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In Defense of Portfolio Optimisation What If We Can Forecast?  
 

1. Introduction 
 
Markowitz’s influential Portfolio Selection (1952) underpins many advances in financial 
economics and remains one of the most widely used quantitative approaches to portfolio 
construction in the industryi. Nonetheless, the approach of allocating capital to risky assets by 
maximising expected return for a given level of risk has been subject to numerous criticismsii. 
One, that the mean-variance optimisation model requires either normally distributed returns 
or investor quadratic utility, sits in contradiction both to Markowitz’s original formulation 
and his subsequent researchiii.  Normal distributions are not required; it suffices that the 
distribution be characterized by location and scaleiv. A second, often attributed to Michaud 
(1989), is the phenomenon of error maximisation, where return and covariance forecast errors 
are magnified in the estimated portfolio weights which may lead to poor out-of-sample 
performance. Given doubts (both normative and positive) about forecast ability and the 
presence of noise in return series, some authors have concluded that mean-variance is inferior 
to more passive strategies such as the equal-weighted 1/N approach. This paper examines this 
choice, exploring the relationship between forecasting ability and investor welfare. We 
demonstrate, analytically, by way of simulation, and empirically, that mean variance 
outperforms 1/N with very modest forecasting ability, contrary to views expressed in much of 
the literature, even accounting for the presence of error. We do not claim that we can 
eliminate estimation error in any practical way. Nonetheless, our results present a much more 
compelling case for the use of portfolio optimisation techniques. Our findings have an 
intuitive logic, to the extent that the implications may seem obvious: if you have good 
forecasting skill, make use of it, if not, then equal-weighting or risk-weighting a portfolio 
may be preferable particularly in the absence of good estimation windows for mean and 
covariance. We provide a formal demonstration of this intuition. 
 
Our analytic approach allows us to contrast mean-variance with 1/N allocation and explicitly 
identify the drivers of expected utility. We apply the research to a range of realistic 
investment problems and re-examine the influential model of DeMiguel, Garlappi and Uppal 
(2009) [DGU hereinafter] which has supported advocacy of 1/N. We extend our analytic 
results in a high dimension simulation framework (in the spirit of Kane, Kim and White, 
2010) which provides strong confirmatory results. We then step away from the theoretical iid 
normal framework to conduct out-of-sample empirical tests using rolling portfolio 
rebalancing with short estimation windows and realistically large sets of potential assets. 
Mean variance performs well in this context.  
 
First, we provide a utility maximising framework that unifies estimation error and forecasting 
ability effects, building on Grinold’s (1989) work relating forecasting ability to the 
information ratio. Our results show that the Kan and Zhou (2007) result that increasing the 
number of assets leads to performance deterioration does not necessarily hold when one 
allows for forecasting, even in the presence of estimation error. Second, we provide a closed 
form solution for the amount of skill required for mean variance to outperform 1/N ex ante. 
This provides a decision rule allowing investors to choose between approaches. Third, our 
empirical results show that mean variance can, indeed, outperform 1/N strategies in realistic 
high dimension, short estimation period windows: exactly the conditions where estimation 
error effects should be at their most severe.  Before proceeding with our analytic, simulation 
and empirical analysis, we briefly review the existing empirical and analytic literature on 
mean variance portfolio approaches. 
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2. Mean Variance, Errors in Estimation and Forecasting Ability 
 
The mean variance approach seeks to over-weight assets with low correlations, high expected 
returns and low relative variance. We note Michaud’s (1989) argument that in empirical 
settings, such assets may be subject to substantial estimation errors, coining the term “error 
maximisation” for the resultant portfolios, where over-weighting leads to most assets being 
driven from the portfolio resulting in “corner solutions”. As Scherer (2002) notes, with two 
highly correlated assets, the optimisation algorithm will tend to take long positions in the 
asset with the higher expected returns and short positions in the other, even though return 
difference may be within error margins. Numerous studies, have suggested that mean 
variance does not outperform passive benchmarks, including 1/N approaches, when tested in 
an out-of-sample contextv. One important contribution comes from DGU, who compare 
fourteen models for portfolio allocation (many of which were designed to reduce the impact 
of estimation error) over seven data sets and conclude that “none is consistently better than 
the 1/N rule”, a result that holds using Sharpe ratio, certainty equivalent and turnover 
measures. They suggest their results cast significant doubt on the utility of such active 
portfolio investment strategies.  
 
The majority of those studies critical of the mean variance approach take, as their starting 
point, ex post sample estimates as forecasts of expected returns and covariance, often over 
short time series, despite substantial evidence that sample moments have low predictive 
power. In Markowitz’s original formulation, the proposed E-V rule starts from the expected 
return: 
 

‘To use the E-V rule in the selection of securities, we must have procedures for 
finding reasonable m and s. These procedures, I believe should combine statistical 
techniques and the judgement of practical men [sic].’ (Markowitz, 1952, p91].   

 
Some sixty years after the original formulation, he reiterated this view:  
 

‘Judgment plays an essential role in the proper application of risk-return analysis for 
individual and institutional portfolios. For example, the estimates of mean, variance, 
and covariance of a mean-variance analysis should be forward-looking rather than 
purely historical.’ (Markowitz, 2010, p7). 
 

A branch of the literature uses longer time series to generate sample estimates in place of 
short windows. For example, Kritzman, Page and Turkington (2010), using long-term 
historical averages and covariances as inputs suggest that mean variance generates higher out 
of sample Sharpe ratios than the 1/N approachvi. Furthermore, Kritzman et al. demonstrate 
that virtually any reasonable return forecasts applied to mean-variance optimization would 
outperform 1/N, and that DGU, by using rolling five year means as forecasts, were, in effect, 
assuming a negative forecasting ability. 
 
More commonly, a range of models and approaches have been used to reduce the impact of 
estimation error, including Bayesian shrinkage techniques, resampling and imposing weight 
constraintsvii. While some of these techniques have been shown to reduce the impact of 
estimation error and accord with industry practice, we will not employ them, in order to 
provide a pure evaluation of the performance of the mean variance approach in the face of 
errors and noise. 
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A smaller body of research has examined the performance of mean variance using one-period 
ahead return forecasts – which is closer in spirit to Markowitz’s original proposal. Most of 
the research combining linear forecasting with mean variance does show outperformance 
relative to passive benchmarksviii. However, typically, such research uses small asset sets 
(where the effect of estimation error is less extreme). In practical applications, higher 
dimensions are needed – for example for equity funds benchmarked on the Russell 3000 or 
MSCI index - and it is here that estimation error will become more problematic. We therefore 
focus our simulation and empirical work on high dimensional problems where the impact of 
estimation-error is most severe. 
 
The expected utility of using mean variance with forecasting will be dependent on the quality 
of those forecasts. Grinold (1989) and Grinold and Kahn (1999) develop expressions for 
expected utility. The best known is Grinold and Kahn’s “fundamental law of active 
management” that relates the information ratio (IR) - the active return divided by the active 
risk - to the information coefficient (IC) – the correlation between forecast and realised 
returns – and the number of stock positions: 
 

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼√𝑁𝑁 
 
They conclude ‘it takes only a modest amount of skill to win so long as that skill is deployed 
frequently and across a large number of stocks’ (Grinold and Kahn, 1999, p162).  
 
At issue, however, is how large the sample period and number of assets must be for active 
management to outperform passive strategies. Zhou (2008) argues that over 10,000 months of 
data are required for mean variance to achieve 90% of true maximum utility. DGU argue that 
for a portfolio containing 25 assets, 3,000 months of estimation data are required for mean 
variance to outperform 1/N; this rises to 12,000 months for a portfolio of 100 assets. They 
conclude that this infeasible requirement means that I/N should be preferred to mean 
variance.  
 
The diametrically opposed conclusions of Grinold and Kahn and DGU result from the 
differing underlying assumptions. DGU assume estimation error but no forecasting ability. 
Thus increasing the number of assets increases estimation error effects, damaging expected 
utility. By contrast, Grinold and Kahn assume forecasting ability but not estimation error. 
Hence, increasing breadth of investment opportunities increases utility. We seek to reconcile 
these differences by considering both forecasting ability and estimation error in the same 
modelling approach. 
 
From the 1980s, academics increasingly reported evidence of partial predictability of returns 
using publicly available information and of anomalies that cast doubt on a pure market 
efficiency model. The burgeoning literature will be familiar and we will not discuss it in 
depth here. Nonetheless, documented relationships between dividend yield and equity 
returns,  inflation, interest rates and credit spreads and autocorrelationix led Fama and French 
(1988) to conclude ‘there is much evidence that stock returns are predictable’, their 
commitment to the efficient market paradigm notwithstanding. It thus seems reasonable to 
assume some forecasting ability. However, those forecasts will be noisy and, hence, estimate 
error must be considered.  
 
We compare the performance of mean variance with 1/N for a number of reasons. First, since 
the 1/N rule does not require any estimations, it carries no estimation risk. Second, it is easy 
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to apply in the market and hence represents a practical strategy for investors. Moreover, 
others have used 1/N as a basis to benchmark evaluations of mean variance, so we follow in 
that tradition. Finally, there is behavioural evidence that investors tend to equally weight 
investment choices in the absence of specific skills: for example, Benartzi and Thaler (2001) 
document this for US investors choosing defined contribution investment plans.  They are not 
alone. Markowitz, questioned about his own allocations for his retirement investments in his 
TIAA-CREF account confessed: 
 

‘I should have computed the historic covariances of the asset classes and drawn an 
efficient frontier. Instead…I split my contributions fifty-fifty between bonds and 
equities’. (p 115, Zweig, 1998) 
 

It is the case that 1/N will be optimal in certain contexts; if the distribution of future returns is 
independent of current information, and each asset has the same mean, variance and pair-wise 
correlation, then the mean-variance portfolio will coincide with the 1/N portfolio; in practice 
1/N will be very close to optimal for cases not too different from these assumptions.  We turn 
now to consider mean variance utility with both forecasting ability and error estimation. 
 

3. Mean Variance Utility: An Analytic Approach 
 
In this section, we set out two models which describe the factors that drive investors’ 
expected utility. Our focus is the interplay between estimation error, forecasting ability and 
the budget constraint. Our models are based on one-period ahead mean-variance 
optimisation, which is consistent with commercially available portfolio optimisation software 
and follows a long line of academic researchx. 
 
