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Abstract

High-fidelity computer-aided experimentation is becoming more accessible with the de-

velopment of computing power and artificial intelligence tools. The advancement of

experimental hardware also empowers researchers to reach a level of accuracy that

was not possible in the past. Marching towards the next generation of self-driving

laboratories, the orchestration of both resources lies at the focal point of autonomous

discovery in chemical science. To achieve such a goal, algorithmically-accessible data

representations and standardised communication protocols are indispensable. In this
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perspective, we recategorise the recently introduced approach based on Materials Accel-

eration Platforms into five functional components and discuss recent case studies that

focus on the data representation and exchange scheme between different components.

Emerging technologies for interoperable data representation and multi-agent systems

are also discussed with their recent applications in chemical automation. We hypoth-

esise that knowledge graph technology, orchestrating semantic web technologies and

multi-agent systems will be the driving force to bring data to knowledge, evolving our

way of automating laboratory.

Keywords: Knowledge graph, digital twin, chemistry digitalisation, closed-loop optimisa-

tion, laboratory automation

Introduction

The automation of laboratory involves linking the abstract concepts of chemical processes

and the hardware responsible for the execution.1,2 It can be achieved by creating a fully

connected virtual representation of the physical equipment and their status, i.e., a ‘digital

twin’ of the laboratory that bridges the gap between the virtual and the real world. By

doing so, it enables the orchestration of physical and computational experimentation in

cyberspace, facilitating the automation of chemical discovery.3 Therefore, it shortens the

time span from making a new chemical in the research environment to the delivery of its

mass production to the end-users. This presents the opportunity to deliver a significant level

of decarbonisation with reduced labour and energy consumption, making the digitalisation

of chemical manufacturing one of the critical technology paths towards a more sustainable

society.4,5

The first automated hardware for chemistry dates back to the late 1960s.6 Since then,

considerable advances have been made to expand the potentialities of such a tool, covering the

field of chemical reactions,7,8 drug discovery,9 and material discovery for clean energy.10,11

As chemists’ quest to achieve a universal organic compound synthesis machine, three key
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capabilities were identified,12 i.e., access to database of chemical reaction knowledge, syn-

thetic steps planning, and automated execution of proposed action sequence. For a detailed

historical excursus, the readers refer to Dimitrov et al. 13 . In 2018, Aspuru-Guzik and Pers-

son 14 proposed materials acceleration platforms (MAP), a platform-based approach, as the

paradigm to accelerate the material discovery process, which was further adopted and ex-

panded by Flores-Leonar et al. 15 . In line with the three key capabilities that seem to be

required to build a robo-chemist,12 Flores-Leonar et al. 15 envisaged integration of machine

learning (ML) algorithms and robotics platforms, with further interfacing between humans

and robots, is the way towards autonomous experimentation. The current practices of de-

velopment towards laboratory automation is seen following this trend. Researchers adopt

automation of chemical experiments and advances in ML to enable functional material dis-

covery,16,17 the discovery of chemical reactions,18 synthesis planning,19,20 and optimisation of

process conditions.21–23 Despite the great success demonstrated by the community, the effort

required to incorporate new equipment into an existing platform can be expensive. Tailored

extraction-transformation-loading (ETL) tools and the specific data exchange scheme for

establishing effective communication are to be developed for each piece of equipment added.

Therefore, these platforms normally face difficulties in scalability and interoperability due to

heterogeneous data formats as an obstacle to holistic integration. Especially when it comes

to the vision of a globally integrated collaboration network.11 As a prerequisite condition to-

wards digitalisation, the absence of standardised data representation and exchange protocols

is seen as one of the critical challenges faced by the community.8

A way forward may be offered by Semantic Web technologies,24 which present a vision of

a fully linked web of data, demonstrating interoperability across scales and domains. It uses

ontologies to describe the concepts and relationships within a given domain for communal

understandings. In this article, we refer to ontologies developed to describe knowledge in the

chemistry domain, and more importantly, those implemented in a way that compatible with

the semantic web standards,25 as chemical ontologies. One prominent example is ChEBI.26,27
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An ontology normally consists of two components: a terminological box (TBox) and an

assertional box (ABox).25 TBox refers to the description at a conceptual level, while ABox

stores the data that is a realisation of the concepts defined by the TBox. Both levels can

be accessed via internationalised resource identifiers (IRIs), essentially generalised uniform

resource identifiers (URIs), for unambiguous identification. In the context of automating

experiments, this opens up the possibility of developing a fully linked data representation for

the chemical processes and equipment status as a universal framework to facilitate concrete

data exchange within and between platforms.

Besides the interoperable data representation, an effective way to communicate and share

data must be addressed to achieve laboratory automation. In this regard, collective intelli-

gent agents have been used to automate the tasks involved in crystal-structure phase map-

ping,28 material discovery,29 and reaction optimisation.30 Considering the historical discus-

sions of integrating the two technologies,31 we hypothesise that an ontological representation

of a laboratory, linked with different data standards, would enable the rapid implementation

of artificial intelligence (AI) tools for chemical discovery and development.

This perspective aims to review the potential for arising technologies to enhance how

we approach laboratory automation. The presentation of this perspective is structured as

follows. First, we review the state-of-the-art in laboratory automation practice with a focus

on data infrastructure. Based on the limitations of current approaches, we assess community

efforts towards standardised data representation and effective data exchange. We identify

dynamic knowledge graphs, i.e., a combination of ontologies and agents, as an interesting

technology option. This approach allows the intelligent automation of experiments to be

linked with chemical knowledge resources and aligned with other AI techniques. It is sug-

gested that this will play a key role in the next generation of laboratory automation.
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Platform-based approach

Detailed reviews of the applications of the closed-loop optimisation have been published by

Cao et al. 32 and Coley et al. 7 . In this section, we focus on the data flow between the different

components of such an automated experimentation platform as presented in the state-of-the-

art studies. To have a clearer demonstration of the data flow between different parts, thus

revealing how these functional components can be shifted into agents as in the knowledge-

graph-based approach, we re-group the five key elements proposed by Flores-Leonar et al. 15

and recast them as illustrated in Fig. 1. The receptionist acts as a human-machine interface

that receives, analyses, and translates the requests into machine-understandable objects,

as well as enables real-time and interactive communication between user and data. The

coordinator manages the workflow by locating resources given constraints, requesting data

from the librarian, asking the planner for suggestions over the next steps, and requesting

experiment from the executor. The planner is a decision making entity that designs the ex-

periment, plans retrosynthesis steps, also selects suitable surrogate models given use-cases.

The librarian is responsible for data management, including maintenance of the database,

data cleaning, data validation, and outlier detection. The executor performs the computa-

tional and physical experiments, both interfaced with the available experimental resources.

We categorise the selected studies into the realisation of functional components and assess

the data communication between each of them. It should be noted that we do not cover

the specific internal realisation of the components, i.e., we do not consider how the planner

handles the input historical data and how it recommends the synthesis route, instead, we

focus on the format of the recommendation output from the planner. Following the review,

we list the limitations of the platform-based approach which lead to the quest to better data

representation and exchange protocols.
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Figure 1: Functional components of a platform-based approach towards chemical discovery,
annotated with the communications between each component.

