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Abstract

A class of over-braced but typically flexible body-hinge frameworks is de-
scribed. They are based on polyhedra with rigid faces where an independent
subset of faces has been replaced by a set of holes. The contact polyhedron
C describing the bodies (vertices of C) and their connecting joints (edges of
C) is derived by subdivision of the edges of an underlying cubic polyhedron.
Symmetry calculations detect flexibility not revealed by counting alone. A
generic symmetry-extended version of the Grübler-Kutzbach mobility count-
ing rule accounts for the net mobilities of infinite families of this type (based
on subdivisions of prisms, wedges, barrels, and some general inflations of a
parent polyhedron). The prisms with all faces even and all barrels are found
to generate flexible perforated polyhedra under the subdivision construction.

The investigation was inspired by a question raised by Walter Whiteley
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about a perforated polyhedron with a unique mechanism reducing octahe-
dral to tetrahedral symmetry. It turns out that the perforated polyhedron
with highest (Oh) point-group symmetry based on subdivision of the cube
is mechanically equivalent to the Hoberman Switch-Pitch toy. Both objects
exhibit an exactly similar mechanism that preserves Td subgroup symme-
try over a finite range; this mechanism survives in two variants suggested
by Bob Connelly and Barbara Heys that have the same contact graph, but
lower initial maximum symmetry.

Keywords: rigidity, mobility, cubic polyhedron, symmetry

1. Introduction

A trend in the treatment of mobility of frameworks composed of arrays
of bodies connected by hinges is of the application of symmetry, wherever
possible, to the counting of net mobility m − s, the balance of freedoms
and constraints (or equivalently of mechanisms and states of self-stress)
[11, 12, 19, 5, 21, 22, 32, 28, 31]. One particular flexible framework realised
as a PolydronTM model was described in a 2014 Fields Institute lecture by
Walter Whiteley, at a meeting held to mark his 70th birthday; his observa-
tion of a symmetry-breaking mechanism of the model inspired the present
investigation of an open-ended class of mobile frameworks based on the cubic
polyhedra.

The basic object that sparked this investigation is W. Two further vari-
ants, R and B, emerged in discussions with Bob Connelly and Barbara Heys.
In W six disjoint square faces of an octahedrally symmetric Archimedean
polyhedron, the (small) rhombicuboctahedron [7], have been replaced by
holes. B is also derived from this polyhedron. R is derived from the pseudo-
rhombicuboctahedron discovered by Miller, as described in [29]. All three
objects are illustrated in Figure 1. All exhibit a symmetry-breaking finite
mechanism. Application of the established techniques for symmetry exten-
sion of mobility rules [19] leads to an account of net mobility in all three
structures. Interestingly, the explanation for the finite mechanism in W,
which takes the structure from octahedral Oh to tetrahedral Td symmetry,
turns out to be identical with the symmetry account of the mechanism of the
famous Hoberman Switch-Pitch toy [23, 4]

The motivation for our symmetry treatment of an infinite class of struc-
tures is the initially surprising flexibility of some heavily over-constrained
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(a)

(b)

(c)

Figure 1: Physical models of W, R and B, constructed from Magnetic PolydronTM com-
ponents. Rows (a), (b) and (c) correspond to W, R and B, respectively. Each row shows
points on the path of the characteristic mechanism: initial high-symmetry configuration;
the distortion mechanism, showing the halving of the symmetry group; the fully collapsed
configuration after the pathway has passed through the multifurcation.
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objects. W is an object with maximum octahedral rotational and reflec-
tional symmetry belonging to the point group Oh, which has 48 symmetry
operations. Although over-braced by six states of self-stress according to
simple counting, this framework has a mechanism that preserves the 24 sym-
metries of the tetrahedral Td point group along a finite path that proceeds
down from the high-symmetry point until a special geometry is reached where
multifurcation into lower symmetries takes place. The multi-branched path-
way for further distortion starts at the point where each of four square faces
becomes co-planar with its neighbours and can individually move radially in
or out. Variants R (C4v) and B (D4h) show similar mechanisms that lead to
halving of the symmetry group, with branching, and the possibility of further
symmetry loss, at the co-planarity point or points. Figure 1 shows snapshots
along the path of the mechanism in W, R and B. In the following, we use
the symmetry-extended mobility criterion to place the flexes of W, R and B
in the context of infinite families of perforated polyhedra.

While we restrict attention to symmetric structures and their symmetry-
induced mobility in this paper, we note that the mobility analysis of generic
perforated polyhedral structures (without symmetry), under the term ‘block-
and-hole’ polyhedra, is currently also an active area of research. In particular,
it was shown in [10] that under certain conditions, a generic embedding of a
simplicial spherical polyhedron (which is rigid by Cauchy’s rigidity theorem)
remains rigid if a triangulated disc is cut out and new constraints are added
into an essentially disjoint disc to create a rigid sub-structure (or rigid block).
This result was very recently extended to structures with one rigid block and
an arbitrary number of holes [6]. Moreover, it was shown in [9, 6] that
swapping the rigid blocks for holes and vice versa does not alter the rigidity
properties of these perforated structures. The approach used here suggests
that investigation of symmetry aspects of these general results for block-and-
hole polyhedra and block-hole exchange would be a natural next step. This
extension is currently in progress.