For simplicity and consistency with prior research, we assume a constant IC across all assets. 
Previous literature has suggested values of IC in the range zero to 0.1 (which equates to R2 
values of 0% to 1%). This implies very little forecasting ability, which is intuitively 
problematic, since the mean-variance optimiser treats expected returns as certain. However, it 
has been pointed out to us by a referee that any individual is likely to have varying IC’s 
depending on their expertise in different markets and sectors. This point favours 1/N 
investing where only N need vary with the investment set considered. 
 
The starting point of our model is a set of return forecasts, the covariances between those 
returns and a covariance vector relating forecast to actual returns. In setting up the model, we 
make several assumptions that are common in the portfolio strategy literature, including 
independence and normality of forecast errors and that the covariance matrix is known (we 
relax this assumption in sections 4 and 5). We directly model the budget constraint faced by 
investorsxi and use the constrained weights to derive optimum allocations. We confine the 
mathematical derivations to the appendix (with further details available from the authors). 
The analysis allows us to present two important models which explore the benefits of a mean-
variance strategy for an investor with some forecasting ability but faced with estimation error 
and the existence of a budget constraint.  
 
Model 1 
The unconditional expected utility of the mean-variance investor under the assumptions of 
multiple forecasts, one for each asset, with a constant forecasting ability level, 𝐼𝐼𝐼𝐼, estimation 
error, and in the presence of a budget constraint, using the unconditional covariance matrix, 
is given by 
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𝐸𝐸[𝑈𝑈] =
𝛼𝛼 + (𝑁𝑁 − 1) �𝐼𝐼𝐼𝐼2 − 1

𝑇𝑇� −
(𝛽𝛽 − 𝜆𝜆)2

𝛾𝛾
2𝜆𝜆

 
(1)  

where 𝛼𝛼 = 𝜇𝜇′𝛴𝛴−1𝜇𝜇 refers to the squared Sharpe ratio of the unconstrained mean-variance 
portfolio, 𝛽𝛽 = 𝜇𝜇′𝛴𝛴−1𝑖𝑖, 𝛾𝛾 = 𝑖𝑖′𝛴𝛴−1𝑖𝑖 , 𝜆𝜆 is the level of risk aversion, 𝜇𝜇 is a vector of returns, 𝛴𝛴  
is the covariance matrix, i is a vector of ones, and 𝑇𝑇 refers to the length of the estimation 
window. 
 
This model brings together two strands of the portfolio literature – the impact of estimation 
error and the role of forecasting while, by incorporating the budget constraint, it is possible to 
provide a fair comparison with the 1/N allocation rule. Equation (1) shows that expected 
utility is positively related to the Sharpe ratio of the unconstrained Markowitz portfolio and to 
forecasting level, 𝐼𝐼𝐼𝐼. Expected utility is also positively related to the length of the estimation 
window, 𝑇𝑇, since expected utility increases as estimation error decreases. The relationship 
between the number of assets, 𝑁𝑁, and expected utility is, however, more complex. Holding 
other inputs constant, the impact of increasing the number of assets on utility depends on the 
level of forecasting ability relative to the number of estimation periods. For example, if 
forecasting ability is sufficiently large relative to 𝑇𝑇, utility will increase with an increase in 
available assets. This helps reconcile the contradictory results of Grinold (1989), where the 
information ratio increases with number of assets, and DGU whose results suggest expected 
utility declines with additional assets. xii  
 
How much forecast ability is needed for mean-variance to generate superior returns to 1/N? 
We define the critical level of forecasting ability, 𝐼𝐼𝐼𝐼∗, as the level of forecasting ability where 
the expected utility of mean-variance is equal to the expected utility of 1/N. If 𝐼𝐼𝐼𝐼 < 𝐼𝐼𝐼𝐼∗, then 
the investor would be better off employing 1/N. xiii 

Setting equation (1) above to the expected utility of the 1/N investor, 𝑉𝑉1/N, and solving for 
𝐼𝐼𝐼𝐼, we arrive at the forecasting level required for mean-variance to outperform 1/N. This 
provides a useful decision rule for practitioners. If their forecasting ability exceeds 𝐼𝐼𝐼𝐼∗, then 
they should employ mean-variance, otherwise they are better off employing 1/N. 
 

 𝐼𝐼𝐼𝐼∗ = �2𝜆𝜆𝜆𝜆1/N − 𝛼𝛼 + 𝑁𝑁 − 1
𝑇𝑇 + (𝛽𝛽 − 𝜆𝜆)2

𝛾𝛾
𝑁𝑁 − 1

 

 

(2)  

 
It is worth noting that as the length of our data, T, increases, so IC* falls and, hence, we need 
less forecasting skill to beat 1/N. However, IC* is increasing in risk aversionxiv, which may 
push more conservative investors towards 1/N. From Model 1, we are also able to derive an 
expression for expected utility for a simplified case where volatility and pairwise correlation 
are constant across assets. This allows us to shed further light on what drives expected utility. 
Our Model 2 statesxv: 
 
Model 2   
The unconditional expected utility of the mean-variance investor under the assumptions of 
multiple forecasting variables, a, with a constant forecasting ability level, 𝐼𝐼𝐼𝐼, a constant 
pairwise correlation, 𝜌𝜌, a constant volatility, 𝜎𝜎, a cross-sectional dispersion of mean returns, 
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𝜎𝜎𝑢𝑢2, estimation error, and in the presence of a budget constraint, using the unconditional 
covariance matrix, is given by 
 

𝐸𝐸[𝑈𝑈] =
(𝑁𝑁 − 1) �𝜎𝜎𝑢𝑢

2

𝜎𝜎2 (1 − 𝜌𝜌) − 1
𝑇𝑇 + 𝐼𝐼𝐼𝐼2� + 𝑂𝑂(1)

2𝜆𝜆
 

(3)  

This result shows that expected utility falls as individual asset volatility and the correlation 
between assets increases. However, importantly, as the cross-sectional dispersion of expected 
returns increases, so too does utility. This is consistent with the empirical results of Petajisto 
(2013).  Investors using a strategy based on a portfolio optimiser benefit from heterogeneity 
in returns as measured by cross-sectional mean dispersion (𝜎𝜎𝑢𝑢2). This, then, is a key variable 
for active managers as it provides a measure of investment opportunity.   
 

3.1 Applying the Models 
 
We now use our Model 1 to investigate the expected utility of an investor using a mean 
variance approach, with some defined forecasting ability, and in the presence of estimation 
error and a budget constraint. 
 
We compare our results directly with those of DGU’s 2009 study, by using the same data sets 
with the sole exception that we did not have access to their ten S&P sectors. We anticipate 
that the results would be very similar for the ten Fama-French industries that we do include. 
When we refer to DGU in this section, we are referring to their analytic model of utility and 
not to their simulation and rolling portfolio rebalancing work which we discuss in sections 4 
and 5. We show that for most plausible assumptions, mean variance allocation outperforms 
the passive 1/N rule.   
 
The International data set includes eight developed market MSCI indices and the MSCI 
World index. The Industries data set includes ten US value-weighted industry portfolios. 
The MKT/SMB/HML data set includes the market, size, and book-to-market long/short factor 
portfolios. The ‘FF-1’ data set includes the 20 portfolios formed by the intersection of the 
Fama-French size portfolios with the book-to-market portfolios, and the market portfolio, 
MKT. The FF-3 data set augments the FF-1 data set with the size, SMB, and book-to-market, 
HML, factor portfolios. The FF-4 data set augments FF-3 with the momentum 
factor, UMD. We use the same inception points as in DGU 
 
Table 1 shows that mean-variance generates higher utility than 1/N even if forecasting ability 
is zero for every single data set. These results follow DGU in using truncated data sets for the 
majority of the tests (omitting almost 40 years of data prior to 1963). Adding these data 
expands the estimation period and makes the conclusion still more decisive. Our results 
pertain to a risk aversion of 5. However, our conclusions are robust to different choices. 
 

<Table 1 about here> 
 
We have attempted to reconcile these results with those of DGU. Their analytical approach 
requires estimates of the squared Sharpe ratios of the 1/N and mean variance portfolios. 
These estimates are taken from their existing datasets which have between three and 24 
assets. However, as they allow the portfolios to grow to up to 100, they leave these estimates 
constant; the available set of assets has greatly expanded while the distribution of returns 
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remains unchanged. In practice, were we to add more countries or use more granular 
definitions of sectors, the Sharpe ratios of the mean-variance and 1/N portfolios would surely 
change.  
 
A more natural approach would be to use the actual number of assets, the available estimation 
window, and the observed Sharpe ratios for different investment problems. As Table 2 shows, 
with such a revised approach, use of the DGU model now shows mean-variance 
outperforming 1/N whatever the assumption about investor knowledge. The DGU result, 
then, seems to relate to the specific way they have applied their model. 
 

<Table 2 about here> 
 
Table 3 sets out means, correlations, cross-sectional dispersion, and unconstrained Sharpe 
ratios for value weighted industry portfolios of increasing granularity, drawn from Ken 
French data (with observations running from 1926 to 2013). As the number of industries 
included increases, from five to forty-eight, the mean pairwise correlation falls by 28%, from 
0.80 to 0.58 and the cross-sectional dispersion doubles. This result is intuitive (as granularity 
increases, idiosyncratic differences become more importantxvi) and casts serious doubt on the 
validity of assuming a constant multivariate distribution of returns as asset numbers increase. 
These lower correlations and higher cross-sectional dispersions drive an increase in the mean-
variance expected Sharpe ratio from 0.16 to 0.37 and, hence, increase the likelihood of mean 
variance outperforming 1/N. As shown in Table 3, the DGU model indicates that mean-
variance will outperform 1/N in all cases, even though it does not allow for any forecasting 
ability. 
 

<Table 3 about here> 
 
We acknowledge a limitation of our analytical approach in that, unlike DGU, we ignore the 
effect of estimation error in the covariance matrix. In theory, however, we can increase the 
sampling frequency of covariance estimator to reduce estimation error to any arbitrary level. 
Cochran’s (1934) theorem suggests that, under normality, the sample variance based on T 
observations follows a scaled chi-squared distribution and the standard error of the sample 
error tends asymptotically to zero. Empirical support for this has been found in equity 
markets (Andersen, Bollerslev, Diebold and Ebens, 2001).  
 
The principle that high-frequency data can be used to eliminate estimation error in the 
covariance matrix is limited in practice due to microstructure issues, thin trading, and 
departures from normality, which all place a limit on precision (Hansen and Lunde, 2006). As 
a result, lower frequency data in conjunction with factor models tends to be used to estimate 
the covariance matrix for investment problems involving large numbers of assets.  
 