Selected studies

There have been extensive reviews on developing each of the functional components.15,33–36

In the context of chemical automation, Mateos et al. 37 reviewed the realisation of the compo-

nents in selected continuous flow platforms. In this review, we selected the studies below to il-

lustrate how the data is exchanged between the functional components in the platform-based

approach. Specifically, we will review the data exchange protocols between the coordinator,

librarian, planner and executor for further investigation on interoperability within one plat-

form and between different platforms in the current setups. We identified three main types of

data representation and storage in the automated experimentation platforms, namely, vari-

ables stored in a reserved memory location of programming languages, data stored in a file on

a hard disk, and data stored in a database. Based on this classification, three types of data

transfer and communication protocols were identified as assigning in-memory cache values

during software programme run-time, file transfer protocol, and HTTP request/response. It

should be noted that although both the latter two ways of communication belong to the ap-

plication layer in the TCP/IP model, they are distinguished herein to emphasise the format

in which the data is stored and consequently transferred. To the best of our knowledge, the

complete details are summarised in Tables in the Supporting Information.
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Receptionist

The receptionist acts as the human-machine interface. Among different platforms, multi-

ple ways of interaction have been reported. Knight et al. 38 present a voice-controlled user

interface integrating voice, text, and visual dashboards. This increased the flexibility for

the experimentalist to communicate and collaborate with the automated setups without the

coding experience required. Web interfaces via HTTP requests/responses21,39,40 is another

way of interaction. The advantage of this approach is that authorised users can log in to

the web page and access the platform from all over the world.35 Moreover, the natural lan-

guage processing (NLP) modules can build on top of the web interface as chatbots, which

can further connect to existing messaging services such as Gmail, Twitter, Slack, and Drop-

box.16,41 The graphical user interface (GUI) is a more intuitive way of interaction between

the users and the automated experimental platforms. It can be built through different coding

software, such as Matlab,42 Python,17,19 and LabVIEW.22,43,44 It should be noted that each

receptionist can only work within its own operating system due to its bonded communication

protocols as well as the coding language.

Coordinator

The coordinator manages the workflow in the closed-loop system. Among the different pro-

gramming languages/tools that have been employed to develop the coordinator, Python

is perhaps the most widely adopted. The Aspuru-Guzik Group proposed ChemOS,16,41 a

modular coordinator orchestrating the learning module (the AI-based planner), the com-

munication module (server-based receptionist) and an operation module for remote control

of the robotic platform. ChemOS demonstrated decision-making capabilities in managing

the workflow for thin-film material discovery16 and increasing the efficiency of organic pho-

tovoltaics.45 It has now been commercialised as Atinary SDLabs46 with a Scientia version

freely available for academics. Zhu’s group presented MAOSIC,17 a coordinator upgraded

from their previous system MAOS,47 which was applied to the autonomous discovery of
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optically active chiral inorganic perovskite nanocrystals. Experiment Specification, Cap-

ture and Laboratory Automation Technology (ESCALATE) has a coordinator acting as a

bridge to connect the experimental workflow.48 Its initial implementation was designed for

the exploratory synthesis of single-crystal metal-halide perovskites. Further discovery of the

formation of two new perovskite phases was demonstrated.49 Chemputer19 was developed

for organic synthesis optimisation in batch reactors. This coordinator brought together syn-

thesis abstraction, chemical programming and hardware control, and tested the synthesis

of three small pharmaceutical compounds with similar yields to those obtained by manual

work. Moreover, by using a standardised format for reporting a chemical synthesis procedure

within the coordinator, Chemputer captures synthetic protocols as digital code that can be

further published, versioned and transferred flexibly.

LeyLab39 is a PHP-based coordinator orchestrating multiple users and equipment in

different continents for the development of catalysts and process conditions in flow reactors.

The firewall within the coordinator prevents malicious attacks from unauthorised users.

The Lapkin group presented a Matlab-based coordinator for multi-objective optimisa-

tion of the reaction conditions for SNAr and N-benzylation reactions.50 It demonstrated its

flexibility to a different chemical system with an aldol condensation reaction optimisation.42

There are also coordinators based on LabVIEW. Given the user-friendly graphical pro-

gramming interface in LabVIEW, building a receptionist module is not required in this setup.

However, Matlab43 or Python44 are occasionally paired up with the LabVIEW to enable the

planner module to suggest new experiments.

Another notable development is C#-based ARES OS,51 an open-source software released

by Air Force Research Laboratory (AFRL) following their autonomous research system

(ARES). As the first reported autonomous experimentation system for materials develop-

ment, ARES demonstrated its capability in carbon nanotube synthesis experiments,52,53 and

additive manufacturing applications.54

It can be seen that coordinators followed different coding philosophies in different pro-
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gramming languages. For each case study, the reported coordinator indeed satisfied the

specific need yet fail to extend to other systems.

Coordinator - Librarian

The interaction between the coordinator and librarian focuses on reading historical data and

writing new data for data storage. Depending on the operating system of the coordinator,

as well as the structure of the librarian in each platform, the data communication protocols

between the coordinator and librarian are various.

An intuitive approach is to store and transfer the data as variables in the memory of the

operating system. Jeraal et al. 42 stored and transferred data as Matlab variables. Similarly,

Christensen et al. 55 used Python variables for communication. This approach is lightweight

and independent of the database structure. However, it is vulnerable as there is no backup

for the data obtained. Moreover, the data stored are hard-coded and picked beforehand,

meaning the variables will be reassigned during the iterations.

File transfer is an approach to overcome this issue. Cao et al. 5,32 used CSV files as the

bridge for communication. Other studies used MAT files in a similar fashion.22,56 In this

approach, the experimental results were exported and stored as a file that can be loaded

later for suggesting the next experiments. Compared to storing data as in-memory cache

variables, the file transfer approach gives a way to back up the data on a separate machine

or online server with flexible access and secure storage. However, the files can still be hard

to track and classify when the number of experiments is high or more than one type of

experiment is run on the platform.

Databases provide a solution to efficiently manage large amounts of experimental data.

Li et al. 17 stored long-term data through SQLAlchemy which supports a database manage-

ment system (DBMS), with databases such as MySQL, Postgres, Oracle, and SQLite as the

back-end. The coordinator MAOSIC can read and write new entries to the server-based

database via API. In Roch et al. 41 , the coordinator ChemOS was connected to SQLite, and
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the information was stored in four distinct databases (requestDB, parameterDB, robotDB,

feedbackDB) on SQLite to better classify the data and retrieve them in the later stage. Mate-

rials Experiment and Analysis Database (MEAD)57 consists of both raw data and metadata

from high-throughput experimentation. By instantiating an event-sourced architecture for

materials provenances (ESAMP),58 the MEAD database enabled the ML algorithm to utilise

the material state within its experimental workflow for accelerating materials discovery.

Coordinator - Planner

To avoid an exhaustive search of the chemical space, the planner needs to decide which new

experiments should be conducted. Depending on the purpose of the platform, the planner

algorithm can be classified into discovery and optimisation. Detailed reviews of the existing

algorithms for planner have already been published; interested reviewers refer to Garud

et al. 59 and Clayton et al. 60 . The communication between the coordinator and the planner

is mainly done in two ways: variable stored in memory,16,22,30 and file transfer.5,19,20,50 It

is worth mentioning that the communication protocols are not necessarily the same over

one platform. Li et al. 17 used database queries for the interaction between the coordinator

and librarian, yet they depend on Python variables for the communication between the

coordinator and planner. It can be seen that the platform-based approach can adapt to

different ways of data exchange, yet modifications that are case sensitive will be needed.

