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Abstract 
Graphic Statics offers a geometrical framework for the design & analysis of structural systems with 
reciprocity between the ‘form’ and ‘force’ diagrams being a fundamental notion. In this paper we 
provide a detailed illustration and explanation of Maxwell’s reciprocal construction for 2-dimensional 
trusses through a 3-dimensional paraboloid of revolution. Even though Maxwell briefly mentions this 
method there is no record of the detailed construction. The main focus of this research is placed on the 
synthesis of Poncelet duality in projective geometry and of reciprocity in graphic statics resulting in the 
definition of a generalised dual statement for the construction of reciprocal diagrams (Maxwell 2D & 
Rankine 3D). This is based on the construction of their higher dimensional polyhedral Airy stress 
functions, using conic sections. We generalise the construction for other conics, such as the sphere and 
ellipsoid, and we extend the definition for 3-dimensional trusses and corresponding higher-dimensional 
conic sections.  
    
Keywords: structural design, graphic statics, reciprocal diagrams, projective geometry. Airy stress function, 
static equilibrium, Maxwell, Rankine, Poncelet duality, truss 

1. Introduction 
In the context of structural design using graphic statics the traditional approach has been that of deriving 
reciprocal figures for 2D trusses by means of parallel drawing; i.e. by geometrical transformations on 
the plane (Cremona [10], Wolfe [21], Allen and Zalewski [2]) and for 3D trusses by means of 
geometrical transformations in space (Rankine [19], Akbarzadeh [1]). In the literature of graphic statics 
we have found no mention of higher dimensional reciprocal constructions based on conic sections. 
Drawing analogues from fields such as rigidity theory and scene analysis which have independently 
researched Maxwell’s and Rankine’s reciprocal constructions (Crapo and Whiteley [6]) we derive and 
visualise a reciprocal construction where the predominant geometrical objects are polyhedral Airy stress 
functions. In this approach planar trusses (form diagrams) and their reciprocal force diagrams, which 
can interchange roles, are conceived as the corresponding 2D projections of these reciprocal polyhedra. 
This purely geometrical methodology is largely based on the explanation and illustration of the 
reciprocal construction with the paraboloid of revolution ‘in the ordinary sense’ as briefly mentioned by 
Maxwell in his 1870 paper [13]; a construction based on projective geometry which was common 
knowledge at the time but is defunct in the 20th and 21st century. Maxwell’s ‘ordinary’ procedure of 
analysing trusses was not mentioned, explained, or used in subsequent graphic statics literature.  

We will place this construction  in a ‘Poncelet duality’ and projective geometry framework and discuss 
how this contributes to  a general paradigm shift in geometry-based structural design & analysis, viz, 
from thinking of the structure as a set of points and lines to conceiving it as one of the possible 
projections of a set of points and spaces between structural members. Even though projective geometry 
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has been mentioned in the literature in the context of graphic statics, until now there has not been a 
geometrical construction explicitly based and formalized on Poncelet duality. We clarify pole & polar 
plane mappings and relate them with the different kinds of reciprocals. Even though the literature 
contains matrix-based constructions for deriving 2D and 3D reciprocals (e.g. Micheletti [16]) here we 
restrict our attention to geometry-based constructions only, deriving and using their algebraic 
equivalents when necessary. Moreover, the geometrical constructions introduced here are applied to 2D 
and 3D trusses - projections of spherical plane-faced polyhedra and 4-polytopes respectively.  

1.1. Objectives 
The aim of this research is firstly to interpret and visualize Maxwell’s arcane reciprocal construction 
using conic sections. This will be based on the overarching idea of duality in projective geometry (which 
we will refer to as ‘Poncelet duality’). Subsequently, we will extend and develop this reciprocal 
construction taking as our main geometrical object the higher dimensional Airy stress function. This 
leads to an elegant method which gives insight to the axial loads and can produce, by orthographic 
projection, a number of structures. Lastly we introduce ‘generalised’ reciprocal diagrams using conic 
sections other than the paraboloid of revolution and discuss their potential. 