4. Mean Variance Performance: A Simulation Approach 
 
In this section, we compare the expected performance of mean-variance and 1/N in the 
presence of forecasting ability using simulation. Simulation allows us to consider cases where 
closed form solutions for expected utility are not readily available. We relax the assumption 
that estimation error in the covariance matrix can be eliminated and employ the single-index 
model of Sharpe (1964) consistent with Treynor and Black (1973), and Kane et al. (2010). 
We also examine the optimal weight relation used in the empirical work of DGU to better 
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understand the poor performance of the mean-variance approach documented by these 
authors, together with the Treynor-Black and minimum-variance portfolios.  
 
We replicate Kane et al.’s research design, simulating the activity of a hypothetical 
investment manager. Under this framework, the manager employs N security analysts, each 
assigned to a single stock. Stock selection problems typically involve higher dimensions, 
shorter data histories, and lower cross-sectional dispersion than asset allocation problems due 
to the dominant equity market factor. For these reasons, the stock selection problem should 
provide a more rigorous test of the benefits of the mean-variance approach. 
 
The simulation is set up as follows. We generate 180 monthly market returns with a monthly 
excess return of 0.71% and a standard deviation of 4.33%. We randomly generate betas, 𝛽𝛽𝑖𝑖, 
for the 𝑁𝑁 analysed stocks from a normal distribution with a mean of one and a standard 
deviation of 0.3. We generate 180 abnormal returns, 𝑧𝑧𝑖𝑖,𝑡𝑡, for each stock with a mean of zero 
and a cross-sectional variance of 𝜎𝜎𝑧𝑧,𝑖𝑖

2 , where 𝜎𝜎𝑧𝑧,𝑖𝑖 is sampled from a lognormal cross-sectional 
distribution with 𝜇𝜇=1.98, 𝜎𝜎=0.36.  
Forecasts, 𝑧𝑧𝑖𝑖

𝑓𝑓, of the abnormal returns are generated using: 
 

𝑧𝑧𝑖𝑖
𝑓𝑓 = 𝑟𝑟𝑖𝑖,0 + 𝑟𝑟𝑖𝑖,1𝑧𝑧𝑖𝑖 + 𝑣𝑣𝑖𝑖 

 
where 𝑣𝑣𝑖𝑖 is independent of 𝑧𝑧𝑖𝑖 and is normally distributed with a mean of zero and a variance 
𝜎𝜎𝑣𝑣,𝑖𝑖
2 , The variance, 𝜎𝜎𝑣𝑣,𝑖𝑖

2 , is a function of the precision of the ith forecaster. It is assumed that 
𝑟𝑟𝑖𝑖,0=0 and 𝑟𝑟𝑖𝑖,0=1; however these parameters are unknown to the investment manager and 
must be estimated by regression. The level of error variance is set to give the desired level of 
forecasting ability. 

𝜎𝜎𝑣𝑣,𝑖𝑖 = ��
�𝜎𝜎𝑧𝑧,𝑖𝑖

2 (1 − 𝑅𝑅𝑖𝑖2)�
𝑅𝑅𝑖𝑖2

� (4)  

 
We consider two skill levels: almost zero skill (IC=0.001), and modest skill (IC =0.07).  We 
consider investment universe sizes of 10, 100 and 500xvii. 
 
At the end of the 60th month, our investment manager uses the previous 60 months of data to 
calculate the market mean return and volatility, stock betas, realised abnormal returns, and 
expected abnormal returns. With these estimates the manager computes the portfolio weights 
for the mean-variance investor (where we assume a budget-constrained investor with asset 
weights constrained to sum to one); Treynor-Black weights as in Kane et al. which are a 
constrained variant of the original Treynor-Black modelxviii; DGU’s approach to determining 
optimal weighting for a mean-variance investor; minimum-variance; and 1/N. We then shift 
the estimation window forward one month at a time, repeating the exercise until we have 120 
months of out-of-sample performance for each model. The process is then repeated 1000 
times for each level of forecasting ability and for each universe size, 𝑁𝑁, enabling us to 
evaluate the statistical significance of the differences in relative performance 
 
We compute the average mean return, standard deviation, Sharpe ratio and 𝑀𝑀2 across 
simulations. 𝑀𝑀2converts the Sharpe ratio to a measure of risk-adjusted return premium to the 
market, as proposed by Modigliani and Modigliani (1997)xix. 
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4.1 Simulation Results 
 
The results presented in this section make a strong case that mean variance performs better 
than 1/N for the stock selection problems where there is modest forecast ability.  For 
consistency with prior research, we primarily focus on realised Sharpe ratios as a measure of 
risk-adjusted return. Table 4, panel A presents the results for an investor with almost zero 
forecasting ability. 1/N delivers a higher Sharpe ratio than mean-variance whatever the size 
of the investment universe – a difference statistically significant at the 99% level in all cases. 
The 1/N rule also outperforms the other allocation models. Consistent, then, with the 
conclusions of DGU, the findings imply that, in the absence of any forecasting ability, 
investors are best off adopting the 1/N investment strategy.  
 
The DGU mean-variance portfolios tend to perform poorly. This appears to relate to extreme 
weightings as noted above and is likely to result from the process by which the authors force 
the asset weights to sum to unityxx. Indeed, in DGU, the authors note that their mean-variance 
weight in the International data set ranges from -148195% to +116828%. This may suggest 
that the empirical results of DGU could be driven by their portfolio construction method, as 
also suggested by Kirby and Ostdiek (2012). 

 
<Table 4 about here> 

 
We also examined the relationship between Sharpe ratio and the size of the asset universe for 
the different strategies. For 1/N, the Sharpe ratio increases with N but plateaus quickly as 
diversification benefits are realised. While Treynor-Black and minimum variance portfolios 
also show improving Sharpe ratios, 1/N retains superior risk-adjusted performance. For 
mean-variance, Sharpe ratio declines with N. Consistent with the analytic model, then, for 
low levels of forecasting ability, gains from forecasting are offset by increases in estimation 
error and, in the absence of skill, irrespective of universe size, investors are better off 
employing the passive investment strategy.  
 
We now consider an investor with modest forecasting abilities, equating to an information 
coefficient of 0.07 (Table 4 Panel B). Our mean-variance investor now performs at least as 
well as 1/N for every universe size and level of risk aversion. The difference in Sharpe ratio 
is statistically significant in all save one case. Now, consistent with our analytical model, the 
Sharpe ratios of mean-variance increase with the size of our investment universe. Even these 
very low levels of forecasting ability are sufficient to overcome the additional estimation 
error induced by increasing the size of the universe. With 500 assets, the mean-variance 
Sharpe ratios are more than five times larger than those of 1/N. The M2 of mean-variance 
portfolios are very high, in excess of 2.5% per month. In context, Malkiel (2013) reports 
annual mutual fund fees averaging 0.9%.  
 
Our results cast doubt on DGU’s conclusion that mean-variance is unworkable in higher 
dimensions. Grinold and Kahn (1999) develop a simple binary model that relates the 
information coefficient to the number of forecasts that are directionally correct (the “hit 
rate”). Our IC of 0.07 equates to a hit rate of just 53.5% a month, or an R2 of 0.5%. It is 
remarkable that such modest levels of forecasting ability can generate meaningful gains in 
utility. The uplift in utility is, tangible and it is a benefit that increases with the size of the 
asset universe.  
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To conclude this section, we revisit the impact of estimation error in the covariance matrix. 
We model two investors: one knows the true population covariance matrix, the other must 
estimate it using a single index method. Table 5 compares results where the investor 
estimating the matrix has medium risk aversion and modest forecasting ability (IC=0.07). As 
can readily be seen, the Sharpe ratios, M2 and certainty equivalents are very similar 
irrespective of whether the true covariance matrix is known. By implication the adverse 
effects of estimation error are largely offset by use of a reasonable factor model. This 
provides further support for our analytic results where the covariance matrix was assumed to 
be known. 
 
 <Table 5 about here> 
 
The analytic and summary results presented above suggest that substantial gains are available 
to an investor by using a mean-variance approach provided that the investor has some modest 
forecasting ability. However, these finding rest on some simplifying assumptions that may be 
violated in practice. We have assumed that returns are independently normally distributed, 
that forecasts are independent across stocks and that there are zero trading costs. Moreover, in 
the simulation results our forecasts are generated using a single index model which is aligned 
to our data generation process. While these are valuable simplifications for modelling 
purposes, they may introduce a bias that favours mean-variance. In the next section, we relax 
those assumptions by moving to an empirical setting where none of those properties can be 
assumed to hold. If mean-variance still generates superior performance, this will provide still 
stronger benefits of the approach where investors do possess some forecasting ability.  
 

5. Out of Sample Empirical Evaluation 
 
In this section, we evaluate the performance of mean-variance in an out-of-sample portfolio 
rebalancing framework that is intended to replicate the problems faced by institutional fund 
managers. The most comprehensive work in this area is by DGU (2009) who evaluate twelve 
extensions to mean-variance designed to reduce estimation error for seven data sets. In five of 
those sets, they find that 1/N generates higher Sharpe ratios and certainty equivalents than the 
mean variance approach. Given the data span employed, these results cannot be dismissed 
lightly: DGU argue that some 6,000 months of history would be required for a portfolio of 50 
stocks to outperform 1/N. However, given our findings in the previous section, it may be that 
this result comes from the particular portfolio allocation procedure used. In an international 
asset allocation context, it has already been shown that mean-variance outperforms passive 
benchmarks if we condition our forecasts on fundamental variables (Solnik, 1993). We look 
to extend this work by considering large universes with some 1500 to 3000 stocks to evaluate 
per month, with covariance matrix estimation windows of as little as 60 months, where 
estimation error issues are most acute, to reproduce the type of practical problems facing, for 
example, a small cap manager with a Russell 2000 benchmark and securities with short 
trading histories. We use 25 years of data across three regions: Asia ex-Japan, Europe and the 
US.  
 
In our set up, a hypothetical manager makes return forecasts at month end, estimates the 
covariance matrix using a single index model and derives optimal portfolio weights, 
rebalancing her portfolio. We acknowledge that superior estimates of risk can be attained 
using factor models, such as the Fama and French (1993) 3-Factor model (rarely used by 
practitioners), macroeconomic risk models, or statistical factor models. Fundamental factor 
models such as those developed by BARRA and Axioma are routinely used by practitioners 
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to reduce estimation error. The results that we present for mean-variance based on one factor 
should therefore be conservative. We note also that our models involve calculating a matrix 
inverse and that the work of Fan et al. (2008) implies that, relative to a k factor model, we 
incur large losses in accuracy in this context. Rather than choosing a k factor model amongst 
many possible, we chose the simplest and most parsimonious model to demonstrate the 
impact of forecast ability.  However, a referee has pointed out to us that our single factor 
specification may be helping our improved performance by reducing estimation error in the 
covariance matrix; we acknowledge this possibility. 
 