Coordinator - Executor

The executor runs the experiments, computationally or physically, and sends back the ex-

perimental results. The interaction between the coordinator and executor module highly

depends on the operating system for the instrument, as the actual experiment resources

within the executor are normally surrounded by a layer of interface. Therefore we review

the communication protocols of the physical and computational experimental platforms sep-

arately.
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Physical experiment interface Robotic platforms have their origins in instances such as

peptide synthesis6 and the pharmaceutical industry.61,62 Some existing commercially avail-

able semi- and fully-automated platforms in chemistry have emerged as powerful tools and

can be embedded into the closed-loop optimisation system.15

Commercial platforms provide various high-throughput workflow solutions, ranging from

single bench-top/standalone automated workstations up to complete and integrated product

development workflows for the entire product development processes in chemical material

science.63,64 Greenaway et al. 65 applied the Chemspeed Accelerator SLT-100 synthesiser

platform in the discovery of porous organic cages and the optimisation of the cage forma-

tion conditions. This platform can carry out up to 96 reactions in parallel, highly speeding

up the testing of the proposed experimental conditions that are sent to the platform via

file transferring within the Chemspeed custom software. The hardware from Chemspeed is

also used by IBM’s RoboRxn,66 a remotely-accessible automated organic synthesis platform

utilising various Transformer67-based ML algorithms for chemical reaction prediction,68 ret-

rosynthetic pathway planning,69 synthesis action extraction,70 and chemistry grammar ex-

traction.71 Vapourtec delivers automated flow reaction platform with multiple choices for

pumps, and flow reactors. Successful examples of using the Vapourtec system in the closed-

loop optimisation setup include drug discovery,72 scale-up development,73 and reaction con-

dition optimisation.42,50 It is worth mentioning that commercially available mobile robots

and robotic arms have been used in complex and multi-step operations.20,23 Communication

between the coordinator and the robots was achieved using various communication protocols

(TCP/IP over WIFI/LAN, RS-232, websocket, etc.). Although commercial systems devel-

oped by various vendors are easily implemented with a user-friendly user interface, it limits

the experimental choice across platforms, and it is hard to configure the platform to the

existing workflow architecture and setups in the lab.

To enable a modular-based plug-and-play platform, single-board controllers, e.g., Rasp-

berry Pi and Arduino, were used to act as the interface layer connecting the coordinator to
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the actual experiment executor, i.e., sample preparation, analytics etc. This is favoured by

the academic community due to its flexibility and compatibility with different experimental

instruments at a relatively low cost. The communication protocols between the coordinator,

single-board controller and experiment executors are various. A TCP/IP protocol was used

in the cases where a Raspberry Pi was applied. Fitzpatrick et al. 21 used a VLAN to control

around lab equipment, also an SSH tunnel between the virtual environment and the remote

control server. Similarly, Roch et al. 74 controlled the pump system using the Raspberry

Pi and interacted via an SCP with the executor codes. In Chemputer designed by Steiner

et al. 19 , an Arduino was designed as the micro-controller. Instances of experiment executors

are created as Python instances at the initialisation stage and the coordinator reads related

information stored in a GraphML file. Li et al. 17 conducted their high-throughput experi-

ments via an Arduino control board as well but followed the JSON-RPC 2.0 protocol used

for robots and characterisation equipment control. A detailed review of microcontrollers and

their applications in automated experimental systems can be found in Fitzpatrick et al. 75 .

The in-house built platform can connect to different lab equipment based on the users’ need

and existing lab setup, yet different communication protocols prevent it from extending to

other lab/systems.

Robot Operating System (ROS)76 is the de facto standard middleware in the robotics

field for orchestrating multi-robot systems. In 2019, Marquez-Gamez and Maffetton 77 pro-

posed a ROS architecture for laboratory robotics motivated by Burger et al. 23 , envisaging a

‘cobot’ future where human researchers and robots work collaboratively in the chemistry lab

using modular and reconfigurable lab equipment interfaced via ROS. A recent paper from

Fakhruldeen et al. 78 shows proof-of-concept towards this direction.

Computational experiment interface With the rapid development of computational

power and simulation methods, computational experiments are playing a more vital role in

catalyst design and optimisation,79 synthesis planning80 and catalyst discovery.81 By using
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theoretical, fully automated screening methods combining ML and optimisation to guide den-

sity functional theory (DFT) calculations, Tran and Ulissi 82 screened across intermetallics

for the discovery of electrocatalysts for CO2 reduction and H2.

The main executor for computational experiments is the high-performance computer

(HPC). However, the interaction between the HPC and the coordinator on local computers

is different from case to case. The scheduler is the interface for the users on the login

nodes to submit batch jobs to the compute nodes on the HPC, as the users cannot run their

calculations directly and interactively (as they do on their personal workstations or laptops).

The scheduler stores the batch jobs, evaluates their resource requirements and priorities, and

distributes the jobs to suitable compute nodes.

There are quite a few open-source scheduling software depending on the setup of HPC,

among which SLURM is widely used in research computing services.83 Rosen et al. 84 devel-

oped the PyMOFScreen Python package to manage automated DFT calculations, leading

to new electronic structure database constructions and accelerate new materials discovery.85

Multiple software packages were developed to enable high-throughput screening on the HPC,

such as Python Materials Genomics (pymatgen),86 FireWorks,87 custodian,86 Atomate,88

GASpy,81,82 and ChemEco.89,90 Depending on the user’s need as well as the DFT calculation

software, the structure and the output file of those Python packages are different and non-

transferable. A notable effort in addressing this issue is MolSSI QCArchive,91 which offers

open access to millions of quantum chemistry calculations done with different software, as

well as on-demand computation.

Current limitations

Despite the huge improvements made in the literature, a few limitations remain to be over-

come before it is possible to achieve a global collaborative network.11 The platform-based

approach presented heavily relies on the coordinator. This increases the possibility of data

loss during transmission, and it will become unsustainable soon with further expansion of the
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ecosystem. Direct communication between functional components is one potential approach

to mitigate this issue, as demonstrated by Fitzpatrick et al. 21 in letting the planner directly

communicate with lab equipment via TCP/IP.

Another limitation is the ad hoc data representation and storage. This is particularly

important as there is no standard method of representing results or recipes for chemical

experiments, despite several competing standards of representing molecules co-exist. The

heterogeneous data format lacks interoperability that precludes the full utilisation of the

embedded information. This problem is further exacerbated when the collaboration between

different groups is considered; potentially data generated from one group will be shared and

tested on the platform of another group for reproducibility and further experimentations.

Moreover, the consequent various data transfer and communication protocols result in low

extensibility issues as a considerable amount of time is often required when new hardware

or software is integrated, also noted by Breen et al. 92 .

Unbalanced chemical data is another limitation to be addressed.8 In ML applications,

historical data from reaction databases are normally applied as the training set to guide the

learning of the planner models. However, only ‘good’ experiment results are published and

stored in these databases, limiting the opportunity of learning from ‘bad’ examples.93 Not

to mention those platforms generating experimental data from scratch, without utilising the

prior chemical knowledge at all. A further issue lies in several examples where users are

required to manually input chemical data.42,94 This is error-prone and limits the potential

of full automation.

