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Abstract— We consider the problem of quantifying the vari-
ance in the number of molecules of a species, in biochemi-
cal reactions with nonlinear reaction rates. We address this
problem for a particular configuration where a species is
formed with bursts, with a nonlinear rate that depends on
another spontaneously formed species. By making use of an
appropriately formulated expansion based on the Newton series,
in conjunction with spectral properties of the master equation,
we derive an analytical expression that provides a hard bound
for the variance. We also show that this bound is exact when
the propensities are linear. Furthermore, numerical simulations
demonstrate that this is very close to the actual variance.

I. INTRODUCTION

Chemical Master Equations (CMEs) are frequently used to
model biochemical systems. Nevertheless, when the reaction
rates are nonlinear analytical expressions for the moments are
in general not feasible. Approximate analysis can be carried
out via simulations, such as trajectories generated via the
Gillespie Algorithm, [1]. Using, however those for evalu-
ating moments requires considerable computational effort.
Alternative approaches that lead to an approximate analysis
include the Finite State Projection algorithm [2] and the
Linear Noise Approximations (LNAs), or Van Kampen’s Ω-
Expansion where the last two involve a linearisation of the
reaction rates.

Recent studies have developed techniques for comput-
ing bounds for moments. In [3] bounds are computed by
means of semidefinite programming. The idea of moment
semidefinite programs was used in [4] and in [5], [6]
optimization problems are formulated with positive semi-
definite constraints associated with moment matrices for
chemical reactions. Approximate moment dynamics with
closure properties are derived in [7], [8] and [9] by selecting
an appropriate nonlinear system to approximate the infi-
nite set of moment Ordinary Differential Equations (ODEs)
emerging from the CME.

In this paper we present an alternative approach whereby
an appropriately formulated expansion based on the Newton
series, is used to derive a hard bound for the variance for
a class of biochemical reactions. In particular, the variance
bound is derived for a species that is formed with bursts with
a nonlinear rate that is a function of another spontaneously
formed species. We also show that the bound derived is exact
when the reaction rates are linear. Finally, we use numerical
simulations to investigate how close the bound is to the actual
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variance, and we find that, unlike LNAs, this is very close to
the true variance even in regimes where the reaction rate is
highly nonlinear. A side result associated with the covariance
of the species under consideration is also presented.

It should be noted that the methodology used to derive
the bound presented is of independent interest as it exploits
appropriate spectral properties of the master equation. Gen-
eralizations of this approach to larger classes of biochemical
reactions is part of ongoing work.

The paper is structured as follows. In Section II we
introduce the notation and provide the problem formulation.
The main results are given in Section III. A numerical
evaluation of the results is provided in Section IV. Finally,
conclusions are drawn in Section V. The proofs of the results
presented in the text are provided in the appendix.

II. PROBLEM FORMULATION

A. Notation

The following list introduces various symbols used within
the paper

(A)k Falling factorial of A ∈ Z
≥ with k ∈ Z

≥: if k 6= 0
then (A)k =

∏k−1
n=0A− n, if k = 0 then (A)0 = 1

∆k[·] k step finite difference of the form ∆k[f ](A) ≡
f(A+ k)− f(A)

∆p
k[·] k step finite difference operator applied p times

δa,b δa,b = 1, if a = b, 0 otherwise
E[X] Expectation of random variable X
EP [·] Expectation operator with respect to the Poisson

distribution
R[A] Set of polynomials in A with real valued coefficients
R

> Set of positive real numbers {x ∈ R : x > 0}
R

≥ Set of non negative real numbers {x ∈ R : x ≥ 0}
Z
≥ Set of non negative integers {0, 1, 2, 3 . . .}

U{a, b} Discrete uniform probability distribution with sup-
port {a, b} with a, b ∈ Z

≥

1 Unity operator: 1[X] = X
A ∼ P(x) Random variable A has Poisson probability dis-

tribution with mean x
cov(X,Y ) Covariance of random variables X and Y
var(X) Variance of random variable X
B(p, n) Binomial probability distribution, with parameters