2. Symmetry-extended mobility criteria

The classic [24] counting criterion for mobility (relative freedoms) m− s
of a mechanical linkage composed of n bodies connected by g joints is

m− s = 6(n− 1)− 6g +

g∑
i=1

fi, (1)
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where the mobility is defined by the difference between the number of mech-
anisms (m) and states of self-stress (s), and each joint i permits fi relative
freedoms.

As discussed elsewhere [19], this counting criterion can be derived for-
mally by supposing one body to be fixed, then allowing for the six relative
freedoms of each of the other (n − 1) bodies, then counting constraints by
considering each joint to remove six freedoms but to restore fi of them. Ef-
fectively, we are supposing the system to be at first rigidly glued but then to
be freed up at each joint by the appropriate number of allowed freedoms.

The symmetry extension of (1) for a linkage in a starting position with
point group G is expressed in terms of representations of the group, Γ, and
properties of the contact polyhedron C. It is [19]

Γ(m)− Γ(s) = (Γ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γfreedoms, (2)

where Γ(m) and Γ(s) are the representations of the mechanisms and states of
self-stress. In this equation, Γ(v, C) is the permutation representation of the
vertices of C. (A permutation representation of a set has character χ(S) for
operation S equal to the number of objects in the set that are left in place by
the operation S.) Γ‖(e, C) is the representation of a set of vectors along the
edges of C and has characters that depend on the number of edges unshifted
under a given operation and on the effect of the operation on the directions of
vectors along those edges. Γ0 is the totally symmetric representation (Γ(S) =
1 for all S); ΓT and ΓR are respectively the representations of rigid-body
translations and rotations. Lastly, the term Γfreedoms is the representation of
the total set of freedoms notionally restored by the unfreezing of joints in
the procedure described above. We will also find useful the antisymmetric
representation, Γε, which has characters χ(S) = 1 for proper operations and
χ(S) = −1 for improper operations.

The notion of the contact polyhedron C encapsulates the relationships
between bodies and joints: each rigid element is associated with a vertex of
C, and each joint is associated with an edge. C is embedded in space, and G is
the point group of the embedded structure. The vertices of C are embedded
in the appropriate 2D or 3D space, in a geometry that is consistent with the
point group symmetry of the array of bodies and joints. Thus, C may have
undetermined lengths and angles, where the symmetry allows. The term
‘contact polyhedron’ can be a misnomer, as C is not always three-connected
and may sometimes have a non-planar graph, but it seems to be the term
that is used for this object: ‘embedded contact graph’ would be more precise.
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(a)

(b)

(c)

Figure 2: Three perforated polyhedral structures based on the Whiteley example, shown
as three-dimensional skeletons, Schlegel diagrams, and contact graphs. (a) The Whiteley
structure (W) is derived by removing six disjoint square faces that occupied the octahedral
positions in the Archimedean small rhombicuboctahedron [7]. (b) Variant R is obtained
by rotating the top layer of W by π/4 about a fourfold axis. (c) Variant B is obtained
by rotating the middle layer instead. The three structures have related Schlegel diagrams
(shown with holes unshaded) and all have the same contact graph C (that of a subdivided
cube), but with different identifications between the 12 square and 8 triangular bodies and
the vertices of C.
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All the terms in (2) are either calculated for the particular structure
(Γ(v, C), Γ‖(e, C), Γfreedoms) or are determined by the group and can be looked
up in standard character tables [1, 2]. The freedoms term is determined by
simple physical reasoning. In the case we envisage here, the bodies are placed
at the vertices and edge-midpoints of some polyhedron P . The graph of C
is then the subdivision of the graph of P (which, of course, means that C
is not a polyhedron, as it is only 2-connected). The joints correspond to
the edges of the subdivision, two for each original edge of P , and each is a
non-torsional hinge (i.e., has a hinge line that is not collinear with the line of
centres of the bodies that the hinge connects). The freedom allowed by the
joint in this case is a relative rotation of the two connected bodies about the
hinge line. When C lies on a spherical shell, as here, this relative rotation
is fully symmetric under any operation that preserves the associated edge
of C. Hence, Γfreedoms in (2) can be replaced by Γ(e, C), the permutation
representation of the edges of C, to give the specific body-hinge form of the
symmetry-extended mobility equation appropriate to W and to structures
like it:

Γ(m)− Γ(s) = (Γ(v, C)− Γ‖(e, C)− Γ0)× (ΓT + ΓR) + Γ(e, C). (3)

Figure 2 shows the skeletons, Schlegel diagrams and contact graphs of
the three objects W, R and B. Their mobility is explored in the next section.
Figure 3 defines the conventions used for the settings of the symmetry groups
that feature in the discussion.

