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Accurate prediction of ice nucleation from room temperature
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Crystal nucleation is one of the most fundamental processes in the physical sciences
and almost always occurs heterogeneously with the aid of a nucleating substrate. No
example of nucleation is more ubiquitous and impactful than the formation of ice, vital
to fields as diverse as geology, biology, aeronautics, and climate science. However, despite
considerable effort, we still cannot predict a priori the efficacy of a nucleating agent. Here
we utilize deep learning methods to accurately predict nucleation ability from images
of room temperature liquid water—generated from molecular dynamics simulations—
on a broad range of substrates. The resulting model, named IcePic, can rapidly and
accurately infer nucleation ability, eliminating the requirement for either notoriously
expensive simulations or direct experimental measurement. In an online poll, IcePic
was found to significantly outperform humans in predicting the ice nucleating efficacy
of materials. By analyzing the typical errors made by humans, as well as the application
of reverse interpretation methods, physical insights into the role the water contact layer
plays in ice nucleation have been obtained. Moving forward, we suggest that IcePic can
be used as an easy, cheap, and rapid way to discern the nucleation ability of substrates,
also with potential for learning other properties related to interfacial water.

ice | nucleation | deep learning

Liquid–solid phase transitions are fundamental processes in the physical sciences. As such,
the implications of their proper understanding and prediction are vast. Among innumer-
able candidates the formation of ice has been the subject of perhaps more studies than
any other, motivated mainly by its ubiquity. In the atmosphere, ice affects cloud albedo,
lifetime, and composition (1–4). This in turn makes it vital to Earth’s radiation budget and
the modeling of future changes in climate (5–13). In industry, controlling ice formation
presents great opportunity: cryopreservation is vital to numerous clinical applications (14),
US state and local agencies spend over $2.3 billion per annum on snow and ice control
(15), and deicing a single Boeing 747 airplane can cost up to ∼$50,000 (16).

It is now well established that ice formation almost always proceeds heterogeneously,
whereby it is initiated by a foreign material. Experimental work has gained insight into how
water structures itself on well-defined substrates (see, e.g., ref. 17) and directly measured
the ice nucleation ability of different particles (see, e.g., ref. 18). Simulations have uniquely
been able to provide the temporal and spatial resolution required for a molecular-level
understanding (19). Together these approaches have greatly deepened our understanding;
however, prediction of a material’s ability to promote or suppress ice nucleation a priori
has proven to be a major challenge (19). It therefore remains necessary to determine
each material’s effect on ice nucleation on a case-by-case basis. Moreover, building a
detailed understanding of the ice nucleating ability of a single material often requires both
experiment and simulation (20–29). The field is thus in a difficult situation: one cannot
determine nucleation behavior a priori; thus, it must be established on a case-by-case basis,
but even this can be extremely difficult and time consuming. This gap in understanding
presents a bottleneck to innovation in industry; to relieve this a simple way to predict a
material’s nucleation ability is needed.

In this work, we develop a model to accurately and rapidly predict the nucleation
temperature (T ) of a substrate without the need for direct simulation or experimental
measurement of a nucleation event. The deep neural network, IcePic, uses images—
generated in molecular dynamics (MD) simulations—of the first layer of water atop the
substrate at room temperature as input. A broad range of substrates, representative of
common inorganic ice nucleating particles, was considered. Irrespective of the substrate,
values of T are predicted with a very low root mean squared error (RMSE) of 6.3 K and
mean absolute error (MAE) of 3.7 K, and a high R2 coefficient of 0.91. For context, this
level of predictive ability drastically exceeds that of baseline models. It also significantly
exceeds the performance of humans, who were pitted against IcePic in an online poll as
part of this study. Reverse interpretation methods uncover the physical information held
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Fig. 1. Building an image recognition model to accurately and rapidly predict the ice nucleation behavior of substrates. (A) Illustration of the substrate
database, with an example of how ice formation is measured directly and predicted via the water contact layer and how the subsequent error in the prediction
is determined. (B) Performance of IcePic and dummy models in predicting T : the best achievable error—set by the natural deviation in T for individual systems—
and RMSE are given. An attempt by humans at this task is also reported.

within the images of the contact layer. These insights, combined
with the archetypal errors made by humans when attempting to
predict nucleation behavior from such images, lead to a guide on
how the water contact layer induced by a material determines its
effect on ice nucleation.

