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Abstract

The central concern of this paper is parameter heterogeneity in models speci�ed
by a number of unconditional or conditional moment conditions and thereby the
provision of a framework for the development of apposite optimal m-tests against
its potential presence. We initially consider the unconditional moment restrictions
framework. Optimal m-tests against moment condition parameter heterogeneity
are derived with the relevant Jacobian matrix obtained in terms of the second or-
der own derivatives of the moment indicator in a leading case. GMM and GEL
tests of speci�cation based on generalized information matrix equalities appropri-
ate for moment-based models are described and their relation to optimal m-tests
against moment condition parameter heterogeneity examined. A fundamental and
important di�erence is noted between GMM and GEL constructions. The paper is
concluded by a generalization of these tests to the conditional moment context and
the provision of a limited set of simulation experiments to illustrate the e�cacy of
the proposed tests.

JEL Classi�cation: C13, C30
Keywords: GMM, GEL, Unconditional Moments, Conditional Moments, Score and

LM Tests, Information Matrix Equality.
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1 Introduction

For econometric estimation with cross-section and panel data the possibility of individual

economic agent heterogeneity is a major concern. In particular, when parameters repre-

sent agent preferences investigators may wish to entertain the possibility that parameter

values might vary across observational economic units. Although it may in practice

be di�cult to control for such parameter heterogeneity, the formulation and conduct

of tests for parameter heterogeneity are often relatively straightforward. Indeed, in the

classical parametric likelihood context, Chesher (1984) demonstrates that the well-known

information matrix (IM) test due to White (1982) can be interpreted as a test against

random parameter variation. In particular, the White (1980) test for heteroskedasticity

in the classical linear regression model is a test for random variation in the regression

coe�cients. Such tests often provide useful ways of checking for unobserved individual

heterogeneity.

The central concern of this paper is parameter heterogeneity in models speci�ed by

moment conditions and thereby the provision of a framework for the development of

apposite optimal m-tests against its potential presence. We consider both unconditional

and conditional model settings. Based on the results in Newey (1985a), to formulate

an optimal m-test we �nd the linear combination of moment functions with maximal

noncentrality parameter in the limiting noncentral chi-square distribution of a class of

m-statistics under a local random parameter alternative. In a leading case, the optimal

linear combination has a simple form, being expressed in terms of the second order own

derivatives of the moments with respect to those parameters that are considered possibly

to be random, multiplied by the optimal weighting matrix. Thus, the moment conditions

themselves provide all that is needed for the construction of test statistics for parameter

heterogeneity.

We also consider generalized IM equalities associated with e�cient two-step (2S) gen-

eralized method of moments (GMM) [Hansen (1982)] and generalized empirical likelihood

(GEL) [Newey and Smith (2004), henceforth NS, and Smith (1997, 2011)] estimation.
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The 2SGMM-based version of the generalized IM test statistic employs all second deriva-

tives including cross-derivatives of the moments. The GEL form is associated with a more

general form of parameter heterogeneity test involving additional components that may

be interpreted in terms of a particular correlation structure linking the sample Jacobian

and the random variates driving potential parameter heterogeneity.

To provide a background for the subsequent discussion section 2 reconsiders the IM

test of White (1982) and its interpretation as a test against parameter heterogeneity in

Chesher (1984). We then consider the e�ect of parameter heterogeneity on moment con-

ditions in section 3 and derive the optimal linear combination to be used in constructing

the tests in a leading case when the sample Jacobian is uncorrelated with the random

heterogeneity variate. We give alternative Lagrange multiplier and score forms of the

optimal m-statistic that, using the results of Newey (1985a), maximize asymptotic local

power. Section 4 of the paper provides moment speci�cation tests obtained by consider-

ation of generalized forms of the IM equality appropriate for e�cient 2SGMM and GEL

estimation. These statistics are then compared with those against moment condition

parameter heterogeneity developed in section 3. Components of the 2SGMM form co-

incide with those of section 3 whereas the GEL statistic incorporates additional terms

that implicitly allow for a particular form of correlation between the sample Jacobian

and the random variates potentially driving parameter heterogeneity. These results are

illustrated by consideration of empirical likelihood, a special case of GEL that allows

a direct application of the classical likelihood-based approach to IM test construction

discussed in section 2. The results of earlier sections are then extended in section 5 to

deal with models speci�ed in terms of conditional moment conditions. Section 6 provides

a set of simulation experiments to illustrate the potential e�cacy for empirical research

of the tests proposed in the paper. The paper is concluded in Section 7. The Appendices

contain relevant assumptions and proofs of results and assertions made in the main text.

Throughout the text (xi; zi), (i = 1; :::; n), will denote i.i.d. observations on the

observable dx-dimensional covariate or instrument vector x and the dz-dimensional vector

z that may include a sub-vector of x. The vector � denotes the parameters of interest
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with B the relevant parameter space. Positive (semi-) de�nite is denoted as p.(s.)d. and

f.c.r. is full column rank. Superscripted vectors denote the requisite element, e.g., aj is

the jth element of vector a. UWL will denote a uniform weak law of large numbers such

as Lemma 2.4 of Newey and McFadden (1994), and CLT will refer to the Lindeberg-L�evy

central limit theorem. \
p!" and \ d!" are respectively convergence in probability and

distribution.

2 The Classical Information Matrix Test

We �rst consider the classical fully parametric likelihood context and brie
y review the

information matrix (IM) test initially proposed in the seminal paper White (1982). See,

in particular, White (1982, section 4, pp. 9-12). The interpretation presented in Chesher

(1984) of the IM test as a Lagrange multiplier (LM) or score test for neglected (parameter)

heterogeneity is then discussed.