1.2. Contents 

Firstly we review briefly fundamentals such as graphic statics, reciprocity between form and force 
diagrams, Airy stress functions, projective geometry, and conics. We then define and visualise our 
geometrical constructions and the polarity on which they are based, explaining the distinction between 
Maxwell and Cremona reciprocals. We then implement the geometrical algorithms in a CAD 
environment, giving a number of examples in 2D and 3D. Lastly, we discuss the potential of this 
approach.  

2. Review 
Graphic statics is a 19th century geometrical design & analysis method based on the construction of 
reciprocal ‘form’ and ‘force’ diagrams. This method was developed at the time from natural scientists 
such as Maxwell, Rankine, Culmann, Varignon, Bow, and Cremona among others (see for example 
Charlton [8]). Today, renewed interest in graphic statics is underpinned by the widespread use of 
Computer Aided Design (CAD) which holds the promise of overcoming the 19th century limitations, 
and results in a generalized, intuitive, visual design & analysis method that can lead to materially 
efficient and aesthetically elegant structures. It was not until recently that Maxwell’s fundamental 
observation that self-stressed 2D trusses are projections of 3D plane-faced polyhedral, which in turn are 
essentially  piecewise linear  versions of Airy stress functions, was reintroduced into the field of graphic 
statics (Baker et al., [3]; Mitchell et al., [17]; McRobie et al., [14]). However, currently there is no 
generalized methodology for reciprocal (or dual) structures in 3-dimensions although case-specific 
progress has been made (Akbarzadeh [1], Micheletti [16], McRobie [15]). To the knowledge of the 
authors there is no methodology of drawing n-dimensional reciprocal diagrams for n-dimensional 
trusses based on their dual (n+1)-dimensional  polyhedral Airy stress functions via a conic polarity 
mapping. However, a reference can be found in the field of rigidity theory (Crapo and Whiteley [7]). 

2.1. Reciprocal diagrams & Airy stress functions 
The development of the geometrical theory of reciprocal diagrams and subsequently of graphic statics 
is attributed to Maxwell (Cremona [10]) and Rankine (Maxwell [14]). It is believed that Maxwell was 
thinking of reciprocity in the context of projective geometry and duality, which was introduced by 
Poncelet (Cremona [10], Poncelet [18]), in order to employ a correspondence (or mapping or ‘polarity’) 
between the dual form and force diagrams (Harman [12]). Maxwell underlines that planar reciprocal 
diagrams in equilibrium are (orthographic or perspective) projections of dual plane faced polyhedra 
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(Cremona [9]) and these dual polyhedra are constructed based on the theory of pole & polar plane using 
a conic, which naturally implies a ‘polarity’.  

We shall distinguish between 4 kinds of reciprocal diagrams; Maxwell 2D reciprocals where (form) 
edges correspond to perpendicular (force) edges; Cremona 2D reciprocals with the same correspondence 
but with parallel edges; Rankine 3D reciprocals where (form) edges correspond to perpendicular (force) 
faces; and 3D Cremona reciprocals where spatial (form) edges correspond to parallel spatial (force) 
edges. The above reciprocals can be created by using higher dimensional polarities. We should note that 
the form and force diagrams have interchangeable roles and we do not distinguish between structural 
members and lines of action of the forces. As a consequence, if a 2D truss without external loading can 
be perceived as a projection of a polyhedron then it is capable of being self-stressed (Baker et al., [3]). 

Following recent publications on the topic (Baker et al., [3]; Mitchell et al., [17]; McRobie et al., [14]) 
the reciprocal construction followed the logic: 2D truss – lift to 3D polyhedral Airy stress function – 
construct 2D reciprocal truss – lift to 3D reciprocal polyhedral Airy stress function. As a result, from an 
initial Airy stress function we derived a family of reciprocal Airy with a possibly high number of 
freedoms depending on the initial 2D structure. With the current construction we define in a non-
ambiguous way the two dual, reciprocal Airy polyhedra which we can manipulate and project obtaining 
reciprocal 2D diagrams. That is, for 2D trusses, the construction sequence was 2D to 3D to 2D to 3D, 
whereas the procedure presented here allows direct transition from 3D to 3D between the dual Airy 
polyhedra. For 3D trusses, the Rankine construction was previously 3D to 4D to 3D to 4D, but the 
construction here allows direct transition from 4D to 4D between the dual Airy polytopes.  