0 < p ≤ 1 and n ∈ Z
≥

G(p) Geometric probability distribution, with parameter
0 < p ≤ 1



B. Problem Formulation

We consider the following system

A
F
−→ A+ 1 B

R(A)
−−−→ B +Q

A
γAA
−−−→ A− 1 B

γBB
−−−→ B − 1

(1)

where A and B are two biochemical species. Random
variable A(t) denotes the number of molecules of species
A at time t and similarly random variable B(t) denotes the
number of molecules of species B at time t. The random
variable Q denotes the increase in the number of molecules
of species B when a birth takes place. The parameter F ∈
R

> is a constant that denotes the rate at which the species
A is produced, R : Z

≥ → R
≥ is the rate of production

of the species B and constants γA ∈ R
> and γB ∈ R

>

represent the death rate of each molecule of species A and
B respectively.

For any a, b ∈ Z
≥, we denote by P(a, b, t) the probability

A(t) = a, B(t) = b. We assume that the random variable
Q is independent from the random variables A(t), B(t) and
denote by PQ(q) the probability Q = q. The CME, a version
of the Chapman Kolmogorov equation for Markov processes,
for system (1) is

∂P(a, b, t)

∂t
= γA[(a+ 1)P(a+ 1, b, t)− aP(a, b, t)]

+ F [P(a− 1, b, t)− P(a, b, t)]

+ γB [(b+ 1)P(a, b+ 1, t)− bP(a, b, t)]

+R(a)

[

b
∑

q=1

PQ(q)P(a, b− q, t)− P(a, b, t)

]

(2)

The problem we are trying to address is to find an expression
of the mean and variance of B. This is a non-trivial problem
due to the nonlinear rate R(A).

In this paper we present a bound on the variance of B
obtained by exploiting a discrete expansion of R(A) based on
the Newton series. The bound becomes exact when R(A) is
linear. Furthermore, we show via numerical examples that it
is very close to the true variance even in regimes where R(A)
is highly nonlinear, in contrast to a LNA approximation for
the variance.

It should be noted that filtering problems associated with
(1) have also been studied in the literature. The optimal
causal filter for estimating A when B is observed was derived
in [10] and a close to optimal version was deployed in vitro
in [11]. The average squared difference between A and B
was quantified in [12].

The results that will be presented are associated with the
equilibrium distribution of species A and B and we therefore
make the following assumption.

Assumption 1: System (2) reaches a stationary distribu-
tion denoted by P(a, b) i.e. limt→+∞ P(a, b, t) = P(a, b).

Note that from the CME (2) P(a, b) satisfies the following

γA[(a+ 1)P(a+ 1, b)− aP(a, b)] + F [P(a− 1, b)− P(a, b)]

+ γB [(b+ 1)P(a, b+ 1)− bP(a, b)]

+R(a)

[

b
∑

q=1

PQ(q)P(a, b− q)− P(a, b)

]

= 0

(3)
For convenience in the notation we denote by A the random
variable representing the number of molecules of species A
at equilibrium, and its probability distribution is denoted by
PA. Similarly, we denote by B the random variable repre-
senting the number of molecules of species B at equilibrium.
Random variable Q can have any discrete distribution as long
as it takes values in the set of positive integers excluding 0,
and is independent of A and B. It should also be noted
that A ∼ P(F/γA), i.e. random variable A has a Poisson
distribution with mean F/γA which is a known result that
follows from the fact that F and γA are constant (see e.g.
[13]).

III. MAIN RESULTS

Before we present our main results we state a condition
upon R(A).

Assumption 2: R : Z≥ → R
≥ is a ratio of polynomials,

i.e. R(A) =
{

f
g |f, g ∈ R[A], g 6= 0 ∀A ∈ Z

≥
}

.
Note that this assumption is mild within a biological per-
spective as reaction rates are typically rational functions of
molecule numbers. In order to give our first result we define
the quantities in (4) which are needed for the variance bound
derived.

σ0 = EP [R(A)], σ1 = −EP [R(A)] +
EP [AR(A)]

EP [R(A)]
(4)

Note that in (4) EP [·] denotes the expectation with respect
to the Poisson distribution of the random variable A.

Lemma 1: Let A ∼ P(F/γA). Then the quantities σ0 and
σ1 from (4) exist and are finite.