Prediction of Ice Nucleation from Images of
Water Contact Layers

Fig. 1A illustrates the methodology to create IcePic. The model
was trained and tested across a database of 1,119 water–solid
interfaces. The solid substrates considered ranged from hydrox-
ylated surfaces with different arrangements of hydroxyl groups,
to close-packed Lennard–Jones (LJ) surfaces, to graphitic and
graphite oxide systems. This is by no means comprehensive but
represents a broad variety of the known ice nucleating particles
(INPs): the surfaces of many inorganic, organic, and biological
INPs are hydroxylated; the LJ systems give a wide range of model
substrates in terms of atomic roughness, symmetry, and water-
substrate interaction; and there are many carbonaceous aerosols
that act as INPs (18, 30). The temperature at which each substrate
promotes ice nucleation – termed the nucleation temperature,
T – was measured via cooling ramp MD simulations (Materials
and Methods). Possible values of T range from 273 to 200 K.
The mean SD in T for a substrate was ± 3 K; we set this as the
best achievable (i.e., minimum) error possible for predictions. As
input, IcePic takes images of the first layer of water in contact
with the substrate—termed the water contact layer—at 293 K
(Materials and Methods). The predicted value of the nucleation
temperature, Tpred, is output. This can then be compared to the
value measured in simulation, Tmeas. Training was performed on
70% of the systems and performance tested over the remaining
30% (Materials and Methods).

The ability of different agents to predict T from such images
is explored in Fig. 1B. It is informative to first consider the
performance of a dummy model which simply returns the mean
value of T in the training set; this informs on the triviality of the
task. An RMSE of 20.74 K is achieved. The error window can be
approximated by± the RMSE. Given the window of possibleT is
∼70 K, this represents a very poor performance. Multiple dummy
models were attempted as is reported in SI Appendix, section S2;
the best performing dummy model is reported in Fig. 1B.

Across the database, IcePic predicts T with RMSE of 6.3 K, a
reduction in error of 69% when compared to the dummy model.
This performance gives a small window of prediction—close to
the minimum possible error of 3.0 K—that enables the accurate
prediction of a substrate’s nucleation ability. A further indicator
of IcePic’s accuracy is the R2 metric, which is the proportion of
the variation in T explained by the model. A value of 0.91 was
obtained; generally, values above 0.9 are considered to be excellent
for regression models. These results indicate that an image of the
water contact layer at room temperature contains enough infor-
mation to accurately predictT . This gives a rapid computationally
cheap way to infer nucleation ability, with a conservative estimate
of the saving in cost being 1/300th of directly simulating with the
monoatomic water (mW) model (SI Appendix, section S6). In the
case of more complex atomistic models, simulating even a single
nucleation event is notoriously difficult and expensive (19, 31),
whereas it takes minimal cost to create the images to feed to IcePic.

The use of deep learning techniques means only the raw input
of the images is required by IcePic. Traditionally, however, efforts
into understanding and predicting a substrate’s ice nucleation
ability have relied on hand-designed features such as substrate
lattice match to ice (32), surface symmetry (33), and adsorption
energy (a proxy for hydrophobicity) (34). A simple linear regres-
sion model utilizing such features achieved an RMSE of 12.5 K on
a very similar database (approximately double the error of IcePic)
(35). A more complex approach, involving screening ∼3,000 po-
tential descriptors and a subsequent feature selection to build ma-
chine learning models, achieved a comparable RMSE to IcePic’s
of ∼ 6 K but a lower R2 of 0.86 (35). The fact that IcePic not only
matches but slightly outperforms the feature selection approach is
a remarkable result as IcePic’s input is far simpler and neglects
the use of any hand-designed features/descriptors produced by
the community over decades of work. The most crucial benefit
of utilizing deep learning here is enabling a simple input: images
of water contact layers can be produced both in simulation and
experiment (whereas features of ref. 35 are computational only);
therefore, a potential bridge between the two disciplines has been
created. We refer readers who are unfamiliar with the machine
learning techniques discussed here to a pedagogical discussion on
artificial intelligence techniques in SI Appendix, section S7.