2.2. Simply-connected polyhedra 
Reciprocal diagrams can be constructed for 2D and 3D trusses if they have an underlying planar graph; 
which means they can be drawn topologically with no edge or face crossing respectively (Crapo [6]). 
This implies that the polyhedron (or 4-polytope in the case of a spatial truss) of which the truss is a 
projection is topologically spherical (Crapo [6]). For a topologically spherical polyhedron with vertices 
V, edges E, and faces F: P(V, E, F) we have Euler’s formula: V-E+F=2. However, it is not enough for 
a 2D truss to have an underlying planar graph in order to be a projection of a plane-faced polyhedron; 
apart from the topological requirements there are geometrical requirements as well. Further, the planar 
graphs should be 3-vertex connected (if we remove any two vertices and adjacent edges the graph does 
not separate into two subgraphs) and have more than three vertices (Whiteley [20]).  

2.3. Projective geometry 
Projective geometry is the system of propositions remaining after we have removed the notions of 
circles, distances, angles, intermediacy, and parallelism from our familiar Euclidean geometry; on the 
projective plane two lines always meet. Even though this sounds like a system too simple to be 
interesting it has yielded surprising, elegant, and rich results (Coxeter [4]). Projective geometry can be 
derived from affine geometry which in turn can be derived from Euclidean geometry. Projective 
geometry as a system of propositions has as primitive concepts solely the line, the point, and the 
incidence. The point at infinity was conceived independently by the German astronomer Kepler and the 
French architect Desargues. Consequently, two parallel lines not intersecting on the Euclidean plane, 
will now intersect at a point at infinity on the Projective plane. Similarly, two parallel planes, not 
intersecting in Euclidean space, will now intersect at a line at infinity in the Projective space (Coxeter 
[4]). These concepts of Projective plane & space were formalised and established by the French 
mathematician Poncelet while in exile after the defeat of the Grande Armée from Kutuzov’s troops in 
Krasnoi in 1812. It is important to stress that these ‘points at infinity’ are not special cases but ordinary 
points of the Projective plane. We should note that projective geometry was not only a very active and 
promising mathematical field, but its propositions were common knowledge for 19th century natural 
scientists. This is not the case today, when it is considered to be a rather inaccessible field for the modern 
engineer and designer.  
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2.3.1. Poncelet duality 
As a consequence of treating the point at infinity as an ordinary point on the projective plane any two 
lines meet at a point and in turn any line can be defined by two points. We observe that in projective 
geometry any theorem and statement which holds for lines and points can be ‘dualised’ in terms of 
points and lines and hold as well. This ‘principle of duality’ which is attributed to Poncelet, yields 
elegant and powerful results.  

We define 2-dimensional (2D) geometry to be the geometry of points and lines on a plane, 3-dimensional 
(3D) geometry to be the geometry of points, lines, and planes in space, and 4-dimensional (4D) geometry 
to be the geometry of points, lines, planes, and spaces in 4-dimensional space. The principle of duality 
can be applied to the above geometries by interchanging their primitive elements (fig.1) and where 
necessary pairs of words (collinear-concurrent, join-meet). By arranging definitions, theorems, and true 
statements in a ‘parallel column’ configuration where the geometrical elements and any pairs of words 
have been interchanged we derive their duals and we observe that these are also true (Cremona [10]). 
For example the statement: ‘Two points (a.b) and (c.d) can be joined by a line l’ can be dualised as 
follows: ‘Two lines (AB) and (CD) meet at a point L’. As a result, we assert that in Projective geometry 
all theorems, axioms, statements, and definitions imply their duals which we can confidently use.   

