4 is the major viral transcription factor and has no reported role in virus 

assembly or egress, although ICP4 is present in the tegument. VP16 is a tegument protein that 

is essential for virion assembly, although has no reported role in post-assembly virus egress, 

and the amino acid alteration is relatively conservative (AT).  

The glycoprotein I (gI), an envelope glycoprotein that forms a complex with gE, which is 

known to facilitate virion egress and deliver virions for secretion at cell-junctions (McMillan 

and Johnson, 2001), acquired a non-synonymous point mutation (GR) at codon 39. 

Regarding the two deleted proteins pUL43 has no known function and it is unclear whether 

this protein is a virion component, while gC has heparin-sulphate binding activity and functions 

as an attachment factor for virus binding to cells during entry (Herold et al., 1991; Shukla and 

Spear, 2001), and hence could also function to tether secreted virions to the cell surface after 

egress. Taken together, the deletion of pUL43 and gC, as well as the point mutation gI were 

considered the best candidates for contributing to the increased release phenotype of the V22a 

strain.   
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Table 2.1 | Single nucleotide differences between HSV-1 WT (KOS strain) and passaged 

isolate (V22a). Sequencing reads were mapped to nucleotides 9214-145585 of the Strain 17 

HSV-1 reference sequence (NC_001806.2); this sequence comprises the unique long (UL), 

internal repeat (RL-RS) and unique short (US) regions of the HSV-1 genome. All numbering 

refers to NC_001806.2. 

Position 
KO
S 
WT 

V22a 
KOS 
WT 
codon 

V22a 
codo
n 

Type 
Protein 
position 

Amino 
acid 
change 

Gene 
name 

Product 

11333 C T CTG TTG Synonymous Codon 115 - UL3 Nuclear phosphoprotein 

26690 A G TCG CCG Nonsynonymous Codon 67 S67P UL12 5’-to-3’ exonuclease 

31265 G A GCG GTG Nonsynonymous Codon 11 A11V UL16 Tegument protein 

46606 C T NA NA Intergenic - - - - 

54670 G A CTG TTG Synonymous Codon 376 - UL27 Glycoprotein B 

64189 C T TTC TTT Synonymous Codon 461 - UL30 DNA polymerase 

64502 G A GCC ACC Nonsynonymous Codon 566 A566T UL30 DNA polymerase 

84925 C T GCG GTG Nonsynonymous Codon 132 A132V UL38 Capsid triplex protein 

103253 G A NA NA Intergenic - - - - 

105032 C T GCT ACT Nonsynonymous Codon 17 A17T UL48 Tegument protein VP16 

105429 G A NA NA Intergenic - - - - 

109682 C T CGC TGC Nonsynonymous Codon 212 R212C UL52 DNA primase 

129733 G A CTG TTG Synonymous Codon 467 - RS1 ICP4 

130043 C T GCG GCA Synonymous Codon 363 - RS1 ICP4 

130791 C A CGA CTA Nonsynonymous Codon 114 R114L RS1 ICP4 

130822 C T GCG ACG Nonsynonymous Codon 104 A104T RS1 ICP4 

131644 G A NA NA Intergenic - - - - 

131652 C T NA NA Intergenic - - - - 

131666 T C NA NA Intergenic - - - - 

131739 G A NA NA Intergenic - - - - 

139903 G A GGG AGG Nonsynonymous Codon 39 G39R US7 Glycoprotein I 

143921 C T NA NA Intergenic - - - - 

145255 G C NA NA Intergenic - - - - 

145260 C A NA NA Intergenic - - - - 

145297 T C NA NA Intergenic - - - - 

145350 A C GTG GGG Nonsynonymous Codon 78 V78G US12 ICP47 

145529 C T GGG GGA Synonymous Codon 18 - US12 ICP47 
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2.2.3 Plaque size analysis of WT and V22a viruses 

During HSV-1 infection the majority of newly assembled viruses are thought to be delivered 

to cell junctions allowing rapid spread to the neighbouring cells and bypassing the effect of 

virus neutralising antibodies. The simplest way to study cell-to-cell transmission in cell culture 

is to study plaque formation by the virus under a semi-solid medium (e.g. containing 

carboxymethyl cellulose), which is commonly conducted using Vero cells. The overall 

diameter of plaques can reflect several cumulative processes, such as capacity of a virus to 

enter the cells, replicate, assemble properly, be secreted at cell junctions via appropriate 

intracellular transport pathways, interact with the uninfected cells at the junctions and penetrate 

these cells (Dingwell et al., 1994; Johnson et al., 2001; Mettenleiter et al., 2009; Abaitua et al., 

2013). To understand whether the increased secretion of the V22a passage mutant affects cell-

to-cell spread, the plaque formation capacity of V22a compared to parental WT virus was tested 

on Vero cell monolayers. At 3 days post infection the plaques were fixed and stained with 

toluidine blue, the plates were scanned and plaques were measured using Photoshop. As shown 

in Figure 2.4, no noticeable difference was observed for plaque size between V22a and WT. 

This indicates the increased secretion of the V22a passage mutant does not impact the ability 

of the virus to spread between cells and produce plaques, at least in the Vero cell line. 
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Figure 2.4 | Plaque size comparison of HSV-1 WT and V22a on Vero cells. Monolayers of 

Vero cells were infected with HSV-1 WT (KOS) or V22a viruses. After 3 days the cells were 

fixed and stained with toluidine blue and washed with water. The plates were scanned and 

diameters of the plaques were measured in Photoshop. Data shows average diameter of 60 

plaques in percentage normalised to the average plaque diameter of the WT virus. Error bars 

indicate standard error of 60 plaques measured diameter. The pictures on the right shows areas 

toluidine blue stained plates (colour inverted in Photoshop for better illustration). Scale bar 

indicates 2 mm in length.   
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2.2.4 Protein expression profile of V22a passage mutant   

The expression of a range of viral envelope glycoproteins in the V22a passage mutant 

compared to WT HSV-1 was investigated. Vero cells were infected with HSV-1 WT (KOS) or 

V22a and cell lysates were prepared at 18 hpi and analysed by WB using a range of monoclonal 

antibodies. gB, gD, gE and gH were expressed in both WT and V22a to broadly similar levels, 

whereas gC expression was completely absent in V22a infected cells, as expected due to the 

large deletion in the gene coding for gC (UL44). Interestingly gI, which has a single amino 

acid difference between WT and V22a (G39R), appeared to be expressed at a very low level in 

V22a-infected cells (Figure 2.5 a). The poor expression of gI was consistent and observed using 

two independent monoclonal antibodies (MAb-CC7 and MAb-CC8) (Figure 2.5 b). These 

observations suggest that the single mutation in gI in V22a (i.e., gIG39R) causes this 

glycoprotein to be less stable. 
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Figure 2.5 | Viral protein expression in cells infected with HSV-1 WT and V22a viruses. 

Vero cells were infected with HSV-1 WT or V22a viruses at 5 PFU/cell and cell lysates were 

prepared at 18 hpi, separated by SDS-PAGE and analysed by WB with antibodies indicated. 

(a) Shows expression of gB, gC, gD, gE, gH, gI and VP16 and (b) shows expression of gI 

utilising two different anti-gI antibodies (MAb-CC7 and MAb-CC8) in WT and V22a virus-

infected cell lysates. Molecular mass markers (in  KDa) indicated on left. 
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2.2.5 Immunofluorescence microscopy analysis of viral proteins expression 

To investigate the expression of different HSV-1 proteins in infected cells by 

immunofluorescence (IF) microscopy, HFF-hTERT cells were infected with the HSV-1 WT 

and V22a strains. Cells were fixed at 18 hpi and probed with monoclonal antibodies to various 

HSV-1 proteins together with a rabbit polyclonal anti-HSV antiserum as a control for infection 

levels. As shown in Figure 2.6, no signal could be detected with an anti-gC antibody for the 

V22a-infected cells as expected. Surprisingly, a much higher expression of gI was noted in the 

V22a strain, despite clearly reduced proteins levels being observed in WB using the same anti-

gI (MAb-CC8) antibody. The most logical explanation for an increased signal for V22a gI 

(gIG39R) in IF may be due to a greater exposure of the monoclonal antibody binding epitope 

in gIG39R despite there being less protein. The fluorescence signals for the other proteins 

tested (gB, gD, gE, gG, gH/gL and VP16) were similar in V22a-infected cells to that of WT 

with no observable difference in expression level or localisation. Unfortunately, the loss of 

pUL43 expression could not be confirmed by IF or WB due to the lack of suitable anti-pUL43 

antibody.  
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Figure 2.6 | Immunofluorescence microscopy analysis of HSV-1 WT (KOS) and V22a 

infected cells. Monolayers of HFF-hTERT cells grown on coverslips were infected with WT 

(left) and V22a passage mutant (right) at 5 MOI. At 18 hpi cells were fixed and permeabilised 

before staining with anti-HSV (shown in green) and target antibodies (shown in red). Images 

were taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil 

immersion lens. Blue: staining of nuclei with DAPI (4,6-diamidino-2-phenylindole). Scale bar 

indicates 20 µm. 
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2.2.6 Generation of pUL43, gC and gI recombinant viruses 

Of the nine viral genes with altered protein coding in the V22a strain (Table 2.1), changes to 

viral membrane proteins were considered to be the most likely to affect HSV-1 egress or cell-

association. Therefore, recombinant viruses were constructed expressing gI with the glycine 

residue at position 39 mutated to arginine (gIG39R) or lacking the expression of pUL43 

(∆pUL43) or gC (∆gC) by inserting three tandem stop codons in frame after codon 53 of UL43 

or after codon 36 of UL44 respectively (Figure 2.7). Additionally, all double and triple 

combinations of these mutations (∆pUL43-gIG39R (gIG39R added on ∆pUL43 backbone); 

∆gC-gIG39R (gIG39R added on ∆gC backbone); ∆pUL43-∆gC (∆gC added on ∆pUL43 

backbone); ∆pUL43-∆gC-gIG39R (gIG39R added on ∆pUL43-∆gC backbone) were made. 

Furthermore, recombinant viruses lacking expression of functional gI (∆gI) or it’s binding 

partner gE (∆gE) were generated by inserting 3 tandem stop codons in frame after codon 20 

for both US7 and US8. These viruses were made to compare their life cycle and protein 

expression with that of gIG39R. Fluorescently-labelled viruses were constructed by inserting 

the coding sequence for EYFP at the C terminus of gI in a WT or gIG39R virus backbone and 

also on a backbone already containing mTurquoise-tagged VP26 (at the N terminus of VP26, 

replacing the first 4 codons). The rationale for making a gIEYFP virus was to be able to determine 

the localisation of the protein in infected cells in an antibody epitope-independent manner, and 

immunoprecipitate the protein with GFP-Trap beads. All the recombinant viruses were 

generated in a BAC-cloned HSV-1 KOS genome using the Red-recombination method 

(Gierasch et al., 2006; Tischer et al., 2010).  
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Figure 2.7 | Schematic representation of HSV-1 genome and the deletion mutants. BAC-

cloned WT HSV-1 (KOS strain) was modified using the Red-recombination system to generate 

the indicated changes to the viral genome.  
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The single mutant ΔgC and ΔpUL43 strains were previously constructed in the lab and verified 

by DNA sequencing (by S. Bell and S.Y.K. Lau respectively). To confirm the correct insertion 

of the gIG39R mutation in the recombinant viruses, viral genomes were isolated from cells 

infected with recombinant virus stocks, the gI gene was amplified by PCR and sequenced. 

When compared to the NCBI database it confirmed the desired mutation in all the gIG39R 

mutant constructs (Figure 2.8). However, one other difference was observed between the gI 

sequence from all the new recombinant BAC viruses generated containing the gIG39R 

mutation when compared to the gI sequence from the WT KOS strain (sequenced by NGS) at 

amino acid position 198. All the recombinant BAC viruses had an asparagine codon, whereas 

the lab WT KOS sequence had a serine codon. Analysis of other KOS sequences on the 

GenBank database showed the same variation, with some sequences showing S at position 198 

(GenBank: CAF24821.1, SBS69812.1) and others showing N at position 198 (e.g. GenBank: 

ASM47819.1). This suggests there is some variation within different isolates of the KOS strain 

and that the N at position 198 was already present in the parent BAC-cloned KOS strain used 

to generate all recombinant viruses.  
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Gene   gI(US7) 
HSV-1_KOS          1 atgccgtgccgcccgttgcagggcctggtgctcgtgggcctctgggtctg     50 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
KOS_gIG39R         1 atgccgtgccgcccgttgcagggcctggtgctcgtgggccTCTGGGTCTG     50 
 
HSV-1_ KOS        51 tgccaccagcctggttgtccgtggccccacggtcagtctggtatcaaact    100 
                     |||||||||||||||||||||||||||||||||||||||||||||||||| 
KOS_gIG39R        51 TGCCACCAGCCTGGTTGTCCGTGGCCCCACGGTCAGTCTGGTATCAAACT    100 
 
HSV-1_ KOS       101 catttgtggacgccggggccttggggcccgacggcgtagtggaggaagac    150 
                     ||||||||||||||.||||||||||||||||||||||||||||||||||| 
KOS_gIG39R       101 CATTTGTGGACGCCCGGGCCTTGGGGCCCGACGGCGTAGTGGAGGAAGAC    150 
 
 

Protein gI(US7)   
HSV-1_ KOS         1 MPCRPLQGLVLVGLWVCATSLVVRGPTVSLVSNSFVDAGALGPDGVVEED     50 
                     ||||||||||||||||||||||||||||||||||||||.||||||||||| 
KOS_gIG39R         1 MPCRPLQGLVLVGLWVCATSLVVRGPTVSLVSNSFVDARALGPDGVVEED     50 
 
 

Figure 2.8 | Confirmation of gIG39R mutation introduction in the recombinant virus 

constructs. HSV-1 WT, gIG39R, ΔpUL43-gIG39R-ΔgC, ΔpUL43-gIG39R, ΔgC-gIG39R and 

gIG39REYFP viral DNA from infected HaCaT cell were collected, the US7 gene region 

amplified by PCR and sent for sequencing. All the gIG39R mutants had the same GR 

mutation at amino acid position 39 of the protein as shown in the representative alignment 

figure in red.  
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2.2.7 Comparison of viral protein expression of the recombinant viruses by WB 

To investigate differences in viral protein expression by the recombinant viruses constructed 

and to recapitulate the protein changes observed in the V22a passage strain, Vero cells were 

infected with parental HSV-1 KOS-BAC (WT) or the recombinant viruses containing the 

gIG39R, ΔpUL43 and ΔgC mutations individually or in each double or the triple combination. 

Infected cell lysates were collected at 18 hpi and analysed by WB. Figure 2.9 illustrates that all 

viruses containing the ∆gC mutation do not express any detectable gC. Expression of VP16, 

gB, gD, gE, gG, and gH appeared similar for all the mutant viruses as compared to WT 

infection. However, all viruses harbouring the gIG39R mutation demonstrated a substantial 

reduction in the expression of gI, similar to the results observed in the V22a virus (Figure 2.5). 

The same observation was made with both gI-specific monoclonal antibodies (MAb-CC7 and 

MAb-CC8) suggesting the reduced detection of gI is not due to the gIG39R mutation affecting 

antibody recognition as it seems unlikely a single amino acid change would affect the binding 

of two independent monoclonal antibodies similarly. The expression of pUL43 could not be 

investigated due to a lack of appropriate antibodies.  
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Figure 2.9 | Protein expression profiles of mutant viruses. Vero cells were infected with 

gIG39R, ΔpUL43-gIG39R, ΔgC-gIG39R, ΔpUL43-ΔgC, ΔpUL43-gIG39R-ΔgC, ΔpUL43, 

ΔgC and WT HSV-1 (KOS-BAC) viruses. At 18 hpi cells were lysed and proteins were 

separated by SDS-PAGE and then immunoblotted and tested for the expression of VP16, gB, 

gD, gC, gE, gG, gH, gI and actin. Numbers to the right indicate positions of molecular mass 

markers in KDa 
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2.2.8 Comparison of viral protein expression and localisation for the recombinant virus 

by immunofluorescence 

To investigate the expression of different HSV-1 proteins among different recombinant viruses 

by IF microscopy HFF-hTERT cells were infected at 1 PFU/cell with WT, gIG39R, ΔgC and 

ΔpUL43 viruses for 8 h. The cells were fixed and stained for gC, gE, gI and anti-HSV antibody 

as a control of infection. Figure 2.10 shows images for the single mutant viruses (gIG39R, ∆gC 

and ∆pUL43). Similar to observations with the V22a passage mutant infected cells, the signal 

intensity of gI was greater in cells infected with the gIG39R virus compared to WT or the other 

mutants, despite the lower level of gI protein expression observed by WB data (Figure 2.9). 

The increased signal intensity with the gI antibody was consistently observed for all 

recombinant viruses containing the gIG39R mutant (Figure 2.11). The mutation of gI in each 

of these recombinant viruses was independently generated and confirmed by sequencing 

suggesting the increased signal intensity is due to the G39R mutation and not a secondary 

change to the sequence of gI (Figure 2.8). Furthermore, a similar increase of signal intensity 

was observed with the independent gI monoclonal antibody (MAb-CC7), with weak signals in 

WT-infected cells but stronger signals in gIG39R-infected cells (Figure 2.12). The expression 

of gE and gI by the ΔgE and ΔgI recombinant viruses was also tested by IF (Figure 2.13), 

which confirmed deletion of the targeted genes from the recombinant viruses. Interestingly 

with ΔgE virus-infected cells an increased signal intensity was also observed for gI compared 

to WT-infected cells. This suggests the epitopes for the gI antibodies tested are normally 

masked by interaction with its binding partner gE, and that perhaps the G39R mutation alters 

gI conformation to increase the accessibility of these epitopes in IF assays.  

The dual fluorescent virus expressing mTurquoise-tagged VP26 (capsid) and EYFP-tagged gI 

was also analysed by fluorescence microscopy. HFF-hTERT cells were infected with 
mTQVP26-gIEYFP at 1 MOI for 8 h and then the cells were fixed. As shown in Figure 2.14 strong 

signals were observed in the nucleus for mTQVP26 and in a perinuclear location reminiscent of 

the Golgi/TGN for gIEYFP, as expected for a capsid protein and envelope glycoprotein 

respectively. In addition, small puncta near the cell periphery that were positive for both VP26 

(in red) and gI (in green) were observed, suggesting EYFP-tagged gI becomes incorporated 

into enveloped virions.  
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Figure 2.10 | Immunofluorescence assay to compare protein expression for single mutant 

viruses. Monolayers of HFF-hTERT cells grown on cover slips were infected with HSV-1 WT, 

gIG39R, ΔgC and ∆pUL43 viruses at 1 PFU/cell. At 8 hpi cells were fixed and permeabilised 

and were treated with anti- gC, gE and gI (MAb-CC8), antibodies together with anti-HSV 

antiserum. Images were taken using an Olympus IX-81 inverted fluorescence microscope using 

a 60x oil immersion lens. Blue: staining of nuclei with DAPI. Scale bar indicates 20 µm. 
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Figure 2.11 | Immunofluorescence to compare signal intensity for all independent 

recombinant viruses containing the gIG39R mutation. Monolayers of HFF-hTERT cells 

grown on cover slips were infected with HSV-1 WT, gIG39R, ΔgC-gIG39R, ΔpUL43-gIG39R 

and ΔgC-ΔpUL43-gIG39R viruses at 1 PFU/cell. After 8 h cells were fixed and permeabilised 

and were treated with polyclonal anti-HSV (green) and anti-gI (MAb-CC8, red) antibodies. 

Images were taken at the same exposure using an Olympus IX-81 inverted fluorescence 

microscope using a 60x oil immersion lens. Blue: staining of nuclei with DAPI.  Scale bar 

indicates 20 µm. 
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Figure 2.12 | Immunofluorescence to compare signal intensity for anti-gI (CC7) antibody 

in detecting gI in cells infected with WT and gIG39R viruses. Monolayers of HFF-hTERT 

cells grown on cover slips were infected with HSV-1 WT and gIG39R at 1 PFU/cell. After 8 h 

cells were fixed and permeabilised. Subsequently the cells were treated with polyoclonal anti-

HSV (green) together with anti-gI (CC7) antibody (red). Images were taken at the same 

exposure using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion 

lens. Blue: staining of nuclei with DAPI.  Scale bar indicates 20 µm. 
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Figure 2.13 | Immunofluorescence analysis of gE and gI deletion viruses. Monolayers of 

HFF-hTERT cells grown on cover slips were infected with HSV-1 WT, ΔgE, and ΔgI viruses 

at 1 PFU/cell. After 8 h cells were fixed and permeabilised and were treated with polyclonal 

anti-HSV (green) together with anti-gI (MAb-CC8) or anti-gE antibodies (red). Images were 

taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion 

lens. Blue: staining of nuclei with DAPI.  Scale bar indicates 20 µm. 
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Figure 2.14 | Fluorescence microscopy images of mTQVP26-gIEYFP infected cells. 

Monolayers of HFF-hTERT cells grown on cover slips were infected with the mTQVP26-gIEYFP 

recombinant virus at 1 PFU/cell. After 8 h cells were fixed. Images were taken using an 

Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion lens. Yellow 

boxes in the zoomed panel indicate HSV-1 particles positive for both VP26 (in red) and gI (in 

green). These selected areas are also shown separately in the bottom panel. Scale bar indicates 

20 µm. 
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2.2.9 Replication and release of the recombinant viruses 

To investigate the effect on virus replication and release into the medium of the various 

combinations of mutations in the newly generated recombinant viruses, Vero, HFF-hTERT and 

HaCaT cells were infected with each recombinant virus. At 18 hpi cell-associated (CA) and 

culture medium supernatant (Sup) were collected. The amount of infectious virus present in 

each sample was determined by plaque assays and the proportion of virus released was 

calculated. All viruses containing the gIG39R mutation demonstrated a greater proportion of 

virus released into the culture medium compared to WT (KOS-BAC) virus (Figure 2.15). An 

increase in the proportion of released virus was also observed for a virus lacking gI expression 

(∆gI) in all three cell lines, and similarly for a virus lacking gE expression (∆gE) in HaCaT and 

Vero cell lines, although surprisingly not in the HFF-hTERT cell line. The deletion of pUL43 

appeared to have no obvious effect on HSV-1 replication or release either individually or in 

combination with any other mutation. On Vero cells, a marginal increase due to the ΔpUL43 

mutation was suggested by these data, for example ΔpUL43-gIG39R and ΔgC-ΔpUL43-

gIG39R released more virus than the gIG39R or ΔgC-gIG39R viruses. However, such potential 

effects of loss of pUL43 were small and not consistent between viruses or cell lines. The 

deletion of functional gC had little effect on virion secretion when alone or in combination with 

∆pUL43, but loss of gC enhanced the release of virus into the culture media when in 

combination with the gIG39R mutation for both HFF-hTERT and HaCaT cells. Overall, these 

data suggest that the gIG39R mutation is primarily responsible for causing the greater release 

of infectious virus into culture medium observed for the passaged strain V22a, with the loss of 

gC increasing the magnitude of this effect in at least some cell types.  

The replication and release properties of WT, gIG39R, ΔgE and ΔgI viruses over the course of 

a single cycle of HSV-1 replication were analysed by infecting HaCaT cells at 10 PFU/cell and 

harvesting cell-associated and culture medium fractions separately at 2, 6, 9, 12 and 24 hpi. 

The replication rate of all three mutant viruses was indistinguishable from WT HSV-1, as 

shown by the cell-associated titres, all of which plateau by around 12 hpi (Figure 2.16 a). All 

three mutant viruses (gIG39R, ∆gI and ∆gE) secreted more infectious virus into the cell culture 

medium compared to WT HSV-1 throughout the replication cycle, with the greatest difference 

being evident during the logarithmic growth phase (6-12 h) with up to 100-fold increase in the 

amount of virus released into the medium. The amount of infectious virus present in the culture 

medium was more similar between the viruses at 24 hpi, with approximately 3-fold more virus 
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released for the mutant viruses compared to WT, although by this late stage post infection the 

cytopathic effect leading to cell damage/lysis would likely have a greater contribution than at 

earlier time points.  

Replication and release properties of WT, gIG39R, ΔgE, ΔgI, ΔgC and ΔgC-gIG39R viruses 

were further analysed in HFF-hTERT cells. The cell line was infected with 5 PFU/cell viruses 

and cell-associated and culture medium fractions were harvested separately at 2, 6, 9, 12 and 

24 hpi. The replication rate of gIG39R, ΔgE and ΔgI viruses were indistinguishable from WT 

HSV-1 (Figure 2.16 b). However, the ΔgC virus showed slight attenuation in terms of 

replication and surprisingly the ΔgC-gIG39R seemed to replicate more rapidly, with higher 

titres at 6, 9 and 12 h compared to WT (Figure 2.16 c). As seen with HaCaT cell line, cell-

associated titres of all the viruses plateaued by around 12 hpi. For all the viruses, the amount 

of released virions were maximum during the log phase of growth. The ΔgC-gIG39R virus 

secreted the highest amount of infectious virus into the cell culture medium, followed by 

gIG39R and then ΔgI viruses, with all these gI mutant viruses releasing more than WT. The 

ΔgE and ΔgC virus secreted less infectious virus than the WT. The differences in secretion of 

ΔgE viruses in HaCaT and HFF-hTERT is surprising and indicates there may be a cell type 

specific differences in the requirement of gE and gI for virus release. 
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Figure 2.15 | Release assay of recombinant viruses on different cell lines. Growth assay of 

HSV-1 WT (KOS-BAC), ΔpUL43, ΔgC, ΔpUL43-ΔgC, gIG39R, ΔpUL43-gIG39R, ΔgC-

gIG39R, ΔpUL43-gIG39R-ΔgC, ΔgI and ΔgE viruses was conducted on Vero, HFF-hTERT 

and HaCaT cell lines. Cells were infected with 10 MOI of the viruses and at 10 hpi supernatant 

(Sup) medium and cell-associated (CA) virus samples were collected. Samples were titred by 

plaque assay on Vero cells. Each experiment was repeated at least three times. Data presented 

here is from a single representative experiment containing duplicate sample set. Error bars 

indicate standard error of two biological replicates. 
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Figure 2.16 | Release assay and growth curves of recombinant viruses on different cell 

lines. Single step growth curves for WT, gIG39R, ΔgE, and ΔgI viruses (a) at high MOI (10 

PFU/cell) on the HaCaT cell line, (b) at high MOI (5 PFU/cell) on the HFF-hTERT cell line 

and (c) for ΔgC and ΔgC-gIG39R viruses at high MOI (5 PFU/cell) on the HFF-hTERT cell 

line. Supernatant (Sup) medium and cell-associated (CA) virus samples were collected at 2, 6, 

9, 12 and 24 hpi for growth curves. Samples were titred by plaque assay on Vero cells. Each 

assay was repeated at least three times. Data presented here is from a single representative 

experiment containing duplicate sample set. Error bars indicate standard error of two biological 

replicates. 

 

 

 

 



Chapter 2. Studying an HSV-1 passage mutant to understand what factor leads to increase virion secretion property during infection 

70 
 

 

2.2.10 Analysis of plaque size of the recombinant viruses 

As mentioned above plaques reflect the capacity of a virus to infect, multiply and spread to 

neighbouring uninfected cells. A mutant virus that is defective in one or more of these processes 

may produce plaques of different morphology. Firstly, plaques formation on Vero cell 

monolayers was analysed for WT and the recombinant viruses containing all combinations of 

gIG39R, ΔpUL43 and ΔgC mutations. After incubation for 3 days under semi-solid medium, 

cells were stained, plaques scanned and images processed with Photoshop to measure plaque 

sizes. As shown in Figure 2.17 pUL43 deletion does not seem to affect plaque size whereas the 

gIG39R mutation seemed to reduce plaque size by ~20% compared to the WT plaques. 

Interestingly gC deletion seemed to marginally increase plaque size by at least 14%, and this 

phenotype appears dominant to the reduction in plaque size caused by the gIG39R mutation 

because viruses containing both mutations have similarly larger plaques as ∆gC alone. The 

increased plaque size in the absence of gC expression could reflect a reduction in ‘stickiness’ 

of the virions due to reduced interaction with extracellular heparin sulphate allowing easier 

diffusion to neighbouring cells. This is similar to suggestions made in previous studies which 

also demonstrated increased plaque size for a gC null virus (Laquerre et al., 1998; Mårdberg et 

al., 2004).  

Deletion or mutation of gE is well established as causing severely reduced plaque size of HSV-

1 (Wisner et al., 2000; Han et al., 2012; Maringer et al., 2012; Balan et al., 1994; Dingwell et 

al., 1995). To compare defects in plaque formation capacity caused by deletion of gE or gI with 

the gIG39R mutation, plaque size analysis for these recombinant viruses and WT were 

compared using monolayers of Vero, HFF-hTERT and HaCaT cells. Of these cell lines, only 

Vero cells produce plaques that can be easily observed by toluidine blue staining, therefore 

HaCaT and HFF-hTERT samples were fixed and stained with a HSV specific antibody 

followed by HRP-conjugated secondary antibody and developed with a diaminobenzidine 

(DAB) peroxidase reaction.  As shown in Figure 2.18, gIG39R produces plaques with ~20% 

reduced diameter on monolayers of Vero and HFF-hTERT cells and ~65% reduced diameter 

on monolayers of HaCaT cell line compared to WT plaques on the same cell lines. Greater 

reductions in plaque diameter were observed for the ∆gI virus, and even further reductions for 

the ΔgE virus in all three cell lines. These data indicate that gE activity is more important for 

mediating cell-to-cell spread than gI, and suggests that gE that is not in complex with gI retains 
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some level of function to promote plaque formation. The expression of gIG39R, despite 

reduced expression levels, enables more efficient plaque formation than the complete absence 

of gI, particularly in Vero and HFF-hTERT cells. Furthermore, it would appear that release of 

infectious virus into the culture medium and plaque formation have different requirements for 

gE and gI function; for example, gIG39R mutation and loss of gE expression demonstrate a 

similar level of increased virus secretion into culture medium but loss of gE has a more 

profound effect on plaque size than the gIG39R mutation. 
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Figure 2.17 | Plaque size comparison of all gIG39R, ∆gC and ∆pUL43 recombinant 

viruses on Vero cell. Monolayers of Vero cells were infected with HSV-1 WT, gIG39R 

ΔpUL43-gIG39R, ΔgC-gIG39R, ΔpUL43-ΔgC, ΔpUL43-ΔgC-gIG39R, ΔgC and ΔpUL43 

viruses. After 3 days the cells were fixed and stained with toluidine blue. The plates were then 

scanned and diameters of the plaques were measured in Photoshop. Data shows the average of 

60 plaques diameter, normalised to WT (set as 100%) and error bars indicate standard error. 

Representative images of plaques for each virus are shown. White scale bar indicates 2 mm.  
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Figure 2.18 | Plaque size comparison of gE and gI mutant viruses on Vero, HFF-hTERT 

and HaCaT cells. Monolayers of cells were infected with HSV-1 WT, gIG39R mutant, ΔgE 

or ΔgI viruses. After 3 days the cells were fixed and either stained with toluidine blue (Vero 

cells, colour shown has been inverted) or antibody-dependent DAB peroxidase reaction. The 

plates were then scanned and diameters of the plaques were measured in Photoshop. Data 

shows average of 60 plaques diameter normalised to WT (set as 100%) and error bars indicate 

standard error. Representative images of plaques for each virus are shown. Black scale bar 

indicates 2 mm.   
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2.2.11 Effect of cell density on release of the mutant viruses 

During WT virus infection, the gE/gI complex has been shown to target the secretion of virions 

to cell junctions rather than to the apical surface in polarised cells (Johnson et al., 2001). These 

data above demonstrate that loss of the gE/gI complex causes greater release of virions into the 

culture medium, possibly due to increased virus secretion at medium-exposed cell surfaces 

rather than cell-to-cell contacts. Therefore, the effect of gE and gI mutations on virion egress 

were investigated in the absence of cell-to-cell contact points. To achieve this goal HFF-

hTERT and Vero cells were seeded at varying subconfluent densities and were infected with 

WT, gIG39R, ΔgE and ΔgI viruses. At 10 hpi cell-associated and released virus fractions were 

collected and titred on Vero cells. The percentage of release for the all the viruses was then 

calculated. Interestingly the proportion of WT virion secretion into the culture medium was 

essentially unchanged irrespective of cell density for HFF-hTERT cells (Figure 2.19 a) 

although in Vero cells a slight decrease in virion secretion was noticed with increasing cell 

density (Figure 2.19 b). The gIG39R and ∆gI viruses demonstrated increased virus secretion at 

all cell densities compared to WT in both cell types, with the percentage of virus release 

reducing with increasing cell density. The same was observed for ∆gE virus in Vero cells but 

as shown above in HFF-hTERT cells the ∆gE virus had little-to-no increase in virus secretion 

compared to WT at higher cell densities, although did show a marginal increase in release at 

low cell densities. One explanation for these data is that the majority of WT virus particles are 

secreted at the basal cell membrane that is adhered to the cell culture dish, and that only a 

relatively small proportion of virus is released at medium- exposed surfaces of cells, so there 

are relatively few virions that can become ‘trapped’ between cells as the cell density increases. 

For viruses with disrupted gE/gI complex more virions are secreted at exposed cell surfaces, 

and thus more are present as free virions in the culture medium, but these medium-exposed 

virions are more easily ‘trapped’ as cell density increases. Overall virus secretion was more 

sensitive to cell density in Vero cells, which may be explained by the fact that HFF-hTERT 

cells are large flat fibroblasts that make few lateral cell contacts whereas Vero cells form more 

packed monolayers. The difference in the secretion of ΔgE between HFF-hTERT and Vero 

cells is difficult to explain but could reflect the different cell morphologies of these cell lines, 

or differences in the potential cellular binding partners for gE between these human and 

monkey cells.  
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Figure 2.19 | HSV-1 release assay with increasing cell density. (a) HFF-hTERT and (b) Vero 

cells were seeded at different densities (1x104, 5x104, 1x105, 2x105 and 4x105) and infected the 

following day with WT, gIG39R, ΔgE and ΔgI viruses. Images of cells were taken before 

infection (left). At 10 hpi cell-associated and supernatant virions were collected and titred on 

Vero cell monolayers. Plaques were counted at 72 hpi to calculate percentage of virus release. 

Data indicates average of two independent biological replicates. Error bars indicate standard 

error of two biological replicates. 
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2.2.12 Complementation assays 

To investigate whether the increased release of HSV-1 into the culture medium when the gE/gI 

complex is disrupted can be suppressed by supplying the missing WT gE or gI protein in trans, 

complementation assays were performed. Initially, cells stably expressing gE or gI were made 

by transducing HaCaT cells using a lentivirus transduction system and selected populations 

tested for transgene expression by IF (Figure 2.20 a). The majority of HaCaT-gI cells (80%) 

were positive for gI expression although gE expression was only detected in approximately 

50% of the HaCaT-gE cells. The level of gE and gI protein expression in these stable cells was 

compared between mock infected cells and cells infected with WT, ∆gE and ∆gI viruses 

(Figure 2.20 b). The expression of both gE and gI in the stable cell lines was substantially lower 

than expression from the viral genome. In mock-infected HaCaT-gE cells, the majority of the 

gE protein appeared to be immature, whereas when these cells were infected with ∆gE virus 

the cell line which expressed gE appeared to be more similar to the size of mature gE. This is 

similar to the difference in gE observed between WT and ∆gI-infected cells suggesting the 

efficient maturation of gE requires gI expression. To understand whether this low-level 

expression of gE or gI can alter the virus release phenotype of gE or gI deletion viruses, 

parental, gE expressing and gI expressing HaCaT cell lines were infected with WT, ΔgE or ΔgI 

viruses and the medium and cell-associated samples were collected at 6 hpi infection and 

infectious virus determined by plaque assay (Figure 2.20 c). This time point was used as it is a 

relatively early stage of virus assembly and release which may be more sensitive to gE and gI 

levels. The release of ∆gE and ∆gI viruses was greater than WT HSV-1 in parental HaCaT 

cells as previously observed. In HaCaT-gE cells the proportion of ΔgE virus secretion was 

slightly lower than the proportion of ∆gE virus released in the parental HaCaT cell line. This 

was more apparent in the gI-HaCaT cell line with approximately 3-fold lower release of ΔgI 

virus compared to the same infection in parental HaCaT cells, although the release of ∆gI virus 

was still ~5-fold higher than WT HSV-1 in the HaCaT-gI cells. These data suggest that the 

relatively low expression level of gE and gI in the stably cell lines can somewhat compensate 

for the loss of these proteins in the control virion secretion. The effects were modest however, 

likely due to the low expression levels of gE and gI in these cell lines. 
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Figure 2.20 | gE and gI expression and HSV-1 release assay in complementing HaCaT cell 

lines. HaCaT cells were transduced with lentivirus vectors to generate cell populations stably 

expressing gE or gI. (a) gE and gI expression HaCaT cell lines detected by IF, (b) parental and 

gE or gI HaCaT cells were infected either with HSV-1 WT, ΔgE or ΔgI at 10 PFU/cell and 

expression of gE and gI detected by WB at 6 hpi. (c) Cell-associated (CA) and supernatant 

(Sup) virus samples were collected from WT and gE- or gI- HaCaT cells infected with HSV-1 

WT, ΔgE or ΔgI viruses at 10 hpi and titred on Vero cell to calculate the percentage of virus 

release. Data indicates average of two independent biological replicates. Error bars indicate 

standard error of two biological replicates. 
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As an alternative strategy, co-infection experiments were performed. HaCaT cells were 

infected with WT, gIG39R, ΔgE, or ΔgI viruses, co-infected with ΔgE and ΔgI viruses or mock 

infected, harvested at 6 hpi and protein expression analysed by WB. Figure 2.21 (a) indicates 

that both gE and gI were efficiently expressed in cells co-infected with ΔgE and ΔgI, and there 

was less immature gE in the co-infected samples than ∆gI or gIG39R infected samples. This 

suggests that gI and gE expressed from co-infection with ∆gE and ∆gI can form a complex. 

The ability of co-infection to complement virus secretion phenotypes was investigated by co-

infecting cells with ∆gE together with gI or gIG39R and the relative virus release compared to 

infection with each individual virus (Figure 2.21 b). Consistent with earlier results, in single 

virus infection samples substantially more gIG39R, ∆gE and ∆gI virus was released from 

HaCaT cells than WT HSV-1. However, the amount of virus released from cells infected with 

∆gE in combination with either gIG39R or ∆gI was substantially lower than the single deletion 

or gIG39R mutant viruses. These data suggest virus secretion from cells can be controlled by 

WT gE/gI complexes even when the functional proteins are expressed from different virus 

genomes, and further indicates that the gIG39R mutant protein is not acting in a dominant 

negative capacity.  
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Figure 2.21 | Release assay and expression of gE and gI during co-infection. (a) HaCaT 

cells were infected either with WT, gIG39R, ΔgE, ΔgI or co-infected with both ΔgE and ΔgI, 

viruses. After 6 hpi the cells were lysed and gE, gI expression was checked by WB. (b) HaCaT 

cells were infected either with WT, gIG39R, ΔgE, ΔgI or co-infected with both ΔgE and ΔgI 

or ΔgE and gIG39R viruses. At 10 hpi cell-associated (CA) and supernatant (Sup) virus 

samples were collected and titred on Vero cell to calculate percentage of virus release. Data 

indicates average of two independent biological replicates. Error bars indicate standard error 

of two biological replicates. 
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2.3 Discussion 

The widely accepted notion that HSV-1 is highly cell-associated virus came from the 

observation that very few particles are found in the cell culture medium and virions are 

observed to remain attached to the cell surface of the infected cells (Newcomb and Brown, 

2010; Abaitua et al., 2013). In agreement with this, release assay experiments demonstrated 

<1% of infectious virus is present in the culture medium after a single round of virus replication 

for all WT HSV-1 strains tested in nearly all conditions. The passage mutant V22a exhibited 

an increase in the proportion of virus release from all the infected cells, although this was less 

evident in HeLa cell possibly because HSV-1 replicates poorly in this cell line. The V22a also 

replicated more poorly than WT in HaCaT cells suggesting one or more of the mutations in 

V22a affects an aspect of the virus lifecycle other than egress in this cell line. Construction of 

recombinant viruses in the parental WT strain genetic background to recapitulate the genetic 

defects observed in V22a (gIG39R and deletion of UL43 and UL44) identified the gIG39R 

mutation as the primary cause of the increased virus release phenotype. Additionally, deletion 

of gC on top of gIG39R mutation increases virion secretion even further in human cell lines. 

Interestingly, the gIG39R mutation caused a severe reduction in protein expression observed 

by WB although IF experiments showed substantially higher signals for gIG39R than WT gI 

with all anti-gI antibodies tested. The most logical explanation for these findings is that the 

epitopes within gI that are the binding sites for the anti-gI antibodies are masked either by the 

3-dimensional structure of native gI or because of an interaction with gE within the gE/gI 

complex. The G39R mutation presumably causes a sufficient change to gI structure to expose 

the antibody binding sites, possibly by disrupting its interaction with gE.  

The gIG39R virus produced smaller plaques most noticeably on HaCaT cell line than the WT 

HSV-1 as did the ΔgE and ΔgI viruses irrespective of strain differences. This was consistent 

with the observations made by previous researchers for gE and gI deletion viruses (Wisner et 

al., 2000; Dingwell et al., 1994). Overall, the differences in plaque size indicate that the gE/gI 

function is required for proper release of the virion to the cell contact points which allows 

efficient spread of the virions to neighbouring cells.  Also, gE is more important in mediating 

virion delivery to the cell junction than gI. Furthermore, appearance of slightly bigger plaque 

with all ΔgC viruses on cultured monolayers could indicate that gC-HS interaction might have 

a role on the viruses that have recently egressed (Laquerre et al., 1998; Mårdberg et al., 2004). 
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Even though HFF-hTERT and Vero cells are nonpolarised and don't form tight junctions with 

cell-density-release-assay, WT HSV-1 virions were possibly delivered to the adherent 

junctions. Lack of cell-contact points in with lower cell-densities resulted in increased secretion 

of the gE and gI mutant/deletion viruses possibly in a random manner from the cell surface 

because of misdirectional/abnormal virion secretion pathways. In Vero cells HSV-1 has been 

reported to egress at sites that are adherent either with plastic or neighbouring cells (Mingo et 

al., 2012). This study also supports the same hypothesis for both Vero and HFF-hTERT cell 

line. Such cell density experiments in HaCaT cell line is difficult to perform given the nature 

of the cells to remain in a cluster.  
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3. The G39R mutation in gI destabilises the gE/gI complex in HSV-

1 and dysregulates virion egress 

3.1 Introduction 

In the previous chapter, it was observed that a single amino acid change in glycoprotein I 

(G39R) identified in the V22a passage mutant is primarily responsible for the increased virion 

secretion phenotype of this virus. A similar phenotype was also observed in viruses lacking 

expression of gE or gI. This suggests the G39R mutation might have affected the functionality 

of gE/gI complex. 

Glycoprotein I is encoded by the US7 gene of HSV-1 virus. It is a type 1 transmembrane protein 

and is almost always found in complex with gE in infected cells (Hanke et al., 1990; Bell et al., 

1990). Although gI has been proposed to partially contribute to virion envelopment its function 

largely depends on the presence of gE (Farnsworth et al., 2003). Various roles of gE during 

HSV replication have been proposed but similarly such functions appear to mostly depend on 

its ability to remain in complex with gI. The gE/gI complex actively participates during various 

steps of virus life cycle. The cytoplasmic tail of gE contains tyrosine-based (YXX) trafficking 

motifs, and the cytoplasmic tail of gI contains a putative dileucine motif, which are thought to 

help these proteins to localise to the TGN and endocytose from plasma membrane (Alconada 

et al., 1996; Alconada et al., 1999; Olson and Grose, 1998; Olson and Grose, 1997). A cluster 

of acidic amino acids in the cytoplasmic tail of gE, which likely undergoes phosphorylation, is 

also thought to control gE/gI trafficking (Alconada et al., 1996; Edson, 1993; Wisner et al., 

2000) The accumulation of gE/gI in TGN or endosomal compartments likely aids virion 

assembly through the interaction of this complex with tegument proteins, including VP22 and 

pUL11 that interact with the gE cytoplasmic tail. Once secondary envelopment is complete, 

gE/gI is thought to help transport virion-containing vesicles to the cell junctions to release the 

newly assembled virions in proximity to neighbouring cells. In addition, the ecto-domain of 

the gE/gI complex has been suggested to bind a putative receptor present on the cell junctions 

of uninfected cells, which may facilitate rapid virion spread (Dingwell and Johnson, 1998). 

The ecto-domain of gE/gI complex can also act as an Fc receptor to inhibit antibody response 

(Ndjamen et al., 2014). However, deletion of either of these proteins does not noticeably inhibit 

virus replication with only a minor defect in envelopment is suggested (Johnson et al., 2001). 

This may be due to redundancy within the secondary envelopment process as mutant viruses 
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lacking gB and gE/gI or gD and gE/gI do show substantial defects in secondary envelopment, 

presumably due to a loss of interaction between tegument and envelope proteins (Farnsworth 

et al., 2003; Johnson et al., 2011; Mingo et al., 2012; Wisner and Johnson, 2004).  

The overall aim of this chapter was to understand the mechanism behind the observed 

phenotype caused by the gIG39R mutation by comparing it with ΔgE and ΔgI viruses and 

investigating the fate of gE, gI and the gE/gI complex.   

 

3.2 Results  

3.2.1 Time dependent expression of gE and gI in WT and mutant viruses 

As shown in Chapter 2, the gIG39R recombinant virus demonstrated lower expression levels 

of gI compared to WT virus at a late stage post infection in Vero cells (18 h; Figure 2.9). To 

investigate whether the effect of the G39R mutation on protein levels varies at different stages 

of virus replication or shows cell-type dependence Vero, HFF-hTERT and HaCaT cell lines 

were infected with WT, gIG39R, ΔgE and ΔgI viruses and infected cell pellets were collected 

at 3, 6, 8, 10, 12 and 24 hpi. Protein expression levels were analysed by WB with antibodies 

specific for gE, gI, VP16 and tubulin. As can be seen in Figure 3.1 the expression of gI was 

severely reduced by the G39R mutation at all time points and in all three cell lines tested. 

Surprisingly, the gI expression levels in ∆gE-infected cells were greater than gIG39R-infected 

samples in all three cell types, albeit lower than WT HSV-1-infected samples. This suggests 

the G39R mutation has a greater destabilising effect on gI than loss of its binding partner gE. 

The expression levels of gE were broadly similar between gIG39R and ∆gI -infected samples, 

showing little difference compared to WT-infected samples in Vero cells, a marginal decrease 

in HFF-hTERT cells and reduced expression as well as a shift to a faster migrating product in 

HaCaT cells. This suggests a somewhat cell type-dependent effect on gE expression and/or 

glycosylation when the expression of gI is reduced or lost. Comparing the WT gE expression 

among the three different cell lines also indicates gE has different processing and maturation 

characteristics in the different cell types. 

A parallel comparison of gI expression in three different cell lines revealed that there are also 

cell type specific differences in terms of glycosylation/maturation of this protein (Figure 3.2). 

In the HaCaT cell line gI appeared as three bands with a major species the top-most band 
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(presumably mature gI) and then two immature bands of different intensity. With HFF-hTERT 

cells however only two bands for gI were observed where the immature band was very faint 

and the intermediate species observed in HaCaT cells was missing. In Vero cells the mature gI 

band showed a lower molecular weight than mature gI in HFF-hTERT and HaCaT cells, 

although the immature band appeared to be the same molecular weight in all three cell lines. 

The G39R mutant of gI is barely detectable in all the cell lines with only mature gI being 

detectable. Interestingly, the molecular mass for gI detected (~58 KDa) in this thesis was much 

lower than what was proposed (~65 KDa) in the earlier studies (Sullivan and Smith, 1988; 

Collins and Johnson, 2003). This could be because of differences in the cell lines, antibodies, 

polyacrylamide gel comosition or protein molecular weight standards used in different 

experiments. As can be observed in Figure 3.2, different apparent molecular weight species 

can be observed for glycoproteins expressed in different cell lines, and so it is possible 

differences in glycosylation could explain the different molecular weight observed here than 

in previous publications. This study utilised two independent mouse monoclonal anti-gI 

antibodies (MAb-CC7 and MAb-CC8) that were generated and validated in the laboratory, and 

both these antibodies recognise gI at the same position on membrane (Figure 2.5 and 2.9). 
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Figure 3.1 | Protein expression profiles of WT, gIG39R, ΔgE and ΔgI mutant viruses on 

different cell lines. Vero, HFF-hTERT and HaCaT cells were infected with HSV-1 WT, 

gIG39R, ΔgE and ΔgI viruses at 10 PFU/cell. At 3, 6, 8, 10, 12 and 24 hpi cells were lysed and 

proteins were separated by SDS-PAGE and immunoblotted, and tested for the expression of 

VP16, gE, gI and tubulin as indicated in the figure. Left panel indicates molecular mass of 

proteins in KDa. 
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Figure 3.2 | Direct comparison of gI and gIG39R expression in different cell lines. Vero, 

HFF-hTERT and HaCaT cells were infected with HSV-1 WT and gIG39R viruses. At 16 hpi 

cells were lysed and proteins were separated by SDS-PAGE, immunoblotted, and tested for the 

expression of gI using anti-gI (MAb-CC8) antibody. Left panel indicates molecular mass of 

protein in KDa.  
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3.2.2 Analysis of interaction between gE and gI in WT and mutant virus infected cells  

To investigate whether fluorescent-tagging of gI at the C terminus with EYFP may stabilise gI, 

lysates from HaCaT cells infected with the gIEYFP and gIG39REYFP were tested by WB (Figure 

3.3). Surprisingly, using an antibody that recognises EYFP suggested there was some 

stabilisation of gIG39R when tagged with EYFP, whereas using a gI-specific antibody 

suggested the gIG39REYFP had similarly reduced expression levels as observed for the untagged 

gIG39R protein above (Figure 3.3). The discrepancy between the two antibodies may reflect 

different binding affinities of these antibodies for their targets. Expression of gE was lower in 

the gIG39REYFP-infected samples, similar to that seen with untagged gIG39R virus infection in 

HaCaT cells. 

To investigate the effect of the G39R mutation in gI on the interaction between gE and gI, 

immunoprecipitation (IP) experiments were conducted using two anti-gE monoclonal 

antibodies, MAb-3114 that recognises gE independently of gI and MAb-3063 that recognises 

gE in a gI-dependent manner (presumably via a conformational epitope that is better exposed 

in the gE/gI complex) (Collins and Johnson, 2003; Maringer et al., 2012), as well as two anti-

gI monoclonal antibodies MAb-CC7 and MAb-CC8 that were generated in the laboratory. 

HaCaT cells were infected with WT, gIG39R, ΔgE and ΔgI viruses and cell lysates were 

prepared at 16 hpi. The lysates were incubated separately with each antibody followed by 

protein A/G beads. The samples were then analysed by WB with antibodies specific to gE 

(MAb-3114) or gI (MAb-CC8). Figure 3.4 (a) demonstrates that in WT HSV-1 infected 

samples both gE and gI were efficiently pulled-down by MAb-3063 whereas MAb-3114 

pulled-down gE efficiently but only weak signals were observed for gI. This suggests that there 

may be pools of gE either in complex with gI or free of gI. Alternatively, MAb-3114 antibodies 

may compete with gI for gE binding, thus displacing the majority of gI from the 

immunoprecipitated complex. In gIG39R-infected samples gE was still efficiently pulled-down 

by the MAb-3114 antibody whereas only low levels of gE were pulled-down by MAb-3063 

and no detectable gI was present in either sample. Similar results were seen for ∆gI infected 

samples, which showed efficient IP of gE by MAb-3114 but very low levels of gE in MAb-

3063 pull downs. As observed in Figure 3.4 expression levels of gI were reduced in gIG39R-

infected samples to a greater extent than in ∆gE samples. The IP experiments conducted with 

the two gI antibodies (MAb- CC8 and CC7) are shown in Figure 3.4 (b).  
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Figure 3.3 | Protein expression analysis for the gIEYFP-tagged viruses. HaCaT cells were 

infected with HSV-1 gIEYFP and gIG39REYFP viruses at 10 PFU/cell. At 16 hpi the cells were 

lysed. The protein samples were then separated by SDS-PAGE and immunoblotted for EYFP, 

gI, gE, VP5 and VP16 as indicated. Left panel indicates molecular mass of proteins in KDa. 
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Figure 3.4 | Immunoprecipitation analysis of infected cells using antibodies recognising 

free gE, gE/gI and free gI. HaCaT cells were infected with HSV-1 WT, gIG39R, ΔgE and 

ΔgI viruses at 10 PFU/cell. 16 hpi cells were lysed and an IP was carried out using antibodies 

that recognise (a) gE (MAb-3114), gE/gI (MAb-3063) and (b) gI (MAb- CC8 and CC7). 

Proteins were then separated by SDS-PAGE and immunoblotted for gE and gI (MAb-CC8) as 

indicated. Left panel indicates molecular mass of proteins in KDa. 
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Only very weak signals that were barely above background were observed for gI IP from the 

WT-infected cell lysates whereas in ΔgE-infected samples substantially more gI was seen in 

the IP samples for both the antibodies, even though there was lower overall gI expression. This 

indicates that the binding site for both CC8 and CC7 antibodies may reside within the gE/gI 

binding region as they appear to be masked in the complex. Therefore, in the absence of any 

gE both antibodies could efficiently pull down gI present in the sample whereas with WT 

infection because most or all gI is in complex with gE, little to no gI was pulled-down by these 

antibodies. Consistent with this, the gI IP samples showed very weak signals for gE in WT-

infected samples. Given the very low expression level of gI in gIG39R-infected cells and none 

in ΔgI-infected cells, it is unsurprising that both gI antibodies did not pull down any gI or gE 

from the samples infected with either of these viruses.  

To understand whether overexpression of gIG39R by transfection could promote gE/gIG39R 

complex formation, HEK293T cells were co-transfected with either gE and gI or gE and 

gIG39R expression plasmids. After 22 h the cells were lysed and an IP experiment was carried 

out using MAb-3063 antibody to pull-down any functional gE/gI complex present in the cell 

lysates. Both gE and gI were pulled-down from WT gI expressing samples, whereas very little 

gE and no detectable gI was pulled-down from gIG39R expressing samples suggesting gIG39R 

does not form a complex with gE (Figure 3.5). 
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Figure 3.5 | Immunoprecipitation analysis of transfected cells. HEK293T cells were co-

transfected with HSV-1 gE and gI or gE and gIG39R encoding plasmids. 22 h post-transfection 

cells were lysed and an IP was carried out using anti-gE/gI (MAb-3063) antibody. Proteins 

were then separated by SDS-PAGE and immunoblotted for gE and gI (MAb-CC8) as indicated. 

Left panel indicates molecular mass of proteins in KDa. 
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3.2.3 Immunofluorescence microscopy analysis of gE, gI localisation in cells   

To further investigate gE/gI complex formation the expression and localisation of gE, gI and 

the gE/gI complex were analysed by IF microscopy. HFF-hTERT cells were infected with WT, 

gIG39R and ΔgI viruses and then fixed at 3, 6, 9, and 12 hpi and co-stained with monoclonal 

antibodies to HSV-1 gE (MAb-3114; IgG2a) and gE/gI (MAb-3063; IgG1) (Figure 3.6). In 

WT-infected cells antibodies showed overlapping signals predominantly in a perinuclear 

compartment from 6 h onwards, with noticeable signal at the cell periphery by 12 h. Staining 

was also observed around the nuclear rim for MAb-3114 but not MAb-3063 suggesting that 

some gE localises to the nuclear membrane in a gI-independent manner. In cells infected with 

either gIG39R or ∆gI viruses, MAb-3114 showed very similar expression and localisation as 

in WT virus-infected cells, whereas only weak signals were detected for MAb-3063 in gIG39R-

infected cells and these were further reduced in ∆gI samples. These data further demonstrate 

that the G39R mutation in gI inhibits the formation of the gE/gI complex, although the fact that 

higher signal levels were detected for MAb-3063 in gIG39R-infected samples than ∆gI 

suggests the G39R mutant gI can still partially associate with gE. Furthermore, thiese data 

suggest that loss of gI interaction does not affect gE subcellular localisation.  

In the previous chapter it was observed that anti-gI antibodies give very poor signal in IF in 

WT-infected cells compared to gIG39R or ∆gE-infected cells (Figure 2.10-2.13), even though 

WT virus expresses more gI as detected by WB (Figure 2.9). To understand the discrepancy 

between gI detection in WB and IF approaches further, HFF-hTERT cells were infected with 

viruses expressing WT or G39R mutated gI either as untagged protein or fused to EYFP at the 

C terminus (WT, gIG39R, gIEYFP and gIG39REYFP viruses), fixed at 3, 6 and 8 hpi and stained 

with anti-gI (MAb-CC8). As can be seen in Figure 3.7, WT-infected cells demonstrate a very 

weak signal for gI antibody staining, whereas with gIG39R infection shows a much stronger 

signal from 6 h onwards. The same observations were made for the EYFP-tagged viruses, with 

the addition that gI expression levels could be more directly observed because every copy of 

gI should be fused to EYFP: for the gIEYFP virus a robust signal for EYFP was observed but 

with a corresponding weak signal for the gI antibody, whereas a weak EYFP signal intensity 

coupled with a strong signal for the gI antibody was observed for the gIG39REYFP virus (Figure 

3.8). These data on cells infected with the EYFP-tagged gI viruses also demonstrate that the 

anti-gI antibody can recognise its target epitope efficiently in IF.  
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Overall these data support the notion that the G39R mutation in the extracellular domain of gI 

inhibits interaction of gI with gE, thereby releasing gI from the complex so that it becomes 

accessible to antibody detection in IF. These data also suggest that in WT HSV-1 infection 

there is little free gI within cells, but that some free gE is present within infected cells, for 

example in the nuclear membrane. 
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Figure 3.6 | Time course analysis of gE and gE/gI expression in infected cells by 

immunofluorescence.  HFF-hTERT cells were infected with HSV-1 WT, gIG39R or ΔgI at 1 

PFU/cell, fixed at 3, 6, 9 and 12 hpi, and labelled with anti-gE (MAb-3114) (green), anti-gE/gI 

(MAb-3063) (red) antibodies.  Images were taken using an Olympus IX-81 inverted 

fluorescence microscope using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. 

Scale bar indicates 20 µm.  
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Figure 3.7 | Time course analysis of gI expression in infected cells by immunofluorescence. 