Finally, given that IcePic demonstrated images of water contact
layers can be used to predict a materials nucleation ability, a
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natural question arises: can humans also do this? We note that
this is not meant to act as direct competition to IcePic, as it is
not generally reasonable to expect humans to match performance
levels of machine learning models in regression. However, given
that the water contact layer is widely discussed (36, 37) and
explicitly used to explain heterogeneous ice nucleation in the
literature (20, 21, 23, 26, 34, 38–44)—discussion dates as far back
as the 1940s with the origin of substrate lattice match (32, 45)—it
is reasonable to expect some level of human expertise here. Even if
it cannot match IcePic, assessing human performance can uncover
gaps in our knowledge that might prove useful to address and
thereby give new physical insights into ice nucleation. Therefore,
both simulation and experimental researchers in the field were
polled via an online survey where they were asked to label T for
a selection of images from our database (Materials and Methods
and SI Appendix, section S3). As shown in Fig. 1B, human per-
formance was poor, with RMSE of 36.9 K. Such performance
represents random guessing at best; at worst, it shows our current
intuition is hindering performance (in other words, randomly
guessing could be a better strategy). The argument for the latter
is supported by the superior performance of the dummy model.
However, a perhaps fairer test of human ability is to analyze the
ability to rank systems in order of their overall nucleation ability
(thereby removing systematic errors in the values of T reported).
This is shown by the Spearman’s rank correlation coefficient: the
mean human value was –0.11; a negative value provides further
evidence that current intuition is hindering performance. In com-
parison, IcePic achieved +0.89. Overall, this paints a picture that
inferring nucleation ability from images of the water contact layer
is a highly nontrivial task and one where humans have much to
learn.

IcePic Generalizes Well to Unseen Substrates

Accurate prediction of nucleation ability from images of the water
contact layer offers many benefits, not least the avoidance of
extremely costly simulations and direct experimental measure-
ment. However, confidence in the ability of IcePic to perform
outside of its training data is needed. In the absence of external
data, this is done by splitting the database into training and test
datasets. Random stratified sampling—as reported in Prediction

of Ice Nucleation from Images of Water Contact Layers—exposes
the model to the greatest range of different substrates and values
of T (in both training and testing), making it appropriate for
producing the final model for external use. However, a more
difficult assessment for the model can be executed by curating
test datasets with different physical properties to the training
dataset.

Fig. 2 summarizes the performance of IcePic when the systems
were split into training and test datasets based on the substrate
atomic symmetries. In each split the test dataset consists of the
systems indicated (e.g., OH groups with a square tiling), and
the respective IcePic model was created by training on all other
systems in the database (i.e., nine versions of IcePic were created,
one for each split). As expected the model performance varies as
some test datasets are harder than others. For instance, the OH
hexagon test dataset is particularly hard as hexagonal symmetry is
known to be important to ice nucleation—as it is found on the
basal face of hexagonal ice—so hiding hexagons from the model
during training removes important physicochemical data. How-
ever, across all tests a consistently strong performance is achieved
with RMSE values ranging between 4 and 9 K. IcePic’s maintained
performance across these tougher tests indicates the model has
strong generalization and should maintain performance outside of
our database. For the interested reader, further regression metrics
for IcePic’s performance are provided in SI Appendix, section S2
along with the performance of other dummy models.

The Water Contact Layer Is Sufficient to
Accurately Determine Nucleation

The fact that IcePic can determine nucleation ability is itself an
interesting physical insight into nucleation. It should be noted
that no information on the substrate is given to the model. Hiding
substrate properties could be expected to limit the model to
prediction across a single substrate type, thereby removing the
variation in substrate behavior the model is lacking. However, the
model is observed to predict nucleation irrespective of the par-
ticular substrate. It therefore appears that the water contact layer
alone is sufficient to determine—and therefore understand—the
nucleation behavior induced by substrates.