3. Mobility of the Whiteley structure and variants

The equation (3) can be applied directly to the W framework and its
variants R and B. In the tabular form that we have used elsewhere [11, 19],
the calculation of characters for W at the high-symmetry point is
This gives the reducible representation

(W,Oh): Γ(m)− Γ(s) = A2u − A1u − T1g − T2u, (4)

and tells us that there are at least seven states of self-stress spanning sym-
metries A2u (one) and T1g and T2u (three each) and at least one mechanism
of symmetry A1u. The scalar count (1) gives, with n = 20, g = 24, and
fi = 1 for all i: m − s = 6(20 − 1) − 6 × 24 + 24 × 1 = −6, telling us only
that the structure is over-braced, with an excess of 6 states of self-stress over
mechanisms.
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Figure 3: Generic contact graph C for structures W, R and B. The bodies occupy the
vertices of the subdivided cube, and the hinges are represented by the edges. For the
purpose of using symmetry to give labels to mechanisms and states of self-stress, the
groups Oh, C4v and D4h are chosen such that the class of σd reflection planes always
includes the symmetry plane that runs diagonally from lower left to upper right in the
Schlegel diagram of C, i.e., including six vertices of C. In all three groups, x lies along the
horizontal axis of the diagram, y along the vertical axis and z is normal to the plane of
the paper. In this convention the unique mechanism, which preserves the special σd plane
for all three perforated polyhedra, has the symmetry of the xyz cubic harmonic.

Oh E 8C3 6C2 6C4 3C2
4 i 6S4 8S6 3σh 6σd

Γ(v, C) 20 2 2 0 0 0 0 0 4 6
−Γ‖(e, C) −24 0 0 0 0 0 0 0 0 −4
−Γ0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−5 1 1 −1 −1 −1 −1 −1 3 1
×(ΓT + ΓR) 6 0 −2 2 −2 0 0 0 0 0

−30 0 −2 −2 2 0 0 0 0 0
Γfreedoms 24 0 0 0 0 0 0 0 0 4

−6 0 −2 −2 2 0 0 0 0 4

Hence, counting without symmetry has shown the structure to be over-
constrained, with at least six states of self-stress. Symmetry has revealed the
existence of a mechanism, balanced by a total of seven symmetry-detected
states of self-stress; the A2u mechanism is one-dimensional (as it is of type
A) but is symmetry-breaking in the full Oh point group (as it is not of type
A1g).

Motion along the mechanism reduces the point group symmetry to the
group composed of those operations of Oh for which A2u has character +1.
This group is Td. In the lower symmetry, the mobility representation is

(W, Td): Γ(m)− Γ(s) = A1 − A2 − 2T1. (5)
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As there is no state of self-stress of A1 symmetry to block the mechanism
[25, 20, 30], the mechanism is finite. Manipulation of the physical model sug-
gests that there is no other mechanism in the initial tetrahedral structures.
In principle, the symmetry calculation gives only lower bounds on the num-
bers of mechanisms and states of self-stress, as there could be equisymmetric
mechanisms and states of self-stress with cancelling contributions to the total
Γ(m)− Γ(s) and hence undetectable by symmetry. In particular, symmetry
has nothing to say about the location of the multifurcation point that ap-
pears further down the A2u pathway, as the additional mobility at that point
depends on a specific geometry at which sets of faces become coplanar.

The mechanism has the same symmetry as the xyz cubic harmonic in
both symmetry groups: A2u in Oh, A1 in Td.

Mobility of the other two variant structures can be calculated in a similar
way. Variant R has C4v symmetry and could be treated by making a new
table for this group, but as R and W have the same contact graph, the re-
sult follows by descent in symmetry, by simply deleting irrelevant operations
from the W table. The scalar count is m − s = −6, as before, since scalar
counting corresponds to taking the character under the identity operation.
The symmetry count (in the setting of C4v indicated in Figure 3) is

(R, C4v): Γ(m)− Γ(s) = B2 − 2A2 −B1 − 2E, (6)

with the finite B1 mechanism now leading initially to a C2v point group in a
setting where the σd mirror planes of the structure are preserved, and where
the mobility detected by symmetry is

(R, C2v): Γ(m)− Γ(s) = A1 − 3A2 − 2B1 − 2B2. (7)

The interpretation is the same as for W, with appropriate changes to repre-
sentation labels. Again, the mechanism has the symmetry of the xyz har-
monic.

For the third variant, B, the calculation is similar. In maximum symme-
try, B has the dihedral D4h symmetry, which is again a subgroup of Oh. The
result for the mobility representation is

(B,D4h): Γ(m)− Γ(s) = B1u − A2g − Eg − A1u −B2u − Eu, (8)

with the symmetry-detected B1u mechanism leading to structures with point
group D2d and

(B,D2d): Γ(m)− Γ(s) = A1 − 2A2 −B1 − 2E. (9)
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Once more, the mechanism is equisymmetric with the cubic harmonic xyz.
The mechanism is ‘generic’ for the three subdivisions of the graph of the

cube. The full octahedral symmetry of W is in a sense an accident; the
mechanism survives in the group of the more general square prism (B) and
the group of the square pyramid (R) where the symmetry elements that
exchange top and bottom faces of the prism are lost. We can also imagine
general versions of W, R and B based on [n]-prisms, with groups Dnh, Cnv
and Dnh. These will be discussed below.