 
Figure 1: 2D,  3D, and 4D principle of duality 

2.3.2. Conics 
The familiar distinction between conics (ellipse, parabola, hyperbola) does not hold on the projective 
plane where only the conic lives. However, we can still apply these notions. In particular, we can relate 
the position of the conic with respect to the line at infinity l∞. If the conic has no common points with 
the line at infinity l∞ then its centre P is a point interior to the conic (what we see as an ellipse on the 
Euclidean plane); if the conic has one common point with l∞ (which as a result is a tangent) then the 
centre of the ‘parabola’ P is self-conjugate lying on l∞; if the conic has two common points with l∞ 
then the centre P is a point exterior to the conic (what we see as a hyperbola in Euclidean plane). 
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3. Constructions 
We can place our reciprocal construction completely on the projective plane/ space since we can even 
define a conic only with lines, points and incidence. We can induce a conic polarity to derive the 
reciprocal polyhedra which can then be embedded in the Euclidean space at the last step in order to 
obtain the projections which will be the Maxwell 2D reciprocals in the case of the paraboloid of 
revolution. 

3.1. Pole & polar plane (conic polarity) 
Polarity on the plane is a transformation taking points to lines and dually lines to points. A polarity 
preserves incidence and has degree 2. For a point P (that we name the pole) a conic polarity transforms 
it to its image which is a line p (that we name the polar) as follows: from P we draw the two tangents to 
the conic, which touch it in the points Q, R. If we now connect points Q, R with a line p we obtain the 
polar line of the pole P. A Self-conjugate point Q is incident with its polar q; that is Q lies on q (fig.2, 
Left).  

More generally, we can apply this type of polarity in 3-space using a conic of revolution (e.g. sphere, 
ellipsoid, paraboloid) as the locus of self-conjugate points. The property of the self-conjugate points to 
lie on the conic and their respective polar lines (or planes in the spatial case) to be tangent to the conic 
enables us to define the following general geometrical construction: for a point (pole) P outside the 
conic we can construct its polar plane p by drawing the tangent cone from P to the conic and joining 
any three of the resulting coplanar intersection points Pi (fig.2, Right). Conversely, for a plane 
intersecting the conic in a curve c we can take tangent planes on any three points on c, the intersection 
of which will gives us the pole P.  

 
Figure 2: Left: A conic polarity mapping points to lines and vice versa; points lying on the conic are self-
conjugate, Right: Polarity induced by a paraboloid of revolution, mapping planes to points and vice versa 

Naturally, we can now derive the general construction of reciprocal polyhedra P(V, E, F), P’(V’, E’, F’) 
in a 3D Poncelet duality fashion (points map to faces) using a conic polarity as follows: for a given set 
of vertices V we obtain the reciprocal polar planes on which the faces F’ of the reciprocal polyhedron 
P’ lie on. The intersections of these polar planes give us the edges E’ and vertices V’ of P’. We have 
thus arrived in a geometrical construction of dual polyhedral Airy stress functions using the paraboloid 
of revolution. 
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We should note that since this polarity has a period 2 we can also start from an initial set of faces and 
derive the same two reciprocal polyhedra. Also if a vertex does not lie outside the conic, or a face inside 
the conic we can still easily construct their reciprocals; for a point P inside the conic we take three 
arbitrary planes Pi, these intersect the conic in three intersection curves ci, from these we define the 
corresponding tangent cones which in turn define three points Pi, these three points suffice to define the 
polar plane p. Dually we can work for a plane p outside the conic. 

We formally define this type of conic polarity in R3 (named ‘Maxwell polarity’ in Crapo and Whiteley 
[7]) as a pair of transformations L, L-1; mapping points, defined as triples (x, y, z), to planes, defined as 
quadruples (A, B, 1, C) as follows: for a given plane p described from the equation z=Ax+By+C we 
define L: L(A, B, 1, C)=(cA, cB, -C) which gives us the triple of coordinates for the reciprocal point 
(pole) P. Conversely, for a given point P described from the coordinates (ξ, η, ζ) we define L-1: L-1(ξ, η, 
ζ) =( ξ/c, η/c, 1, -ζ) which gives us the quadruple defining the equation of the reciprocal polar plane p. 
We should note that c is an arbitrary number which we define in the equation of the paraboloid of 
revolution in R3 : 2cz=x2+y2. Furthermore, the transformation L preserves incidence; if a point Q lies on 
a plane q then the plane L(Q) will be incident with the point L-1(q).  