Fig. 2. Performance of IcePic across different test datasets containing unseen structures; in each case the training dataset consists of all other systems in the
database. (Left) Plot of IcePic’s (bars) and the dummy model’s (circles) RMSE values, along with the best achievable error (gray region) and the error achieved in
random stratified sampling as reported in Fig. 1 (yellow dashed line). (Right) Images of a representative system from each test dataset over which the model’s
performance was assessed: OH groups (red) with different tiling patterns, cuts of LJ FCC crystals (atoms colored by height), and a variety of graphene and
graphene oxide like systems (carbon in gray, OH in red).
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Prior to making conclusions, it is important to first address
the context of the model’s training and application. Namely, it
has been employed using a coarse-grained water model upon
idealized model substrates. This is of great use in extracting general
insights; however, it is reasonable to question the accuracy of the
simulations. The model was therefore employed upon simulations
from literature that can be expected to more accurately portray
real INPs: AgI in contact with an aqueous electrolyte solution
represented by the atomistic transferable intermolecular potential,
4 point, 2005 (TIP4P/2005) water model (46) with Na− and Cl+
ions represented by the Madrid model (47, 48), cholesterol mono-
hydrate (CHLM) in contact with the atomistic TIP4P/Ice water
model (23, 49), and the clay kaolinite in contact with TIP4P/Ice
water (28, 50). Compared to the mW water model these TIP4P
atomistic simulations both have an order of magnitude increase
in cost and require orders of magnitude slower cooling ramps to
see crystallization, making it not computationally practical in this
study to measure values of T for these systems. This makes it
unfeasible to give a one-to-one determination between the values
of T predicted by IcePic (presented in SI Appendix, Table S1)
and the true value. Furthermore, using the water contact layer
to recognize CHLM as a strong nucleator can be expected to be
particularly challenging given that its nucleation ability is due to
an “ability of flexible hydrophillic surfaces to form unconventional
ice-templating structures” (23). However, the model recognizes
all systems as strong INPs, orders them correctly in terms of
nucleation ability, and distinguishes between the preferential nu-
cleation behavior between the two polar faces of AgI. These
statements are justified in SI Appendix, section S4 by comparing
IcePic’s predictions to experimental and simulation studies on
these systems in the literature.

The application of the model to a structurally diverse range
of INPs—an inorganic crystal, an organic crystal, and a clay—
has provided further evidence that the water contact layer is
indeed sufficient to determine nucleation. This indicates that
long-discussed metrics of the substrate such as lattice match or
hydrophobicity are not necessarily required to predict nucleation.

Although such metrics will of course affect the resulting water
contact layer, the water contact layer alone encodes enough in-
formation to satisfactorily predict behavior.

Deciphering the Water Contact Layer

The water contact layer is sufficient to determine nucleation, and
the model can make these inferences. Therefore, removing the
black box nature of the model yields the opportunity to improve
our understanding of the nucleation mechanism. The scope of the
possible insight is determined by the model’s learning procedure;
deep learning is a type of representation learning, and here the
only input has been the raw image data (pixels), from which the
model learned features to determine nucleation behavior—readers
who are unfamiliar with these machine learning techniques are
referred to SI Appendix, section S7. Successfully applying reverse
interpretation methods enables these features to be extracted,
affording new insights. To this end, Shapley additive explanations
(SHAP) were applied to IcePic (Materials and Methods) (51). This
allowed us to assign a value to the effect on the model’s output,
Tpred , associated with each pixel of an image.

Materials displaying extremes of behavior in nucleation are
of the greatest interest to technological application and natural
phenomena; therefore, we looked to use IcePic to identify highly
active and inactive water contact layers with regards to nucleation.
The assignment of each pixel’s effect on Tpred facilitated this: to
extract images recognized by IcePic as being active for nucleation,
simply take those with the largest proportion of pixels which act to
increase Tpred against those that decrease Tpred . Similarly, taking
images with the largest proportion of negative to positive pixels
allows the extraction of images that IcePic recognizes as inactive
to nucleation.