HFF-hTERT cells were infected with HSV-1 WT or gIG39R at 1 PFU/cell fixed after 3, 6 and 

8 hpi and labelled with anti-gI (MAb-CC8) (red), anti-HSV (green) antibodies. Images were 

taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion 

lens. Blue: staining of nuclei with DAPI. Scale bar indicates 20 µm.  
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Figure 3.8 | Time course analysis of EYFP-tagged gI expression profile in infected cells 

by immunofluorescence. HFF-hTERT cells were infected with HSV-1 gIEYFP or gIG39REYFP 

at 1 PFU/cell and cells were fixed after 3, 6 and 8 hpi and labelled with anti-gI (MAb-CC8)  

(red) and nucleus (blue).  Images were taken using an Olympus IX-81 inverted fluorescence 

microscope at using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. *Images 

taken at 2x longer exposure for all channels except 8 hpi images. Scale bar indicates 20 µm.   
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3.2.4 The Fc receptor is abolished in gE and gI mutants 

The ecto-domain of the gE/gI complex functions as an Fc receptor (FcR) and is known to 

efficiently bind human and rabbit IgG (Ndjamen et al., 2014; Johnson et al., 1988). The binding 

site for the Fc domain is thought to be within gE and this gE-Fc interaction is facilitated by gI 

(Basu et al., 1997; Dubin et al., 1994; Basu et al., 1995). To investigate the effect of the gIG39R 

mutant on Fc receptor activity HFF-hTERT cells were infected with WT, gIG39R, ΔgE, or ΔgI 

viruses and fixed at 12hpi. Cells were permeabilised and incubated with non-specific rabbit 

IgG together with mouse monoclonal antibodies to HSV-1 gD and gE, followed by subtype or 

species-specific fluorescently-labelled secondary antibodies. As can be seen in Figure 3.9 a 

strong signal was observed for rabbit IgG that co-localised with gE in WT-infected cells, 

demonstrating a strong Fc receptor activity. However, only very faint signals could be observed 

for rabbit IgG in gIG39R and ΔgI-infected cells, and no signal above background was detected 

with ΔgE-infected cells. These data indicate that the abolishment of gE/gI complex due to the 

G39R mutation or deletion of gI severely attenuates the Fc binding activity of gE, although 

some residual Fc receptor activity remains in the absence of gI. The simplest explanation of 

these observations is that the conformation of gE necessary to interact with Fc domains is 

stabilised in the gE/gI complex, although a small fraction of gE molecules fold sufficiently well 

to bind to antibody Fc domains in a gI-independent manner. 
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Figure 3.9 | Fc receptor activity in cells infected with WT and gE or gI mutant viruses.  

HFF-hTERT cells were infected with HSV-1 WT, gIG39R, ΔgE or ΔgI at 1 PFU/cell. The cells 

were fixed at 12 hpi, and stained with gE, gD, non-specific rabbit IgG antibodies. Images were 

taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion 

lens. Scale bar indicates 20 µm. 
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3.2.5 Effects of gIG39R mutation on the localisation of gE and gI to virion assembly sites 

During virion assembly HSV-1 glycoprotein-containing TGN/endosomal vesicles wrap around 

the tegument-surrounded nucleocapsids. To investigate the impact of the G39R mutation on gI 

and gE localisation during the virion assembly stage of infection, HFF-hTERT cells were 

infected with HSV-1 gIEYFP and gIG39REYFP viruses, fixed at 10 hpi and stained for gE and the 

inner tegument protein VP1/2 as a marker for cytoplasmic nucleocapsids (Figure 3.10). EYFP-

tagged WT gI and gE localise to the same intracellular compartments including VP1/2 positive 

puncta, which indicates assembling or assembled virus particles. However, in gIG39REYFP-

infected cells the mutant gI protein appeared to be more retained on the plasma membrane and 

showed less co-localisation with gE in intracellular compartments. However, some particles 

were still observed bearing gE, gIG39REYFP and VP1/2 suggesting mutant gI (gIG39R) can still 

be incorporated into assembling virions. 

To investigate the impact of the G39R mutation on the localisation of gE and gI with another 

envelope protein, gD, HFF-hTERT cells were infected with either WT or gIG39R viruses, fixed 

at 10 hpi and were stained for gD, gE and VP1,2 (Figure 3.11). In this setup gE and gD showed 

extensive co-localisation for both viruses indicating gIG39R mutation does not affect 

localisation of gE with other glycoproteins such as gD. This suggests gE can still be 

incorporated into virions efficiently when not in complex with gI.  
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Figure 3.10 | gE, gI and VP1/2 localisation in the cells infected with gIEYFP recombinant 

viruses.  HFF-hTERT cells were infected with gIEYFP or gIG39REYFP viruses at 1 PFU/cell, 

cells were fixed after 10 hpi, and labelled with anti-gI (MAb-CC8) (green), anti-gE (MAb-

3114) (red), and anti-VP1/2 (blue). Images on the right panel indicate selected areas from the 

zoomed panel to show possible co-localisation of the indicated proteins. Images were taken 

using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion lens. 

Scale bar indicates 20 µm. 
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Figure 3.11 | gD, gE and VP1/2 localisation in the cells infected with WT and gIG39R 

viruses.  HFF-hTERT cells were infected with WT or gIG39R viruses at 1 PFU/cell, cells were 

fixed after 10 hpi. The cells were labelled with gD (green), gE (MAb-3114) (red) and VP1/2 

(blue). Images on the right panel indicate selected areas from the zoomed panel to show 

possible co-localisation of the indicated proteins. Images were taken using an Olympus IX-81 

inverted fluorescence microscope using a 60x oil immersion lens. Scale bar indicates 20 µm. 
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3.2.6 Packaging of viral proteins in recombinant viruses 

Packaging of HSV-1 proteins into virion involves an intricate series of interactions between 

envelope proteins, tegument proteins and capsids at the assembly sites. Data presented above 

suggests the stability and subcellular localisation of gI appears to be at least partially dependent 

on interaction with gE. To investigate whether the G39R mutation in gI or deletion of gE or gI 

affects the packaging of viral proteins during virion assembly, viruses were purified by Ficoll 

gradient from the culture medium of WT, gIG39R, ΔgE and ΔgI -infected HaCaT cells. 

Initially, the purity and relative protein content of virion preparations was assessed by 

commassie blue staining of SDS-PAGE (Figure 3.12). No differences could be observed for 

the major viral protein species although protein levels were lower for the ΔgI sample indicating 

fewer virus particles present in this sample. Purified virus preparations were then analysed by 

WB using various amounts of samples to facilitate more accurate comparison, and tested for 

VP5, gB, gE, gI, VP16 and VP22 incorporation (Figure 3.13 a). Estimates of the amount of 

each protein being incorporated into the virion was calculated in ‘LI-COR Image Studio Lite’ 

software. The values were normalised to the level of VP5 to determine the percentage of 

incorporation of other proteins into the virion (Figure 3.13 b). The packaging of gE showed a 

modest increase in both the gIG39R and ΔgI viruses compared to WT. The incorporation of gI 

was greatly reduced in both ∆gE and gIG39R viruses, which possibly reflects the reduced 

localisation of gI to assembly sites as observed by IF microscopy as well as reduced total gI 

protein levels observed by WB in infected cells lysates for these mutant viruses. These data fit 

with the notion that incorporation of gI into virions is more efficient when it is in complex with 

gE and that gI incorporation is more dependent on gE than gE is on gI. The incorporation of gI 

into ∆gE virions may reflect a passive mechanism due to a level of saturation of the cellular 

endomembrane system by viral membrane proteins including gI late in infection. The 

incorporation of the tegument proteins VP16 and VP22 showed a little difference between any 

of the viruses despite VP22 being a well-established interactor of the cytoplasmic domain of 

gE (Stylianou et al., 2009; Maringer et al., 2012).  
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Figure 3.12 | Protein expression profiles of purified virions. HaCaT cells were infected with 

HSV-1 WT, gIG39R, ΔgE and ΔgI viruses at MOI of 0.01 and after 3 dpi viruses were purified 

by Ficoll gradient. 10 µL of purified virus particles were loaded to separate the virion proteins 

by SDS-PAGE and the gel was stained with Coomassie Brilliant Blue. The expected positions 

of major capsid, tegument and envelope proteins are indicated on the right. Left panel indicates 

molecular mass of proteins in KDa. 
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Figure 3.13 | Analysis of protein incorporation into purified virions. Gradient purified WT 

(1.52x1010 PFU/ml), gIG39R (7.4x109 PFU/ml), ΔgI (1.8x109 PFU/ml) and ΔgE (1.5x1010 

PFU/ml) virions were loaded on SDS-PAGE at 2, 5, 8 µL volume, transferred to nitrocellulose 

by WB and probed with the antibodies indicated in the figure. The amount of protein 

incorporation (8µL lane for ΔgI was considered against 2µL lane for the rests) was analysed in 

‘LI-COR Image Studio Lite’ software. The packaging levels were calculated by dividing the 

amount of protein detected in purified virions (normalised for VP5) by the amount of protein 

detected in purified WT virion (normalised for VP5). Left panel indicates molecular mass of 

proteins in KDa.  
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3.2.7 Transmission electron microscopy (TEM)  

To investigate the effects of mutation or deletion of gE and gI on virion morphogenesis and 

secretion at the ultrastructural level, HaCaT and HFF-hTERT cells were infected with WT, 

gIG39R, ΔgE and ΔgI viruses at 5 PFU/cell and processed for TEM analysis at 15 hpi. For 

each infected cell samples, multiple Images were taken for areas highlighting virion 

envelopment and egress. As can be seen in Figure 3.14 for HaCaT and HFF-hTERT cells 

intracellular enveloped virions were seen for all the mutant viruses as well as extracellular virus 

particles. Many extracellular particles were cell-associated or in cell-junctions for all viruses 

in both cell lines. Overall there were no noticeable defects in virion morphogenesis or egress. 

Even though the mutant viruses released more infectious viruses into the culture medium than 

WT HSV-1, the number was still less than 5% of the total number of infectious virions that 

remained cell-associated. This relatively small increase in secretion (in terms of total virus 

yield) likely makes observing any difference in virion localisation due to the increased virion 

secretion difficult to detect by TEM. Conducting such TEM studies using cells that form more 

extensive cell-cell junctions, such as polarised epithelial cells, may shed more light on potential 

changes in virion secretion patterns caused by mutations that disrupt gE/gI function. 

 

 

 

 

 

 

 

 

 

 



Chapter 3. The G39R mutation in gI destabilizes the gE/gI complex in HSV-1 and dysregulates virion egress 

106 
 

 

 

 

 

 



Chapter 3. The G39R mutation in gI destabilizes the gE/gI complex in HSV-1 and dysregulates virion egress 

107 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 | Ultrastructural morphology of cells infected with WT, gIG39R, ΔgE and ΔgI 

viruses. (a) HaCaT and (b) HFF-hTERT cells were infected with HSV-1 WT, gIG39R, ΔgE 

or ΔgI virus at MOI of 5 PFU/cell and processed for electron microscopy at 15 hpi. 

Extracellular virions are marked with black arrow, intracellular capsids are marked with white 

arrow heads. Scale bars: 250 nm.  
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3.3 Discussion 

The primary aim of this chapter was to understand the significance of gIG39R in V22a mutant 

that was identified in the first chapter and further characterise the effects of this mutation.  

Protein expression profile of infected cell lysates and purified virions clearly indicate that the 

gIG39R virus essentially functions like a ΔgI virus. Although small amounts of gI proteins are 

made by the gIG39R virus, these do not seem to form any functional complex with gE, as 

shown by IP and IF experiments with a conformational antibody that specifically recognises 

the gE/gI complex (MAb-3063). Maturation of gE appears to be affected in HaCaT cells when 

it is unable to form complex with gI, suggesting that transport along the secretory pathway and 

associated post-translational modification in the ER and Golgi of gE relies upon interaction 

with gI. Alternatively, mature gE may be degraded more rapidly in the absence of each other. 

The same appears true for gI in infected HaCaT cells, albeit to a lesser extent, as the proportion 

of mature gI appears lower in ∆gE-infected cells compared to WT. However, these differences 

in maturation or stability are not so evident in HFF-hTERT or Vero cells, and so maybe a cell 

type specific effect. The gI-specific monoclonal antibodies used in this work do not appear to 

work well in the presence of gE, suggesting their epitopes are masked in the gE/gI complex, 

shown in both IP and IF analysis of cells infected with WT virus. The masking effect of gE on 

the gI MAb epitopes was also seen in IF experiments where much greater signal levels were 

observed for gI staining when gE was either absent (∆gE virus) or unable to interact with gI 

(gIG39R virus), despite substantially reduced expression levels of gI in these circumstances. 

In WT-infected cells gI was found to be almost always in complex with gE as the anti-gI 

antibodies could pull-down very small amount of gI in IP experiments and provided very little 

signal in IF. The anti-gE (MAb-3114) antibody on the other hand showed good signals for gE 

in IF and could pull-down gE but not enough gI (compared to the pull-down efficiency of 

MAb-3063) suggesting that free gE is present in the cells without forming a complex with gI. 

Additionally, the appearance of gE around the nuclear membrane in IF experiments possibly 

suggests that free gE could have a role in the nuclear membrane or in ER, whereas gE that exits 

the ER is primarily in complex with gI. The exact binding site on gI for gE is currently 

unknown, although data presented here suggest the region around the G39 residue may be 

important. The IgG binding sites for the Fc-receptor function of gE and gI have been suggested 

(Basu et al., 1995 and 1997; Dubin et al., 1994), although it has been also proposed that gI 
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might not be part of the Fc binding domain but rather its presence mediates conformational 

changes in gE for better Fc receptor activity (Dubin et al., 1994).  Data presented in this thesis 

show that the formation of the gE/gI complex is necessary for Fc binding however it does not 

distinguish between whether gI has a direct role in binding IgG or functions in stabilising the 

appropriate conformation of the Fc-binding region on gE. Figure 3.15 represents these 

interpretations of these data regarding the effect of the gIG39R mutation on gE/gI complex in 

terms of interaction of various antibodies.  

 

Figure 3.15 | Cartoon of gIG39R-mediated alteration of gE/gI complex for target antibody 

interactions. The gE/gI complex can bind anti-gE/gI antibody and act as potential Fc receptor 

for IgG. It may also bind to anti-gE antibody. However, it interacts poorly with anti-gI 

antibodies. The presence of gIG39R mutation disrupts the gE/gI complex enabling gE to bind 

strongly to anti-gE but poorly to anti-gE/gI and IgG (poor FcR function) and gIG39R binds 

strongly to anti-gI antibodies. Strong antibody interactions are shown in solid colour whereas 

poor interactions are shown in dash colour and lines.   
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4. Identification of binding partners of the gE/gI complex during 

HSV-1 infection 

4.1 Introduction 

During HSV-1 assembly viral glycoproteins will need to interact with different cellular proteins 

for a variety of functions. The gE/gI complex is proposed to be important, though not essential, 

for secretion of virions at cell junctions as well as helping connect the envelope to the 

underlying tegument. Specifically, the cytoplasmic tail of gE has been shown to directly or 

indirectly interact with many tegument proteins (pUL11, pUL16, pUL21 and pUL49) 

(Maringer et al., 2012; Farnsworth et al., 2007b; Han et al., 2012) and hence forms part of the 

network of protein interactions that mediate HSV-1 envelopment. Figure 4.1 represents the 

putative interactions of gE/gI with tegument and cell-junction targeting proteins during 

secondary envelopment and transport of virion loaded vesicles to the plasma membrane for 

fusion. The gE/gI complex of newly released virions has also been proposed to interact with 

an unknown receptor of neighbouring uninfected cells at the junction (Dingwell and Johnson, 

1998). 

 

Figure 4.1 | Schematic representation of the potential roles of HSV-1 gE/gI complex 

during envelopment, egress and spread.   
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Studies have reported that the gE/gI complex accumulates in the TGN during infection and at 

late time points gE/gI and TGN46 are redistributed to cell junctions co-localising with β-

catenin (Farnsworth et al., 2006; Wisner et al., 2004; McMillan et al., 2001), although the 

interpretation of these data may have been complicated by the Fc-binding activity of gE/gI. 

The gE/gI complex is thought to interact with cytosolic adaptor molecules involved in vesicle 

formation and transport like the clathrin adaptor AP-1 and PACS-1 due to the presence of 

consensus binding motifs for these cellular proteins in the cytoplasmic domain of gE (Gu et 

al., 2001; Wan et al., 1998). However, there is little direct evidence of specific cellular 

interactors of gE/gI and this has not been investigated by quantitative proteomic studies of 

gE/gI binding partners in the context of HSV-1. Such studies could provide an insight of 

cellular and viral interactome of the complex which would help understand the mechanism of 

targeted HSV-1 virion egress to the cell junction.   

Immunoprecipitation techniques to precipitate a target protein using highly specific antibodies 

enable direct and indirect binding partners of the target protein to be co-precipitated from a 

reaction mixture. Such isolated protein complexes then can be analysed by mass spectrometry 

(MS) to identify the binding partners of the target proteins. To facilitate identification of 

specific interactors above the ‘noise’ of background non-specific interactors, a technique 

known as stable isotope labelling of amino acids in cell culture (SILAC) is commonly used. 

SILAC is a mass spectrometry-based approach that allows the abundance of proteins to be 

directly compared in up to 3 samples in parallel through the simultaneous detection of peptides 

with the identical amino acid sequence but that differ in molecular weight due to differences in 

the incorporation of non-radioactive isotopic labelled amino acids into proteins in living cells 

(Ong and Mann, 2005). The technique depends on metabolic incorporation of 'light' (L), 

‘medium’ (M) or 'heavy' (H) amino acids (usually lysine and arginine) that differ in their 

content of ‘heavy’ isotopes of carbon and nitrogen (C13 and N15) into cellular proteins. To 

enable this, cells are grown in the L-, M- or H-labelled medium for a minimum of five cell 

doubling times to ensure the vast majority of proteins from these cells are fully labelled with 

respective R and K amino acids, which can be detected by MS.  

In this chapter, SILAC-labelled HaCaT cells were infected with different HSV-1 viruses to 

perform IP of the gE/gI complex followed by MS analysis. Potential interactors were validated 

to select candidate gE/gI binding partners that may regulate for virion egress. 
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4.2 Results 

4.2.1 gE/gI immunoprecipitation from SILAC-labelled HaCaT cells for mass 

spectrometric analysis  

To identify the cellular proteins that interact with gE/gI complex during infection, an IP 

experiment on SILAC-labelled cells was performed. Initially, SILAC-labelled HaCaT cells 

were generated in the lab by growing them for at least five cell doubling times. For this 

experiment, arginine (R) and Lysine (K) amino acids were labelled as R0K0, R6K4 and R10K8 

for L-, M- and H- SILAC respectively. As outlined in Figure 4.2, SILAC-labelled cells were 

infected with HSV-1 WT (two M and one H), ΔgE (two H and one M) viruses or mock (three 

L) in three biological replicates. At 16 hpi the cells were lysed, the total protein concentration 

was measured by bicinchoninic acid (BCA) assay and equivalent amount of protein was used 

for IP with anti-gE/gI (MAb-3063) antibody. The immunoprecipitated samples from 

appropriately labelled WT, ∆gE and mock –infected cell lysates were mixed together in equal 

amount to generate 3 sample sets. The samples were then sent for MS analysis.  

A fraction of the unmixed samples were kept to test the pull-down efficiency. The samples 

were run on SDS-PAGE and transferred on nitrocellulose membrane and tested for gE, 

tegument protein VP16 and housekeeping gene tubulin. As expected the anti-gE/gI antibody 

could pull down gE only from WT-infected samples but not from ΔgE and mock-infected 

samples (Figure 4.3). The IP sample shows approximately 20% of the total gE pull-down 

achieved by the antibody, whereas the supernatant and lysate show approximately 1% of the 

total gE present in the unbound and whole-cell lysates respectively. In the IP samples, tubulin 

and VP16 were not detected indicating the IP samples were not contaminated with non-specific 

proteins. 
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Figure 4.2 | Schematic representation of SILAC-labelling of HaCaT cells and pull down 

of HSV-1 gE/gI complex workflow. (a) HaCaT cells were either labelled with heavy or 

medium or unlabelled (light). (b) The cells were infected with either HSV-1 WT or HSV-1 

ΔgE virus or mock-infected as shown in the flowchart. (c) At 16 hpi the cells were lysed and 

an IP was performed using gE/gI (MAb-3063) antibody. (d) The immunoprecipitated protein 

samples were mixed and sent for MS analysis. 
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Figure 4.3 | SILAC-labelled HaCaT sample testing for protein expression. Heavy, medium 

and light SILAC HaCaT cells were infected with either HSV-1 WT or ΔgE virus or mock (M). 

After 16 hpi the cells were lysed and an IP was performed using anti-gE/gI (MAb-3063) 

antibody. The pull-down protein samples, their supernatant and whole cell lysates were 

separated by SDS-PAGE and analysed by WB using the antibodies indicated. Molecular mass 

markers (in  KDa) are on the left.  
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4.2.2 Bioinformatics analysis of the MS data 

Raw MS data were analysed in excel spread sheet and graph pad prism software for 

bioinformatics analysis based on the methodology described in the Materials and Methods 

section (8.6.4).  A total of 26 common protein hits among all three sample sets (T1, T2 and T3) 

were identified, of which 20 were cellular (Table 4.1). Protein-protein interaction network 

information can help to identify involvement of particular cellular processes in the area of 

interest. In this context, STRING is very helpful. It is a web-based biological database which 

contains information from various sources, such as experimental results, computational 

prediction methods and public text input which allows the generation of networks of interacting 

proteins from raw proteomics data. A STRING analysis of the 20 cellular hits aligned 13 of 

them in a single cluster (Figure 4.3 a). Two other proteins i.e., Nipsnap1 and 2 though 

functionally linked to the cluster might carry out some other functions in the cell. The other 

five proteins were placed individually in the diagram showing no evidence of any functional 

linkage with any other proteins (Figure 4.3 a).  

To broaden the list of candidate interactors of gE/gI additional hits that were common in at 

least two sample sets (T1 & T2, T2 & T3, and T1 & T3) were also considered (Table 4.2). This 

gave 21 additional cellular proteins in the list. However, further STRING analysis did not 

identify any additional clusters, but the previous cluster became enriched and some additional 

unconnected proteins were identified (Figure 4.3 b). From the STRING network, it was evident 

that the cluster contained proteins that are primarily mitochondrial and proteins that mediate 

cellular respiration. Of particular interest three proteins with putative roles in vesicle transport 

(Nipsnap1, Nipsnap2 and MYOF) an interferon inducible restriction factor (IFITM2), and a 

well characterised endo-lysosomal trafficking regulator (Rab7A) were identified in all three 

biological replicates (Figure 4.3 a). Some other well studied lysosome-associated membrane 

proteins with potential roles in lysosome biogenesis and autophagy (LAMP1 and LAMP2) 

(Eskelinen  et al., 2002; Eskelinen, 2006) were present in duplicate sample hits (Figure 4.3 b). 

Careful consideration of the protein descriptions narrowed down the search and left us with 

few potential proteins that have predicted or established roles in endocytic pathway or vesicle 

transport in cells and therefore could be interesting in gE/gI mediated virion egress pathway to 

the cell junctions.  
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(a) 

(b) 

Figure 4.4 | STRING analysis of the potential interaction network of proteins identified 

as binding partners of gE/gI. (a) Network of interacting protein from three biological sample 

hits and (b) the same for two biological sample hits. Proteins clustered into sub-networks: 

mitochondrial proteins or proteins related to cellular respiration. 
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Table 4.1 | Common SILAC hits for cellular proteins in three biological replicates  
 
  
  

 

a.T1 a.T2 a.T3 

  
b.Mean 0.054, c.SD 0.285,  

c.Threshold 0.596 

b.Mean -0.0054, c.SD 0.258,  
d.Threshold 0.486 

b.Mean 0.276, c.SD 0.637,  
d.Threshold 1.488 
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T
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 T
2 
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R
PN

2 

cDNA FLJ60278, highly 
similar to Dolichyl-
diphosphooligosaccharide--
proteinglycosyltransferase 
63 KDa subunit (EC 
2.4.1.119) OS=Homo 
sapiens PE=2 SV=1 - 
[B4DJL0_HUMAN] 1.00 100.00 6.64 23.09 1.00 11.32 3.50 6.60 2.00 11.82 3.56 5.15 

M
Y

O
F 

Myoferlin OS=Homo 
sapiens GN=MYOF PE=1 
SV=1 - [MYOF_HUMAN] 2.00 2.97 1.57 5.30 5.00 2.43 1.28 2.08 1.00 23.39 4.55 6.70 

H
L

A
-A

 MHC class I antigen 
(Fragment) OS=Homo 
sapiens GN=HLA-A PE=3 
SV=1 - 
[Q4QZC0_HUMAN] 1.00 8.10 3.02 10.39 4.00 2.01 1.01 1.53 1.00 3.13 1.65 2.15 

PH
G

D
H

 

cDNA FLJ35987 fis, clone 
TESTI2014269, highly 
similar to D-3-
phosphoglycerate 
dehydrogenase (EC 
1.1.1.95) OS=Homo 
sapiens PE=2 SV=1 - 
[B3KSC3_HUMAN] 4.00 2.62 1.39 4.68 4.00 5.32 2.41 4.38 3.00 3.21 1.68 2.20 

T
U

B
B

4
B

 

Tubulin beta-4B chain 
OS=Homo sapiens 
GN=TUBB4B PE=1 SV=1 
- [TBB4B_HUMAN] 5.00 1.56 0.64 2.06 1.00 3.16 1.66 2.85 2.00 3.34 1.74 2.29 

R
A

B
7

A
 

Ras-related protein Rab-7a 
(Fragment) OS=Homo 
sapiens GN=RAB7A PE=1 
SV=1 - [C9J592_HUMAN] 2.00 3.62 1.86 6.31 3.00 2.45 1.29 2.10 3.00 2.97 1.57 2.03 

PH
B

 Prohibitin OS=Homo 
sapiens GN=PHB PE=1 
SV=1 - [PHB_HUMAN] 6.00 6.27 2.65 9.09 6.00 9.29 3.22 6.02 6.00 17.42 4.12 6.03 

V
D

A
C

1 

Voltage-dependent anion-
selective channel protein 1 
OS=Homo sapiens 
GN=VDAC1 PE=1 SV=2 - 
[VDAC1_HUMAN] 2.00 2.72 1.45 4.88 6.00 2.64 1.40 2.32 3.00 5.02 2.33 3.22 

H
SP

D
1 

 

cDNA FLJ54373, highly 
similar to 60 KDa heat 
shock protein, 
mitochondrial OS=Homo 
sapiens PE=2 SV=1 - 
[B7Z597_HUMAN] 10.00 2.35 1.23 4.13 13.00 2.13 1.09 1.70 14.00 3.67 1.87 2.51 

C
C

T
8 

T-complex protein 1 
subunit theta (Fragment) 
OS=Homo sapiens 
GN=CCT8 PE=1 SV=1 - 
[H7C4C8_HUMAN] 1.00 1.90 0.92 3.05 1.00 3.56 1.83 3.20 2.00 7.88 2.98 4.24 

N
ip

sn
ap

2 Protein NipSnap homolog 2 
(Fragment) OS=Homo 
sapiens GN=GBAS PE=1 
SV=1 - 
[C9J7B1_HUMAN] 1.00 100.00 6.64 23.09 1.00 100.00 6.64 12.99 3.00 100.00 6.64 9.98 
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IF
IT

M
2 

Interferon-induced 
transmembrane protein 2 
(Fragment) OS=Homo 
sapiens GN=IFITM2 PE=4 
SV=1 - 
[H7BYV1_HUMAN] 1.00 10.27 3.36 11.58 1.00 5.26 2.39 4.34 1.00 5.34 2.42 3.35 

PH
B

2 

Prohibitin-2 OS=Homo 
sapiens GN=PHB2 PE=1 
SV=1 - 
[F5GY37_HUMAN] 5.00 8.19 3.03 10.44 6.00 9.08 3.18 5.95 10.00 10.81 3.43 4.95 

N
ip

sn
ap

1 Protein NipSnap homolog 1 
(Fragment) OS=Homo 
sapiens GN=Nipsnap1 
PE=1 SV=1 - 
[H7C2U6_HUMAN] 3.00 100.00 6.64 23.09 1.00 100.00 6.64 12.99 4.00 100.00 6.64 9.98 

R
PN

1 

Dolichyl-
diphosphooligosaccharide--
protein glycosyltransferase 
subunit 1 OS=Homo 
sapiens GN=RPN1 PE=1 
SV=1 - 
[B7Z4L4_HUMAN] 3.00 3.44 1.78 6.06 5.00 4.59 2.20 3.94 6.00 6.98 2.80 3.96 

A
T

P5
A

1 

ATP synthase subunit 
alpha, mitochondrial 
OS=Homo sapiens 
GN=ATP5A1 PE=1 SV=1 - 
[ATPA_HUMAN] 6.00 3.28 1.71 5.82 7.00 2.55 1.35 2.23 8.00 3.34 1.74 2.30 

A
T

P1
A

1 
 

cDNA FLJ60077, highly 
similar to 
Sodium/potassium-
transporting ATPase alpha-
1 chain (EC 3.6.3.9) 
(Fragment) OS=Homo 
sapiens PE=2 SV=1 - 
[B7Z3V1_HUMAN] 3.00 12.48 3.64 12.57 6.00 6.12 2.61 4.79 4.00 61.35 5.94 8.88 

D
D

O
ST

 

Dolichyl-
diphosphooligosaccharide--
protein glycosyltransferase 
48 KDa subunit OS=Homo 
sapiens GN=DDOST PE=1 
SV=1 - 
[A0A0C4DGS1_HUMAN] 1.00 2.28 1.19 3.97 2.00 3.85 1.95 3.43 3.00 4.38 2.13 2.91 

V
D

A
C

2 

Voltage-dependent anion-
selective channel protein 2 
(Fragment) OS=Homo 
sapiens GN=VDAC2 PE=1 
SV=1 - 
[A0A0A0MR02_HUMAN] 4.00 4.10 2.04 6.95 4.00 3.98 1.99 3.52 4.00 8.40 3.07 4.38 

ST
T

3A
 HCG2032701, isoform 

CRA_a OS=Homo sapiens 
GN=hCG_2032701 PE=4 
SV=1 - 
[A0A024R3J7_HUMAN] 2.00 4.17 2.06 7.03 1.00 3.66 1.87 3.28 1.00 8.53 3.09 4.41 

a. T1 = tube 1, T2 = tube 2, T3 = tube 3 
b. Mean = generated from a log2 ratios 
c. SD = standard deviation generated from a log2 ratios 
d. Threshold = represents the mean and standard deviations of the Gaussian distribution 
e. Unique peptide = refers to the number of peptides used for identification of protein. When a protein is identified from 
several unique peptide spectra the confidence in identification of protein is improved.  
f. M/H = the relative intensity of peptides in medium labelled sample, compared to heavy labelled sample 
g. H/M = the relative intensity of peptides in heavy labelled sample, compared to medium labelled sample 
h. z score = (X - μ) / σ where X is the value of the element, μ is the population mean, and σ is the standard deviation 
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Table 4.2 | Common SILAC hits for cellular proteins in two biological replicates  
 
 

  a.T1 a.T2 a.T3 

  
 

b.Mean 0.054, c.SD 0.285,  
c.Threshold 0.596 

b.Mean -0.0054, c.SD 0.258,  
d.Threshold 0.486 

b.Mean 0.276, c.SD 0.637,  
d.Threshold 1.488 
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T
1 

an
d 

T
2 

SL
C

25
A

5 

ADP/ATP translocase 2 
OS=Homo sapiens 
GN=SLC25A5 PE=1 SV=7 - 
[ADT2_HUMAN] 4.00 1.53 0.61 1.96 4.00 2.76 1.46 2.45 x x x x 

A
T

P5
B

 ATP synthase subunit beta 
(Fragment) OS=Homo sapiens 
GN=ATP5B PE=1 SV=1 - 
[H0YH81_HUMAN] 6.00 2.94 1.56 5.26 4.00 2.72 1.45 2.42 x x x x 

A
PM

A
P 

Adipocyte plasma membrane-
associated protein (Fragment) 
OS=Homo sapiens 
GN=APMAP PE=1 SV=1 - 
[H0Y512_HUMAN] 1.00 4.58 2.19 7.50 1.00 4.15 2.05 3.65 x x x x 

L
A

M
P

2 

cDNA FLJ52540, highly 
similar to Lysosome-
associated membrane 
glycoprotein 2 OS=Homo 
sapiens PE=2 SV=1 - 
[B7Z2R9_HUMAN] 1.00 2.07 1.05 3.49 1.00 2.50 1.32 2.16 x x x x 

A
C

T
B

 cDNA FLJ52842, highly 
similar to Actin, cytoplasmic 1 
OS=Homo sapiens PE=2 
SV=1 - [B4E335_HUMAN] 8.00 1.82 0.86 2.83 4.00 2.02 1.01 1.53 x x x x 

H
SP

90
A

B
1 

cDNA FLJ54023, highly 
similar to Heat shock protein 
HSP 90-beta OS=Homo 
sapiens PE=2 SV=1 - 
[B4DMA2_HUMAN] 3.00 3.80 1.93 6.56 2.00 1.82 0.87 1.24 x x x x 

L
A

M
P

1 

cDNA FLJ35079 fis, clone 
PLACE6005283, highly 
similar to Lysosome-
associated membrane 
glycoprotein 1 OS=Homo 
sapiens PE=2 SV=1 - 
[B3KRY3_HUMAN] 1.00 1.91 0.93 3.08 2.00 1.60 0.68 0.85 x x x x 

S1
00

A
11

 Protein S100 OS=Homo 
sapiens PE=2 SV=1 - 
[B2R5H0_HUMAN] 1.00 14.17 3.82 13.21 1.00 1.70 0.76 1.02 x x x x 

C
D

47
 

CD47 OS=Homo sapiens 
GN=CD47 PE=2 SV=1 - 
[A0A0A1TSG4_HUMAN] 1.00 3.27 1.71 5.79 1.00 2.48 1.31 2.14 x x x x 

  

             

T
1 

an
d 

T
3 V
D

A
C

3 

Voltage-dependent anion-
selective channel protein 3 
OS=Homo sapiens 
GN=VDAC3 PE=1 SV=1 - 
[VDAC3_HUMAN] 1.00 100.00 6.64 23.09 x x x x 1.00 0.17 2.56 3.58 

A
T

P5
F1

 ATP synthase F(0) complex 
subunit B1, mitochondrial 
OS=Homo sapiens 
GN=ATP5F1 PE=1 SV=1 - 
[Q5QNZ2_HUMAN] 1.00 2.16 1.11 3.70 x x x x 2.00 0.34 1.56 2.01 
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R
PS

10
 40S ribosomal protein S10 

OS=Homo sapiens 
GN=RPS10 PE=1 SV=1 - 
[RS10_HUMAN] 1.00 1.75 0.81 2.65 x x x x 2.00 0.21 2.26 3.12 

R
PL

12
 60S ribosomal protein L12 

OS=Homo sapiens 
GN=RPL12 PE=1 SV=1 - 
[RL12_HUMAN] 1.00 1.72 0.78 2.54 x x x x 2.00 0.06 3.96 5.77 

SE
C

11
A

 Signal peptidase complex 
catalytic subunit SEC11 
(Fragment) OS=Homo sapiens 
GN=SEC11A PE=1 SV=1 - 
[H0YNX5_HUMAN] 1.00 1.64 0.71 2.30 x x x x 2.00 0.31 1.70 2.24 

D
A

D
1 

Dolichyl-
diphosphooligosaccharide--
protein glycosyltransferase 
subunit DAD1 OS=Homo 
sapiens GN=DAD1 PE=1 
SV=1 - [F5H895_HUMAN] 1.00 3.18 1.67 5.66 x x x x 1.00 0.25 1.99 2.69 

A
T

P5
H

 ATP synthase subunit d, 
mitochondrial OS=Homo 
sapiens GN=ATP5H PE=1 
SV=2 - [F5H608_HUMAN] 1.00 4.14 2.05 6.99 x x x x 1.00 0.29 1.79 2.38 

SL
C

25
A

24
 cDNA FLJ50039, highly 

similar to Homo sapiens solute 
carrier family 25, member 24, 
transcript variant 1, mRNA 
OS=Homo sapiens PE=2 
SV=1 - [B4E290_HUMAN] 2.00 2.36 1.24 4.16 x x x x 1.00 0.01 6.25 9.37 

U
Q

C
R

C
1 

cDNA FLJ51625, highly 
similar to Ubiquinol-
cytochrome-c reductase 
complex coreprotein I, 
mitochondrial (EC 1.10.2.2) 
OS=Homo sapiens PE=2 
SV=1 - [B4DUL5_HUMAN] 1.00 100.00 6.64 23.09 x x x x 1.00 0.35 1.52 1.95 

  

                          

T
2 

an
d 

T
3 

SL
C

7A
5 

Large neutral amino acids 
transporter small subunit 1 
OS=Homo sapiens 
GN=SLC7A5 PE=1 SV=2 - 
[LAT1_HUMAN] x x x x 3.00 2.09 1.07 1.64 3.00 0.20 2.29 3.16 

IM
M

T
 MICOS complex subunit 

MIC60 (Fragment) OS=Homo 
sapiens GN=IMMT PE=1 
SV=1 - [H7C463_HUMAN] x x x x 1.00 7.44 2.89 5.36 2.00 0.08 3.74 5.42 

T
M

E
M

10
9 

cDNA FLJ57860, highly 
similar to Transmembrane 
protein 109 OS=Homo sapiens 
PE=2 SV=1 - 
[B4E1S3_HUMAN] x x x x 1.00 1.90 0.92 1.35 1.00 0.13 2.95 4.19 

a. T1 = tube 1, T2 = tube 2, T3 = tube 3 
b. Mean = generated from a log2 ratios 
c. SD = standard deviation generated from a log2 ratios 
d. Threshold = represents the mean and standard deviations of the Gaussian distribution 
e. Unique peptide = refers to the number of peptides used for identification of protein. When a protein is 
identified from several unique peptide spectra the confidence in identification of protein is improved.  
f. M/H = the relative intensity of peptides in medium labelled sample, compared to heavy labelled sample 
g. H/M = the relative intensity of peptides in heavy labelled sample, compared to medium labelled sample 
h. z score = (X - μ) / σ where X is the value of the element, μ is the population mean, and σ is the standard 
deviation 
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4.2.3 Validation of putative gE/gI binding partners identified from SILAC IP mass 

spectrometry 

To validate some of the potential interactions of gE/gI with cellular proteins HaCaT cells were 

infected with WT, ΔgE virus or were mock-infected. After 16 h the cells were lysed and 

immunoprecipitations was performed with anti-gE/gI antibody (MAb-3063). The precipitated 

samples were run on SDS-PAGE for WB and tested initially for a small subset of cellular 

proteins. This included Nipsnap1, an evolutionary conserved but poorly characterised protein 

thought to have possible role in vesicular transport due to sequence homology with SNAP-25, 

a member of the SNARE family of vesicle fusion proteins (Seroussi et al., 1998). As can be 

seen from Figure 4.5, anti-gE/gI IP from WT-infected samples co-precipitated Nipsnap1, 

although the Nipsnap1 protein band ran close to the light chain band from the MAb-3063 

antibody. Two other membrane traffic-related hits were tested: Rab7, a Ras-family member 

GTPase that is known to function in late endocytic trafficking pathways, especially 

downstream of multivesicular body biogenesis (Vanlandingham et al., 2009); and LAMP1, a 

transmembrane protein type-I found mostly in lysosome and to some extent late in endosomes 

(Harter et al., 1992; Rohrer et al., 1996). Faint signals of the correct approximate size were 

detected for both these proteins among all three IP samples with no increase in signal for WT-

infected samples compared to ∆gE or mock, suggesting these proteins do not specifically 

interact with gE/gI. Alpha-tubulin was used as loading control and a negative control in this 

validation experiment. The anti-tubulin antibody used in this experiment is known to 

specifically recognise the tyrosylated form of alpha-tubulin (Wehland et al., 1983). 

The interaction detected for gE/gI and Nipsnap1 was then further examined to test whether the 

interaction was dependent of gE, gI or the complex. HaCaT cells were infected with WT, 

gIG39R, ΔgE, ΔgI virus or mock. After 16 h the cells were lysed and immunoprecipitated with 

anti-gE/gI antibody, and the samples were tested by WB for gE, Nipsnap1 and tubulin. As 

demonstrated in the previous chapters the MAb-3063 antibody can efficiently pull down gE 

and gI from WT infection but only small amount of immature gE can be seen in the IP samples 

from gIG39R and ΔgI -infected cells. Interestingly even though predominantly immature gE 

was being pulled by the anti-gE/gI antibody from gIG39R and ΔgI -infected cell lysates, 

Nipsnap1 was also detected in these samples (Figure 4.6). This indicates Nipsnap1 interacts 

with gE and the interaction is neither dependent on the presence of gI nor on the gE/gI complex. 

The interaction with Nipsnap1 appears more efficient in WT-infected cells, which may reflect 

the greater gE expression levels from WT virus or could be due to changes in gE localisation 

that gives rise to more mature gE. 
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Figure 4.5 | Validation of SILAC hits by WB. HaCaT cells were infected with HSV-1 WT 

and ΔgE. After 16 h the cells were lysed and an IP was performed using anti-gE/gI (MAb-

3063) antibody. The pulled protein samples and whole cell lysates were separated by SDS-

PAGE and analysed by WB using the antibodies indicated. Molecular mass markers (in KDa) 

are on the left. The arrow on top left indicates position of Nipsnap1 on the membrane.  

 

 

 

 

 



Chapter 4. Identification of binding partners of the gE/gI complex during HSV-1 infection 

123 
 

 

Figure 4.6 | Effect of gE and gI deletion or mutation on Nipsnap1 interaction. HaCaT cells 

were infected with HSV-1 WT, gIG39R, ΔgE, ΔgI or were mock infected. After 16 h the cells 

were lysed and an IP was performed using anti-gE/gI (MAb-3063) antibody. The pulled-down 

protein samples, their supernatant and whole cell lysates were separated by SDS-PAGE and 

analysed by WB using the antibodies indicated. Molecular mass markers (in KDa) are shown 

on the left.  
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4.2.4 Investigation of additional potential cellular interacting partners of gE/gI  

Glycoprotein E (gE) has been reported to interact with many viral proteins, including pUL11, 

pUL16 and pUL49, and it is unclear whether gI is involved in these interactions. These data 

above also demonstrate that gE co-precipitates with a cellular protein Nipsnap1 during 

infection in the absence of gI, suggesting gE may be the main binding site for interactors of the 

gE/gI complex. Therefore, additional cellular proteins identified as gE/gI interactors in the 

SILAC-IP-MS analysis were tested for interaction by pulling down by gE alone using the anti-

gE (MAb-3114) antibody. HaCaT cell were mock-infected or infected for 16 h with WT HSV-

1 and lysed for IP with anti-gE antibody. The IP samples were run on SDS-PAGE followed by 

WB and tested for a range of antibodies as shown in Figure 4.7. A substantial amount of gE 

was seen in the pulled-down sample of WT HSV-1. However, the interaction with most of the 

proteins from the SILAC-IP-MS hit list were not seen. Mitochondrial proteins VDAC1, 

ATP5A1 or PHB all appeared as hits in the SILAC data but no specific bands of the correct 

molecular weight could be observed in the pull-down samples. Late endosomal marker protein 

Rab7, phosphoglycerate dehydrogenase enzyme PHGDH and cytoskeleton protein tubulin also 

could not be detected. Interestingly, besides Nipsnap1, Nipsnap2 was also detected in the pull-

down sample. These proteins share ~66% sequence identity and are predicted to have similar 

functions. In addition to these two proteins, MYOF a member of the Ferlin protein family was 

detected. Interferon-induced antiviral protein IFITM2, while not detected in the IP sample, 

demonstrated a reduced protein level in infected cell lysates. The changes in IFITM2 

expression and co-precipitation of Nipsnap1, 2 and MYOF were taken forward for further 

investigation.   
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Figure 4.7 | Investigating potential cellular binding partner for gE by 

immunoprecipitation. HaCaT cells were infected with WT HSV-1. After 16 h the cells were 

lysed and an IP was done using gE (MAb-3114) antibody. The pull-down protein samples and 

whole cell lysates were separated by SDS-PAGE and analysed by WB using the antibodies 

indicated. Molecular mass markers (in KDa) are on the left and predicted molecular masses of 

target proteins indicated below protein names.  
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4.2.5 Investigation of gE-IFITM2 interaction during HSV-1 infection  

IFITMs are known restriction factors of many RNA viruses and at least one DNA virus, namely 

African swine fever virus (Brass et al., 2009; Bailey et al., 2012; Lu et al., 2011; Muñoz-

Moreno et al., 2016). HCMV on the other hand has been suggested to utilise IFITMs during 

morphogenesis although this publication demonstrated HSV-1 was unaffected by IFITM 

expression (Xie et al., 2015). Preliminary validation experiments for candidate gE interactors 

shown above demonstrated a reduction in IFITM2 expression in HSV-1-infected cells. To 

investigate this observation further, HaCaT cells were infected with either WT or gIG39R virus 

and cells were harvested at 6, 8, 12, 14 and 24 hpi and lysates were tested for expression of 

IFITM2 by WB. As can be seen in Figure 4.8 (a) in WT-infected cell lysate there were reduced 

amounts of IFITM2 at 12-24 hpi and in gIG39R there were reduced amounts of IFITM2 at 8-

24 hpi. To understand whether the reduced expression of IFITM2 required the expression of 

gE and/or gI, or ICP0 (a ubiquitin ligase protein that promotes degradation of many cellular 

proteins and supress host immune responses), HaCaT cells were infected with WT, gIG39R, 

ΔgE, ΔgI, or ΔICP0 viruses. After 6 hpi the cells were lysed and IFITM2 expression was tested 

by WB. Figure 4.8 (b) shows lower expression of IFITM2 in all the infected cells and therefore 

it can be concluded that reduced IFITM2 was not caused by either gE, or gI or ICP0.  

The reduced level of IFITM2 protein caused by HSV-1 infection could explain why the 

interaction between gE/gI and IFITM2 was detected by mass spectrometry because of the high 

sensitivity of this technique, but not by WB detection. To investigate whether a cell line stably 

expressing IFITM2 could supply enough protein to validate the potential interaction with gE/gI 

by WB, A549 cells stably transduced with an IFITM2-HA lentivirus expression vector were 

used (Smith et al., 2013). These cells should express IFITM2-HA in addition to native IFITM2 

and therefore, gE/gI interaction may be observed taking place with both tagged and untagged 

IFITM2 in IP experiments. A549-IFITM2-HA cells were infected with WT, gIG39R, ΔgE, ΔgI 

viruses or mock-infected and lysed at 16 hpi. Immunoprecipitation was performed using anti-

gE/gI antibody and samples tested by WB using antibodies specific for gE, IFITM2, and 

tubulin (Figure 4.9 a). IFITM2 and IFITM2-HA expression could be clearly observed in mock-

infected lysates, with similar expression levels of HA-tagged and endogenous IFITM2. 

However, no signal could be observed for IFITM2-HA in infected cells, and endogenous 

IFITM2 was barely detectable in these samples. This suggests HSV-1 infection leads to the 

degradation of both endogenously and exogenously expressed IFITM2 in a gE/gI-independent 
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manner. Unsurprisingly, given the low levels of IFITM2, no pull-down of IFITM2 mediated 

by anti-gE/gI antibody was detected. To try and increase the amount of IFITM2 available for 

interaction with gE/gI this IP experiment was repeated at 6 hpi. At this time-point both 

endogenous expression of IFITM2 and exogenous expression of IFITM2-HA were observed 

in the lysates of both virus-infected and mock-infected samples. However, despite the higher 

IFITM2 protein levels, gE/gI mediated pull-down of IFITM2 could not be observed in any 

sample (Figure 4.9 b). Therefore, the potential interaction between gE/gI and IFITM2 could 

not be validated even in a cell line expressing additional IFITM2 protein. In addition, while 

HSV-1 infection causes depletion of IFITM2 from cells, this effect is not mediated by gE/gI 

and so no functional connection between gE/gI and IFITM2 can be interpreted from these data.  
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Figure 4.8 | IFITM2 expression in HSV-1-infected HaCaT cells. (a) HaCaT cells were 

infected with HSV-1 WT or gIG39R viruses and cell lysates were prepared at 6, 8, 12, 14 and 

24 hpi and tested for IFITM2 and tubulin expression. (b) HaCaT cells were infected with either 

HSV-1 WT, gIG39R, ΔgE, ΔgI, ΔICP0 viruses or were mock infected and cell lysates were 

prepared at 6 hpi and tested for gE, IFITM2 and tubulin expression.  Molecular mass markers 

(in KDa) are on the left.  
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Figure 4.9 | IFITM2 interaction tests in HSV-1-infected A549-IFITM2-HA cells. A549-

IFITM2-HA cells were infected with HSV-1 WT, ΔgE, ΔgI viruses or were mock infected. (a) 

At 16 hpi and (b) 6 hpi the cells were lysed and an IP was performed using gE/gI antibody 

(MAb-3063). Samples were separated by SDS-PAGE and analysed by WB using the antibodies 

indicated. Molecular mass markers (in KDa) are on the left.  
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4.2.6 gE-Nipsnap interaction in different strains of WT HSV-1-infected cells  

During validation of the SILAC-IP-MS data pull-down of Nipsnap 1 and 2 with gE from HSV-

1 WT (KOS strain) -infected HaCaT cells was observed. To understand whether such 

interaction also take place in other strains, HaCaT cells were infected with two different WT 

strains of HSV-1 (Sc16 and KOS) as well as the ΔgE virus (KOS backbone) as a control. After 

16 hpi the cells were lysed and an IP was carried out using both anti- gE/gI (MAb-3063) and 

anti-gE (MAb-3114) antibodies. The pull-down samples were analysed in SDS-PAGE 

followed by WB and tested for gE, Nipsnap1, Nipsnap2, housekeeping gene tubulin and a 

mitochondrial chaperone HSP60. Figure 4.10 shows that both Nipsnap1 and 2 can be pulled-

down by both anti- gE/gI and gE antibodies from both Sc16 and KOS-infected cells. The IP of 

Nipsnap1 and 2 was more efficient with anti-gE/gI than with anti-gE, although this is most 

likely explained by greater levels of gE immunoprecipitated by anti-gE/gI. No signal was 

observed for Nipsnap1 or 2 in mock or ΔgE virus IP samples. HSP60, which was one of the 

potential hits in all three samples in MS data, appeared to be non-specifically interacting with 

either antibodies or A/G beads as it was present at low levels in all samples. Overall these data 

suggest that Nipsnap1 and 2 interact with HSV-1 gE in a gI-independent manner during 

infection.  

To understand whether the interaction can be seen in other cell lines HFF-hTERT cells were 

utilised beside HaCaT. The cells were infected with WT HSV-1 (KOS) and anti-gE (MAb-

3114) pull-down experiment was carried out at 16 hpi. The samples were analysed by WB and 

tested for gE, Nipsnap1 and Nipsnap2 pull-down. As can be seen in Figure 4.11 both Nipsnap1 

and 2 precipitations were seen along with gE from both cell lines.  
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Figure 4.10 | Validation of gE and Nipsnap1 and 2 interactions in cells infected with 

different strains of WT HSV-1. HaCaT cells were infected with WT HSV-1 Sc16 or KOS 

strain, ΔgE (KOS backbone), or mock. At 16 hpi the cells were lysed and an IP was done using 

both anti- gE/gI (MAb-3063) and gE (MAb-3114) antibodies. The pull-down protein samples 

and whole cell lysates were separated by SDS-PAGE and analysed by WB using the antibodies 

indicated. Molecular mass markers (in KDa) are on the left.  
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Figure 4.11 | Validation of gE and Nipsnap1 and 2 interactions in different cell line 

infected with HSV-1. HFF-hTERT and HaCaT cells were infected with WT HSV-1 (KOS). 

At 16 hpi the cells were lysed and an IP was done using anti-gE (MAb-3114) antibody. The 

pull-down protein samples and whole cell lysates were separated by SDS-PAGE and analysed 

by WB using the antibodies indicated. Molecular mass markers (in KDa) are on the left.  
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4.2.7 Analysis of viral interactome of gE/gI complex from SILAC-IP-MS data 

The main focus of this thesis was to identify cellular proteins that function during HSV-1 egress 

processes. However, understanding which other viral protein binds to gE/gI is also of interest 

and might help us uncover more details of viral envelope and tegument interactions. To 

investigate the viral proteins that interact with gE/gI the raw SILAC-IP data were processed 

for viral proteins, applying the methodology used for cellular proteins in section 4.2.2. Table 

4.3 presents all the viral interactome of gE/gI complex identified in either all three or in two of 

three biological replicates. As expected gE and gI are present in all the sample sets. 

Interestingly, glycoprotein B (gB) was also in all the sample sets. Surprisingly two of the 

nucleotide metabolism enzymes UL39 (ribonucleotide reductase subunit 1) and UL23 

(thymidine kinase) were also identified, as well as major capsid protein VP5. Glycoproteins 

gD, gC, and gH, the nuclear egress protein UL34 and the tegument protein VP22 were found 

in at least two of the SILAC-MS data set.  

To investigate some of these viral protein hits further the pull-down samples using anti-gE 

(MAb-3114) that was prepared for Figure 4.7 were analysed by WB with a subset of antibodies 

available to specific viral proteins. As shown in previous chapter the gE/gI complex cannot be 

pulled-down by anti-gE antibody, hence in the IP samples only gE was detected but not gI 

(Figure 4.12). Although VP22 was identified in the SILAC-IP data and has been shown to 

interact with gE in published IP experiments (Maringer et al., 2012) no VP22 was identified in 

these gE pull-down samples. This could be due to a sensitivity issue because the VP22 signals 

in the infected cell lysates were relatively weak. Interestingly, UL19 (VP5) and gB were both 

observed in the pull-down sample, although the VP5 reactive band appeared lower than the 

corresponding band in the lysate. It seems unlikely that gE would directly interact with VP5 

and would more likely be indirect via a tegument protein, potentially pUL16 which has been 

shown to interact with both gE (Han et al., 2012; Yeh et al., 2011) and VP5 (Meckes et al., 

2010). However, pUL16 was also not detected in the pull-down samples. 

To understand whether gE-VP5 and gE-gB interaction is an experimental artefact the 

interactions were further verified in different cell lines. Vero, HFF-hTERT and HaCaT cell 

lines were infected with HSV-1 virus for 16 h. The cells were lysed and an anti-gE (MAb-

3114) pull-down was conducted and analysed by WB for gE, gB and VP5 pull down. As can 

be seen in Figure 4.13 all of these proteins were pulled-down by gE in the HSV-1-infected 

Vero, HFF-hTERT and HaCaT cells. This supports the possibility that gE-gB and gE-VP5 

interaction occurs during HSV-1 infection. However, whether such interactions are direct or 

indirect need further investigations.  
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Table 4.3 | Common SILAC hits for viral proteins  

  

 

a.T1 a.T2 a.T3 

  

b.Mean 0.054, c.SD 0.285,  
c.Threshold 0.596 

b.Mean -0.0054, c.SD 0.258,  
d.Threshold 0.486 

b.Mean 0.276, c.SD 0.637,  
d.Threshold 1.488 
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T
1,

 T
2 

an
d

 T
3 

US8 
(2703448) gE 12 100.00 6.64 23.09 9 100 6.64 25.77 13 71.75 6.16 9.24 

US7 
(2703446) gI 2 100.00 6.64 23.09 3 10 3.32 12.90 4 60.77 5.93 8.87 

UL39 
(2703361) 

Ribonucleotide 
reductase 
(RIR1) 

5 2.30 1.20 4.03 5 18.79 4.23 16.42 9 6.79 2.76 3.90 

UL27 
(24271469) gB 5 3.06 1.61 5.47 6 25.27 4.66 18.08 5 3.89 1.96 2.64 

UL23 
(24271467) 

Thymidine 
kinase 

2 2.42 1.28 4.28 4 100 6.64 25.77 2 7.2 2.85 4.04 

UL19 
(2703368) 

Major capsid 
protein 

VP5 

3 5.76 1.28 4.28 2 100 6.64 25.77 6 4.98 2.32 3.20 

T
1 

an
d 

T
2 

US6 
(2703444) gD 1 4.40 2.14 7.31 2 3.62 1.86 7.21 x x x x 

UL44 
(2703410) gC 2 2.77 1.47 4.97 2 18.51 4.21 16.34 x x x x 

UL22 
(24271466) gH 1 99.22 6.63 23.08 2 100 6.64 25.77 x x x x 

T
1 

an
d 

T
3 

x x x x x x x x x x x x x x 

T
2 

an
d 

T
3 UL49 

(2703417) VP22 x x x x 1 67.12 6.07 23.54 1 3.53 1.82 2.42 

UL34 
(2703355) 

Nuclear egress 
protein 2 

x x x x 1 5.84 2.55 9.89 3 6.81 2.77 3.91 

a. T1 = tube 1, T2 = tube 2, T3 = tube 3 
b. Mean = generated from a log2 ratios 
c. SD = standard deviation generated from a log2 ratios 
d. Threshold = represents the mean and standard deviations of the Gaussian distribution 
e. Unique peptide = refers to the number of peptides used for identification of protein. When a protein is identified from several unique peptide spectra the 
confidence in identification of protein is improved.  
f. M/H = the relative intensity of peptides in medium labelled sample, compared to heavy labelled sample 
g. H/M = the relative intensity of peptides in heavy labelled sample, compared to medium labelled sample 
h. z score = (X - μ) / σ where X is the value of the element, μ is the population mean, and σ is the standard deviation 
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Figure 4.12 | Viral proteins immunoprecipitated by gE antibody. HaCaT cells were 

infected with WT HSV-1 virus. At 16 hpi the cells were lysed and an IP was done using gE 

(MAb-3114) antibody. The pulled-down protein samples and cell lysates were separated by 

SDS-PAGE and analysed by WB using the antibodies indicated. Molecular mass markers (in 

KDa) are on the left.  
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Figure 4.13 | Pull-down of gB and VP5 by anti-gE antibody from different cell lines. Vero, 

HFF-hTERT and HaCaT cells were infected with WT HSV-1 virus. At 16 hpi the cells were 

lysed and an IP was done using gE (MAb-3114) antibody. The pulled-down protein samples 

and whole cell lysates were separated by SDS-PAGE and analysed by WB using the antibodies 

indicated. Molecular mass markers (in KDa) are on the left.  
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4.3 Discussion 

The aim of this chapter was to identify host proteins interacting with gE/gI complex during 

HSV-1 egress. Using SILAC-IP-MS data analysis a list of candidate cellular interaction 

partners of the gE/gI complex was generated. However, the majority of the cellular proteins 

were mitochondrial, and cellular proteins like TGN46, β-catenin, clathrin adaptors and PACS-

1 that were previously been reported to co-localise with gE/gI were not present in the list. 

(Farnsworth et al., 2006; Wisner et al., 2004; McMillan and Johnson, 2001; Gu et al., 2001; 

Wan et al., 1998) There is no report suggesting gE/gI localises to the mitochondrion, and so 

the cluster of mitochondrial proteins identified as interaction partners seem more likely to be 

artefacts, which is supported by data showing HSP60 non-specific binding to the antibody or 

beads used for IP.  

Initial validation of the SILAC-IP-MS data confirmed the interaction of gE with Nipnsnap1, 

Nipsnap2 and MYOF and also demonstrated a reduction in IFITM2 expression upon HSV-1 

infection. The significance of these observations in HSV-1 egress is investigated in the next 

chapter. 

Validation of the viral protein interactions with the gE/gI complex found co-precipitation of at 

least UL27 (gB) and UL19 (VP5) with gE. Pull-down of VP5 is somewhat unusual and may 

have resulted from an indirect interaction via tegument proteins. Surprisingly the well-

established interaction with the tegument proteins VP22 and pUL16 were not observed in the 

IP WB validation experiments, although there may have been sensitivity issues with the 

antibodies used to detect these proteins. The potential interaction with TK could not be 

validated because a suitable antibody was not available in the lab. Possible interaction with the 

nuclear egress complex protein pUL34 could be of interest to follow up given the localisation 

of gE to the nuclear membrane observed in IF experiments. These data showing gB interaction 

with gE may suggest direct association with gE in a particular membrane compartment or 

potentially an indirect interaction via another viral or cellular protein. Investigation into gB 

localisation with potential cellular egress proteins is presented in the next chapter. 
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5. Validation of the potential hits in HSV-1 life cycle 

5.1 Introduction 

In the previous chapter, attempts were made to identify cellular binding partners for the HSV-

1 gE/gI complex, which may be involved in mediating virion translocation to cell-to-cell 

contact points. SILAC-IP MS-based proteomics were used to identify a candidate cellular 

interactome for the gE/gI complex, which gave some interesting protein hits. As with any 

screening, hits need to be validated before conducting further research to determine the role of 

the candidate proteins in the context of study. During initial validation of the proteomics data 

detailed in Chapter 4 three intriguing observations were made: (1) degradation of IFITM2 in 

infected cells, (2) co-precipitation of Nipsnap1 and 2 with gE during infection, and (3) co-

precipitation of MYOF with gE during HSV-1 infection. This chapter investigated these 

observations further.  