In brief, improving the interoperability within one platform and between different plat-

forms is a key step in lowering the entry barrier of digitalising chemistry and promoting a

fully automated laboratory. It is thus important for us, as a community, to know how far

we are from meeting the prerequisite condition – a fully interconnected data representation

capturing the data generated within the experimentation.
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Data representation and exchange protocols

As promoted by various researchers,1,8,36,95 the digitalisation of chemistry facilitates the col-

laboration between research groups. Figure 2 reviews data representation and exchange

from the different perspectives of a chemical experiment, namely, molecule, reaction, an-

alytical data and method, procedure and hardware, and finally holistic data capture and

exchange. Importantly, we distinguish the community efforts into non-semantic and se-

mantic paradigms depending on whether chemical ontologies are involved, and lay out the

connection between them. The agent-based approaches towards standardised and effective

communication between each of the components involved are discussed.

Non-semantic representation

In this review, we broadly distinguish non-semantic efforts into four parts: a representation

of cheminformatics formats, a schema for constrained encoding of data, a collection of data

stored in a database, and finally a holistic architecture that aims to capture all data generated

within an experiment.

Since the discovery of the periodic table of the elements, chemical knowledge is built

on structures with competing representations.96 The most commonly used representation

is string and line notation, including SMILES,97 InChI,98 SMARTS,99 SELFIES,100 etc.

for molecules, and RInChI,101 SMIRKS,102 etc. for reactions. Chemical table files express

molecules and reactions in terms of x-y-z coordinates of atoms and bonds. For a more visual

representation, molecules and reactions can be illustrated with 2D line drawings (or 2.5D

including stereochemistry), and 3D conformers. These formats are interchangeable with

the help of cheminformatics tools, e.g., Open Babel103 and RDKit.104 An ML application

normally starts with encoding structural representations in the form of high-dimensional

vectors to map the implicit chemistry to either physicochemical properties of one molecule

or reactivity between different molecules.
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Figure 2: The community landscape towards a better data representation and exchange
in chemical digitalisation. The focus of each category: (a) molecule: chemical structure,
physicochemical properties, spectral information of a given species; (b) reaction: chemical
reaction scheme, conditions, description of procedures, and statistic summary of the reaction
outcome; (c) analytical data & method: analytical data collected and the methods applied
within the experimentation, this is distinct from the spectral information of a given species
as this focuses on the data collection process; (d) procedure & hardware: the operational pro-
cedure in an experiment in the format that can be directly executed by hardware; (e) holistic
data capture & exchange: the initiatives to capture all the experimental information gener-
ated within the experiment and the exchange of data between different hardware/software.
For those on the fence between two categories, we meant they cover both areas. Chemical
Markup Language (CML) was labelled as both semantic and non-semantic since it preserves
hard-coded and rule-based semantics but not ontologies following semantic web standards.25

Basic Formal Ontology (BFO) is an upper-level ontology as the basis of other ontologies and
it does not capture any domain-specific information.
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Popular chemical databases and registry systems normally store various representations

of the above with registry numbers, e.g., IUPAC name, CAS number and PubChem CID, for

unique and unambiguous identification within themselves and cross-reference between repos-

itories. PubChem105 is the largest open-source structural chemical information repository.

For reaction informatics,106 the scale of open-source databases is much smaller. The USPTO

database107 is one of the seminal databases in the community that contains 3.7 million reac-

tions extracted from US patents. It was commercialised as Pistachio108 containing more than

13 million reactions with annotated reaction classifications using named reaction ontology

(RXNO109) and expanded coverage to other patent offices, i.e., World Intellectual Property

Organization (WIPO) and European Patent Office (EPO). Despite the public availability of

the USPTO database, its representation schema, i.e., Chemical Markup Language (CML)

in eXtensible Markup Language (XML), requires extra efforts of format transferring for ML

applications. This results in different versions of the USPTO subset that were derived and

adapted by various researchers for their applications.68,110–112 As the tailored database can

be kept private to the research group, it could be difficult for bench-marking new algorithms.

To facilitate the development of ML in chemistry, Open Reaction Database (ORD)113,114

was formed to encourage precompetitive data sharing in a standardised format. It records

how the reaction was performed, including reaction inputs, conditions, outcome, etc. No-

tably, ORD uses a protocol buffer as its data structure, instead of the commonly used XML

schema. It deliberately avoids the use of ontologies due to insufficient ML applications

with ontologies seen in the community.115 Despite ORD storing the operation sequence in

a machine-readable format, the authors declared it a non-goal at present to make it com-

patible with programmatic execution on automated synthesis hardware. For more complex

operations, ORD only supports a free-text description of the procedure. In terms of the re-

action outcome, it focuses more on the statistical summary of the reaction, e.g., conversion

and yield, and unprocessed analytical data if available. At present, ORD contains 2 million

reactions,115 including part of the USPTO dataset that was converted from CML.
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Unified Data Model (UDM)116 is another initiative aiming at capturing and integrating

the experimental information generated during the chemical synthesis. UDM was originally

developed by Roche as a transfer model of MDL RD file format for integrating data from

various sources into Reaxys database.117 It has since evolved to an XML schema with three

main elements, namely, citations, molecules and reactions. In addition to recording the

molecule and reaction identifiers, UDM annotates its data with semantic vocabularies. The

reaction classification is based on the molecular processes (MOP118) and RXNO ontologies,

demonstrated by its sample data taken from Reaxys. The analytical method and results type

are based on a working draft version of Allotrope Foundation Ontology (AFO119) where

duplicate entries exist. However, it should be noted that the way UDM integrates the

ontologies is by enumerating the ontological classes as a sub-schema of UDM and tagging

them to the XML elements as attributes. One general issue with this type of enumeration

and attribution is that the relationships declared in the ontologies are not retained in the

XML schema, e.g., class and subclass relationship between concepts in MOP and RXNO, and

the corresponding relationship between result types and analytical methods in the AFO. By

looking at the publicly available resources, there are no programmatic constraints over how

ontological axioms are enforced in a UDM file. Moreover, UDM allows any type of format for

the analytical data recording, at least by XML schema itself, tailored tools would be necessary

for better utilisation of the data. In its latest release, UDM extends its support to the

SPRESI database.120 Moving forward, UDM aims to provide fully captured representations

of reaction predictions and optimisations for multi-step reactions. Additional support for

environmental health and safety data is also of interest.121

Similar to ORD, Chemotion122 aims to build a community-driven repository to better

publish reaction data generated across different laboratories. In practice, despite containing

less data, a key distinguisher of Chemotion is its level of interoperability in enabling pro-

grammatic transfer of raw analytical measurements for integration of electronic lab notebook