Structure W is based on a decoration of the cube, but analogous structures
belonging to the tetrahedral and icosahedral point groups are also easily
envisaged. Experimentally, removal of an independent set of four triangular
faces from the cuboctahedron (with 12 vertices, 6 square and 8 triangular
faces) is found to give a rigid structure. Analysis in the Td group gives the
result

Γ(m)− Γ(s) = −A1 − E − T2, (10)

corresponding exactly to the six states of self-stress implied by the scalar
count of −6. Experimentation with the physical model confirms that no
mechanism has been missed out in this case. An explanation of ‘why’ the
states of self-stress representation has the particular form A1+E+T2 follows
from detailed considerations about the symmetries of cubic polyhedra (see
Section 4).

Analogous reasoning for the icosahedrally symmetric small rhombicosi-
dodecahedron [7] (which has 60 vertices, 12 pentagonal faces, each to be
replaced by holes, 30 square and 20 triangular faces) gives a result that re-
veals a triply degenerate mechanism for the high-symmetry Ih structure:

Γ(m)− Γ(s) = T2u − Au − T1g −Hu. (11)

There are multiple distortive pathways that take the structure down five-fold,
three-fold and two-fold branches of the subgroup tree. These pathways have
featured in several of our studies of mechanisms and symmetry breaking in
icosahedral structures and packings [13, 18].

As this section has shown, arrangement of faces and holes on just three
polyhedral frameworks has already yielded systems with many, one and no
symmetry-detectable mechanisms, respectively. A more general model will
encompass all three types of behaviour and show that infinite families with
each type of behaviour can be predicted.
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4. A model for perforated structures based on cubic polyhedral
parents

4.1. Construction

A construction that includes all the examples discussed so far is based on a
general cubic polyhedron (a polyhedron whose skeleton is a cubic polyhedral
graph, hence a polyhedron with all vertices of degree three). The graph of the
starting n-vertex polyhedron P is decorated by addition of an extra vertex
of degree two at the midpoint of each edge of P i.e., by edge subdivision of
P . The new graph S(P ) is the skeleton of the contact polyhedron C for a
perforated structure H with an obvious embedding based on the embedding
of P . Figure 3 shows the contact graph common to the examples of W, R
and B discussed earlier; in these simple cases, the polyhedron P is the cube.

If P has n vertices, C has n degree-three and 3n/2 degree-two vertices,
representing 5n/2 bodies, and 3n edges representing joints. Each face of P
corresponds to a hole in H. In the most symmetrical realisation, the bodies
corresponding to vertices of P would be triangles and those corresponding
to edge-midpoints of P would be rectangles (see Figure 4).

Figure 4: A construction of flexible polyhedra that generalises examples W, R and B. A
cubic polyhedron P (left) is subdivided to give the subdivision S(P ) (centre) as the contact
graph C of the structure (right) composed of triangular and rectangular rigid plates with
holes replacing the original faces of P (indicated by circles).

4.2. Mobility formula

The general expression (3) for the mobility of the object H with contact
polyhedron C applies here, but it can also be reformulated in terms of the
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parent polyhedron P . As all vertices of C are either original vertices of P ,
or lie at edge centres of P (Figure 5, top line),

Γ(v, C) = Γ(v, P ) + Γ(e, P ). (12)

The edges of C can be taken in symmetric and antisymmetric combinations
aligned with the original edges of P , so (Figure 5, bottom line)

Γ(e, C) = Γ(e, P ) + Γ‖(e, P ), (13)

where Γ‖(e, P ) is the representation of a set of vectors along the edges of P .
Likewise, the vector representation Γ‖(e, C) is equal to the same sum,

Γ‖(e, C) = Γ(e, P ) + Γ‖(e, P ), (14)

as no symmetry operation of P has the effect of reversing in place an arrow
on one of the derived edges in C.

+

+≡

≡
Figure 5: Relations between component symmetries in the contact graph C and its cubic
parent P : vertices (top); edges of C (bottom). Vertices common to both P and C are
shown as solid circles, vertices that belong to C alone are shown as open circles.

Substitution of (13) and(14) into (3) gives

Γ(m)−Γ(s) = (Γ(v, P )−Γ‖(e, P )−Γ0)×(ΓT +ΓR)+Γ(e, P )+Γ‖(e, P ), (15)

which could be interpreted as the mobility of an object that has P rather
than S(P ) as its contact polyhedron, but has an extra set of mechanisms
consisting of ‘slides’ along the edges of P .