While in previous sections we endowed the investor with a given level of forecasting ability, 
here our investor develops forecasts using a range of fundamental and price-based variables 
that had been documented in literature prior to the out-of-sample tests. Given our prior results 
and its prominence in the finance industry, as an active strategy we focus on mean-variance, 
comparing it to 1/N and a minimum variance strategy.  
 
We estimate univariate models by regressing the local currency excess returns against a range 
of variables that have been suggested in the literature. In this, we follow Solnik (1993) who 
suggests this approach is equivalent to the currency-hedged risk premium with interest-rate 
parity. We estimate separate models for the three regions, using an expanding window of data 
with an initial size of 120 months (1990-1999), making out-of-sample prediction more 
difficult. At the end of each month, we add a further month of data and re-estimate the 
regression coefficients. As in Moskowitz et al. (2012), data are stacked for all stocks and 
dates and a pooled panel regression is run in each region for each forecasting variable. The 
forecasting variables are Winsorised at the 5% and 95% level to mitigate the effect of 
erroneous data:  
  

𝑟𝑟𝑖𝑖,𝑡𝑡,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎𝑇𝑇+1 + 𝑏𝑏𝑇𝑇+1𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡 (8) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the excess stock return in local currency, and 𝑋𝑋𝑖𝑖,𝑡𝑡 is the forecasting variable. 
We then use the coefficient from (8) to generate a one month ahead forecast, 𝑟𝑟𝑖𝑖,𝑇𝑇+1

𝑓𝑓 , for each 
stock in the investment universe. We follow Welch and Goyal (2008) in providing in- and 
out-of-sample correlations of our forecasting models. We estimate stock betas and 
idiosyncratic variances using the trailing five years of daily local excess returns and use the 
FTSE World Europe, FTSE World Asia-Pacific ex Japan and FTSE USA as our benchmark 
proxies.  
 
Our dataset begins on 1/1990 and ends 12/2014. Our tests use the constituents of the S&P 
Broad Market indices from the three regions and include all publically listed equities with 
float-adjusted market values in excess of $100million, and are free from survivorship bias. 
Table 6 shows summary statistics from the out-of-sample test period from 1/2000 for all 
stocks with at least 120 months of history. Returns are in local currency and include 
dividends; the values are consistent with prior literature.   
 

<Table 6 about here> 
 

We use seven individual forecasting variables, drawn from prior literature and conventionally 
definedxxi. Price Momentum (PM) is defined as the twelve month price changes ending one 
period before estimation (see Moskowitz et al., 2012); Earnings Momentum is the (EM) is 
defined as the change in IBES consensus forecast earnings per share over the last three 
months, divided by the current price; Price Reversal (PR) is captured measuring the price 



12 
 

change one month previous; dividend yield (DY), earnings yield (EY) and book to market 
ratio (BM) are defined conventionally; finally we define return on equity (ROE) as the last 
reported earnings per share over the book value per share. All Factset Fundamentals data are 
lagged by three months to eliminate any potential look ahead bias.  
 
For portfolio selection, the objective function seeks to maximise the expected return less risk 
aversion, multiplied by expected risk and trading costs with weights constrained:  
 

 max
w𝑡𝑡

Up(𝑤𝑤𝑡𝑡)     𝑤𝑤𝑡𝑡′𝑟𝑟𝑇𝑇+1
𝑓𝑓 −  𝜆𝜆

2
𝑤𝑤𝑡𝑡′∑�𝑇𝑇+1𝑤𝑤𝑡𝑡 − �𝑤𝑤𝑡𝑡−𝑤𝑤𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝�′𝑇𝑇𝑇𝑇     (9)

  
subject to 𝑤𝑤𝑡𝑡′𝑖𝑖 = 1; 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑤𝑤𝑡𝑡   ≤ 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 

 
where 𝑤𝑤𝑡𝑡 is the vector of optimal weights, 𝑟𝑟𝑇𝑇+1

𝑓𝑓 is a vector of return forecasts, 𝜆𝜆 is the 
coefficient of risk aversion, ∑�𝑇𝑇+1 is the estimated single-index covariance matrix, 𝑤𝑤𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝 are 
the pre-rebalanced weights, 𝑇𝑇𝑇𝑇 is a vector of trading costs, and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 are the 
minimum and maximum weight vectors.  In fuller results, available from the authors, we use 
three levels of risk aversion to give a range of ex post portfolio variances. Here, we report the 
mid-range risk aversion. We use a 0.5% transaction cost assumption across all stocks both as 
an optimisation input and to compute net returns – a choice consistent with DGU, Balduzzi 
and Lynch (1999) and Kirby and Ostdiek (2012). Since we are using local currency excess 
returns there are no hedging costs to consider. To ensure optimal portfolios are feasible in 
practice we constrain minimum and maximum weights to:  
 

 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑡𝑡 = −𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

;           𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 
 
where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 is the average daily volume of stock 𝑖𝑖 over the previous thirty trading days at 
month 𝑡𝑡. We use a fund size of $500 million at each point in time. This ensures that the 
positions are feasible for a realistic institutional portfolio. Almost all of the existing literature 
does not account for market liquidity. We feel that this constraint is important to ensure that 
our results are achievable in practice. 

We use a number of metrics to evaluate portfolio performance. We calculate net of trading 
costs mean excess return; the Sharpe ratio, M2 and certainty equivalent. To test whether 
differences between the mean variance and 1/N Sharpe ratios are statistically significant, we 
use the Jobson-Korkie (1981) t-statistic with Memmel’s (2003) correction and, similarly, use 
Greene (2002) to test for significant difference in certainty equivalentxxii.  

Table 7 provides coefficient estimates, t-statistics and in- and out-of-sample correlations for 
the seven forecasting models for the three regions. With the exception of the book-to-market 
ratio in Europe and the reversal variable in Asia, the signs of the coefficients are consistent 
with literature and significant. The out-of-sample correlations between predicted and 
observed values are positive for 16 of the 21 cases. However, it is striking how small the 
correlations are: if mean variance outperforms 1/N it will indicate that only a very modest 
level of forecasting skill is required. The out-of-sample R statistics are typically higher in 
Europe and Asia than in the US, suggesting that the latter is more informationally efficient.  
 

<Table 7 about here> 
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We show the results for a medium level of risk aversion for the three regions in Table 8. 
Panel A shows results for the Asia ex Japan region. The Sharpe ratios are statistically larger 
for mean-variance for all bar the book-to-market ratio model, as are the M2 and certainty 
equivalent results. These results hold for other levels of risk aversion. The average Sharpe 
ratio is substantially higher than that of 1/N and the standard deviation is lower, despite the 
higher gross exposure. We note also that the minimum-variance portfolio (with no forecast 
involved) outperforms 1/N.  
 

<Table 8 about here> 
 
These findings are echoed in Panel B, showing results for the European region, with 
significantly larger Sharpe ratios for all models (and all levels of risk aversion). Typically, the 
Sharpe ratios are three to four times larger than that for 1/N and the other metrics confirm the 
outperformance of the forecast-based MV strategies. As before, the 1/N strategy has a higher 
variance than any of the model-based mean variance approaches.  
 
Panel C shows the results for the US models. While the results are similar in form, with the 
MV models exhibiting higher Sharpe ratios (on average double that of 1/N), there are few 
statistically significant differences.  Closer inspection reveals that this is driven in part by the 
low correlation between the MV and 1/N strategies, which leads to a higher standard error for 
the difference in Sharpe ratios. Given that the 1/N strategy maps to the market portfolio, the 
low correlation provides diversification benefits for the mean variance strategies. As noted 
above, the out-of-sample correlations of the US model forecasts with observed returns are 
substantially lower than for the European and Asian models and, consistent with our analytic 
and simulation results, lower levels of forecasting ability translate into lower levels of utility. 
Nevertheless, across all seven models and for three different levels of risk aversion, mean 
variance delivers higher Sharpe ratios in 18 of 21 cases (with only the price momentum 
model delivering a lower figure). These results, confirming the analytic and simulation 
findings, stand in marked contrast to the DGU contention of the superiority of 1/N strategies 
and point to substantial benefits from a forecast-driven MV approach.  
 

6. Conclusions 
 
Much recent finance literature has contended that equal weighted investment strategies are 
preferable to mean-variance optimisation. The basis for this conclusion seems to rest on two 
strong assumptions: first, that the investor has no forecasting ability; and, second, that 
estimation error in the covariance matrix is irreducible. Allowing for forecasting ability is 
consistent with Markowitz’s (1952, 1959) original formulation of portfolio theory and the 
extensive literature on capital market anomalies. 
 
Our analytic results present a compelling case for the mean-variance portfolio approach, and 
stand in contrast to De Miguel et al. (2009) who argue that vast amounts of data are required 
for mean-variance to outperform 1/N. We show that only a modicum of forecasting ability is 
required for mean-variance to outperform 1/N: in many of the investment problems we 
consider, mean-variance is favoured even in the absence of forecasting ability. We also show 
that applying the DGU model in the most basic way produces results that favour mean-
variance. 
 
In our simulation study we show for the stock selection problem, in the absence of 
forecasting ability, investor welfare decreases as the size of the investment universe 
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increases, and 1/N should be preferred to mean-variance. With only a modest level of 
forecasting ability, this conclusion is reversed, investor welfare increases as the size of the 
investment universe grows and mean-variance tends to outperform 1/N. 
 
Our empirical findings support the analytic and simulation based results. Even with short 
covariance matrix estimation windows of 60 months and using simple univariate forecasting 
models, mean-variance outperforms 1/N across almost all models and regions with in many 
instances the superior performance being statistically significant. 
 
Overall, our results present a much more compelling case for mean-variance optimised 
portfolios. DeMiguel et al. (2009) conclude that there are ‘many miles to go’ before the 
promised benefits of optimal portfolio choice can be realised out of sample. Our findings 
suggest that we may have already arrived.  
.  
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Table 1 - Utility of mean-variance versus 1/N using Model 1 

Table 1 indicates whether the expected utility of the mean-variance investor exceeds the expected utility of the 
1/N investor for each data set using Model 1. The estimation window, T, refers to the number of months used to 
estimate the expected return vector. A tick mark signifies that the expected utility of the mean-variance 
approach exceeds the expected utility of 1/N using Model 1, a cross mark signifies the reverse. 