(ELN) from individual laboratories. It does so by supporting reading and converting analyt-
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ical data in the widely-used JCAMP-DX format.123 Each published reaction in Chemotion

has a semi-machine-readable format with a digital object identifier (DOI). It cross-references

compound entries in PubChem. Like UDM, Chemotion incorporates ontologies (RXNO and

chemical methods (CHMO124)) for semantic annotations at a vocabulary level. On the data

validation front, Chemotion automates curation of some types of analytical data, e.g. plausi-

bility checks of nuclear magnetic resonance (NMR) data. Human inputs are still required to

ensure data quality for publication. To enable more data resources, Chemotion is planning

to support reactions stored in a UDM format. Chemotion is also planning to connect ELN

to robotics to establish an automated platform for chemical synthesis.125

As mentioned, JCAMP-DX is a data standard widely-used for recording and sharing

analytical data. However, one drawback to its utilisation is the lack of validation tools making

it difficult for data generated from different software to adhere to the standard terms.126 One

approach to alleviate this problem is modernising the standard terms with an XML schema,

such as Analytical Information Markup Language (AnIML).127 AnIML is partly based on

SpectroML128 and Generalized Analytical Markup Language (GAML),126 also draws from

JCAMP-DX and ASTM ANDI. On the chemical structure side, AnIML supports the CML

format together with other commonly used line notations. AnIML aims to provide vendor-

neutral analytical and biological data representations that are designed for manufacturers to

install and maintain. For the same reason, AnIML provides audit trials and other metadata

for reporting information in regulatory processes. At present, AnIML supports most common

analytical equipment with detailed documentation for ultraviolet–visible spectrophotometry

(UV/Vis), chromatography, and indexing.

Up to this point, reviewed efforts are standardising the data generated during the exper-

iment. Initiatives exist to standardise the instrumentation interface, e.g. Standardization in

Lab Automation (SiLA).129 SiLA is a micro-service architecture using gRPC and HTTP/2

protocols with a protocol buffer as its payload. It adopts a client/server view to describe the

devices in the lab environment, where entities expose (multiple) services as SiLA Features

19



accessible to others. SiLA Features are expressed in a predefined XML-based schema and

stored in an online repository for service discovery. Each feature is assigned with a unique

identifier to enable peer-to-peer interactive communication, status queries, and reactions to

events. As SiLA is a communication protocol for equipment control, it utilises AnIML as

the medium for the bidirectional transfer of analytical data between laboratory information

management systems (LIMS) and chromatography data systems (CDS) in a file-less fash-

ion.130 The combination of SiLA and AnIML represents a promising direction: standardised

interfaces for instrumentation and unified machine-readable data representations. This re-

sults in a complete data package after completion of the analytical experiment, including all

the process steps and the generated data.

Whilst SiLA standardises equipment interface, chemical recipe file (CRF)20 and chemical

description language (XDL)131 are initiatives to automate experiment execution. They both

focus on translating the operational procedures from unstructured descriptions to robot

execution commands.

CRF20 is a CSV-based schema developed for flow synthesis. Since the instructions are

generated based on batch reaction data, human modification is required to enable contin-

uous processes. One notable aspect of their setup is their modularised reaction hardware,

making it robotically self-reconfigurable, as demonstrated by the back-to-back synthesis of

medicinally relevant small molecules.

XDL131 is an XML schema focusing on batch synthesis. It contains three main com-

ponents as the apparatus to be employed and manually configured, chemicals to be used,

and robotic steps abstracted from operations used by chemists in the lab. An ontology is

proposed to map the command and hardware executions, however, it is not published in

semantic web standards.25 Before the instructions are sent to execution, researchers can

modify the conditions to benefit human intuitions.

Both CRF and XDL focused on providing a flexible framework to conduct synthesis for

multiple molecules. However, neither of them included an automated analysis step. The
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statistic summary of the chemical synthesis is thus not provided in a standardised format as

done by other reaction schemas.

ESCALATE is an attempt towards holistic data capture and exchange.48 It proposed an

ontological framework for experimentation, supporting data collection, reporting and experi-

ment generation. This framework captures and reports all the reactions conducted, including

“bad reactions” – in line with the cultural change promoted by the community.95 In its first

release,48 the claimed ontological framework was realised by implementing template-based

files to store the experimental information, e.g., CSV and text files in a file-sharing folder

infrastructure (Google Drive). The authors additionally acknowledge that the Allotrope

Foundation Data Standard could be incorporated into this data lake. Despite uniform re-

source locators (URLs) being employed as pointers to some data, the data representation

remains heterogeneous and only semi-structured, without the semantic features required by

semantic web standards.25 In a more recent development,132 an ESCALATE REST API133

was made available to showcase the possibility of retrieving chemical informatics data from

PubChem API, interacting with a Postgres database for submitting experiment jobs to a

laboratory and querying the hosted results.

In general, the non-semantic efforts are closely connected to each other. Multiple rep-

resentations are normally used within schemas or databases to meet the needs of different

applications. Databases cross-reference to each other using registry numbers.

Another notable trend is the adoption of XML schema as data structures. XML is

a machine-readable format for algorithmic operations. It relies on string parsing when au-

tomating some of the processing steps. For example, the automated unit conversion provided

by XDL, where the case-insensitive conversion to a standard unit was performed. However,

XML is not designed to host large sets of data as querying between different files can be

challenging. The linkage between entries in XML is implicit and requires tailored codes

to handle. A solution to this problem could be hosting data in a database and exposing

that as the query interface. Yet as demonstrated in the platform-based approach, the same
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scalability issue would emerge.

It is worth noting the efforts to improve interoperability. Most of the schemas classify

items using annotations based on ontological taxonomies. There are also works that claim

to have developed ontologies, but that are not however represented in a formal ontology lan-

guage such as Web Ontology Language (OWL) – their data is still file-based. In the context

of this perspective, we consider these outputs to be taxonomies that formalise the hierar-

chical relationships, distinguishing them from the chemical ontologies that are introduced in

the next section. The difficulty of achieving general interoperability remains an issue to be

addressed.

Semantic representation

Since the landmark publication by Berners-Lee et al. 24 , the semantic web field has envi-

sioned the next generation of the web in both a human- and machine-readable format for

better data sharing among mankind and faster data processing using computers. Through

ups and downs, the semantic web community has pivoted from ontologies to linked data,

and further to knowledge graphs, which are gaining attention again in recent years. For

a comprehensive review of developments in the semantic web field, interested readers are

referred to Hitzler 134 . The focus herein is the uptake of such technologies in the chemistry

domain, as illustrated in the right half of Fig. 2. For initiatives where only TBox are avail-

able, we labelled them as “Ontology”, whereas ABox are published are labelled “Semantic

Web”. Those under “TheWorldAvatar” will be introduced in the next section.

Chemical informatics has a long history of utilising semantic web technologies. The

chemical semantic web135–137 is one of such early attempts by Murray-Rust and co-workers,

contemporaneously to Berners-Lee’s proposal of the semantic web.24 In their work, CML

was employed to host the data, prior to OWL becoming the semantic web standard. CML

schema covers concepts related to atoms, molecules, computational chemistry, crystallogra-

phy, spectra, chemical reactions, and polymers. It greatly influenced the development of
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reaction informatics, especially, it is the molecule representation implicitly used by various

cheminformatics software.138

Since OWL became more and more popular in modelling ontologies, more activities of

ontology development have been demonstrated in the scientific domain. Despite the authors

of CML holding the view that ontologies following the semantic web standards25 are “too

complex for the chemical community to take on board, and provides little effective added

value” 139 compared to their approach, the benefit of semantics motivated the development

of chemical ontologies to a great extent, especially work at Royal Society of Chemistry

(RSC),140 i.e., CHMO,124 RXNO,141 and MOP.118 These ontologies are sophisticated and

carefully curated. As demonstrated in the non-semantic efforts, they are widely-used for

annotating reaction classes and analytical methods.