We can go further by taking explicit account of the fact that P is a cubic
polyhedron. For a cubic polyhedron, the representation Γ(v, P )× ΓT , which
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is the symmetry of orthoschemes of local vectors attached to the vertices of
P (i.e., the so-called mechanical representation of vibrational theory [33]) is
related to edge representations as

Γ(v, P )× ΓT = Γ(e, P ) + Γ‖(e, P ), (16)

implying
Γ(v, P )× ΓR = Γ(e, P )× Γε + Γ⊥(e, P ). (17)

Equation (16) is the basis of a force-field model for the vibrations of cubic
polyhedral frameworks [3]. For such polyhedra, the freedoms of the vertices,
which encompass internal vibrations and rigid-body motions, span the same
symmetry as the complete set of edge stretches and edge slides, in contrast
to the vibrations of the dual deltahedral frameworks, which can be described
by a purely edge-stretching force field.

The edge terms in (15) can be simplified by using spherical-shell theo-
rems for the π representation [26, 27, 16] associated with the edges, i.e., the
symmetry of the set of tangential vectors along and across edges:

Γ(e, P )× ΓT = Γ(e, P ) + Γ‖(e, P ) + Γ⊥(e, P ), (18)

Γ(e, P )× ΓR = Γ(e, P )× Γε + Γ⊥(e, P ) + Γ‖(e, P ), (19)

and hence the terms needed for simplification of (15) are

Γ‖(e, P ) = Γ(v, P )× ΓT − Γ(e, P ) (20)

and

Γ‖(e, P )× (ΓT + ΓR) = (Γ‖(e, P ) + Γ⊥(e, P ))× ΓT

= (Γ(e, P )× ΓT − Γ(e, P ))× ΓT

= Γ(e, P )× ΓT × ΓT − Γ(e, P )× ΓT . (21)

Collecting terms, (15) becomes

Γ(m)− Γ(s) = Γ(v, P )× ΓT − Γ(e, P )× Γ� − (ΓT + ΓR), (22)

or,
Γ(m)− Γ(s) + ΓT + ΓR = Γ(v, P )× ΓT − Γ(e, P )× Γ�, (23)

where edge-vector representations have been eliminated at the cost of intro-
ducing a new constant representation Γ� that depends on the group but not
on the particular polyhedron and is defined by,

Γ� = ΓT × ΓT − 2ΓT − Γε = (ΓT − Γ0)× (ΓT − Γ0)− (Γε + Γ0). (24)
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4.3. Character computation

The advantage of the formulation set out in the preceding section is that
it reduces the calculation of mobility of the structure H with contact polyhe-
dron C to counting of the edge and vertex elements of P that are in special
positions. Specifically, the vertices of a cubic polyhedron can lie on, at most,
E, C3 and σ symmetry elements, and edges can be preserved by at most E,
C2 and σ. Now, ΓT has trace χT (Cφ) = 2 cosφ + 1, and hence χT (C3) = 0,
and for any reflection Γ� has trace χT (σ) = 0. Furthermore, as P is cubic,
the trace under the identity is

χRHS(E) = m− s+ 6 = 3n− 2(3n/2) = 0, (25)

which simply re-expresses the net overbracing by six states of self-stress. The
only terms on the RHS of (23) that survive under other operations give traces

χRHS(C2) = −2e2 (26)

and
χRHS(σ) = vσ, (27)

where e2 is the number of edges of P fixed by the given C2 axis (e2 = 2, 1,
or 0) and vσ is the number of vertices of P fixed by the given mirror plane.

The mobility of all perforated structures constructed according to the
recipe of subdivision of a cubic polyhedral parent can therefore be calculated
using a tabular calculation based on (23), but concentrating on C2 and σ
operations only, notionally filling out the reducible character with a zero
under all other operations, and then subtracting ΓT + ΓR, the representation
of the rigid-body motions. Hence for W, the calculation in Oh needs only
the reduced set of columns

Reduced Oh 6C2 3σh 6σd
Γ(v, P )× ΓT 0 0 4
−Γ(e, P )× Γ� −4 0 0
Γ(m)− Γ(s) + ΓT + ΓR −4 0 4

(with zero χRHS(R) implied for all other operations R) which reduces to
−A1u +A2u + T1u − T1u, and after subtraction of ΓT + ΓR = T1u + T1g, gives

Γ(m)− Γ(s) = A2u − A1u − T1g − T2u,
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exactly as calculated from (23) with the full character table.
The vertex/edge form (23) for the mobility criterion is well adapted to

treatments of infinite families of structures built from cubic polyhedra and
results are listed in the next section. These include calculation of the mobility
of structures derived from subdivision of polyhedra belonging to the families
of prisms (and their relatives, the wedges and barrels), multilayer prisms,
leapfrogs and quadruples, as shown in the following.

5. Examples

5.1. Prisms as parents P

The [N ]-prism has two faces of size N , and N faces of size 4. It is
convenient to treat odd and even prisms separately.