Fig. 3 shows water contact layers composed of simple unit cells:
squares, rectangles, rhombi, and hexagons. Each of these patterns
can both induce and suppress nucleation. The respective ability
of these patterns to promote nucleation is dependent on their
length scale. They each can strongly induce nucleation, when at

Fig. 3. Identification of water contact layer patterns that can transition from being active (Top) to inactive (Bottom) to ice nucleation by changing their length
scale. Area density images (blue color bar; Top) show water contact layers passed to IcePic—in each case a unit cell has been identified (square, rectangle,
rhombus, or hexagon). SHAP density images (blue-white-red color bar; Bottom) show the same images of water contact layers but with the pixels colored by
their effect on IcePic’s output: Tpred .
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an optimal length scale for ice nucleation, and can each suppress
nucleation, when at a length scale that is suboptimal for ice
nucleation. By length scale here we refer to the magnitude of the
respective unit cell vectors. This can be physically understood by
the following. Nucleation is induced (high T ) when the unit cells
form water contact layers that increase the chance of a critical ice
nucleus forming, which triggers the conversion of water to ice.
Conversely, nucleation is suppressed (low T ) when the unit cells
form water contact layers that must undergo large rearrangement
to form ice and thus impair the ability of ice nuclei to form. Each
of these patterns’ dual ability to induce and suppress nucleation
originates from their ability to form over a range of length scales;
this allows them to transition from water contact layers that need
little rearrangement to form ice (giving high T ), to those that are
far from the ice lattice and thus impair the ability of ice to form
(giving low T ).

Identifying the dual ability of these patterns highlights the
importance of scale. For instance, matching a face of ice is a long-
postulated way to strongly induce ice nucleation (32); however,
even though the square, rhombus, and hexagonal unit cells are
found on particular ice faces, they can also strongly suppress
nucleation by changing their length scale. Using the patterns
in Fig. 3, intelligent design and/or discovery of both potent ice
promoters and inhibitors could be achieved, most obviously via
substrate lattice match to the unit cell and scale that corresponds
to the desired behavior.

The existence of extremes (high to low T ) indicates a contin-
uum of behaviors must exist—quantifying this would enable a
fine tuning of nucleation behavior. To date, this would require di-
rectly obtaining such patterns (via intelligent design of substrates)
and directly measuring nucleation ability (an expensive/difficult
process). However, this can now be rapidly explored with IcePic
by feeding artificial images to the model. This is presented in
SI Appendix, section S5; it enables the transition from inducing
to suppressing nucleation to be directly observed and quantified.
Interestingly, a periodicity is predicted for all the unit cells, where
nucleation ability is somewhat recovered at half length scales of
the optimum. We find systems that support this prediction and
postulate the recovery is due to the formation of coincidence site
lattices (52, 53).

Utilizing the Water Contact Layer: How to Infer
Nucleation Behavior

So far, we have shown that the water contact layer is enough
to accurately determine a substrate’s nucleation ability: proper
utilization of the water contact layer could therefore give insight
into INPs. However, we have also shown that humans currently
lack the ability to make reliable inferences, so improving perfor-
mance would be desirable. This may appear to be a difficult task;
indeed, humans are generally worse at pattern recognition than
deep neural networks (54–56). However, improvements can still
be made. Namely, the fact that human performance was worse
than dummy models indicated that our intuition is misleading
us: a gap in understanding has thus been identified—one that is
concerning given the widespread discussion of water contact layers
in ice nucleation literature. In this section we aim to understand
how water contact layers determine a materials ice nucleation
ability by 1) investigating archetypal errors made by humans and
2) calling upon insights from IcePic, namely, the importance of
scale.

Underestimations by humans occur primarily through fail-
ures to recognize active patterns for nucleation. We provide two

Fig. 4. Archetypal errors made by humans when predicting nucleation tem-
peratures. Mean values predicted for each image by quiz respondents are
shown as Thuman.

examples of this in Fig. 4. The first is the easiest to address: a failure
to recognize a face of ice causes large underestimations. In ref.
44, water contact layers with high similarity to any of the faces
of the ice I polytypes (hexagonal, cubic, and stacking disordered)
were shown to give large T . Failure to recognize faces (beyond,
e.g., the basal face of hexagonal ice) results in huge errors; we thus
emphasize the importance of considering the other ice faces. The
second is harder to recognize as it is a pattern active to nucleation
but does not appear to derive from a face of ice (the same is true
for the rectangular unit cell of Fig. 3; we note that neither pattern
matches the particular rectangular symmetry present on the prism
face of ice). The solution is simply that this pattern must be noted
as active to nucleation and searched for.