We now give our main result which is an expression that
provides a lower bound on the variance of B.

Proposition 1: Consider the system in (3) with R(A)
satisfying Assumption 2. The following inequality holds

var(B) >

(γA + γB)σ0(E[Q
2] + E[Q]) + 2(E[Q])2σ2

1EP [A]

2γB(γB + γA)

(5)

where σ0 and σ1 are given in (4).
Remark 1: If R(A) is a linear function then, then equation

(5) holds with equality. This is stated in Proposition 2.
Remark 2: Parameters σ0 and σ1 exist and are bounded

as stated in Lemma 1. Note that EP [·] is the expectation
with respect to a Poisson distribution with a known mean
and may be computed to an arbitrary high precision by
taking a sufficient amount of terms in the evaluation of the
expectation.
Below we show that the bound is exact if all transition rates
are linear.



Proposition 2: Consider the system in (3). If R(A) =
RcA with Rc ∈ R

> the bound for the variance in Proposition
1 holds with equality and is given by (6)

var(B) =

RcEP [A]
[

Rc2(E[Q])2 + (γA + γB)(E[Q
2] + E[Q])

]

2γB(γA + γB)

(6)

Remark 3: The variance in the case of Proposition 2 can
be computed analytically using LNA approaches, see e.g.
[13] and [14].

Finally we give a side result on the covariance of A and
B.

Proposition 3: Consider the systems described in (3).
Then cov(A,B) = cov(B,A) satisfies

cov(A,B) = E[Q]
σ1EP [A]

γA + γB
(7)

where σ1 is given in (4).
Remark 4: Note that Proposition 3 holds with equality

also when R(A) is nonlinear.
The results stated above have a number of useful properties
relative to other more conventional approaches for quantify-
ing the variance. As mentioned in Section I, Proposition 1
provides a bound for the variance when the transition rate
R(a) is nonlinear whereas existing methods like LNA and
numerical simulations give only approximate values. As it
will be seen in Section IV the variance calculation through
the LNA is not as close to the variance of B as is the
bound provided in Proposition 1. This is especially important
in the case of highly nonlinear propensity functions where
LNAs become less accurate. Furthermore, the numerical
investigation in Section IV demonstrates that the bound
maintains its accuracy despite the presence of bursts.

IV. EXAMPLES

In order to evaluate the conservativeness of the bound for
the variance given in (5) we numerically investigate how
close this is to the actual variance. The simulations have
been performed using the software package GillesPy2 [15].
We select as function R(A) a nonlinear function commonly
found in biological systems, i.e. a Hill function R(a) =
(a/A0)

nh

1+(a/A0)
nh

where nh ∈ R
> and A0 ∈ R

>. We set as
parameters nh = 9 and A0 = 100 and F = 1. This function
clearly fulfills the conditions in Assumption 2.

Fig. 1 displays four cases corresponding to different burst
distributions [16]. The figure highlights that the bound is
not conservative regardless of the distribution of Q and
it is very close to var(B) for different values of EP [A]
obtained by varying γA. The figures also show a comparison
of the bound with the variance of B computed through the
LNA of system (3). Note that the computation carried out
via LNA performs poorly for certain regimes. Specifically,
the performance is particularly poor when A is with high
probability in the nonlinear regime of the Hill function, while
it is more accurate when A is predominantly in the linear
regime.

The left hand side of Fig. 2 shows the relative error,
expressed as a percentage, between the variance of B and the

bound corresponding to different values of EP [A] (obtained
by varying γA) and γB when Q has a geometric distribution,
i.e. Q ∼ G(0.5). The right hand side of Fig. 2 displays the
relative error between the variance of B and the variance
obtained trough LNA. We find that the bound is still not
conservative and performs consistently better than variance
obtained trough LNA for different values of γA and γB .
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Fig. 1: Numerical simulation showing the bound obtained
from (5) and the computed variance of B for varying
EP [A] = F/γA with F = 1, γB = 10−2 and for different
distributions of Q. R(a) is a Hill function with parameters
nh = 9 and A0 = 100. ( ) displays the bound computed
from (5) and ( ) displays the variance obtained from
numerical simulations of (3). The variance computed through
a LNA of system (3) is displayed as ( )