The odd prism has two distinguished faces of size N = (2p + 1), with
maximum point-group symmetry D(2p+1)h, which is a subgroup of the group
of the centro-symmetric cylinder, D∞h. Calculations can be carried out in
the higher group retaining only C ′2, σv and σh symmetry elements. Reflection
in the horizontal mirror plane shifts all vertices. An odd prism has vσ = 2
for the (2p+ 1) σv reflections, and e2 = 1 for the (2p+ 1) C ′2 rotations.

The mobility representation for a system with contact graph C formed
by the subdivision is therefore

D∞h: Γ(m)− Γ(s) = −Σ+
u − Σ−u − Πu − Πg, (28)

or, for finite p,

D(2p+1)h: Γ(m)− Γ(s) = −A′′1 − A′2 − E ′1 − E ′′1 . (29)

Symmetry has therefore detected six states of self-stress but no mechanism
for systems based on the odd prism.

On the other hand, the even prism has two distinguished faces of size
N = 2p, with maximum point-group symmetry D2ph (or exceptionally, for
p = 2, Oh). The even prisms do not extrapolate to the D∞h supergroup, as
for all finite p there are two classes of vertical mirror planes and two classes
of C2 axes perpendicular to the main axis. However, extrapolation along
the series D4h,D6h,D8h,D10h [1] shows the appropriate limiting form of the
representations. An even prism has vσ = 4 for σd, and vσ = 0 for σv, e2 = 0
for C ′2, and e2 = 2 for C ′′2 operations and for the C2 operation associated with
the principal axis. Calculations must be carried out separately for N = 4q+2
and N = 4q. The mobility representation for a system with contact graph C
formed by the subdivision of the even prism is
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C

D2ph(W
′)

↓
Dpd(W

′)

C2pv(R
′)

↓
Cpv(R

′)

D2ph(B
′)

↓
Dpd(B

′)

Figure 6: Non-isomorphic flexible perforated polyhedra based on a single contact graph. C
is the contact graph formed by subdivision of the [2p]-prism. W′, R′ and B′ are symmetrical
realisations with 4p triangular and 6p rectangular bodies. All three have single mechanisms
giving initial descent to a halving point group, as indicated. For 2p = 4, W′ can achieve
the higher Oh symmetry, with initial descent to Td.
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D(4q+2)h: Γ(m)− Γ(s) = B1g − A1u − A2g −B2g − E1g − E1u; (30)

D(4q)h: Γ(m)− Γ(s) = B1u − A1u − A2g −B2u − E1g − E1u. (31)

Symmetry detects seven states of self-stress and a non-degenerate mechanism
for all even-prism parents. The B1g/B1u symmetry of the mechanism implies
a motion where alternate three-coordinate vertices of C move up and down
parallel to the main axis, with top and bottom rings moving in phase.

5.2. Wedges as parents P

Further results for two families related to prisms are straightforwardly
obtained. The first is the family of wedges. From any [N + 1]-prism it is
possible to construct a cubic polyhedron with n = 2N vertices that has
two faces of the maximum possible size, which is N + 1. This is done by
‘squeezing out’ one square face from between top and bottom faces of the
prism. More precisely, the [N ]-wedge polyhedron has two faces of size N that
share a common edge, which also links two triangular faces; the remaining
N − 3 faces are square. For N > 3, the point group symmetry of the wedge
polyhedron is C2v. Subdivision of the edges leads to the contact graph of a
perforated polyhedron which has no symmetry-detected mechanism, but six
states of self-stress that span representations −A1− 3A2−B1−B2 (odd N),
or −A1 − 2A2 − B1 − 2B2 (even N) in C2v. Hence, the symmetry approach
predicts all wedges to be rigid.

5.3. Barrels as parents P

The second family derived from prisms comprises the barrels. The [N ]-
barrel is constructed by placing two N -gons as in a prism and replacing the
central cyclic strip of square faces by a cycle of 2N vertices joined alternately
to vertices in top and bottom faces. The resulting polyhedron has 2N pen-
tagonal faces, N in the corona of each N -gonal face. An example is shown
as a Schlegel diagram in Figure 5.3. The symmetry of the [N ]-barrel is DNd,
the point group of the [N ]-antiprism; for the special case of N = 5, there
is the possibility of achieving Ih symmetry when the [5]-barrel is equilateral
and coincides with the regular dodecahedron.

The symmetry treatment of perforated polyhedra with DNd barrels as
parents predicts in every case a single mechanism, in spite of the obvious
overbracing of the construction. Each barrel has no edges on the principal
axis, two edges on each C ′2 axis, and four vertices in each σd plane, and hence
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Figure 7: Schlegel diagram of the [N ]-barrel with N = 9.

by (26) and (27) has mobility representation B2−A2− 2B1−E1−EN−1 for
even N , and A2u − 2A1u − A2g − E1g − E1u for odd N . The mechanism has
the symmetry of a translation along the principal axis.