Conversely, two examples of overestimations by humans are
provided in Fig. 4. First, a human might recognize a known unit
cell for nucleation (e.g., hexagon from the basal face, drawn to
correct scale in yellow in Fig. 4) and thus return a high value of T .
However, as highlighted in Deciphering the Water Contact Layer,
the scale of the pattern is key, and deviations can cause major
changes in behavior. Second, when a known unit cell appeared,
humans failed to make the distinction between it occurring in
empty rather than occupied regions. It is the patterns in the water
density that matter, not the patterns made by empty space.

Finally, we combine these human errors with insights from
IcePic to create an approximate guide to determine how the
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water contact layer induced by a material determines its nucle-
ation ability. Specifically, we suggest taking the following into
consideration:

1. Look for active patterns for nucleation, both those derived and
those not derived from ice.

2. If a recognizable pattern is present, determine the scale: Is the
pattern matching the optimum scale? If not, is it at half length
scales and thus possibly forming a coincidence site lattice? A
quantitative estimate of the dependence on scale can be taken
from SI Appendix, Fig. S5.

3. Consider deformation: does the pattern truly match an active
unit cell, or is it a deformed version? A high degree of sensitivity
to deformation has been observed in this study.

4. Ensure the pattern identified is occurring in the occupied
regions. Patterns in empty regions are not physically there and
are simply misleading.

Discussion

In this work, we have demonstrated a deep neural network that
accurately predicts the ability of substrates to promote nucleation.
The model uses images of the water contact layer at room temper-
ature as input and returns the temperature at which nucleation
proceeds uninhibited, T . A high performance is achieved with
RMSE of 6.3 K, MAE of 3.7 K, and R2 of 0.91. In addition, the
model generalizes well to unseen substrates and appears to work
well for atomistic simulations of complex solid–liquid interfaces.
Predicting the nucleation ability of substrates a priori has re-
mained an open challenge for decades. The desire originates from
the innumerable impacts of ice nucleation in technology and the
natural world, coupled with the extreme difficulty in measuring
candidates on a case-by-case basis. Here we have obtained an
easy, cheap, and rapid way to discern the nucleation ability of
substrates.

The fact the model works shows that the water contact layer
alone is sufficient to determine nucleation behavior, meaning
that properties of the substrate are not necessarily required. This
invariance to the substrate is an interesting physical insight that
was shown to apply across the database as well as an inorganic
crystal, an organic crystal and a clay. Furthermore, this invariance
is also very beneficial to applications of the model: it reduces the
required training of the model and yields strong generality. To
give an example, the model is primed for screening across crystal
structure databases (e.g., refs. 57–60) to find novel materials
with desired nucleation abilities. Correctly ranking materials by
nucleation ability is perhaps more important than error here, and
confidence in IcePic’s ability to do this is given by its Spearman’s
rank correlation coefficient of 0.89. Discovering novel materials
is an exciting prospect for future work, with potential impacts on
technological developments and our understanding of the myriad
ice phenomena in nature.

A benefit of applying deep learning techniques has been en-
abling a simple and physically motivated input to the model that
can be measured both computationally and experimentally. Tra-
ditional attempts to understand ice nucleation via computational
work have relied on hand-designed microscopic quantities which
cannot readily be determined in experiment. In contrast, IcePic
could be deployed in experiment by feeding it images generated by
scanning tunnelling and atomic force microscopy; prior work has
imaged water with the necessary resolution (61–64). Predictions
of nucleation behavior could be applied to—and complement—
the large body of work undertaken to accurately determine how
water assembles itself at interfaces (17). However, experimental

images are usually taken on low-coverage or monolayer water,
which can have different structures from the high-coverage contact
layers used in this work (65). This may affect IcePic’s performance,
but if this proves true, it can readily be addressed by training a
similar model on monolayer images of water.