Another driving force of ontology development in the chemistry and biology domain is the

European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI).

In contrast to RSC ontologies that only provide concepts, EBI ontologies provide knowl-

edge at both a terminological and assertional level, covering small molecules (ChEBI26) and

cheminformatics (CHEMINF142) in a cross-referenced fashion. CHEMINF supports molec-

ular structure representations in the CML format, it also partly transformed data from

PubChem into a knowledge base together with cross-reference to their PubChem entries.

ChEBI deposited its data in PubChem entries and cross-referenced to Reaxys entries. These

ontologies complement other ontologies in the field. For example, CHMO intends to de-

scribe the physical and practical methods, whereas CHEMINF covers the computational

and theoretical ones.

Ontologising existing databases was demonstrated in the community, including ChEMBL

RDF143 and PubChemRDF,144 the semantic version of the current largest open-source chem-

ical information repository – PubChem.105 However, the Resource Description Framework

(RDF) version of these databases did not come with an officially supported SPARQL Proto-

cols and RDF Query Language (SPARQL) endpoint. Galgonek and Vondrášek 145 recently
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addressed this issue by integrating PubChem, ChEMBL and ChEBI datasets as a Post-

greSQL database and exposing that to support SPARQL queries. This enabled fast access

to chemical data from different sources.

Allotrope Foundation is a collaborative effort from the pharmaceutical industry.119 Sim-

ilar to AnIML, it aims to propose a common data exchange format to unify the labora-

tory information technology (IT) landscape. It started from realising the vision of Roberts

et al. 146,147 where an XML schema was envisaged to provide a holistic data format. It later

decided to store data based on HDF5 and RDF formats that were controlled by ontologies

for semantic capabilities. The foundation now contains three ontologies, namely, AFO, Al-

lotrope Data Format (ADF), and Allotrope Data Model (ADM). AFO is the ontology at the

TBox level representing the knowledge in the chemistry domain and it borrows heavily from

CHMO. ADF refers to the ontology ABox classified by AFO, extended with more features

on data structure and provenance for long-term archiving. ADM is the constraint for how

data in ADF should be modelled following AFO. However, only AFO is freely accessible to

the public, with the remaining resources restricted to community members.

Compared to non-semantic efforts, a key distinguishing factor of the semantic approach

is its fully-linked concepts and data instances. This is particularly true for the ontologies

reviewed above, as their concepts follow the classification of the Basic Formal Ontology

(BFO). The instances stored under each ontology are inherently linked and consistent in logic.

This enables interoperability between domains and easy access to data from different sources

via SPARQL queries. Moreover, the linked nature made it possible to reduce duplication of

information by providing unique identification to the entities, whereas in XML it would be

more likely that the same information would appear in different files, e.g., when the same

molecules are involved in different reactions.

The biology community has demonstrated the population of data is the key to a broader

impact with well-defined ontologies.148 However, classifying and annotating data into on-

tologies while maintaining logical consistency is a challenging task, especially with complex
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ontologies. It is costly to adopt and creates a high entry barrier. This is reflected in reaction

informatics, as ontological data is still very much limited to chemical species information, and

there is currently no semantic version of reaction data available. This further exacerbated

the problem of insufficient adoption of semantic web technologies in ML and other practical

engineering applications, as noted by the developers of ORD.115 Not to mention to actually

control the equipment execution and automate the data exchange framework is even more

challenging. A trade-off between engineering practices and comprehensive representation is

thus important. A potential solution to this would be to convert existing databases149 into

RDF.

The same issue was acknowledged by the Allotrope Foundation119 that there is a trend

of making simpler data models for practical applications. One of their partner companies,

TetraScience, developed an Intermediate Data Schema (IDS) – a JSON-based schema of

analytical data as the precursor of the AFO format. Using an agent, data generated from

the analytical equipment was collected and converted to ADF for further analytics. De-

spite of being proprietary, it enlightens the way forward to standardise data conversion and

integration while it is generated. A perspective from Godfrey et al. 150 backed this idea,

i.e., data stored in an ontological framework would very much facilitate the proliferation of

interoperable standards, also keep the flexibility of introducing new methodologies.

Agent-based approaches

With the ontological data representation, the way of data generation and consumption is

another issue needing to be addressed. By definition, an agent is a piece of ‘automated’

software programme capable of acting towards achieving its objectives.151 In such a process,

they can communicate and coordinate, i.e., exchange information with each other, in a

standardised format. As aforementioned, TetraScience utilises agents to standardise data

generation, this section focuses on agent applications in standardising the data utilisation.

In the context of chemical automation, agent-based approaches can be adapted to replace
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the functional components within a platform-based approach. Montoya et al. 29 wrapped

different algorithms as agents to suggest the next experiments for DFT calculations on

stable materials discovery. Gomes et al. 28 standardised various tasks as agents (bots) in a

platform for crystal-structure phase mapping. Caramelli et al. 30 applied agent-based model

simulations to showcase the effectiveness of multi-threaded networking principles in searching

for the optimal solution in the chemical space.

In the above studies, a step was made to turn functional components into modularised

agents and standardise the data exchange between them. However, the communication was

done by passing in-memory programming variables,28,29 or posting plain-text on a human

messaging platform (Twitter).30 As discussed in earlier sections, the same drawbacks such

as lack of scalability and interoperability will emerge when scaling up the framework and

integrating computational and physical experimentation. A relevant first step towards ad-

dressing this issue is demonstrated by DLHub,152 which allows users to publish, share, and

cite ML models for applications in science.

Following the introduction of ontological data representations, a natural question is to ask

whether the use of agents and ontologies can be combined to harness the strengths of both

approaches. The challenge of how best to do this has been an open research question since the

2000s.31 In theory,24 the ontology can help agents with more flexible operations, whereas

agents can help the ontology for better data utilisation. The Foundation for Intelligent

Physical Agents 153 (FIPA) proposed a set of specifications focusing on communication and

interoperability between agents. Specifically, FIPA Ontology Service Specification elaborated

the idea of having an ontology agent to support the message interpretation between agents in

detail. However, it never made it to the standard stage. In the following years, JADE,154 a

Java-based software platform that simplifies the implementation of FIPA-compatible multi-

agent systems, attempted to provide an ontology in its realisation of FIPA standards, but

they only provided the ontology as part of the Java code, without connecting to a knowledge

base. Attempts to merge the two technologies have been seen in other domains, but not much
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in chemistry until very recently. An attempt to do this is described in the next section.

Dynamic knowledge-graph-based approach

In this section, we explore how a combination of semantic web technologies and multi-agent

systems – a dynamic knowledge-graph-based approach – might be applied to realise a com-

plete digital and self-driving laboratory, i.e., a chemical digital twin. We review an attempt

to develop such an approach in the ‘World Avatar’ project. We subsequently outline a con-

ceptual example of automated closed-loop optimisation powered by a dynamic knowledge

graph, and assess its potential in achieving full automation.

Before diving into further details, we also provide a glossary of terms that are heavily

used in this section. We acknowledge that the terms may have different meanings in other

contexts – we make no attempt at general definitions here.