    

5.2 Results 

5.2.1 Observation of gE and IFITM interaction during transfection  

Data in the previous chapter demonstrated that IFITM2 is degraded during HSV-1 infection 

(WT or ∆gE) both in normal and IFITM2 expressing stable cell lines possibly explaining why 

co-precipitation of IFITM2 with gE/gI or gE could not be detected. To investigate whether the 

interaction of IFITM2 and gE can be validated in the absence of other viral proteins, at least 

one of which is presumably causing IFITM2 degradation, HEK293T cells were co-transfected 

with plasmids expressing N-terminally HA-tagged human IFITM 1, 2 or 3 and a gE expression 

plasmid, or a gD expression plasmid as a control. When cells were incubated for 48 h post-

transfection, the cell viability appeared to be severely compromised and so these experiments 

were conducted at 22 h post-transfection. The transfected cells were lysed and an IP with anti-

gE antibody (MAb-3114) or anti-gD antibody (LP2) was performed and samples were analysed 

by WB using antibodies to gE or gD, HA-tag and IFITM2. Figure 5.1 shows clear co-

precipitation of HA-IFITM1 with gE and faint signals for HA-IFITM2 and 3 were also 

observed in the gE IP samples with anti-HA staining. Probing with the anti-IFITM2 antibody 

demonstrated a slightly stronger signal for HA-IFITM2 in the gE pull-down sample. The 
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IFITM2 antibody also appears to efficiently recognise HA-IFITM3, but not HA-IFITM1 

suggesting this antibody recognises a common epitope in IFITM2 and 3. These two proteins 

have ~90% identity in their amino acid sequence. Surprisingly, lower gE expression was 

observed when co-transfected with HA-IFITM1 and HA-IFITM2 compared with HA-IFITM3. 

However, IP samples demonstrated equivalent amounts of gE, suggesting sufficient expression 

in all samples to saturate the anti-gE antibodies in the IP reaction. In samples co-expressing gD 

with HA-IFITM1-3, there was little effect on gD expression levels, with only a slight reduction 

in gD in the HA-IFITM1 and 2 compared to HA-IFITM3. Reduced HA-IFITM3 expression, 

and to a lesser extent HA-IFITM2, was observed with gD co-expression. No specific pull down 

of HA-IFITM 1, 2 or 3 could be detected with gD. Taken together these data suggest IFITM1, 

and possibly IFITM2 and 3 can co-precipitate with gE when expressed in the absence of other 

viral proteins, and that the presence of IFITM1 and 2 may destabilise gE. 
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Figure 5.1 | Co-precipitation of IFITM proteins with gE or gD in transfected cells. 

HEK293T cells were transfected with plasmids expressing HSV-1 (a) gE or (b) gD together 

with HA-tagged IFITM1 or 2 or 3 expression plasmids. At 22 h post-transfection the cells were 

lysed and an IP was performed using gE or gD antibodies. IP samples and cell lysates were 

separated by SDS-PAGE and analysed by WB using the antibodies indicated. Molecular mass 

markers (in KDa) are on the left. Endogenous IFITM2/3 indicated by arrow.  
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5.2.2 Observation of gE and IFITM localisation in cells by immunofluorescence 

To investigate the potential gE-IFITM interactions further, the localisation of these proteins 

when co-expressed was examined by IF microscopy. HFF-hTERT cells were transfected with 

gE and HA-IFITM1 or 2 or 3 expression plasmids and at 22 h post-transfection the cells were 

fixed and stained with anti-gE and anti-HA antibodies. As can be seen in Figure 5.2, HA-

IFITM1, and 3 localised primarily to a juxta-nuclear compartment, similarly to gE. HA-

IFITM1 showed a reasonable amount of overlapping signal with gE in some cells, whereas 

HA-IFITM2 demonstrated less co-localisation with gE, and IFITM3 showed little evidence of 

co-localisation with gE. These data support the co-IP data shown above, with Co-IP between 

gE and HA-IFITM1>HA-IFITM2>HA-IFITM3. 

It is conceivable that the presence of a HA-tag on the N terminus of IFITM proteins may affect 

their subcellular localisation, as could aberrantly high expression levels that can occur during 

transient transfection assays. To investigate potential co-localisation between gE and IFITM 

proteins further, A549 cells stably expressing IFITM2-tagged with HA at the C terminus were 

transfected with plasmids expressing gE, gEGFP, or gE and gI and after 22 h the cells were 

stained for HA and gE. However, no co-localisation of gE and IFITM2-HA could be observed 

in any of the samples (Figure 5.3). Surprisingly, cells that were positive for gE expression 

appeared negative for IFITM2-HA expression and vice versa. This cell line should 

constitutively express IFITM2-HA, although there appears to be heterogeneity in the cell 

population with some cells not expressing detectable IFITM2-HA. Therefore, it could be 

possible that gE expression was inhibited when IFITM2-HA was expressed and gE was only 

expressed at detectable levels in those cells in the population that did not express IFITM2-HA. 

However, whether a HA-tag at either the C terminus or N terminus of IFITM2 affects its 

subcellular localisation, and whether either tagged protein reflects the localisation of 

endogenous IFITM2 is unclear from these data.   
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Figure 5.2 | Localisation of gE and IFITMs in transfected HFF-hTERT cells. HFF-hTERT 

cells were co-transfected with plasmids expression HSV-1 gE along with HA-tagged IFITM1 

or 2 or 3. At 22 h post-transfection the cells were fixed and stained with anti-gE (MAb-3114) 

and HA antibodies. Images on the right panel indicate selected areas of the left image to show 

possible co-localisation of the two proteins. Images were taken using an Olympus IX-81 

inverted fluorescence microscope using a 60x oil immersion lens. Blue: staining of nuclei with 

DAPI.  Scale bar indicates 20 µm. 
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Figure 5.3 | Transfection of A549-IFITM2-HA cells with gE expression plasmids. A549-

IFITM2-HA cells were transfected with plasmids expressing gEGFP or untagged gE with or 

without gI. After 22 h post-transfection the cells were fixed and stained with anti-gE (MAb-

3114) (for untagged gE only) and HA antibodies as required. Images on the right panel indicate 

selected areas of the merged panel to show possible co-localisation of the indicated proteins. 

Images were taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil 

immersion lens. Blue: staining of nuclei with DAPI.  Scale bar indicates 10 µm. 
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To understand endogenous IFITM2 localisation in cells, Vero, HaCaT amd HFF-hTERT cells 

were incubated with mitotracker (to stain mitochondria) for 30 min prior to fixation, and 

subsequently stained with anti-IFITM2 antibody. As shown in Figure 5.4, IFITM2 antibody 

signal co-localised with mitotracker in Vero, HaCaT and HFF-hTERT cell lines, indicating 

endogenous IFITM2 (and/or IFITM3) primarily resides in mitochondria in these cell lines. 

Mitochondrial localisation of IFITM2 has been shown in a previous study although it has been 

also suggested that IFITM2 could also present in endosomal compartments which is mostly 

visible in over-expressing cell lines and cells that are treated with interferon (Muñoz-Moreno 

et al., 2016; Weston et al., 2014). Given that other mitochondrial proteins were pulled-down 

with gE/gI in the SILAC-IP experiments in this study, it is possible IFITM2 could be a false 

positive due to co-precipitation with other mitochondrial proteins. Alternatively, it could be 

also possible that the portion of IFITM2 present in endosomal compartments precipitated with 

gE/gI. It is also conceivable that the IFITM2 antibody non-specifically cross-reacts with a 

mitochondrial protein under the conditions used for IF. Additional antibodies that detect 

endogenous IFITM2 would be needed to investigate this further. 
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Figure 5.4 | IFITM2 antibody co-localises with a mitochondrial marker. Vero, HaCaT and 

HFF-hTERT cell lines were seeded on glass slides and incubated with mitotracker for 30 min 

prior to fixation. The cells were stained with anti-IFITM2 antibody. Images were taken using 

an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion lens. Blue: 

staining of nuclei with DAPI. Scale bar indicates 20 µm. 
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5.2.3 Observation of gE-Nipsnap1 interaction in transfected cells  

Interaction between gE and Nipsnap1 was identified in HSV-1-infected cells, although it was 

unclear whether such interaction requires the presence of other viral proteins. To investigate 

the interaction of gE and Nipsnap1 in the absence of other viral proteins HEK293T cells were 

co-transfected with myc-Nipsnap1 (N-terminally tagged) together with either gE or gEGFP or 

gE and gI expression plasmids. At 48 h post-transfection, cells were lysed and 

immunoprecipitated with either anti- gE (MAb-3114) or gE/gI (MAb-3063) or using GFP trap 

resin as required. Mock-transfected samples were incubated with anti-gE/gI pull-down only. 

The samples were then analysed by WB for gE and Nipsnap1. Figure 5.5 shows Nipsnap1 was 

co-precipitated in all the IP samples except mock. Lower levels of Nipsnap1 were co-

precipitated with gE-GFP suggesting the presence of GFP fused to the cytoplasmic C terminus 

of gE may interfere with Nipsnap1 binding, although expression of myc-Nipsnap1 was also 

reduced in this sample. Myc-tagged Nipsnap1 ran at a higher molecular weight than 

endogenous Nipsnap1 as expected, with two individual bands detected in lysate samples using 

a Nipsnap1 antibody. These data suggest gE and Nipsnap1 interact in the absence of other 

HSV-1 proteins.   
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Figure 5.5 | Validation of gE and Nipsnap1 interaction in transfected cells. HEK293T cells 

were transfected with HSV-1 gE, gE and gI, or gEGFP along with myc-Nipsnap1. After 48 h 

post-transfection the cells were lysed and an IP was done using gE or gE/gI antibody or GFP-

trap. The pulled-down protein samples and cell lysates were separated by SDS-PAGE and 

analysed by WB using the antibodies indicated. Molecular mass markers (in KDa) are on the 

left.   
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5.2.4 Expression, purification and characterisation of gE C terminus tail 

The cytoplasmic tail of gE has been proposed to interact with many viral proteins and is also 

the most likely domain to mediate interaction with cytoplasmic proteins such as Nipsnap1 and 

2 during infection. gE is a type-I membrane protein with a signal sequence (spanning aa 1-20), 

a long N terminal ectodomain (aa 21-419), a transmembrane domain (aa 420-440) and C-

terminal tail domain (aa 441-550) (discussed in Sprague et al., 2006 and Uniprot:P04488). 

Analysis of the CT domain of gE from the sequence of KOS strain using NetsurfP web-based 

tool suggested the region to be highly disordered (Appendix Figure 9.1). To understand 

whether the interaction of Nipsnap1 with gE can be observed in a cell free system, recombinant 

C-terminally GST-tagged gE cytoplasmic domain (gECT-GST) was constructed. The 

gECT(445-550) DNA fragment was cut and pasted from a previously constructed poPTnH 

(His-tagged) plasmid to poPTnG (GST-tagged) plasmid utilising NDE1 and BamH1 restriction 

sites. Pilot proteiAn expression tests were conducted in three different strains of E. coli 

(Rosetta, B834 and BL21) at two different temperatures (37oC and 22oC) with the highest yield 

of gECT-GST being observed from Rosetta cells at 37oC (Appendix Figure 9.2), and so these 

conditions were chosen for scaling up gECT-GST production. Rosetta cells transformed with 

gECT-GST plasmid were induced with IPTG over night at 37oC, the cells were then collected 

by centrifugation, lysed and the protein was purified by affinity chromatography using 

glutathione sepharose 4B resin followed by size exclusion (S200 16/600 column) 

chromatography (Figure 5.6 a and b). SDS-PAGE analysis of the fraction from the size 

exclusion column demonstrated reasonable separation of gECT-GST from higher and lower 

molecular mass contaminants that were visible in the sample after glutathione affinity 

purification. The exception was bands around 25 KDa, the expected size of GST, suggesting a 

modest level of cleavage of the gECT from GST. Fractions 30-35 were then concentrated by 

ultrafiltration and the measured protein concentration was 1.45mg/mL. The protein sample was 

then aliquoted and stored at -70oC after snap freezing in liquid nitrogen.   
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    (a) 

             (b) 

Figure 5.6 | Preparation of purified gECT-GST construct. gECT was expressed as a GST-

tag fusion protein in Rosetta E. coli and first purified by affinity chromatography using 

glutathione sepharose 4B resin followed by size exclusion chromatography. (a) Size exclusion 

elution profile of gECT-GST on an S200 16/600 gel filtration column. (b) Coomassie-stained 

12% polyacrylamide gel showing samples from key steps of the purification process and 

selected fractions from the size exclusion chromatography.   
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5.2.5 Interaction of gECT-GST and myc-Nipsnap1 in cell free system 

While Nipsnap1 and gE co-precipitation could be demonstrated in the absence of other viral 

proteins it was unclear whether any cellular proteins are needed for this interaction. To test, 

whether gE can directly interact with Ninpsnap1 in a cell free system, Nipsnap1 N-terminally 

tagged with the myc epitope (myc-Nipsnap1) was expressed using the wheat-germ in vitro 

transcription/translation system and incubated with purified gECT-GST. As a control, purified 

GST was incubated with myc-Nipsnap1. After incubation for 1 h at 4˚C on a shaker, samples 

were incubated with glutathione 4b sepharose, for a GST pull-down assay. The samples were 

separated by SDS-PAGE and transferred to nitrocellulose membrane. The membrane was 

subsequently stained with ponceau-S and then destained for anti-Nipsnap1 antibody staining. 

As can be seen in Figure 5.7, Nipsnap1 was detected by antibody staining in the input and in 

the gECT-GST pull-down samples but not in the GST mock pull-down sample. However, it is 

worth noting the anti-Nipsnap1 antibody used in this experiment non-specifically bound to 

gECT-GST and GST bands, presumably because of high protein concentration in the purified 

protein samples. These data suggest that Nipsnap1 may directly interact with the cytoplasmic 

tail of gE and such interaction does not rely upon the presence of other mammalian or viral 

proteins.  
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Figure 5.7 | Investigation of gECT-GST and Nipsnap1 interaction in a cell free system. 

Purified gECT-GST or GST were mixed with wheat-germ expressed myc-Nipsnap1 and a GST 

pull down was carried out. The pull-down samples and myc-Nipsnap1 input were run on SDS-

PAGE and analysed  by WB. The membrane was stained with (a) Ponceau before staining with 

(b) Nipsnap1 specific antibody.  
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5.2.6 Identification of Nipsnap1 and 2 binding sites in the cytoplasmic domain of gE 

To identify the region within the gECT that binds Nipsnap1, a truncation analysis of the gE 

cytoplasmic domain was performed. Using full length gE as a template a series of C-terminally 

truncated constructs were generated by PCR and sub-cloned into a mammalian expression 

plasmid (pcDNA3) with the resulting proteins containing residues 1-440, 1-475, 1-510, 1-532, 

1-537, 1-542 and 1-548 of gE (Figure 5.8). To understand where in the cell gE localises upon 

transfection and how truncation of the gE cytoplasmic domain affects localisation of the 

protein, Vero cells were transfected with all gE truncation constructs made in this study (1-

440, 1-475, 1-510, 1-532, 1-537, 1-542 and 1-548) and full length gE (1-550). Cells were fixed 

and co-stained with antibodies for a Golgi marker (GM130) and gE at 36 h post-transfection. 

As can be seen in Figure 5.9 (a), full length gE and gE(1-548) seems to mainly accumulate 

near in a perinuclear structure that co-stained with GM130. The other gE constructs also 

demonstrated varying amounts of signal in a GM130-positive compartment but with greater 

signals with an ER-like pattern. This was particularly marked for the gE construct lacking any 

cytoplasmic tail (gE440) suggesting this construct cannot exit the endoplasmic reticulum either 

because of misfolding recognised by the ER quality control systems, or absence of sorting 

signals in the cytoplasmic tail that mediate ER exit. To investigate whether the presence of gI 

may alter the localisation of gE lacking a cytoplasmic tail, gE440 and gI were co-expressed 

and cells stained with anti-gE/gI (MAb-3063). These data showed greater localisation of gE to 

GM130-positive compartments and less ER-like signal, suggesting gE440 can form a complex 

with gI and this facilitates exit of gE from the ER to other cellular compartments (Figure 5.9 

b).   
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Figure 5.9 | Localisation of C terminal truncation mutants of gE in transfected Vero cell. 

(a) Vero cells were seeded on glass slides and transfected with the various gE expression 

plasmids (1-550, 1-548, 1-542, 1-537, 1-532, 1-510, 1-475 and 1-440). The cells were fixed at 

36 h post-transfection and stained with anti-gE (MAb-3114) and GM130 antibodies. (b) Vero 

cells were cotransfected with gE and gI, or gE440 and gI for 22 h and were fixed and stained 

for gE/gI complex using MAb-3063. The blue and yellow arrows in (a) indicate Golgi staining 

in untransfected and transfected cells respectively.  Images were taken using an Olympus IX-

81 inverted fluorescence microscope using a 60x oil immersion lens. Blue: staining of nuclei 

with DAPI. Scale bar indicates 20 µm. 
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To investigate the interaction of these gE truncation constructs with Nipsnap1, HEK293T cells 

were co-transfected with plasmids expressing Nipsnap1-myc (C-terminally tagged) and either 

gECT 1-440, 1-475, 1-510, 1-532 or full length gE in the first instance. At 48 h post-

transfection cells were lysed and an IPs were performed with anti-gE (3114) antibody, followed 

by WB analysis with anti-gE and anti-Nipsnap1 antibodies. Initially 12% SDS-PAGE was used 

and the membranes were blotted with secondary mouse antibody (H+L). However, under these 

conditions the Nipsnap1-specific band was difficult to distinguish from the strong signal from 

the IgG light chain present due to the immunoprecipitating antibody. Therefore, the samples 

were re-run on 15% SDS-PAGE and a mouse IgG1 heavy chain specific secondary antibody 

was used which should not recognise the light chain from the IgG2a isotype MAb-3114 

antibody used for the IPs. These blots demonstrated a clear band for Nipsnap1 pull down for 

full length gE but not for the other gE constructs (Figure 5.10 a). Interestingly, only endogenous 

Nipsnap1, and not the plasmid expressed Nipsnap1-myc was coimmunoprecipitated with full 

length gE, suggesting the C terminal myc-tag on Nipsnap1 inhibits its binding to gE in 

transfection.   

These co-transfection experiments were repeated using the gECT truncation constructs with 

fewer C terminal residues removed (1-537, 1-542, and 1-548) and co-transfection of Nipsnap1 

or Nipsnap2 expression plasmids. Figure 5.10 (b) shows both Nipsnap1 and 2 are only pulled-

down efficiently with full length gE and not with any of the truncated proteins. Only 

endogenous Nipsnap1 and 2 could be observed in the pull-down samples, again suggesting 

tagging at the C terminus of Nipsnap1, and also Nipsnap2, inhibits their interaction with gE. 

Further co-transfection experiment with gE and Nipsnap1 (untagged and myc-tagged at C- and 

N terminus) expression plasmid shows gE can pull down both endogenous and N-terminally 

myc-tagged Nipsnap1 but not C-terminally myc-tagged Nipsnap1 (Figure 5.12 c). Taken 

together, these data suggest that Nipsnap1 and 2 interact with the extreme C terminus of gE 

because deletion of just the last two amino acids (phenylalanine and tryptophan) inhibits this 

interaction. It also suggests that the C terminus portion of Nipsnap1 possibly interacts with gE 

and therefore, putting a myc-tag in this region abolishes gE-Nipsnap1-myc interaction. These 

data may explain the observation that gE-GFP, where the GFP is fused to the C terminus of 

gE, showed reduced pull-down of myc-Nipsnap1 (Figure 5.5).  
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Figure 5.10 | Immunoprecipitation analysis of Nipsnap1 and 2 interaction with gE 

truncation constructs. HEK293T cells were co-transfected with expression plasmids 

encoding gE of various lengths (a) 1-440, 1-475, 1-510, 1-532 and FL or (b) 1-537, 1-542, 1-

548, and FL along with Nipsnap1-myc or Nipsnap2-myc. (c) FL gE also co-transfected with 

Nipsnap1, myc-Nipsnap1 or Nipsnap1-myc. After 48 h the cells were lysed and an IP was 

carried out using anti-gE antibody. The samples were analysed by WB with the antibodies 

shown. Molecular mass markers (in KDa) are on the left.  
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5.2.7 Cellular localisation of Nipsnap1 and 2 and co-localisation with gE by 

immunofluorescence 

Cellular location of Nipsnap1 and 2 could be highly diverse and dynamic depending on the 

nature and environment of the cell. Studies have suggested these proteins are localised in 

various compartments including the plasma membrane, cytoplasm and mitochondria (Seroussi 

et al., 1998; Nautiyal et al., 2010; Okuda-Ashitaka et al., 2012; Tummala et al., 2010; 

Yamamoto et al., 2017). The C terminus of Nipsnap1 and -2 contain a SNAP25-like domain 

whereas the N terminus of both proteins are predicted to have mitochondrial targeting 

sequences (Yamamoto et al., 2017). Given that Nipsnap1 and 2 have been proposed to localise 

to many subcellular compartments which may or may not enable interaction with the 

cytoplasmic domain of gE, the localisation of these proteins in cells was investigated. N- and 

C-terminally myc-tagged Nipsnap1 and 2, C-terminally GFP-tagged Nipsnap1 and untagged 

Nipsnap1 and 2 expression plasmids were constructed. Vero cells were transfected with these 

plasmids and fixed at 18 h post-transfection. Mock-transfected cells were used to compare the 

localisation of plasmid-expressed constructs with endogenous protein expression. The cells 

were stained with either anti-Nipsnap1 or 2 antibodies except for Nipsnap1-GFP expressing 

cells where no antibody staining was used. Figure 5.11 shows localisation of Nipsnap1 and 2 

in Vero cells. The endogenous Nipsnap1 signal was relatively weak and difficult to interpret in 

Vero cells as most of the cells showed a broadly diffused signal, with some evidence of 

concentration near the nucleus. Endogenous Nipsnap2 however, showed clear cellular 

localisation to string-like structures concentrated around the nucleus, reminiscent of 

mitochondria staining. Overexpression of both untagged and C-terminally myc-tagged 

Nipsnap1 and Nipsnap2, as well as GFP-tagged Nipsnap1, showed a similar pattern to 

endogenous Nipsnap2 that looks like mitochondria staining. However, N-terminally myc-

tagged Nipsnap1 showed a much more diffuse localisation throughout the cytoplasm, whereas 

and N-terminally myc-tagged Nipsnap2 showed no increase in signal above the endogenous 

protein. This suggest both Nipsnap1 and 2 are localised to mitochondria and that N terminal 

tagging of Nipsnap1 may interfere with mitochondrial targeting, whereas the N terminal 

tagging of Nipsnap2 may affect protein synthesis or stability. 
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Figure 5.11 | Localisation of endogenous and transfected Nipsnap1 and 2 in Vero cells. 

Vero cells were transfected with either native or tagged Nipsnap1 (N-myc, C-myc or C-GFP) 

or Nipsnap2 (N-myc or C-myc) and after 18 h the cells were fixed, permeabilised and stained 

with Nipsnap1 or 2 specific antibodies (except for Nipsnap1-GFP expressing cells). Images 

were taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil 

immersion lens. Blue: staining of nuclei with DAPI.  Scale bar indicates 20 µm. 
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To understand whether Nipsnap1 or 2 co-localises with gE in transfected cells, Vero cells were 

co-transfected with gE and untagged Nipsnap1 or Nipsnap2 encoding plasmids and after 18 h 

were stained for the respective proteins. Since the Nipsnap2 antibody was a rabbit polyclonal, 

to reduce non-specific interaction of the antibody with gE due to its Fc-receptor activity, cells 

were blocked with human IgG. Figure 5.12 (a) shows that both gE and Nipsnap1 localise to a 

relatively similar perinuclear location in the cell although with little evidence of co-localisation. 

On the other hand, gE and Nipsnap2 showed more distinctly different locations in the cell with 

no evidence of co-localisation. Potential co-localisation was also investigated in transfected 

HFF-hTERT for with either gE and Nipsnap1GFP or gE and Nipsnap2. At 18 h post-transfection 

cells were stained with antibodies to gE together with mitochondrial markers Tom20 or HSP60 

and Nipsnap2 antibodies as appropriate (Figure 5.12 b). Nipsnap1GFP and Nipsnap2 showed 

extensive co-localisation with mitochondrial proteins Tom20 and HSP60 respectively. 

However, gE showed no co-localisation with either Nipsnap1 or 2 in these cells.  
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Figure 5.12 | Nipsnap1, 2 and gE localisation in cells. (a) Vero cells were co-transfected with 

gE and Nipsnap1 or Nipsnap2 and (b) HFF-hTERT cells were transfected with gE and 

Nipsnap1GFP or Nipsnap2. At 18 h post-transfection the cells were fixed, permeabilised and 

stained with antibodies against (a) gE and Nipsnap1 or 2 or (b) gE, Tom20 or gE, Nipsnap2 

and HSP60 as indicated. For (a) bottom panel shows selected areas (in yellow box) from the 

merged channel at higher magnification, blue indicates staining of nuclei with DAPI, and 

yellow arrow indicates possible Nipsnap1 and gE co-localisation. Images were taken using an 

Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion lens. Scale bar 

indicates 20 µm. 
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5.2.8 Comparison of gE localisation and mitochondrial markers in infected cells 

Although no clear co-localisation between gE and Nipsnap1, Nipsnap2, or mitochondrial 

markers was observed in transfected cells, the large number of mitochondrial protein that were 

identified in the SILAC-IP investigations for gE/gI interactors could indicate some interaction 

between gE and mitochondria. To investigate whether gE localises to mitochondria during 

infection, HFF-hTERT cells were infected with either HSV-1 WT or gIG39R and stained with 

mitotracker for 30 min before fixing, followed by staining with gE specific antibody. As can 

be seen in Figure 5.13, mitotracker-stained cellular mitochondria in virus-infected and mock-

infected cells and at 10 hpi no obvious difference in the morphology of mitochondria was 

observed in the infected cells. Furthermore, no co-localisation between gE and mitotracker 

could be observed. This suggests that while gE may interact with proteins that localise to 

mitochondria, including Nipsnap1 or 2, gE itself does not appear to be present in mitochondria. 

Therefore, any interaction between gE and Nipsnap1 or 2 would presumably need to occur in 

another location, such as the cytoplasm where Nipsnap1 and 2 will be synthesised. 
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Figure 5.13 | HSV-1 gE and mitochondrial staining during infection. HFF-hTERT cells 

were infected with HSV-1 WT and gIG39R viruses (1 PFU/cell) and treated with mitotracker 

for 30 min before fixing at 10 hpi and staining with gE specific antibody. Images were taken 

using an Olympus IX-81 inverted fluorescence microscope using a 60x oil immersion lens. 

Blue: staining of nuclei with DAPI. Scale bar indicates 20 µm. 
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5.2.9 Localisation of MYOF in cells by immunofluorescence 

Previous publications have shown endogenous MYOF to co-localise with endocytic recycling 

protein EHD2 at the plasma membrane in myoblast and with Golgi marker GM130 in airway 

epithelial cells (Doherty et al., 2008; Leung et al., 2012). However, when overexpressed MYOF 

was found at the plasma membrane of HEK293T and COS7 cells and appeared as vesicular 

puncta co-localising with secretory pathway markers (ER and Golgi) and more strongly with 

endosomal markers (Rab5 and Rab7) in HEK293T cells (Redpath et al., 2016; Bernatchez et 

al., 2007). To understand the potential roles of MYOF during HSV-1 replication, localisation 

of endogenous and overexpressed MYOF were tested in Vero and HFF-hTERT cells. The cells 

were seeded on glass slides and either left untreated or were transfected with an expression 

plasmid encoding C-terminally HA-tagged myoferlin (MYOF-HA). The cells were fixed at 18 

h post-transfection and stained with antibodies to MYOF (Vero and HFF-hTERT cells) or HA 

(Vero cells only). The available antibodies against MYOF and HA were both IgG1 subtype 

therefore could not be used together.  As can be seen in Figure 5.14 (a) staining of untransfected 

cells with the MYOF antibody produces mainly nuclear signals in Vero cells. Given that 

MYOF is thought to be primarily on cytoplasmic membrane compartments this may indicate 

that Vero cells have low expression levels, the antibody poorly recognises monkey MYOF, or 

there is cross reactivity of the antibody with a non-specific protein in these cells. The expected 

localisation pattern for MYOF is evident in HFF-hTERT cells, where the majority of the signal 

in untransfected cells appears on cytoplasmic puncta. In transfected cells MYOF-HA 

demonstrated a punctate cytoplasmic distribution in both HFF-hTERT and Vero cells, with 

some cells also showing more intense staining adjacent to the nucleus and around the nuclear 

rim. 

To investigate whether MYOF shows any localisation to mitochondria, similar to Nipsnap1, 

Nipsnap2 and IFITM2 HFF-hTERT cells were co-stained with mitotracker (added 30 min prior 

to fixation) and stained with MYOF. As can be seen in Figure 5.14 (b) no co-localisation of 

MYOF with mitotracker could be observed, and thus, unlike other gE/gI interactome hits, 

MYOF does not appear to be a mitochondrial protein.  
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Figure 5.14 | Myoferlin (MYOF) localisation in transfected and untransfected cells. Vero 

and HFF-hTERT cells were seeded on glass slides and either transfected with MYOF-HA or 

mock transfected. (a) After 18 h the cells were fixed and stained for MYOF (for mock and 

transfected) or HA (for Vero cell only) or (b) after 18 h of MYOF-HA transfection Vero cells 

were added with mitotracker for 30 min and then the cells were fixed, permeabilised and stained 

for MYOF. Images were taken using an Olympus IX-81 inverted fluorescence microscope 

using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. Scale bar indicates 20 µm. 
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5.2.10 gE and MYOF co-localisation in infected HFF-hTERT cells 

To investigate whether gE and MYOF co-localise during infection HFF-hTERT cells were 

seeded on glass slide, infected with WT HSV-1 and then fixed and stained for gE and MYOF 

at 15 hpi. As can be seen in Figure 5.15, gE and MYOF demonstrated co-localisation in 

cytoplasmic puncta at various locations in the cell, although the majority of gE and MYOF 

signal did not show overlapping signals, particularly in the perinuclear region where the 

majority of gE localises. This suggests that during infection gE might recruit MYOF to a 

specific subset of membrane compartments during the HSV-1 replication cycle, such as 

specific cytoplasmic vesicles. 
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Figure 5.15 | Myoferlin (MYOF) and gE localisation in infected HFF-hTERT cell. HFF-

hTERT cells were seeded on glass slides and infected with WT HSV-1 and the cells were fixed, 

permeabilised and stained for MYOF and gE (MAb-3114) at 15 hpi. The yellow boxes in the 

zoom panel indicate the possible MYOF and gE co-localisation (shown in separate channels in 

the bottom). Images were taken using an Olympus IX-81 inverted fluorescence microscope 

using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. Scale bar indicates 20 µm. 
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5.2.11 MYOF-HA co-localisation with HSV-1 glycoproteins in transfected cells 

To understand whether MYOF co-localises with gE, or other HSV-1 glycoproteins without the 

influence of other viral proteins, their localisation was analysed in transfected cells. Vero and 

HFF-hTERT cells were seeded on glass slides and co-transfected with MYOF-HA together 

with gE, gB or gD expression plasmids. Cells were fixed at 22 h post-transfection and stained 

with MYOF and HSV-1 glycoprotein specific antibodies. As shown in Figure 5.16 gE and 

MYOF-HA demonstrated substantial co-localisation in many cytoplasmic structures in both 

cell types. Furthermore, a similar level of co-localisation between MYOF-HA and both gD and 

gB were also observed in both cell types. This suggests over-expressed MYOF-HA localises 

to many endomembrane compartments where gE, gB and gD also localise in the absence of 

any other viral proteins. Interestingly, gB expression often appeared to induce the formation of 

large intracellular vacuole-like structures where both gB and MYOF localised. 

To understand whether other viral glycoproteins localise to these large gB-induced structures, 

cells were co-transfected with a combination of gE, gB and MYOF-HA encoding plasmids. 

Cells were fixed at 22 h post-transfection and stained with gE, gB and MYOF antibodies. As 

can be seen in Figure 5.17 large cytoplasmic vacuole-like structures were observed that were 

positive for both MYOF and gE in some cells, presumably due to the co-expression of gB. This 

suggests gE is also recruited/retained in the gB-induced intracellular vacuoles.  

Given three independent HSV-1 glycoproteins co-localised with MYOF when coexpressed, the 

tegument protein VP22 was tested for co-localisation with MYOF as a control viral protein that 

lacks a transmembrane domain. Vero cells were co-transfected with VP22GFP and MYOF-HA 

encoding plasmids and at 22 h post-transfection the cells were fixed and stained for MYOF. 

Little-to-no co-localisation of VP22 with MYOF could be detected in these cells (Figure 5.18). 

However, when a gE-encoding plasmid was included along with VP22GFP and MYOF-HA for 

Vero cell transfection, all three proteins were observed to co-localise together in cytoplasmic 

structures (Figure 5.18). Since VP22 has been previously shown to interact with gE (O'Regan 

et al., 2007; Farnsworth et al., 2007b), this suggests gE can recruit VP22 to MYOF-containing 

membrane compartments. However, whether the observed co-localisation between gE and 

MYOF reflects a potential interaction between these two proteins or is due to simply being 

present in the same limited number of membrane compartments is unclear. 
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Figure 5.16 | MYOF co-localisation with gE, gD and gB in Vero and HFF-hTERT cells. 

(a) Vero and (b) HFF-hTERT cells were seeded on glass slides and transfected with HSV-1 

MYOF-HA and glycoprotein gE or gD or gB encoding plasmids. At 22 h post-transfection the 

cells were fixed, permeabilised and stained for MYOF and gE or gD and gB as required. Images 

were taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil 

immersion lens. Blue: staining of nuclei with DAPI. Co-localising punctate are circled, white 

arrow shows gB-induced circular vacuole-like compartments in transfected cells. Scale bar 

indicates 20 µm. 
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Figure 5.17 | MYOF co-localisation with gE and gB in Vero cells. Vero cells were seeded 

on glass slides and transfected with plasmids encoding HSV-1 gE, and gB along with and 

MYOF-HA. At 22 h post-transfection the cells were fixed, permeabilised and stained for 

MYOF, gB and gE. Images on the right panel indicate selected areas from the combined panel 

to show possible co-localisation of the indicated proteins. panel indicates selected section from 

the combined channel panel Images were taken using an Olympus IX-81 inverted fluorescence 

microscope using a 60x oil immersion lens. Scale bar indicates 20 µm. 
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Figure 5.18 | MYOF co-localisation with gE and VP22 in Vero cells. Vero cells were seeded 

on glass slides and co-transfected with plasmids encoding for VP22GFP and MYOF-HA with 

or without gE. At 22 h post-transfection the cells were fixed, permeabilised and stained for (a) 

MYOF or (b) MYOF and gE as indicated. For (b) images on the right panel indicate selected 

areas from the combined panel to show possible co-localisation of the indicated proteins. 

Images were taken using an Olympus IX-81 inverted fluorescence microscope using a 60x oil 

immersion lens. Blue: staining of nuclei with DAPI (top figure only).  GFP shown in red colour 

in (a) and in blue colour in (b) of the composite images. Scale bar indicates 20 µm.  
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5.3 Discussion 

The aim of this chapter was to further investigate the three main observations made from 

SILAC-IP-MS data analysis of the gE/gI complex. The observations are (i) reduction of 

IFITM2, and the interaction of gE with (ii) Nipsnap1 and 2, and (iii) MYOF during HSV-1 

infection. This chapter showed a negative correlation between gE and IFITM (1 and 2) 

expression, predicted the binding site on gE for Nipsnap1 and identified MYOF as a potential 

interacting partner of gE or at least a host factor that is present in specific compartments of the 

endomembrane system that also contain HSV-1 glycoproteins.   

IFITM1-3 are commonly known as restriction factors for many enveloped viruses. In this study 

it was found that HSV-1 causes the degradation of IFITM2, and presumably IFITM3 as the 

antibody used cross-reacts with both proteins, which may be to prevent chances of restriction 

of HSV-1 by these proteins. This finding is consistent with the previous observation where 

overexpression of IFITMs did not show any inhibitory effect on HSV-1 replication (Xie et al., 

2015). Surprisingly, gE appeared to show some interaction with all three IFITM proteins tested 

in transfection assay, in particular IFITM1, even though only IFITM2 was detected in the 

SILAC-IP MS data. Furthermore, overexpression of IFITM1 and 2 reduced the expression 

levels of gE in co-transfection with the reduction correlating with the relative efficiency of pull 

down, e.g. IFITM1 showed the greatest reduction of gE expression and also the strongest signal 

for co-IP. It is possible that interaction between gE and IFITM proteins leads to their 

destruction in lysosomes, although at least for IFITM2 the reduced protein levels in infected 

cells did not appear to be gE-dependent. Staining for endogenous IFITM2 in IF demonstrated 

the majority of signal in mitochondria in normal cells, in distinct cytoplasmic punctate in 

IFITM2-HA- stably-expressing cells, and as an aggregated perinuclear signal in HA-IFITM2 

transfected cells as has been reported previously (Muñoz-Moreno et al., 2016). Modification 

of IFITM proteins with -C or N- terminal tagging and over expression could influence 

subcellular localisation of the proteins and their restriction activity (Bailey et al., 2013; Bailey 

et al., 2014). Therefore, it is difficult to interpret data from overexpression of the proteins 

during IP and IF studies with gE because and further work will be needed to investigate the 

potential interaction of IFITM proteins with gE and the role this may play during HSV-1 

infection. For example, it will be interesting to investigate whether expression of untagged 

IFITM proteins has different effects on the entry of WT and gE-deletion viruses.  
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Nipsnap1 was one of the strongest hits from the SILAC-IP MS screen and these studies have 

demonstrated it could be a direct binding partner of gE, interacting at the extreme CT domain 

of the glycoprotein. However, Nipsnap1 and 2 are both present in mitochondria (this chapter, 

Okuda-Ashitaka et al., 2012), although published data has suggested Nipsnap1 can be also 

found on plasma membrane (Okuda-Ashitaka et al., 2012; Schoeber et al., 2008). While 

localisation of gE within mitochondria was not observed, and there was little evidence of co-

localisation of gE with Nipsnap1, the potential membrane trafficking activity of Nipsnap 

proteins warrants further investigation into the role of these proteins during HSV-1 replication 

(Chapter 6).  

MYOF has previously been shown to localise in various endocytic compartments (Leung et 

al., 2012; Redpath et al., 2016; Bernatchez et al., 2007). This study found the punctate 

appearance of both endogenous and overexpressed MYOF in the cytoplasm, where it showed 

some co-localisation with gE. However, in co-transfected cells MYOF also co-localised with 

gD and gB, with high levels of gB expression inducing the formation of large vesicles, vacuoles 

or circular membrane ruffles in cell containing MYOF and gB. These aberrant membrane 

structures are reminiscent of those caused by inhibition of ESCRT proteins (Crump et al., 2007; 

Broniarczyk et al., 2017) and so may reflect disruption of endocytic trafficking by gB over-

expression in the absence of other virus proteins. Additionally, gE costained with gB and 

MYOF in these compartments when all 3 proteins were co-expressed. Because MYOF is a 

transmembrane protein present within endocytic compartments and the Golgi, such co-

localisation with viral glycoprotein could be simply because of their common sites of 

expression within cells. It will be important in the future to determine whether MYOF directly 

interacts with gE or another HSV-1 protein, and whether MYOF function plays any role in 

either virus secretion or transport of viral glycoproteins. 
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6. CRISPR-Cas9 knock-out of Nipsnap1 and 2 to understand their 

role in HSV-1 life cycle 

6.1 Introduction 

In the previous chapter, HSV-1 gE and Nipsnap1 and 2 interactions were validated and the 

possible site of interaction for Nipsnap1 on the gE cytoplasmic tail was identified. To 

understand the importance of specific cellular proteins in a virus life cycle, cellular genes can 

be either knocked down by siRNA or knocked out by CRISPR-Cas9 techniques. The siRNA 

technique involves silencing the expression of a target gene by depleting mRNA, whereas the 

CRISPR-Cas9 technique creates a double strand-break at target sites within the cellular genome 

which is then repaired by the non-homologous end joining (NHEJ) machinery. Because of the 

error prone nature of NHEJ frameshift mutations commonly occur that can result in disruption 

of gene function. The aim of this chapter was to utilise these techniques to investigate the 

possible roles of Nipsnap1 and 2 in the life cycle of HSV-1. 

6.2 Results  

6.2.1 Knock-down of Nipsnap1 and 2 by siRNA 

To investigate the significance of gE interaction with Nipsnap1 and 2 in the HSV-1 life cycle 

the possibility of depleting Nipsnap1 and 2 from HaCaT and HEK293T cells using siRNA 

transfection was tested. Commercially available (QIAGEN) siRNA sequences designed for 

Nipsnap1 and Nipsnap2 (four for each gene) were tested by transfection. HaCaT and HEK293T 

cells were seeded and then transfected on the same day with 50 nM of each siRNA and then 

harvested at 3-days post-transfection. At this time point the cells were observed to have become 

detached and floating for many of the samples, and so they were collected by centrifugation of 

the culture medium. The cells were lysed and samples were tested for Nipsnap1 expression by 

WB. While there was some reduction in the band intensity for Nipsnap1 in all four Nipsnap1 

siRNA-treated HaCaT samples, a reduction in the loading control (tubulin) was also observed 

from these samples suggesting some toxicity to the cells (Figure 6.1). However, no reduction 

in Nipsnap1 protein was observed in HEK293T cells. Given the little or no knock down of 

expression observed for Nipsnap1 and the potential toxicity problems, and successful 

application of CRISPR-Cas9 gene KO as detailed below, siRNA depletion of Nipsnap1 and 2 

was not pursued further.   
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Figure 6.1 | Nipsnap1 knock down by siRNA in HaCaT and HEK293T cells. Wild type 

HaCaT and HEK293T cells were treated with four different siRNAs for both Nipsnap1 and 

Nipsnap2. siRNA for Alix and ConX was used as controls in the experiment. At 3 day post-

transfection the cells were lysed and proteins were separated by SDS-PAGE and analysed by 

WB using the antibodies indicated. Molecular mass markers (in KDa) are shown on the left. 

Analysis of tubulin expression was included as loading control.   
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6.2.2 Generation of Nipsnap knock-out cells by CRISPR-Cas9 genome editing technology 

Given the recent development of CRISPR-Cas9 based technology that enables relatively 

simple editing of the genome of cells, it was decided to attempt this approach to knock-out 

(KO) Nipsnap1 and 2 expression through generating mutations in the endogenous genes. Three 

independent guide RNAs (gRNAs) for both Nipsnap1 and 2 were designed. For guide RNA 

construction the target exons were put into an online CRISPR-gRNA designing tool 

(http://crispr.mit.edu) to calculate the gRNA scores and number of off-target sites for the 

guides. The target score for a gRNA reflects theoretical capacity of the gRNA to act on on-

targets and not the off-targets. Candidates with high scores were chosen as a guide RNA against 

a target site on the chosen exon. For Nipsnap1 two independent target sites on exon 1 (NA and 

NB) and one on exon 4 (NC) were chosen and for Nipsnap2 (also called GBAS) independent 

sites on exon 1 (GA), exon 2 (GB) and exon 6 (GC) were chosen for the gRNA design. The 

gRNA oligonucleotides were annealed in a thermal cycler, phosphorylated utilising T4-PNK 

enzyme and inserted into pSpCas9(BB)-Puro(PX459) V2.0 plasmid (a gift from Feng Zhang) 

at the BbsI cloning sites. This plasmid contains two expression cassettes, a human codon-

optimised SpCas9 (hSpCas9) – T2A StopGo site – PuroR cassette under a chicken β-actin 

promoter, and the single guide RNA under a U6 promoter. Upon transfection into a mammalian 

cell the plasmid expresses the guide RNA and Cas9 and also confers transient puromycin 

resistance to the cell.  

For transfection, HaCaT cells were seeded at two different densities and transfected at 5-6 h 

post seeding with each of the Cas9/gRNA expressing plasmids. At 18 h post-transfection the 

cells were subjected to puromycin (2 µg/ml) selection. After 48 h of selection many of the 

PX459-derivative transfected cells were alive while control cells appeared dead. Cells were 

then washed with PBS and incubated in complete medium without puromycin until a sufficient 

cell population was obtained. Where possible, a sample of each cell population were lysed and 

tested for targeted gene expression by WB. From the population, cells were seeded at low 

density (~0.3 cells/well) in 96 well plates and wells scored for single cell clones. These were 

propagated until sufficient cell numbers were achieved to generate frozen stocks and test 

sample cell lysates by WB. Clones demonstrating loss of protein expression were further 

analysed by sequencing PCR products generated from the appropriate genetic locus for the 

target gRNAs used to confirm the nature of genetic lesion in each copy of the target genes. 
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This sequencing also serves as a test for clonal purity (schematic of approach shown in Figure 

6.2).  

Testing of the resulting populations after transfection with each gRNA and transient puromycin 

selection demonstrated that two Nipsnap1 KO populations obtained from NB and NC gRNAs 

showed substantial reduction in the Nipsnap1 band in WB, albeit the signal was very faint for 

control cells (Figure 6.3 a). The cell population derived from the other Nipsnap1 gRNA (NA) 

had insufficient cells to be examined in this initial test and so could not be included in the 

comparison. The three gRNAs (GA, GB and GC) utilised to KO Nipsnap2, appeared less 

successful at the population level, with only cells derived from GC gRNA treatment showing 

any reduction in the Nipsnap2 specific band, and this was only ~50% reduction in protein 

levels. From each of the Nipsnap1 gRNA populations and the GC Nipsnap2 gRNA population 

single cell clones were generated. Upon testing four clones from Nipsnap1 gRNAs (one from 

NA, one from NB and two from NC) and four clones from the Nipsnap2 gRNA GC, three 

clones demonstrating a complete loss of the Nipsnap1 protein band were identified (named 

NB1, NC1 and NC2) and one clone demonstrating a complete loss of the Nipsnap2 protein 

band (named GC1) was identified (Figure 6.3 b).  
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Figure 6.2 | Outline of procedure used to generate CRISPR-Cas9 KO cells. A Plasmid 

encoding both Cas9 and guide RNA was generated first. Sequence verified plasmids were used 

to transfect HaCaT cells. Cells were selected with puromycin for 48 h to remove untransfected 

cells. Single cell clones were isolated and amplified for WB testing followed by sequencing to 

confirm desired KO in the clones. 
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Figure 6.3 | Nipsnap1 and 2 expressions in WT- and CRISPR KO HaCaT cells. Wild type 

and CRISPR KO HaCaT cells were lysed and proteins were separated by SDS-PAGE and 

analysed  by WB using the antibodies indicated. (a) NB, NC or GA, GB, GC indicates lysate 

from Nipsnap1 or 2 KO cell population respectively. (b) NA1, NB1, NC1, NC2 or GC1, GC2, 

GC3 GC4 indicates isolated single cell clones from Nipsnap1 or 2 KO cells. Molecular mass 

markers (in KDa) are shown on the left. HSP90 or tubulin was included as a loading control.  
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Once successful KO clones for Nipsnap1 and Nipsnap2 individually were obtained, these were 

used to try and generate double KO cells lacking both Nipsnap1 and Nipsnap2. Each of the 

three clones lacking Nipsnap1 (NB1, NC1 and NC2) were transfected with Nipsnap2 gRNA 

GC and two clones lacking Nipsnap2 (GC1 and GC2) were transfected with Nipsnap1 gRNA 

NC using the same procedure as above. The GC3 clone looked promising though eventually 

died off. Knocking out a second gene relies on the single cell clones having lost the original 

PX459 plasmid derivative so they will be puromycin sensitive again. After puromycin 

treatment and recovery the selected populations were tested by WB for both Nipsnap1 and 

Nipsnap2 expression. As can be seen in Figure 6.4 (a) the population derived from the NC2 

clone that was transfected with the GC gRNA showed the most promise as it still had absence 

of Nipsnap1 and a substantially reduced Nipsnap2, although the loading of this sample was 

lower. Single cloning was conducted on the NC2+GC population and 7 clones were tested by 

WB. All clones looked promising with no detectable Nipsnap1 or Nipsnap2 bands, with the 

possible exception of clone 17 (Figure 6.4 b). Clones 4 and 6 were selected for further 

experiments.  
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Figure 6.4 | Nipsnap1 and 2 expression in double CRISPR KO HaCaT cells. Double 

CRISPR KO HaCaT cells were lysed and proteins were separated by SDS-PAGE and analysed 

by WB using the antibodies indicated. Molecular mass markers (in KDa) are shown on the left. 

Tubulin was included as a loading control. (a) NB1+GC, NC1+GC and NC2+GC indicates 

population of cells where attempts were made to KO Nipsnap2 in the Nipsnap1 KO clones and 

GC1+NC and GC2+NC indicates population of cells where attempts were made to KO 

Nipsnap1 in the Nipsnap2 KO clones. (b) Number 4, 6, 5, 9, 11, 16 and 17 indicate isolated 

clones of NC2+GC population.  



Chapter 6. CRISPR-Cas9 knock-out of Nipsnap1 and 2 to understand their role in HSV-1 life cycle 

 

182 
 

 

6.2.3 Sequencing of the Nipsnap KO clones 

Selected clones from single and double KOs were then sequenced to identify the changes in 

targeted region of genome. Firstly, the target exons were amplified via PCR and then inserted 

into ‘PCR-Blunt II-TOPO’ vector as per manufacturer’s instructions (Zero Blunt TOPO, 

Invitrogen). The resulting reaction mixtures were directly transformed into competent E. coli 

DH5α cells and plated on kanamycin agar plates. Colonies from the agar plates were 

subsequently grown and plasmid DNA was isolated by miniprep. The samples were sent for 

sequencing with M13 forward primer.  

A total of 13 samples from NC1 clones were sent for sequencing of Nipsnap1 exon 4 of which 

10 could be aligned to the parent sequence and the remaining 3 could not be aligned (Figure 

6.5 a). The 10 sequences aligned as four different genetic variants (45, 35, 24 and 8 bases 

deletion) which matches the fact that HaCaT cells have been shown to be hypotetraploid 

(Boukamp et al., 1988). Of the four samples sent for NC2 clone sequencing, only two had 

alignable sequences and both had the same sequence as NC1 variant.1. This could possibly 

mean NC1 and NC2 are decendants of the same clone hence are not independent clones. For 

the Nipsnap2 exon 6 KO clones five out of nine samples for GC1 and one out of four samples 

for GC2 had alignable sequences to the parent exon sequence. The GC1 clones appeared as 

three different genetic variants (79 bases addition, 8 bases missing and 2 bases addition) (Figure 

6.5 b). The GC2 clone had only one base deletion. A total of eleven and four samples were sent 

for sequencing of Nipsnap2 exon 6 from the double KO clone 4 and 6 respectively. Of these 

nine from clone 4 were aligned as three different genetic variants (1 base addition, 10 bases 

deletion and 8 bases deletion). Interestingly, the same variants were also seen in clone 6 

sequences. This again suggests Clone 4 and 6 are not independent clones. Given that the 

original publication describing the HaCaT cell line showed that the chromosomes that contain 

the Nipsnap1 gene (chromosome 22) and Nipsnap2 gene (chromosome 7) are present in four 

copies, further sequencing will be required to confirm the nature of all genetic lesions in these 

single cell clones that lack protein expression of Nipsnap1 and Nipsnap2. 

Nipsnap1 and 2 both have two predicted cellular variants where variant 2 of each protein is 20 

and 39 amino acid shorter respectively. Both variants of Nipsnap1 have exo n4 and Nipsnap2 

have exon 6 intact (Appendix Figure 9.3). The anti-Nipsnap1 antibody (sc-515197, Santa Cruz 
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Biotechnology) used in this study recognises protein sequences within the exon 4 region 

whereas the anti-Nipsnap2 antibody (ab204890, abcam) binds to protein sequences coming 

from around exon2 of the gene. Where 45 (variant 1) and 24 (variant 3) base pair deletions in 

exon 4 of Nipsnap1 were observed in the NC1 clone, the resulting gene sequence could be 

translated and give rise into slightly smaller version of the Nipsnap1 protein with internal 

deletions. Since both of these deletions are within exon 4 the anti-Nipsnap1 antibody used in 

the study may not recognise these variants, and so it is impossiblel to be certain that mutated 

forms of Nipsnap1 are still expressed but undetectable, which could be functional. The other 

two variants (2 and 4) of mutated Nipsnap1 gene in theNC1 clone have a frame-shift and would 

be translated into much smaller proteins (<15 KDa) with altered sequences near the antibody 

binding site (Appendix Figure 9.4 a). An antibody that recognises a different region of 

Nipsnap1 will be needed to confirm complete KO of gene expression. The deletion of Nipsnap2 

was more convincing as the antibody binds to the region encoded by exon 2 upstream of the 

gRNA target region (exon6). All the sequence variants of Nipsnap2 identified in GC1, GC2 or 

double KO clone 4 and 6 would only be able to produce truncated Nipsnap2 protein (Appendix 

Figure 9.4 b and c). 

The six final selected clones were renamed for simplicity: The two Nipsnap1 KO clones (NC1 

and NC2) are termed N1a and N1b, the two Nipsnap2 KO clones (GC1 and GC2) are termed 

N2a and N2b, and the double KO clones (Clone 4 and Clone 6) are termed NNa and NNb in 

all subsequent data. Figure 6.6 shows WB data for all six of these KO cells in parallel with WT 

cell lysate control and with equivalent loading. As can be seen Nipsnap1 is absent in the N1a, 

N1b, NNa and NNb, and Nipsnap2 is absent in N2a, N2b, NNa and NNb. Tubulin indicates 

loading of the protein samples among different lanes. In the single KO cells, no obvious 

reduction in cell growth or viability was observed during cell passage and maintenance. While 

the GC2 clone appeared to expresse some Nipsnap2 during initial tests (Figure 6.3), after 

several passages the protein was undetectable in this clone by WB (Figure 6.6). The possible 

explanation for this could be overtime the KO population out-competed the WT cells. The 

double KO cells appeared to grow slightly slower at early stages after initial single cell cloning, 

although this seemed to recover after a few passages and the growth rate became close to the 

WT HaCaT. This suggests Nipsnap1 and 2 both are non-essential for HaCaT cell viability, 

although it is possible there was some minor adaptation in the double KO clones.  
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Figure 6.5 | Sequence alignment of Nipsnap1 and 2 genes between WT- and CRISPR KO 

HaCaT cells. Wild type and CRISPR KO HaCaT cells were lysed and whole cell DNA were 

extracted for sequencing of Nipsnap1 exon 4 and Nipsnap2 exon 6 as required. (a) Nipsnap1 

exon 4 sequence alignment of NC1 and NC2 clones and (b) Nipsnap2 exon 6 sequence 

alignment of GC1, GC2 and double KO (NC2+GC) 4 and 6 clones are shown. Acquired 

changes in genes are indicated on right within a box.  
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Figure 6.6 | Nipsnap1 and 2 expressions in WT- and CRISPR KO HaCaT cells. Wild type 

and CRISPR KO HaCaT cells were lysed and proteins were separated by SDS-PAGE and 

analysed by WB using the antibodies indicated. Molecular mass markers (in KDa) are on the 

left. Tubulin was included as a loading control. N1a and N1b indicates two independent clones 

of Nipsnap1 KO cells from a single gRNA (NC); N2a and N2b indicates two independent 

clones of Nipsnap2 KO cells from a single gRNA (GC); and NNa and NNb indicates two 

independent clones of both Nipsnap1 and Nipsnap2 KO cells, which are both derived from the 

N1b parent clone treated with a single gRNA (GC). 
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6.2.4 Analysis of Nipsnap2 expression by immunofluorescence 

To further confirm successful KO and investigate effects on protein localisation CRISPR 

clones were fixed and stained with antibodies against Nipsnap1 and Nipsnap2. As can be seen 

in Figure 6.7 a Nipsnap2 antibody signal could be detected in a thread-like pattern, reminiscent 

of mitochondria, in WT, N1a and N1b HaCaT cells. Surprisingly, a faint signal with a similar 

pattern was also observed in both Nipsnap2 KO clones (N2a and N2b) despite the fact that no 

Nipsnap2 was detected in these cell lines by WB analysis. Since Nipsnap1 and 2 have high 

sequence similarity (75%), this could represent some cross-reactivity of the anti-Nipsnap2 

antibody with endogenous Nipsnap1 in IF but not WB. In support of this, no signal for 

Nipsnap2 could be observed in the double KO cells (NNa and NNb). Unfortunately, loss of 

Nipsnap1 could not be confirmed by IF microscopy as only very weak signals were detected 

for the Nipsnap1 antibody, which did not appear to change in Nipsnap1 or double KO clones, 

suggesting this signal is background. 
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Figure 6.7 | Nipsnap1 and 2 expression in WT and CRISPR-Cas9 KO HaCaT cells. Wild 

type and CRISPR KO HaCaT cells were seeded on glass slides and fixed, permeabilised and 

stained with Nipsnap1 and Nipsnap2 specific antibodies followed by staining with relevant 

secondary antibodies. Images were taken using an Olympus IX-81 inverted fluorescence 

microscope using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. Scale bar 

indicates 20 µm. 
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6.2.5 Protein expression and gE immunoprecipitation analysis of HSV-1-infected 

CRISPR-Cas9 KO cells 

To investigate whether the interaction of gE with Nipsnap1 and 2 or protein expression is 

affected in the CRISPR-Cas9 KO cells, WT HaCaT and the single and double KO clones cells 

were infected with WT HSV-1 and immunoprecipitated with anti-gE (MAb-3114). Figure 6.8 

shows Nipsnap1 can be precipitated from WT and both Nipsnap2 KO clones but not from 

single and double KO cells lacking Nipsnap1. However, while Nipsnap2 was co-precipitated 

with gE from WT HaCaT cells, this was substantially reduced in Nipsnap1 KO cells suggesting 

the interaction of Nipsnap2 with gE is dependent on Nipsnap1. Precipitation of all other 

proteins were consistent with previous observations with somewhat variable pull-down for gB 

and VP5 from all cell lines, potentially reflecting interaction of gE with these proteins or 

precipitation of virions. PHB, another mitochondrial localised protein that was a potential but 

un-validated hit from the gE/gI interactome screen, did not show any specific co-precipitation 

with gE from any sample. 
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Figure 6.8 | Immunoprecipitation of gE from HSV-1-infected Nipsnap1 and 2 KO cells. 