 
 

 

Table 2 - Utility of mean-variance and 1/N using Proposition 1 of DeMiguel et al., 2009 

Table 2 indicates whether the expected utility of the mean-variance investor exceeds the expected utility of the 
1/N investor for each data set using Model 1 (DeMiguel et al., 2009). 𝑺𝑺𝑺𝑺𝟏𝟏 𝑵𝑵⁄  and 𝑺𝑺𝑺𝑺𝒎𝒎𝒎𝒎 refer to the in-sample 
monthly Sharpe ratios of the 1/N and mean-variance portfolios. The estimation window, T, refers to the number 
of months used to estimate the expected return vector. A tick mark signifies that the expected utility of the 
mean-variance approach exceeds the expected utility of 1/N using the three conditions of DeMiguel et al. 
(2009). 

 
 

 

  

  Internat. Industry MKT/SMB/HML FF-1- 
Factor 

FF-4- 
Factor 

Assets, N 9 11 3 21 24 
Estimation window, T  379 497 497 497 497 
Information coefficient, IC 

     𝐼𝐼𝐼𝐼 = 0      
𝐼𝐼𝐼𝐼 = 0.025      
𝐼𝐼𝐼𝐼 = 0.05      
𝐼𝐼𝐼𝐼 = 0.075      
𝐼𝐼𝐼𝐼 = 0.10      

  

S&P 
Sectors Internat Industry 

MKT/ 
SMB/ 
HML 

FF-1-
factor 

FF-4-
factor 

Assets, N 11 9 11 3 21 24 
Estimation Window, T 276 379 497 497 497 497 
𝑆𝑆𝑆𝑆1 𝑁𝑁⁄  0.19 0.13 0.14 0.22 0.16 0.18 
𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 0.39 0.21 0.21 0.29 0.51 0.54 
Conditions       
μ unknown, Σ is known       
μ known, Σ is unknown       
μ unknown, Σ is unknown       
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Table 3 - Expected utility of mean-variance versus 1/N using Proposition 1 of DeMiguel et al., 2009 

Table 3 indicates whether the expected utility of the mean-variance investor exceeds the expected utility of the 
1/N investor for each data set using Model 1 (DeMiguel et al., 2009). 𝝈𝝈𝒙𝒙� refers to the cross-sectional dispersion 
in mean returns. 𝝆𝝆�𝒊𝒊≠𝒋𝒋 refers to the average pairwise correlation. 𝑺𝑺𝟏𝟏 𝑵𝑵⁄  and 𝑺𝑺𝒎𝒎𝒎𝒎 refer to the in-sample monthly 
Sharpe ratios of the 1/N and mean-variance portfolios. The estimation window, T, refers to the number of 
months used to estimate the expected return vector and/or covariance matrix. A tick mark signifies that the 
expected utility of the mean-variance approach exceeds the expected utility of 1/N using the three conditions of 
DeMiguel et al. (2009). 

 
 

5 
Industries 

10 
Industries 

30 
Industries 

48 
Industries 

Assets, N 5 10 30 48 
Estimation Window, T 1050 1050 1050 1050 
𝜎𝜎𝑥̅𝑥 0.07 0.09 0.12 0.14 
𝜌̅𝜌𝑖𝑖≠𝑗𝑗 0.80 0.72 0.64 0.58 
𝑆𝑆1 𝑁𝑁⁄  0.13 0.14 0.13 0.15 
𝑆𝑆𝑚𝑚𝑚𝑚 0.16 0.19 0.24 0.37 
Conditions     
μ unknown, Σ is known     
μ known, Σ is unknown     
μ unknown, Σ is unknown     
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Table 4: Simulation Summary 
 
Table 4 provides the average mean, standard deviation, Sharpe ratio and M2 derived through simulation using 
the algorithm of Kane et al. (2010), over 1000 simulations of 120 months each. Mean-variance refers to the 
mean-variance weights with a budget constraint of 100%, Treynor-Black† refers to the Treynor-Black model 
with a margin requirement as in Kane et al. (2010), DGU (2009) refers to the optimal weight relation of 
DeMiguel et al. (2009), and 1/N refers to the equally weighted portfolio. * (**) indicates the metric is 
statistically significantly different at the 95% (99%) level. 

Panel A: Almost Zero Forecasting Ability 
Results for an investor with almost zero forecasting ability (R2=0.000001, IC=0.001) 

  Model Mean 
Standard-
deviation 

Sharpe 
ratio M2 

N=10 

Mean-variance: λ=20 0.56** 4.91** 0.11** -0.25** 
Mean-variance: λ=100 0.54** 4.47** 0.12** -0.22** 
Treynor-Black† 0.59** 10.64** 0.06** -0.46** 
DGU (2009) 8.64     4.06E2** 0.01** -0.67** 
Minimum-variance 0.53** 4.45** 0.12** -0.22** 
1/N 0.70     5.05     0.14     -0.14     

N=100 

Mean-variance: λ=20 0.47** 7.64** 0.06** -0.48** 
Mean-variance: λ=100 0.32** 2.9** 0.11** -0.27** 
Treynor-Black† 0.67*   6.79** 0.10** -0.31** 
DGU (2009) -41.47*   9.69E2** 0.01** -0.68** 
Minimum-variance 0.28** 2.43** 0.11** -0.24** 
1/N 0.71     4.4     0.16     -0.04     

N=500 

Mean-variance: λ=20 0.88** 16.46** 0.05** -0.51** 
Mean-variance: λ=100 0.35** 3.83** 0.09** -0.35** 
Treynor-Black† 0.68** 4.93** 0.14** -0.14** 
DGU (2009) -14.08*   4.94E2** 0.02** -0.65** 
Minimum-variance 0.22** 1.61** 0.14** -0.14** 
1/N 0.71     4.34     0.16     -0.03     

Panel B: Modest Forecasting Ability 
Results for an investor with medium forecasting ability (R2=0.005, IC=0.071) 

  Model Mean 
Standard-
deviation Sharpe ratio M2 

N=10 

Mean-variance: λ=20 0.85** 5.25** 0.16** -0.04** 
Mean-variance: λ=100 0.6** 4.52** 0.14     -0.16     
Treynor-Black† 1.25** 10.81** 0.12** -0.21** 
DGU (2009) 32.27** 6.06E2** 0.05** -0.50** 
Minimum-variance 0.54** 4.49** 0.12** -0.21** 
1/N 0.70     5.05     0.14     -0.14     

N=100 

Mean-variance: λ=20 3.83** 9.69** 0.39** 0.95** 
Mean-variance: λ=100 1.00** 3.17** 0.32** 0.63** 
Treynor-Black† 1.56** 6.35** 0.25** 0.33** 
DGU (2009) 63.9** 8.55E2** 0.14** -0.11** 
Minimum-variance 0.30** 2.45** 0.12** -0.21** 
1/N 0.71     4.4     0.16     -0.04     

N=500 

Mean-variance: λ=20 17.98** 21.53** 0.84** 2.84** 
Mean-variance: λ=100 3.78** 4.78** 0.79** 2.65** 
Treynor-Black† 1.86** 4.92** 0.38** 0.9** 
DGU (2009) 1.25E2** 1.14E3** 0.28** 0.45** 
Minimum-variance 0.23** 1.62** 0.14** -0.13** 
1/N 0.71       4.34     0.16     -0.03     
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Table 5 - Simulation summary, covariance matrix is unknown or known 

Table 5 provides the average mean, standard deviation, Sharpe ratio, M2, certainty equivalent, and maximum 
gross exposure, derived through simulation using the algorithm of Kane et al. (2010), for an investor with 
medium forecasting ability (R2=0.005, IC=0.071), over 1000 simulations of 120 months each, using a λ of 60. . 
Rows marked ‘Unknown’ pertain to cases where the covariance is estimated using the single-index model with 
an estimation window of 60 months. Rows marked ‘Known’ pertain to cases where the investor knows the true 
population covariance matrix. 

  
Covariance  
matrix Mean 

Standard 
deviation 

Sharpe 
ratio M2 

Certainty 
equivalent 

Maximum 
gross 

exposure 

N=10 Unknown 0.64 4.58 0.14 -0.13 0.11 1.48 
Known 0.63 4.38 0.14 -0.12 0.14 1.39 

N=50 Unknown 0.92 3.77 0.24 0.31 0.56 3.04 
Known 0.79 3.36 0.23 0.27 0.50 3.03 

N=100 Unknown 1.48 4.06 0.36 0.82 1.06 4.61 
Known 1.29 3.56 0.36 0.82 0.97 4.61 

N=500 Unknown 6.15 7.51 0.82 2.77 4.73 16.81 
Known 5.61 6.58 0.86 2.92 4.52 16.68 
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Table 6 - Summary statistics: Stock returns 
 

Table 6 provides the mean, median, 5th
, and 95th percentile for the mean, standard deviation, skewness, kurtosis, 

minimum, and maximum of monthly stock returns in local currency for the period 1/2000 to 12/2014. 

Asia Mean Median 
5th 

Percentile 
95th 

Percentile 
Mean 1.0 1.0 -0.1 2.4 
Standard deviation 10.7 10.1 5.6 17.1 
Skewness 0.4 0.2 -0.6 1.9 
Kurtosis 7.1 5.1 3.0 15.5 
Minimum -33.4 -31.9 -55.3 -16.7 
Maximum 45.4 37.3 17.5 92.8 
Europe     
Mean 0.7 0.8 -0.7 1.8 
Standard deviation 10.2 9.7 5.8 16.4 
Skewness 0.2 0.1 -0.7 1.6 
Kurtosis 6.6 5.1 3.3 14.1 
Minimum -33.7 -31.8 -59.2 -16.3 
Maximum 42.5 35.8 17.4 90.1 
USA     
Mean 1.0 1.0 -0.2 2.2 
Standard deviation 12.4 11.3 6.1 21.9 
Skewness 0.5 0.2 -0.6 2.3 
Kurtosis 7.6 5.2 3.3 18.5 
Minimum -38.7 -36.7 -66.0 -18.2 
Maximum 56.2 43.9 19.7 136.8 
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Table 7 - Predictive regression summaries 
Table 7 provides the coefficient, bt+1, t-statistic, and in-sample and out-of-sample R for each variable. The in-
sample R is given by the final regression for the period 1/1990 to 12/2014. The out-of-sample R refers to the 
out-of-sample correlation of the forecasts with excess returns for the period 1/2000 to 12/2014. 