Knowledge graph: a collection of data and software agents expressed as a directed

graph controlled by ontologies, where the nodes and edges refer to concepts and relationships

correspondingly. This has broader coverage than the knowledge graph as commonly used

in semantic web studies,134 where only data are modelled as a directed graph. This is

also different from the knowledge graph built based on Reaxys by Segler and Waller 155 for

reaction discovery problems, which expressed molecules as nodes and binary reactions as

edges.

Digital twin: a virtual replica of real-world entities in the form of a knowledge graph.

It is usually created for the real-time monitoring and controlling of real entities, thus should

be synchronous with its physical counterpart.

Autonomous agent: a semantic web service that acts upon the knowledge graph to

achieve predefined goals. Importantly, agents themselves are part of the knowledge graph

and represented using the ontology for the agent. While active, agents communicate with

each other and interact with the knowledge graph for data retrieval and operation. In the
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sense of a multi-agent system, the knowledge graph is the ‘environment’ of the agents. The

communication between the active agents is conducted via an HTTP request/response. They

use ontologies to establish a common understanding of the topic of interest.

Dynamic knowledge graph: a knowledge graph that is constantly modified by agents

with the latest status of the real world. It controls and influences the real world by updating

the specifications of the digital twin and actuating that with agents.

Current state

The ‘World Avatar’ (http://theworldavatar.com/) project aims to develop an all-encompassing

framework156 that is capable of describing any aspect of the world. The ‘World Avatar’ uses

a dynamic knowledge graph, based on an ontological representation of physical entities and

interoperable agents. The agents are able to update the knowledge graph with new data,

analyse data, make decision and control entities in the real world. This approach has been

suggested to offer a suitable design for a universal ‘digital twin’157.

Starting from an industrial perspective, the J-Park Simulator – a precursor of ‘The World

Avatar’– developed a framework that was applied to describe waste energy158 and optimise

the operation159 of an eco-industrial park on Jurong Island, Singapore.160

The ‘World Avatar’ has also been applied to describe a number of different types of chem-

ical data, and provides ontologies for quantum chemistry (OntoCompChem161), chemical re-

action kinetics (OntoKin162), chemical species (OntoSpecies163) and combustion experiments

(OntoChemExp164). OntoSpecies links other ontologies to provide unambiguous identifica-

tion of the chemicals, enabling translation of chemical names when integrating chemical data

gathered from different sources.164 The ontologies are connected to many of those described

in previous sections. For instance, the development of OntoCompChem is partly based on

the CompChem terms as described in the CML and the Gainesville Core (GNVC) ontol-

ogy.165 The relationship between these ontologies and other data representations used by

the community is shown in Fig. 2.
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To facilitate the automated data utilisation within the knowledge graph, an agent on-

tology (OntoAgent166) was developed as the design pattern of interoperable agents. Each

atomic agent is capable of predefined simple tasks with their input/output (I/O) signature

linked to the concepts in the domain ontologies. This enabled I/O-based service discoveries

to form the agent composition for complex tasks.166 Notably, by using OntoAgent to express

the agents as part of the knowledge graph, the activities of agents are easily trackable so that

provenance can be recorded to document the changes of the knowledge graph over time.

Tools and resources All outputs from the ‘World Avatar’ project are available in the

public domain. Various agents were developed and released on Github to provide service

in the chemistry domain, e.g., automated DFT calculations to address inconsistent ther-

modynamic data,167 automated mechanism calibration to improve the alignment between

kinetic models and experimental data,164 and a question answering system enabling intu-

itive human data interaction – natural language queries of chemical data covering data from

different sources.168 Work is in progress to integrate services provided by agents into the

natural language processing system so that on-demand computations can be invoked when

a question could not be answered with the current knowledge. Users are welcome to check

for more functionalities over time: https://kg.cmclinnovations.com/explore/marie.

Knowledge graph value proposition A core strength of the knowledge graph approach

is interoperability. The knowledge graph provides a mechanism to combine data, descriptions

of software, and hardware interfaces in a standardised way, facilitating automation and

allowing communication between agents acting on data from different domains.164,167

Another key feature is the open-world assumption, enabling the scalability of a knowledge

graph system. Once the skeleton ontology is set, extending knowledge coverage and tailoring

against specific applications is easy to manage. It should work just like adding new features

to a computational library.

Moreover, once the code of conduct is defined for each of the agents, they can act au-
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tonomously and modify the knowledge graph as time elapses. By doing so, the dynamic

knowledge-graph reflects and influences the ever-evolving status of the real world.

Automated closed-loop optimisation

The characteristics of dynamic knowledge graphs open up the possibility of a new and power-

ful approach to closed-loop optimisation. In this section, we explore how to apply a dynamic

knowledge graph to do this in the context of a case study that was previously automated

using a platform-based approach.42 The case study considers flow chemistry. However, given

suitable ontologies and agents, the underlying principles are expected to generalise to any

practices in chemistry where a ‘design-make-test-analyse’ loop is involved.

Figure 3 illustrates the whole framework consisting of three layers, namely, the real world,

the dynamic knowledge graph, and active agents. Reaction data are expressed in ontologies

and hosted in the knowledge graph, together with the ‘digital twin’ of the lab equipment

and interoperable agents. Once activated, these agents act autonomously over the knowledge

graph and keep the cyber- and the real-world synchronised. The update of the ‘digital twin’

is based on the readings from the equipment. This is not only limited to the reaction and

analytical equipment but environmental sensors located in the laboratory. Each device has

its corresponding input agent transmitting the data into the knowledge graph. The monitor

agent is responsible for monitoring the status of the ‘digital twin’ and assessing if further

optimisation is required. If needed, it invokes the design of experiment (DoE) agent to

suggest new experiments and update the configurations of the ‘digital twin’. The actuation

of such settings is the responsibility of the execution agent to reflect the changes made in the

knowledge graph. This loop of self-optimisation continues until the monitor agent decides the

optimal condition is reached. Importantly, with agents expressed in the OntoAgent format,

this framework supports agent discovery service to enable agent-agnostic execution requests.

Compared to the platform-based approach, one distinguishing feature of the dynamic

knowledge-graph-based approach is that everything is connected, scalable, unambiguous,
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Figure 3: Dynamic knowledge-graph-based approach towards automated closed-loop opti-
misation. The real world layer demonstrates the existing physical entities, adapting from
the experimentation setup of Jeraal et al. 42 . The dynamic knowledge graph layer hosts all
the data generated during the experimentation and a ‘digital twin’ of the experimentation
apparatus. This layer is dynamic as it reflects and influences the status of the real world in
real-time. This synchronisation is enforced by the agents in the active agents layer which
are instantiated from their ontological representation in the knowledge graph.
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distributed, multi-domain, interoperable, accessible, and most importantly evolving in time.

As all the digital replicas of the hardware are expressed in the same way, new equipment can

be immediately accessed by any existing software once it is instantiated in the knowledge

graph. The same applies when adding new ML algorithms wrapped following OntoAgent

specifications – standardised interactions with data and HPC services can be established in no

time.167 This enables the rapid integration of the most advanced algorithms and equipment.

Due to the modularised nature, in contrast to heavily intertwined coding logic within a

monolithic application, the duty of development of each component is separated, improving

the maintainability of the entire system.