WT and Nipsnap1 or 2 or double KO HaCaT cells were infected with WT HSV-1. At 16 hpi 

the cells were lysed and proteins were separated by SDS-PAGE and analysed by WB using the 

antibodies indicated. Molecular mass markers (in KDa) are on the left. Tubulin and PHB were 

included as loading controls.  
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6.2.6 Replication and release properties of WT and gE/gI mutant viruses on CRISPR-

Cas9 KO cells 

Given that Nipsnap1 and 2 contain SNAP25-like domains and thus have the potential to 

function in membrane trafficking, the potential role of these proteins in the control of HSV-1 

secretion by gE/gI was investigated. The prediction was that deletion of Nipsnap1 and/or 2 may 

cause similar effects as the loss of gE/gI function on the secretion of HSV-1. To investigate 

this WT HaCaT, Nipsnap1 KO (N1a, N2a), Nipsnap2 KO (N2a, N2b) and double KO (NNa, 

NNb) cells were infected with WT and ΔgE HSV-1 and the CA and Sup samples were collected 

at 10 hpi, a time point that showed the greatest difference in virus release between WT and 

gE/gI mutant viruses (Chapter 2). However, contrary to expectations no noticeable effect of 

deletion of Nipsnap1 and/or 2 was observed on replication or release for the HSV-1 WT and 

ΔgE virus (Figure 6.9 a, b and c). Figure 6.9 (a) and (b) show CA and Sup titre and total virus 

titre were very similar in WT- and Nipsnap1- and 2- KO HaCaT cells, and Figure 6.9 (c) shows 

there was no effect of Nipsnap1 or 2 loss on the percentage of virus release for HSV-1 WT and 

ΔgE viruses. This could suggest that (1) Nipsnap1 and 2 interaction with gE might have 

functions other than targeted virion delivery, (2) other cellular protein/s may compensate for 

the loss of Nipsnap1 and 2 during HSV-1 virion release, and (3) the observed interactions of 

Nipsnap1 and 2 with gE does not normally occur in cells due to Nipsnap1 and 2’s localisation 

to mitochondria and the interaction only occurs when the cells are detergent solubilised or in 

cell free preparations.  
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Figure 6.9 | Replication and release of HSV-1 WT and ΔgE in different CRISPR-Cas9 

KO HaCaT cell lines. WT and Nipsnap1 (N1a and N1b) or Nipsnap2 (N2a and N2b) or 

Double (NNa and NNb) KO HaCaT cells were infected with HSV-1 WT and ΔgE viruses at 

10 PFU/cell. At 10 hpi extracellular (Sup) and cell-associated (CA) viruses were collected and 

titred on Vero cell monolayers. (a) compares CA and Sup titre on log(10) scale (b) indicates 

total amount of infectious virus produced in the experimental cell lines and (c) indicates 

percentage of virus release. Each experiment was repeated at least three times. Data presented 

here is from a single representative experiment containing duplicate samples. Error bars 

indicate standard error of two biological replicates. 
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6.2.7 Localisation of gE and gE/gI in the Nipsnap KO cells by immunofluorescence 

To investigate whether loss of Nipsnap1 and/or 2 alters gE localisation, WT and Nipsnap KO 

HaCaT cells were infected with WT HSV-1. At 15 hpi the cells were stained for gE and another 

HSV-1 glycoprotein gB. As can be seen in Figure 6.10 (a) gE demonstrated a punctate 

distribution showing some overlap with gB in the cytoplasm of all the cell lines and no obvious 

difference could be observed. These experiments were repeated on N1b, N2a, NNa and WT 

HaCaT cells and stained for the gE/gI complex and gB to understand Nipsnap1 or 2 has a 

specific role on the localisation of gE only when it is in complex with gI (Figure 6.10 b). 

However, as with gE staining, the localisation of the gE/gI complex in the KO cell lines looked 

similar to that in the WT HaCaT cells. This suggests gE or gE/gI localisation does not depend 

on Nipsnap1 or 2, although HaCaT cells are small with the cytoplasm appearing relatively 

compact in fluorescence microscopy, and so subtle effects on protein localisation may not be 

apparent.  
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Figure 6.10 | Localisation of HSV-1 gE, gE/gI and gB in WT and CRISPR-Cas9 KO 

HaCaT cells. Wild type and CRISPR KO HaCaT cells were infected with WT HSV-1. At 15 

hpi the cells were fixed, permeabilised and stained with (a) gE (MAb-3114; IgG2a) and gB 

(MAb-CB24; IgG2b) and (b) gE/gI (MAb-3063; IgG1) and gB (MAb-CB24; IgG2b) specific 

antibodies followed by staining with subtype-specific secondary antibodies. N1a and N1b 

indicate two independent clones of Nipsnap1 KO cells; N2a and N2b indicate two independent 

clones of Nipsnap2 KO cells; and NNa and NNb indicate two independent clones of both 

Nipsnap1 and Nipsnap2 KO cells. Images were taken using an Olympus IX-81 inverted 

fluorescence microscope using a 60x oil immersion lens. Blue: staining of nuclei with DAPI. 

Scale bar indicates 20 µm.  
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6.2.8 HSV-1 plaque morphology in CRISPR-Cas9 KO HaCaT cells 

HSV-1 plaque assays are useful for monitoring the function of viral and cellular proteins in 

cell-to-cell spread of virus during infection. Plaques are thought to be generated primarily by 

delivery of virions to the cell-contacts which allows efficient penetration of the neighbouring 

cells. To investigate the potential roles of Nipsnap1 and 2 in HSV-1 cell-to-cell spread, the 

plaque size and morphology were analysed on the KO cell lines by infected the cell monolayers 

with < 50 PFU for 72 h under semi-solid media. Plaques formed by HSV-1 WT, gIG39R, ΔgE 

and ΔgI were analysed. The morphology of WT HSV-1 plaques on the WT HaCaT cell 

monolayers show a clearly defined large region of cytopathic effect (cpe) around the rim of the 

plaques with a hollow space within the centre using toluidine blue staining of cells (Figure 6.11 

a). The morphology is clearer using a primary antibody to HSV-1 (gD monoclonal antibody 

LP2) followed by HRP-coupled secondary antibody staining and DAB reaction (6.11 b and c). 

For WT HSV-1, plaques on the Nipsnap1 or 2 KO cells were slightly different in appearance. 

The overall size appeared to be similar, although a slight variation in morphology was observed 

with the central hollow space appearing smaller with Nipsnap1 KO cells and larger on 

Nipsnap2 KO cells, with consequently wider or narrower antigen-positive areas of cpe at the 

plaque rims.  Plaques on the double KO cell lines appeared to be much smaller in some 

experiments (6.11 a and b) but in other experiments such differences became negligible (Figure 

6.11 c) and the plaques became more similar to the plaques on the parental HaCaT cells. The 

initial differences in plaque morpholgy could be linked to the seeded cell density during 

experimental setup. The plaques formed by gIG39R, ∆gE and ∆gI were smaller than those 

formed by WT HSV-1 as previously shown (Figure 2.18). Surprisingly, the plaque size of all 

three mutant viruses were bigger on the Nipsnap1, Nipsnap2 and double KO cell monolayers 

compared to the parental HaCaT cell line. This is particularly evident for the Nipsnap2 KO cell 

line. These data suggest that, contrary to expectations of a proviral role for Nipsnap1 or 2 in 

gE/gI-dependent virus transport, expression of Nipsnap1 and 2 may inhibit HSV-1 cell-to-cell 

spread in the absence gE/gI function. 
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Figure 6.11 | Plaque morphology analysis on WT and CRISPR-Cas9 KO HaCaT cells. 

Representative images of plaques of (a) WT HSV-1 and (b) the indicated viruses on wild type, 

(c) Nipsnap1 KO, Nipsnap2 KO, and Nipsnap1+2 KO HaCaT cells. (a) and first row of (c) 

indicates toluidine blue staining and the rest of the images indicate DAB peroxidase staining 

of the plaques. For DAB peroxidase staining cells were fixed and treated with anti-gD antibody 

(MAb-LP2) followed by HRP-secondary anti-mouse antibody and developed with DAB kit.  
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6.3 Discussion 

The functions of Nipsnap1 and 2 within cells are currently unclear, although they have been 

proposed to play roles in mitochondria-related signal transduction during innate immune 

responses, in the process of autophagosome and lysosome fusion and in the regulation of Ca2+ 

entry into the cells (Behrends et al., 2010; Schoeber et al., 2008; Brittain et al., 2012). The 

primary aim of this chapter was to understand the biological significance of Nipsnap1 and 2 in 

the HSV-1 life cycle by knocking out the protein coding genes utilising CRISPR-Cas9 

technology. While the Nipsnap1 and double KO clones apparently lacked the Nipsnap1 protein 

band in WB analyses it can’t be ruled out that some mutant variants of Nipsnap1 lacking the 

antibody epitopes are produced in these cell lines. Additionally, there was some mitochondria-

like signal for Nipsnap2 in the Nipsnap2 KO clones. Given the fact that Nipsnap1 and 2 are 

very similar in terms of their amino acid sequence it is possible that the anti-Nipsnap2 antibody 

binds to Nipsnap1 when there is no Nipsnap2 present. The other alternative could be that these 

cells are still expressing some Nipsnap2 which were undetectable by WB, although this seems 

less likely because the genome sequence of the KO clones confirmed frame-shift mutations in 

the Nipsnap2 gene.  

The single time point replication of HSV-1 WT and ΔgE virus did not show any difference 

between the WT-HaCaT and Nipsnap1 and 2 KO cell lines. This suggests that Nipsnap1 and 2 

do not function during virus replication. However it may be also possible that other cellular 

proteins carry out similar functions in the absence of Nipsnap 1 and/or 2. Subtle differences in 

plaque morphology were observed on the KO cell lines compared to WT HaCaT cells, although 

it is unclear if these variations could be a consequence of single cell cloning and not directly 

related to Nipsnap1 or 2 functions. Interestingly, all three mutant viruses that lack functional 

gE/gI (gIG39R, ΔgE and ΔgI) demonstrated larger plaques on the KO cells than WT HaCaTs. 

This may suggest that Nipsnap1 and 2 have an inhibitory effect on HSV-1 spread, which is 

normally antagonised by gE/gI. While it is unclear how Nipsnap proteins may impact HSV-1 

spread, and whether this is related to proposed mitochondrial or other functions of these cellular 

proteins, these will be interesting questions for future studies. 
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7. Concluding remarks 

7.1 Complexity of HSV-1 envelopment and egress  

Many aspects of the life cycle of HSV-1 depend on proper functioning of its envelope 

glycoproteins, including virus entry, secondary envelopment and cell-to-cell spread. The 

envelope glycoproteins work in a co-ordinated fashion and also exhibit some functional 

redundancy between them and therefore determining the role of an individual glycoprotein is 

often difficult. As an example, gC binds to host cell surface heparan sulphate proteoglycans 

(HSPGs) which is important for virion attachment, although gB also has HSPG-binding activity 

and so gC deletion viruses replicate in cell culture without any major defect (Cai et al., 1988; 

Herold et al., 1991; Shukla and Spear, 2001). Furthermore, gE and gD have both been shown 

to interact with tegument proteins and show functional redundancy during secondary 

envelopment, for example a gE deletion virus replicates as efficiently as the WT virus in culture 

and does not exhibit any defect in the secondary envelopment process (Farnsworth et al., 2003; 

this thesis). Therefore, often two or more glycoproteins need to be deleted to understand their 

role in the HSV-1 life cycle. For secondary envelopment to occur viral envelope glycoproteins 

must accumulate in the same intracellular membrane compartment(s) via membrane traffic 

pathways, which commonly pass via the plasma membrane (Hollinshead et al., 2012; Johns et 

al., 2014; Albecka et al., 2016), and within these compartments further interplay between 

tegument and capsid proteins is necessary to wrap the particles. Therefore, a balanced co-

ordination is expected to occur among envelope-tegument-capsid protein interactions to 

facilitate efficient virion assembly. Mutation(s) of glycoproteins or tegument proteins could 

result in defective envelopment and eventually egress. HSV-1 egress most likely occurs after 

the completion of secondary envelopment, although some evidence suggests egress in neurons 

can begin before or during secondary envelopment (reviewed in Johnson and Baines, 2011). 

Controlled and directed virion egress is observed during HSV-1 infection until late time points 

of infection, after which the infected cells lose their integrity. In polarised cells virus egress is 

targeted to cell-cell junctions, whereas in non-polarised cells virions appear to be targeted to 

adherent points that are in contact with other cells or with the culture plate, as has been reported 

previously (Mingo et al., 2012) and also found in this thesis. Cellular proteins are undoubtedly 

important to transport the virion loaded vesicles towards the plasma membrane and also for 

specific targeting to cell junctions or cell-adherent sites. However, very little information 

regarding the host proteins utilised by HSV-1 to achieve this is available.  
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7.1.1 The role of the gE/gI complex during assembly and egress of HSV-1 

The role of the gE/gI complex during HSV-1 replication can be divided into three main 

activities (i) during secondary envelopment (ii) during egress and (iii) after egress. Related to 

secondary envelopment, gE/gI has been shown to interact with pUL11, pUL13, pUL16, pUL21 

and pUL49 (Fuchs et al., 2002; Han et al., 2012; Ng et al., 1998; Farnsworth et al., 2007). 

Deletion of either gE or gI does not seem to affect incorporation of pUL49 into purified virions 

as observed in this thesis and mentioned elsewhere (Fuchs et al., 2002), although pUL49 has 

also been shown to interact with gM (Maringer et al., 2012). pUL11, pUL16 and pUL21 have 

been shown to require each other and the cytoplasmic domain of gE for their proper localisation 

within cells (Han et al., 2012). Similarly, maturation of both gE and gI, and accumulation of 

pUL13 has been proposed to depend on each other (Ng et al., 1998). However, as demonstrated 

in this thesis gE and gI deletion mutants can replicate to WT level and no obvious defect in 

envelopment can be observed by electron microscopy studies, supporting the idea of a 

functional redundancy between gE/gI and other glycoproteins during envelopment, as has been 

proposed by other researchers (Farnsworth et al., 2003; Farnsworth and Johnson, 2006).  

The requirement for gE/gI during directional HSV-1 egress is well established. Data in this 

thesis have demonstrated that deletion of either gE or gI, or a mutant of gI that cannot interact 

with gE, causes enhanced virion egress into the cell culture medium in addition to the reduced 

cell-to-cell spread (small plaques) phenotype previously observed (Farnsworth and Johnson, 

2006; Wisner et al., 2000). The most likely explanation for these observations is the loss of 

gE/gI function causes more random egress of HSV-1 all over the plasma membrane, including 

the exposed cells surfaces not in contact with the culture dish or other cells, enabling more 

virions to detach into the culture medium.  

While the importance of gE/gI for targeted HSV-1 egress is clear, exactly how gE/gI 

contributes to this is unknown and was the main focus of this thesis. The gE/gI ectodomains 

have been shown to be important for cell-to-cell spread (Wisner et al., 2000), although this may 

have had an impact on protein stability or targeting to assembling virions. The cytoplasmic tail 

of gE has TGN/endosome sorting motifs and has also been shown to be required for directed 

virion transport (Johnson et al., 2001; McMillan and Johnson, 2001). Since newly assembled 

HSV-1 virions are contained in vesicles prior delivery to the plasma membrane, viral 

membrane proteins that may be present in the membrane of those vesicles could function in 

the transport and targeted delivery of the virion inside. When the gE/gI complex is disrupted 
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the normal pathways of virion egress appear to be lost, suggesting gE/gI must be one of the 

viral factors that is present on these virion-transport vesicle membranes, with their cytoplasmic 

domains available to recruit and/or regulate cellular trafficking regulators. The work in this 

thesis suggests that the cytoplasmic domain of gE mediates interaction with putative cellular 

binding partners.  Therefore, exactly how gI contributes to the function of gE/gI during virus 

egress is obscure. The expression of gI could help gE folding and maturation, as suggested 

from WB data in HaCaT cells during infection. The formation of the heterodimeric complex 

between the of gI and gE ecto-domains, which is important for the Fc-binding activity, as well 

as the extensive phosphorylation of the CT domains of both gE and gI that has previously been 

observed, may regulate the trafficking of gE/gI and therefore directed transport of the virion 

loaded vesicles (Edson, 1993; Alconada et al., 1996; Olson and Grose, 1997; Wisner et al., 

2000).  

The relative importance of gE and gI may vary in other alphaherpesviruses. In PrV the gI CT 

domain is necessary for efficient posttranslational modification of the gI protein, while the gE 

CT domain seems to be dispensable for the maturation of the gE protein. In addition, the gI CT 

domain appears to have a greater role in promoting trans-synaptic virion spread compared to 

the gE CT domain in PrV (Tirabassi and Enquist, 2000). In feline herpesvirus (FHV) gE was 

completely retained in the ER when gI was deleted, although the gI CT domain was non-

essential for gE/gI mediated cell-to-cell spread (Mijnes et al., 1996).  

In HSV-1 the interaction site(s) between gE and gI are poorly defined and no mutagenesis 

study with the gI ecto-domain that destabilises the gE/gI complex has been published. The 

work in this thesis has demonstrated that the G39R mutation in gI inhibits its ability to form a 

complex with gE, leading to a destabilisation of gI (in all cell lines) and in some cell types gE 

(in HaCaT cell line). The destabilising effect of the G39R mutation on gI appears to be more 

than just due to loss of interaction with gE however, as gI expression is greater in the gE 

deletion virus than the gIG39R virus. A previous study using insertional mutagenesis of the gE 

ectodomain demonstrated that inhibition of gE/gI complex formation caused loss of directional 

virion secretion and smaller plaques on cultured monolayer. Furthermore, a small plaque 

phenotype was also observed when for a virus where the gE/gI complex was retained, but which 

had lost FcR activity (Polcicova et al., 2005). These observations may suggest the presence of 

hypothetical receptors for gE/gI at the cell-cell junctions that could facilitate efficient virion 

spread to neighbouring cell. 
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7.1.2 The role of gC during virion release 

HSV-1 gC is known for its HS binding activity on the surface of host cells during entry but it 

has functional redundancy with gB and is considered as non-essential, although gB-HS 

interaction is ~60% less efficient than gC-HS interaction (Cai et al., 1988; Herold et al., 1991). 

After egress HSV-1 is expected to exhibit some interaction with the infected cell surface due 

to the gC-HS interaction, which could reduce virus spread (Laquerre et al., 1998). Indeed, an 

HSV-1 gCΔmuc (deletion of the mucin-like region) virus, which displays increased HS 

binding, released 20-fold less virus from infected cells. Additionally, ΔgC viruses have been 

shown to produced bigger plaques than that of WT supporting the hypothesis that a lack of gC-

HS interaction promotes release of virions from the surface of infeceted cells and enhances 

spread of virions to neighbouring uninfected cells (Laquerre et al., 1998; Mårdberg et al., 

2004). Similar observations were made in this thesis, with all ΔgC viruses displaying increased 

plaque sizes. Additionally, a virus containing both ΔgC and gIG39R mutations showed 

increased release compared to gIG39R single mutants. This also supports the notion that gC-

HS binding adheres the released virions to the surface of infected cells and loss of this HS 

binding after egress allows release of virions from the surface much more easily. Therefore, it 

may be concluded that gC is partly responsible for post-egress-cell-associated phenotype of 

HSV-1 and, at the same time, acts as an inhibitor of cell-to-cell spread. However, it is 

interesting to note that the enhanced release caused by deletion of gC was dependent on the 

gIG39R mutation as the single ∆gC mutant viruses release less infectious virus into the culture 

medium that WT. 

7.1.3 The role of pUL43 in HSV-1 egress 

The role of pUL43 in HSV-1 replication is unknown and no effect of pUL43 deletion either 

alone or in combination with ΔgC and/or gIG39R was observed in this study in virus 

replication, plaque formation or release. Previous studies also could not detect any effect of 

pUL43 deletion on HSV-1 in vivo or in vitro (Maclean et al., 1991; Powers et al., 1994). Studies 

with PrV have suggested that the pUL43 could have similar functions to gM and gK mostly 

because of their structural similarity in being multiple membrane spanning protein domains. 

Therefore, the effects of deletion of one or two of these proteins may be complemented by the 

others (Klupp et al., 2000 and 2005). In PrV-infected cells, pUL43 has been found to co-

localise with gB in cytoplasmic vesicles and, upon pUL43 deletion, plaques were marginally 

reduced in size. Therefore, pUL43 was thought to contribute during membrane fusion (Klupp 
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et al., 2005). However, mouse pathogenesis studies with a large panel of PrV mutant viruses 

did not indicate an obvious role for pUL43 in vivo (Klopfleisch et al., 2006). Recently, equine 

herpesvirus-1 (EHV-1) pUL43 has been shown to promote lysosomal degradation of MHC-I 

molecules from the cell surface in co-operation with pUL56 (Huang and Osterrieder, 2015). 

Downregulation of MHC-I would allow the virus to hide from the deleterious effects of 

cytotoxic T lymphocytes (CTLs) during infection in vivo. However, pUL43-mediated 

downregulation of MHC-I or co-localisation with gB has not been shown for HSV-1. 

7.1.4 Common cellular interaction partners of HSV-1 proteins or artefacts? 

A recent proteomics study with HSV-1 gH in transiently expressing HEK293T cells identified 

123 candidate cellular interacting partners for this viral glycopreotein (Hirohata et al., 2015). 

Interestingly, 10 of these potential gH interactors were also identified in the gE/gI interactome 

list of this study: ATP5A1, ATP5B, HSP90AB1, HSP90B1, TUBB4B, PHGDH, DDOST, 

PHB, PHB2, HSPD1. Furthermore, proteomic analysis of interactors of HSV-1 VP16 during 

infection also identified PHB2 (Oh and Knipe, 2015). One major caveat of the identification 

of these proteins as interactors for gE/gI, gH or VP16 is that they are all mitochondrial proteins. 

HSV-1 infection causes inhibition of mitochondrial Ca2+ influx and protein synthesis, mostly 

after 12 hpi, and therefore mitochondrial morphology can be substantially altered in infected 

cells at late time points (Kramer and Enquist, 2012), and this could result in protiens that are 

normally resident in the mitochondria becoming more accessible to viral protein domains in 

the cytoplasm. Studies have suggested at least two tegument proteins affect mitochondrial 

function; UL12.5 is thought to induce mitochondrial DNA degradation and UL7 has been 

shown to bind to the mitochondrial protein ANT2 but the function consequence of this is 

unknown (Tanaka et al., 2008; Corcoran et al., 2009). However, HSV-1 glycoproteins have not 

been reported to localise with mitochondrial proteins or play any role in affecting mitochondria 

function. Given the same proteins were identified as potential interactors for the gE/gI complex 

during infection in this thesis and for gH in a transient expression system (Hirohata et al., 2015), 

it could be speculated that these glycoproteins might directly modulate mitochondrial function. 

However, it seems more likely that these glycoproteins would not normally encounter these 

mitochondrial proteins until cells are artificially lysed in detergent, which would render both 

mitochondrial proteins and viral membrane proteins free in solution, and that these identified 

interactions are artefacts due to ‘stickiness’ of these particular mitochondrial proteins. 
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7.1.5 Interaction of viral proteins with gE/gI 

Four other HSV-1 glycoproteins, gH, gB, gC, and gD, were identified as candidate gE/gI 

interaction partners in the SILAC-IP MS experiment, and gB interaction was confirmed during 

validation experiments. This could either indicate these proteins are directly interacting with 

gE/gI for a specific biological function, or these viral glycoproteins could have been identified 

simply because of localisation to a common membrane compartment that was pulled-down by 

virtue of gE/gI also being present in this membrane. Such indirect association is not likely to 

be due to IP of mature virions because although both capsid and tegument proteins were also 

identified, many high abundance structural proteins such as pUL47 (VP13/14) and VP16 were 

not present. Of the other potential viral protein interactors, VP5, pUL39 and pUL23 were also 

identified as interaction partners for GFP-tagged VP16 in HSV-1 infected cells in a published 

proteomics study, suggesting they could be artefacts (Oh and Knipe, 2015). Several previous 

studies have demonstrated gE and VP22 co-precipitation and showed the importance of a 

complex including gE, VP22, gM, gI and ICP0 for efficient virus morphogenesis and spread 

(Maringer et al., 2012; Farnsworth et al., 2007; O'Regan et al., 2007). Therefore, it was 

surprising that VP22 co-precipitation with gE from infected cell lysates was not observed in 

this thesis. One of the studies that established the gE-VP22 interaction utilised HSV-1 strain 

SC16 and used a commercial anti-gE antibody (ab6510) for pull down (Maringer et al., 2012), 

whereas this study used the KOS strain and utilised a different antibody (MAb-3114). Data in 

this thesis suggests MAb-3114 recognises the gE/gI complex poorly in IP experiments because 

virtually no gI is detected in IP samples with this antibody, and so it is possible that VP22 

interacts preferentially with gE/gI rather than free gE, and perhaps the commercial ab6510 

antibody does recognise gE/gI. Also, the VP22 antibody used here gave relatively weak signals 

in WB of lysate samples, and so the lack of detection of VP22 in gE IP samples may have been 

due to a sensitivity issue. Another study in this regard also utilised MAb-3114 and 

demonstrated gE-VP22 interaction, but concluded that binding of VP22 to gE was less 

extensive than with gD and suggested a stringent experimental setup before being able to 

conclude gE-VP22 interaction occurs (Farnsworth et al., 2007b). While several studies have 

demonstrated robust VP22-gE/gI interaction in transfected cells (Hafezi et al., 2005; O'Regan 

et al., 2007; Stylianou et al., 2009; Maringer et al., 2012), during infection such interactions 

could be more transient or weak and rely on the presence of other glycoproteins and tegument 

proteins (Farnsworth et al., 2007b; Fuchs et al., 2002).  
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The identification of pUL34 as a potential gE/gI interaction partner could be interesting for 

understanding the appearance gE in the nuclear membrane as observed in chapter 3 (section 

3.2.3). Previous studies have shown the pUL31/pUL34 nuclear egress complex can recruit gD 

and gM to the nuclear membrane and have also proposed gB and gH are involved during virion 

egress from the nuclear membrane (Farnsworth et al., 2007a; Wills et al., 2009; Johnson et al., 

2011). Since gB, gD, gH and pUL34 were all identified as potential gE/gI interaction partners, 

the gE/gI complex or gE alone could also be an interesting candidate protein to function during 

nuclear egress of nucleocapsids, albeit in a non-essential or redundant manner because a gE 

deletion virus does not appear to have any nuclear egress or other assembly defect.  

A direct interaction of VP5 (the major capsid protein) with any glycoproteins has not been 

demonstrated previously. Data in this thesis identified VP5 in all biological replicates of the 

gE/gI SILAC-IP and pull-down of VP5 by gE/gI was also validated in subsequent experiments. 

It is possible this is due to an indirect interaction of gE/gI with viral capsids via a tegument 

protein. However it seems unlikely this is due simply to the IP of virus particles from infected-

cell lysates due to the absence of other highly abundant virion proteins (e.g. VP13/14) and 

known binding partners for gE, namely gI, VP22 or pUL16. The tegument protein pUL16 has 

been proposed to act as a bridge between pUL11, gE and VP22 during envelopment of HSV-1 

(Starkey et al., 2014; Baird et al., 2008; Yeh et al., 2008; reviewed in Owen et al., 2015). In 

addition, pUL16 has been proposed to interact with the major capsid protein (VP5) and small 

capsid protein (VP26) (Lee et al., 2008; Meckes et al., 2010). However, co-precipitation of gE 

and pUL16 is thought to be difficult to detect as previous studies showed pull-down of pUL16 

with gE only when samples were incubated at 37°C overnight but not at 4oC (Yeh et al., 2011). 

All the pull-down experiments in this thesis were performed at 4oC, presumably causing the 

failure to detect pUL16 in gE pull-down samples. Clearly, further studies will be required to 

understand the interactions of gE/gI with other structural and non-structural viral proteins and 

the roles they play during HSV-1 infection. 

7.2 The role of putative gE-interacting cellular proteins 

HSV-1 can selectively utilise, inhibit or downregulate many cellular proteins for its own 

benefit. An important role of gE/gI appears to be sorting of nascent virions to cell junctions of 

epithelial cells, promoting virus spread (Johnson et al., 2011), and this presumably requires 

interaction with specific cytoplasmic cellular proteins. In support of this, viruses where the gE 

cytoplasmic domain was deleted showed virion trafficking to apical surfaces rather than to 
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lateral cell junctions (Farnsworth and Johnson, 2006). However, the cellular proteins 

interacting with gE and or gI that facilitate this process are not known. Within the virion loaded 

vesicles, any gE/gI remaining on the vesicle membrane would have their N terminal ecto-

domains facing the lumen and their C terminal domains projecting from the cytoplasmic 

surface of the vesicle membrane. Therefore, cellular proteins providing directionality to the 

transport of the virion-containing vesicle would most likely interact with the CT domains of 

gE/gI. The proteomics study of gE/gI identified at least two novel cellular interaction partners 

of gE, Nipsnap1 and MYOF, that could be involved in the vesicle transport process, as well as, 

intriguingly, an interferon-inducible antiviral restriction factor IFITM2.   

7.2.1 IFITM proteins 

IFITMs are known restriction factors of many enveloped and non-enveloped viruses. In this 

thesis IFITM2 was identified as a potential gE/gI interaction partner, but was also found to be 

degraded upon infection, suggesting HSV-1 may target IFITM proteins to evade their antiviral 

activity. The reduced levels of IFITM2 made validation of the interaction with gE difficult, 

although a hint of IFITM2 interaction with gE was observed when both proteins were co-

expressed by transfection. Interestingly, IFITM1 demonstrated a more robust interaction with 

gE in co-transfection experiments, and also high expression levels of IFITM1 and 2 were only 

observed in cells expressing low levels of gE, and vice versa. These data may suggest that gE 

can cause the degradation of IFITM proteins, although infection studies suggested infection-

induced IFITM2 degradation did not depend on gE expression. 

The cellular locations of IFITMs have been shown to be diverse depending on the type of 

IFITM protein and the nature of their induction. IFITM1 can be found on the plasma 

membrane. In contrast, IFITM3 appears to be primarily in intracellular compartments showing 

co-localisation with CD63, LAMP1 or Rab7, suggesting late endosome localisation (John et 

al., 2013; Yount et al., 2010; Feeley et al., 2011). Less is known about the localisation of 

IFITM2. A recent study has reported IFITM2 to be localised in mitochondria in Vero cells 

(Muñoz-Moreno et al., 2016), although a previous study with overexpressed IFITM2-HA 

demonstrated clustering near the nucleus in A549 cells (Muñoz-Moreno et al., 2016; Weston 

et al., 2014). IFITM proteins are thought to interfere with the entry mechanisms of at least some 

enveloped viruses, although this may be called into question if endogenous IFITM2 truly is a 

mitochondrial protein. Whether IFITM proteins can restrict the entry or replication of HSV-1 

in the absence of gE, and how gE may antagonise IFITM function could be interesting topics 
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for future study. It would also be interesting to compare other herpesviruses because HCMV 

has been suggested to utilise IFITM proteins as pro-viral factors during virion assembly (Xie 

et al., 2015).   

7.2.2 MYOF 

MYOF has been shown to contribute to both clathrin-dependent and caveolin-mediated 

endocytosis and can co-localise with dynamin 2 and caveolin 1 (Doherty et al., 2008; 

Bernatchez et al., 2007). The C2 domains of MYOF have putative functions during docking or 

SNARE-mediated fusion at the plasma membrane (Chapman et al., 1998; Davis et al., 2002; 

Bansal and Campbell, 2004; Doherty and McNally, 2003; Therrien et al., 2009; Chapman, 

2002). Therefore, MYOF could have a role in both membrane fission and fusion events. 

Ferlins act as important regulators of bidirectional membrane turnover events (endocytosis and 

exocytosis) (Bernatchez et al., 2009). One role of MYOF in the HSV-1 life cycle could be to 

help recycling of viral glycoproteins through the endocytic pathway, as a part of its normal 

cellular process, helping to localise virion glycoproteins to the appropriate membrane 

compartments for envelopment and egress. However, it is also possible that MYOF could 

function during the secretion of newly assembled virions after the completion of secondary 

envelopment (Figure 7.1). It has been proposed that HSV-1 secondary envelopment occurs at 

recycling endosomes (Hollinshead et al., 2012), and so virus egress could be similar to the 

process of recycling endocytic vesicles to the plasma membrane. Myoferlin has been shown to 

be involved in recycling of transferrin (Posey et al., 2014). It co-stains with endosomal markers 

Rab5, Rab7, and Dynamin 2 (Bernatchez et al., 2009) but not with lysosomal marker LAMP-

1 (Redpath et al., 2016). Additionally, disruption of ferlins were shown to cause defects in the 

endocytic pathway (Doherty et al., 2008; Posey et al., 2011). Therefore, MYOF and other 

ferlins would be interesting candidates to be involved in HSV-1 envelopment and egress, and 

the observations in this thesis suggests a potential role of this new family of cellular proteins 

that has not previously been identified for herpesviruses.  
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Figure 7.1 | Diagram of putative role of gE-MYOF interaction for mediating virion-

loaded cargo delivery towards cell adhesion sites. 

 

After envelopment, HSV-1 must travel to the cell-cell junctions or cell adherent contact points, 

which are target sites of virion delivery. Published data on MYOF indicate three possible ways 

this cellular proteins could be involved in HSV-1 egress: (1) MYOF co-localises with the tight 

junction marker ZO-1 in airway epithelial cells (Leung et al., 2012) and therefore, HSV-1 may 

recruit MYOF to facilitate virion targeting to tight juntions in infected cells, (2) MYOF 

regulates cell-substrate adhesion strength (Blackstone et al., 2015) and therefore the transport 

of virion-loaded vesicles to the plasma membrane may follow the pathway of host cargo 

delivery to adhesion contacts through MYOF activity, (3) MYOF is best known for its function 

during myoblast fusion and membrane repairing (Doherty et al., 2008; Bernatchez et al., 2007 

and 2009;  Demonbreunn et al., 2010) and so gE/gI may lead to activation of MYOF-mediated 

repair pathways and in doing so stimulate delivery of virus particles to the cell junctions. Future 

studies into the assembly and release of HSV-1 in the presence or absence of MYOF and other 

ferlins will shed more light on this. 
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7.2.3 Nipsnap1 and 2 

Nipsnap proteins are thought to mediate vesicle trafficking in cells (Seroussi et al., 1998) 

although there is not any as direct evidence of this activity for Nipsnap1 and 2. A study of 

Nipsnap1-deficient mice revealed its importance in pain transmission, possibly indicating a 

role in pain-receptor trafficking (Okuda-Ashitaka et al., 2012). Nipsnap1 was one of the 

strongest binding partners of gE identified in the SILAC-IP data, and the interaction was 

validated for two different WT strains of HSV-1 and in at least two human cell lines; HaCaT 

and HFF-hTERT. A substantial amount of gE-Nipsnap1 interaction was seen with ΔgI and 

gIG39R-infected cells, even though less mature gE appears to be made by these viruses, 

suggesting gE could interreact with Nipsnap1 in the ER. At least four variants of Nipsnap1 

with different molecular mass (27, 28, 29 and 33 KDa) have been suggested, with N-terminally 

truncated 29 KDa considered the mature form (Okuda-Ashitaka et al., 2012). However, in the 

work for this thesis only a single band for Nipsnap1 (~26 KDa) could be detected in all the cell 

lines tested. Tagging of the C terminus of Nipsnap1 and Nipsnap2 inhibited their interaction 

with gE as no precipitation of the tagged proteins were seen in the gE pull-down samples. This 

could indicate that the binding of these proteins gE is via their C-termini, or that the C terminus 

is important for correct Nipsnap folding. Endogenous Nipsnap1 or 2 and N-terminally myc-

tagged Nipsnap1 were co-precipitated with gE effectively. In IF, C-terminally-tagged 

Nipsnap1 or 2 appeared to localise to mitochondria similarly to untagged proteins, while N-

terminally-tagged proteins showed little or no localisation to mitochondria-like structures. 

Studies from different labs also detected Nipsnap1 and 2 in mitochondria either by IF or IP 

(Tummala et al., 2010; Okuda-Ashitaka et al., 2012; Yamamoto et al., 2017), and the N 

terminus of Nipsnap1 has been shown to contain a mitochondrial targeting sequence (MTS), 

which is important for the proper processing of this protein (Okuda-Ashitaka et al., 2012; 

Tummala at etl., 2010). Therefore, an N terminal myc-tag on Nipsnap1 or 2 is likely to inhibit 

mitochondrial targeting. Very little gE-Nipsnap1 co-localisation was observed and only when 

untagged Nipsnap1 was expressed (Figure 5.13 a). Despite several mitochondrial proteins 

being identified in the gE/gI SILAC-IP data gE showed no co-localisation with mitochondrial 

markers either in transfected or in infected cells. This was also true for various gE mutants 

lacking sections of the cytoplasmic domain. Despite altered gE localisation when much of the 

cytoplasmic domain was deleted (gE-1-475 and 1-440) none of the constructs seemed to 

localise in mitochondria. However, localisation of Nipsnap1 at the plasma membrane has been 

proposed by many authors and has been shown in transfected COS7 cells, which suggests a 
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function of Nipsnap1 outside the mitochondria (Okuda-Ashitaka et al., 2012; Schoeber et al., 

2008).  

Nipsnap1 and 2 KO cell lines were generated for this thesis by CRISPR-Cas9 technology. The 

deletion of Nipsnap1 and 2 were confirmed by WB although in IF experiments anti-Nipsnap2 

antibody showed a signal in the Nipsnap2 KO cells, but not the double KO cells, suggesting 

the commercial Nipsnap2 antibody binds to Nipsnap1 presumably because of its high sequence 

similarity with Nipsnap2. Though the sequencing data for the Nipsnap2 gene from the KO 

clones demonstrated frameshift mutations had occured, data for the Nipsnap1 gene sequenced 

from KO clones showed some copies of the gene contained in-frame deletions. It is therefore 

possible that varying lengths of Nipsnap1 could be expressed in the Nipsnap1 KO clones, but 

not detected because the epitope for the Nipsnap1 antibdy used falls within the mutated region. 

Interestingly, pull-down assays from the KO cells suggested that interaction of Nipsnap2 with 

gE depends on Nipsnap1, which may indicate heterodimers of Nipsnap1 and 2 exist. However, 

HSV-1 replication and release were no different in the Nipsnap1 and 2 KO cell lines compared 

to the WT HaCaT cells, suggesting these cellular proteins are not essential for HSV-1 assembly 

or egress. The only noticeable difference was the size of the plaques which appeared to be 

slightly bigger in the KO cells than in the WT-HaCaT for the gE and gI mutants. This could 

suggest a potential antiviral function of Nipsnaps, which is normally antagonised by gE/gI 

during WT HSV-1 infection.  

Some evidence of a role for Nipsnap1 and 2 in innate immune responses has been shown as 

knockdown of Nipsnap1 and 2 in various cell lines suppresses lipopolysaccharide-induced 

activation of NF-κB and IL-6 and IL-8 expression (Yamamoto et al., 2017). HSV-1 can activate 

NF-κB and induce the expression of antiviral factors IL-6 and IL-8 (Liu et al., 2013; Li et al., 

2006) and IL-6 has been shown to contribute to resistance against HSV-1 infections (Paludan, 

2001). Therefore, it is possible that gE/gI may normally antagonise this role of Nipsnap1 and 

2 and the loss of this activity in gE and gI mutant viruses is compensated in the Nipsnap1/2 

KO cell lines, leading to the partial rescue of plaque size. It will be interesting to follow up the 

potential antiviral role of Nipsnap proteins and the effect of gE/gI in the future.  

Regarding the Nipsnap interactions, it should be taken into account that the observed binding 

of these proteins with gE could be an artefact of the experimental system. It may be that in a 

normal cell, gE localised in the secretory and endocytic pathway compartments and Nipsnap 1 

and 2 in the mitochondria do not interact because they are not present in the same subcellular 
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compartments, but once a cell is lysed and the membranes are dissolved by detergent, they can 

interact. This would appear likely for the numerous other mitochondrial proteins identified in 

the SILAC-IP screen. An alternative method to identify putative gE/gI interaction partners, 

such as BioID or protein cross-linking approaches could help clarify the situation. 

Nevertheless, from data generated for this thesis, it seems highly unlikely that Nipsnap1 or 2 

are involved in gE-mediated virus egress. 

7.3 Future directions  

The research of this thesis shows the importance of gE and gI in that HSV-1 life cycle and also 

identifies interesting cellular interactors of gE. However, a number of questions remained 

unanswered:  

(1) How does the gIG39R mutation inhibit gE/gI complex formation and what amino acid 

residues in gI form a complex with gE?  

This thesis suggests that the G39 residue on gI could be part of the interaction site for gE 

binding. It would be interesting to investigate whether the G39 is part of a specific gE 

binding site within gI or whether mutation of G39 to R results in a severe conformational 

change in gI ecto-domain, thereby preventing gE/gI heterodimer formation. Modification 

of G39 of gI with neutral or negatively charged amino acids, as well as mutagenesis of 

the surrounding residues, could help understand the gE/gI interaction.  

(2) Is the cytoplasmic tail of gI necessary for gE/gI function and is there any role of gE or gI 

transmembrane domains for interactions with host factors?  

Further screens for gE/gI interaction partners using a tailless gI together with full length 

gE, or a tailless gE together with full length gI, or IP of the individual proteins when 

expressed in the absence of each other, could help uncover genuine interactors of this 

complex and define host proteins that bind specifically to the gE/gI complex as opposed 

to either protein individually.  

(3) What is the importance of nuclear rim appearance of gE?  

The localisation of gE to the nuclear rim and the potential interaction with the nuclear 

egress protein pUL34 are intriguing but their significance is unknown. Investigating 

whether gE localises to perinuclear virions, and whether the localisation at the nuclear 

rim is connected to interaction of gE with gB should be investigated further. 
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(4) How do IFITM proteins get degraded during HSV-1 infection and do IFITM proteins have 

antiviral activity towards HSV-1 WT or ∆gE?  

The disappearance of IFITM2 during HSV-1 infection would also be interesting to 

investigate further. Whether such inhibition occurs at the protein level due to activity of 

viral proteins or at mRNA level as a consequence of vhs activity needs to be clarified. 

The effect of IFITM1, 2 and 3 over expression on the entry and replication of HSV-1 in 

the presence or absence of gE/gI (and other potential antagonists such as vhs) will be an 

important area for further research. 

(5) What significance do Nipsnap1/2-gE interactions have during HSV-1 infection?  

There is seemingly no relevance for gE interaction with Nipsnap1/2 for HSV-1 

replication or release in culture, although there may be some antiviral effect of 

Nipsnap1/2 in plaque formation when gE is absent. Whether gE and Nipsnap1 interact in 

the context of an intact cell is a key issue to address. The potential effect of gE-Nipsnap 

interactions on IL-6 or IL-8 production, and pathogenesis studies in Nipsnap1/2 deficient 

transgenic mice would be interesting avenues in the future.  

(6) What is the role of MYOF or other ferlin proteins in HSV-1 life cycle?  

The gE-MYOF interaction and its possible role in the transport of virions and/or viral 

glycoproteins is also intriguing. Other glycoproteins should be tested for interaction with 

MYOF and other ferlin proteins, and recapitulating gE-MYOF interactions with purified 

components could address whether the interaction is direct or indirect. Overexpression 

and deletion of MYOF and other ferlins will be needed to understand the role(s) of these 

cellular membrane traffic regulators during virion egress.  
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8. Materials and Methods 

8.1 General reagents 

The biochemical reagents and chemicals used in this research were supplied by the following 

companies unless otherwise stated; Amersham Bioscience, BDH Chemicals, Clontech, Fisher 

Scientific, Invitrogen, New England Biolabs (NEB), Promega, Roche, Sigma-Aldrich and 

Thermo Scientific. Tissue culture media were supplied by from Sigma-Aldrich and PAA 

laboratories. Molecular biology reagents were obtained from Invitrogen, NEB, Promega and 

Roche. Plastic plates, dishes and flasks were obtained from BD Bioscience and Gibco.  

8.2 Cloning  

The DNA constructs made in this study are listed in Table 8.1 and the primers used are listed 

in Table 8.2. 

Table 8.1 | Viruses constructed and used in this study 

Virus strain E. coli strain Description Source 

HSV-1 
KOS-BAC 

GS1783/ 
HSV-BAC 

For Red-recombinant virus 
construction. GS1783 carring HSV-1 
KOS BAC DNA. This bacterial strain 
contains a heat-shock inducible cassette 
for Red recombinase and arabinose 
inducible I-SceI. 
Utilised for construction of KOS ΔgC, 
ΔgE, ΔgI, gIG39R 

KOS-BAC from David 
Leib (Gierasch et al., 
2006), 
GS1783 from obtained 
from Gregory Smith  
(Tischer et al., 2010) 

HSV-1 ΔpUL43 
GS1783/ 
HSV-BAC 
ΔpUL43 

Codons 54-56 of UL43 have been 
replaced with three tandem in-frame 
stop codons 

Kathy Lau 
(CMC lab) 

HSV-1 
ΔgC 

GS1783/ 
HSV-BAC ΔgC 

Codons 37-39 of UL44 (gC) have been 
replaced with three tandem in-frame 
stop codons 

This study 

HSV-1 
ΔgE 

GS1783/ 
HSV-BAC ΔgE 

Codons 21-24 of US8 (gE) have been 
replaced with three tandem in-frame 
stop codons 

This study 

HSV-1 
ΔgI 

GS1783/ 
HSV-BAC ΔgI 

Codons 21-24 of US7 (gI) have been 
replaced with three tandem in-frame 
stop codons 

This study 
 
 

HSV-1 gIG39R 
GS1783/ 
HSV-BAC gIG39R 

gI has been modified with a point 
mutation in codon 39, causing glycine 
to be replaced with arginine (G39R) 

This study 

HSV-1 
ΔgC-gIG39R 

GS1783/ 
HSV-BAC 

Codons 37-39 of UL44 (gC) have been 
replaced with three tandem in-frame 

This study 
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ΔgC-gIG39R stop codons and the G39R mutation has 
been introduced in gI 

HSV-1 
ΔpUL43-
gIG39R 

GS1783/ 
HSV-BAC 
ΔpUL43-gIG39R 

Codons 54-56 of UL43 have been 
replaced with three tandem in-frame 
stop codons and the G39R mutation has 
been introduced in gI 

This study 

HSV-1 
ΔpUL43-ΔgC 

GS1783/ 
HSV-BAC 
ΔpUL43-ΔgC 

Codons 37-39 of UL44 (gC) and 
codons 54-56 of UL43 have been 
replaced with three tandem in-frame 
stop codons 

This study 

HSV-1 
ΔpUL43-ΔgC-
gIG39R 

GS1783/ 
HSV-BAC 
ΔpUL43-ΔgC-
gIG39R 

Codons 37-39 of UL44 (gC) and 
codons 54-56 of UL43 have been 
replaced with three tandem in-frame 
stop codons.and the G39R mutation has 
been introduced in gI 

This study 

HSV-1 
gIG39REYFP 

GS1783/ 
HSV-BAC 
gIG39REYFP 

gIG39R has been tagged at the C 
terminus with EYFP (A206K) 
fluorescent protein 

This study 

HSV-1 
gIEYFP 

GS1783/ 
HSV-BAC 
gIEYFP 

gI has been tagged at the C terminus 
with EYFP (A206K) fluorescent 
protein 

This study 

HSV-1 
VP26TQ 

GS1783/ 
HSV-BAC 
VP26TQ 

VP26 has been tagged at the N terminus 
with mTurquoise fluorescent protein 

CMC 

HSV-1 VP26TQ- 
gIEYFP 

GS1783/ 
HSV-BAC 
VP26TQ-gIEYFP 

VP26 has been tagged at the N terminus 
with mTurquoise fluorescent protein 
and gI of the virus has been tagged at 
the C terminus with EYFP (A206K) 
fluorescent protein 

This study 

CMC: Dr Colin Crump (University of Cambridge) 

Table 8.2 | Primers used in this study 

Primer  Sequence (5’-3’) Details  
COL400 CGGGGGCTCGGAAACTGCCTCCACCGGGCCC

ACGATCACCTGATAGTAAGCTTGTGACGAAC
GCGAGCGAGGCAGGATGACGACGATAAGTA
GGG 

F primer for gCstop 

COL401 CGGGGGACCCCGATGTGGGGGCCTCGCTCGC
GTTCGTCACAAGCTTACTATCAGGTGATCGT
GGGCCCGGTGGCAACCAATTAACCAATTCTG
ATTAG 

R primer for gCstop 

COL517 CCCCACGGTCAGTCTGGTATCAAACTCATTTG
TGGACGCCCGGGCCTTGGGGCCCGACGGCGT
AGGATGACGACGATAAGTAGGG 

F primer for gIG39R 

COL518 TAAGCAGGTCTTCCTCCACTACGCCGTCGGG
CCCCAAGGCCCGGGCGTCCACAAATGAGTTT
GCAACCAATTAACCAATTCTGATTAG 

R primer for gIG39R 
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COL521 TGGGGGCGCTGCTGTGCCCTCCGGGGTCAAC
GGGCGGGTGGTCGGGCGATGTGAGCAAGGG
CGAGGAG 

F primer for UL43EYFP 

COL522 CACACACCGGCGGTCTTCGGGACTAATGCCT
TTTATTGAAAAATATATCACTTGTACAGCTCG
TCCATG 

R primer for UL43EYFP 

COL523 GGGGTTTCTTCTCGGTGTTTGTGTTGTATCGT
GCTTGGCGTAGTGATAAGCTTCGTCCTGGAG
ACGGGTGAGTAGGATGACGACGATAAGTAG
GG 

F primer for gEstop 

COL524 AACGAAACGTCCTCGCCGACACTCACCCGTC
TCCAGGACGAAGCTTATCACTACGCCAAGCA
CGATACAACACCAACCAATTAACCAATTCTG
ATTAG 

R primer for gEstop 

COL525 GGGCCTGGTGCTCGTGGGCCTCTGGGTCTGT
GCCACCAGCTAATAGTGAATTCGCCCCACGG
TCAGTCTGGTAAGGATGACGACGATAAGTAG
GG 

F primer for gIstop 

COL526 GCGTCCACAAATGAGTTTGATACCAGACTGA
CCGTGGGGCGAATTCACTATTAGCTGGTGGC
ACAGACCCAGACAACCAATTAACCAATTCTG
ATTAG 

R primer for gIstop 

COL527 CGCCCCCCGTGGACCCCACGACATCCACCCC
AACGCCTCCCCTGTTGGTAGTGAGCAAGGGC
GAGGAG 

F primer for gIEYFP 

COL528 AGTGACTGCGGTCGGTTATGTGGTGCCCCCG
GCCAGTGGCCGTGGACCTACTTGTACAGCTC
GTCCATG 

R primer for gIEYFP 

COL597 GGGGACAAGTTTGTACAAAAAAGCAGGCTTC
ACCATGCCGTGCCGCCCGTTG 

F primer gI for pDONR207 
insertion 

COL598 GGGGACCACTTTGTACAAGAAAGCTGGGTTT
TCTATACCAACAGGGGAGGCGT 

R primer gI for pDONR207 
insertion 

COL599 GGGGACAAGTTTGTACAAAAAAGCAGGCTTC
ACCATGGATCGCGGGGCGGTG 

F primer gE for pDONR207 
insertion 

COL600 GGGACCACTTTGTACAAGAAAGCTGGGTTTT
CTACCAGAAGACGGACGAATC 

R primer gE for pDONR207 
insertion 

COL615 CACC G GCATCTCTGTGACGGCGCGG F  primer for CRISPR sgRNA: 
Nipsnap1 exon1_1 

COL616 AAAC CCGCGCCGTCACAGAGATGC C R primer for CRISPR sgRNA: 
Nipsnap1 exon1_1 

COL617 CACC G GACGCAACGTCCCCAGCGCG F  primer for CRISPR sgRNA: 
Nipsnap1 exon1_2 

COL618 AAAC CGCGCTGGGGACGTTGCGTC C R  primer for CRISPR sgRNA: 
Nipsnap1 exon1_2 

COL619 CACC G GACTACCCATGCTCACTCGT F  primer for CRISPR sgRNA: 
Nipsnap1 exon4_1 

COL620 AAAC ACGAGTGAGCATGGGTAGTC C R  primer for CRISPR sgRNA: 
Nipsnap1 exon4_1 

COL621 CACC G GCGCGAGTGCTGCGCGCCCG F primer for CRISPR sgRNA: 
Nipsnap2 exon1_1 
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COL622 AAAC CGGGCGCGCAGCACTCGCGC C R primer for CRISPR sgRNA: 
Nipsnap2 exon1_1 

COL623 CACC G GTCTTCTCGAGATCTGTTGC F primer for CRISPR sgRNA: 
Nipsnap2 exon2_1 

COL624 AAAC GCAACAGATCTCGAGAAGAC C R primer for CRISPR sgRNA: 
Nipsnap2 exon2_1 

COL625 CACC G TATATATTAGGTCCGGATCT F primer for CRISPR sgRNA: 
Nipsnap2 exon6_1 

COL626 AAAC AGATCCGGACCTAATATATA C R primer for CRISPR sgRNA: 
Nipsnap2 exon6_1 

KL015 CTGAGAATTCGCCACCATGGATCGCGGGGCGGTG gE F primer 
MFA001 AGAACCCTGACTTCCGTCC F primer for Nipsnap1 exon1 

MFA002 ACAAAGACCCTACCCATCCC R primer for Nipsnap1 exon1 
MFA003 CTCTTGCCTAGCTTCTGCATTTT F primer for Nipsnap1 exon4 
MFA004 GACAGGTATTTGAGCAGGGG R primer for Nipsnap1 exon4 

MFA005 CATCAATGTTACTGAAATGGGCT F primer for Nipsnap2 exon6 
MFA006 GAGCTTAGCCTTGGTGACAGT R primer for Nipsnap2 exon6 

MFA007 AAAATCTAGATTAACACGCCCACACCGACAA gE truncation 1-440 R primer 
MFA008 AAAATCTAGATTACCAGTCCGCGTACAGCTC gE truncation 1-475 R primer 
MFA009 AAAATCTAGATTATGGTGATAAGATCTCAAAGCC gE truncation 1-510 R primer 

MFA010 AAAATCTAGATTATCCAAAGGTTGTGAGCTG gE truncation 1-532 R primer 
MFA014  AAAAGAATTCATGGCTCCGCGGCTGTGCAG F primer Nipsnap1  
MFA015 AAAAACCGGTAACTGCAGAGGCGAGATCTT R primer Nipsnap1 for pEGFP-N1 

MFA016 AAAATCTAGATTACAGGTCCTCCTCTGAGAT
CAGCTTCTGCTCCTGCAGAGGCGAGATCTT 

R primer Nipsnap1-myc for 
pCDNA3.1 

MFA017 AAAATCTAGATTATCACTGCAGAGGCGA R primer Nipsnap1  

MFA018 AAAAGAATTCATGGCGGCGCGAGTGCTGC F primer Nipsnap2  
MFA019 AAAAGAATTCATGGAGCAGAAGCTGATCTCA

GAGGAGGACCTGGCGGCGCGAGTGCTGC 
F primer Nipsnap2-myc  

MFA020 AAAATCTAGATTACTGGAGGGGCGAGGTC R primer Nipsnap2  
MFA021 AAAAACCGGTTTCTGGAGGGGCGAGGTC R primer Nipsnap2 with AgeI for 

pmCherry-N1 

MFA022 AAAATCTAGATTACAGGTCCTCCTCTGAGAT
CAGCTTCTGCTCCTGGAGGGGCGAGGTC 

R primer myc-Nipsnap2  

MFA023   CCATGCTCACTCGTGGGC F primer Nipsnap1 mRNA  
MFA024   CTGGCTTGAGCTTGTATG R primer Nipsnap1 mRNA 

MFA025   AAAATCTAGATTAATCGGGCCTTCCGGATCC R primer gE truncation 1-537  
MFA026   AAAATCTAGATTACTGGGAGTAACGGCGATC R primer gE truncation 1-542  

MFA027   AAAATCTAGATTAGACGGACGAATCGGAGGC R primer gE truncation 1-548  
RU049 GACTATCATATGCTTACCGT Human U6 promoter, F primer   
COL642 ACGCTGAACTTGTGGCCGTTTACG MG70 F primer for GFP sequencing  

CMV f CGCAAATGGGCGGTAGGCGTG Human CMV immediate early promoter 
F primer  

BGH r TAGAAGGCACAGTCGAGG Bovine growth hormone terminator R 
primer  

M13 f TGTAAAACGACGGCCAGT Forward primer for M13 

IGUC1906 ACAAGTTTGTACAAAAAAGCAGGCT AttB1 F primer for pDONR sequencing  

IGUC1906 ACCACTTTGTACAAGAAAGCTGGGT AttB2 R primer for pDONR sequencing 

Abbreviations: F primer = Forward primer, R primer = Reverse primer, Stop = With stop codons  
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8.2.1 Polymerase chain reaction (PCR) 

PCR reactions were carried out in a total volume of 50μL containing 10μL 5x Phusion HF 

buffer, 1μL (10mM) dNTPs, 2.5μL (1μM) of each primer, 20ng template plasmid DNA, 25μL 

(2M) betaine, 0.5μL of Phusion HF DNA Polymerase (Finnzymes) and miliQ water (MQW; 

as required). The PCR conditions used are 98oC denaturation for 30 sec, followed by 30 cycles 

of 98oC for 10 sec, 56oC annealing for 20 sec, and 72oC elongation for 20 sec and final 

extension step at 72oC for 10 min. A modified condition (58oC annealing temperature) was 

used for the EYFP primers. 

8.2.2 Agarose gel electrophoresis (AGE) 

DNA fragments were mixed with 10X DNA loading buffer and separated in 0.8-2% agarose 

gel containing ethidium bromide dye. The gel was run in 1x TBE buffer with 100 v for 

appropriate time and was visualised by UV transilluminator (Table 8.3).  

Table 8.3 | Gel electrophoresis buffers 

Solution Composition 
DNA loading buffer (10x) 50% (v/v) glycerol, 100mM EDTA, pH 8.0, 1% (w/v) SDS, 

0.25% (w/v) bromophenol blue 
TBE (1x) 89m Tris base, 89mM sodium borate, 2.6mM EDTA, pH 8.0 

 

8.2.3 DNA purification 

DNA from the desired band on agarose gel was purified using in house reagents (details in the 

section 8.2.8). 

8.2.4 Restriction digestion of plasmids and PCR products 

DNA digestion was carried out in 50μL reaction mixture with 1μg PCR product or 2μg plasmid 

DNA, 1x buffer (as required by the enzyme), 1x BSA (if needed) and 20U of restriction 

enzyme(s). The reaction was carried out for a minimum 3 h in a 37oC water bath. 