Asia ex-Japan DY EY BM PM EM Rev ROE 
Coefficient 0.43 0.37 0.00 0.45 0.55 0.01 0.51 
t-statistic 18.44 15.37 0.15 19.68 22.55 0.38 21.23 
% positive 100% 100% 27% 100% 100% 63% 100% 
R in-sample 0.020 0.023 0.019 0.021 0.031 0.013 0.004 
R out-of-sample 0.021 0.024 -0.022 0.024 0.030 -0.002 0.022 
Europe DY EY BM PM EM Rev ROE 
Coefficient 0.13 0.35 -0.04 0.47 0.47 -0.17 0.36 
t-statistic 10.35 26.07 -3.21 37.19 34.57 -13.88 28.42 
% positive 98% 100% 66% 100% 100% 0% 100% 
R in-sample 0.016 0.025 -0.008 0.033 0.028 -0.002 0.005 
R out-of-sample 0.017 0.028 -0.008 0.030 0.030 -0.005 0.023 
USA DY EY BM PM EM Rev ROE 
Coefficient 0.20 0.59 0.03 0.35 0.44 -0.23 0.53 
t-statistic 16.69 48.46 2.53 29.81 34.93 -19.72 44.03 
% positive 100% 100% 93% 100% 100% 0% 100% 
R in-sample 0.004 0.013 0.004 0.009 0.008 -0.012 0.004 
R out-of-sample 0.006 0.016 0.012 -0.005 0.004 0.010 0.010 
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Table 8: Mean Variance versus 1/N: Summary Performance Statistics 

Table 8 provides the out-of-sample monthly summary statistics for the mean-variance portfolios for the period 
1/2000 to 12/2014. * (**) denotes statistical significance at the 95% (99%) level. Further results are available in 
Appendices. For the forecast models, EY is earnings yield, DY is dividend yield, BM is book to market ratio, 
PM is price momentum, Rev is price reversal, EM is earnings momentum and ROE is return on equity. Results 
presented are for medium risk aversion (λ = 60) with further results available in appendices.  

 
            

 Panel A: Asia ex-Japan Region  

Model 
Gross 
Return 

Net 
Return 

Standard 
Deviation 

Sharpe 
Ratio M2 

Certainty 
equivalent 

EY 1.12 1.00 3.88 0.29* 0.50* 0.97* 
DY 1.16 1.03 4.04 0.29* 0.50* 1.00* 
BM 1.01 0.89 3.91 0.26 0.37 0.86* 
PM 1.16 1.02 4.09 0.28* 0.48* 0.99* 
Rev 1.06 0.94 3.91 0.27* 0.42* 0.91* 
EM 1.30 1.13 3.78 0.34** 0.74** 1.15** 
ROE 1.12 0.99 4.02 0.28* 0.46* 0.96* 
Min-var. 1.06 0.92 3.91 0.27* 0.43* 0.91* 
1/N 0.55 0.49 5.48 0.09 -0.30 0.25 
   
 Panel B: European Region     

Model 
Gross 
Return 

Net 
Return 

Standard 
Deviation 

Sharpe 
Ratio M2 

Certainty 
Equivalent 

EY 1.16 1.06 3.60 0.32** 0.64** 1.03** 
DY 0.91 0.84 3.31 0.27* 0.44* 0.8* 
BM 0.79 0.72 3.35 0.23 0.27* 0.67* 
PM 1.11 0.97 4.96 0.22 0.23 0.86 
Rev 0.93 0.86 3.44 0.27* 0.42* 0.81 
EM 1.51 1.33 4.18 0.36* 0.81* 1.34** 
ROE 1.00 0.92 3.39 0.30* 0.53* 0.89* 
Min-var. 0.9** 0.82** 3.33 0.27* 0.42* 0.79* 
1/N 0.41 0.36 5.32 0.07 -0.40 0.13 
 

 
 
  

   Panel C:    US Region   

Model 
Gross 
Return 

Net 
Return 

Standard 
Deviation 

Sharpe 
Ratio M2 

Certainty 
Equivalent 

EY 2.13 1.98 7.05 0.30 0.56 1.64 
DY 1.10 1.05 4.70 0.23 0.26 0.87 
BM 1.07 1.04 3.53 0.30 0.57 0.95* 
PM 0.43 0.24 8.88 0.05 -0.52 -0.36 
Rev 1.33 1.22 4.70 0.28 0.48 1.11 
EM 1.55 1.21 8.07 0.19 0.09 0.89 
ROE 1.62 1.49 7.11 0.23 0.24 1.11 
Min-var. 1.13 1.08 3.62 0.31 0.6 0.99* 
1/N 0.73 0.67 6.22 0.11 -0.23 0.34 
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What If We Can Forecast?  
Portfolio Optimisation, Estimation Error and Forecast Ability. 

 
 
 
 
Appendices: 
 
Appendix A: Analytic Proof of Model 1 
 
Appendix B: Model Parameters and Estimation Inputs 
 
  



25 
 

Appendix A: Analytic Proof of Model 1 
 
Assume we have forecasts 𝑎𝑎 (N x 1), of returns 𝑟𝑟𝑡𝑡+1 (N x 1), a mean vector, 𝜇𝜇 (N x 1), a covariance 
matrix, 𝛴𝛴 (N x N), and a covariance vector, 𝐶𝐶 (N x1), between forecast and realised returns. In 
common with other work in this area (Grinold, 1989), we treat forecasts 𝑎𝑎 as iid normally distributed 
variables with a mean of zero and a standard deviation of one. For mathematical convenience, we 
assume that the true covariance matrix is known. To determine the expression for expected utility, we 
substitute the conditional moments into this optimal weight relation, and then calculate the expected 
return and risk. Note that in the main text, we used 𝐼𝐼𝐼𝐼 to denote the information coefficient, while 
hereafter we use 𝑑𝑑 to avoid confusion with the multiplication of the identity matrix, 𝐼𝐼, and the 
covariance vector, 𝐶𝐶. 
 
Assuming constant forecasting ability, and given 𝑥̅𝑥, the historical sample mean of returns, the 
multivariate pdf is given by: 
 

 �
𝑟𝑟𝑡𝑡+1
𝑎𝑎
𝑥̅𝑥
�~𝑁𝑁 ��

𝜇𝜇
0
𝜇𝜇
� , �

𝛴𝛴 𝐶𝐶 0
𝐶𝐶 𝐼𝐼𝑁𝑁 0
0 0 𝛴𝛴 𝑇𝑇⁄

�  � (A1) 

The conditional moments of 𝑟𝑟𝑡𝑡+1 given 𝑎𝑎 and 𝑥̅𝑥 are given by 

 𝜇𝜇∗ = 𝑥̅𝑥 + 𝛴𝛴
1
2𝑑𝑑𝑑𝑑 (A2) 

 𝛴𝛴∗ = 𝛴𝛴 (A3) 

where we have replaced 𝜇𝜇 by 𝑥̅𝑥. 
 
It is typical in the literature to employ an approximation that is akin to the unconditional covariance 
and we follow this tradition here. 

The optimal mean-variance weights in the presence of a budget constraint with known parameters is 
given by 

𝜔𝜔 =
1
𝜆𝜆
𝛴𝛴−1𝜇𝜇 −

(𝛽𝛽 − 𝜆𝜆)
𝜆𝜆𝜆𝜆

𝛴𝛴−1ί (A4) 

where 𝛽𝛽 = 𝜇𝜇′𝛴𝛴−1𝑖𝑖, 𝛾𝛾 = 𝑖𝑖′𝛴𝛴−1𝑖𝑖 , and 𝜆𝜆 is the level of risk aversion. 
 

Proof: see Jorion (1985), p 267 and Ingersoll (1987), Chapter 4, Appendix A, p 68. 
 
To determine the joint impact of estimation error and forecasting ability on expected utility in the 
presence of a budget constraint, we substitute the conditional moments in (A2) and (A3) into the 
optimal weight relation as follows. 

𝑤𝑤 =
1
𝜆𝜆 �

𝛴𝛴−1 �𝑥̅𝑥 + 𝛴𝛴
1
2𝑑𝑑𝑑𝑑� −

�𝑥̅𝑥′𝛴𝛴−1ί + 𝑑𝑑𝑎𝑎′𝛴𝛴−
1
2𝑖𝑖 − 𝜆𝜆�

𝛾𝛾
𝛴𝛴−1ί� 

 
The expected return of the mean-variance portfolio conditional on 𝑎𝑎 and x� is then 
 

𝐸𝐸�𝑟𝑟𝑝𝑝|𝑎𝑎, 𝑥̅𝑥� =
1
𝜆𝜆 �

𝛴𝛴−1 �𝑥̅𝑥 + 𝛴𝛴
1
2𝑑𝑑𝑑𝑑� −

�𝑥̅𝑥′𝛴𝛴−1ί + 𝑑𝑑𝑎𝑎′𝛴𝛴−
1
2𝑖𝑖 − 𝜆𝜆�

𝛾𝛾
𝛴𝛴−1ί�

′

�𝜇𝜇 + 𝛴𝛴
1
2𝑑𝑑𝑑𝑑� 

 
In the above we use the historic mean if we are considering past values or the population mean if we 
are considering future values. Taking expectations over both conditioning variables, we have 
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𝐸𝐸�𝑟𝑟𝑝𝑝� =
1
𝜆𝜆
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(𝛼𝛼 + 𝑁𝑁𝑁𝑁2) −
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where 𝛼𝛼 = 𝜇𝜇′𝛴𝛴−1𝜇𝜇 refers to the squared Sharpe ratio of the unconstrained mean-variance portfolio 
  
Now 𝑡𝑡𝑡𝑡 �𝛴𝛴−

1
2𝑖𝑖𝑖𝑖′𝛴𝛴−

1
2� = 𝑡𝑡𝑡𝑡(𝑖𝑖′𝛴𝛴−1𝑖𝑖)                         

                                      = 𝑡𝑡𝑡𝑡(𝛾𝛾) = 𝛾𝛾 , so 
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𝜆𝜆
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The expected risk of the portfolio conditional on 𝑎𝑎 is: 
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Taking expectations over both conditioning variables, we have 
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where 𝑇𝑇 refers to the length of the estimation window. 
 