Another advantage of this approach is its future-proof nature, e.g., its interoperability

when integrating with other ontological initiatives in the community. At the species level,

OntoSpecies acts like a register system that covers most of the chemical identifiers, making

it possible to match with PubChemRDF or other molecular databases. In terms of chemical

reactions, OntoKin is already able to describe the kinetic mechanisms of gas-phase chem-

istry, with OntoChemExp covering the statistical summary of combustion reactions. These

concepts can be expanded to describe other chemistry domains of interest. A further oppor-

tunity lies in linking the reactions with concepts as defined in RXNO and MOP, embracing

their full semantic capabilities. Similar expansion can be made with CHMO or AFO to

describe the analytical data and method employed in the experimentation.

Towards a digital laboratory and beyond

Beyond closed-loop optimisation, various researchers have pictured the future towards the

next-generation of autonomous laboratories and a global collaborative network.1,8,11,15,36,40,66,92,146,147

Jointly, we listed below a few key challenges and how we see the knowledge-graph-based ap-

proach helping.
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Data generation, integration, and sharing This challenge lies in the data management

practice in the platform-based approach.8,36 Going towards a full digitalisation, the ability

of to capture all generated data within an experiment (even a ‘bad’ reaction), integrating it

with literature data, and sharing with the community is crucial for navigating in the chemical

space. As aforementioned, the knowledge-graph-based approach is designed to be a holistic

data capture and exchange framework. With a consensual description of the experiment,

literature data stored in the open-source databases can be converted into the ontological

format, integrated with the newly generated data.

Roberts et al. 147 envisioned a combination of XML and relational databases to achieve

the same goal. However, the authors acknowledged that a database is difficult for a non-

specialist to explore without clear documentation. To enable data-agnostic queries within

the knowledge graph, question answering systems can be of help.168 Researchers can thus

interact with data intuitively from anywhere at any time, aligning with FAIR principles.169

The semantic-rich nature incorporates prior knowledge into the data, presenting the potential

to explore informed ML applications.170

Orchestration of physical and computational experiment This challenge lies in

the emerging trend of physically synthesising the compounds identified by computational

high-throughput screening.8,65,92,171,172 In a platform-based approach, this requires a heavy

workload on the coordinator to manage the information flow and to orchestrate the soft-

ware and hardware from different vendors. SiLA and AnIML are the initiatives to provide

standardised interfaces and data reporting for proprietary hardware, adopting a mindset of

peer-to-peer information exchange that is similar to the platform-based approach.

Whereas in a vision by Roberts et al. 146,147 and dynamic knowledge-graph, information

are promoted to be accessible to all stakeholders within a laboratory environment, flatten-

ing the structural design. For instance, active agents in the ‘World Avatar’ share the same

world-view. The communication between them only serves as a pointer to the correct re-
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sources (IRIs). This enables asynchronous communication to accommodate time-consuming

activities. Moreover, the communication itself is stored in the knowledge graph and accessi-

ble to all agents – everything is transparent and FAIR. By further introducing dependency

between different concepts, both data and instructions to the instrument will act like a flow

of information travelling in the knowledge graph, analogous to an adaptive organism.

Democratisation of chemical automation As previously discussed, different approaches

towards chemical automation coexist. Choices are to be made for groups upgrading from

a common lab environment. Ideally, an off-the-shelf solution should be available that is

compatible with any platform to lower the entry barrier. Therefore, interoperability is key

towards the democratisation of chemical automation.

By design, the knowledge graph approach is able to connect to any laboratory. As it

is based on ontologies abstracted from the laboratory entities, it is possible to instantiate

a new lab into the knowledge graph and utilise the framework. Developing such a usable

and reusable ontology is an iterative process and requires the consensus of the domain. It is

envisioned to be a community effort in developing and maintaining its life-cycle. As demon-

strated by the general semantic web community,134 and particular application experience

in the chemical engineering community (OntoCAPE173), trial-and-error will be inevitable in

the coming decade. However, it is reasonable to be positive given the successful adoption

of these technologies by giant IT companies.174 In that regard, the ‘World Avatar’ is an

open project with all resources available on Github and welcomes contributions from the

community.

Role of human researchers Despite the advantage of chemical automation, there has

been scepticism that the automation of chemistry will replace the bench chemist.175 In our

view, the development of a digitalised and automated laboratory would enhance the capa-

bility of human researchers, enabling them to focus on creative activities, without worrying

about the exact physical steps required to achieve their goals. This is similar to how the
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computer changed our way of working and increased productivity. Since the data in the

knowledge graph is easy to query, researchers can focus on interpreting the experimental

data and finding insights in historical knowledge generated from mankind.106,176 There ex-

ists an opportunity for researchers to encode their chemistry intuition into the knowledge

graph, essentially making a ‘digital twin’ of themselves. It would be possible for researchers

from different laboratories to exchange views and establish collaborations previously unfea-

sible. It would be interesting to see what human intuition can achieve when empowered by

greater computing abilities.

Moreover, the linked nature of semantic web technologies can bring us further to smart

factories, smart buildings, and smart grids,177 as has already been demonstrated by the

application of the ‘World Avatar’ in smart city planning,178 and the UK Digital Twin157

(https://kg.cmclinnovations.com/explore/digital-twin). By constructing a digital laboratory

and linking it to the wider context, we believe it will facilitate multi-scale and cross-domain

interactions between scientists, engineers, and policymakers to investigate how research done

in the lab would affect the whole world. Equipped with scenario analysis, this will help to

identify the direction science advances.

Conclusions and outlook

This contribution was motivated by the absence of standardised data representations and

communication protocols which precludes further development towards the vision of a global

collaborative research network.

We performed a thorough review of the data flow between the different functional com-

ponents within state-of-the-art studies on chemical automation. We found the common

platform-based approach employs ad hoc data representations and subsequently different

data transfer protocols. This results in scalability issues when integrating new hardware and

software, and interoperability issues when collaborating among different platforms – better
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data representation and exchange are desired.

We reviewed both semantic and non-semantic efforts in the community and outlined the

connections between initiatives. Besides the existence of a pattern to promote semantic

representations of chemical knowledge, studies emerging to use agent-based approaches for

standardised generation and consumption of data.

With our past experience in closed-loop optimisation and knowledge-graph development,

we conjecture that a dynamic knowledge-graph-based approach would enable rapid integra-

tion of data and AI-based agents for chemical discovery and development. By integrating

physical entities into the cyber space, it promotes better utilisation of the plethora of com-

putational power in our efforts towards a sustainable future.179

In light of the Industry 4.0 revolution, as well as the current COVID situation, this

perspective combines the review of common practices in data representation/exchange, com-

munity landscape in the development of better data for reaction informatics, also an outlook

towards the holistic integration of automation, AI, and chemistry. The topic of this per-

spective is timely and we believe it will start thought-provoking conversations over our way

towards fully digitalised chemistry as a community.

Following the knowledge graph approach, hopefully in the not too distant future, we will

see the realisation of a global collaborative research network. We envisage it would allow

more interdisciplinary studies to be conducted for a better understanding of the research

activities of mankind. With such further advancements to knowledge graph technology, we

are looking forward to a sustainable future in the commencing decade.
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