Analytical restriction digestion of plasmids was carried out for 2 h at 37oC in 20μL with 10U 

enzyme(s), 1x buffer and 1x BSA (if required) to check the correct insert. All the plasmid DNA 

constructs used in this study have been listed in table 8.4. 
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Table 8.4 | Plasmid DNA used in this experiment  

Gene DNA plasmid Description Source  
Viral proteins 
UL27 (gB) pCDNA3.1-gB Untagged CMC 
US6 (gD) pCDNA3.1-gD Untagged CMC 

KOS US8 (gE) 

pCDNA3.1-gE Untagged  CMC 
pEGFP-N1-gE C terminal GFP-tagged  CMC 
pmCherryFP-N1-
gE 

C terminal Cherry-tagged  CMC 

poPTnH-gECT C terminal His-tagged gECT(445-
550) fragment 

Julia (SCG) 

poPTnG -gECT C terminal GST-tagged gECT(445-
550) fragment 

This study 

pCDNA3.1-gE(1-
440) 

gE(1-440) truncated at CT domain 
after 440 residue 

This study 

pCDNA3.1-gE(1-
475) 

gE(1-475) truncated at CT domain 
after 475 residue 

This study 

pCDNA3.1-gE(1-
510) 

gE(1-510) truncated at CT domain 
after 510 residue 

This study 

pCDNA3.1-gE(1-
532) 

gE(1-532) truncated at CT domain 
after 532 residue 

This study 

pCDNA3.1-gE(1-
537) 

gE(1-537) truncated at CT domain 
after 538 residue 

This study 

pCDNA3.1-gE(1-
542) 

gE(1-542) truncated at CT domain 
after 542 residue 

This study 

pCDNA3.1-gE(1-
548) 

gE(1-548) truncated at CT domain 
after 548 residue 

This study 

KOS US7 (gI) pCDNA3.1-gI Untagged  This study 
KOS VP22 pEGFP-N1-VP22 C terminal GFP-tagged CMC 
Cellular proteins 
HA-IFITM1 pCMV-HA-

hIFITM1 
IFITM1 with an N terminal HA-tag  Addgene 

(58399) 
HA-IFITM2 pCMV-HA-

hIFITM2 
IFITM2 with an N terminal HA-tag  Addgene 

(58398) 
HA-IFITM3 pCMV-HA-

hIFITM3 
IFITM3 with an N terminal HA-tag  Addgene 

(58397) 
Myoferlin-HA pCDNA3.1-

Myoferlin-HA 
Myoferlin with a C terminal HA-tag Addgene 

(22443) 
Nipsnap1 pCDNA3.1- 

Nipsnap1 
Nipsnap1 amplified from pF5K-
CMV-neo plasmid and cloned in 
pCDNA3.1 

This study 
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Nipsnap1-myc pCDNA3.1- 
Nipsnap1-myc 

Nipsnap1 amplified from pF5K-
CMV-neo plasmid and cloned in 
pCDNA3.1. R primer with myc.  

This study 

Nipsnap1-GFP pEGFP-N1- 
Nipsnap1-GFP 

Nipsnap1 amplified from pCDNA3.1 
plasmid and cloned in pEGFP-N1. 

This study 

myc-Nipsnap1 pF5K-CMV-neo- 
myc-Nipsnap1 

Copy pasted from pF3A WG 
(BYDV)-myc-Nipsnap1 plasmid to 
pF5K CMV-neo. 

This study 

Nipsnap2 pCDNA3.1-
Nipsnap2 

Nipsnap2 amplified from HaCaT 
cell-derived cDNA and cloned in to 
pCDNA3.1. 

This study 

Nipsnap2-myc pCDNA3.1- 
Nipsnap2-myc 

Nipsnap2 amplified from 
pCDNA3.1-Nipsnap2 using 
Nipsnap2-myc R primer 

This study 

myc - 

Nipsnap2 

pCDNA3.1-myc-
Nipsnap2 

Nipsnap2 amplified from 
pCDNA3.1-Nipsnap2 using myc-
Nipsnap2  F primer 

This study 

CRISPR-Cas9 pSpCas9(BB)-
Puro(PX459) 

V2.0 plasmid for CRISPR-Cas9 KO  FZ (Ran et 
al., 2013) 

SG: Stephen Graham (University of Cambridge), FZ: Feng Zhang (MIT) 

8.2.5 Dephosphorylation of cut vector  

After restriction digestion, the cut vectors were dephosphorylated in a 50μL volume containing 

1-2μg DNA, 1x Antarctic phosphatase buffer and 5U of Antarctic Phosphatase (NEB). The 

reaction was carried out for 15 min at 37oC and then the enzyme was heat inactivated at 70oC 

for 5 min.  

8.2.6 Ligation of the DNA insert with the vector  

The ligation reaction was carried out in 10μL volume containing 1µL DNA insert, 7μL vector 

DNA, 1x T4 DNA ligase buffer and 400U T4 DNA ligase (NEB). The reaction was incubated 

overnight at 14oC before heat inactivation at 65oC for 20 min in a preheated incubator.  

8.2.7 Transforming DNA into competent E. coli 

The E. coli DH5α strain (unless otherwise stated) was used for transformation of plasmid DNA 

by heat-shock method. 2-3μL of ligation reaction mixture or 100ng of plasmid DNA was mixed 

with 50μL of competent E. coli, thawed on ice. After 30 min incubation on ice the cells were 

heat-shocked for 30 sec at 42oC and quickly transferred to ice for additional 2 min incubation. 

Pre-warmed 200μL Luria Broth (LB) medium was then added and incubated for 1 h at 37oC 
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with shaking. The cells were then plated onto LB agar plates containing selective antibiotics as 

required and incubated overnight at 37oC.  

8.2.8 Plasmid DNA preparation 

Purification of large amounts of plasmid DNA was conducted using NuceloBond Xtra Midi kit 

(Machere-Nagel) according to the manufacturer’s instruction. For small amount of DNA, in 

house mini-prep reagents were used utilising all-in-one spin-columns (EconoSpin, Epoch Life 

Science). Transformed cells were grown in 4-5mL 2xTY culture for 12-16 h and centrifuged 

at 9000 x g for 1 min. Supernatant was discarded and the pellet was mixed by vortexing in 

250µL of MX1 buffer containing RNase-A at a final concentration of 100μg/mL. Next 250μL 

of MX2 buffer was added and the reaction tubes were gently inverted 4-6 times and incubated 

at room temperature for 1-5 min until the solution became clear. 350µL of MX3 buffer was 

then added and the tubes were gently inverted 4-6 times and centrifuged at 14000 x g for 10 

min. The supernatant was then transferred into a spin-column and centrifuge at 4000 x g for 1 

min and the flow-through  was discarded. Next the wash step was followed as described below 

(section 8.2.11). The buffers are listed in Table 8.5.  

8.2.9 Gel extraction 

After running on an agarose gel, the desired bands of DNA from the gel was excised and mixed 

with 3x volume of GEX buffer and kept at 55oC with occasional shaking for 10 min or until 

the gel dissolved. The supernatant was then transferred to a spin-column and centrifuged at 

4000 x g for 1 min, the flow thorough was discarded and the column was washed as described 

below (section 8.2.11).  

8.2.10 PCR clean-up 

Wherever required, the PCR products were added with distilled water to 100μL volume and 

500 μL PEX buffer was added and mixed. The content was transferred to a spin-column and 

centrifuged at 4000 x g for 1 min, the flow thorough was discarded and column was washed as 

described below (section 8.2.11). 
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8.2.11 Wash step 

On to each spin-column, 500μL of PB buffer or WS buffer (for PCR clean-up and gel 

extraction) was added and the column was centrifuged at 12000 x g for 1 min. The flow-through 

was discarded and 500μL of WS buffer was added to the spin-column and again was 

centrifuged at 12000 x g for 1 min. The flow-through was discarded again and the empty 

column was centrifuged at 12000 x g for 2 min to remove any residual ethanol. The flow-

through collection tube was removed and the spin-column was placed into a new 1.5mL 

microcentrifuge tube. To elute the DNA, Nuclease-free water (for plasmid DNA50-100 μL and 

for gel extraction or PCR clean up 20μL) was added onto the column and left to stand for 2-5 

min. Finally, the tube was centrifuged at 12000 x g for 1 min to elute the DNA. All the buffer 

compositions used in plasmid preperation are mentioned in the Table 8.5. 

Table 8.5 | Gel electrophoresis buffers 

Solution Composition 
Buffer MX1 (Suspension 
Buffer)  

50mM Tris-HCl and 10mM EDTA, pH 8.0 (25°C), 100μg/ml 
RNase A 

Buffer MX2 (Lysis Solution)  0.2M NaOH and 1% SDS 
Buffer MX3 (Neutralisation 
and Binding Solution) 

 4M guanidine hydrochloride and 0.5M potassium acetate, pH 
4.2 

Buffer PB (Wash Buffer)  

 

5M guanidine hydrochloride, 20mM Tris-HCl, pH 6.6 (25°C) 
(final concentration after addition of ethanol) with 38% ethanol.  

Buffer WS (Wash Buffer)  10mM Tris-HCl, pH 7.5 (25°C) (final concentration after 
addition of ethanol) with 80% ethanol 

Buffer EB (Elution Buffer)  10mM Tris-HCl, pH 8.5 (25°C) 
Buffer GEX (Gel 
Solubilisation Buffer)  

 

5.5M guanidine thiocyanate (GuSCN), 20mM Tris-HCl, pH 6.6 
(25°C)  

Dissolve gel by adding 300ul of GEX for 100mg of gel 
Buffer WS (Wash Buffer)  10mM Tris-HCl, pH 7.5 (25°C) (final concentration after 

addition of ethanol) with 80% ethanol 
Buffer PEX (DNA absorption 
buffer) 

5.5M guanidine hydrochloride (GuHCl), 20mM Tris-HCl, pH 
6.6 (25°C)  

Buffer WS (Wash Buffer)  10mM Tris-HCl, pH 7.5 (25°C) (final concentration after 
addition of ethanol) with 80% ethanol 

Quick protocol for EconoSpin all-in-one mini spin-columns (#1910-250 and #1920-250) 
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8.2.12 DNA sequencing 

Either for selecting a positive clone or for finding out a desired insert or mutation, DNA 

samples were sent to the Nucleotide sequencing facility at the Department of Biochemistry, 

University of Cambridge. 

8.3 Protein expression analysis 

8.3.1 Cell lysate preparation  

Cells harvested by scraping were collected in 2mL eppendorf tubes and centrifuged at 5000 

rpm for 5 min. The supernatant was discarded and the cell pellet was lysed by resuspending in 

mRIPA buffer containing protease inhibitor. The mixture was kept on ice for 20 min and then 

centrifuged at 13,300 rpm and 4oC for 15 min to remove the cellular debris. The supernatant 

was transferred to a new tube and boiled for 5 min in presence of 5x Protein loading buffer 

containing β-mercaptoethanol. The sample was kept at -70oC when not used immediately for 

SDS-PAGE analysis. For IP experiments, mRIPA buffer was replaced with NP-40 lysis buffer 

(IP buffer) (Table 8.6).   

8.3.2 Immunoprecipitation (IP) 

For IP, cell lysates were mixed with a particular antibody and incubated for 1 h at 4oC on a 

rolling plate. Protein A/G beads (Santa cruz) were washed twice with ice cold IP buffer and 

pelleted at 8000 x g for 1 min at 4oC before being added to the reaction tubes. The tubes were 

incubated in the same conditions for at least 3 h to over-night and finally the beads were 

collected by spinning down at 8000 x g for 1 min at 4oC and washing 3 times with ice cold IP 

buffer. 

Table 8.6 | Buffer used for cell lysate preparation 

Name Composition 
IP buffer 25mM Tris pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40, 5% 

glycerol 
mRIPA buffer 50mM Tris pH 7.4, 150 mM NaCL, 1% Sodium deoxycholate, 1% 

Triton X-100 

 



Chapter 8. Materials and methods 

223 
 

8.3.4 Protein estimation by BCA assay 

On a 96-well flat bottom dish 200 µL of the samples (cell lysates), the standard and the blanks 

were added in duplicate. A 5x diluted sample was prepared by adding 12μL of samples to 48μL 

MQW. Then standards were prepared with known concentration of BSA starting from 

2000μg/mL to 125μg/mL. To each well 200 μL of BCA reagents (BCA protein reagent kit A:B 

mixed at 50:1 ratio) was added and mixed well by tapping. The plate was incubated for 30 min 

at 37oC and read in a plate reader at 570 nm. A standard curve was prepared from the values 

of standard samples and protein concentration of the samples were calculated. Table 8.7 shows 

the reagents used for BCA assay. 

Table 8.7 | Reagents for BCA assay 

Solution Composition 
Blank 200μL, 800μL MQW 
Standard 40μL of sample lysis buffer, 40μL of 10μg/μL BSA, 120μL MQW 
Reagent A Sodium carbonate, sodium bicarbonate, bicinchoninic acid, sodium 

tartrate in 0.1M sodium hydroxide 
Reagent B Contain 4% cupric sulfate 

 

8.3.5 SDS-PAGE  

The protein samples were resolved in parallel with pre-stained protein markers using Mini-

PROTEAN system (Bio-Rad) and SDS-polyacrylamide gels. The gel was run at 170 v for 

approximately 1 h.  

8.3.6 WB analysis 

Proteins separated by SDS-PAGE were transferred to nitrocellulose membrane (0.45 μm) using 

the Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad). Protein transfer was carried out 

either at 70 v for 2 h or 18 v overnight at 4oC. The nitrocellulose membranes were then blocked 

with 5% milk powder in PBS-T for 15 min. The membranes were the incubated with 

appropriate dilution of primary antibody in PBS-T containing 0.5% milk powder for 1 h, 

washed thress times with PBS-T (for 5 min each time), incubated with secondary antibodies in 

PBS-T for 1 h and finally washed six times with PBS-T (for 5 min each time). The membranes 
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were visualised using a LI-COR Odyssey CLx Infrared Imager. Buffers used for SDS-PAGE 

and WB are listed in Table 8.8. 

Table 8.8 | SDS-PAGE and WB buffer solutions 

Solution Composition 
SDS-PAGE sample loading 
buffer (5x) 

250mM Tris base, pH 6.8, 10% (v/v) SDS, 50% glycerol, 
0.01% (w/v) bromophenol blue, 3.5% (v/v) β-
mercaptoethanol 

SDS-PAGE running buffer (1x) 25mM Tris base, 200mM glycine, 0.1% (w/v) SDS 
Western transfer buffer (1x) 25mM Tris base, 200mM glycine, 10% (v/v) ethanol 
PBS-T PBS containing 0.1% (v/v) Tween 20 
Blocking buffer 5% (w/v) non-fat dehydrated milk in PBST 
 

8.3.7 Immunofluorescence (IF) microscopic techniques 

Cells were seeded on 13 mm coverslips at a density of 5x104 well in a 24-well plate. Next day, 

the cells were either infected with HSV-1 strains at MOI of 1 PFU/cell or transfected (section 

8.4.4). After incubation for a required time at 37oC the cells were washed with PBS and fixed 

with 3% (v/v) formaldehyde in PBS for 10-15 min. Next, the cells were treated for 5 min with 

permeabilisation solution (1% FCS, 0.1% Triton X-100, in PBS) (Table 8.9) followed by 

appropriately diluted primary antibody (Table 8.10) for 1 h. The cells were washed three times 

with IF permeabilisation solution and incubated with AlexaFluor secondary antibodies for 1 h. 

Finally, the cells were washed three times in IF wash, three times in PBS and three times in 

water and mounted on glass slide with Prolong Gold antifade reagent containing DAPI 

(Invitrogen). 

Table 8.9 | Immunofluorescence (IF) Microscopy solutions  

Solution Composition 

Fixing solution 1x PBS, 3% EM-grade formaldehyde, dH2O 

Permeabilisation Solution  1% FCS, 0.1% Triton X-100, in 1x PBS 

FCS: Fetal calf serum 
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Table 8.10 | Antibodies used in this study 

Antigen Name Raised 
in 

Isotype Application and 
Dilution   

Source  

Cellular 
Actin AC40 Mouse IgG2a WB (1:5000) Sigma 

Anti HSV-1 DAKO Rabbit - IF (1:1000) DAKO 
ATP5A1 Sc-2020 Goat - WB (1:2000) Santa cruz 
HSP60 66041-1-Ig Mouse IgG1 IF (1:20), WB (1:5000) proteintech  

HSP90 sc-7947 Rabbit - WB (1:5000) Santa cruz 
Nipsnap1 sc-515197 Mouse IgG1 IF (1:50), WB (1:1000) Santa cruz 
Nipsnap2 ab204890 Rabbit IgG IF (1:100), WB (1:500) abcam 

IFITM2 12769-1-AP Rabbit - IF (1:50), WB (1:1000) proteintech 
LAMP1 H4A3 Mouse - WB (1:10000) DSHB Hybridoma 

Myoferlin sc-376879 Mouse IgG1 IF (1:50), WB (1:1000) Santa cruz 

PHGDH sc-390610 Mouse IgG1 IF (1:10), WB (1:500) Santa cruz 

PHB 
ab55618 Mouse IgG2a WB (1:2000) abcam 

ab75771 Rabbit - WB (1:2000) abcam 
RAB7 ab50533 Mouse IgG2b WB (1:2000) abcam  
Tubulin MCA77G Rat - WB (1:2000) AbD Serotec  

TOM20 sc-17764 Rabbit - IF (1:100) Santa cruz 
VDAC1 ab-14734  Mouse IgG2b WB (1:500) abcam 
Viral 

gB 
CB24 Mouse IgG2b IF (1:6), WB (1:50) CMC and SB (Zenner et al., 

2011) 
gC CC6 Mouse IgG2a IF (1:6), WB (1:10) CMC and SC 

gD 
AP12 Mouse IgG1 IF (1:3) 

AM (Minson et al., 1986) LP2 Mouse IgG2a IF (1:3) 
LP14 Mouse  IgG2a IF (1:6), WB (1:50) 

gE 3114 Mouse  IgG2a IF (1:6), WB (1:50) CMC (Cross et al., 1987) 
gE/gI 3063 Mouse IgG1 IF (1:6), WB (1:50) CMC (described in Collins 

and Johnson, 2003) 

gG LP10 Mouse  IgG2a IF (1:6), WB (1:10) AM (Richman et al., 1986) 
gH BBH1 Mouse  IgG2a IF (1:6), WB (1:10) HB 

gH/gL 
LP11 Mouse IgG2a IF (1:6) AM (Buckmaster et al., 

1984) 

gI 
CC8 Mouse  IgG2a IF (1:6), WB (1:10) CMC 
CC7 Mouse  - IF (1:6), WB (1:10) CMC 

3104 Mouse  - IF (1:6) CMC (Cross et al., 1987) 
pUL13/14 R220 Rabbit - WB (1:3000) GE (Morrison et al., 1998) 
pUL16 N-term Rabbit - WB (1:2000) JW 

pUL19 
(VP5) 

AB6508 Mouse IgG2b WB (1:1000) Abcam 

LP12 Mouse IgG2a IF (1:3) AM 

pU49 
(VP22) 

AGV30 Rabbit - WB (1:5000) GE (Elliot and O’Hare, 
1997) 

CC10 Mouse IgG1 IF (1:6) CMC 

CC11 Mouse - WB (1:10) CMC 

VP1/2 CB4 Mouse IgG2b IF (1:6) CMC (Svobodova et al., 
2011) 
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VP16 LP1 Mouse IgG1 IF (1:6), WB (1:50) AM (McLean et al., 1982) 
Other 

GFP JL-8 Mouse IgG2a IF (1:300), WB 
(1:5000)  

Clontech 

MYC 9E10 Mouse IgG1 IF (1:100), WB 
(1:1000) 

SC 

HA (HA-11) MMS 101R Mouse IgG1 WB (1:1000) Biolegend 
AM: Prof. Anthony Minson (University of Cambridge), CMC: Dr Colin Crump (University of Cambridge), HB: Dr Helena Browne 

(University of Cambridge), SB: Susanne Bell (University of Cambridge), SC: Susanna Colaco GE: Prof. Gill Elliott (University of Surrey), 

JW: Dr John Willis, University of Pennsylvania, DSHB: Developmental Studies Hybridoma Bank (H4A3 was deposited to the DSHB by 

August, J.T. / Hildreth, J.E.K), 

 

8.4 Tissue culture techniques 

8.4.1 Cell maintenance 

The following cell lines A549, COS-7, HaCaT, HEK-293T, HeLa, HFF-hTERT and Vero cells 

(Table 8.11) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% FCS, 2mM L-glutamine, 100U/mL penicillin and 100μg/mL streptomycin. All cell 

lines were maintained at 37oC in a humidified incubator with 5% CO2 supply.  

8.4.2 Freezing of cells and resuscitation 

For long term storage cells were harvested and resuspended in freezing medium (10% DMSO 

in FCS). Approximately 3x106 cells were aliquoted per vial and slowly frozen in a cryogenic 

freezing chamber at -70oC before transferring to liquid nitrogen. For resuscitation cells were 

thawed at 37oC and transferred to tissue culture flasks containing pre-warmed medium. After 

24 h incubation the medium was replaced with fresh medium.  

8.4.3 Sub-culturing cells 

Cells were subcultured twice a week. Firstly, the growth medium was removed from the flask 

and the monolayer was washed with PBS. Then the cells were detached from the flask by 

incubating with 0.05% (v/v) trypsin and 0.02% (v/v) EDTA in PBS for 5-15 min (depending 

on cell lines) at 37oC. The cells were then re-suspended in fresh warm medium to neutralise 

the trypsin and a proportion of the cells were re-seeded back into a flask with fresh medium for 

continued culture.  
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8.4.4 Transfecting mammalian cells 

Mammalian cells were either transfected for IF or IP experiments. For IF, 5x104 cells were 

seeded on to 13mm coverslips in 24-well plates. Once the cells were attached (after 3-4 h) or 

the next day the cells were transfected. Initially, 0.6μL of TransIT-LT1 transfection reagent 

(Mirus) was diluted in 35μL of serum free Opti-Mem medium (Life Technologies) per 

transfection condition and incubated for 5 min at RT. Subsequently, 0.2μg of plasmid DNA 

was mixed with the TrasIT-LT1/media solution and incubated for 15 min at RT. Finally, the 

mixture was added to the cells and incubated at 37oC for a preferred period of time and 

processed further. 

For IP or relatively larger volume of transfection, HEK293T cells were seeded on 10cm dishes 

and incubated for 3 h or overnight.  For the transfection, 10μg of DNA along with 40μL PEI in 

1ml of Opti-Mem were incubated for 20 min at RT and added to the cell.  

Table 8.11 | Cell lines used in this study  

Cell line Description 
A549 Adenocarcinomic human alveolar basal epithelial cells 
A549-IFITM2-HA Adenocarcinomic human alveolar basal epithelial cells transduced 

with IFITM2-HA at C terminus 
COS-7 African green monkey kidney cells 
HaCaT Immortalised human keratinocyte cells 
HEK-293T Human embryonic kidney cells 
HeLa Human cervical carcinoma cells 
HFF-hTERT Human foreskin fibroblast cells immortalised by stable expression 

of human telomerase 
Vero African green monkey kidney epithelial cells 

 

8.5 Virus techniques 

8.5.1 Virus release assay 

Six-well dishes were seeded with 4x105 cells/well (Vero/HFF-hTERT/HeLa/HaCaT/A549/ 

COS-7) and after overnight incubation at 37oC the cells were infected with viruses (5 or 10 

PFU per cell) to be assayed. At the required time point ~90% of the medium (supernatant) was 

removed and the cells were scraped into fresh medium and collected in separate tubes (cell 

associated). The supernatants were centrifuged at 5000 rpm for 5 min in a bench top microfuge 
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to remove any cell debris before transferring the supernatant to fresh tubes. This step was 

performed two consecutive times. All samples were stored at -70oC until virus titration, and 

the harvested cell samples were freeze-thawed three times in total. The amount of virus present 

both in supernatant (released virus) and in cell scrapes (cell-associated virus) were determined 

by plaque assay. Table 8.12 listed the solutions used for virus growth analysis. 

8.5.2 Determination of virus titre through plaque assay 

Six-well dishes were seeded with 4x105 Vero cells/well and incubated overnight at 37oC. The 

virus samples were defrosted and 10-fold serially diluted. Medium from the Vero plates was 

aspirated and 500μL of the diluted virus samples was added to different wells and incubated at 

37oC to allow the virus to infect the cells. After 1 h incubation, 2 ml of overlaying medium 

(DMEM supplemented with 2% FCS, 2mM L-glutamine, 100U/mL penicillin and 100μg/mL 

streptomycin and 0.6% carboxymethylcellulose) was added to each well and the plates were 

incubated at 37oC for 2-3 days. The infectious virus titre was determined by counting the 

plaques after formal saline fixation followed by 0.1% toludine blue staining.  

8.5.3 Production of virus stocks 

Virus stocks e.g., master, sub-master and working stocks were produced one after another. For 

generation of a master stock 2x106 Vero cells (in a T75 flasks) were infected with pre-master 

virus (produced by transfection of Vero cells with HSV-1 BAC DNA and a Cre expression 

plasmid, pGS403) at 0.1-0.005 PFU/cell and incubated at 37oC for 2-4 days. The cells were 

harvested after they started rounding and detaching from the flask by shaking or by scrapping. 

The cells were pelleted at 1400 rpm for 5 min at 4oC. The pellet was resuspended in ~1ml 

medium, sonicated for 30 sec at 39% amplitude and aliquoted in to several tubes. The tubes 

were stored at -70oC as master stock. The virus titre was determined by plaque assay as describe 

above (8.5.2). Subsequent virus stocks were made following the same procedure with greater 

numbers of cells. Experiments were all conducted with working stock virus for consistency.  

Table 8.12 | Solutions used for virus growth analysis 

Solution Composition 
PBS 138mM NaCl, 2.7mM KCl, 8mM Na2HPO4, 1.5mM KH2PO4, pH 7.4; 

Prepared by technical staff at the Department of Pathology, University 
of Cambridge.  

Acid wash 40mM citric acid, 135mM NaCl, 10mM KCl, pH 3.0 
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CMC overlay 0.6% (v/v) CMC and 2% (v/v) FCS diluted in DMEM supplemented 
with glutamine and antibiotics  

Formal Saline 3.7% (v/v) formaldehyde in PBS 
Toludine Blue 0.1% (w/v) toludine blue in water 
CMC: carboxymethylecellulose, PBS: phosphate buffered saline  
 

8.5.4 Single step growth curve 

Cells were seeded at 4x105 cells/well on six-well plates or at 1x105 on 24-well plates, except 

for HaCaT cells where twice as many cells were seeded. The next day, cells were infected with 

10 PFU/cell of the appropriate viruses by incubation for 1 h at 37oC and then incubated with 

acid wash for 1 min to inactivate residual viruses, followed by three PBS washes and then 

finally, growth medium was added to each well. At various time points the samples were 

collected and frozen at -70oC. For cell free viruses, culture medium from the wells were 

collected prior to freezing and spun twice to remove cell debris as described above. The wells 

were topped up with the same volume of culture medium as was removed and cells were 

harvested by scraping. The cells were then lysed by three cycles of freeze thawing to release 

the cell-asociated viruses. The supernatant and cell-associated virus titres were determined by 

plaque assays. 

8.5.5 Plaque size analysis 

Plaque assay plates using Vero cells were fixed and stained with 0.1% toluidine blue solution 

and were scanned at 600 dpi. The diameter of the plaques was determined using Adobe 

Photoshop in pixels and the average plaque size was calculated from 60 plaques. 

Plaques on HFF-hTERT and HaCaT cell monolayers were stained with DAB (3,3' 

Diaminobenzidine) peroxidase substrate kit. At first the cells were washed once with PBS and 

then fixed with 4% formaldehyde for 10 min.  The cells were washed again with PBS and were 

blocked with Blocking buffer (5% FBS, 0.5% Tween in PBS) for 30 min. Next, the cells were 

incubated for 1 h with HSV-1 gD-specific antibody (LP2) and washed three times with 

Blocking buffer. Cells were then incubated with anti-mouse HRP antibody (1:1000) for 1 h and 

finally washed three times with Blocking buffer and once with PBS. To reveal the plaques, 
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samples were developed with DAB peroxidase substrate (ImmPACT DAB Vector, SK4105) 

where 1 mL of DAB diluent was mixed with 30 µL of DAB chromogen and added to the cell 

for 5-10 min and finally washed with water. The plates were scanned and plaque size was 

measured in Photoshop.   

8.5.6 Virus purification by sucrose cushion 

HaCaT cells were grown in 10 cm dishes and were infected with viruses at 5 PFU/cell for 1 h 

at 37oC followed by acid wash for 1 min and three PBS washes and then incubated with 

complete growth medium. After, 24 h the culture supernatant was collected and centrifuged by 

two consecutive low speed centrifuge (912 x g for 20 min, 4oC, Beckman GH-3.8 and then 

1700 x g for 30 min, 4oC, Beckman SW32Ti) to remove cellular debris. The clarified medium 

(3mL) was gently overlaid on top of 1mL of 33% (v/v) sucrose. Virus particles were then 

pelleted at 48600 x g for 3 h at 4oC in a Beckman centrifuge TLA-100.3 rotor. The virus pellet 

was resuspended in 50 µL of 1x SDS-PAGE sample buffer and tested by WB for various 

proteins.  

8.5.7 Virus purification by Ficoll gradient 

HaCaT cells were grown in roller bottles and were infected with viruses at 0.01 PFU/cell for 1 

h at 37oC then the bottles were PBS washed three times and then incubated with fresh medium. 

After 72 h the culture medium was harvested and cell debris was removed by low speed 

centrifugation (912 x g for 12 min at 4oC, Beckman GH-3.8). From the clarified supernatant 

virus particles were pelleted by centrifugation at 48300 x g for 2 h at 4oC (Beckman Type 19 

rotor). The pellet was resuspended in 2mL of 1% FCS/PBS and sonicated for 20 sec at 39% 

amplitude in a cup horn sonicator (Fisher Scientific). A 30mL 5% to 15% ficoll gradient was 

prepared onto which the resuspended virus was carefully added. The gradient was centrifuged 

at 26400 x g for 90 min at 4oC (Beckman SW32Ti) and the light scattering band of virus 

particles was carefully aspirated using a syringe and needle. The samples were diluted to 30 

mL with PBS and virus particles were pelleted by centrifugation at 68200 x g for 90 min at 4oC 
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(Beckman SW32Ti) and finally dissolved in 100μL of sterile PBS. The virus preparation was 

aliquoted and stored at -70oC, and the titre was determined by plaque assay.  

8.5.8 Transmission electron microscopy (TEM) 

Monolayers of HaCaT and HFF-hTERT cells were seeded on 35 mm culture dishes and 

infected at MOI of 3 PFU/cell. After 15 hpi the cells were washed with 0.9% (w/v) sodium 

chloride and fixed in 2% glutaraldehyde/2% formaldehyde in 0.5 M sodium cacodylate buffer 

(pH 7.4) for 4 h at 4oC. The samples were sent to the Department of Pathology TEM Facility, 

University of Cambridge, for further processing and TEM imaging.  

8.6 Construction of recombinant viruses 

Recombinant viruses were constructed by two-step Red recombination technique (Tischer et 

al., 2010). Firstly, a liner DNA target cassette containing a resistance gene and an I-SceI 

recognition site with a flanking region (homologous to target site) was constructed by PCR. 

The cassette was then introduced into E. coli GS1783 strain bearing BAC-cloned HSV-1 

genome (strain KOS) for homologous recombination. First Red recombination introduces the 

whole DNA construct in the target region of viral DNA and second Red recombination removes 

the selection markers from the insert leaving only the target gene in the viral DNA (Figure 8.1).  

8.5.1 Construction of a targeting cassettes 

A target DNA cassette was constructed using the appropriate primers as listed in Table 8.2 and 

according to the protocol as described in section 8.2.1. For most of the recombinant virus 

generation, where mutations were encoded in the primer sequences, pEPkan-S was used as the 

DNA template. However, for EYFP-tagging, pEP-EYFP(A206K)-in template DNA was used. 

After PCR, 50 μL of the product was treated with 2 μL DpnI in presence of 5.5 μL 10x buffer 

4 (NEB) at 37oC for 1 hr to remove the template DNA from the PCR amplicon. The mixture 

was then separated by agarose (0.8%) gel electrophoresis and purified using in house reagents. 

Concentration of the purified DNA was measured in Nanodrop (NanoDrop 1000, Thermo 

Scientific, USA). 



Chapter 8. Materials and methods 

232 
 

 

 

Figure 8.1 | Two-step Red recombination for mutant virus construction. A targeting 

cassette is first constructed using PCR and inserted by first Red recombination. Subsequently, 

expression of I-SceI cleaves the HSV BAC-KanR and second Red recombination removes the 

KanR gene from the construct. Coloured and dotted lines showing homologous recombination, 

asterisks are indicating unique restriction site. Lines (blue and green) or boxes (red) of identical 

colours are indicating same sequence. Image modified from Tishcher et al. (2006).  
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8.5.2 Competent cell preparation and electroporation 

2ml of LB containing 34μg/ml chloramphenicol (CAM) was innoculated with E. coli 

GS1783/HSV-BAC and incubated at 30oC with shaking overnight. Next day, 500 μL of the 

culture was transferred to 50 ml LB containing 34μg/ml CAM and incubated with shaking at 

30oC. When the cell density reached 0.5-0.7 nm at A600 the culture flask was transferred to 

42oC shaking water bath and incubated for 15 min to induce Red recombinase expression. The 

cells were immediately chilled in a shaking ice bath for 20 min. Subsequently, the cells were 

pelleted at 1200 x g at 4oC for 5 min, the supernatant was discarded and the pellet was washed 

with ice-cold 10% (v/v) glycerol. Glycerol wash was repeated three times and finally the pellet 

was resuspended in 1 ml ice-cold 10% (v/v) glycerol. Electrocompetent cells were aliquoted in 

100 μL aliquots and frozen in liquid N2 before storing at -70oC.  

The electrocompetent cells (50 μL) were mixed with ~5μL (100 ng maximum) of purified PCR 

product. Electroporation was carried out in a 2mm ice-cold electroporation cuvette with 3000v, 

25μF and 200Ω settings. The transformation mix was recovered in 1mL LB and incubated for 

1-2 hr in a 30oC shaking incubator. The cells were pelleted at 1200 x g for 5 min, resuspended 

in 100μL LB and plated on agar plate containing 34μg/mL chloramphenicol (CAM) (for BAC 

positive selection) and 30μg/mL kanamycin (KAN) (for targeting cassette selection). The plate 

was incubated overnight at 30oC and selected colonies were checked by restriction digest assay.  

8.5.3 Bacterial artificial chromosome (BAC) miniprep I and restriction digestion of BAC 

DNA 

HSV-1 BAC DNA was isolated using plasmid DNA purification buffers from NucleoBondXtra 

Midi (Macherey-Nagel) commercial kit. Representative colony from KAN/CAM plates 

inoculated in to 10mL LB media containing 30μg/mL KAN and 34μg/mL CAM and incubated 

overnight in a 30oC shaking incubator. The cells were pelleted at 1200 x g for 5 min at 4oC. 

The pellet was resuspended in 200μL RES (resuspension) buffer and 200μL of the suspension 

was transferred to a fresh 2mL eppendorf tube. Residual cells were diluted with 1mL of LB 

containing KAN/CAM and stored at 4oC for second Red recombination step and/or to create 

glycerol stocks. 300μL LYS (lysis) buffer was added and after 5 min incubation 300μL NEU 

(neutralising) buffer was added to stop lysis. The mixture was then centrifuged at 17,000 x g 

for 10 min in a 4oC centrifuge. The supernatant was transferred to 600μL phenol:cholorform 

solution (1:1) and the tube was inverted several times to mix the phases. The tube was 
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centrifuged for 5 min at 17,000 x g and the top layer containing DNA was carefully transferred 

into fresh tubes, to which 800μL isopropanol was added. The tube was inverted several times 

and left on the bench to allow the DNA to be precipitated and spun at 17,000 x g for 5 min. 

The supernatant was poured off and the DNA pellet was washed with 500μL 70% ethanol, air 

dried and finally resuspended in 40μL EB (elution buffer, 10mM Tris at pH 8). Isolated BAC 

DNA was digested with appropriate restriction enzymes to confirm correct recombination had 

occurred. 

8.5.4 Second Red recombination 

Bacterial cultures found to be positive in the BAC miniprep I were grown overnight in a 30oC 

shaking incubator. 100 μL of the culture was transferred to 2mL of LB containing 34μg/mL 

CAM and incubated at 30oC with shaking. After 2-3 h of incubation 2mL of LB with 34μg/mL 

CAM and 2% (w/v) arabinose (final concentration 1%) was added and the culture was 

incubated for another 1 h at 30oC with shaking to induce the expression of I-SceI. Next, the 

culture was heat-shocked at 42oC in shaking water bath for 30 min to stimulate the expression 

of Red recombination system. The culture was then incubated further for 3-4 h at 30oC in a 

shaking incubator. Samples were diluted and 10-3-10-4 dilutions were plated on CAM (34μg/ml) 

+ arabinose (1%) agar plates. The plates were incubated at 30oC for 24-48 h. From these plates, 

several colonies were plated onto replica LB agar plates with 34μg/mL CAM and with or 

without 30μg/mL KAN to select the clones which are CAM resistant and KAN sensitive. 

Individual colony grown on CAM plate but not on KAN-CAM plate was selected for BAC 

miniprep II.  

8.5.5 BAC miniprep II and restriction digestion of BAC DNA 

Selected KAN sensitive clones from CAM only plates were grown and DNA isolaterd as 

described above. Subsequently, restriction digest analysis was performed to confirm deletion 

of the selection markers from the chosen colonies. At least one of the positive clones was 

selected and grown overnight at 30oC with shaking and 1mL aliquots containing 15% (v/v) 

glycerol were snap frozen in the liquid N2 and finally stored at -70oC. BAC DNA of the selected 

clone was used for making recombinant virus and glycerol stock was used to generate 

additional modifications to the viral genome bu Red recombination.  
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8.5.6 BAC-excision and virus reconstitution  

A six well dish was seeded with 2x105 Vero cells/well. The following day, the cells were 

transfected with BAC DNA with pGS403 plasmid encoding Cre recombinase which excises 

the LoxP site flanked BAC cassette from the viral genome. Firstly, 100μL of serum free 

medium was thoroughly mixed with 3μL TransIT. After 5 min 2μL BAC DNA and 1μg 

pGS403 plasmid was added, mixed gently and incubated for 15-20 min. 100μL of the mixture 

was added drop by drop to the Vero cells. After 3-4 days incubation at 37oC the cells were 

scraped and sonicated for 30 sec at 39% amplitude and stored at -70oC as pre-master virus 

stock. Premaster stocks were titred and used for generating master stocks.  

8.5.7 HSV-1 BAC DNA preparation from infected cells 

Vero cells were seeded at 4x105 cells per well in six well plate and next day the cells were 

infected with 1 MOI of the appropriate recombinant HSV-1. After 24 h incubation at 37oC the 

cells were scraped, transferred to microcentrifuge tubes and spun down at 1200 x g for 5 mins 

in a refrigerated centrifuge (4oC). The supernatant was removed, and the cell pellet was lysed 

in 500µL of Proteinase K lysis buffer for 3 h at 37oC. The DNA was separated from protein by 

adding an equal mixture of chloroform and phenol (1:1) to the lysate and inverting gently 

several times before centrifuging at 1700 x g for 10 min at 4oC. DNA containing top layers was 

removed and DNA precipitated in isopropanol as described above. 

8.6 Stable isotope labelling with amino acids in cell culture (SILAC)  

8.6.1 Maintenance of SILAC-labelled cell lines 

HaCaT cells were grown in DMEM containing stable isotope of arginine (R) and Lysine (K) 

amino acid as R0K0, R6K4 and R10K8 for Light (L), Medium (M) and Heavy (H) respectively 

(Cambridge Isotope Laboratories). The cells were first grown in L-SILAC media containing 

no labelled amino acid for viability test. Next, the cells were grown in labelled media either M 

or H for a minimum of five cell doubling times. A brief trypsinisation was done to split the 

cells followed by 3x PBS washing to get rid of any residual trypsin.  

 

 



Chapter 8. Materials and methods 

236 
 

8.6.2 SILAC:IP from infected cells 

SILAC-labelled HaCaT cells (2x106 cells) were seeded to 9 cm dishes as in triplicate for Light, 

Medium, and Heavy labelled media. When the plates were 60-70% confluent the cells were 

infected with viruses at 37oC for 1 h followed by acid wash (1 min) and three PBS washes and 

incubated with either Light, Medium or Heavy DMEM media as required. At 18 hpi the cells 

were scrapped and washed three times in cold PBS and resuspended in 1mL cold lysis buffer 

(with protease inhibitors) and transferred to low binding eppendorf tubes. Cell lysis was carried 

out for 30 min at 4oC and spun at 14000rpm for 10 min at 4oC and then the supernatant was 

transferred to pre-chilled tubes (Table 8.13). A BCA assay was performed to determine the 

protein concentration and equal amount of proteins (from mock, control and sample) were 

utilised for IP experiments with desired antibody.  

Table 8.13 | Buffer for SILAC:IP 

Buffer Composition 
Lysis buffer 10mM Tris-HCl pH 7.5, 150mM NaCl, 0.5mM EDTA, 0.5% 

NP-40, 1:100  
Sigma Protease Inhibitor added freshly  

Wash buffer 10mM Tris-HCl pH 7.5, 150mM NaCl, 0.5mM EDTA 

 

8.6.3 Mass spectrometry of IP samples 

The combined samples from SILAC-labelled HaCaT cells of three biological repeats were 

submitted for LCMS/MS analysis at proteomics facility unit in Bristol University.   

8.6.4 Data analysis 

Raw MS data were copied into a spreadsheet and parameters other than accession number, 

unique peptide number, ratios comparing samples (Sample/Mock), variability ratios and 

proteins description were deleted. For Mock/Sample ratio the values were converted to 

Sample/Mock using ‘=1/ratio’ formula. In a new column of the spreadsheet log2 SILAC ratios 

for all Sample/Mock values were calculated. Since SILAC ratio results for protein data shows 

abundance between 0 and 1 the data is usually converted to a log2 SILAC ratio to make the 

abundance distribution wider on both positive and negative scale. Ideally, true interacting 

partners of the bait protein should have positive, environmental contaminants should have 
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negative and non-specific binding partners should have 0 log2 SILAC ratios. This 

transformation allows the data to fit a Gaussian distribution centred on a log2 SILAC ratio of 

0. From the Excel spreadsheet log2 Sample/Mock ratio column was copied into graph pad 

prism file. A ‘New analysis, was then run selecting ‘Frequency distribution’ mode to a generate 

histogram for the identified proteins at a given ratios. Next a ‘Gaussian distribution’ was 

generated for nonlinear regression which fits a curve on the previous histogram. This step also 

generated the mean and standard deviations of the Gaussian distribution. A threshold was then 

generated at the 95% confidence limit (p≤0.05) by adding 1.96 standard deviations to the mean. 

Threshold for other replica experiments were determined individually. Proteins having ratio 

variability above the threshold were considered as hits and proteins that were below the 

threshold may represent a contaminant. Proteins identified in at least two experiments 

represented a high confidence interaction. Across the replica experiments the identification of 

the same proteins via different or multiple accession numbers were sorted as the same (Emmott 

et al., 2014).  

8.7 Protein purification and cell free protein expression 

8.7.1 High-throughput grow-up of GST-tagged protein 

Transformed bacterial colonies from culture plates were picked and grown overnight at 37oC 

in 3mL of 2xTY medium with antibiotics as required. 35μL of the overnight culture was added 

to 3.5 mL of fresh 2xTY medium containing appropriate antibiotics. The culture was grown at 

37oC to an OD600 of 0.6-1.0. In a parallel set-up after adding 35 μL overnight culture, the media 

was transferred to 22oC incubator and protein expression was then induced by adding 0.2 mM 

IPTG. The 37oC induced cultures were grown for further 4 h whereas the 22oC cultures were 

grown over night. After each incubation 1.5mL culture was transferred to eppendorf tube and 

centrifuged at 9000 x g for 5 min to collect cell pellet. The pellets were stored at -20oC until 

required.  

8.7.2 Magnetic Bead GST binding 

For the cell pellets collected in the previous step, 250μL lysis buffer was added and the cells 

were lysed at RT for 30 min in an orbital shaker. The cell debris were pelleted at 14000 x g for 

10 min and 200μL cell lysates were collected. Into a flat bottom 96-well ELISA plate 20 μL of 

GST magnetic bead was dispensed and washed twice in 100μL of wash buffer for 1 min on a 
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shaker. The plate was then placed on a magnet for 1 min to collect the beads to the side wall of 

the wells and the supernatant was discarded. The 200μL cell lysates was directly transferred 

on to washed magnetic beads. The contents were mixed for 30 min by shaking at 4oC. Then 

the plate was placed on magnet for 1 min, the supernatant was removed, the beads were washed 

twice with 200μL wash buffer for 5 min and then separated on magnet for 1 min. Finally, 50μL 

elution buffer was added to each well and mixed on shaker for 1 min, placed on a magnet for 

1 min and the supernatant collected. The supernatant was mixed with SDS-PAGE loading 

buffer and analysed by gel electrophoresis. Buffers for magnetic GST pull-down listed in Table 

8.14. 

Table 8.14 | Buffers for Magnetic GST pull-down 

Buffer Composition 

Lysis 125mM Tris pH 7.4, 300mM NaCl, 1% (w/v) Tween20, 1.4mM 2-

mercaptoethanol 

Wash 125mM Tris pH 7.4, 300mM NaCl, 0.05% v/v Tween20  

Elution 125mM Tris 7.4, 300mM NaCl, 0.05% v/v Tween20, 50mM reduced 

glutathione  

 

8.7.3 GST Protein purification  

GST-tagged protein encoding plasmid bearing E. coli Rosetta cells were grown in 2xTY with 

appropriate antibiotics at 37oC for 4 h and transferred to 1 litre 2xTY media. After 2-3 h 

incubation at 37oC shaker IPTG was added to the medium when OD600 of the media was 

between 0.8-1.0. The next day, cell pellets were collected by centrifugation at 6000 x g for 15 

min at 4oC and used immediately or stored at -80oC. The pellets were resuspended in lysis 

buffer using a pre-cooled cell disruptor (Constant system) at 24 Kpsi. The lysates were clarified 

by centrifugation (40000 x g, 30 min at 4oC) and purified by affinity chromatography using 

GSH beads (GE Healthcare). GSH beads are added to the column and washed with MQW 

followed by buffer. The beads were then mixed with clarified supernatant of cell lysates and 

incubated (4oC, 1 h) on a rotating wheel. The mixture was added back to the column and 

washed with wash buffer. The protein was then extracted in elution buffer into various tubes. 

On a 96 well ELISA plate 200 μL Bradford reagents were added and 5 μL proteins from 
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different elution tubes were tested. Fractions shown to contain protein were purified by size 

exclusion (S200 16/600 column) chromatography and concentrated using a 10 KDa MWCO 4 

mL Amicon concentrator by centrifugation at 4000 rpm for 5 min. Purified protein was tested 

by SDS-PAGE analysis, concentrated, mixed 1:1 with 100% v/v glycerol and stored at -20oC. 

Table 8.15 shows the buffers used.  

Table 8.15 | Buffers for GST protein purification  

Buffer  Composition 

Lysis buffer 20mM Tris pH 7.6, 300mM NaCl, 0.5mM MgCl2, 1.4mM 2-ME, 

0.05% Tween20, 400U DNAse, 200μL protease inhibitor  

Wash buffer 20mM Tris pH 7.6, 300mM NaCl, 1mM DTT 

Elution buffer Wash buffer, 25mM GSH 

 

8.7.4 Cell-free protein expression in Wheat-germ 

Template DNA (2-4μg) containing desired insert in pF3A plasmid was dispensed on ice in 

200μL PCR tubes. MQW was added to make the final volume 20μL. TNT SP6 high yield 

Wheat germ reaction mixture was quickly thawed from -70oC and 30μL was added to the tube. 

The tube was incubated for 2 h at 25oC in a thermal cycler for cell free protein production.  

8.7.5 Magnetic GST pull-down with cell-free protein  

In a flat bottom 96 well ELISA plate, 20 μL GST magnetic beads were dispensed. The beads 

were washed twice with 200 μL wash buffer with 1 min shaking followed by 15 sec on magnet 

to remove the supernatant. The bait protein was added to this 96 well plate with GST beads 

and was shaken for 10 min and placed on a magnet to remove the supernatant which was 

followed by three washes as described above. The beads were kept in 100μL buffer. Cell-free 

reaction mixture (from the previous section) was then added to the appropriate 96 wells and 

mixed for 1 h followed by 4x washes as described above. Finally, 48 μL elution buffer was 

added to each well and mixed on a shaker for 1 min and then placed on a magnet to collect the 

supernatant for SDS-PAGE analysis. Buffers used in this step is listed in Table 8.16. 
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Table 8.16 | Buffer for GST pull-down of bait protein 

Buffer Composition 

Wash 20mM Tris pH 7.4, 200mM NaCl, 0.1% v/v NP-40, 1mM DTT, 1mM 

EDTA 

Elution  Wash buffer, 50mM reduced glutathione  

 

8.8 Lenti-transduction  

8.8.1 Gateway system for pDONR vector construction 

Gateway primers with necessary attP sites for recombining in to the pDONR (207) vector were 

constructed for the protein of interest. PCR reactions were perfomred from HSV-1 DNA 

template using the gateway primers and were purified by ‘PCR cleanup’. 150ng of pDONR 

containing attP recombination sites were mixed with 150ng of the PCR product in presence of 

2μL BP enzyme and MQW (up to 10 μL). The reaction mixture was incubated at 25oC on a 

thermal cycler or left on a bench overnight. Recombination events will remove the ccdB gene 

located between attP sites in the pDONR plasmid which is toxic to E. coli. To stop the reaction 

1 μL of Proteinase K was added and incubated at 37oC for 20 min. The plasmid was then 

transformed into E. coli DH5α and plated onto Gentamycin containing agar plate. From the 

plate, selected colonies were picked for miniprep. 1µL of the plasmid DNA was then digested 

with HpaI and PstI enzymes (1μL each) to check the correct size PCR product insert. Positive 

samples were sent for sequencing with Forward AttB1 (IGUC1906) and Reverse AttB2 

(IGUC1907) primers. Plasmid having the correct sequence was amplified by midiprep.  

 

8.8.2 Putting the pDONR insert into the destination vector 

150 ng pDONR was mixed with 150 ng Destination vector (pLenti CMV Puro Dest) in the 

presence of 2 μL LR clonase and MQW (up to 10 μL). The mixture was kept at 25oC for 1 h in 

a thermal cycler, subsequently, the enzyme was neutralised by adding proteinase K at 37oC for 

20 minutes. 5μL of this mixture was used to transform E. coli strain DH5α and plated on 

ampicillin containing plate. Selected colony was further grown for amplifying the plasmid 

DNA construct. 
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8.8.3 Generating Lenti virus stocks 

On a six well dish, HEK293T cells were seeded at 2x106 cells/well density. After 4 h the cells 

were transfected with Lenti construct along with additional plasmids (pMDL, pRev and 

pVSVG) to provide the necessary trans-acting factors/packaging materials for the virus. A 

GFP-Lenti added in a separate well as a positive control of transfection. After 12 h the media 

was replaced with 2% serum containing DMEM. The next day, when the control GFP-Lenti 

well showed cells were mostly (90%) GFP expressing the viruses were harvested. The 

supernatants were collected in syringes and passed through 0.45 μm filters. The virus 

preparations were directly used for stable cell line construction or stored at -80oC for future 

use.  

8.8.4 Generating Lenti-transduced stable cell lines 

A 24 well dish target cells was seeded at 2.5x105 cells/well density. The next day, 500μL of 

the filtered Lenti-virus (test and GFP) was added to the well by replacing the growth medium. 

After 6 h the medium was replaced with fresh medium. The following day, when GFP 

expression was seen in the control well the cells were trypsinised and seeded to T-75 flasks. 

When GFP expression was seen in the T-75 flasks, the media was replaced with puromycin (at 

a concentration pre-determined by a killcurve of the cell line) containing DMEM. After 2-3 

days, the culture medium was replaced again with normal DMEM and the cells were grown till 

confluency. At this stage part of the cells were frozen for storage in liquid Nitrogen and others 

were tested by WB and IF to detect desired gene insertion and were utilised for further research.  

8.9 siRNA knock down system 

Cells were seeded to a six well dish and were treated on the same day for transfection. A 50 

nM siRNA (FlexiTube GeneSolutions from QIAGEN) was mixed with 100µL Opti-Mem and 

in a separate tube, DharmaFECT, a transfection reagent was mixed with 100µL Opti-Mem. 

After 5 min the contents were mixed together and incubated for 30-45 min and then mixed with 

800µL antibiotic free DMEM medium. The cells on six well were washed 1x with optimem 

and the transfection reagent mixture was added. After overnight incubation a further 1mL of 

DMEM was added. The cells were incubated for 72 h and then lysed and tested by WB for 

silencing of the target gene expression. A positive control (Alix siRNA) and a negative control 

(ConX siRNA) were also added in the comparison. The siRNA sequences are shown in Table 

8.17. 
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 Table 8.17 | List of siRNA used in this study 

Product name Target sequence Supplier  
Hs_Nipsnap1_7 CTCACAGATAGGAGAGCTCTA QIAGEN 
Hs_Nipsnap1_6 CCGCTCCCTCTTTGTTCACAA QIAGEN 
Hs_Nipsnap1_5 CTGCGGCGCGTTTCTATTCCA QIAGEN 
Hs_Nipsnap1_1 CAGAATGGGTCCCAACATCTA QIAGEN 
Hs_GBAS_7 AAGATCCGGACCTAATATATA QIAGEN 
Hs_GBAS_6 AGCCCTCACAGAAGTCATGAA QIAGEN 
Hs_GBAS_5 CTCGAGAAGACAGCTGGCTAA QIAGEN 
Hs_GBAS_2 CTGGGAGGAATTGGTATATTA QIAGEN 
ConX AUUCUAUCACUAGCGUGACUU Dharmacon 
Alix GCC GCU GGU GAA GUU CAU CTT CMC (Pawliczek and 

Crump, 2009) 

  

8.10 CRISPR-Cas9 KO system 

8.10.1 Construction of CRISPR-Cas9 plasmid  

Oligos for sgRNA targeted against the desired sequence on the human genome were designed. 

The top and bottom oligos were mixed (100μM, 1μL each) with T4 ligation buffer (1μL) and 

T4 PNK (1μL) in MPW (6μL). The mixture was incubated in a thermal cycler at 37oC for 30 

min and then at 95oC for 5 min, then the machine was turned off to let the samples cool down 

to room temperature (RT) on the cycler. The samples were diluted to 1:100 in MQW to be used 

for ligation reaction. A pSpCas9(BB)-2A-Puro (PX459) plasmid was cut with BbsI restriction 

enzyme at 37oC for 2 h. For ligation, 1μL of the plasmid was mixed with 10 μL of the diluted 

Oligos along with T4 ligation buffer (2μL), T4 ligase (1μL) and MQW (4μL) and incubated 

for 1-2 h at RT. The ligated plasmid was then transformed into E. coli DH5α and platted on 

ampicillin containing agar plates. The next day, selected colonies were picked for plasmid 

miniprep followed by sequencing with the U6 primer.  

8.10.2 Generation CRISPR-Cas9 KO cell 

On a six well dish, HaCaT cells were seeded with 5 x106 cells per well (for ~50% confluency) 

and the cells were transfected with the CRISPR-Cas9 plasmid. In an eppendorf tube, 100μL 

DMEM was mixed with 6 L of Lipofectamine 2000 and was incubated for 5 min. Next, 2μg of 

the plasmid DNA was added to the tube. The mixture was then incubated at RT for 30 min and 

added to the cell. After 18-24 h incubation at 37oC in a CO2 incubator the culture medium was 
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replaced with DMEM containing 2μg/ml puromycin to kill the untransfected cells and 

incubated at the same condition. After 48 h the medium was replaced with normal DMEM 

added with 1 x non-essential amino acid to allow growth of the transfected cells that survived 

the puromycin selection. Once the cells became confluent they were transferred to a larger 

flask. The cells were tested by WB for the loss of desired gene expression and were stored in 

liquid Nitrogen as a population of KO cells. From the population, single cell clones were 

generated by limiting dilution on a 96 well dish. The KO clones were tested by WB for protein 

expression and were stored at liquid Nitrogen.  

8.10.3 Sequencing of the KO clones 

For genomic DNA extraction from a KO clone, some cells were transferred to a PCR tube and 

spun for 5 min at 300 xg. The supernatant was removed and to the cell pellet 10x Taq Buffer 

without Mg (1μL), 50mM MgCl2 (0.3μL), Proteinase K 20mg/mL (0.5μL) and MQW (7.2μL) 

and incubated at 60oC for 1 h and then at 95oC for 15 min in a thermal cycler. 90 μL MQW 

was added to each sample and 2 μL of this gDNA was used for a PCR amplification reaction 

for the gene intended to be KO. The PCR amplified products were separated on a gel and cloned 

into the pTOPO-blunt vector using manufacturers protocol (Zero Blunt TOPO, Invitrogen). 

The vector was transformed into E. coli DH5α and plated on agar plates. Selected colonies 

were taken for plasmid DNA miniprep and were sent for sequencing using M13 forward 

primer. The sequence data was aligned against the parental gene sequence to understand the 

pattern of deletion(s)/mutation(s) acquired in the genome of the KO clone.  
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Appendix Figure 9.1 | Representation of disordered gE cytoplasmic tail. Secondary 

structure of gE cytoplasmic tail (445-550). Protein disorder and secondary structure were 

predicted using NetsurfP web-based tool.  
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Appendix Figure 9.2 | Optimisation for gECT-GST production in different E. coli. 

Plasmid for gECT-GST was constructed and three different E. coli cells (Rosetta, B834 and 

BL21) were transformed. The cells were grown at two different temperatures (37oC and 22oC) 

and lysed to see protein expression of desired molecular weight. Protein markers are indicated 

on the left and expected protein positions on the right.   

 

 

 

 

 



 Chapter 9: Appendix 

 

246 
 

 

 

Appendix Figure 9.3 | Protein sequence alignment of Nipsnap1 and 2 variants. The two 

variants of Nipsnap1 (top) and 2 (bottom) were aligned to understand structural similarity 

between them. Sequences in red indicate exon regions (4 for Nipsnap1 and 6 for Nipsnap2) 

targeted for CRISPR-Cas9 KO. Sequences underlined indicate the binding sites of the 

antibodies used in this thesis. 