Now  𝑡𝑡𝑡𝑡(𝑖𝑖′𝛴𝛴−1𝑖𝑖) and 𝑡𝑡𝑡𝑡 �𝛴𝛴−

1
2𝑖𝑖𝑖𝑖′𝛴𝛴−

1
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Hence we have: 
 
Model 1 

𝐸𝐸[𝑈𝑈] =
𝛼𝛼+(𝑁𝑁−1)�𝑑𝑑2−1𝑇𝑇�−

(𝛽𝛽−𝜆𝜆)2

𝛾𝛾

2𝜆𝜆
      

 
 
For the 1/N investor, the weights are given as follows 
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𝜔𝜔 =  
1
𝑁𝑁
ί  

where 𝑖𝑖 is a vector of ones. 
 
Expected utility for this case is then given by 

 𝑉𝑉1/𝑁𝑁 = 𝐸𝐸 �𝑈𝑈
w=1𝑁𝑁ί 

� =
ί′𝜇𝜇
𝑁𝑁
−

𝜆𝜆
2𝑁𝑁2 ί’𝛴𝛴ί (A5) 

which is non-stochastic. 
 
We can now state the following decision rule. The mean-variance approach should be preferred to 
1/N, if 

𝛼𝛼 + (𝑁𝑁 − 1) �𝐼𝐼𝐼𝐼2 − 1
𝑇𝑇� −

(𝛽𝛽 − 𝜆𝜆)2
𝛾𝛾

2𝜆𝜆
− 𝑉𝑉1/𝑁𝑁 > 0 (A6) 

 
 
We can now solve for the critical level of forecasting ability required to outperform 1/N. 
 
Corollary 1 
The critical forecasting ability, 𝐼𝐼𝐼𝐼∗, required for the mean-variance and 1/N investor to have the 
same expected utility under the assumptions of multiple forecasting variables, a (M=N), with a 
constant forecasting ability level, estimation error, and in the presence of a budget constraint, using 
the unconditional covariance matrix, assuming the term in the square root is positive, is given by 
 

𝐼𝐼𝐼𝐼∗ =
�2𝜆𝜆𝜆𝜆1

𝑁𝑁
− 𝛼𝛼 + 𝑁𝑁 − 1

𝑇𝑇 + (𝛽𝛽 − 𝜆𝜆)2
𝛾𝛾

𝑁𝑁 − 1
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Appendix B: Model Parameters and Estimation Inputs 
 
This appendix sets out the formation of model parameters and estimation of inputs for the simulation 
tests.  
 
First, we generate monthly market returns with a monthly excess return of 0.71% and a standard 
deviation of 4.33%. We randomly generate our stock betas, 𝛽𝛽𝑖𝑖, for the 𝑁𝑁 analysed stocks from a 
normal distribution with a mean of 1.0 and a standard deviation of 0.3. We generate abnormal returns, 
𝑧𝑧𝑖𝑖,𝑡𝑡, with a mean of 0 and a cross-sectional variance of 𝜎𝜎𝑧𝑧,𝑖𝑖

2 , where 𝜎𝜎𝑧𝑧,𝑖𝑖 is sampled from a lognormal 
cross-sectional distribution with 𝜇𝜇=1.98 and 𝜎𝜎=0.36. We employ a rolling estimation window of 60 
months which is common in the literature. 
Forecasts, 𝑧𝑧𝑖𝑖

𝑓𝑓, of the abnormal returns are simulated using: 
𝑧𝑧𝑖𝑖
𝑓𝑓 = 𝑟𝑟𝑖𝑖,0 + 𝑟𝑟𝑖𝑖,1𝑧𝑧𝑖𝑖 + 𝑣𝑣𝑖𝑖     (B1) 

where 𝑣𝑣𝑖𝑖 is independent of 𝑧𝑧𝑖𝑖 and is normally distributed with a mean of zero and a variance 𝜎𝜎𝑣𝑣,𝑖𝑖
2 , The 

variance, 𝜎𝜎𝑣𝑣,𝑖𝑖
2 , is a function of the precision of the ith forecaster. It is assumed that 𝑟𝑟𝑖𝑖,0=0 and 𝑟𝑟𝑖𝑖,1=1, 

however these parameters are unknown to the investment manager and must be estimated. 
It can easily be seen that 𝑧𝑧𝑖𝑖

𝑓𝑓~𝑁𝑁(0,𝜎𝜎𝑧𝑧,𝑖𝑖
2 + 𝜎𝜎𝑣𝑣,𝑖𝑖

2 ) and 𝐼𝐼𝐼𝐼2 = 𝑅𝑅𝑖𝑖2 = [𝜎𝜎𝑧𝑧,𝑖𝑖
2 + 𝜎𝜎𝑣𝑣,𝑖𝑖

2 ]−1𝜎𝜎𝑧𝑧,𝑖𝑖
2 . The level 

of error variance can then be set to give the desired level of forecasting ability. 

𝜎𝜎𝑣𝑣,𝑖𝑖 = ��
�𝜎𝜎𝑧𝑧,𝑖𝑖

2 (1 − 𝑅𝑅𝑖𝑖2)�
𝑅𝑅𝑖𝑖2

� (B2) 

We consider four skill levels: almost zero skill (R2=0.000001, IC=0.001), low skill 
(R2=0.001, IC=0.032), medium skill (R2=0.005, IC=0.071), and high skill (R2=0.01, IC =0.1). We 
consider investment universe sizes, 𝑁𝑁, of  10, 50, 100, 300, and 500.  

B1 Estimation of model inputs 
 
At the beginning of each period, the investment manager uses the preceding 𝑇𝑇 months to estimate the 
following: 

I. Market parameters: estimated as sample values: 

𝐸𝐸��𝑟𝑟𝑚𝑚,𝑇𝑇+1� = 𝜇̂𝜇𝑚𝑚,𝑇𝑇+1 =
1
𝑇𝑇
�𝑟𝑟𝑚𝑚,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

                

𝑉𝑉𝑉𝑉𝑉𝑉� �𝑟𝑟𝑚𝑚,𝑇𝑇+1� = 𝜎𝜎�𝑚𝑚,𝑇𝑇+1
2 =

1
𝑇𝑇
��𝑟𝑟𝑚𝑚,𝑡𝑡 − 𝜇̂𝜇𝑚𝑚,𝑇𝑇+1�

2
𝑇𝑇

𝑡𝑡=1

 

where 𝑟𝑟𝑚𝑚,𝑡𝑡 is the excess return of the market in period 𝑡𝑡. 
 

II. Stock betas: estimated by OLS regression of excess stock returns on excess market 

returns: 

𝑟𝑟𝑖𝑖 = 𝑎𝑎�𝑖𝑖,𝑇𝑇+1 + 𝛽̂𝛽𝑖𝑖,𝑇𝑇+1𝑟𝑟𝑚𝑚 + 𝜀𝜀𝑖̂𝑖             i = 1, … , N           
where 𝑟𝑟𝑖𝑖 is the vector of stock returns for stock 𝑖𝑖 (T x 1). 
 

III. Realised abnormal returns: given by the residuals of the regressions in (II): 

𝑧̂𝑧𝑖𝑖,𝑡𝑡 = 𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝛽̂𝛽𝑖𝑖,𝑇𝑇+1𝑟𝑟𝑚𝑚,𝑡𝑡;                      i = 1, … , N           
 

IV. Expected abnormal return and realised skill: given by regressing realised abnormal 

returns calculated in (III) on forecast returns: 

𝑧̂𝑧𝑖𝑖,𝑡𝑡 = 𝑐̂𝑐𝑖𝑖,0 + 𝑐̂𝑐𝑖𝑖,1𝑧𝑧𝑖𝑖,𝑡𝑡
𝑓𝑓 + 𝑒̂𝑒𝑖𝑖,𝑡𝑡;             i = 1, … , N           
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V. Forecast alphas: given by adjusting the analysts’ forecasts by the level of realised 

skill estimated in (IV): 

𝜗̂𝜗𝑖𝑖,𝑇𝑇+1 = 𝑐̂𝑐𝑖𝑖,0 + 𝑐̂𝑐𝑖𝑖,1𝑧𝑧𝑖𝑖,𝑇𝑇+1
𝑓𝑓 ;             i = 1, … , N           

 

VI. Covariance matrix: we estimate the covariance matrix of excess returns using the 

single-index model of Sharpe (1964): 

∑�𝑇𝑇+1 = 𝛽̂𝛽′𝑇𝑇+1𝜎𝜎�𝑚𝑚,𝑇𝑇+1
2 𝛽̂𝛽𝑇𝑇+1 + Δ�𝑇𝑇+1 

where 𝜎𝜎�𝑚𝑚,𝑇𝑇+1
2  and 𝛽̂𝛽′𝑇𝑇+1 are estimated in (I) and (II) above respectively, and Δ�𝑇𝑇+1 is 

the diagonal matrix of abnormal variances. 
To evaluate the loss in utility from the use of the single-index model relative to when the 

covariance matrix is known, we also employ the population covariance matrix calculated using the 
population values for the beta vector, market risk, and the idiosyncratic variance matrix: 

∑ = 𝛽𝛽𝜎𝜎𝑚𝑚2 𝛽𝛽′+ Δ 

B2 Estimation of model weights 
In what follows, when we refer to the mean-variance investor, we are referring to the budget 

constrained investor where the asset weights sum to unity. This sets a level playing field with the 
Treynor-Black models, the DeMiguel et al. (2009) expression, minimum-variance, and 1/N. 

B2.1 Mean-variance weights 

The budget constrained mean-variance weights are estimated using as:  

𝜔𝜔𝑚𝑚𝑚𝑚  =
1
𝜆𝜆
𝛴𝛴∗−1𝜇𝜇∗ −

(𝛽𝛽∗ − 𝜆𝜆)
𝜆𝜆𝛾𝛾∗

𝛴𝛴∗−1ί 

where 𝛴𝛴∗ = ∑�𝑇𝑇+1, and 𝜇𝜇∗ = 𝛽̂𝛽′𝑇𝑇+1𝜇̂𝜇𝑚𝑚,𝑇𝑇+1 + 𝜗̂𝜗𝑇𝑇+1, 𝛽𝛽∗ = 𝜇𝜇∗′𝛴𝛴∗−1𝑖𝑖, 𝛾𝛾∗ = 𝑖𝑖′𝛴𝛴∗−1𝑖𝑖   
We consider risk aversions of 20, 60, and 100 in order to provide a broad range of realised risk levels. 