V. CONCLUSIONS

We have derived a hard bound for the variance in the
molecule numbers of a species formed with bursts, with a
nonlinear rate that depends on another spontaneously formed
species. The bound follows from a discrete expansion based
on the Newton series, and exploits spectral properties of
the master equation. We have also shown that the bound
holds with equality if the propensity functions are linear. The
accuracy of the bound has been investigated with numerical
simulations which demonstrate that this is very close to the
actual variance also when the rate of formation of the species
is highly nonlinear, and despite the presence of bursts. Future
work will focus on extending the results to larger classes of
CMEs.
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Fig. 2: The left hand side of the figure shows the relative
error between the variance of B, obtained trough a numerical
simulation, and the bound in Proposition 1. The right hand
side displays the realtive error between the variance of B, and
the LNA. R(A) is set to be a Hill function with parameters
nh = 9 and A0 = 100, and F = 1. The considered burst
distribution is Q ∼ G(0.5).

VI. APPENDIX

In the appendix we provide the proofs of the results
presented in the main text.

A. Proof of Lemma 1

Proof: The proof follows by noting that σ0 and σ1 are
expectations of rational functions with respect to a Poisson
distribution.

B. Proof of Proposition 1

Proof:
We divide our proof in three parts. In the first part

we compute T ′
a(1), where Ta(z) =

∑∞

b=0 z
b
P(a, b) is a

probability generating function that is used for the calculation
of the moments of B. In particular, we show that T ′

a(1)
satisfies an equation that involves a difference operator that
depends on the CME.

In Part 2 we derive an expression for T ′
a(1) in terms of

the eigenfunctions of this operator. This expression depends
on the Newton series expansion of R(A).

In Part 3 we make use the results in Part 1, 2 to derive an
expression for the variance of B, and hence deduce a bound
in terms of σ0, σ1, as stated in Proposition 1.

Part 1: Consider (3) and let us make use of the gen-
erating function Ta(z) =

∑∞

b=0 z
b
P(a, b) and M(z) =

∑∞

q=0 z
q
PQ(q). Under these transformations we compute the

following equation.

γA[(a+ 1)Ta+1(z)− aTa(z)] + F [Ta−1(z)− Ta(z)]

+γB(1− z)T ′
a(z) +R(a)(M(z)− 1)Ta(z) = 0

(8)

Note that (8) provides an alternative way to express (3).
By setting z = 1 we have Ta(1) = PA(a), where A in
the considered case has a Poisson distribution, see [13].
Secondly, we can compute moments of B by differentiating

(8) with respect to z and setting z = 1. In particular, we
have

T ′
a(1) =

∞
∑

b=0

bP(a, b), T ′′
a (1) =

∞
∑

b=0

b(b− 1)P(a, b) (9)

Hence by differentiating (8) with respect z and then setting
z = 1 we obtain the following expression involving the first
moment

γA[(a+ 1)T ′
a+1(1)− aT ′

a(1)] + F [T ′
a−1(1)− T ′

a(1)]

− γBT
′
a(1) +R(a)(M ′(1)Ta(1)) = 0

(10)

where M ′(1) = E[Q].
For the second moment we have

γA[(a+ 1)T ′′
a+1(1)− aT ′′

a (1)] + F [T ′′
a−1(1)− T ′′

a (1)]

− 2γBT
′′
a (1) +R(a)(M ′′(1)Ta(1) + 2M ′(1)T ′

a(1)) = 0
(11)

where M ′′(1) = E[Q2] − E[Q]. By summing (10) over all
a yields

∞
∑

a=0

T ′
a(1) =

M ′(1)

γB

∞
∑

a=0

R(a)Ta(1) (12)

Note that the left hand side of (12) is the expectation of
B with respect to the known distribution of A. From the
definition of T ′

a(1) and by noting that Ta(1) = PA(a), (12)
can be written as

E[B] =
E[Q]

γB
EP [R(A)] (13)

For the second moment of B we proceed analogously as for
the first moment by summing (11) over all a and obtain