 

 



 Chapter 9: Appendix 

 

247 
 

 

 

 

 

 

 

 

Appendix Figure 9.4 a. continue overleaf  
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Appendix Figure 9.4 b. continue overleaf  
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       (b) 
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                  (c) 

 

Appendix Figure 9.4 | Protein sequence alignment of Nipsnap (1 or 2 or both) KO clone 

variants. Predictive protein sequences generated from the Nipsnap (1 or 2 or both) KO clones 

DNA sequences were aligned with the parental protein sequence. Compared to the parental 

protein sequence variant 1 and 3 from NC1 clones were 8 and 15 amino acid shorter 

respectively. The rest of the clones had truncated protein sequences compared to their parents. 
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Appendix Table 9.1 | Raw data for all SILAC hits  
A
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Tube 1 

H6VRF8 Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - [H6VRF8_HUMAN] 25 0.010 1.000 0.010 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

23 0.010 1.000 0.010 

B4DRR0 cDNA FLJ53910, highly similar to Keratin, type II cytoskeletal 6A OS=Homo sapiens PE=2 
SV=1 - [B4DRR0_HUMAN] 

4 0.223 0.414 0.088 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - 
[K1C10_HUMAN] 

17 0.010 1.000 0.010 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 - 
[K2C5_HUMAN] 

16 0.090 0.537 0.037 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - 
[K2C6B_HUMAN] 

3       

F6KPG5 Albumin (Fragment) OS=Homo sapiens PE=2 SV=1 - [F6KPG5_HUMAN] 15 0.010 1.000 0.010 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - 
[K1C14_HUMAN] 

5 0.134 0.438 0.046 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - 
[K1C16_HUMAN] 

10 0.188 0.593 0.112 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 18 0.010 1.000 0.010 

B7Z4V2 cDNA FLJ51907, highly similar to Stress-70 protein, mitochondrial OS=Homo sapiens 
PE=2 SV=1 - [B7Z4V2_HUMAN] 

17 0.573 0.785 0.447 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 - 
[K1C17_HUMAN] 

5 0.323 0.463 0.138 

P11142 Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - 
[HSP7C_HUMAN] 

11 0.723 1.183 0.793 

P11021 78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - 
[GRP78_HUMAN] 

13 0.647 0.949 0.583 

US8 US8 12 1.000 100.000 100.000 

P09211 Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 SV=2 - 
[GSTP1_HUMAN] 

7 0.939 0.902 0.773 

P0DMV8 Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1 - 
[HS71A_HUMAN] 

8 0.784 0.972 0.835 

B4E335 cDNA FLJ52842, highly similar to Actin, cytoplasmic 1 OS=Homo sapiens PE=2 SV=1 - 
[B4E335_HUMAN] 

8 0.933 1.818 1.584 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4 - 
[K1C19_HUMAN] 

4 2.028 0.447 1.072 

P07355 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN] 9 0.395 1.353 0.596 

P68104 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 - 
[EF1A1_HUMAN] 

7 0.960 0.914 0.941 

A0A0A0MS14 Protein IGHV1-45 (Fragment) OS=Homo sapiens GN=IGHV1-45 PE=4 SV=1 - 
[A0A0A0MS14_HUMAN] 

1       

B7Z597 cDNA FLJ54373, highly similar to 60 kDa heat shock protein, mitochondrial OS=Homo 
sapiens PE=2 SV=1 - [B7Z597_HUMAN] 

10 0.820 2.348 1.851 

Q0IIN1 Keratin 77 OS=Homo sapiens GN=KRT77 PE=1 SV=1 - [Q0IIN1_HUMAN] 3 0.010 1.000 0.010 

A1A4E9 Keratin 13 OS=Homo sapiens GN=KRT13 PE=1 SV=1 - [A1A4E9_HUMAN] 5 0.015 1.000 0.015 

B4DMA2 cDNA FLJ54023, highly similar to Heat shock protein HSP 90-beta OS=Homo sapiens PE=2 
SV=1 - [B4DMA2_HUMAN] 

3 0.466 3.803 1.804 

C9J5D1 N-alpha-acetyltransferase 50 OS=Homo sapiens GN=NAA50 PE=1 SV=1 - 
[C9J5D1_HUMAN] 

7 0.711 0.468 0.327 

B4DJI2 cDNA FLJ53342, highly similar to Granulins OS=Homo sapiens PE=2 SV=1 - 
[B4DJI2_HUMAN] 

9 0.244 0.879 0.230 

P05787 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7 - 
[K2C8_HUMAN] 

2 2.186 0.489 1.095 

H0YH81 ATP synthase subunit beta (Fragment) OS=Homo sapiens GN=ATP5B PE=1 SV=1 - 
[H0YH81_HUMAN] 

6 0.315 2.940 1.703 

B3KY79 cDNA FLJ46620 fis, clone TLUNG2000654, highly similar to Keratin, type II cytoskeletal 
7 OS=Homo sapiens PE=2 SV=1 - [B3KY79_HUMAN] 

6 3.283 0.431 1.682 

A0A0A0MSI0 Peroxiredoxin-1 (Fragment) OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - 
[A0A0A0MSI0_HUMAN] 

5 0.636 0.844 0.528 
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P35232 Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1 - [PHB_HUMAN] 6 0.559 6.275 3.518 

F5GY37 Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=1 - [F5GY37_HUMAN] 5 0.572 8.193 4.845 

F2Z2S8 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=1 - [F2Z2S8_HUMAN] 4 0.748 0.794 0.567 

Q7RTS7 Keratin, type II cytoskeletal 74 OS=Homo sapiens GN=KRT74 PE=1 SV=2 - 
[K2C74_HUMAN] 

1 0.010 1.000 0.010 

B4E2Z3 cDNA FLJ54090, highly similar to 4F2 cell-surface antigen heavy chain OS=Homo sapiens 
PE=2 SV=1 - [B4E2Z3_HUMAN] 

4 0.459 1.882 0.908 

H7BYV1 Interferon-induced transmembrane protein 2 (Fragment) OS=Homo sapiens GN=IFITM2 
PE=4 SV=1 - [H7BYV1_HUMAN] 

1 0.530 10.266 8.608 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - [DESP_HUMAN] 9 0.010 1.000 0.010 

P25705 ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 - 
[ATPA_HUMAN] 

6 0.789 3.281 2.226 

US7 US7 2 1.000 100.000 100.000 

Q2VPJ6 HSP90AA1 protein (Fragment) OS=Homo sapiens GN=HSP90AA1 PE=1 SV=1 - 
[Q2VPJ6_HUMAN] 

1       

P48047 ATP synthase subunit O, mitochondrial OS=Homo sapiens GN=ATP5O PE=1 SV=1 - 
[ATPO_HUMAN] 

3 1.527 1.176 1.142 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 - [HORN_HUMAN] 3       

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 10 0.010 1.000 0.010 

P68371 Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1 - [TBB4B_HUMAN] 5 1.025 1.562 1.777 

B3KSC3 cDNA FLJ35987 fis, clone TESTI2014269, highly similar to D-3-phosphoglycerate 
dehydrogenase (EC 1.1.1.95) OS=Homo sapiens PE=2 SV=1 - [B3KSC3_HUMAN] 

4 0.808 2.618 1.902 

A0A024R1X8 Junction plakoglobin, isoform CRA_a OS=Homo sapiens GN=JUP PE=4 SV=1 - 
[A0A024R1X8_HUMAN] 

5 0.014 6.369 0.032 

B3KTE3 cDNA FLJ38125 fis, clone D6OST2000127, moderately similar to RAS-RELATED 
PROTEIN RAB-8B OS=Homo sapiens PE=2 SV=1 - [B3KTE3_HUMAN] 

1       

P05141 ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 SV=7 - [ADT2_HUMAN] 4 0.673 1.529 1.188 

P35579 Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 - [MYH9_HUMAN] 4 3.837 0.463 1.127 

H7C2U6 Protein NipSnap homolog 1 (Fragment) OS=Homo sapiens GN=NIPSNAP1 PE=1 SV=1 - 
[H7C2U6_HUMAN] 

3 1.000 100.000 100.000 

A8K486 Peptidyl-prolyl cis-trans isomerase OS=Homo sapiens PE=2 SV=1 - [A8K486_HUMAN] 3 0.914 1.374 1.256 

UL39 UL39 5 14.907 2.306 58.624 

A0A024RA28 Heterogeneous nuclear ribonucleoprotein A2/B1, isoform CRA_d OS=Homo sapiens 
GN=HNRPA2B1 PE=4 SV=1 - [A0A024RA28_HUMAN] 

3 0.666 0.569 0.349 

B2DFV8 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 - 
[B2DFV8_HUMAN] 

1     1.003 

E5RJX2 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1 - 
[E5RJX2_HUMAN] 

2 0.586 0.924 0.541 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN] 2       

P25311 Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=1 SV=2 - [ZA2G_HUMAN] 3 0.010 1.000 0.010 

C8C504 Beta-globin OS=Homo sapiens GN=HBB PE=3 SV=1 - [C8C504_HUMAN] 4 0.010 1.000 0.010 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 - [S10A8_HUMAN] 3 0.025 2.354 0.058 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 SV=2 - 
[K2C78_HUMAN] 

3 0.010 1.000 0.010 

H3BTN5 Pyruvate kinase (Fragment) OS=Homo sapiens GN=PKM PE=1 SV=1 - 
[H3BTN5_HUMAN] 

4 0.642 1.203 0.797 

M0R257 Ras-related protein Rab-3A (Fragment) OS=Homo sapiens GN=RAB3A PE=1 SV=1 - 
[M0R257_HUMAN] 

1     1.819 

B4DDU2 cDNA FLJ60097, highly similar to Tubulin alpha-ubiquitous chain OS=Homo sapiens PE=2 
SV=1 - [B4DDU2_HUMAN] 

1 1.037 1.230 1.276 

B4E190 cDNA FLJ57770, moderately similar to ADP-ribosylation factor 3 OS=Homo sapiens PE=2 
SV=1 - [B4E190_HUMAN] 

2 0.645 2.097 1.353 

B4DF70 cDNA FLJ60461, highly similar to Peroxiredoxin-2 (EC 1.11.1.15) OS=Homo sapiens PE=2 
SV=1 - [B4DF70_HUMAN] 

1 0.316 0.262 0.083 

A8K6Q8 cDNA FLJ75881, highly similar to Homo sapiens transferrin receptor (p90, CD71) (TFRC), 
mRNA OS=Homo sapiens PE=2 SV=1 - [A8K6Q8_HUMAN] 

2 0.010 1.000 0.010 

B3KRY3 cDNA FLJ35079 fis, clone PLACE6005283, highly similar to Lysosome-associated 
membrane glycoprotein 1 OS=Homo sapiens PE=2 SV=1 - [B3KRY3_HUMAN] 

1 0.557 1.907 1.063 

P62269 40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3 - [RS18_HUMAN] 3 0.990 0.491 0.596 

P30486 HLA class I histocompatibility antigen, B-48 alpha chain OS=Homo sapiens GN=HLA-B 
PE=1 SV=1 - [1B48_HUMAN] 

3 0.400 1.962 0.784 

A0A087X106 Keratin, type II cuticular Hb1 OS=Homo sapiens GN=KRT81 PE=1 SV=1 - 
[A0A087X106_HUMAN] 

4 0.010 1.000 0.010 
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UL27 UL27 5 10.000 3.069 100.000 

P27824 Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 - [CALX_HUMAN] 3 0.921 1.220 1.024 

A0A087X2I6 Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=1 SV=1 - 
[A0A087X2I6_HUMAN] 

3 0.010 1.000 0.010 

A0A0A0MR02 Voltage-dependent anion-selective channel protein 2 (Fragment) OS=Homo sapiens 
GN=VDAC2 PE=1 SV=1 - [A0A0A0MR02_HUMAN] 

4 0.278 4.104 1.363 

P21796 Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 
SV=2 - [VDAC1_HUMAN] 

2 0.713 2.725 1.943 

Q4QZC0 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 - 
[Q4QZC0_HUMAN] 

1 0.351 8.100 2.839 

P62805 Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 - [H4_HUMAN] 3 0.481 0.390 0.163 

A0A087X130 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 - 
[A0A087X130_HUMAN] 

3 0.010 1.000 0.010 

X6RFL8 Ras-related protein Rab-14 (Fragment) OS=Homo sapiens GN=RAB14 PE=1 SV=1 - 
[X6RFL8_HUMAN] 

1 0.412 2.942 1.212 

UL23 UL23 2 8.939 2.426 21.687 

P31944 Caspase-14 OS=Homo sapiens GN=CASP14 PE=1 SV=2 - [CASPE_HUMAN] 3 0.010 1.000 0.010 

U3PXP0 Alpha globin chain (Fragment) OS=Homo sapiens GN=HBA2 PE=3 SV=1 - 
[U3PXP0_HUMAN] 

1 0.010 1.000 0.010 

B4DL14 ATP synthase subunit gamma OS=Homo sapiens PE=2 SV=1 - [B4DL14_HUMAN] 2 0.717 0.998 0.608 

P01036 Cystatin-S OS=Homo sapiens GN=CST4 PE=1 SV=3 - [CYTS_HUMAN] 1       

A0A087WZH7 Myristoylated alanine-rich C-kinase substrate OS=Homo sapiens GN=MARCKS PE=1 
SV=1 - [A0A087WZH7_HUMAN] 

2 0.938     

A0A024R7P5 Similar to Laminin receptor 1, isoform CRA_a OS=Homo sapiens GN=LOC388524 PE=3 
SV=1 - [A0A024R7P5_HUMAN] 

3 0.731 0.947 0.802 

P10599 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 - [THIO_HUMAN] 2 0.454 0.932 0.406 

UL34 UL34 2       

A0A024R3X7 Heat shock 10kDa protein 1 (Chaperonin 10), isoform CRA_d OS=Homo sapiens 
GN=HSPE1 PE=3 SV=1 - [A0A024R3X7_HUMAN] 

1 1.643 0.612 1.006 

P01621 Ig kappa chain V-III region NG9 (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[KV303_HUMAN] 

1       

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 - [DEF1_HUMAN] 2 0.010 1.000 0.010 

UL26.5 UL26.5 1   2.720   

B3KT34 cDNA FLJ37560 fis, clone BRCOC2000333, highly similar to Succinate dehydrogenase 
(ubiquinone) flavoprotein subunit, mitochondrial (EC 1.3.5.1) OS=Homo sapiens PE=2 
SV=1 - [B3KT34_HUMAN] 

2 0.072 1.216 0.634 

Q53EW3 Regulatory factor X, 5 variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53EW3_HUMAN] 

1       

UL44 UL44 2 10.070 2.774 27.936 

C9JA05 Protein JCHAIN (Fragment) OS=Homo sapiens GN=JCHAIN PE=1 SV=1 - 
[C9JA05_HUMAN] 

1 0.010 1.000 0.010 

Q6KB66 Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=KRT80 PE=1 SV=2 - 
[K2C80_HUMAN] 

2     0.010 

Q5T749 Keratinocyte proline-rich protein OS=Homo sapiens GN=KPRP PE=1 SV=1 - 
[KPRP_HUMAN] 

2 0.010 1.000 0.010 

H7C1V0 Cathepsin D (Fragment) OS=Homo sapiens GN=CTSD PE=1 SV=1 - [H7C1V0_HUMAN] 1 0.094 2.160 0.203 

P31025 Lipocalin-1 OS=Homo sapiens GN=LCN1 PE=1 SV=1 - [LCN1_HUMAN] 2       

UL19 UL19 3 100.000 5.763 100.000 

B4DTA2 cDNA FLJ60148, highly similar to Homo sapiens heterogeneous nuclear ribonucleoprotein 
D-like (HNRPDL), transcript variant 2, mRNA OS=Homo sapiens PE=2 SV=1 - 
[B4DTA2_HUMAN] 

2 1.209 0.363 0.439 

P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 
- [G3P_HUMAN] 

3 0.092 2.514 0.361 

Q9Y509 VH3 protein (Fragment) OS=Homo sapiens GN=VH3 PE=2 SV=1 - [Q9Y509_HUMAN] 2       

O00483 Cytochrome c oxidase subunit NDUFA4 OS=Homo sapiens GN=NDUFA4 PE=1 SV=1 - 
[NDUA4_HUMAN] 

2 0.197 4.396 0.831 

UL18 UL18 2       

Q5CAQ5 Tumor rejection antigen (Gp96) 1 OS=Homo sapiens GN=TRA1 PE=2 SV=1 - 
[Q5CAQ5_HUMAN] 

2 0.469 2.727 1.278 

S6BAR0 IgG L chain OS=Homo sapiens PE=2 SV=1 - [S6BAR0_HUMAN] 1       

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 - [SPB12_HUMAN] 3 0.010 1.000 0.010 

Q08ES8 Cell growth-inhibiting protein 34 OS=Homo sapiens PE=2 SV=1 - [Q08ES8_HUMAN] 2 0.545 0.649 0.354 
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P05089 Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2 - [ARGI1_HUMAN] 2 0.010 1.000 0.010 

P25398 40S ribosomal protein S12 OS=Homo sapiens GN=RPS12 PE=1 SV=3 - [RS12_HUMAN] 1 0.728 1.407 1.024 

G3V3U4 Proteasome subunit alpha type OS=Homo sapiens GN=PSMA6 PE=1 SV=1 - 
[G3V3U4_HUMAN] 

2 0.785 1.384 1.087 

P19105 Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2 - 
[ML12A_HUMAN] 

1   0.826   

P63104 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1 - [1433Z_HUMAN] 1 0.928 2.152 1.996 

B7ZAL5 cDNA, FLJ79229, highly similar to Lactotransferrin (EC 3.4.21.-) OS=Homo sapiens PE=2 
SV=1 - [B7ZAL5_HUMAN] 

5 0.010 1.000 0.010 

K7EJT5 60S ribosomal protein L22 (Fragment) OS=Homo sapiens GN=RPL22 PE=1 SV=1 - 
[K7EJT5_HUMAN] 

1 0.701 1.103 0.773 

Q01650 Large neutral amino acids transporter small subunit 1 OS=Homo sapiens GN=SLC7A5 
PE=1 SV=2 - [LAT1_HUMAN] 

2       

F8VV32 Lysozyme OS=Homo sapiens GN=LYZ PE=1 SV=1 - [F8VV32_HUMAN] 1       

Q2F838 Eukaryotic translation elongation factor 1 gamma (Fragment) OS=Homo sapiens PE=2 
SV=1 - [Q2F838_HUMAN] 

1 0.010 1.000 0.010 

P01833 Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR PE=1 SV=4 - 
[PIGR_HUMAN] 

1 0.010 1.000 0.010 

C9JMH6 Alpha-2-antiplasmin (Fragment) OS=Homo sapiens GN=SERPINF2 PE=1 SV=1 - 
[C9JMH6_HUMAN] 

1       

P62857 40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1 - [RS28_HUMAN] 1 0.552 0.776 0.428 

C9J7B1 Protein NipSnap homolog 2 (Fragment) OS=Homo sapiens GN=GBAS PE=1 SV=1 - 
[C9J7B1_HUMAN] 

1 1.000 100.000 100.000 

B7Z556 cDNA FLJ56822, highly similar to Alpha-2-HS-glycoprotein OS=Homo sapiens PE=2 
SV=1 - [B7Z556_HUMAN] 

1       

P02656 Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] 1 0.010 1.000 0.010 

C9J0F2 Protein-L-isoaspartate(D-aspartate) O-methyltransferase (Fragment) OS=Homo sapiens 
GN=PCMT1 PE=1 SV=1 - [C9J0F2_HUMAN] 

1   1.223   

H0Y512 Adipocyte plasma membrane-associated protein (Fragment) OS=Homo sapiens 
GN=APMAP PE=1 SV=1 - [H0Y512_HUMAN] 

1 0.230 4.577 1.051 

P31942 Heterogeneous nuclear ribonucleoprotein H3 OS=Homo sapiens GN=HNRNPH3 PE=1 
SV=2 - [HNRH3_HUMAN] 

1 0.010 1.000 0.010 

P04083 Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 - [ANXA1_HUMAN] 2 0.287 5.220 1.498 

D6R904 Tropomyosin alpha-3 chain OS=Homo sapiens GN=TPM3 PE=1 SV=1 - 
[D6R904_HUMAN] 

2 0.228 0.320 0.495 

P09228 Cystatin-SA OS=Homo sapiens GN=CST2 PE=1 SV=1 - [CYTT_HUMAN] 1 0.010 1.000 0.010 

H3BUH7 Fructose-bisphosphate aldolase (Fragment) OS=Homo sapiens GN=ALDOA PE=1 SV=1 - 
[H3BUH7_HUMAN] 

1   1.108   

P12273 Prolactin-inducible protein OS=Homo sapiens GN=PIP PE=1 SV=1 - [PIP_HUMAN] 1       

M0QZK8 Uncharacterized protein OS=Homo sapiens PE=4 SV=1 - [M0QZK8_HUMAN] 1 0.011 1.000 0.011 

Q4JFL9 Protein S100 (Fragment) OS=Homo sapiens GN=FLG PE=2 SV=1 - [Q4JFL9_HUMAN] 1 0.010 1.000 0.010 

B7ZMD7 Alpha-amylase OS=Homo sapiens GN=AMY1A PE=2 SV=1 - [B7ZMD7_HUMAN] 4 0.010 1.000 0.010 

B4DUL5 cDNA FLJ51625, highly similar to Ubiquinol-cytochrome-c reductase complex coreprotein 
I, mitochondrial (EC 1.10.2.2) OS=Homo sapiens PE=2 SV=1 - [B4DUL5_HUMAN] 

1 1.000 100.000 100.000 

Q15388 Mitochondrial import receptor subunit TOM20 homolog OS=Homo sapiens GN=TOMM20 
PE=1 SV=1 - [TOM20_HUMAN] 

1       

P03973 Antileukoproteinase OS=Homo sapiens GN=SLPI PE=1 SV=2 - [SLPI_HUMAN] 1 0.010 1.000 0.010 

E9PMK8 Tripartite motif-containing protein 3 (Fragment) OS=Homo sapiens GN=TRIM3 PE=1 
SV=5 - [E9PMK8_HUMAN] 

1       

UL12 UL12 1 100.000 1.327 100.000 

B3KM80 Nucleolin, isoform CRA_c OS=Homo sapiens GN=NCL PE=2 SV=1 - 
[B3KM80_HUMAN] 

1 0.266 1.265 0.336 

P05556 Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2 - [ITB1_HUMAN] 2 0.329 3.721 1.224 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 - [IGHA1_HUMAN] 2 0.010 1.000 0.010 

A0A0A7M1X5 Lamin B2, isoform CRA_b OS=Homo sapiens GN=LMNB2 PE=2 SV=1 - 
[A0A0A7M1X5_HUMAN] 

1     1.862 

K7EIP6 Uncharacterized protein (Fragment) OS=Homo sapiens PE=4 SV=1 - [K7EIP6_HUMAN] 1 0.435 2.642 1.150 

P19474 E3 ubiquitin-protein ligase TRIM21 OS=Homo sapiens GN=TRIM21 PE=1 SV=1 - 
[RO52_HUMAN] 

2 0.068 1.051 0.072 

H3BMH2 Ras-related protein Rab-11A (Fragment) OS=Homo sapiens GN=RAB11A PE=3 SV=1 - 
[H3BMH2_HUMAN] 

1 0.511 0.629 0.321 

B2R5H0 Protein S100 OS=Homo sapiens PE=2 SV=1 - [B2R5H0_HUMAN] 1 0.826 14.169 11.697 
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Q86WV2 COX4I1 protein OS=Homo sapiens GN=COX4I1 PE=1 SV=1 - [Q86WV2_HUMAN] 1     0.838 

Q5HYD9 Putative uncharacterized protein DKFZp686M0619 (Fragment) OS=Homo sapiens 
GN=DKFZp686M0619 PE=2 SV=1 - [Q5HYD9_HUMAN] 

1 0.635 2.184 1.387 

C5IX07 Tumor-associated calcium signal transducer 2 OS=Homo sapiens GN=TACSTD2 PE=4 
SV=1 - [C5IX07_HUMAN] 

1 0.264 2.749 0.725 

A0A059QFD5 Cytochrome c oxidase subunit 2 OS=Homo sapiens GN=COX2 PE=3 SV=1 - 
[A0A059QFD5_HUMAN] 

1     2.122 

P36955 Pigment epithelium-derived factor OS=Homo sapiens GN=SERPINF1 PE=1 SV=4 - 
[PEDF_HUMAN] 

1 0.019 1.000 0.019 

Q8NAV1 Pre-mRNA-splicing factor 38A OS=Homo sapiens GN=PRPF38A PE=1 SV=1 - 
[PR38A_HUMAN] 

1       

Q0ZCF6 Immunglobulin heavy chain variable region (Fragment) OS=Homo sapiens PE=4 SV=1 - 
[Q0ZCF6_HUMAN] 

1       

A0A087WWY3 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=1 - [A0A087WWY3_HUMAN] 3 0.280 1.000 0.119 

Q9NYE4 Cervical mucin MUC5B (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q9NYE4_HUMAN] 1       

B4DE30 cDNA FLJ51711, highly similar to T-complex protein 1 subunit epsilon OS=Homo sapiens 
PE=2 SV=1 - [B4DE30_HUMAN] 

1   3.461   

V9HWC6 Peptidyl-prolyl cis-trans isomerase OS=Homo sapiens GN=HEL-S-39 PE=2 SV=1 - 
[V9HWC6_HUMAN] 

1       

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 - [FILA2_HUMAN] 1       

B7Z3V1 cDNA FLJ60077, highly similar to Sodium/potassium-transporting ATPase alpha-1 chain 
(EC 3.6.3.9) (Fragment) OS=Homo sapiens PE=2 SV=1 - [B7Z3V1_HUMAN] 

3 0.274 12.484 1.548 

A0A0C4DGS1 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Homo 
sapiens GN=DDOST PE=1 SV=1 - [A0A0C4DGS1_HUMAN] 

1 1.149 2.278 2.618 

E5RJH3 60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=1 - 
[E5RJH3_HUMAN] 

1   1.762   

Q08188 Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens GN=TGM3 PE=1 
SV=4 - [TGM3_HUMAN] 

2 0.010 1.000 0.010 

Q5QNZ2 ATP synthase F(0) complex subunit B1, mitochondrial OS=Homo sapiens GN=ATP5F1 
PE=1 SV=1 - [Q5QNZ2_HUMAN] 

1 0.670 2.158 1.445 

F6RFD5 Destrin OS=Homo sapiens GN=DSTN PE=1 SV=1 - [F6RFD5_HUMAN] 1 0.462 0.809 0.374 

E9PLA2 Rho-related GTP-binding protein RhoC OS=Homo sapiens GN=RHOC PE=4 SV=1 - 
[E9PLA2_HUMAN] 

1     1.387 

P62851 40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1 - [RS25_HUMAN] 1       

H7C547 Sodium/potassium-transporting ATPase subunit beta-3 (Fragment) OS=Homo sapiens 
GN=ATP1B3 PE=1 SV=1 - [H7C547_HUMAN] 

1 0.223 6.592 1.469 

B4DZG7 ADP-ribosylation factor-like protein 1 OS=Homo sapiens GN=ARL1 PE=1 SV=1 - 
[B4DZG7_HUMAN] 

1 1.000 34.746 34.746 

B4E290 cDNA FLJ50039, highly similar to Homo sapiens solute carrier family 25, member 24, 
transcript variant 1, mRNA OS=Homo sapiens PE=2 SV=1 - [B4E290_HUMAN] 

2 0.791 2.362 0.827 

M0R3H0 40S ribosomal protein S16 OS=Homo sapiens GN=RPS16 PE=1 SV=1 - 
[M0R3H0_HUMAN] 

1 1.505 0.671 1.010 

H7C4C8 T-complex protein 1 subunit theta (Fragment) OS=Homo sapiens GN=CCT8 PE=1 SV=1 - 
[H7C4C8_HUMAN] 

1 1.250 1.897 2.372 

B4DL55 cDNA FLJ61309, highly similar to Laminin beta-3 chain OS=Homo sapiens PE=2 SV=1 - 
[B4DL55_HUMAN] 

1 0.010 23.682 0.186 

Q6W6M8 Antigen MLAA-42 (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q6W6M8_HUMAN] 1 1.000 26.066 26.066 

P27348 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1 - [1433T_HUMAN] 1 1.000 100.000 100.000 

H3BNP9 Sulfide:quinone oxidoreductase, mitochondrial (Fragment) OS=Homo sapiens GN=SQRDL 
PE=1 SV=1 - [H3BNP9_HUMAN] 

1 0.211 3.653 0.769 

B3KUZ8 Aspartate aminotransferase OS=Homo sapiens PE=2 SV=1 - [B3KUZ8_HUMAN] 1 0.810 0.983 0.797 

Q9UBI6 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 OS=Homo sapiens 
GN=GNG12 PE=1 SV=3 - [GBG12_HUMAN] 

1 0.543 2.655 1.441 

Q70T18 BBF2H7/FUS protein (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q70T18_HUMAN] 2 0.397 0.348 0.138 

I3L3U9 Ribosomal L1 domain-containing protein 1 (Fragment) OS=Homo sapiens GN=RSL1D1 
PE=1 SV=1 - [I3L3U9_HUMAN] 

1       

A0A075B6K9 Ig lambda-2 chain C regions (Fragment) OS=Homo sapiens GN=IGLC2 PE=4 SV=1 - 
[A0A075B6K9_HUMAN] 

1 0.010 1.000 0.010 

H7BY36 RNA-binding protein EWS (Fragment) OS=Homo sapiens GN=EWSR1 PE=1 SV=1 - 
[H7BY36_HUMAN] 

1 0.010 1.000 0.010 

E5RJR5 S-phase kinase-associated protein 1 OS=Homo sapiens GN=SKP1 PE=1 SV=1 - 
[E5RJR5_HUMAN] 

1 0.503     

B4DRV1 cDNA FLJ51536, highly similar to Protein-glutamine gamma-glutamyltransferase K (EC 
2.3.2.13) OS=Homo sapiens PE=2 SV=1 - [B4DRV1_HUMAN] 

1 0.010 1.000 0.010 

P09669 Cytochrome c oxidase subunit 6C OS=Homo sapiens GN=COX6C PE=1 SV=2 - 
[COX6C_HUMAN] 

1 0.571 4.387 2.505 

J3KSC4 Ras-related C3 botulinum toxin substrate 3 (Fragment) OS=Homo sapiens GN=RAC3 PE=1 
SV=1 - [J3KSC4_HUMAN] 

1 0.341 1.674 0.572 
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Q9Y277 Voltage-dependent anion-selective channel protein 3 OS=Homo sapiens GN=VDAC3 PE=1 
SV=1 - [VDAC3_HUMAN] 

1 1.000 100.000 100.000 

A0A024RC29 Desmocollin 3, isoform CRA_b OS=Homo sapiens GN=DSC3 PE=4 SV=1 - 
[A0A024RC29_HUMAN] 

1 0.010 1.000 0.010 

F8VS58 60S acidic ribosomal protein P0 (Fragment) OS=Homo sapiens GN=RPLP0 PE=1 SV=1 - 
[F8VS58_HUMAN] 

1 0.681     

B4DV51 GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN PE=1 SV=1 - 
[B4DV51_HUMAN] 

1 0.228 8.660 1.976 

P31151 Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 - [S10A7_HUMAN] 2       

A2VCQ4 PRKCSH protein (Fragment) OS=Homo sapiens GN=PRKCSH PE=2 SV=1 - 
[A2VCQ4_HUMAN] 

1     5.190 

R4GMX5 Basigin (Fragment) OS=Homo sapiens GN=BSG PE=1 SV=1 - [R4GMX5_HUMAN] 1 0.782 2.122 1.660 

Q9NZM1 Myoferlin OS=Homo sapiens GN=MYOF PE=1 SV=1 - [MYOF_HUMAN] 2 0.442 2.965 1.312 

H0YNX5 Signal peptidase complex catalytic subunit SEC11 (Fragment) OS=Homo sapiens 
GN=SEC11A PE=1 SV=1 - [H0YNX5_HUMAN] 

1 0.698 1.637 1.143 

A0A087WYY6 Plakophilin-1 OS=Homo sapiens GN=PKP1 PE=1 SV=1 - [A0A087WYY6_HUMAN] 1       

F8WCK2 Elongation factor Ts, mitochondrial OS=Homo sapiens GN=TSFM PE=1 SV=1 - 
[F8WCK2_HUMAN] 

1       

C9J0H3 Phospholipid scramblase 1 (Fragment) OS=Homo sapiens GN=PLSCR1 PE=1 SV=1 - 
[C9J0H3_HUMAN] 

1 1.000 100.000 100.000 

E9PJY4 Puromycin-sensitive aminopeptidase (Fragment) OS=Homo sapiens GN=NPEPPS PE=1 
SV=2 - [E9PJY4_HUMAN] 

1     2.253 

UL40 UL40 2 1.620 32.042 51.902 

A0A0A1TSG4 CD47 OS=Homo sapiens GN=CD47 PE=2 SV=1 - [A0A0A1TSG4_HUMAN] 1 0.762 3.265 2.489 

P80188 Neutrophil gelatinase-associated lipocalin OS=Homo sapiens GN=LCN2 PE=1 SV=2 - 
[NGAL_HUMAN] 

1 0.408     

H7BZJ3 Protein disulfide-isomerase A3 (Fragment) OS=Homo sapiens GN=PDIA3 PE=1 SV=1 - 
[H7BZJ3_HUMAN] 

1 0.784 1.918 1.504 

E5RFX3 WD repeat-containing protein 6 OS=Homo sapiens GN=WDR6 PE=1 SV=2 - 
[E5RFX3_HUMAN] 

1       

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 - [SPB3_HUMAN] 2 0.015 1.000 0.015 

B4DZ85 Nuclear receptor coactivator 4 OS=Homo sapiens GN=NCOA4 PE=1 SV=1 - 
[B4DZ85_HUMAN] 

1       

UL51 UL51 1       

UL37 UL37 2   8.302   

F8WE04 Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=1 - 
[F8WE04_HUMAN] 

1 0.503 1.543 0.775 

P01597 Ig kappa chain V-I region DEE OS=Homo sapiens PE=1 SV=1 - [KV105_HUMAN] 1       

H0Y5E8 GTP-binding protein SAR1a (Fragment) OS=Homo sapiens GN=SAR1A PE=1 SV=1 - 
[H0Y5E8_HUMAN] 

1 1.359 1.266 1.721 

J3QKQ5 Importin subunit beta-1 (Fragment) OS=Homo sapiens GN=KPNB1 PE=1 SV=1 - 
[J3QKQ5_HUMAN] 

1 1.000 56.464 56.464 

C9J592 Ras-related protein Rab-7a (Fragment) OS=Homo sapiens GN=RAB7A PE=1 SV=1 - 
[C9J592_HUMAN] 

2 0.130 3.619 0.590 

H7C125 Ras-related protein Rab-2A (Fragment) OS=Homo sapiens GN=RAB2A PE=1 SV=1 - 
[H7C125_HUMAN] 

1 0.627 2.149 1.348 

A0A024R085 UDP glycosyltransferase 3 family, polypeptide A1, isoform CRA_b OS=Homo sapiens 
GN=UGT3A1 PE=4 SV=1 - [A0A024R085_HUMAN] 

1       

I6L8B7 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 PE=1 SV=1 - 
[I6L8B7_HUMAN] 

2 0.010 1.000 0.010 

V9GZN0 Histone H2A gene (lambda-HHG55) (Fragment) OS=Homo sapiens PE=4 SV=1 - 
[V9GZN0_HUMAN] 

1 0.249     

P04431 Ig kappa chain V-I region Walker OS=Homo sapiens PE=1 SV=1 - [KV123_HUMAN] 1       

C9JLE9 Kelch-like protein 22 (Fragment) OS=Homo sapiens GN=KLHL22 PE=1 SV=1 - 
[C9JLE9_HUMAN] 

1       

B7Z462 cDNA FLJ58016, highly similar to Polypeptide N-acetylgalactosaminyltransferase2 (EC 
2.4.1.41) OS=Homo sapiens PE=2 SV=1 - [B7Z462_HUMAN] 

1 0.359 4.192 1.506 

US6 US6 1 3.467 4.402 15.264 

A0A075B6Z2 Protein TRAJ56 (Fragment) OS=Homo sapiens GN=TRAJ56 PE=4 SV=1 - 
[A0A075B6Z2_HUMAN] 

1       

A0A087WUL7 Nuclear receptor-binding factor 2 OS=Homo sapiens GN=NRBF2 PE=1 SV=1 - 
[A0A087WUL7_HUMAN] 

1 0.010 1.000 0.010 

B7Z4L4 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 OS=Homo 
sapiens GN=RPN1 PE=1 SV=1 - [B7Z4L4_HUMAN] 

3 0.678 3.440 12.575 

P04040 Catalase OS=Homo sapiens GN=CAT PE=1 SV=3 - [CATA_HUMAN] 1       
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P63173 60S ribosomal protein L38 OS=Homo sapiens GN=RPL38 PE=1 SV=2 - [RL38_HUMAN] 1       

P31947 14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 - [1433S_HUMAN] 1   1.236   

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 - [APOD_HUMAN] 1 0.010 1.000 0.010 

Q9BYJ0 Fibroblast growth factor-binding protein 2 OS=Homo sapiens GN=FGFBP2 PE=1 SV=1 - 
[FGFP2_HUMAN] 

1       

Q9C010 cAMP-dependent protein kinase inhibitor beta OS=Homo sapiens GN=PKIB PE=3 SV=1 - 
[IPKB_HUMAN] 

1       

Q8WVV4 Protein POF1B OS=Homo sapiens GN=POF1B PE=1 SV=3 - [POF1B_HUMAN] 1       

Q9BXM0 Periaxin OS=Homo sapiens GN=PRX PE=1 SV=2 - [PRAX_HUMAN] 1       

P30050 60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 SV=1 - [RL12_HUMAN] 1 0.504 1.716 0.865 

P46783 40S ribosomal protein S10 OS=Homo sapiens GN=RPS10 PE=1 SV=1 - [RS10_HUMAN] 1 1.096 1.753 1.922 

Q9HCY8 Protein S100-A14 OS=Homo sapiens GN=S100A14 PE=1 SV=1 - [S10AE_HUMAN] 1 0.010 100.000 0.427 

O75556 Mammaglobin-B OS=Homo sapiens GN=SCGB2A1 PE=1 SV=1 - [SG2A1_HUMAN] 1       

Q5JUK2 Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein 1 
OS=Homo sapiens GN=SOHLH1 PE=1 SV=4 - [SOLH1_HUMAN] 

1       

Q8IW75 Serpin A12 OS=Homo sapiens GN=SERPINA12 PE=1 SV=1 - [SPA12_HUMAN] 1       

Q9UKZ4 Teneurin-1 OS=Homo sapiens GN=TENM1 PE=1 SV=2 - [TEN1_HUMAN] 1 1.000 100.000 100.000 

Q96IX5 Up-regulated during skeletal muscle growth protein 5 OS=Homo sapiens GN=USMG5 
PE=1 SV=1 - [USMG5_HUMAN] 

1       

Q5T750 Skin-specific protein 32 OS=Homo sapiens GN=XP32 PE=1 SV=1 - [XP32_HUMAN] 1       

Q8N823 Zinc finger protein 611 OS=Homo sapiens GN=ZNF611 PE=2 SV=2 - [ZN611_HUMAN] 1       

Q96EG3 Zinc finger protein 837 OS=Homo sapiens GN=ZNF837 PE=2 SV=2 - [ZN837_HUMAN] 1 0.010 1.000 0.010 

B4DGW0 E3 SUMO-protein ligase PIAS2 OS=Homo sapiens GN=PIAS2 PE=1 SV=1 - 
[B4DGW0_HUMAN] 

1       

D9MZN6 ATP synthase protein 8 OS=Homo sapiens GN=ATP8 PE=3 SV=1 - [D9MZN6_HUMAN] 1       

A0A024R3J7 HCG2032701, isoform CRA_a OS=Homo sapiens GN=hCG_2032701 PE=4 SV=1 - 
[A0A024R3J7_HUMAN] 

2 0.308 4.170 1.285 

Q8TBT6 Putative uncharacterized protein (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q8TBT6_HUMAN] 

1 1.597 2.561 4.091 

B4DP51 cDNA FLJ54533, highly similar to Heterogeneous nuclear ribonucleoprotein H OS=Homo 
sapiens PE=2 SV=1 - [B4DP51_HUMAN] 

1   59.504   

B4DHR1 cDNA FLJ53009, highly similar to Calreticulin OS=Homo sapiens PE=2 SV=1 - 
[B4DHR1_HUMAN] 

1     4.730 

F8W1N5 Nascent polypeptide-associated complex subunit alpha (Fragment) OS=Homo sapiens 
GN=NACA PE=1 SV=1 - [F8W1N5_HUMAN] 

1 0.801 0.362 0.290 

M0QZ36 Occludin/ELL domain-containing protein 1 OS=Homo sapiens GN=OCEL1 PE=4 SV=1 - 
[M0QZ36_HUMAN] 

1       

B2R4M6 Protein S100 OS=Homo sapiens PE=2 SV=1 - [B2R4M6_HUMAN] 2       

A0A087WWA5 Tenascin-X OS=Homo sapiens GN=TNXB PE=1 SV=1 - [A0A087WWA5_HUMAN] 1 0.021 1.000 0.021 

Q59H27 Hydroxysteroid (17-beta) dehydrogenase 4 variant (Fragment) OS=Homo sapiens PE=2 
SV=1 - [Q59H27_HUMAN] 

1 0.445 2.562 1.140 

F8W0V3 Extracellular glycoprotein lacritin OS=Homo sapiens GN=LACRT PE=1 SV=1 - 
[F8W0V3_HUMAN] 

1 0.010 1.000 0.010 

A0A087WTT6 40S ribosomal protein S29 OS=Homo sapiens GN=RPS29 PE=1 SV=1 - 
[A0A087WTT6_HUMAN] 

1       

E5RK64 Vesicle-associated membrane protein-associated protein B/C OS=Homo sapiens GN=VAPB 
PE=1 SV=1 - [E5RK64_HUMAN] 

1       

Q6PJM8 RRP1B protein (Fragment) OS=Homo sapiens GN=RRP1B PE=2 SV=1 - 
[Q6PJM8_HUMAN] 

1 0.010 1.000 0.010 

H0YE40 CD44 antigen (Fragment) OS=Homo sapiens GN=CD44 PE=1 SV=1 - [H0YE40_HUMAN] 1 0.392 1.354 0.531 

C9JYN0 Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1 - 
[C9JYN0_HUMAN] 

1       

Q15898 (clone XP6A11B) mRNA, partial EST (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q15898_HUMAN] 

1       

A0A075B6N7 Ig alpha-2 chain C region (Fragment) OS=Homo sapiens GN=IGHA2 PE=1 SV=1 - 
[A0A075B6N7_HUMAN] 

1       

V9GY25 ATP-dependent 6-phosphofructokinase, platelet type (Fragment) OS=Homo sapiens 
GN=PFKP PE=1 SV=1 - [V9GY25_HUMAN] 

1       

F5H1S8 Malectin (Fragment) OS=Homo sapiens GN=MLEC PE=1 SV=1 - [F5H1S8_HUMAN] 2 0.102 3.887 0.575 

C9J3L8 Translocon-associated protein subunit alpha OS=Homo sapiens GN=SSR1 PE=1 SV=1 - 
[C9J3L8_HUMAN] 

1 0.258 4.909 1.267 
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F8WDN2 Thioredoxin, mitochondrial OS=Homo sapiens GN=TXN2 PE=1 SV=1 - 
[F8WDN2_HUMAN] 

1       

F5H895 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1 OS=Homo 
sapiens GN=DAD1 PE=1 SV=1 - [F5H895_HUMAN] 

1   3.181   

H0YDD8 60S acidic ribosomal protein P2 (Fragment) OS=Homo sapiens GN=RPLP2 PE=1 SV=1 - 
[H0YDD8_HUMAN] 

1 0.650 1.420 0.924 

A0A075B6E2 40S ribosomal protein S19 OS=Homo sapiens GN=RPS19 PE=1 SV=1 - 
[A0A075B6E2_HUMAN] 

1 2.126 0.471 1.002 

X6RJP6 Transgelin-2 (Fragment) OS=Homo sapiens GN=TAGLN2 PE=1 SV=1 - 
[X6RJP6_HUMAN] 

1 0.582 2.681 1.561 

B2RA57 cDNA, FLJ94708 OS=Homo sapiens PE=2 SV=1 - [B2RA57_HUMAN] 1       

A8K251 cDNA FLJ77884 OS=Homo sapiens PE=2 SV=1 - [A8K251_HUMAN] 1       

H0YH80 Heterogeneous nuclear ribonucleoprotein A1 (Fragment) OS=Homo sapiens 
GN=HNRNPA1 PE=1 SV=1 - [H0YH80_HUMAN] 

2 0.611 0.306 0.187 

H0YLS6 Proteasome subunit alpha type OS=Homo sapiens GN=PSMA4 PE=1 SV=1 - 
[H0YLS6_HUMAN] 

1 0.363 0.936 0.340 

M0R0Y3 RuvB-like 2 OS=Homo sapiens GN=RUVBL2 PE=1 SV=1 - [M0R0Y3_HUMAN] 1   0.768   

H7C4H2 Signal recognition particle receptor subunit beta (Fragment) OS=Homo sapiens GN=SRPRB 
PE=1 SV=1 - [H7C4H2_HUMAN] 

1       

B1AKQ8 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (Fragment) OS=Homo 
sapiens GN=GNB1 PE=1 SV=5 - [B1AKQ8_HUMAN] 

1 0.850 1.258 1.070 

A6NKZ9 Nucleolysin TIAR OS=Homo sapiens GN=TIAL1 PE=1 SV=1 - [A6NKZ9_HUMAN] 1 0.341 0.579 0.198 

E9PD35 Receptor protein-tyrosine kinase OS=Homo sapiens GN=FLT4 PE=1 SV=1 - 
[E9PD35_HUMAN] 

1       

E5RFS3 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase B (Fragment) 
OS=Homo sapiens GN=MGAT4B PE=1 SV=1 - [E5RFS3_HUMAN] 

1       

E9PHM2 Probable leucine--tRNA ligase, mitochondrial OS=Homo sapiens GN=LARS2 PE=1 SV=1 
- [E9PHM2_HUMAN] 

1       

B6DU66 Estrogen receptor alpha delta 2*,3,4,5,6,7*/834 hypothalamic isoform (Fragment) 
OS=Homo sapiens GN=ESR1 PE=2 SV=1 - [B6DU66_HUMAN] 

1       

F5H608 ATP synthase subunit d, mitochondrial OS=Homo sapiens GN=ATP5H PE=1 SV=2 - 
[F5H608_HUMAN] 

1 0.568 4.140 2.353 

J3QSA3 Polyubiquitin-B (Fragment) OS=Homo sapiens GN=UBB PE=1 SV=1 - 
[J3QSA3_HUMAN] 

1     0.471 

J3KRG2 Gasdermin-A (Fragment) OS=Homo sapiens GN=GSDMA PE=1 SV=5 - 
[J3KRG2_HUMAN] 

1 0.010 1.000 0.010 

A2NZL8 Tcell beta chain (Fragment) OS=Homo sapiens GN=TCR PE=2 SV=1 - 
[A2NZL8_HUMAN] 

1 0.013 1.000 0.013 

Q9P0C3 HSPC258 (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q9P0C3_HUMAN] 1       

B7Z2R9 cDNA FLJ52540, highly similar to Lysosome-associated membrane glycoprotein 2 
OS=Homo sapiens PE=2 SV=1 - [B7Z2R9_HUMAN] 

1 0.190 2.070 0.393 

Q8TD79 Protein tyrosine phosphatase receptor type C (Fragment) OS=Homo sapiens PE=4 SV=1 - 
[Q8TD79_HUMAN] 

1       

Q53T40 Putative uncharacterized protein FHL2 (Fragment) OS=Homo sapiens GN=FHL2 PE=4 
SV=1 - [Q53T40_HUMAN] 

1 0.759     

H0YLU2 Proteasome activator complex subunit 1 (Fragment) OS=Homo sapiens GN=PSME1 PE=1 
SV=1 - [H0YLU2_HUMAN] 

1 0.018 1.000 0.018 

K7ESE8 Bleomycin hydrolase (Fragment) OS=Homo sapiens GN=BLMH PE=1 SV=1 - 
[K7ESE8_HUMAN] 

1       

A4QMX9 C2orf16 protein (Fragment) OS=Homo sapiens GN=C2orf16 PE=2 SV=1 - 
[A4QMX9_HUMAN] 

1       

Q96IE3 Similar to plectin 1, intermediate filament binding protein, 500kD (Fragment) OS=Homo 
sapiens PE=2 SV=1 - [Q96IE3_HUMAN] 

1       

B4DNY1 cDNA FLJ60318, highly similar to RNA-binding protein 6 OS=Homo sapiens PE=2 SV=1 
- [B4DNY1_HUMAN] 

1 0.013 1.000 0.013 

C9JQM9 Aspartate--tRNA ligase, cytoplasmic (Fragment) OS=Homo sapiens GN=DARS PE=1 
SV=1 - [C9JQM9_HUMAN] 

1 0.541 3.537 1.914 

G3V3H8 Tryptophan--tRNA ligase, cytoplasmic (Fragment) OS=Homo sapiens GN=WARS PE=1 
SV=5 - [G3V3H8_HUMAN] 

1 0.975 0.998 0.973 

B4DSR0 cDNA FLJ60080, highly similar to 130 kDa leucine-rich protein (LRP 130) (Fragment) 
OS=Homo sapiens PE=2 SV=1 - [B4DSR0_HUMAN] 

2 0.224 2.059 0.461 

Q6AI22 Putative uncharacterized protein DKFZp686H16106 (Fragment) OS=Homo sapiens 
GN=DKFZp686H16106 PE=2 SV=1 - [Q6AI22_HUMAN] 

1       

A0JLQ2 Kinesin-like protein (Fragment) OS=Homo sapiens GN=KIF13B PE=2 SV=1 - 
[A0JLQ2_HUMAN] 

1       

I3L1H9 Zymogen granule protein 16 homolog B (Fragment) OS=Homo sapiens GN=ZG16B PE=1 
SV=1 - [I3L1H9_HUMAN] 

1       

Q9H834 cDNA FLJ13966 fis, clone Y79AA1001394, weakly similar to CELL DIVISION PROTEIN 
FTSH HOMOLOG (EC 3.4.24.-) OS=Homo sapiens PE=2 SV=1 - [Q9H834_HUMAN] 

1 0.333 1.483 0.494 
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Q86W20 Protease serine 1 (Fragment) OS=Homo sapiens GN=PRSS1 PE=3 SV=1 - 
[Q86W20_HUMAN] 

1 0.010 1.000 0.010 

K7ENK9 Vesicle-associated membrane protein 2 OS=Homo sapiens GN=VAMP2 PE=4 SV=1 - 
[K7ENK9_HUMAN] 

1       

A4UCS8 Enolase (Fragment) OS=Homo sapiens PE=2 SV=1 - [A4UCS8_HUMAN] 1 0.010     

H7C3P7 Ras-related protein Ral-A (Fragment) OS=Homo sapiens GN=RALA PE=1 SV=1 - 
[H7C3P7_HUMAN] 

1 0.355 1.008 0.358 

Q7L4N0 CAPZB protein (Fragment) OS=Homo sapiens GN=CAPZB PE=2 SV=1 - 
[Q7L4N0_HUMAN] 

1     0.449 

B4DJL0 cDNA FLJ60278, highly similar to Dolichyl-diphosphooligosaccharide--
proteinglycosyltransferase 63 kDa subunit (EC 2.4.1.119) OS=Homo sapiens PE=2 SV=1 - 
[B4DJL0_HUMAN] 

1 1.000 100.000 100.000 

L8ECA8 Alternative protein MCM3AP OS=Homo sapiens GN=MCM3AP PE=4 SV=1 - 
[L8ECA8_HUMAN] 

1       

V9GZL3 GBP OS=Homo sapiens PE=4 SV=1 - [V9GZL3_HUMAN] 1     0.960 

B7Z867 cDNA FLJ52293, moderately similar to Microtubule-associated protein RP/EB family 
member 3 OS=Homo sapiens PE=2 SV=1 - [B7Z867_HUMAN] 

1 0.026 1.000 0.026 

L8EAK9 Alternative protein ABCB8 OS=Homo sapiens GN=ABCB8 PE=4 SV=1 - 
[L8EAK9_HUMAN] 

1       

B2R8A2 cDNA, FLJ93804, highly similar to Homo sapiens gp25L2 protein (HSGP25L2G), mRNA 
OS=Homo sapiens PE=2 SV=1 - [B2R8A2_HUMAN] 

1     2.300 

S6BGF5 IgG H chain OS=Homo sapiens PE=2 SV=1 - [S6BGF5_HUMAN] 1       

A8KAD2 cDNA FLJ77477, highly similar to Homo sapiens zinc finger protein 484 (ZNF484), 
transcript variant 2, mRNA OS=Homo sapiens PE=2 SV=1 - [A8KAD2_HUMAN] 

1       

L8EC50 Alternative protein LCE1E OS=Homo sapiens GN=LCE1E PE=4 SV=1 - 
[L8EC50_HUMAN] 

1       

B2RDI6 cDNA, FLJ96628, highly similar to Homo sapiens mitogen-activated protein kinase kinase 
kinase 11(MAP3K11), mRNA OS=Homo sapiens PE=2 SV=1 - [B2RDI6_HUMAN] 

1 0.010 1.000 0.010 

B2RA91 cDNA, FLJ94773, highly similar to Homo sapiens splicing factor, arginine/serine-rich 2, 
interacting protein (SFRS2IP), mRNA OS=Homo sapiens PE=2 SV=1 - 
[B2RA91_HUMAN] 

1       

A1L407 Histone cluster 1, H1t OS=Homo sapiens GN=HIST1H1T PE=2 SV=1 - 
[A1L407_HUMAN] 

1 0.013 41.111 0.547 

UL22 UL22 1 1.000 99.223 99.223 

UL24 UL24 1       

US2 US2 1       

A0A090N8G0 Glycyl-tRNA synthetase OS=Homo sapiens GN=GARS PE=3 SV=1 - 
[A0A090N8G0_HUMAN] 

1 1.000 47.172 47.172 

A0A0F7G8J1 Plasminogen OS=Homo sapiens GN=PLG PE=2 SV=1 - [A0A0F7G8J1_HUMAN] 1 0.010 1.000 0.010 

A0A0A0MRR2 Sphingomyelin synthase-related protein 1 OS=Homo sapiens GN=SAMD8 PE=1 SV=1 - 
[A0A0A0MRR2_HUMAN] 

1       

Tube 2 

H6VRF8 Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - [H6VRF8_HUMAN] 29 0.010 1.000 0.010 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

29 0.010 1.000 0.010 

F6KPG5 Albumin (Fragment) OS=Homo sapiens PE=2 SV=1 - [F6KPG5_HUMAN] 18 0.010 1.000 0.010 

B4DRR0 cDNA FLJ53910, highly similar to Keratin, type II cytoskeletal 6A OS=Homo sapiens PE=2 
SV=1 - [B4DRR0_HUMAN] 

2 0.092 0.810 0.074 

P48668 Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 SV=3 - 
[K2C6C_HUMAN] 

1       

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - 
[K2C6B_HUMAN] 

1       

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 - 
[K2C5_HUMAN] 

13 0.142 0.995 0.100 

P09211 Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 SV=2 - 
[GSTP1_HUMAN] 

12 0.732 0.881 0.629 

B7Z4V2 cDNA FLJ51907, highly similar to Stress-70 protein, mitochondrial OS=Homo sapiens 
PE=2 SV=1 - [B7Z4V2_HUMAN] 

21 0.595 0.875 0.510 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 18 0.010 1.000 0.010 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - 
[K1C10_HUMAN] 

16 0.010 1.000 0.010 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - 
[K1C14_HUMAN] 

6 0.043 0.695 0.025 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - 
[K1C16_HUMAN] 

7 0.010 1.000 0.010 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 - 
[K1C17_HUMAN] 

4 0.221 0.858 0.190 
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P0DMV8 Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1 - 
[HS71A_HUMAN] 

9 0.757 1.046 0.799 

B4E335 cDNA FLJ52842, highly similar to Actin, cytoplasmic 1 OS=Homo sapiens PE=2 SV=1 - 
[B4E335_HUMAN] 

4 0.735 2.017 1.343 

US8 US8 9 1.000 100.000 100.000 

B7Z597 cDNA FLJ54373, highly similar to 60 kDa heat shock protein, mitochondrial OS=Homo 
sapiens PE=2 SV=1 - [B7Z597_HUMAN] 

13 0.613 2.134 0.925 

P68104 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 - 
[EF1A1_HUMAN] 

7 0.769 1.174 0.808 

A0A0A0MS14 Protein IGHV1-45 (Fragment) OS=Homo sapiens GN=IGHV1-45 PE=4 SV=1 - 
[A0A0A0MS14_HUMAN] 

1       

Q53HF2 Heat shock 70kDa protein 8 isoform 2 variant (Fragment) OS=Homo sapiens PE=1 SV=1 - 
[Q53HF2_HUMAN] 

6 0.496 1.399 0.624 

B7Z6P1 cDNA FLJ53662, highly similar to Actin, alpha skeletal muscle OS=Homo sapiens PE=2 
SV=1 - [B7Z6P1_HUMAN] 

1       

P08729 Keratin, type II cytoskeletal 7 OS=Homo sapiens GN=KRT7 PE=1 SV=5 - 
[K2C7_HUMAN] 

5 4.697 0.573 2.721 

A8K872 cDNA FLJ77849, highly similar to Homo sapiens keratin, hair, basic, 6 (monilethrix) 
(KRTHB6), mRNA OS=Homo sapiens PE=2 SV=1 - [A8K872_HUMAN] 

4 0.010 1.000 0.010 

Q0IIN1 Keratin 77 OS=Homo sapiens GN=KRT77 PE=1 SV=1 - [Q0IIN1_HUMAN] 3       

Q15323 Keratin, type I cuticular Ha1 OS=Homo sapiens GN=KRT31 PE=1 SV=3 - 
[K1H1_HUMAN] 

6 0.010 1.000 0.010 

P11021 78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - 
[GRP78_HUMAN] 

7 0.685 0.946 0.744 

P78386 Keratin, type II cuticular Hb5 OS=Homo sapiens GN=KRT85 PE=1 SV=1 - 
[KRT85_HUMAN] 

2 0.021 1.000 0.010 

P07355 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN] 10 0.404 0.926 0.421 

US7 US7 3 0.100 10.000 14.845 

Q86Y46 Keratin, type II cytoskeletal 73 OS=Homo sapiens GN=KRT73 PE=1 SV=1 - 
[K2C73_HUMAN] 

1 0.010 1.000 0.010 

F5GZS6 4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=1 - 
[F5GZS6_HUMAN] 

10 0.462 2.007 0.955 

P05787 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7 - 
[K2C8_HUMAN] 

6 2.814 0.733 2.027 

K7ERE3 Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 SV=1 - 
[K7ERE3_HUMAN] 

3 0.010 1.000 0.010 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4 - 
[K1C19_HUMAN] 

1 1.719 1.044 1.796 

B4DJI2 cDNA FLJ53342, highly similar to Granulins OS=Homo sapiens PE=2 SV=1 - 
[B4DJI2_HUMAN] 

7 0.252 1.069 0.282 

B3KML9 cDNA FLJ11352 fis, clone HEMBA1000020, highly similar to Tubulin beta-2C chain 
OS=Homo sapiens PE=2 SV=1 - [B3KML9_HUMAN] 

1 0.960 2.168 2.082 

B4DRW1 cDNA FLJ55805, highly similar to Keratin, type II cytoskeletal 4 OS=Homo sapiens PE=2 
SV=1 - [B4DRW1_HUMAN] 

1 0.010 8.486 0.049 

H0YH81 ATP synthase subunit beta (Fragment) OS=Homo sapiens GN=ATP5B PE=1 SV=1 - 
[H0YH81_HUMAN] 

4 0.443 2.725 1.106 

Q96B85 TUBB protein (Fragment) OS=Homo sapiens GN=TUBB PE=2 SV=1 - 
[Q96B85_HUMAN] 

1 0.296 3.158 0.934 

B3KT06 cDNA FLJ37398 fis, clone BRAMY2027467, highly similar to Tubulin alpha-ubiquitous 
chain OS=Homo sapiens PE=2 SV=1 - [B3KT06_HUMAN] 

2 1.000 100.000 100.000 

P25705 ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 - 
[ATPA_HUMAN] 

7 0.483 2.554 1.370 

B3KSC3 cDNA FLJ35987 fis, clone TESTI2014269, highly similar to D-3-phosphoglycerate 
dehydrogenase (EC 1.1.1.95) OS=Homo sapiens PE=2 SV=1 - [B3KSC3_HUMAN] 

4 0.644 5.322 14.854 

Q9BQE3 Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1C PE=1 SV=1 - 
[TBA1C_HUMAN] 

1       

A0A0A0MR02 Voltage-dependent anion-selective channel protein 2 (Fragment) OS=Homo sapiens 
GN=VDAC2 PE=1 SV=1 - [A0A0A0MR02_HUMAN] 

4 0.576 3.976 2.817 

Q8TAS0 ATP synthase subunit gamma (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q8TAS0_HUMAN] 

5 0.697 1.231 0.930 

O76013 Keratin, type I cuticular Ha6 OS=Homo sapiens GN=KRT36 PE=2 SV=1 - 
[KRT36_HUMAN] 

2 0.010 1.000 0.010 

B4DMA2 cDNA FLJ54023, highly similar to Heat shock protein HSP 90-beta OS=Homo sapiens PE=2 
SV=1 - [B4DMA2_HUMAN] 

2 0.479 1.823 0.873 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 SV=2 - 
[K2C78_HUMAN] 

3 0.010 1.000 0.010 

F5GY37 Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=1 - [F5GY37_HUMAN] 6 0.627 9.078 6.132 

P01876 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 - [IGHA1_HUMAN] 4 0.010 1.000 0.010 