Case of N = 5 in maximum Ih symmetry, is special. In the Ih group, the
symmetry approach detects a triply degenerate mechanism and nine states of
self-stress (see equation (11)). Descent in symmetry from Ih to D5d, a choice
consistent with restriction of equivalence to the 2N pentagonal faces around
the body of the barrel, gives T2u → A2u+E2u, T1g → A2g+E1g, Au → A1u and
Hu → A1u+E1u+E2u, and the triply degenerate mechanism breaks up into a
single mechanism of A2u symmetry and a pair of E2u symmetry. In the lower
symmetry group, the pair is equisymmetric with a pair of states of self-stress
and hence no longer gives rise to a mechanism that is detectable by symmetry.
The surviving A2u mechanism has the symmetry of a translation along the
principal axis, even though the T2u set of mechanisms in Ih corresponds to
a set of cubic harmonics, rather than to the cartesian triple {x, y, z}.

5.4. Families of non-isomorphic perforated polyhedra based on a common
contact graph

The objects W, R and B are examples of this type. All have the same
contact polyhedron (the subdivision of the cube), and essentially differ only
in the point-group symmetry imposed by the specifics of the various bodies
and hence the embedding of that contact graph in space. As noted in the in-
troduction, the three objects are related by rotations of layers of bodies with
respect to a C4 axis. A straightforward extension is to apply this rotation
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technique to the realisations of the contact polyhedron that arises from sub-
division of the [2p]-prism. (See Figure 6.) If the bodies are arranged in three
layers (top: an alternating cycle of 2p triangles and 2p rectangles; middle:
an alternating cycle of 2p squares and 2p holes; bottom: as top layer), we
can construct analogues W′, R′ and B′ of W, R and B.

It is easy to see that all three cases have the same representation Γ(m)−
Γ(s) as that calculated for the subdivision of the even prism (Section 5.1)
in the appropriate point group, and that all will share the same symmetry-
detected mechanism.

5.5. Inflated cubic polyhedra as parents P

Cubic polyhedra can be inflated to yield other cubic polyhedra using the
family of Goldberg-Coxeter transformations [8, 14]. Two transformations
of interest in applications to fullerenes for example are the leapfrog L and
quadrupling Q inflations [17]. Both preserve the point group symmetry of
the parent. Given an n-vertex parent P , L produces a cubic polyhedron with
3n vertices, and Q produces one with 4n vertices.

The various reducible representations for sets of structural components of
the polyhedra L(P ) and Q(P ) can be derived from those of P . These rela-
tions suggest some interesting questions about the effects of transformations
on perforated polyhedra.

5.5.1. Leapfrog polyhedra as parents

The leapfrog operation can be described in several equivalent ways, one
of which is illustrated in Figure 8. Each face of P is replaced by a rotated
inset of itself, and all new vertices are joined by edges perpendicular to the
original edges of P ; vertices and edges of P are then discarded.

For leapfrogs of cubic polyhedra [17],

Γ(v,L(P )) = Γ(v, P )× ΓR + Γ(e, P )− Γ(e, P )× Γε (32)

and
Γ(e,L(P )) = Γ(v, P )× ΓT + Γ(e, P ). (33)

Consider two perforated polyhedra. One is derived from P , i.e., it has
contact graph C = S(P ). The other is derived from L(P ) and has contact
graph S(L(P )). Mobilities of each can be calculated in G, the point group
of both P and L(P ), using (23). We can ask the question: When is the
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P L(P ) Q(P )

Figure 8: Transformation of faces of polyhedon P under leapfrog (L(P )) and quadrupling
(Q(P )) transformations.

symmetry-predicted mobility Γ(m)−Γ(s) equal for the perforated polyhedra
based on a polyhedron P and its leapfrog?

Define the mobility difference ΓLP as the representation Γ(m) − Γ(s)
calculated with parent L(P ) minus Γ(m)−Γ(s) calculated with P as parent.
This representation is

ΓLP = Γ(v, P )× {ΓR − Γ0 − Γ�} × ΓT − Γ(e, P )× {ΓR − ΓT}. (34)

ΓLP has character zero under all but reflection operations, for which χLP (σ) =
2e‖ + 2e⊥ − 2vσ = 2(e⊥ − e‖), where e‖ and e⊥ are respectively the num-
bers of edges of P lying in and crossing the σ mirror plane, and vσ is the
number of vertices of P lying in that plane. The same result for χLP (σ)
could be derived by noting that leapfrogging affects e‖ and e⊥ as follows:
e‖(L(P )) = e⊥(P ) = 1

2
vσ(L(P )) and e⊥(L(P )) = 3e‖(P ).

By either route, various conditions applying to equality of Γ(m) − Γ(s)
for perforated polyhedra with C = S(L(P )) and C = S(P ) can be derived.
The two structures have the same Γ(m)− Γ(s) if P is chiral, i.e., belongs to
a pure rotational group Cn, Dn, T , O, I, or P is achiral but belongs to a
group that contains no reflection elements, i.e., Ci, S2n.