∞
∑

a=0

T ′′
a (1) =

1

2γB

(

M ′′(1)
∞
∑

a=0

R(a)Ta(1) + 2M ′(1)
∞
∑

a=0

R(a)T ′
a(1)

)

(14)

From (9) and (14) we obtain

E[B2]− E[B] =

1

2γB
(M ′′(1)EP [R(A)] + 2M ′(1)E[BR(A)])

(15)

where for the last term on the right hand side of (14) we
have applied the definition of T ′

a(1).
We now seek in the remainder of the proof to derive an

expression for the last term in (15).
We now consider the following representation of T ′

a(1),
where function G(a) is to be determined:

T ′
a(1) =

Ta(1)G(a)

γB
(16)

We substitute (16) into (10) and obtain
γA
γB

[(a+ 1)Ta+1(1)G(a+ 1)− aTa(1)G(a)]

+
F

γB
[Ta−1(1)G(a− 1)− Ta(1)G(a)]

−G(a)Ta(1) +M ′(1)R(a)Ta(1) = 0

(17)



Note that from the definition of the Poisson distribution we
have:

Ta+1(1) =
F

γA(a+ 1)
Ta(1), Ta−1(1) =

aγA
F

Ta(1)

(18)
By rearranging (17) and using (18) leads to

Ta(1)[(S− 1)G(a) +M ′(1)R(a)] = 0 (19)

where S, defined in (20), is an operator acting upon G(a)

S = γ−1
B (γAa∆−1+F∆1) =

γA
γB

(a∆−1+EP [A]∆1) (20)

By making use of (19) we find that G(a) satisfies

(1− S)G(a) =M ′(1)R(a) (21)

We now seek to exploit spectral properties of S in order to
derive an expression for G(a) and hence of T ′

a(1).
Part 2: In this part of the proof we derive an expression

for T ′
a(1).

We first focus on the operator S and its corresponding
eigenfunctions. First let us note that ∆1[(a)k] = k(a)k−1

and a∆−1[(a)k] = −k(a)k and hence we can write S[(a)k]
as

S[(a)k] = −
kγA
γB

[(a)k − EP [A](a)k−1] (22)

We will derive an expression for G(a) in terms of the
eigenfunctions and eigenvalues of operator S. We derive
those below, following the approach in [17]. To facilitate
the analysis of (22) we introduce operator F, which for a
monomial ak, a, k ∈ Z

≥ it satisfies the property F[ak] =
(a)k. It is also defined to be linear, i.e. F[ak1

1 + ak2

2 ] =
(a1)k1

+ (a2)k2
, F[λak] = λ(a)k, λ ∈ R.

We can hence rewrite (22) as

S[F[ak]] = −
kγA
γB

F[ak−1(a− EP [A])] (23)

which can also be written as

S[F[ak]] = −
γA
γB

F

[

d

da
[ak](a− EP [A])

]

(24)

We now apply operator S, in combination with operator F,
to (a− EP [A])

k which yields

S[F[(a− EP [A])
k]] =

= −
γA
γB

F

[

d

da
[(a− EP [A])

k](a− EP [A])

]

(25)

By observing that
d

da
[(a−EP [A])

k] = k(a−EP [A])
k−1 we

have

S[F[(a− EP [A])
k]] = −k

γA
γB

F
[

(a− EP [A])
k
]

(26)

We now use the binomial expansion to rewrite the eigenfunc-
tions and corresponding eigenvalues, which take the form

λn = −n
γA
γB

(27)

ψn(a) =
n
∑

k=0

(

n

k

)

(−EP [A])
k(a)n−k (28)

Using the expressions derived for the eigenfunctions and
eigenvalues of S we now proceed to derive an expression
for G(a). In particular, by noting the decomposition of R(a)
in terms of the eigenfunctions ψn given in Proposition 4 we
make the following ansatz on G(a)

G(a) =M ′(1)

∞
∑

n=0

σnζ(n)ψn(a) (29)

where ζ(n) is a function to be determined and σn are as
defined in Proposition 4. By substituting (29) in (21) we get

M ′(1)

∞
∑

n=0

σn

(

1 + n
γA
γB

)

ζ(n)ψn(a) =M ′(1)R(a) (30)