P21796 Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 
SV=2 - [VDAC1_HUMAN] 

6 0.682 2.636 1.458 
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H7BYV1 Interferon-induced transmembrane protein 2 (Fragment) OS=Homo sapiens GN=IFITM2 
PE=4 SV=1 - [H7BYV1_HUMAN] 

1 0.844 5.256 18.240 

Q01650 Large neutral amino acids transporter small subunit 1 OS=Homo sapiens GN=SLC7A5 
PE=1 SV=2 - [LAT1_HUMAN] 

3 0.165 2.094 1.066 

Q2VPJ6 HSP90AA1 protein (Fragment) OS=Homo sapiens GN=HSP90AA1 PE=1 SV=1 - 
[Q2VPJ6_HUMAN] 

1     0.570 

I6L8B7 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 PE=1 SV=1 - 
[I6L8B7_HUMAN] 

4 0.010 1.000 0.010 

C9JZ20 Prohibitin (Fragment) OS=Homo sapiens GN=PHB PE=1 SV=1 - [C9JZ20_HUMAN] 6 0.548 9.292 5.474 

Q6NSB3 Alpha-amylase (Fragment) OS=Homo sapiens GN=AMY1A PE=2 SV=1 - 
[Q6NSB3_HUMAN] 

6 0.010 1.000 0.010 

E7EQ69 N-alpha-acetyltransferase 50 OS=Homo sapiens GN=NAA50 PE=1 SV=1 - 
[E7EQ69_HUMAN] 

4 0.771 0.496 0.299 

Q96HX3 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (Fragment) 
OS=Homo sapiens PE=2 SV=1 - [Q96HX3_HUMAN] 

5 0.712 4.587 2.245 

E7EQB2 Lactotransferrin (Fragment) OS=Homo sapiens GN=LTF PE=1 SV=1 - 
[E7EQB2_HUMAN] 

8 0.010 1.000 0.010 

S6BAR0 IgG L chain OS=Homo sapiens PE=2 SV=1 - [S6BAR0_HUMAN] 1       

P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 
- [G3P_HUMAN] 

6 0.099 1.076 0.034 

B7Z3V1 cDNA FLJ60077, highly similar to Sodium/potassium-transporting ATPase alpha-1 chain 
(EC 3.6.3.9) (Fragment) OS=Homo sapiens PE=2 SV=1 - [B7Z3V1_HUMAN] 

6 0.552 6.125 5.213 

C9J0F2 Protein-L-isoaspartate(D-aspartate) O-methyltransferase (Fragment) OS=Homo sapiens 
GN=PCMT1 PE=1 SV=1 - [C9J0F2_HUMAN] 

1     2.878 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 3 0.010 1.000 0.010 

P01833 Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR PE=1 SV=4 - 
[PIGR_HUMAN] 

3 0.010 1.000 0.010 

Q5T749 Keratinocyte proline-rich protein OS=Homo sapiens GN=KPRP PE=1 SV=1 - 
[KPRP_HUMAN] 

2       

P05141 ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 SV=7 - [ADT2_HUMAN] 4 0.740 2.759 2.931 

B3KRY3 cDNA FLJ35079 fis, clone PLACE6005283, highly similar to Lysosome-associated 
membrane glycoprotein 1 OS=Homo sapiens PE=2 SV=1 - [B3KRY3_HUMAN] 

2 0.594 1.599 0.950 

F2Z2S8 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=1 - [F2Z2S8_HUMAN] 3 0.589 1.830 1.294 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN] 1       

B2DFV8 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 - 
[B2DFV8_HUMAN] 

4 0.335 2.014 0.910 

UL23 UL23 4 1.000 100.000 100.000 

B4DNK4 Pyruvate kinase OS=Homo sapiens GN=PKM PE=1 SV=1 - [B4DNK4_HUMAN] 4 0.311 1.114 0.411 

Q6UWP8 Suprabasin OS=Homo sapiens GN=SBSN PE=1 SV=2 - [SBSN_HUMAN] 2       

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 - [S10A8_HUMAN] 3 0.010 1.000 0.010 

Q6PIQ7 IGL@ protein OS=Homo sapiens GN=IGL@ PE=1 SV=1 - [Q6PIQ7_HUMAN] 0       

P27824 Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 - [CALX_HUMAN] 5 0.852 1.396 1.091 

P04083 Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 - [ANXA1_HUMAN] 4 0.398 1.198 0.477 

A0A087WYR4 Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens GN=IGLL5 PE=1 SV=1 - 
[A0A087WYR4_HUMAN] 

1       

A0A024R7P5 Similar to Laminin receptor 1, isoform CRA_a OS=Homo sapiens GN=LOC388524 PE=3 
SV=1 - [A0A024R7P5_HUMAN] 

2 0.651 0.737 0.479 

P02765 Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN] 2       

A0A0C4DGN4 Zymogen granule protein 16 homolog B OS=Homo sapiens GN=ZG16B PE=1 SV=1 - 
[A0A0C4DGN4_HUMAN] 

4 0.010 1.000 0.010 

S6AWD9 IgG H chain OS=Homo sapiens PE=2 SV=1 - [S6AWD9_HUMAN] 1 0.010 1.000 0.010 

UL27 UL27 6 2.400 25.277 60.655 

Q4LE79 DSP variant protein (Fragment) OS=Homo sapiens GN=DSP variant protein PE=2 SV=1 - 
[Q4LE79_HUMAN] 

3 0.010 1.000 0.010 

B2R4M6 Protein S100 OS=Homo sapiens PE=2 SV=1 - [B2R4M6_HUMAN] 3 0.010 1.000 0.010 

B3KT34 cDNA FLJ37560 fis, clone BRCOC2000333, highly similar to Succinate dehydrogenase 
(ubiquinone) flavoprotein subunit, mitochondrial (EC 1.3.5.1) OS=Homo sapiens PE=2 
SV=1 - [B3KT34_HUMAN] 

2 0.498 0.621 0.309 

P05089 Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2 - [ARGI1_HUMAN] 2       

S6C4S4 IgG H chain OS=Homo sapiens PE=2 SV=1 - [S6C4S4_HUMAN] 1       

P61626 Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 - [LYSC_HUMAN] 3 0.010 1.000 0.010 
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P31025 Lipocalin-1 OS=Homo sapiens GN=LCN1 PE=1 SV=1 - [LCN1_HUMAN] 2 0.010 1.000 0.010 

P12273 Prolactin-inducible protein OS=Homo sapiens GN=PIP PE=1 SV=1 - [PIP_HUMAN] 3 0.010 1.000 0.010 

A0A024R1X8 Junction plakoglobin, isoform CRA_a OS=Homo sapiens GN=JUP PE=4 SV=1 - 
[A0A024R1X8_HUMAN] 

6 0.010 1.000 0.010 

P09228 Cystatin-SA OS=Homo sapiens GN=CST2 PE=1 SV=1 - [CYTT_HUMAN] 2 0.010 1.000 0.010 

P25311 Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=1 SV=2 - [ZA2G_HUMAN] 2       

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 - [DEF1_HUMAN] 1       

E1B2D1 Hemoglobin alpha-1 globin chain variant (Fragment) OS=Homo sapiens GN=HBA1 PE=3 
SV=1 - [E1B2D1_HUMAN] 

2       

A0A0C4DGS1 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Homo 
sapiens GN=DDOST PE=1 SV=1 - [A0A0C4DGS1_HUMAN] 

2 0.367 3.851 1.415 

C8C504 Beta-globin OS=Homo sapiens GN=HBB PE=3 SV=1 - [C8C504_HUMAN] 4 0.010 1.000 0.010 

Q9NZM1 Myoferlin OS=Homo sapiens GN=MYOF PE=1 SV=1 - [MYOF_HUMAN] 5 1.000 2.429 3.132 

A8K6Q8 cDNA FLJ75881, highly similar to Homo sapiens transferrin receptor (p90, CD71) (TFRC), 
mRNA OS=Homo sapiens PE=2 SV=1 - [A8K6Q8_HUMAN] 

2     1.445 

P10599 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 - [THIO_HUMAN] 2       

A9UFC0 Caspase 14 OS=Homo sapiens GN=CASP14 PE=2 SV=1 - [A9UFC0_HUMAN] 2 0.010 1.000 0.010 

C9IZZ0 Ras-related protein Rab-7a (Fragment) OS=Homo sapiens GN=RAB7A PE=1 SV=1 - 
[C9IZZ0_HUMAN] 

3 0.244 2.446 0.490 

P01834 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 - [IGKC_HUMAN] 1       

B5BUB1 RuvB-like 1 (Fragment) OS=Homo sapiens GN=RUVBL1 PE=2 SV=1 - 
[B5BUB1_HUMAN] 

3 0.631 3.388 2.137 

Q9GZZ8 Extracellular glycoprotein lacritin OS=Homo sapiens GN=LACRT PE=1 SV=1 - 
[LACRT_HUMAN] 

2 0.010 1.000 0.010 

UL39 UL39 5 4.702 18.791 100.000 

P16615 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Homo sapiens GN=ATP2A2 
PE=1 SV=1 - [AT2A2_HUMAN] 

2 0.233 11.691 1.735 

Q45KI0 Trypsin I (Fragment) OS=Homo sapiens GN=PRSS1 PE=3 SV=1 - [Q45KI0_HUMAN] 1 0.010 1.000 0.010 

P01037 Cystatin-SN OS=Homo sapiens GN=CST1 PE=1 SV=3 - [CYTN_HUMAN] 2 0.010 1.000 0.010 

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 - [HORN_HUMAN] 3       

Q4JFL9 Protein S100 (Fragment) OS=Homo sapiens GN=FLG PE=2 SV=1 - [Q4JFL9_HUMAN] 1 0.010 1.000 0.010 

Q9BYT5 Keratin-associated protein 2-2 OS=Homo sapiens GN=KRTAP2-2 PE=2 SV=3 - 
[KRA22_HUMAN] 

1       

C9J7B1 Protein NipSnap homolog 2 (Fragment) OS=Homo sapiens GN=GBAS PE=1 SV=1 - 
[C9J7B1_HUMAN] 

1 1.000 100.000 100.000 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 - [FILA2_HUMAN] 2       

P01621 Ig kappa chain V-III region NG9 (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[KV303_HUMAN] 

1       

UL34 UL34 1 3.335 5.844 19.491 

P03973 Antileukoproteinase OS=Homo sapiens GN=SLPI PE=1 SV=2 - [SLPI_HUMAN] 1       

H3BQZ5 UPF0235 protein C15orf40 OS=Homo sapiens GN=C15orf40 PE=1 SV=1 - 
[H3BQZ5_HUMAN] 

1       

Q701L7 Type II hair keratin 2 OS=Homo sapiens GN=KRTHB2 PE=2 SV=1 - [Q701L7_HUMAN] 1       

A0A087WYY6 Plakophilin-1 OS=Homo sapiens GN=PKP1 PE=1 SV=1 - [A0A087WYY6_HUMAN] 1       

H0YDD8 60S acidic ribosomal protein P2 (Fragment) OS=Homo sapiens GN=RPLP2 PE=1 SV=1 - 
[H0YDD8_HUMAN] 

1 0.700 0.962 0.673 

A0A0A0MRQ5 Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [A0A0A0MRQ5_HUMAN] 1 0.582 0.745 0.434 

C9JA05 Protein JCHAIN (Fragment) OS=Homo sapiens GN=JCHAIN PE=1 SV=1 - 
[C9JA05_HUMAN] 

1 0.010 1.000 0.010 

A0A087WU05 C-Maf-inducing protein OS=Homo sapiens GN=CMIP PE=1 SV=1 - 
[A0A087WU05_HUMAN] 

1       

Q8NF17 FLJ00385 protein (Fragment) OS=Homo sapiens GN=FLJ00385 PE=1 SV=1 - 
[Q8NF17_HUMAN] 

1 0.010 1.000 0.010 

B7Z2R9 cDNA FLJ52540, highly similar to Lysosome-associated membrane glycoprotein 2 
OS=Homo sapiens PE=2 SV=1 - [B7Z2R9_HUMAN] 

1 0.268 2.501 0.670 

P09758 Tumor-associated calcium signal transducer 2 OS=Homo sapiens GN=TACSTD2 PE=1 
SV=3 - [TACD2_HUMAN] 

2 0.332 3.520 1.515 

A0A024R3V9 HCG37498, isoform CRA_b OS=Homo sapiens GN=hCG_37498 PE=4 SV=1 - 
[A0A024R3V9_HUMAN] 

1 0.938 0.891 0.836 

O75556 Mammaglobin-B OS=Homo sapiens GN=SCGB2A1 PE=1 SV=1 - [SG2A1_HUMAN] 1 0.010 1.000 0.010 



 Chapter 9: Appendix 

 

264 
 

A0A0F7G8J1 Plasminogen OS=Homo sapiens GN=PLG PE=2 SV=1 - [A0A0F7G8J1_HUMAN] 1 0.010 1.000 0.010 

C9JYN0 Synaptophysin-like protein 1 OS=Homo sapiens GN=SYPL1 PE=1 SV=1 - 
[C9JYN0_HUMAN] 

1 0.010 1.000 0.010 

P04431 Ig kappa chain V-I region Walker OS=Homo sapiens PE=1 SV=1 - [KV123_HUMAN] 1       

B4DT53 cDNA FLJ52905, highly similar to Runt-related transcription factor 3 OS=Homo sapiens 
PE=2 SV=1 - [B4DT53_HUMAN] 

1       

F5H5G7 L-lactate dehydrogenase OS=Homo sapiens GN=LDHC PE=1 SV=1 - [F5H5G7_HUMAN] 1 0.010 1.000 0.010 

Q3LI55 Keratin associated protein OS=Homo sapiens GN=KRTAP11-1 PE=2 SV=1 - 
[Q3LI55_HUMAN] 

1       

Q08188 Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens GN=TGM3 PE=1 
SV=4 - [TGM3_HUMAN] 

2 0.010 1.000 0.010 

A0A087WTB6 Guanine nucleotide-binding protein G(o) subunit alpha OS=Homo sapiens GN=GNAO1 
PE=1 SV=1 - [A0A087WTB6_HUMAN] 

1       

Q9H9K5 Endogenous retrovirus group MER34 member 1 Env polyprotein OS=Homo sapiens 
GN=ERVMER34-1 PE=2 SV=1 - [MER34_HUMAN] 

1       

I6L957 HNRNPA2B1 protein OS=Homo sapiens GN=HNRNPA2B1 PE=2 SV=1 - 
[I6L957_HUMAN] 

1 0.760 0.584 0.443 

C9JDV8 Protein NipSnap homolog 1 (Fragment) OS=Homo sapiens GN=NIPSNAP1 PE=1 SV=4 - 
[C9JDV8_HUMAN] 

1 1.000 100.000 100.000 

A0A024R3X7 Heat shock 10kDa protein 1 (Chaperonin 10), isoform CRA_d OS=Homo sapiens 
GN=HSPE1 PE=3 SV=1 - [A0A024R3X7_HUMAN] 

2 0.478 0.726 0.347 

B4DRV1 cDNA FLJ51536, highly similar to Protein-glutamine gamma-glutamyltransferase K (EC 
2.3.2.13) OS=Homo sapiens PE=2 SV=1 - [B4DRV1_HUMAN] 

1       

E9PQ63 Carbonyl reductase [NADPH] 1 OS=Homo sapiens GN=CBR1 PE=1 SV=1 - 
[E9PQ63_HUMAN] 

1 0.764 1.323 1.011 

B4DJL0 cDNA FLJ60278, highly similar to Dolichyl-diphosphooligosaccharide--
proteinglycosyltransferase 63 kDa subunit (EC 2.4.1.119) OS=Homo sapiens PE=2 SV=1 - 
[B4DJL0_HUMAN] 

1 0.095 11.319 1.071 

A0A0A1TSG4 CD47 OS=Homo sapiens GN=CD47 PE=2 SV=1 - [A0A0A1TSG4_HUMAN] 1 0.509 2.477 1.262 

UL40 UL40 1       

Q8TBZ8 Zinc finger protein 564 OS=Homo sapiens GN=ZNF564 PE=1 SV=1 - [ZN564_HUMAN] 1 1.000 100.000 100.000 

UL44 UL44 2 3.494 18.511 64.674 

Q0PHS5 Glucose-6-phosphate dehydrogenase (Fragment) OS=Homo sapiens GN=G6PD PE=4 SV=1 
- [Q0PHS5_HUMAN] 

1       

D6R9C3 Cytochrome c oxidase subunit 7A2, mitochondrial OS=Homo sapiens GN=COX7A2 PE=1 
SV=1 - [D6R9C3_HUMAN] 

1 0.598 3.580 2.140 

H0YKQ5 Kinesin-like protein (Fragment) OS=Homo sapiens GN=KIF23 PE=1 SV=1 - 
[H0YKQ5_HUMAN] 

1       

B4DZ87 cDNA FLJ57240, highly similar to Mitochondrial proteins import receptor OS=Homo 
sapiens PE=2 SV=1 - [B4DZ87_HUMAN] 

1     0.331 

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 - [SPB12_HUMAN] 2       

R4GN98 Protein S100 (Fragment) OS=Homo sapiens GN=S100A6 PE=1 SV=1 - 
[R4GN98_HUMAN] 

1       

Q01813 ATP-dependent 6-phosphofructokinase, platelet type OS=Homo sapiens GN=PFKP PE=1 
SV=2 - [PFKAP_HUMAN] 

2   12.687   

A8K9J7 Histone H2B OS=Homo sapiens PE=2 SV=1 - [A8K9J7_HUMAN] 1 0.010 1.000 0.010 

A8K651 cDNA FLJ75700, highly similar to Homo sapiens complement component 1, q 
subcomponent binding protein (C1QBP), nuclear gene encoding mitochondrial protein, 
mRNA OS=Homo sapiens PE=2 SV=1 - [A8K651_HUMAN] 

1 0.165 5.724 0.944 

P22531 Small proline-rich protein 2E OS=Homo sapiens GN=SPRR2E PE=2 SV=2 - 
[SPR2E_HUMAN] 

1       

A8K1M0 cDNA FLJ75297, highly similar to Homo sapiens inositol hexakisphosphate kinase 3 mRNA 
OS=Homo sapiens PE=2 SV=1 - [A8K1M0_HUMAN] 

1       

B4E1S3 cDNA FLJ57860, highly similar to Transmembrane protein 109 OS=Homo sapiens PE=2 
SV=1 - [B4E1S3_HUMAN] 

1 0.586 1.897 1.112 

UL22 UL22 2 1.000 100.000 100.000 

C9K0M0 Trifunctional enzyme subunit beta, mitochondrial (Fragment) OS=Homo sapiens 
GN=HADHB PE=1 SV=5 - [C9K0M0_HUMAN] 

1       

Q59FC6 Tumor rejection antigen (Gp96) 1 variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q59FC6_HUMAN] 

1 0.221 3.353 0.742 

H7C4C8 T-complex protein 1 subunit theta (Fragment) OS=Homo sapiens GN=CCT8 PE=1 SV=1 - 
[H7C4C8_HUMAN] 

1 0.509 3.560 1.811 

Q9UGM3 Deleted in malignant brain tumors 1 protein OS=Homo sapiens GN=DMBT1 PE=1 SV=2 - 
[DMBT1_HUMAN] 

1       

US6 US6 2 3.076 3.629 11.163 

A0A075B6Z2 Protein TRAJ56 (Fragment) OS=Homo sapiens GN=TRAJ56 PE=4 SV=1 - 
[A0A075B6Z2_HUMAN] 

1       
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I3NI03 Protein disulfide-isomerase (Fragment) OS=Homo sapiens GN=P4HB PE=1 SV=1 - 
[I3NI03_HUMAN] 

1     0.617 

E7EQR6 T-complex protein 1 subunit alpha OS=Homo sapiens GN=TCP1 PE=1 SV=1 - 
[E7EQR6_HUMAN] 

1 0.341 4.208 1.434 

A2J1M5 Rheumatoid factor RF-IP4 (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[A2J1M5_HUMAN] 

1       

P35579 Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 - [MYH9_HUMAN] 4 0.901 0.988 1.179 

B4DI70 cDNA FLJ53509, highly similar to Galectin-3-binding protein OS=Homo sapiens PE=2 
SV=1 - [B4DI70_HUMAN] 

1 0.010 1.000 0.010 

A0A024R3J7 HCG2032701, isoform CRA_a OS=Homo sapiens GN=hCG_2032701 PE=4 SV=1 - 
[A0A024R3J7_HUMAN] 

1 0.448 3.662 1.641 

G3GAU4 Anti-H1N1 influenza HA kappa chain variable region (Fragment) OS=Homo sapiens PE=2 
SV=1 - [G3GAU4_HUMAN] 

1       

Q9H834 cDNA FLJ13966 fis, clone Y79AA1001394, weakly similar to CELL DIVISION PROTEIN 
FTSH HOMOLOG (EC 3.4.24.-) OS=Homo sapiens PE=2 SV=1 - [Q9H834_HUMAN] 

1 0.668 3.053 2.039 

Q6KB66 Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=KRT80 PE=1 SV=2 - 
[K2C80_HUMAN] 

2 0.010 1.000 0.010 

H0Y512 Adipocyte plasma membrane-associated protein (Fragment) OS=Homo sapiens 
GN=APMAP PE=1 SV=1 - [H0Y512_HUMAN] 

1 0.452 4.154 1.877 

P01861 Ig gamma-4 chain C region OS=Homo sapiens GN=IGHG4 PE=1 SV=1 - 
[IGHG4_HUMAN] 

2 0.010 1.000 0.010 

Q9BZ93 Prosomal P27K protein (Fragment) OS=Homo sapiens GN=PSMA6 PE=4 SV=1 - 
[Q9BZ93_HUMAN] 

1 0.020 1.000 0.020 

P62857 40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1 - [RS28_HUMAN] 1 0.554 0.877 0.485 

Q15758 Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2 - 
[AAAT_HUMAN] 

1     1.199 

P02656 Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] 1       

Q9NZT1 Calmodulin-like protein 5 OS=Homo sapiens GN=CALML5 PE=1 SV=2 - 
[CALL5_HUMAN] 

1       

Q5JTW2 Centrosomal protein of 78 kDa OS=Homo sapiens GN=CEP78 PE=1 SV=1 - 
[CEP78_HUMAN] 

1       

Q9P1W3 Calcium permeable stress-gated cation channel 1 OS=Homo sapiens GN=TMEM63C PE=2 
SV=1 - [CSC1_HUMAN] 

1       

P01040 Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 - [CYTA_HUMAN] 1 0.010 1.000 0.010 

P49411 Elongation factor Tu, mitochondrial OS=Homo sapiens GN=TUFM PE=1 SV=2 - 
[EFTU_HUMAN] 

1 0.232 1.444 0.335 

P31994 Low affinity immunoglobulin gamma Fc region receptor II-b OS=Homo sapiens 
GN=FCGR2B PE=1 SV=2 - [FCG2B_HUMAN] 

1       

P01765 Ig heavy chain V-III region TIL OS=Homo sapiens PE=1 SV=1 - [HV304_HUMAN] 1       

Q96AG4 Leucine-rich repeat-containing protein 59 OS=Homo sapiens GN=LRRC59 PE=1 SV=1 - 
[LRC59_HUMAN] 

1       

Q9Y2I6 Ninein-like protein OS=Homo sapiens GN=NINL PE=1 SV=2 - [NINL_HUMAN] 1       

P12004 Proliferating cell nuclear antigen OS=Homo sapiens GN=PCNA PE=1 SV=1 - 
[PCNA_HUMAN] 

1       

P30048 Thioredoxin-dependent peroxide reductase, mitochondrial OS=Homo sapiens GN=PRDX3 
PE=1 SV=3 - [PRDX3_HUMAN] 

1 0.017 1.000 0.017 

Q9NVN3 Synembryn-B OS=Homo sapiens GN=RIC8B PE=1 SV=2 - [RIC8B_HUMAN] 1       

Q9HCY8 Protein S100-A14 OS=Homo sapiens GN=S100A14 PE=1 SV=1 - [S10AE_HUMAN] 1 0.010 1.000 0.010 

Q96FQ6 Protein S100-A16 OS=Homo sapiens GN=S100A16 PE=1 SV=1 - [S10AG_HUMAN] 1 0.016 1.000 0.016 

O95969 Secretoglobin family 1D member 2 OS=Homo sapiens GN=SCGB1D2 PE=2 SV=1 - 
[SG1D2_HUMAN] 

1       

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 - [SPB3_HUMAN] 1       

Q562E7 WD repeat-containing protein 81 OS=Homo sapiens GN=WDR81 PE=1 SV=2 - 
[WDR81_HUMAN] 

1       

Q6UXN9 WD repeat-containing protein 82 OS=Homo sapiens GN=WDR82 PE=1 SV=1 - 
[WDR82_HUMAN] 

1 0.010 1.000 0.010 

Q5T750 Skin-specific protein 32 OS=Homo sapiens GN=XP32 PE=1 SV=1 - [XP32_HUMAN] 1 0.010 1.000 0.010 

Q6S9W8 Kallikrein 5 isoform 3 preproprotein OS=Homo sapiens GN=KLK5 PE=2 SV=1 - 
[Q6S9W8_HUMAN] 

1       

Q6B823 Histone H4 (Fragment) OS=Homo sapiens PE=3 SV=1 - [Q6B823_HUMAN] 1 0.146 2.035 0.297 

F5H163 Mevalonate kinase OS=Homo sapiens GN=MVK PE=1 SV=1 - [F5H163_HUMAN] 1       

G3V210 60S acidic ribosomal protein P0 OS=Homo sapiens GN=RPLP0 PE=1 SV=1 - 
[G3V210_HUMAN] 

3 0.877 1.397 1.226 

F2Z2H1 Putative helicase Mov10l1 OS=Homo sapiens GN=MOV10L1 PE=4 SV=1 - 
[F2Z2H1_HUMAN] 

1       



 Chapter 9: Appendix 

 

266 
 

B3KM80 Nucleolin, isoform CRA_c OS=Homo sapiens GN=NCL PE=2 SV=1 - 
[B3KM80_HUMAN] 

1       

D3DUJ3 Protein tyrosine phosphatase, non-receptor type 2, isoform CRA_d OS=Homo sapiens 
GN=PTPN2 PE=4 SV=1 - [D3DUJ3_HUMAN] 

1       

Q6NVI1 MARCKS protein (Fragment) OS=Homo sapiens GN=MARCKS PE=2 SV=1 - 
[Q6NVI1_HUMAN] 

1 0.588 1.478 0.869 

C9JA68 Serpin B7 (Fragment) OS=Homo sapiens GN=SERPINB7 PE=1 SV=5 - 
[C9JA68_HUMAN] 

1       

B4DWK8 Catalase OS=Homo sapiens PE=2 SV=1 - [B4DWK8_HUMAN] 1       

E7EU96 Casein kinase II subunit alpha OS=Homo sapiens GN=CSNK2A1 PE=1 SV=1 - 
[E7EU96_HUMAN] 

1       

Q5VVC9 60S ribosomal protein L11 (Fragment) OS=Homo sapiens GN=RPL11 PE=1 SV=1 - 
[Q5VVC9_HUMAN] 

1 0.329 0.794 0.261 

Q9Y355 Apolipoprotein A1 (Fragment) OS=Homo sapiens PE=4 SV=1 - [Q9Y355_HUMAN] 1       

C9JCA9 Leucine-rich PPR motif-containing protein, mitochondrial (Fragment) OS=Homo sapiens 
GN=LRPPRC PE=1 SV=1 - [C9JCA9_HUMAN] 

1       

E5RFQ7 Protein FAM135B (Fragment) OS=Homo sapiens GN=FAM135B PE=4 SV=1 - 
[E5RFQ7_HUMAN] 

1       

A0A077H155 LTR2-FABP7 OS=Homo sapiens PE=2 SV=1 - [A0A077H155_HUMAN] 1       

B4E1S8 cDNA FLJ59147, highly similar to Cysteine-rich secretory protein 3 OS=Homo sapiens 
PE=2 SV=1 - [B4E1S8_HUMAN] 

1 0.013 1.000 0.013 

K7EJZ9 Microtubule-associated serine/threonine-protein kinase 1 (Fragment) OS=Homo sapiens 
GN=MAST1 PE=1 SV=1 - [K7EJZ9_HUMAN] 

1       

A6NLD2 cDNA FLJ11885 fis, clone HEMBA1007203, highly similar to Transmembrane GTPase 
MFN2 (EC 3.6.5.-) OS=Homo sapiens PE=2 SV=4 - [A6NLD2_HUMAN] 

1       

M0QZK8 Uncharacterized protein OS=Homo sapiens PE=4 SV=1 - [M0QZK8_HUMAN] 1       

H0YE40 CD44 antigen (Fragment) OS=Homo sapiens GN=CD44 PE=1 SV=1 - [H0YE40_HUMAN] 1 0.166 3.392 0.563 

U3KPT8 Histone H2B type 1-J (Fragment) OS=Homo sapiens GN=HIST1H2BJ PE=4 SV=1 - 
[U3KPT8_HUMAN] 

1       

B4DWN1 cDNA FLJ52285, highly similar to Vesicular integral-membrane protein VIP36 OS=Homo 
sapiens PE=2 SV=1 - [B4DWN1_HUMAN] 

2 0.544 1.263 0.298 

S4R460 Protein IGHV3OR16-9 OS=Homo sapiens GN=IGHV3OR16-9 PE=1 SV=2 - 
[S4R460_HUMAN] 

1       

M0QYC8 Complement C3 (Fragment) OS=Homo sapiens GN=C3 PE=1 SV=1 - 
[M0QYC8_HUMAN] 

1       

V9GZN0 Histone H2A gene (lambda-HHG55) (Fragment) OS=Homo sapiens PE=4 SV=1 - 
[V9GZN0_HUMAN] 

1       

A8K0T9 cDNA FLJ75422, highly similar to Homo sapiens capping protein (actin filament) muscle 
Z-line, alpha 1, mRNA OS=Homo sapiens PE=2 SV=1 - [A8K0T9_HUMAN] 

1       

B3KU93 cDNA FLJ39390 fis, clone PLACE6004219, highly similar to Puromycin-sensitive 
aminopeptidase OS=Homo sapiens PE=2 SV=1 - [B3KU93_HUMAN] 

2 1.472 0.762 2.371 

H7C4M0 Filamin A-interacting protein 1-like (Fragment) OS=Homo sapiens GN=FILIP1L PE=1 
SV=1 - [H7C4M0_HUMAN] 

1       

E5RGE1 14-3-3 protein zeta/delta (Fragment) OS=Homo sapiens GN=YWHAZ PE=1 SV=5 - 
[E5RGE1_HUMAN] 

1 0.368 0.957 0.352 

F2Z2I8 Stomatin-like protein 2, mitochondrial OS=Homo sapiens GN=STOML2 PE=1 SV=1 - 
[F2Z2I8_HUMAN] 

1 1.000 100.000 100.000 

A0A087WVZ4 Cytochrome b-c1 complex subunit 2, mitochondrial (Fragment) OS=Homo sapiens 
GN=UQCRC2 PE=1 SV=1 - [A0A087WVZ4_HUMAN] 

1 0.333 5.134 1.711 

Q2XN56 (S)-mephenytoin hydroxylase associated cytochrome P450 (Fragment) OS=Homo sapiens 
GN=CYP2C18 PE=4 SV=1 - [Q2XN56_HUMAN] 

1       

Q6RK68 Fibroblast growth factor (Fragment) OS=Homo sapiens GN=FGF7 PE=3 SV=1 - 
[Q6RK68_HUMAN] 

1       

A2VCQ4 PRKCSH protein (Fragment) OS=Homo sapiens GN=PRKCSH PE=2 SV=1 - 
[A2VCQ4_HUMAN] 

1     2.740 

F2Z393 Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=1 - [F2Z393_HUMAN] 1 0.012 1.000 0.012 

B4E1V1 Anoctamin (Fragment) OS=Homo sapiens PE=2 SV=1 - [B4E1V1_HUMAN] 1       

F8WF65 Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=1 - 
[F8WF65_HUMAN] 

1       

H7C463 MICOS complex subunit MIC60 (Fragment) OS=Homo sapiens GN=IMMT PE=1 SV=1 - 
[H7C463_HUMAN] 

1   7.438   

E2DRY6 Enolase OS=Homo sapiens PE=2 SV=1 - [E2DRY6_HUMAN] 1 0.460 1.122 0.516 

C9JLM5 Serpin B5 (Fragment) OS=Homo sapiens GN=SERPINB5 PE=1 SV=1 - 
[C9JLM5_HUMAN] 

1 0.438 2.810 1.230 

Q6AI22 Putative uncharacterized protein DKFZp686H16106 (Fragment) OS=Homo sapiens 
GN=DKFZp686H16106 PE=2 SV=1 - [Q6AI22_HUMAN] 

1       

J3KS13 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=1 - [J3KS13_HUMAN] 1 0.783 1.618 1.266 

B2R5H0 Protein S100 OS=Homo sapiens PE=2 SV=1 - [B2R5H0_HUMAN] 1 0.597 1.696 1.012 
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B4DT78 cDNA FLJ59975, highly similar to Homo sapiens nuclear prelamin A recognition factor-like 
(NARFL), mRNA OS=Homo sapiens PE=2 SV=1 - [B4DT78_HUMAN] 

1       

B4DNS0 cDNA FLJ59234, highly similar to Phosphate-regulating neutral endopeptidase (EC 3.4.24.-
) OS=Homo sapiens PE=2 SV=1 - [B4DNS0_HUMAN] 

1       

O14992 HS24/P52 OS=Homo sapiens GN=HS24/p52 PE=2 SV=1 - [O14992_HUMAN] 1 0.087 1.000 0.087 

B4DN39 cDNA FLJ53065, highly similar to T-complex protein 1 subunit zeta OS=Homo sapiens 
PE=2 SV=1 - [B4DN39_HUMAN] 

1 0.380 5.273 2.003 

B4DL87 cDNA FLJ52243, highly similar to Heat-shock protein beta-1 OS=Homo sapiens PE=2 
SV=1 - [B4DL87_HUMAN] 

1 0.010 1.000 0.010 

B4DJ98 cDNA FLJ53558, highly similar to Protein disulfide-isomerase A3 (EC 5.3.4.1) OS=Homo 
sapiens PE=2 SV=1 - [B4DJ98_HUMAN] 

2 0.093 0.683 0.064 

Q7Z587 Putative uncharacterized protein OS=Homo sapiens PE=2 SV=1 - [Q7Z587_HUMAN] 1       

B4E3Q9 cDNA FLJ59659, highly similar to Vinculin OS=Homo sapiens PE=2 SV=1 - 
[B4E3Q9_HUMAN] 

1       

Q0EFA5 S protein OS=Homo sapiens GN=S PE=4 SV=1 - [Q0EFA5_HUMAN] 1       

L0R5F6 Alternative protein TNS4 OS=Homo sapiens GN=TNS4 PE=4 SV=1 - [L0R5F6_HUMAN] 1       

S6B2A1 IgG L chain OS=Homo sapiens PE=2 SV=1 - [S6B2A1_HUMAN] 1       

B4DS32 cDNA FLJ56236, highly similar to Exportin-2 OS=Homo sapiens PE=2 SV=1 - 
[B4DS32_HUMAN] 

1 1.161 0.832 0.966 

UL19 UL19 2 1.000 100.000 100.000 

UL37 UL37 1       

UL49 UL49 1 1.000 67.125 67.125 

A0A0A0MSD6 Teneurin-3 OS=Homo sapiens GN=TENM3 PE=1 SV=1 - [A0A0A0MSD6_HUMAN] 1       

A0A0C4DFV9 Protein SET OS=Homo sapiens GN=SET PE=1 SV=1 - [A0A0C4DFV9_HUMAN] 1   0.640   

Tube 3 

F6KPG5 Albumin (Fragment) OS=Homo sapiens PE=2 SV=1 - [F6KPG5_HUMAN] 26 0.010 1.000 0.010 

P09211 Glutathione S-transferase P OS=Homo sapiens GN=GSTP1 PE=1 SV=2 - 
[GSTP1_HUMAN] 

11 0.939 0.981 0.925 

H6VRF8 Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - [H6VRF8_HUMAN] 20 0.010 1.000 0.010 

B7Z4V2 cDNA FLJ51907, highly similar to Stress-70 protein, mitochondrial OS=Homo sapiens 
PE=2 SV=1 - [B7Z4V2_HUMAN] 

22 0.698 0.852 0.557 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - 
[K22E_HUMAN] 

22 0.010 1.000 0.010 

B4DRR0 cDNA FLJ53910, highly similar to Keratin, type II cytoskeletal 6A OS=Homo sapiens PE=2 
SV=1 - [B4DRR0_HUMAN] 

2 0.088 2.462 0.200 

A1A4E9 Keratin 13 OS=Homo sapiens GN=KRT13 PE=1 SV=1 - [A1A4E9_HUMAN] 13 0.010 1.000 0.010 

B2R853 cDNA, FLJ93744, highly similar to Homo sapiens keratin 6E (KRT6E), mRNA OS=Homo 
sapiens PE=2 SV=1 - [B2R853_HUMAN] 

1 0.010 1.000 0.010 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 - 
[K2C5_HUMAN] 

14 0.042 2.123 0.135 

B4DRW1 cDNA FLJ55805, highly similar to Keratin, type II cytoskeletal 4 OS=Homo sapiens PE=2 
SV=1 - [B4DRW1_HUMAN] 

21 0.010 1.000 0.010 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - 
[K2C6B_HUMAN] 

1       

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - 
[K1C10_HUMAN] 

18 0.010 1.000 0.010 

P11021 78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - 
[GRP78_HUMAN] 

19 0.716 0.599 0.439 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 17 0.010 1.000 0.010 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - 
[K1C14_HUMAN] 

7 0.010 1.000 0.051 

Q9HC84 Mucin-5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 - [MUC5B_HUMAN] 30 0.010 1.000 0.010 

P11142 Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - 
[HSP7C_HUMAN] 

11 0.883 0.530 0.418 

P19012 Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 SV=3 - 
[K1C15_HUMAN] 

1 0.115 5.372 0.616 

Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 - 
[K1C17_HUMAN] 

5 0.454 2.701 0.813 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - 
[K1C16_HUMAN] 

6 0.010 1.000 0.010 

US8 US8 13 20.535 0.014 0.277 

B7ZMD7 Alpha-amylase OS=Homo sapiens GN=AMY1A PE=2 SV=1 - [B7ZMD7_HUMAN] 14 0.010 1.000 0.010 
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P0DMV8 Heat shock 70 kDa protein 1A OS=Homo sapiens GN=HSPA1A PE=1 SV=1 - 
[HS71A_HUMAN] 

9 0.866 0.535 0.449 

P08727 Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4 - 
[K1C19_HUMAN] 

6 1.158 1.791 1.973 

P08729 Keratin, type II cytoskeletal 7 OS=Homo sapiens GN=KRT7 PE=1 SV=5 - 
[K2C7_HUMAN] 

12 1.840 1.567 3.985 

B4E335 cDNA FLJ52842, highly similar to Actin, cytoplasmic 1 OS=Homo sapiens PE=2 SV=1 - 
[B4E335_HUMAN] 

3 1.170 0.400 0.467 

P61626 Lysozyme C OS=Homo sapiens GN=LYZ PE=1 SV=1 - [LYSC_HUMAN] 6 0.010 1.000 0.010 

F5GY37 Prohibitin-2 OS=Homo sapiens GN=PHB2 PE=1 SV=1 - [F5GY37_HUMAN] 10 4.697 0.092 0.434 

B7Z597 cDNA FLJ54373, highly similar to 60 kDa heat shock protein, mitochondrial OS=Homo 
sapiens PE=2 SV=1 - [B7Z597_HUMAN] 

14 1.172 0.273 0.346 

B7Z6P1 cDNA FLJ53662, highly similar to Actin, alpha skeletal muscle OS=Homo sapiens PE=2 
SV=1 - [B7Z6P1_HUMAN] 

1 1.180 0.345 0.407 

P05787 Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7 - 
[K2C8_HUMAN] 

8 2.099 1.494 2.948 

P68104 Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 - 
[EF1A1_HUMAN] 

7 1.022 0.375 0.353 

Q86Y46 Keratin, type II cytoskeletal 73 OS=Homo sapiens GN=KRT73 PE=1 SV=1 - 
[K2C73_HUMAN] 

1 0.010 1.000 0.010 

E7EQB2 Lactotransferrin (Fragment) OS=Homo sapiens GN=LTF PE=1 SV=1 - 
[E7EQB2_HUMAN] 

17 0.010 1.000 0.010 

B2R4M6 Protein S100 OS=Homo sapiens PE=2 SV=1 - [B2R4M6_HUMAN] 4 0.010 1.000 0.010 

Q5FWF9 IGL@ protein OS=Homo sapiens GN=IGL@ PE=1 SV=1 - [Q5FWF9_HUMAN] 0       

Q6ZW64 cDNA FLJ41552 fis, clone COLON2004478, highly similar to Protein Tro alpha1 
H,myeloma OS=Homo sapiens PE=2 SV=1 - [Q6ZW64_HUMAN] 

4       

P07355 Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN] 11 0.292 0.667 0.213 

US7 US7 4 15.306 0.016 0.257 

Q0KKI6 Immunoblobulin light chain (Fragment) OS=Homo sapiens PE=1 SV=1 - 
[Q0KKI6_HUMAN] 

5 0.010 1.000 0.010 

E7EQ69 N-alpha-acetyltransferase 50 OS=Homo sapiens GN=NAA50 PE=1 SV=1 - 
[E7EQ69_HUMAN] 

9 0.509 1.005 0.516 

Q2VPJ6 HSP90AA1 protein (Fragment) OS=Homo sapiens GN=HSP90AA1 PE=1 SV=1 - 
[Q2VPJ6_HUMAN] 

4 0.501 0.445 0.133 

B4DMA2 cDNA FLJ54023, highly similar to Heat shock protein HSP 90-beta OS=Homo sapiens PE=2 
SV=1 - [B4DMA2_HUMAN] 

3 0.870 0.514 0.150 

P23396 40S ribosomal protein S3 OS=Homo sapiens GN=RPS3 PE=1 SV=2 - [RS3_HUMAN] 9 0.805 0.305 0.267 

Q06830 Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [PRDX1_HUMAN] 6 0.629 0.760 0.489 

Q0IIN1 Keratin 77 OS=Homo sapiens GN=KRT77 PE=1 SV=1 - [Q0IIN1_HUMAN] 2       

B4E2Z3 cDNA FLJ54090, highly similar to 4F2 cell-surface antigen heavy chain OS=Homo sapiens 
PE=2 SV=1 - [B4E2Z3_HUMAN] 

8 1.068 0.382 0.344 

P01036 Cystatin-S OS=Homo sapiens GN=CST4 PE=1 SV=3 - [CYTS_HUMAN] 2 0.010 1.000 0.010 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 SV=2 - 
[K2C78_HUMAN] 

7 0.010 1.000 0.010 

Q9NPP6 Immunoglobulin heavy chain variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q9NPP6_HUMAN] 

4       

Q8NEJ1 Uncharacterized protein OS=Homo sapiens PE=2 SV=1 - [Q8NEJ1_HUMAN] 1       

P07437 Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 - [TBB5_HUMAN] 2 1.006 0.146 0.196 

Q8N355 IGL@ protein OS=Homo sapiens GN=IGL@ PE=1 SV=1 - [Q8N355_HUMAN] 2 0.010 1.000 0.010 

P01591 Immunoglobulin J chain OS=Homo sapiens GN=JCHAIN PE=1 SV=4 - [IGJ_HUMAN] 6 0.010 1.000 0.010 

A5A3E0 POTE ankyrin domain family member F OS=Homo sapiens GN=POTEF PE=1 SV=2 - 
[POTEF_HUMAN] 

1       

P68371 Tubulin beta-4B chain OS=Homo sapiens GN=TUBB4B PE=1 SV=1 - [TBB4B_HUMAN] 2 1.195 0.300 0.358 

P25705 ATP synthase subunit alpha, mitochondrial OS=Homo sapiens GN=ATP5A1 PE=1 SV=1 - 
[ATPA_HUMAN] 

8 1.593 0.299 0.417 

B4DL14 ATP synthase subunit gamma OS=Homo sapiens PE=2 SV=1 - [B4DL14_HUMAN] 4 0.826 0.762 0.759 

K7EKL3 Granulins (Fragment) OS=Homo sapiens GN=GRN PE=1 SV=1 - [K7EKL3_HUMAN] 6 0.141 1.412 0.290 

S6BAR0 IgG L chain OS=Homo sapiens PE=2 SV=1 - [S6BAR0_HUMAN] 1       

P03973 Antileukoproteinase OS=Homo sapiens GN=SLPI PE=1 SV=2 - [SLPI_HUMAN] 3 0.010 1.000 0.010 

P05109 Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 - [S10A8_HUMAN] 5 0.010 1.000 0.010 

P0CF74 Ig lambda-6 chain C region OS=Homo sapiens GN=IGLC6 PE=4 SV=1 - [LAC6_HUMAN] 1       
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A0A087WYR4 Immunoglobulin lambda-like polypeptide 5 OS=Homo sapiens GN=IGLL5 PE=1 SV=1 - 
[A0A087WYR4_HUMAN] 

1       

Q6GMX6 IGH@ protein OS=Homo sapiens GN=IGH@ PE=1 SV=1 - [Q6GMX6_HUMAN] 6 0.010 1.000 0.010 

A0A0A0MS14 Protein IGHV1-45 (Fragment) OS=Homo sapiens GN=IGHV1-45 PE=4 SV=1 - 
[A0A0A0MS14_HUMAN] 

1       

A0A024R609 Pyruvate kinase OS=Homo sapiens GN=PKM2 PE=3 SV=1 - [A0A024R609_HUMAN] 6 0.078 0.453 0.011 

A0A0C4DGN4 Zymogen granule protein 16 homolog B OS=Homo sapiens GN=ZG16B PE=1 SV=1 - 
[A0A0C4DGN4_HUMAN] 

5 0.010 1.000 0.010 

P01833 Polymeric immunoglobulin receptor OS=Homo sapiens GN=PIGR PE=1 SV=4 - 
[PIGR_HUMAN] 

8 0.010 1.000 0.010 

UL39 UL39 9 100.000 0.147 100.000 

P27482 Calmodulin-like protein 3 OS=Homo sapiens GN=CALML3 PE=1 SV=2 - 
[CALL3_HUMAN] 

5 0.010 1.000 0.010 

P22061 Protein-L-isoaspartate(D-aspartate) O-methyltransferase OS=Homo sapiens GN=PCMT1 
PE=1 SV=4 - [PIMT_HUMAN] 

5 3.612 0.781 2.257 

S6C4S4 IgG H chain OS=Homo sapiens PE=2 SV=1 - [S6C4S4_HUMAN] 1 0.010 1.000 0.010 

P62805 Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 - [H4_HUMAN] 5 0.087 0.910 0.063 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 7 0.010 1.000 0.010 

P35579 Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 - [MYH9_HUMAN] 8 3.137 0.342 1.191 

P35232 Prohibitin OS=Homo sapiens GN=PHB PE=1 SV=1 - [PHB_HUMAN] 6 6.468 0.057 0.417 

Q96HX3 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (Fragment) 
OS=Homo sapiens PE=2 SV=1 - [Q96HX3_HUMAN] 

6 1.563 0.143 0.178 

P09228 Cystatin-SA OS=Homo sapiens GN=CST2 PE=1 SV=1 - [CYTT_HUMAN] 2 0.034 1.000 0.034 

P04083 Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 - [ANXA1_HUMAN] 7 0.045 0.495 0.021 

P12273 Prolactin-inducible protein OS=Homo sapiens GN=PIP PE=1 SV=1 - [PIP_HUMAN] 6       

UL34 UL34 3 17.333 0.147 2.665 

Q01469 Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 PE=1 SV=3 - 
[FABP5_HUMAN] 

5 0.010 1.000 0.010 

UL19 UL19 6 100.000 0.200 73.996 

P05164 Myeloperoxidase OS=Homo sapiens GN=MPO PE=1 SV=1 - [PERM_HUMAN] 6 0.010 1.000 0.010 

H7BYV1 Interferon-induced transmembrane protein 2 (Fragment) OS=Homo sapiens GN=IFITM2 
PE=4 SV=1 - [H7BYV1_HUMAN] 

1 3.110 0.187 0.799 

I6L965 KRT18 protein (Fragment) OS=Homo sapiens GN=KRT18 PE=2 SV=1 - 
[I6L965_HUMAN] 

2 5.425 0.715 3.878 

Q6IVJ6 MHC class I antigen precusor (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 - 
[Q6IVJ6_HUMAN] 

4 0.644 0.253 0.260 

P62269 40S ribosomal protein S18 OS=Homo sapiens GN=RPS18 PE=1 SV=3 - [RS18_HUMAN] 5 0.826 0.458 0.358 

A8K486 Peptidyl-prolyl cis-trans isomerase OS=Homo sapiens PE=2 SV=1 - [A8K486_HUMAN] 4 0.236 0.503 0.093 

Q9HCY8 Protein S100-A14 OS=Homo sapiens GN=S100A14 PE=1 SV=1 - [S10AE_HUMAN] 5 0.010 1.000 0.010 

P04080 Cystatin-B OS=Homo sapiens GN=CSTB PE=1 SV=2 - [CYTB_HUMAN] 4 0.010 1.000 0.010 

H0YH81 ATP synthase subunit beta (Fragment) OS=Homo sapiens GN=ATP5B PE=1 SV=1 - 
[H0YH81_HUMAN] 

7 0.970 0.426 0.399 

D6RHX1 Mucin-7 (Fragment) OS=Homo sapiens GN=MUC7 PE=1 SV=1 - [D6RHX1_HUMAN] 2 0.010 1.000 0.010 

P06733 Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 - [ENOA_HUMAN] 6 0.566 0.351 0.217 

A0A087X2I6 Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=1 SV=1 - 
[A0A087X2I6_HUMAN] 

1       

W8QEH3 Lamin A/C OS=Homo sapiens GN=LMNA PE=3 SV=1 - [W8QEH3_HUMAN] 5 0.383 0.350 0.202 

P51149 Ras-related protein Rab-7a OS=Homo sapiens GN=RAB7A PE=1 SV=1 - 
[RAB7A_HUMAN] 

3 0.646 0.337 0.209 

I3L0K7 Heat shock protein 75 kDa, mitochondrial OS=Homo sapiens GN=TRAP1 PE=1 SV=1 - 
[I3L0K7_HUMAN] 

1 1.036     

P05141 ADP/ATP translocase 2 OS=Homo sapiens GN=SLC25A5 PE=1 SV=7 - [ADT2_HUMAN] 2 1.169 0.399 0.467 

P31947 14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 - [1433S_HUMAN] 1 0.165 0.695 0.115 

A0A0F7DDK1 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-B PE=3 SV=1 - 
[A0A0F7DDK1_HUMAN] 

1       

B3KPS3 cDNA FLJ32131 fis, clone PEBLM2000267, highly similar to Tubulin alpha-ubiquitous 
chain OS=Homo sapiens PE=2 SV=1 - [B3KPS3_HUMAN] 

5 0.884 0.197 0.211 

P31025 Lipocalin-1 OS=Homo sapiens GN=LCN1 PE=1 SV=1 - [LCN1_HUMAN] 3 0.010 1.000 0.010 
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Q4LE79 DSP variant protein (Fragment) OS=Homo sapiens GN=DSP variant protein PE=2 SV=1 - 
[Q4LE79_HUMAN] 

7 0.010 1.000 0.010 

P63104 14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1 - [1433Z_HUMAN] 1 0.287 0.359 0.103 

UL27 UL27 5 100.000 0.257 46.716 

H7C3P7 Ras-related protein Ral-A (Fragment) OS=Homo sapiens GN=RALA PE=1 SV=1 - 
[H7C3P7_HUMAN] 

2 0.860 0.597 0.513 

P27824 Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 - [CALX_HUMAN] 3 2.145 0.350 0.758 

P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 
- [G3P_HUMAN] 

5 0.198 0.383 0.041 

V9HWC6 Peptidyl-prolyl cis-trans isomerase OS=Homo sapiens GN=HEL-S-39 PE=2 SV=1 - 
[V9HWC6_HUMAN] 

3 0.254 0.244 0.010 

Q01650 Large neutral amino acids transporter small subunit 1 OS=Homo sapiens GN=SLC7A5 
PE=1 SV=2 - [LAT1_HUMAN] 

3 1.031 0.205 0.225 

P19105 Myosin regulatory light chain 12A OS=Homo sapiens GN=MYL12A PE=1 SV=2 - 
[ML12A_HUMAN] 

3 0.963 0.565 0.703 

P25311 Zinc-alpha-2-glycoprotein OS=Homo sapiens GN=AZGP1 PE=1 SV=2 - [ZA2G_HUMAN] 3 0.010 1.000 0.010 

A0A024R1X8 Junction plakoglobin, isoform CRA_a OS=Homo sapiens GN=JUP PE=4 SV=1 - 
[A0A024R1X8_HUMAN] 

7 0.010 1.000 0.010 

B4DI57 cDNA FLJ54111, highly similar to Serotransferrin OS=Homo sapiens PE=2 SV=1 - 
[B4DI57_HUMAN] 

5       

H7C2U6 Protein NipSnap homolog 1 (Fragment) OS=Homo sapiens GN=NIPSNAP1 PE=1 SV=1 - 
[H7C2U6_HUMAN] 

4 28.121 0.010 0.045 

E9PK01 Elongation factor 1-delta (Fragment) OS=Homo sapiens GN=EEF1D PE=1 SV=1 - 
[E9PK01_HUMAN] 

2   0.189   

P31942 Heterogeneous nuclear ribonucleoprotein H3 OS=Homo sapiens GN=HNRNPH3 PE=1 
SV=2 - [HNRH3_HUMAN] 

2 0.291 2.638 0.459 

P27348 14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1 - [1433T_HUMAN] 1 1.083 0.881 0.954 

P61019 Ras-related protein Rab-2A OS=Homo sapiens GN=RAB2A PE=1 SV=1 - 
[RAB2A_HUMAN] 

3 1.219 0.672 0.888 

P10599 Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 - [THIO_HUMAN] 3 0.035 0.370 0.013 

P48047 ATP synthase subunit O, mitochondrial OS=Homo sapiens GN=ATP5O PE=1 SV=1 - 
[ATPO_HUMAN] 

3 0.772 0.114 0.081 

B3KSC3 cDNA FLJ35987 fis, clone TESTI2014269, highly similar to D-3-phosphoglycerate 
dehydrogenase (EC 1.1.1.95) OS=Homo sapiens PE=2 SV=1 - [B3KSC3_HUMAN] 

3 1.150 0.312 0.359 

P07737 Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 - [PROF1_HUMAN] 3 0.010 1.000 0.010 

P12236 ADP/ATP translocase 3 OS=Homo sapiens GN=SLC25A6 PE=1 SV=4 - [ADT3_HUMAN] 1 1.276 0.012 0.015 

H7C333 Protein NipSnap homolog 2 (Fragment) OS=Homo sapiens GN=GBAS PE=1 SV=1 - 
[H7C333_HUMAN] 

3 17.680 0.010 0.010 

B4DHC4 cDNA FLJ51843, highly similar to 14-3-3 protein gamma OS=Homo sapiens PE=2 SV=1 - 
[B4DHC4_HUMAN] 

1 2.836 0.148 0.419 

A8K5I6 cDNA FLJ78643, highly similar to Homo sapiens cornulin (CRNN), mRNA OS=Homo 
sapiens PE=2 SV=1 - [A8K5I6_HUMAN] 

6 0.010 1.000 0.010 

H7BZJ3 Protein disulfide-isomerase A3 (Fragment) OS=Homo sapiens GN=PDIA3 PE=1 SV=1 - 
[H7BZJ3_HUMAN] 

1 0.249 0.454 0.113 

C8C504 Beta-globin OS=Homo sapiens GN=HBB PE=3 SV=1 - [C8C504_HUMAN] 5 0.010 1.000 0.010 

B0YJC4 Vimentin OS=Homo sapiens GN=VIM PE=1 SV=1 - [B0YJC4_HUMAN] 4       

A8K739 cDNA FLJ77339 OS=Homo sapiens PE=2 SV=1 - [A8K739_HUMAN] 5       

A0A0A0MR02 Voltage-dependent anion-selective channel protein 2 (Fragment) OS=Homo sapiens 
GN=VDAC2 PE=1 SV=1 - [A0A0A0MR02_HUMAN] 

4 7.030 0.119 0.569 

P47929 Galectin-7 OS=Homo sapiens GN=LGALS7 PE=1 SV=2 - [LEG7_HUMAN] 3 0.010 1.000 0.010 

P51148 Ras-related protein Rab-5C OS=Homo sapiens GN=RAB5C PE=1 SV=2 - 
[RAB5C_HUMAN] 

3 1.072 0.518 0.555 

P78386 Keratin, type II cuticular Hb5 OS=Homo sapiens GN=KRT85 PE=1 SV=1 - 
[KRT85_HUMAN] 

2 0.010 1.000 0.010 

P02765 Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1 - [FETUA_HUMAN] 2       

P04792 Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2 - [HSPB1_HUMAN] 2 0.051 0.348 0.033 

Q9UL91 Myosin-reactive immunoglobulin heavy chain variable region (Fragment) OS=Homo 
sapiens PE=2 SV=1 - [Q9UL91_HUMAN] 

2 0.010 1.000 0.010 

Q5HYD9 Putative uncharacterized protein DKFZp686M0619 (Fragment) OS=Homo sapiens 
GN=DKFZp686M0619 PE=2 SV=1 - [Q5HYD9_HUMAN] 

1 1.770 0.438 0.775 

P28325 Cystatin-D OS=Homo sapiens GN=CST5 PE=1 SV=1 - [CYTD_HUMAN] 2 0.010 1.000 0.010 

P23280 Carbonic anhydrase 6 OS=Homo sapiens GN=CA6 PE=1 SV=3 - [CAH6_HUMAN] 3 0.010 1.000 0.010 

UL23 UL23 2 16.232 0.139 2.656 
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H3BMH2 Ras-related protein Rab-11A (Fragment) OS=Homo sapiens GN=RAB11A PE=3 SV=1 - 
[H3BMH2_HUMAN] 

2 0.794 0.274 0.217 

Q08ES8 Cell growth-inhibiting protein 34 OS=Homo sapiens PE=2 SV=1 - [Q08ES8_HUMAN] 3 0.812 0.383 0.305 

I6L957 HNRNPA2B1 protein OS=Homo sapiens GN=HNRNPA2B1 PE=2 SV=1 - 
[I6L957_HUMAN] 

2   0.330   

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN] 2 0.010 1.000 0.010 

P21796 Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 
SV=2 - [VDAC1_HUMAN] 

3 2.347 0.199 0.467 

P59665 Neutrophil defensin 1 OS=Homo sapiens GN=DEFA1 PE=1 SV=1 - [DEF1_HUMAN] 2       

D6RF44 Heterogeneous nuclear ribonucleoprotein D0 (Fragment) OS=Homo sapiens GN=HNRNPD 
PE=1 SV=5 - [D6RF44_HUMAN] 

1 0.010 1.000 0.010 

A0A0F7G8J1 Plasminogen OS=Homo sapiens GN=PLG PE=2 SV=1 - [A0A0F7G8J1_HUMAN] 2 0.010 1.000 0.010 

H7C4C8 T-complex protein 1 subunit theta (Fragment) OS=Homo sapiens GN=CCT8 PE=1 SV=1 - 
[H7C4C8_HUMAN] 

2 2.035 0.127 0.258 

P35321 Cornifin-A OS=Homo sapiens GN=SPRR1A PE=1 SV=2 - [SPR1A_HUMAN] 1 0.010 1.000 0.010 