B2.2 DeMiguel et al. (2009) mean-variance weights 

The optimal mean-variance expression of DeMiguel et al. (2009) is given by 
𝑤𝑤 = [|𝑖𝑖′𝛴𝛴∗−1𝜇𝜇∗|]−1𝛴𝛴∗−1𝜇𝜇∗ (B3) 

where 𝛴𝛴∗ and 𝜇𝜇∗ are as defined above. 

B2.3 Treynor-Black weights 

The Treynor-Black model, as discussed in Kane et al. (2010), consists of two stages. In the 
first stage, the optimal active portfolio, 𝐴𝐴, with weights ℎ, is selected to maximise the expected 
information ratio: 

 max
h

IRA(ℎ)
ℎ′𝜗̂𝜗𝑇𝑇+1

�ℎ′Δ�T+1−1 ℎ
 subject to ℎ′𝑖𝑖 = 1; ℎ∗ = [𝜗̂𝜗𝑇𝑇+1′Δ�T+1−1 𝑖𝑖]−1Δ�T+1−1 𝜗̂𝜗𝑇𝑇+1; 𝑟𝑟𝐴𝐴 = ℎ∗′𝜇𝜇∗ 

(B4) 

where ℎ∗ is the vector of optimal weights, 𝜗̂𝜗𝑇𝑇+1 is the N x 1 vector of expected abnormal returns, and 
∑�𝑇𝑇+1 and 𝜇𝜇∗ are defined as above. 

In the second stage, the overall portfolio, 𝑃𝑃, is determined by mixing the active portfolio, 𝐴𝐴, 
with the market portfolio, 𝑀𝑀, giving, 𝑟𝑟𝑝𝑝 = 𝑤𝑤𝑟𝑟𝑎𝑎 + (1 −𝑤𝑤)𝑟𝑟𝑚𝑚, to maximise the expected Sharpe ratio 
of the overall portfolio: 

max
h

SRP(ℎ) =
𝐸𝐸(𝑟𝑟𝑝𝑝(𝑤𝑤))

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑟𝑟𝑝𝑝(𝑤𝑤))
;    𝑤𝑤∗ =

𝜗𝜗𝐴𝐴𝜎𝜎𝑚𝑚,𝑇𝑇+1
2

(1 − 𝛽𝛽𝐴𝐴)𝜗𝜗𝐴𝐴𝜎𝜎𝑚𝑚,𝑇𝑇+1
2 + 𝜇̂𝜇𝑚𝑚,𝑇𝑇+1ℎ∗′Δ�t,T+1−1 ℎ∗
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where 𝜗𝜗𝐴𝐴 = ℎ∗′𝜗̂𝜗𝑇𝑇+1, 𝛽𝛽𝐴𝐴 = ℎ∗′𝛽̂𝛽′𝑇𝑇+1, and ∑�𝑇𝑇+1,  𝜇̂𝜇𝑚𝑚,𝑇𝑇+1 and  𝜎𝜎�𝑚𝑚,𝑇𝑇+1
2 are as defined above. 

The overall portfolio is then given by the vector 
𝑤𝑤𝑇𝑇𝑇𝑇,𝑇𝑇+1 = (ℎ∗1,𝑇𝑇+1, … ,ℎ∗𝑁𝑁,𝑇𝑇+1, 1 −𝑤𝑤𝑇𝑇+1) (B5) 

Kane et al. (2010), however, do not employ this pure Treynor-Black model, and instead 
rescale the weights whenever the total short exposure exceeds 200%. Specifically, when 𝑤𝑤𝑇𝑇𝑇𝑇,𝑆𝑆,𝑇𝑇+1 >
2, the rescaled long and short asset weights are given by: 

 𝑤𝑤∗
𝑇𝑇𝑇𝑇,𝐿𝐿,𝑖𝑖,𝑇𝑇+1 =

3
2

|𝑤𝑤𝑇𝑇𝑇𝑇,𝐿𝐿,𝑇𝑇+1|−1𝑤𝑤𝑇𝑇𝑇𝑇,𝐿𝐿,𝑖𝑖,𝑇𝑇+1;             i = 1, … , N𝐿𝐿  

𝑤𝑤∗
𝑇𝑇𝑇𝑇,𝑆𝑆,𝑗𝑗,𝑇𝑇+1 =

1
2

|𝑤𝑤𝑇𝑇𝑇𝑇,𝑆𝑆,𝑇𝑇+1|−1𝑤𝑤𝑇𝑇𝑇𝑇,𝑆𝑆,𝑗𝑗,𝑇𝑇+1;             j = 1, … , N𝑆𝑆  
where 𝑤𝑤𝑇𝑇𝑇𝑇,𝐿𝐿,𝑇𝑇+1 and 𝑤𝑤𝑇𝑇𝑇𝑇,𝑆𝑆,𝑇𝑇+1 equal the sum of the long and short positions respectively, and 
𝑤𝑤𝑇𝑇𝑇𝑇,𝐿𝐿,𝑖𝑖,𝑇𝑇+1 and 𝑤𝑤𝑇𝑇𝑇𝑇,𝑆𝑆,𝑖𝑖,𝑇𝑇+1 are elements of the vectors of long and short weights respectively. 

This adjustment rescales the total long exposure to 300%, and the total short exposure to 
200%, and is designed to mimic a margin constraint. We also examine the performance of the pure 
Treynor-Black weights in order to determine the effect of the margin constraint. 
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End Notes 
                                                           
i See for example, Fabozzi, Focardi & Jonas, 2007; EDHEC European Investment Practices Survey, 2008.  
ii As an example, see Fisher and Statman (1997). 
iii Markowitz (1959) and Levy and Markowitz (1979) show that quadratic approximation provides a reasonable 

and robust working assumption for a broad range of utility functions and return distributions, but in neither the 
1952 nor the 1959 research is it asserted that normality or quadratic utility hold, nor are they requirements for 
the model.  See also Kritzman and Markowitz (2017). An alternative approach broadly within this framework 
would be to have regime dependent risk aversion, see Chow et al., 1999.  

iv We note also there are accepted Bayesian approaches to deal with the parameter uncertainty issue. 
v For example, Jobson and Korkie, 1981; Jagannathan and Ma, 2003.  
vi Kritzman (2006) also demonstrates that even with substantial misallocation induced by estimation error, there 

are only relatively small changes in portfolio ex ante distributions and, hence, on a limited reduction in 
expected utility.  

vii See, inter alia, Black and Litterman, 1991; Michaud, 1998; Frost and Savarino, 1998.  
viii Significant contributions include: Solnik, 1993; Herold and Maurer, 2006; Campbell and Shiller, 1988; Fama 

and French, 1988; Lintner, 1975; Fama and Schwert, 1977; Campbell, 1987; Poterba and Summers, 1988; Lo 
and Mackinlay, 1988. 

ix Ball, 1978; Rozeff, 1984; Shiller, 1984. 
x Among authors using a myopic agent approach are Fleming, Kirby, and Ostdiek, 2001; 2003; Jagannathan and 

Ma, 2003; DeMiguel et al. 2009; and Kirby and Ostdiek, 2012. 
xi DGU divide the unconstrained mean-variance weights by their sum to ensure that the weights satisfy the 

budget constraint. Our results show that this seemingly innocuous approach has some unusual effects. We 
instead incorporate the budget constraint directly into the optimisation problem using the result given by 
Ingersoll (1987). 

xii We should sound a note of caution: these results hold when alpha, beta and gamma are held constant. 
However, adding assets to the investment universe will change the return and covariance matrices and it may 
be that marginal assets may be more prone to forecast errors.  

xiii Formally:  

 𝐼𝐼𝐼𝐼∗ ≡ 𝑖𝑖𝑖𝑖𝑖𝑖�𝐼𝐼𝐼𝐼: 𝐿𝐿𝑀𝑀𝑀𝑀(𝑤𝑤∗,𝑤𝑤�)
= 𝐿𝐿1/𝑁𝑁�𝑤𝑤∗,𝑤𝑤1/𝑁𝑁�� 

 

where 𝐿𝐿𝑦𝑦(𝑤𝑤∗,𝑤𝑤�) is the expected utility loss of using weights, 𝑤𝑤� , instead of the optimal weights 𝑤𝑤∗ based on 
strategy y. Here, we equate the expected utility loss of using weights, w ̂, instead of the optimal weights w^* 
based on the different portfolios. We could equally well define it in terms of expected utility. 

xiv Provided V1/N is positive.  
xv See Appendix for more details. Full proof available from the authors.  
xvi As an illustration, the correlation between the “soda” and “gold” industries in the 48 industry classification is 

just 0.06; their parent sectors in the five industry classification have a correlation of 0.88.  
xvii Fuller results are available from the authors, which also include further portfolio weighting strategies, asset 

numbers and risk aversion ratios, confirming our overall conclusions.   
xviii As shown in the expanded results, the very poor performance of Treynor-Black appears to reflect high 

volatility and extreme returns driven by extreme weights. This holds whatever the forecasting ability. It was 
presumably for this reason that Kane et al. imposed constraints that limit long positions to 300% and short 
positions to 200% (in effect a margin constraint). The Kane et al. adjusted model performs better than the 
pure Treynor Black model but it is problematic that an essentially arbitrary constraint is required to ensure 
reasonable performance. 

xix Mathematically, 𝑀𝑀2 = 𝑆𝑆𝑆𝑆𝑝𝑝𝜎𝜎𝑚𝑚 − 𝜇𝜇𝑚𝑚 where 𝑆𝑆𝑆𝑆𝑝𝑝 is the portfolio Sharpe ratio, 𝜇𝜇𝑚𝑚 is the mean market return, 
and 𝜎𝜎𝑚𝑚 is the market standard deviation. We set 𝜇𝜇𝑚𝑚=0.73%, and 𝜎𝜎𝑚𝑚=4.27% as in Kane et al. (2010). 

xx DGU force the asset weights to sum to unity by dividing the unconstrained mean-variance weights by the 
absolute value of the sum of the weights as follows: 

𝑤𝑤 =
𝛴𝛴∗−1𝜇𝜇∗

[|𝑖𝑖′𝛴𝛴∗−1𝜇𝜇∗|]
 

The DGU relation coincides with the tangency portfolio and is independent of the level of risk aversion and 
it can readily be seen that it can lead to extreme results. It is applied to all their models. The high resultant 
maximum exposures are stark – results available from authors.  

xxi Full data sources and prior literature supporting their inclusion are available in the appendices. 
xxii We acknowledge that improved tests on Sharpe ratios could be accomplished using bootstrapping procedures 

as in Ledoit and Wolf (2008) although these involve some implementation costs. 
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