3.2. Dual Airy stress functions using conic polarity 

3.2.1. 3D reciprocity 
We visualise this reciprocal construction for the simplest case of a convex polyhedron, a tetrahedron 
(fig.3). We note that the resulting reciprocal polyhedra have indeed a period 2 and preserve incidence; 
a face from F maps to a vertex in V’ which then maps to the same face; three faces in F defining a vertex 
in V correspond to thee vertices in V’ which lie on the same face in F’. Also corresponding edges of the 
projected ‘form’ and ‘force’ diagrams are perpendicular indicating a Maxwell 2D reciprocal 
configuration. 

 

Figure 3: Reciprocal polyhedral Airy stress functions and reciprocal 2D figures for a tetrahedron 

3.2.2. 4D reciprocity  
More generally for a convex 4-polytope P(V, E, F, C) (which is a set of Vertices, Faces, Edges, and 
Cells (volumes) in 4-space) we can apply our construction using a 4D Poncelet duality correspondence 
(mapping points to cells, and edges to faces) as follows:  for a cell in C we take the hyperplane 
(generalisation of a plane; like the plane is a 2D sub-space of 3-space, a hyperplane is a 3D sub-space 
of 4-space) P on which it lies (let us assume for convenience that this lies inside the conic, but this 
construction can be readily generalized as in 3.1) and we then take its intersection with the hyper-
paraboloid of revolution in 4-space. From this intersection surface we choose 4 arbitrary points and draw 
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tangent hyperplanes to the conic which will intersect in a point p which is the pole of the given polar 
hyperplane P and the reciprocal vertex in V’. Consequently, by generalizing in 4-space the pole & polar 
construction from P(V, E, F, C) we can obtain the reciprocal 4-polytope P’(V’, E’, F’, C’). As above we 
formalise this polarity by the pair of transformations L, L-1; mapping points (x, y, z, w), to planes (A, B, 
C, 1, D) as follows: for a given plane p described from the equation w=Ax+By+Cz+D we define L: L(A, 
B, C, 1, D)=(cA, cB, cC, -D) which gives us the coordinates for the reciprocal point (pole) P. Conversely, 
for a given point P (ξ, η, ζ, θ) we define L-1: L-1(ξ, η, ζ, θ) =( ξ/c, η/c, ζ/c, 1, -θ) with the equation of the 
paraboloid of revolution in R4 : 2cw=x2+y2+z2.  

We visualise this construction for the simplest convex 4-polytope, the 4-simplex, whose 3D projection 
is a tetrahedron enclosing 4 tetrahedra (fig.4). Interestingly, Maxwell refers to this in the end of his 1864 
paper [12] as the simplest 3D truss that has a reciprocal. Moreover, revisiting Maxwell’s construction 
of 3D reciprocals in [13] after the exegesis we present here it is clear that he is suggesting a reciprocal 
construction based on the duality of 4-polytopes. As we mentioned in 2.2 we can now readily infer that 
this 3D truss is self-stressed since it is a projection of a 4-polytope. The correspondence between edges 
in E and perpendicular faces in F’ indicate a Rankine 3D reciprocal configuration. We have thus arrived 
in a reciprocal construction of Rankine 3D reciprocals based on the higher-paraboloid of revolution and 
Poncelet duality. 

 

Figure 4: Reciprocal 4-polytopic Airy stress functions and reciprocal Rankine 3D figures for a 4-simplex (for 
visualisation purposes only the edges of the reciprocal are shown, the conic is the 3D projection of the 4D-

hyperboloid of revolution) 