The smallest chiral cubic polyhedron has n = 10 vertices (see e.g., [15])
and is of C2 symmetry. All perforated polyhedra with C2 parents are with-
out symmetry-detectable mechanisms as Γ(m) − Γ(s) has χ(E) = −6 and
χ(C2) = 2 = −e2, and so is −(2 + e2)A − (1 + e2)B. Similar reasoning
shows that all perforated polyhedra with D2 or DN (N odd) parents also
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lack symmetry-detectable mechanisms. Symmetry-detectable mechanisms
are, however, possible for D4 and D6 parents P .

The two structures have different Γ(m)−Γ(s) if P is bipartite and belongs
to a group with a reflection plane, i.e., Cs, Cnh, Cnv, Dnh, Dnd, Td, Th, Oh,
Ih; this follows as a bipartite polyhedron has only even faces, and any mirror
plane cuts the polyhedron with either e‖ 6= 0 and e⊥ = 0 or e‖ = 0 and
e⊥ 6= 0.

When P is non-bipartite and belongs to a group with one or more mirror
planes, the two perforated polyhedra share mobility Γ(m)−Γ(s) if e‖ = e⊥ for
every mirror plane. Examples include those with P the tetrahedron (leapfrog
= truncated tetrahedron) and the dodecahedron (leapfrog = truncated icosa-
hedron, skeleton of the C60 molecule).

Double leapfrogging restores the orientation of those faces derived from
the original parent. From (32), (33)and (34) it follows that if structures with
C = S(P ), C = S(LP ), and C = S(L2P ) are all to share a common mobility
Γ(m) − Γ(s), it is necessary to have e‖(P ) = e⊥(P ) = vσ(P ) = 0 for every
reflection plane σ. This condition can be achieved if and only if parent P
has no reflection planes. In particular, all chiral parents P give an infinite
chain of perforated polyhedra based on C = S(Lq(P )), q = 0, 1, . . . that all
share the same mobility.

5.5.2. Quadrupled cubic polyhedra as parents

In quadrupling, each face of P is replaced by an unrotated inset of it-
self and new vertices are joined by new edges to the corresponding original
vertices of P ; all original edges of P are discarded (see Figure 8).

For quadruples of cubic polyhedra,

Γ(v,Q(P )) = Γ(v, P ) + Γ(v, P )× ΓT (35)

and

Γ(e,Q(P )) = Γ(v, P )× ΓT + Γ(e, P ) + Γ⊥(e, P )

= Γ(v, P )× (ΓT + ΓR) + Γ(e, P )× (Γ0 − Γε), (36)

and hence from (23), the mobility of a structure whose parent is Q(P ), i.e.,
of a structure with contact graph C = S(Q(P )), can be written in terms of
the vertex and edge representations of the original polyhedron P as

Γ(m)− Γ(s) + ΓT + ΓR = Γ(v, P )× {Γ0 + ΓT − Γ� − Γε × Γ�} × ΓT

−Γ(e, P )× {Γ0 − Γε} × Γ�}. (37)
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In this equation, the RHS has non-zero trace only for reflection planes σ,
where χ(σ) is 4e‖(P ). A simple consequence is that Γ(m) − Γ(s) for C =
S(Q(P )) includes no mechanism detectable by symmetry if P belongs to a
point group without mirror planes.

Quadrupling can preserve the mobility Γ(m) − Γ(s) in other circum-
stances. Perforated polyhedra with C = S(P ) and C = S(Q(P )) can share
the same mobility, e.g., when vσ = 2e‖ = 0, as in a cylindrical polyhedron of
appropriate symmetry that has a belt of zig-zag hexagonal faces.

6. Connection with the Hobermann Switch-Pitch

The Hobermann Switch-Pitch is a toy that presents a tetrahedrally sym-
metric (T ) exterior, and exhibits a transformation from a symmetric cover-
ing of the sphere that switches between two visually different closed forms
when tossed in the air. This inside-out transformation is accomplished by
movement along a unique mechanism, as the structure passes through a high-
symmetry open configuration of O symmetry. The manufactured object has
special gearing to restrict the motion to a single mechanism that passes
through any potential multifurcation points with preservation of symmetry.
The lack of reflection symmetry at all points along the pathway is not in-
trinsic to the nature of the mechanism, but is caused by an aesthetic choice
of the shapes for the moving parts. These superficial differences disappear
at the level of the contact graph, C. As a graph, C is identical with that
derived from W , and, if we move up to the Oh supergroup and down to O,
the symmetry analysis [4] proceeds exactly as in section 3, with deletion of
all improper operations in the case of the Switch-Pitch. Thus, Γ(m)−Γ(s) is
exactly as in (4) after removal of g/u labels, and hence predicts a mechanism
that entails descent in symmetry from O to T .

We note that this connection between the Switch-Pitch and the perforated
polyhedron W has also been observed by Walter Whiteley and communicated
to the present authors.

7. Conclusion

Symmetry extension of counting rules has been shown to explain obser-
vations of mobility in some heavily overconstrained systems and to suggest
several classes of generalised objects where flexibility also survives the over-
bracing. Necessary conditions for such mobility take the form of counts
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applied under key elements of symmetry, and typically improve on the stan-
dard mobility count, which can be seen as counting under the identity element
alone.
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