Using reverse interpretation methods enabled insights into how
to infer nucleation behavior from the water contact layer, some-
thing that our polling revealed humans lacked the ability to do.
Specifically, unit cells with a dual ability to promote and suppress
nucleation were identified. This highlights the importance of scale.
Feeding artificial images enabled the transition to be quantified,
which in turn enables a fine tuning of nucleation behaviors:
decide on the desired behavior, locate the unit cells and scales
associated, and design or search for substrates that would give
this. Furthermore, the feeding of artificial images serves as an
example of how such a model can be utilized to rapidly answer
queries of interest. Combining these insights with the archetypal
errors made by humans allowed a guide to be created on how the
water contact layer induced by a material determines its nucleation
ability.

With regard to discovery or intelligent design of INPs, this
work formulates this as a two part problem: 1) determine the
water contact layer given by the material and 2) use the water
contact layer to predict nucleation behavior. The model could
thus form part of future composite models—by playing the role
of deciding whether a design is good or not for nucleation—
that could, for example, be used to design ice-inhibiting surfaces
for aeronautics and ice-promoting surfaces for geoengineering.
Composite models have been a widespread success in artificial
intelligence, with famous recent examples being the AlphaZero
(66) and AlphaFold (67) models, to name just a few.

Finally, with the hope that future work will utilize and extend
this study, we have released the model, and the code to generate the
model and inputs at https://doi.org/10.17863/CAM.81078. The
code is also available on GitHub at https://github.com/mbdavies1
3/IcePic. We invite interested researchers to try the model on their
simulation and/or experimental data. Providing further systems to
the model in training, and thus further physics, would inevitably
help overall performance and generality. Furthermore, extending
to other systems of interest and/or properties is an exciting avenue
for future work. The methodology presented here can readily
be employed on the countless systems of interest in physical
and materials science. The approach removes the requirement
for creating hand-designed descriptors entirely, thus enabling the
rapid development of models for prediction of properties. Initial
efforts will focus on those where a close relationship to the water
structure is expected such as dynamical properties (diffusion,
viscosity, and friction). Connection between properties could
then also be studied; for instance, if transfer learning or mul-
tioutput regression improves performance compared to isolated
models, then this would provide strong evidence for causative
links [e.g., between nucleation and dynamics (68)]. Extending
to areas other than water/ice where a better understanding of
nucleation is also highly sought after, such as pharmaceutical drug
design, colloids, and fine chemicals, would be of great interest.
One could also use the method to train a model to predict the
heterogeneous nucleation rate (J ), an observable that has the
benefit of being measurable in both experiment and simulation.
However, determination of J over a large corpus of systems
(a requirement to generate the model’s training data) could be
challenging due to the computational cost/complexity of extract-
ing J , which typically requires enhanced sampling techniques
(19, 31).
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Materials and Methods

MD. All MD simulations from which T has been determined have been re-
ported in earlier studies (35, 44). Heterogeneous nucleation was modeled as
indicated in Fig. 1A, whereby water molecules were placed in contact with a
slab of substrate, periodic in (x, y). The substrate database consists of 1,119
different substrate–water systems: the LJ systems from ref. 34; graphitic and
graphite oxide surfaces modeled in a manner similar to those in refs. 43 and
40, respectively; the OH group patterns from ref. 33; and 219 LJ and OH group
systems generated in ref. 44. As detailed in ref. 44, simulations were performed
with the large-scale atomic/molecular massively parallel simulator code (69),
used the coarse-grained mW water model (70), sampled the constant number of
particles, constant volume, and constant temperature (NVT) canonical ensemble,
and determined T over five cooling ramps per system. Simulation boxes are∼ 45
to 60 Å in (x, y), with 4,000 to 6,000 water molecules, giving layers of 35 to 60 Å
thickness.