Noting the series expansion of R(a) in Proposition 4 with
r = EP [A] we deduce that

ζ(n) =
γB

nγA + γB
(31)

Therefore from (16), (29), (31) we deduce the following
expression for T ′

a(1)

T ′
a(1) =

Ta(1)M
′(1)

γB

∞
∑

n=0

σn
γB

nγA + γB
ψn(a) (32)

Part 3: We now make use of the series expansion of T ′
a(1)

in (32) to compute the moments of B.
We evaluate first the unknown term in the right hand

side of (15). In particular, by noting that E[BR(A)] =
∑∞

a=0R(a)T
′
a(1) and from the expression of T ′

a(1) in (32)
we have

E[BR(A)] =

=
M ′(1)

γB

∞
∑

a=0

R(a)
∞
∑

n=0

σn
γB

nγA + γB
ψn(a)Ta(1)

=
E[Q]

γB
EP

[

∞
∑

n′=0

∞
∑

n=0

σn′σn
γB

nγA + γB
ψn′(A)ψn(A)

]

(33)

where M ′(1) = E[Q] and in the second step we have used
the results of Proposition 4. We now evaluate the expectation
in (33) as follows

EP

[

∞
∑

n′=0

∞
∑

n=0

σ′
nσn

γB
nγA + γB

ψn′(A)ψn(A)

]

=

=

∞
∑

n=0

σ2
n

γBn!(EP [A])
n

nγA + γB

(34)

where the equality holds given the results of Proposition 5.
Hence we can now write the following expression for
E[BR(A)]

E[BR(A)] =
M ′(1)

γB

∞
∑

n=0

σ2
n

γBn!(EP [A])
n

nγA + γB
(35)



We finally express var(B) as in (36) by making use of (13),
(15), and (35)

var(B) =

1

2γB

[

(E[Q2]− E[Q])EP [R(A)]

+
2(E[Q])2

γB

∞
∑

n=0

σ2
n

γBn!(EP [A])
n

nγA + γB

]

+
EP [R(A)]E[Q]

γB
−

(

EP [R(A)]E[Q]

γB

)2

(36)

It should be noted that from Proposition 5 we have
EP [ψn(A)] = δn,0 and hence by computing the expectation
with respect to the Poisson distribution on both sides of (40)
we have that EP [R(A)] = σ0. By substituting σ0 in (36) and
through some manipulation we obtain

var(B) =

1

2γB

[

(E[Q2]− E[Q])σ0

+
2(E[Q])2

γB

∞
∑

n=1

γBσ
2
nn!(EP [A])

n

nγA + γB

]

+
E[Q]

γB
σ0

(37)

Since all terms in (37) are positive by using only the first
term in the summation appearing in (37) we obtain

var(B) >

(γA + γB)σ0(E[Q
2] + E[Q]) + 2(E[Q])2σ2

1EP [A]

2γB(γB + γA)

(38)

C. Expansion of R(A)

The proposition below is based on ideas in [12]. The proof
is omitted due to page constraints.

Proposition 4: Consider R(A) : Z≥ → R
≥, that satisfies

Assumption 2. Let A ∈ Z
≥ and consider the function

ψn(A) =

n
∑

k=0

(

n

k

)

(−r)k(A)n−k (39)

where r ∈ R
>. Then the following equality holds:

R(A) =

∞
∑

n=0

σnψn(A) (40)

where

σn =

∞
∑

k=n

(

k

n

)

∆k
1 [R](A)

k!

∣

∣

∣

∣

A=0

rk−n (41)

D. Proof of Proposition 2

Proof: The proof follows by substituting the values of
σ0 and σ1 in (5) when R(a) = Rca and by comparing with
that obtained using LNA (see [13] and [14]).

E. Properties of ψn

The proof of the following proposition is analogous to one
in [12] and it is omitted due to page constraints.

Proposition 5: Consider ψn(A) as in Proposition 4 with
r = EP [A], and A is a random variable with Poisson
distribution. Then the following equalities hold:

EP [ψn(A)] = δn,0, EP [ψn(A)ψn′(A)] = n!(EP [A])
nδn′,n

(42)
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