3.3. Conic polarity & Cremona reciprocals 
Cremona 2D reciprocals differ to Maxwell 2D reciprocals in that corresponding edges of the ‘form’ and 
‘force’ diagrams are parallel rather than perpendicular. Both planar reciprocal figures (Cremona 2D & 
Maxwell 2D) can be derived by central or parallel projection on a plane of their respective plane-faced 
polyhedral Airy stress functions. We outlined above the construction of the Maxwell 2D reciprocals in 
terms of a conic polarity which maps points (poles) to faces (polar planes) and vice versa (fig.2). We 
examine here the feasibility of a construction of Cremona 2D reciprocals using reciprocal polyhedral 
Airy stress functions with respect to a conic. The difference in polarity between the two lies in the fact 
that for Cremona we need a ‘skew polarity’ (Cremona [9], Crapo [6]) which means that the poles P 
(vertices in V) need to be incident, and thus self-conjugate, with their polar planes p (faces in F’) and 
vice versa. In our previous conic construction the only such self-conjugate points are the ones lying on 
the conic.  
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In particular, if we need the poles (vertices in V) to lie on the corresponding reciprocal polar planes 
(faces in F’) and mutually the reciprocal poles in V’ to lie on the corresponding polar planes in F then 
we have the case that three vertices (in V) should lie on the conic and the plane of the face f  (in F) which 
they define should be tangent to the conic, but since f is also self-conjugate it should intersect the conic 
only in one point (its pole in V’), but by definition the three points which defined f lie on it and also on 
the conic. So f  has 4 discrete intersection points with the conic. Reductio ad absurdum. We cannot 
create Cremona 2D reciprocals by a conic polarity.  

4. Implementation & results 
We implement the constructions in the Rhino CAD environment using the Grasshopper parametric 
geometry platform and Python scripting. The constructions were validated by three different ways which 
coincide: geometric constructions developed for this research; corresponding algebraic constructions; 
and Maxwell’s equations [13].  

4.1. 2D trusses on Euclidean plane 
As a starting point of this research we assumed that Maxwell had in mind the construction described in 
3.1. Generating in this fashion the reciprocal 2D diagrams, the following figures validate that we obtain 
exactly the same results as the diagrams of the Maxwell [12] paper. As suggested by the produced 
figures, corresponding edges are indeed perpendicular when we use a conic polarity of a paraboloid of 
revolution to map dual polyhedral Airy stress functions (fig.5). 

 

Figure 5: Reciprocal polyhedra and reciprocal 2D figures for Maxwell figures IV-4 & V-5 

Moreover, if we induce a conic polarity using a sphere and an ellipsoid to create reciprocal polyhedra, 
we observe that the edges are not perpendicular any more (fig.6). These ‘generic’ dual Airy can be 
produced using any conic section of revolution other than the paraboloid (which is the limiting case 
where the corresponding edges are perpendicular). 
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Figure 6: Reciprocal polyhedra and reciprocal 2D figures using conic polarities induced by sphere & ellipsoid 

4.2. 3D trusses in Euclidean space 
We construct in the above way the Rankine 3D reciprocal of a 20hedral tensegrity by ‘coning’ the single 
cell of the tensegrity, which under our polarity would map to a single point since it is a single space 
(McRobie [15]). By coning it with a point p in (0, 0, 0, 0) we create 20 extra cells apart from the external 
one which is the structural perimeter (and is not lifted in the fourth dimension). We then lift p to the 4th 
dimension by assigning a value to the 4th co-ordinate w. In this way our 20 internal cells can now define 
20 polar hyperplanes (in C) and a 4-polytopic Airy stress function which we will map through our conic 
polarity to the poles in V’ thus constructing the reciprocal 4-polytope. When projected back to 3-space, 
this gives us the Rankine 3D reciprocal of the 20hedral tensegrity (fig.7).  

 

Figure 7: Rankine 3D reciprocal for the 20hedral tensegrity via higher dimensional conic polarity, in blue the 
coned tensegrity in green the edges of the Rankine 3D reciprocal 
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5. Concluding remarks & future work 
Light was shed on Maxwell’s arcane construction which we generalised and developed for 2D and 3D 
trusses - projections of convex polyhedra and 4-polytopes respectively. We contributed to a 
fundamentally novel way of thinking of trusses in terms of their underlying higher dimensional Airy 
stress function – which when projected can create numerous structures. We defined a reciprocal 
construction using Poncelet duality which can work for any conic of revolution resulting in Maxwell 
2D, Rankine 3D, or generalised reciprocals depending on the dimension and category of input conic. 
The ultimate aim of our research is to create an intuitive geometry-based design and analysis tool which 
will have Airy stress functions as fundamental geometrical objects and will take into consideration 
trusses, frames, equilibrium, and stability.  
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