Images of the Water Contact Layer. To generate images, NVT simulations at
293 K were performed for 4 ns and sampled every 0.5 ps, after an initial equilibra-
tion of 0.5 ns. The water contact layer was defined via the water number density
profile in z: specifically the region enclosing the largest peak in the density. An
example of this with further details is provided in SI Appendix, section S1. Images
are generated by placing a rotationally symmetric normalized two-dimensional
Gaussian at the location of each atom, upon a fine grid with spacing 0.01 nm.
The image is normalized by the total number of trajectory frames. In atomistic
simulations, positions of the oxygen atoms of water molecules were taken, and
hydrogen atoms were neglected; this ensured consistency between the coarse-
grained and atomistic simulations. This can also be consistent with experiment;
for instance, atomic force microscopy techniques have been employed to gener-
ate high-resolution images of water that predominantly measure oxygen atoms,
with only modest contributions from the hydrogen atoms (61). If solutes were
present, as in the AgI simulation, they were included in the images. Final images
were taken to have dimension (200, 200) which physically represents 2 nm in
each dimension, at a resolution of 0.01 nm.

Machine Learning. The primary version of IcePic—reported in Fig. 1—was
trained on 70% of the systems and performance tested over the remaining
30%; the split was performed with random stratified sampling such that the
distribution of T is conserved, and performance was averaged over six of these
splits.

Convolutional neural networks (CNNs) were used in this study and were built
using the Python libraries Keras, which is freely available at (https://keras.io), and
Tensorflow (71). As input, the networks take images with dimensions of (50, 50)
with a single channel, resized from the original (200, 200) images generated in
simulation, resulting in a physical resolution of 0.04 nm per pixel. Basic building

blocks consist of sequential convolutional layers, followed by batch normaliza-
tion, and then a maximum pooling layer; this approximately follows the architec-
ture of visual geometry group (VGG) blocks (72). Further details on the network
architectures are detailed in SI Appendix, sections S7 and S8 and Table S2. CNNs
were fitted using the Adam optimizer (73) with the mean squared error as the
loss function. Deep neural networks can have high variance due to the stochastic
nature of their training; thus, final predictions were taken by combining multiple
models into committees (or ensembles) and taking the mean of their predictions.
To ensure rotational and translational invariance, data augmentation techniques
were employed on the training database, whereby rotated and translated ver-
sions of images were given to the model; this is also a well-known technique
to ensure greater generality in the features learned by CNNs and thus improve
accuracy in image recognition.

SHAP is a game theory approach, which utilizes a power set of a model’s
features to decompose the impact of each feature on the model’s output (51). This
was applied to IcePic to decompose the relationship between the model inputs
(image pixels) and the resulting output (Tpred). This enables each pixel of an image
to be assigned a quantitative value on its effect on Tpred .

Human Poll. Human performance was recorded via an online quiz which asked
people to label T from a selection of images from our database. In total, 59
responses were received. Detailed results are provided in SI Appendix, section S3.
The overall average of the scores is reported in Fig. 1. A PDF file of the quiz web
page along with the correct answers is provided.

The poll was approved by the University of Cambridge following the guide-
lines established by the University Research Ethics Committee. All respondents
gave informed consent before participating.

Data Availability. All data and code that support the findings of this
study are openly available at the University of Cambridge Data Repository
(Apollo; https://doi.org/10.17863/CAM.81078) (74). The code to generate the
models and inputs has also been deposited in GitHub (https://github.com/
mbdavies13/IcePic) (75). All data needed to evaluate the conclusions in the paper
are present in the paper and/or the SI Appendix.
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59. S. Gražulis et al., Crystallography open database—An open-access collection of crystal structures.
J. Appl. Crystallogr. 42, 726–729 (2009).

60. N. Mounet et al., Two-dimensional materials from high-throughput computational exfoliation of
experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

61. A. Shiotari, Y. Sugimoto, Ultrahigh-resolution imaging of water networks by atomic force microscopy.
Nat. Commun. 8, 14313 (2017).

62. C. Lin et al., Ice nucleation on a corrugated surface. J. Am. Chem. Soc. 140, 15804–15811 (2018).
63. D. Halwidl et al., Adsorption of water at the SrO surface of ruthenates. Nat. Mater. 15, 450–455 (2016).
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