F8VPE8 60S acidic ribosomal protein P0 (Fragment) OS=Homo sapiens GN=RPLP0 PE=1 SV=1 - 
[F8VPE8_HUMAN] 

2 0.742 0.489 0.322 

Q16610 Extracellular matrix protein 1 OS=Homo sapiens GN=ECM1 PE=1 SV=2 - 
[ECM1_HUMAN] 

3 0.010 1.000 0.010 

D6R9P3 Heterogeneous nuclear ribonucleoprotein A/B OS=Homo sapiens GN=HNRNPAB PE=1 
SV=1 - [D6R9P3_HUMAN] 

1       

Q6UWP8 Suprabasin OS=Homo sapiens GN=SBSN PE=1 SV=2 - [SBSN_HUMAN] 2 0.010 1.000 0.010 

P49411 Elongation factor Tu, mitochondrial OS=Homo sapiens GN=TUFM PE=1 SV=2 - 
[EFTU_HUMAN] 

2     0.121 

U3PXP0 Alpha globin chain (Fragment) OS=Homo sapiens GN=HBA2 PE=3 SV=1 - 
[U3PXP0_HUMAN] 

2       

P35325 Small proline-rich protein 2B OS=Homo sapiens GN=SPRR2B PE=2 SV=1 - 
[SPR2B_HUMAN] 

1 0.010 1.000 0.010 

UL12 UL12 3 100.000 0.712 100.000 

Q6FIG4 RAB1B protein OS=Homo sapiens GN=RAB1B PE=2 SV=1 - [Q6FIG4_HUMAN] 2 1.224 0.475 0.545 

P35326 Small proline-rich protein 2A OS=Homo sapiens GN=SPRR2A PE=1 SV=1 - 
[SPR2A_HUMAN] 

1 0.011 1.000 0.011 

B7Z3V1 cDNA FLJ60077, highly similar to Sodium/potassium-transporting ATPase alpha-1 chain 
(EC 3.6.3.9) (Fragment) OS=Homo sapiens PE=2 SV=1 - [B7Z3V1_HUMAN] 

4 0.852 0.016 0.021 

P62857 40S ribosomal protein S28 OS=Homo sapiens GN=RPS28 PE=1 SV=1 - [RS28_HUMAN] 2 0.434 0.735 0.319 

Q9UGM3 Deleted in malignant brain tumors 1 protein OS=Homo sapiens GN=DMBT1 PE=1 SV=2 - 
[DMBT1_HUMAN] 

3 0.010 1.000 0.010 

P04208 Ig lambda chain V-I region WAH OS=Homo sapiens PE=1 SV=1 - [LV106_HUMAN] 1       

Q5CAQ5 Tumor rejection antigen (Gp96) 1 OS=Homo sapiens GN=TRA1 PE=2 SV=1 - 
[Q5CAQ5_HUMAN] 

3 0.574 1.533 0.881 

P31949 Protein S100-A11 OS=Homo sapiens GN=S100A11 PE=1 SV=2 - [S10AB_HUMAN] 2 0.131 1.215 0.159 

M0R2L9 40S ribosomal protein S19 (Fragment) OS=Homo sapiens GN=RPS19 PE=1 SV=1 - 
[M0R2L9_HUMAN] 

1 0.010 1.000 0.055 

A8K651 cDNA FLJ75700, highly similar to Homo sapiens complement component 1, q 
subcomponent binding protein (C1QBP), nuclear gene encoding mitochondrial protein, 
mRNA OS=Homo sapiens PE=2 SV=1 - [A8K651_HUMAN] 

2 1.135 0.462 0.524 

A0A087WZ27 Zinc finger protein 90 OS=Homo sapiens GN=ZNF90 PE=4 SV=2 - 
[A0A087WZ27_HUMAN] 

3 1.746 0.408 0.713 

H0Y2W2 ATPase family AAA domain-containing protein 3A (Fragment) OS=Homo sapiens 
GN=ATAD3A PE=1 SV=1 - [H0Y2W2_HUMAN] 

3 0.498 0.199 0.099 

H7C463 MICOS complex subunit MIC60 (Fragment) OS=Homo sapiens GN=IMMT PE=1 SV=1 - 
[H7C463_HUMAN] 

2 14.475 0.075 1.087 

B3KUZ8 Aspartate aminotransferase OS=Homo sapiens PE=2 SV=1 - [B3KUZ8_HUMAN] 2 0.239 0.807 0.155 

Q9NQ38 Serine protease inhibitor Kazal-type 5 OS=Homo sapiens GN=SPINK5 PE=1 SV=2 - 
[ISK5_HUMAN] 

2       

H3BUH7 Fructose-bisphosphate aldolase (Fragment) OS=Homo sapiens GN=ALDOA PE=1 SV=1 - 
[H3BUH7_HUMAN] 

2 0.170 0.210 0.036 

A0A0C4DGS1 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit OS=Homo 
sapiens GN=DDOST PE=1 SV=1 - [A0A0C4DGS1_HUMAN] 

3 1.551 0.229 0.355 

P22528 Cornifin-B OS=Homo sapiens GN=SPRR1B PE=1 SV=2 - [SPR1B_HUMAN] 1       

X6RFL8 Ras-related protein Rab-14 (Fragment) OS=Homo sapiens GN=RAB14 PE=1 SV=1 - 
[X6RFL8_HUMAN] 

1     0.131 

Q9Y355 Apolipoprotein A1 (Fragment) OS=Homo sapiens PE=4 SV=1 - [Q9Y355_HUMAN] 2 0.010 1.000 0.010 

A9UFC0 Caspase 14 OS=Homo sapiens GN=CASP14 PE=2 SV=1 - [A9UFC0_HUMAN] 1       
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H0YDD8 60S acidic ribosomal protein P2 (Fragment) OS=Homo sapiens GN=RPLP2 PE=1 SV=1 - 
[H0YDD8_HUMAN] 

1 0.430 0.473 0.203 

P00738 Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1 - [HPT_HUMAN] 2 0.010 1.000 0.010 

A0A024R7P5 Similar to Laminin receptor 1, isoform CRA_a OS=Homo sapiens GN=LOC388524 PE=3 
SV=1 - [A0A024R7P5_HUMAN] 

3 0.369 0.507 0.187 

F5H6Q2 Polyubiquitin-C (Fragment) OS=Homo sapiens GN=UBC PE=1 SV=5 - 
[F5H6Q2_HUMAN] 

3 1.196 0.197 0.134 

A0A087WYY6 Plakophilin-1 OS=Homo sapiens GN=PKP1 PE=1 SV=1 - [A0A087WYY6_HUMAN] 4 0.010 1.000 0.010 

G3GAU4 Anti-H1N1 influenza HA kappa chain variable region (Fragment) OS=Homo sapiens PE=2 
SV=1 - [G3GAU4_HUMAN] 

2 0.010 1.000 0.010 

Q6KB66 Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=KRT80 PE=1 SV=2 - 
[K2C80_HUMAN] 

2 0.010 1.000 0.010 

E5RJX2 40S ribosomal protein S20 OS=Homo sapiens GN=RPS20 PE=1 SV=1 - 
[E5RJX2_HUMAN] 

2 0.664 0.547 0.317 

P01621 Ig kappa chain V-III region NG9 (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[KV303_HUMAN] 

2       

B4DDV4 cDNA FLJ52530, highly similar to Tumor protein D54 OS=Homo sapiens PE=2 SV=1 - 
[B4DDV4_HUMAN] 

2 1.692     

UL42 UL42 3 12.311 0.293 3.604 

P21397 Amine oxidase [flavin-containing] A OS=Homo sapiens GN=MAOA PE=1 SV=1 - 
[AOFA_HUMAN] 

1 1.357 0.416 0.564 

O75594 Peptidoglycan recognition protein 1 OS=Homo sapiens GN=PGLYRP1 PE=1 SV=1 - 
[PGRP1_HUMAN] 

1       

I3NI03 Protein disulfide-isomerase (Fragment) OS=Homo sapiens GN=P4HB PE=1 SV=1 - 
[I3NI03_HUMAN] 

2 0.265 0.282 0.092 

A0N5G5 Rheumatoid factor D5 light chain (Fragment) OS=Homo sapiens GN=V<kappa>3 PE=2 
SV=1 - [A0N5G5_HUMAN] 

2       

P25398 40S ribosomal protein S12 OS=Homo sapiens GN=RPS12 PE=1 SV=3 - [RS12_HUMAN] 2 0.435 0.269 0.125 

Q5T6W2 Heterogeneous nuclear ribonucleoprotein K (Fragment) OS=Homo sapiens GN=HNRNPK 
PE=1 SV=1 - [Q5T6W2_HUMAN] 

2       

B4DUR8 T-complex protein 1 subunit gamma OS=Homo sapiens GN=CCT3 PE=1 SV=1 - 
[B4DUR8_HUMAN] 

2 4.103 0.010 0.027 

UL44 UL44 3 95.250 0.391 61.201 

Q9Y277 Voltage-dependent anion-selective channel protein 3 OS=Homo sapiens GN=VDAC3 PE=1 
SV=1 - [VDAC3_HUMAN] 

1 3.294 0.170 0.559 

B4DJL0 cDNA FLJ60278, highly similar to Dolichyl-diphosphooligosaccharide--
proteinglycosyltransferase 63 kDa subunit (EC 2.4.1.119) OS=Homo sapiens PE=2 SV=1 - 
[B4DJL0_HUMAN] 

2 0.993 0.085 0.084 

Q5T0H8 Gelsolin OS=Homo sapiens GN=GSN PE=1 SV=1 - [Q5T0H8_HUMAN] 2 0.010 1.000 0.010 

M0QZN2 40S ribosomal protein S5 OS=Homo sapiens GN=RPS5 PE=1 SV=1 - [M0QZN2_HUMAN] 2 1.378 0.539 0.380 

C9J0D1 Histone H2A OS=Homo sapiens GN=H2AFV PE=3 SV=1 - [C9J0D1_HUMAN] 2 0.037 0.698 0.026 

P30050 60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 SV=1 - [RL12_HUMAN] 2 0.464 0.064 0.044 

Q9HB00 Desmocollin 1, isoform CRA_b OS=Homo sapiens GN=DSC1 PE=4 SV=1 - 
[Q9HB00_HUMAN] 

5 0.010 1.000 0.010 

H0YH80 Heterogeneous nuclear ribonucleoprotein A1 (Fragment) OS=Homo sapiens 
GN=HNRNPA1 PE=1 SV=1 - [H0YH80_HUMAN] 

2 0.013 0.597 0.013 

Q6IBG5 MYL6 protein OS=Homo sapiens GN=MYL6 PE=2 SV=1 - [Q6IBG5_HUMAN] 1 0.730 0.165 0.121 

B4DJI1 L-lactate dehydrogenase OS=Homo sapiens PE=2 SV=1 - [B4DJI1_HUMAN] 2 0.069 0.450 0.031 

H0Y512 Adipocyte plasma membrane-associated protein (Fragment) OS=Homo sapiens 
GN=APMAP PE=1 SV=1 - [H0Y512_HUMAN] 

2 1.148 0.702 0.640 

P06312 Ig kappa chain V-IV region (Fragment) OS=Homo sapiens GN=IGKV4-1 PE=4 SV=1 - 
[KV401_HUMAN] 

2 0.010 1.000 0.010 

B4DEB9 cDNA FLJ61099, highly similar to ADP-ribosylation factor 1 OS=Homo sapiens PE=2 
SV=1 - [B4DEB9_HUMAN] 

2 1.022 0.397 0.405 

B3KM80 Nucleolin, isoform CRA_c OS=Homo sapiens GN=NCL PE=2 SV=1 - 
[B3KM80_HUMAN] 

2 0.255 0.685 0.309 

F6RFD5 Destrin OS=Homo sapiens GN=DSTN PE=1 SV=1 - [F6RFD5_HUMAN] 1 0.869 0.597 0.518 

Q96FQ6 Protein S100-A16 OS=Homo sapiens GN=S100A16 PE=1 SV=1 - [S10AG_HUMAN] 2       

O43760 Synaptogyrin-2 OS=Homo sapiens GN=SYNGR2 PE=1 SV=1 - [SNG2_HUMAN] 2 0.273   0.314 

P36952 Serpin B5 OS=Homo sapiens GN=SERPINB5 PE=1 SV=2 - [SPB5_HUMAN] 2 0.065 0.760 0.050 

O95292 Vesicle-associated membrane protein-associated protein B/C OS=Homo sapiens GN=VAPB 
PE=1 SV=3 - [VAPB_HUMAN] 

2 3.033 0.010 0.010 

B3KQT9 Protein disulfide-isomerase OS=Homo sapiens PE=2 SV=1 - [B3KQT9_HUMAN] 1       
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B7Z2I6 cDNA FLJ57106, highly similar to Transferrin receptor protein 1 OS=Homo sapiens PE=2 
SV=1 - [B7Z2I6_HUMAN] 

2 0.887 0.250 0.222 

D6RAE9 Sideroflexin-1 OS=Homo sapiens GN=SFXN1 PE=1 SV=1 - [D6RAE9_HUMAN] 1       

Q9BRX8 Redox-regulatory protein FAM213A OS=Homo sapiens GN=FAM213A PE=1 SV=3 - 
[F213A_HUMAN] 

1 0.852 0.585 0.498 

A8K7T4 cDNA FLJ75774, highly similar to Homo sapiens lectin, mannose-binding 2 (LMAN2), 
mRNA OS=Homo sapiens PE=2 SV=1 - [A8K7T4_HUMAN] 

2 0.010 1.000 0.010 

Q05CF8 KNG1 protein OS=Homo sapiens GN=KNG1 PE=2 SV=1 - [Q05CF8_HUMAN] 1       

US2 US2 2 100.000 0.081 17.644 

X2J4X7 Kallikrein 7 (Fragment) OS=Homo sapiens GN=KLK7 PE=2 SV=1 - [X2J4X7_HUMAN] 1 0.010 1.000 0.010 

P26641 Elongation factor 1-gamma OS=Homo sapiens GN=EEF1G PE=1 SV=3 - 
[EF1G_HUMAN] 

4 0.010 1.000 0.010 

B3KT34 cDNA FLJ37560 fis, clone BRCOC2000333, highly similar to Succinate dehydrogenase 
(ubiquinone) flavoprotein subunit, mitochondrial (EC 1.3.5.1) OS=Homo sapiens PE=2 
SV=1 - [B3KT34_HUMAN] 

1 0.010 1.000 0.010 

Q53EW3 Regulatory factor X, 5 variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53EW3_HUMAN] 

1       

O95873 Uncharacterized protein C6orf47 OS=Homo sapiens GN=C6orf47 PE=2 SV=2 - 
[CF047_HUMAN] 

1       

US11 US11 1       

UL26.5 UL26.5 1     10.459 

E5RGH4 Heterogeneous nuclear ribonucleoprotein H (Fragment) OS=Homo sapiens GN=HNRNPH1 
PE=1 SV=1 - [E5RGH4_HUMAN] 

1 0.328 0.841 0.276 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 - [FILA2_HUMAN] 1 0.010 1.000 0.010 

P31151 Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 - [S10A7_HUMAN] 1       

P32320 Cytidine deaminase OS=Homo sapiens GN=CDA PE=1 SV=2 - [CDD_HUMAN] 1 0.010 1.000 0.010 

Q70T18 BBF2H7/FUS protein (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q70T18_HUMAN] 1 0.220 0.502 0.110 

Q0QF37 Malate dehydrogenase (Fragment) OS=Homo sapiens GN=MDH2 PE=2 SV=1 - 
[Q0QF37_HUMAN] 

2 0.022 1.616 0.036 

H0YD14 Myoferlin (Fragment) OS=Homo sapiens GN=MYOF PE=1 SV=1 - [H0YD14_HUMAN] 1   0.043   

P08493 Matrix Gla protein OS=Homo sapiens GN=MGP PE=1 SV=2 - [MGP_HUMAN] 1       

V9GY25 ATP-dependent 6-phosphofructokinase, platelet type (Fragment) OS=Homo sapiens 
GN=PFKP PE=1 SV=1 - [V9GY25_HUMAN] 

1       

P01596 Ig kappa chain V-I region CAR OS=Homo sapiens PE=1 SV=1 - [KV104_HUMAN] 1 0.010 1.000 0.010 

O00151 PDZ and LIM domain protein 1 OS=Homo sapiens GN=PDLIM1 PE=1 SV=4 - 
[PDLI1_HUMAN] 

1 0.010 1.000 0.010 

H0YJF9 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate 
dehydrogenase complex, mitochondrial (Fragment) OS=Homo sapiens GN=DLST PE=1 
SV=1 - [H0YJF9_HUMAN] 

1 0.395 0.801 0.316 

UL25 UL25 1 4.959     

D3DPF9 Titin, isoform CRA_b OS=Homo sapiens GN=TTN PE=4 SV=1 - [D3DPF9_HUMAN] 1       

P00742 Coagulation factor X OS=Homo sapiens GN=F10 PE=1 SV=2 - [FA10_HUMAN] 1 0.010 1.000 0.010 

H0YNX5 Signal peptidase complex catalytic subunit SEC11 (Fragment) OS=Homo sapiens 
GN=SEC11A PE=1 SV=1 - [H0YNX5_HUMAN] 

2 0.993 0.307 0.305 

Q8NAG3 cDNA FLJ35393 fis, clone SKNSH2000971, highly similar to TROPOMYOSIN, 
CYTOSKELETAL TYPE OS=Homo sapiens PE=2 SV=1 - [Q8NAG3_HUMAN] 

2 0.010 1.000 0.010 

A0A024RC29 Desmocollin 3, isoform CRA_b OS=Homo sapiens GN=DSC3 PE=4 SV=1 - 
[A0A024RC29_HUMAN] 

1       

UL31 UL31 1       

Q5QNZ2 ATP synthase F(0) complex subunit B1, mitochondrial OS=Homo sapiens GN=ATP5F1 
PE=1 SV=1 - [Q5QNZ2_HUMAN] 

2 0.807 0.339 0.273 

F5H895 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit DAD1 OS=Homo 
sapiens GN=DAD1 PE=1 SV=1 - [F5H895_HUMAN] 

1 0.644 0.252 0.162 

P02656 Apolipoprotein C-III OS=Homo sapiens GN=APOC3 PE=1 SV=1 - [APOC3_HUMAN] 1       

H7C1V0 Cathepsin D (Fragment) OS=Homo sapiens GN=CTSD PE=1 SV=1 - [H7C1V0_HUMAN] 1       

B3KRY3 cDNA FLJ35079 fis, clone PLACE6005283, highly similar to Lysosome-associated 
membrane glycoprotein 1 OS=Homo sapiens PE=2 SV=1 - [B3KRY3_HUMAN] 

1 0.811 0.557 0.452 

Q0VGA3 SUPT16H protein (Fragment) OS=Homo sapiens GN=SUPT16H PE=2 SV=1 - 
[Q0VGA3_HUMAN] 

1       

A0A087WVQ2 PHD finger protein 23 OS=Homo sapiens GN=PHF23 PE=1 SV=1 - 
[A0A087WVQ2_HUMAN] 

1       
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A2VCT2 OGDH protein (Fragment) OS=Homo sapiens GN=OGDH PE=2 SV=1 - 
[A2VCT2_HUMAN] 

1       

P25815 Protein S100-P OS=Homo sapiens GN=S100P PE=1 SV=2 - [S100P_HUMAN] 1       

Q53H37 Calmodulin-like skin protein variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53H37_HUMAN] 

1 0.010 1.000 0.010 

B2MUD5 Neutrophil elastase (Fragment) OS=Homo sapiens GN=ELA2 PE=3 SV=1 - 
[B2MUD5_HUMAN] 

1       

Q8TAK2 Similar to catalase (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q8TAK2_HUMAN] 1 0.010 1.000 0.010 

C9J0H3 Phospholipid scramblase 1 (Fragment) OS=Homo sapiens GN=PLSCR1 PE=1 SV=1 - 
[C9J0H3_HUMAN] 

1       

E5RGS7 Uncharacterized protein OS=Homo sapiens PE=4 SV=1 - [E5RGS7_HUMAN] 1       

B4DFL1 Dihydrolipoyl dehydrogenase OS=Homo sapiens PE=2 SV=1 - [B4DFL1_HUMAN] 1 0.297 0.495 0.147 

H0YLF3 Beta-2-microglobulin (Fragment) OS=Homo sapiens GN=B2M PE=1 SV=1 - 
[H0YLF3_HUMAN] 

1   0.373   

Q5JPJ9 Putative uncharacterized protein DKFZp686D0114 OS=Homo sapiens 
GN=DKFZp686D0114 PE=4 SV=1 - [Q5JPJ9_HUMAN] 

1       

K7EJT5 60S ribosomal protein L22 (Fragment) OS=Homo sapiens GN=RPL22 PE=1 SV=1 - 
[K7EJT5_HUMAN] 

1 0.465 0.567 0.264 

B4DQ44 cDNA FLJ51274, highly similar to NACHT, LRR and PYD-containing protein 7 OS=Homo 
sapiens PE=2 SV=1 - [B4DQ44_HUMAN] 

1       

A1L407 Histone cluster 1, H1t OS=Homo sapiens GN=HIST1H1T PE=2 SV=1 - 
[A1L407_HUMAN] 

1 0.010 13.712 0.011 

F8VTZ0 Poly(rC)-binding protein 2 (Fragment) OS=Homo sapiens GN=PCBP2 PE=1 SV=1 - 
[F8VTZ0_HUMAN] 

1       

P05089 Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2 - [ARGI1_HUMAN] 1       

Q5M9N0 Coiled-coil domain-containing protein 158 OS=Homo sapiens GN=CCDC158 PE=1 SV=2 
- [CD158_HUMAN] 

1       

UL40 UL40 2       

Q5S4N1 Putative uncharacterized protein (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q5S4N1_HUMAN] 

2 0.921 0.055 0.071 

Q68DY8 Putative uncharacterized protein DKFZp686I11137 OS=Homo sapiens 
GN=DKFZp686I11137 PE=2 SV=1 - [Q68DY8_HUMAN] 

1       

Q6P5S2 Protein LEG1 homolog OS=Homo sapiens GN=LEG1 PE=1 SV=2 - [LEG1H_HUMAN] 2       

P05090 Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1 - [APOD_HUMAN] 2 0.010 1.000 0.010 

B4DPN7 cDNA FLJ57553, highly similar to SPFH domain-containing protein 1 OS=Homo sapiens 
PE=2 SV=1 - [B4DPN7_HUMAN] 

1       

P01040 Cystatin-A OS=Homo sapiens GN=CSTA PE=1 SV=1 - [CYTA_HUMAN] 2       

Q59GN1 Proteasome subunit beta type (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q59GN1_HUMAN] 

1       

H0YEP8 Serpin H1 (Fragment) OS=Homo sapiens GN=SERPINH1 PE=1 SV=1 - 
[H0YEP8_HUMAN] 

1       

A4ZU86 Truncated nucleolar phosphoprotein B23 OS=Homo sapiens GN=NPM1 PE=2 SV=1 - 
[A4ZU86_HUMAN] 

2 0.098 0.725 0.071 

C9JMD7 B-cell receptor-associated protein 31 (Fragment) OS=Homo sapiens GN=BCAP31 PE=1 
SV=1 - [C9JMD7_HUMAN] 

1 0.341 0.155 0.053 

D6CHE9 Proteinase 3 OS=Homo sapiens GN=PRTN3 PE=2 SV=1 - [D6CHE9_HUMAN] 1       

B4DJW9 cDNA FLJ55029, highly similar to Creatine kinase, ubiquitous mitochondrial (EC 2.7.3.2) 
OS=Homo sapiens PE=2 SV=1 - [B4DJW9_HUMAN] 

1 0.330     

P25788 Proteasome subunit alpha type-3 OS=Homo sapiens GN=PSMA3 PE=1 SV=2 - 
[PSA3_HUMAN] 

1 0.010 1.000 0.010 

K7EKI8 Periplakin OS=Homo sapiens GN=PPL PE=1 SV=1 - [K7EKI8_HUMAN] 2 0.014 1.000 0.014 

E5RJR5 S-phase kinase-associated protein 1 OS=Homo sapiens GN=SKP1 PE=1 SV=1 - 
[E5RJR5_HUMAN] 

1 0.370 0.359 0.133 

B3KPA6 Acyl-Coenzyme A dehydrogenase, very long chain, isoform CRA_e OS=Homo sapiens 
GN=ACADVL PE=2 SV=1 - [B3KPA6_HUMAN] 

2 0.774 0.024 0.014 

K7EMN2 6-phosphogluconate dehydrogenase, decarboxylating (Fragment) OS=Homo sapiens 
GN=PGD PE=1 SV=1 - [K7EMN2_HUMAN] 

1 0.010 1.000 0.010 

B7Z478 Proteasome (Prosome, macropain) subunit, beta type, 2, isoform CRA_b OS=Homo sapiens 
GN=PSMB2 PE=2 SV=1 - [B7Z478_HUMAN] 

1       

RL2 RL2 1       

F5H018 GTP-binding nuclear protein Ran (Fragment) OS=Homo sapiens GN=RAN PE=1 SV=5 - 
[F5H018_HUMAN] 

2 1.457 0.255 0.372 

Q96AG4 Leucine-rich repeat-containing protein 59 OS=Homo sapiens GN=LRRC59 PE=1 SV=1 - 
[LRC59_HUMAN] 

1       

X2D3Z6 Cytochrome c oxidase subunit 2 (Fragment) OS=Homo sapiens GN=cox2 PE=3 SV=1 - 
[X2D3Z6_HUMAN] 

3       
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F2Z2I8 Stomatin-like protein 2, mitochondrial OS=Homo sapiens GN=STOML2 PE=1 SV=1 - 
[F2Z2I8_HUMAN] 

1 2.939     

A8K313 cDNA FLJ78249, highly similar to Homo sapiens RAD51 associated protein 1, mRNA 
OS=Homo sapiens PE=2 SV=1 - [A8K313_HUMAN] 

1       

B4DUL5 cDNA FLJ51625, highly similar to Ubiquinol-cytochrome-c reductase complex coreprotein 
I, mitochondrial (EC 1.10.2.2) OS=Homo sapiens PE=2 SV=1 - [B4DUL5_HUMAN] 

1 0.720 0.349 0.252 

E5KN59 Peptidyl-prolyl cis-trans isomerase D OS=Homo sapiens PE=4 SV=1 - [E5KN59_HUMAN] 1       

S0BE06 BTB and CNC homology 1, basic leucine zipper transcription factor 2 (Fragment) OS=Homo 
sapiens GN=Bach2 PE=2 SV=1 - [S0BE06_HUMAN] 

1       

P62851 40S ribosomal protein S25 OS=Homo sapiens GN=RPS25 PE=1 SV=1 - [RS25_HUMAN] 1 0.699 0.406 0.284 

Q9H3M1 Airway lactoperoxidase (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q9H3M1_HUMAN] 1       

H3BMQ0 Tuberin OS=Homo sapiens GN=TSC2 PE=1 SV=1 - [H3BMQ0_HUMAN] 1 0.010 1.000 0.010 

B3KPM4 Zinc finger protein 185 (LIM domain), isoform CRA_a OS=Homo sapiens GN=ZNF185 
PE=2 SV=1 - [B3KPM4_HUMAN] 

1       

Q0EFA5 S protein OS=Homo sapiens GN=S PE=4 SV=1 - [Q0EFA5_HUMAN] 1       

B4E1S3 cDNA FLJ57860, highly similar to Transmembrane protein 109 OS=Homo sapiens PE=2 
SV=1 - [B4E1S3_HUMAN] 

1 2.553 0.130 0.331 

D6R9A6 High mobility group protein B2 (Fragment) OS=Homo sapiens GN=HMGB2 PE=1 SV=1 - 
[D6R9A6_HUMAN] 

1 0.010 1.000 0.010 

E9PQ63 Carbonyl reductase [NADPH] 1 OS=Homo sapiens GN=CBR1 PE=1 SV=1 - 
[E9PQ63_HUMAN] 

2 0.829 0.354 0.293 

V9HW35 Epididymis secretory protein Li 55 OS=Homo sapiens GN=HEL-S-55 PE=2 SV=1 - 
[V9HW35_HUMAN] 

1 0.010 1.000 0.010 

Q53GB0 Mitochondrial import receptor Tom22 variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53GB0_HUMAN] 

1       

Q04941 Proteolipid protein 2 OS=Homo sapiens GN=PLP2 PE=1 SV=1 - [PLP2_HUMAN] 1       

A0A024R3J7 HCG2032701, isoform CRA_a OS=Homo sapiens GN=hCG_2032701 PE=4 SV=1 - 
[A0A024R3J7_HUMAN] 

1 1.653 0.117 0.194 

B4DUI5 Triosephosphate isomerase OS=Homo sapiens PE=2 SV=1 - [B4DUI5_HUMAN] 2 0.010 1.000 0.010 

Q15758 Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2 - 
[AAAT_HUMAN] 

2 1.880 0.367 0.184 

B4DHR1 cDNA FLJ53009, highly similar to Calreticulin OS=Homo sapiens PE=2 SV=1 - 
[B4DHR1_HUMAN] 

1 0.106 1.880 0.200 

B4DZ87 cDNA FLJ57240, highly similar to Mitochondrial proteins import receptor OS=Homo 
sapiens PE=2 SV=1 - [B4DZ87_HUMAN] 

1 0.683 0.169 0.115 

A4UCS6 Peroxiredoxin 6 (Fragment) OS=Homo sapiens PE=2 SV=1 - [A4UCS6_HUMAN] 1 0.149 0.339 0.050 

O95969 Secretoglobin family 1D member 2 OS=Homo sapiens GN=SCGB1D2 PE=2 SV=1 - 
[SG1D2_HUMAN] 

1 0.010 1.000 0.010 

A2NKM6 NANUC-1 heavy chain (Fragment) OS=Homo sapiens PE=2 SV=1 - [A2NKM6_HUMAN] 1       

P60903 Protein S100-A10 OS=Homo sapiens GN=S100A10 PE=1 SV=2 - [S10AA_HUMAN] 1 0.695     

E7EQG2 Eukaryotic initiation factor 4A-II OS=Homo sapiens GN=EIF4A2 PE=1 SV=1 - 
[E7EQG2_HUMAN] 

2 0.675 0.021 0.014 

P35754 Glutaredoxin-1 OS=Homo sapiens GN=GLRX PE=1 SV=2 - [GLRX1_HUMAN] 1 0.010 1.000 0.010 

P80188 Neutrophil gelatinase-associated lipocalin OS=Homo sapiens GN=LCN2 PE=1 SV=2 - 
[NGAL_HUMAN] 

1       

Q6LER6 Cytochrome c (Fragment) OS=Homo sapiens PE=2 SV=1 - [Q6LER6_HUMAN] 1 0.052     

B4DS32 cDNA FLJ56236, highly similar to Exportin-2 OS=Homo sapiens PE=2 SV=1 - 
[B4DS32_HUMAN] 

1       

B1AN48 Small proline-rich protein 3 (Fragment) OS=Homo sapiens GN=SPRR3 PE=1 SV=5 - 
[B1AN48_HUMAN] 

1       

J3KS17 Beta-2-glycoprotein 1 (Fragment) OS=Homo sapiens GN=APOH PE=1 SV=1 - 
[J3KS17_HUMAN] 

1       

Q15084 Protein disulfide-isomerase A6 OS=Homo sapiens GN=PDIA6 PE=1 SV=1 - 
[PDIA6_HUMAN] 

1 0.011 1.000 0.011 

Q8NGM9 Olfactory receptor 8D4 OS=Homo sapiens GN=OR8D4 PE=2 SV=1 - [OR8D4_HUMAN] 1       

B7ZBI5 Collagen alpha-1(XX) chain (Fragment) OS=Homo sapiens GN=COL20A1 PE=4 SV=1 - 
[B7ZBI5_HUMAN] 

1       

Q6NVI1 MARCKS protein (Fragment) OS=Homo sapiens GN=MARCKS PE=2 SV=1 - 
[Q6NVI1_HUMAN] 

1 0.022 1.000 0.022 

US6 US6 1 9.718 0.487 4.733 

M0QZK8 Uncharacterized protein OS=Homo sapiens PE=4 SV=1 - [M0QZK8_HUMAN] 1       

F8W1N5 Nascent polypeptide-associated complex subunit alpha (Fragment) OS=Homo sapiens 
GN=NACA PE=1 SV=1 - [F8W1N5_HUMAN] 

1 0.135 0.603 0.082 

Q03252 Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3 - [LMNB2_HUMAN] 1     0.180 
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B4DSR0 cDNA FLJ60080, highly similar to 130 kDa leucine-rich protein (LRP 130) (Fragment) 
OS=Homo sapiens PE=2 SV=1 - [B4DSR0_HUMAN] 

1 0.025 1.000 0.025 

H0YB22 40S ribosomal protein S14 (Fragment) OS=Homo sapiens GN=RPS14 PE=1 SV=1 - 
[H0YB22_HUMAN] 

1 0.688 1.489 1.025 

Q4QZC0 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 - 
[Q4QZC0_HUMAN] 

1 0.655 0.320 0.209 

Q4G168 CPNE4 protein OS=Homo sapiens GN=CPNE4 PE=2 SV=1 - [Q4G168_HUMAN] 1 0.529     

A0A075B6Z2 Protein TRAJ56 (Fragment) OS=Homo sapiens GN=TRAJ56 PE=4 SV=1 - 
[A0A075B6Z2_HUMAN] 

1       

P30048 Thioredoxin-dependent peroxide reductase, mitochondrial OS=Homo sapiens GN=PRDX3 
PE=1 SV=3 - [PRDX3_HUMAN] 

1 0.022 7.274 0.160 

Q9BZ93 Prosomal P27K protein (Fragment) OS=Homo sapiens GN=PSMA6 PE=4 SV=1 - 
[Q9BZ93_HUMAN] 

1 0.410 0.563 0.231 

UL38 UL38 2 100.000 0.170 18.975 

P12724 Eosinophil cationic protein OS=Homo sapiens GN=RNASE3 PE=1 SV=2 - 
[ECP_HUMAN] 

1       

J3KSC4 Ras-related C3 botulinum toxin substrate 3 (Fragment) OS=Homo sapiens GN=RAC3 PE=1 
SV=1 - [J3KSC4_HUMAN] 

1 0.217 0.978 0.212 

B4DVE1 cDNA FLJ53478, highly similar to Galectin-3-binding protein OS=Homo sapiens PE=2 
SV=1 - [B4DVE1_HUMAN] 

2 0.010 1.000 0.010 

C9J191 Kelch-like protein 22 (Fragment) OS=Homo sapiens GN=KLHL22 PE=1 SV=1 - 
[C9J191_HUMAN] 

1 0.538 0.334 0.180 

P62266 40S ribosomal protein S23 OS=Homo sapiens GN=RPS23 PE=1 SV=3 - [RS23_HUMAN] 1 1.233     

B1AKQ8 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 (Fragment) OS=Homo 
sapiens GN=GNB1 PE=1 SV=5 - [B1AKQ8_HUMAN] 

1 0.721 0.083 0.059 

E9PLJ3 Cofilin-1 (Fragment) OS=Homo sapiens GN=CFL1 PE=1 SV=1 - [E9PLJ3_HUMAN] 1 0.010 1.000 0.010 

F8VP99 ADP-ribosylation factor-like protein 1 (Fragment) OS=Homo sapiens GN=ARL1 PE=1 
SV=1 - [F8VP99_HUMAN] 

1       

Q6UW32 Insulin growth factor-like family member 1 OS=Homo sapiens GN=IGFL1 PE=1 SV=1 - 
[IGFL1_HUMAN] 

1       

F8VY02 Endoplasmic reticulum resident protein 29 OS=Homo sapiens GN=ERP29 PE=1 SV=1 - 
[F8VY02_HUMAN] 

1       

B4E2A4 cDNA FLJ53275, highly similar to Homo sapiens spectrin domain with coiled-coils 1 
(SPECC1), transcript variant, mRNA OS=Homo sapiens PE=2 SV=1 - [B4E2A4_HUMAN] 

1       

Q96P63 Serpin B12 OS=Homo sapiens GN=SERPINB12 PE=1 SV=1 - [SPB12_HUMAN] 1       

P01008 Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1 SV=1 - [ANT3_HUMAN] 1       

L0R4T3 Histone H2B OS=Homo sapiens GN=ABCF2 PE=3 SV=1 - [L0R4T3_HUMAN] 1 0.074 0.515 0.038 

H0YNQ3 Aldehyde dehydrogenase family 1 member A3 OS=Homo sapiens GN=ALDH1A3 PE=1 
SV=1 - [H0YNQ3_HUMAN] 

1       

F2Z393 Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=1 - [F2Z393_HUMAN] 2 0.010 1.000 0.010 

Q9HBB2 Aconitate hydratase OS=Homo sapiens GN=IRP1 PE=2 SV=1 - [Q9HBB2_HUMAN] 1       

Q7Z4Q5 Heterogeneous nuclear ribonucleoprotein U (Scaffold attachment factor A), isoform CRA_a 
OS=Homo sapiens GN=HNRPU PE=2 SV=1 - [Q7Z4Q5_HUMAN] 

1       

UL22 UL22 2 4.638 0.386 1.789 

H0YFD6 Trifunctional enzyme subunit alpha, mitochondrial (Fragment) OS=Homo sapiens 
GN=HADHA PE=1 SV=1 - [H0YFD6_HUMAN] 

2   0.145   

Q49AG2 TMED5 protein OS=Homo sapiens GN=TMED5 PE=2 SV=1 - [Q49AG2_HUMAN] 1 81.443 0.275 22.376 

R4GN98 Protein S100 (Fragment) OS=Homo sapiens GN=S100A6 PE=1 SV=1 - 
[R4GN98_HUMAN] 

1 0.086 0.484 0.042 

Q9GZZ8 Extracellular glycoprotein lacritin OS=Homo sapiens GN=LACRT PE=1 SV=1 - 
[LACRT_HUMAN] 

1 0.010 1.000 0.010 

E9PDK7 Plasminogen activator inhibitor 2 (Fragment) OS=Homo sapiens GN=SERPINB2 PE=1 
SV=1 - [E9PDK7_HUMAN] 

1 0.616 0.010 0.010 

F5H3C5 Superoxide dismutase [Mn], mitochondrial (Fragment) OS=Homo sapiens GN=SOD2 PE=1 
SV=1 - [F5H3C5_HUMAN] 

1 0.010 1.000 0.010 

K7ERY7 60S ribosomal protein L27 OS=Homo sapiens GN=RPL27 PE=1 SV=1 - 
[K7ERY7_HUMAN] 

1       

F5H608 ATP synthase subunit d, mitochondrial OS=Homo sapiens GN=ATP5H PE=1 SV=2 - 
[F5H608_HUMAN] 

1 2.523 0.289 0.728 

Q9H2U9 Disintegrin and metalloproteinase domain-containing protein 7 OS=Homo sapiens 
GN=ADAM7 PE=1 SV=3 - [ADAM7_HUMAN] 

1       

B4DKZ9 cDNA FLJ55705, highly similar to Threonyl-tRNA synthetase, cytoplasmic (EC 6.1.1.3) 
OS=Homo sapiens PE=2 SV=1 - [B4DKZ9_HUMAN] 

1       

B7Z7I4 cDNA FLJ54568, highly similar to T-complex protein 1 subunit eta OS=Homo sapiens PE=2 
SV=1 - [B7Z7I4_HUMAN] 

3 0.888 0.080 0.030 

UL49 UL49 1 7.763 0.283 2.193 
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B7Z2R9 cDNA FLJ52540, highly similar to Lysosome-associated membrane glycoprotein 2 
OS=Homo sapiens PE=2 SV=1 - [B7Z2R9_HUMAN] 

1 0.432 0.444 0.192 

G3V2K7 Transmembrane emp24 domain-containing protein 10 OS=Homo sapiens GN=TMED10 
PE=1 SV=1 - [G3V2K7_HUMAN] 

1 1.371 0.150 0.206 

Q9UHS8 PRO1975 OS=Homo sapiens PE=2 SV=1 - [Q9UHS8_HUMAN] 2 0.203 0.644 0.131 

Q08188 Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens GN=TGM3 PE=1 
SV=4 - [TGM3_HUMAN] 

1 0.010 1.000 0.010 

C9JKY3 Epithelial cell adhesion molecule (Fragment) OS=Homo sapiens GN=EPCAM PE=1 SV=1 
- [C9JKY3_HUMAN] 

1 0.020 1.000 0.020 

Q0PHS5 Glucose-6-phosphate dehydrogenase (Fragment) OS=Homo sapiens GN=G6PD PE=4 SV=1 
- [Q0PHS5_HUMAN] 

1       

Q16821 Protein phosphatase 1 regulatory subunit 3A OS=Homo sapiens GN=PPP1R3A PE=1 SV=3 
- [PPR3A_HUMAN] 

1       

O14828 Secretory carrier-associated membrane protein 3 OS=Homo sapiens GN=SCAMP3 PE=1 
SV=3 - [SCAM3_HUMAN] 

1 1.234 0.481 0.594 

B4E290 cDNA FLJ50039, highly similar to Homo sapiens solute carrier family 25, member 24, 
transcript variant 1, mRNA OS=Homo sapiens PE=2 SV=1 - [B4E290_HUMAN] 

1 1.587 0.013 0.021 

P46783 40S ribosomal protein S10 OS=Homo sapiens GN=RPS10 PE=1 SV=1 - [RS10_HUMAN] 2 0.542 0.208 0.113 

Q8N3X5 Similar to ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 (Fragment) OS=Homo 
sapiens PE=2 SV=1 - [Q8N3X5_HUMAN] 

1 0.961 0.121 0.116 

P50238 Cysteine-rich protein 1 OS=Homo sapiens GN=CRIP1 PE=1 SV=3 - [CRIP1_HUMAN] 1 0.010 1.000 0.010 

UL18 UL18 1   1.150   

P52597 Heterogeneous nuclear ribonucleoprotein F OS=Homo sapiens GN=HNRNPF PE=1 SV=3 
- [HNRPF_HUMAN] 

1 0.017 1.000 0.017 

A8MUD9 60S ribosomal protein L7 OS=Homo sapiens GN=RPL7 PE=1 SV=1 - 
[A8MUD9_HUMAN] 

1 0.270     

B4DNY1 cDNA FLJ60318, highly similar to RNA-binding protein 6 OS=Homo sapiens PE=2 SV=1 
- [B4DNY1_HUMAN] 

1       

Q5IWS5 Intelectin 1 OS=Homo sapiens GN=ITLN1 PE=2 SV=1 - [Q5IWS5_HUMAN] 1 0.014 1.000 0.014 

N0E466 Casein kinase II subunit beta OS=Homo sapiens GN=CSNK2B PE=2 SV=1 - 
[N0E466_HUMAN] 

1 8.360 0.010 0.052 

B7Z1V9 cDNA FLJ53310, highly similar to Puromycin-sensitive aminopeptidase (EC 3.4.11.-) 
OS=Homo sapiens PE=2 SV=1 - [B7Z1V9_HUMAN] 

1       

P12004 Proliferating cell nuclear antigen OS=Homo sapiens GN=PCNA PE=1 SV=1 - 
[PCNA_HUMAN] 

2 1.294 0.334 0.432 

Q53T09 Putative uncharacterized protein XRCC5 (Fragment) OS=Homo sapiens GN=XRCC5 PE=4 
SV=1 - [Q53T09_HUMAN] 

1       

P07954 Fumarate hydratase, mitochondrial OS=Homo sapiens GN=FH PE=1 SV=3 - 
[FUMH_HUMAN] 

1 0.010 1.000 0.010 

H3BRM5 Cytochrome c oxidase subunit 5A, mitochondrial OS=Homo sapiens GN=COX5A PE=1 
SV=1 - [H3BRM5_HUMAN] 

1 0.810 0.457 0.370 

O15269 Serine palmitoyltransferase 1 OS=Homo sapiens GN=SPTLC1 PE=1 SV=1 - 
[SPTC1_HUMAN] 

1       

Q5T6L6 Argininosuccinate synthase (Fragment) OS=Homo sapiens GN=ASS1 PE=1 SV=1 - 
[Q5T6L6_HUMAN] 

1       

P62330 ADP-ribosylation factor 6 OS=Homo sapiens GN=ARF6 PE=1 SV=2 - [ARF6_HUMAN] 1       

P05091 Aldehyde dehydrogenase, mitochondrial OS=Homo sapiens GN=ALDH2 PE=1 SV=2 - 
[ALDH2_HUMAN] 

1 0.010 1.000 0.010 

P49703 ADP-ribosylation factor-like protein 4D OS=Homo sapiens GN=ARL4D PE=1 SV=2 - 
[ARL4D_HUMAN] 

1       

A2VCL2 Coiled-coil domain-containing protein 162 OS=Homo sapiens GN=CCDC162P PE=2 SV=3 
- [CC162_HUMAN] 

1       

O43866 CD5 antigen-like OS=Homo sapiens GN=CD5L PE=1 SV=1 - [CD5L_HUMAN] 1       

Q14677 Clathrin interactor 1 OS=Homo sapiens GN=CLINT1 PE=1 SV=1 - [EPN4_HUMAN] 1       

Q86YZ3 Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 - [HORN_HUMAN] 1       

Q9Y573 Actin-binding protein IPP OS=Homo sapiens GN=IPP PE=2 SV=1 - [IPP_HUMAN] 1       

Q8NCM2 Potassium voltage-gated channel subfamily H member 5 OS=Homo sapiens GN=KCNH5 
PE=1 SV=3 - [KCNH5_HUMAN] 

1       

P04431 Ig kappa chain V-I region Walker OS=Homo sapiens PE=1 SV=1 - [KV123_HUMAN] 1       

P11226 Mannose-binding protein C OS=Homo sapiens GN=MBL2 PE=1 SV=2 - 
[MBL2_HUMAN] 

1       

Q5VYS4 Mesenteric estrogen-dependent adipogenesis protein OS=Homo sapiens GN=MEDAG 
PE=2 SV=1 - [MEDAG_HUMAN] 

1       

Q9Y623 Myosin-4 OS=Homo sapiens GN=MYH4 PE=1 SV=2 - [MYH4_HUMAN] 1       

Q7Z494 Nephrocystin-3 OS=Homo sapiens GN=NPHP3 PE=1 SV=1 - [NPHP3_HUMAN] 1       
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O60285 NUAK family SNF1-like kinase 1 OS=Homo sapiens GN=NUAK1 PE=1 SV=1 - 
[NUAK1_HUMAN] 

1       

Q96PD5 N-acetylmuramoyl-L-alanine amidase OS=Homo sapiens GN=PGLYRP2 PE=1 SV=1 - 
[PGRP2_HUMAN] 

1       

Q8TC12 Retinol dehydrogenase 11 OS=Homo sapiens GN=RDH11 PE=1 SV=2 - 
[RDH11_HUMAN] 

1 3.642     

Q9ULI2 Beta-citrylglutamate synthase B OS=Homo sapiens GN=RIMKLB PE=2 SV=2 - 
[RIMKB_HUMAN] 

1       

Q9NQZ2 Something about silencing protein 10 OS=Homo sapiens GN=UTP3 PE=1 SV=1 - 
[SAS10_HUMAN] 

1     14.971 

P29508 Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 - [SPB3_HUMAN] 1       

Q86TG1 Transmembrane protein 150A OS=Homo sapiens GN=TMEM150A PE=1 SV=1 - 
[T150A_HUMAN] 

1     1.854 

Q96PF1 Protein-glutamine gamma-glutamyltransferase Z OS=Homo sapiens GN=TGM7 PE=2 
SV=1 - [TGM7_HUMAN] 

1       

Q7Z7H5 Transmembrane emp24 domain-containing protein 4 OS=Homo sapiens GN=TMED4 PE=1 
SV=1 - [TMED4_HUMAN] 

1 2.169 0.138 0.300 

Q6ZT12 E3 ubiquitin-protein ligase UBR3 OS=Homo sapiens GN=UBR3 PE=2 SV=2 - 
[UBR3_HUMAN] 

1       

A4D1P6 WD repeat-containing protein 91 OS=Homo sapiens GN=WDR91 PE=1 SV=2 - 
[WDR91_HUMAN] 

1       

K7ELT6 Cold-inducible RNA-binding protein OS=Homo sapiens GN=CIRBP PE=1 SV=1 - 
[K7ELT6_HUMAN] 

1       

B2RNT0 EBF2 protein OS=Homo sapiens GN=EBF2 PE=2 SV=1 - [B2RNT0_HUMAN] 1       

A0A024R0N6 Spectrin, beta, non-erythrocytic 4, isoform CRA_e OS=Homo sapiens GN=SPTBN4 PE=4 
SV=1 - [A0A024R0N6_HUMAN] 

1       

Q86WV2 COX4I1 protein OS=Homo sapiens GN=COX4I1 PE=1 SV=1 - [Q86WV2_HUMAN] 1 0.850 0.428 0.364 

B2R894 Mitochondrial ribosomal protein L38, isoform CRA_b OS=Homo sapiens GN=MRPL38 
PE=1 SV=1 - [B2R894_HUMAN] 

1 0.010 1.000 0.010 

A6NHH0 Prostaglandin E synthase 2 OS=Homo sapiens GN=PTGES2 PE=1 SV=2 - 
[A6NHH0_HUMAN] 

1       

J3KQN4 60S ribosomal protein L36a OS=Homo sapiens GN=RPL36A PE=3 SV=1 - 
[J3KQN4_HUMAN] 

1       

G3V121 Coiled-coil domain containing 25, isoform CRA_b OS=Homo sapiens GN=CCDC25 PE=1 
SV=1 - [G3V121_HUMAN] 

1       

A0A024R6R1 SHC SH2-domain binding protein 1, isoform CRA_a OS=Homo sapiens GN=SHCBP1 
PE=4 SV=1 - [A0A024R6R1_HUMAN] 

1       

A0A024RC30 Desmoglein 3 (Pemphigus vulgaris antigen), isoform CRA_a OS=Homo sapiens GN=DSG3 
PE=4 SV=1 - [A0A024RC30_HUMAN] 

1 0.017 1.000 0.017 

C5HTY9 Amiloride-sensitive sodium channel subunit alpha OS=Homo sapiens GN=SCNN1A PE=3 
SV=1 - [C5HTY9_HUMAN] 

1       

A2KBC1 Anti-(ED-B) scFV (Fragment) OS=Homo sapiens PE=2 SV=2 - [A2KBC1_HUMAN] 1 0.010 1.000 0.010 

H0YE40 CD44 antigen (Fragment) OS=Homo sapiens GN=CD44 PE=1 SV=1 - [H0YE40_HUMAN] 2       

D6RB21 Testican-1 (Fragment) OS=Homo sapiens GN=SPOCK1 PE=1 SV=1 - [D6RB21_HUMAN] 1       

Q01991 Dihydrolipoamide S-acetyltransferase (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q01991_HUMAN] 

1 0.621 0.599 0.372 

B4DS58 cDNA FLJ57834, moderately similar to Mus musculus NHS-like 1 (Nhsl1), mRNA 
OS=Homo sapiens PE=2 SV=1 - [B4DS58_HUMAN] 

1 0.010 1.000 0.010 

Q53QP3 Putative uncharacterized protein FHL2 (Fragment) OS=Homo sapiens GN=FHL2 PE=4 
SV=1 - [Q53QP3_HUMAN] 

1 1.649 0.379 0.625 

Q86SR2 AZU1 protein (Fragment) OS=Homo sapiens GN=AZU1 PE=2 SV=1 - 
[Q86SR2_HUMAN] 

1       

M0QX45 Protein Smaug homolog 2 (Fragment) OS=Homo sapiens GN=SAMD4B PE=1 SV=1 - 
[M0QX45_HUMAN] 

1       

E9PR82 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=1 - [E9PR82_HUMAN] 1       

Q5R207 Carbamoylphosphate synthetase I OS=Homo sapiens GN=CPS1 PE=2 SV=1 - 
[Q5R207_HUMAN] 

1       

M0R0Y6 Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens GN=HNRNPM PE=1 SV=1 
- [M0R0Y6_HUMAN] 

1 1.896 0.015 0.028 

Q4W5P3 Transmembrane protease serine (Fragment) OS=Homo sapiens GN=DESC1 PE=3 SV=1 - 
[Q4W5P3_HUMAN] 

1       

G3V3W6 Putative acyl-coenzyme A thioesterase 6 (Fragment) OS=Homo sapiens GN=ACOT6 PE=4 
SV=1 - [G3V3W6_HUMAN] 

1       

Q8TES4 FLJ00119 protein (Fragment) OS=Homo sapiens GN=FLJ00119 PE=2 SV=1 - 
[Q8TES4_HUMAN] 

1 0.010 1.000 0.010 

H0YJM8 Proteasome subunit beta type-5 (Fragment) OS=Homo sapiens GN=PSMB5 PE=1 SV=1 - 
[H0YJM8_HUMAN] 

1 0.331     

H0Y721 CDK5 regulatory subunit-associated protein 1 (Fragment) OS=Homo sapiens 
GN=CDK5RAP1 PE=1 SV=1 - [H0Y721_HUMAN] 

1       
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H7BY49 Nucleolysin TIA-1 isoform p40 (Fragment) OS=Homo sapiens GN=TIA1 PE=1 SV=1 - 
[H7BY49_HUMAN] 

1 0.490     

B4DFB8 cDNA FLJ60468, weakly similar to Synaptonemal complex protein 2 OS=Homo sapiens 
PE=2 SV=1 - [B4DFB8_HUMAN] 

1       

K7EQW4 Tropomodulin-4 (Fragment) OS=Homo sapiens GN=TMOD4 PE=1 SV=1 - 
[K7EQW4_HUMAN] 

1       

B7Z577 cDNA FLJ60780, highly similar to Carboxypeptidase A4 (EC 3.4.17.-) OS=Homo sapiens 
PE=2 SV=1 - [B7Z577_HUMAN] 

1       

H0YLU2 Proteasome activator complex subunit 1 (Fragment) OS=Homo sapiens GN=PSME1 PE=1 
SV=1 - [H0YLU2_HUMAN] 

1 0.010 1.000 0.010 

G3V2H3 Purine nucleoside phosphorylase (Fragment) OS=Homo sapiens GN=PNP PE=1 SV=1 - 
[G3V2H3_HUMAN] 

1 0.014 1.000 0.014 

Q86TZ0 Full-length cDNA clone CS0DC023YN15 of Neuroblastoma of Homo sapiens (human) 
(Fragment) OS=Homo sapiens PE=2 SV=1 - [Q86TZ0_HUMAN] 

1 0.010 1.000 0.010 

H7C5C3 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform (Fragment) 
OS=Homo sapiens GN=PIK3CB PE=4 SV=1 - [H7C5C3_HUMAN] 

1       

F8WF65 Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=1 - 
[F8WF65_HUMAN] 

1 0.257 0.614 0.158 

Q7KYT6 Type I phosphatidylinositol-4-phosphate 5-kinase beta (Fragment) OS=Homo sapiens 
GN=STM7 PE=2 SV=1 - [Q7KYT6_HUMAN] 

1       

B4DNG2 cDNA FLJ59357, highly similar to Probable ATP-dependent RNA helicase DDX5 (EC 
3.6.1.-) OS=Homo sapiens PE=2 SV=1 - [B4DNG2_HUMAN] 

2 0.661 0.526 0.364 

K7EQB6 DNA ligase 3 (Fragment) OS=Homo sapiens GN=LIG3 PE=1 SV=1 - [K7EQB6_HUMAN] 1       

A8K9I1 cDNA FLJ78035, highly similar to Homo sapiens serine/threonine protein kinase OS=Homo 
sapiens PE=2 SV=1 - [A8K9I1_HUMAN] 

1       

Q5TBN3 Plastin-2 (Fragment) OS=Homo sapiens GN=LCP1 PE=1 SV=1 - [Q5TBN3_HUMAN] 1       

B4E2Z7 cDNA FLJ61562, highly similar to Asporin OS=Homo sapiens PE=2 SV=1 - 
[B4E2Z7_HUMAN] 

1       

Q96AG1 ZSCAN29 protein (Fragment) OS=Homo sapiens GN=ZSCAN29 PE=2 SV=2 - 
[Q96AG1_HUMAN] 

1       

B3KNK7 cDNA FLJ14806 fis, clone NT2RP4001753, highly similar to Zinc finger protein 268 
OS=Homo sapiens PE=2 SV=1 - [B3KNK7_HUMAN] 

1 0.020 1.000 0.020 

B3KY88 Transmembrane channel-like protein OS=Homo sapiens PE=2 SV=1 - [B3KY88_HUMAN] 1       

B3KMB2 cDNA FLJ10625 fis, clone NT2RP2005540, highly similar to Homo sapiens KIAA0494 
protein OS=Homo sapiens PE=2 SV=1 - [B3KMB2_HUMAN] 

1       

B4DMW1 cDNA FLJ58268, highly similar to Homo sapiens nischarin (NISCH), mRNA OS=Homo 
sapiens PE=2 SV=1 - [B4DMW1_HUMAN] 

1       

B4DJD3 cDNA FLJ55077, highly similar to Ectonucleotidepyrophosphatase/phosphodiesterase 2 
OS=Homo sapiens PE=2 SV=1 - [B4DJD3_HUMAN] 

1       

B4DIR5 cDNA FLJ56026 OS=Homo sapiens PE=2 SV=1 - [B4DIR5_HUMAN] 1       

L8E8F9 Alternative protein FAM21B OS=Homo sapiens GN=FAM21B PE=4 SV=1 - 
[L8E8F9_HUMAN] 

1 0.020 1.000 0.020 

B4DNB5 cDNA FLJ58082, highly similar to Myosin-binding protein C, cardiac-type OS=Homo 
sapiens PE=2 SV=1 - [B4DNB5_HUMAN] 

1       

Q8NC73 cDNA FLJ90439 fis, clone NT2RP3000907, weakly similar to PROBABLE CALCIUM-
TRANSPORTING ATPASE 6 (EC 3.6.1.38) OS=Homo sapiens PE=2 SV=1 - 
[Q8NC73_HUMAN] 

1       

B4DPU6 cDNA FLJ50605, moderately similar to Plastin-3 OS=Homo sapiens PE=2 SV=1 - 
[B4DPU6_HUMAN] 

1       

B7Z3Y0 cDNA FLJ61305, highly similar to Voltage-dependent L-type calcium channel subunit beta-
2 OS=Homo sapiens PE=2 SV=1 - [B7Z3Y0_HUMAN] 

1 1.000 66.627 66.627 

B4DWQ3 Phosphoglycerate kinase OS=Homo sapiens PE=2 SV=1 - [B4DWQ3_HUMAN] 1       

B7Z4R9 cDNA FLJ59037 OS=Homo sapiens PE=2 SV=1 - [B7Z4R9_HUMAN] 1       

B4DZB4 cDNA FLJ51707, highly similar to Heat-shock protein 105 kDa OS=Homo sapiens PE=2 
SV=1 - [B4DZB4_HUMAN] 

1       

UL7 UL7 1       

A0A0B4J213 60S ribosomal protein L30 OS=Homo sapiens GN=RPL30 PE=1 SV=1 - 
[A0A0B4J213_HUMAN] 

1 0.242 0.667 0.162 

A0A0C4DGU3 Minor histocompatibility antigen H13 OS=Homo sapiens GN=HM13 PE=1 SV=1 - 
[A0A0C4DGU3_HUMAN] 

1       

A0A0B4J2E0 Protein TRBV12-4 (Fragment) OS=Homo sapiens GN=TRBV12-4 PE=4 SV=2 - 
[A0A0B4J2E0_HUMAN] 

1       

A0A0F6MTF4 MHC class II antigen (Fragment) OS=Homo sapiens PE=4 SV=1 - 
[A0A0F6MTF4_HUMAN] 

1       
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