For the purposes of this section it is assumed that z has (conditional) distribution

function F (�; �) given covariates x known up to the p�1 parameter vector � 2 B. We omit

the covariates x from the exposition where there is no possibility of confusion. Suppose

also that F (�; �) possesses Radon-Nikod�ym conditional density f(z; �) = @F (z; �)=@v

and that the density f(z; �) is twice continuously di�erentiable in � 2 B.

2.1 ML Estimation

The ML estimator �̂ML is de�ned by

�̂ML = argmax
�2B

1

n

nX
i=1

log f(zi; �):

Let �0 2 B denote the true value of � and E0[�] denote expectation taken with

respect to f(z; �0). The IM I(�0) is then de�ned by I(�0) = �E0[@2 log f(z; �0)=@�@�0],

its inverse de�ning the classical Cram�er-Rao e�ciency lower bound. Under standard

regularity conditions, see, e.g., Newey and McFadden (1994), �̂ML is a root-n consistent
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estimator of �0 with limiting representation

n1=2(�̂ML � �0) = �I(�0)�1n�1=2
nX
i=1

@ log f(zi; �0)=@� +Op(n
�1=2): (2.1)

Consequently the ML estimator �̂ML has an asymptotic normal distribution described

by

n1=2(�̂ML � �0) d! N(0; I(�0)�1):

2.2 IM Equality and IM Speci�cation Test

With E[�] as expectation taken with respect to f(z; �), twice di�erentiation of the identity

E[1] = 1 with respect to � demonstrates that the density function f(z; �) obeys the

familiar IM equality

E[
1

f(z; �)

@2f(z; �)

@�@�0
] = E[

@2 log f(z; �)

@�@�0
] + E[

@ log f(z; �)

@�

@ log f(z; �)

@�0
]

= 0:

Therefore, under correct speci�cation, i.e., z distributed with density function f(z; �0),

and given the consistency of �̂ML for �0, by an i.i.d. UWL, the contrast with zero

1

n

nX
i=1

1

f(zi; �̂ML)

@2f(zi; �̂ML)

@�@�0
=

1

n

nX
i=1

[
@2 log f(zi; �̂ML)

@�@�0

+
@ log f(zi; �̂ML)

@�

@ log f(zi; �̂ML)

@�0
]

consistently estimates a p� p matrix of zeroes. The IM test of White (1982) is a (condi-

tional) moment test [Newey (1985b)] for correct speci�cation based on selected elements

of the re-scaled moment vector1;2

n1=2
nX
i=1

1

f(zi; �̂ML)
vec(

@2f(zi; �̂ML)

@�@�0
)=n: (2.2)

1Apart from symmetry, in some cases there may be a linear dependence and, thus, a redundancy
between the elements of @2f(z; �)=@�@�0, in particular, those associated with parametric models based
on the normal distribution, e.g., linear regression, Probit and Tobit models.

2Chesher and Smith (1997) provides a likelihood ratio form of (conditional) moment speci�cation
test. An attractive feature of this test is that it admits a \Bartlett correction" by division by a scale
factor that creates a statistic with higher order accuracy as compared to conventional moment-based
tests.
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2.3 Neglected Heterogeneity

The IM test may also be interpreted as a test for neglected heterogeneity; see Chesher

(1984). To see this we now regard � as a random vector and the density f(z; �) as the

conditional density of z given �. Absence of parameter heterogeneity corresponds to

� = �0 almost surely.

Suppose that the marginal density of � is ��p=2h((� � �0)0(� � �0)=�) where � � 0 is

a non-negative scalar, this density being a location-scale generalisation of the spherically

symmetric class [Kelker (1970)]. Given the symmetry of h(�) in �, E[�] = �0, where

E[�] here denotes expectation with respect to the density of �. Equivalently, writing

� = �0+�
1=2w, w has the symmetric continuous density h(w0w). Thus, likewise, E[w] = 0.

The formulation of neglected heterogeneity via the scalar � = 0, rather than the matrix

counterpart var[�1=2w], is adopted solely to simplify exposition. Absence of (parameter)

heterogeneity corresponds to � = 0 (rather than var[�1=2w] = 0) since then � = �0 almost

surely.

The marginal density of the observation vector z isZ
f(z; �0 + �

1=2w)h(w0w)dw

with consequent score associated with � given by

1

2
��1=2

1R
f(z; �0 + �1=2w)h(w0w)dw

Z
w0
@f(z; �0 + �

1=2w)

@�
h(w0w)dw:

Evaluation at � = 0 yields the indeterminate ratio 0=0 suggesting the use of L'Hôpital's

rule on the ratio3

1

2
�1=2

Z
w0
@f(z; �0 + �

1=2w)

@�
h(w0w)dw=�:

3Alternatively specifying the marginal density of � as ��ph((���0)=�) with h(�) symmetric and � a
non-negative scalar and writing � = �0 + �w, then w has continuous density h(w) with E[w] = 0. Thus
the marginal density of z is

R
f(z; �0 + �w)h(w)dw with score with respec to �

1R
f(z; �0 + �w)h(w)dw

Z
w0
@f(z; �0 + �w)

@�
h(w)dw:

In this set-up the absence of (parameter) heterogeneity corresponds to � = 0 and evaluation of the score
with respect to � at � = 0 yields 0 since E[w] = 0, i.e., the score for � is identically zero at � = 0. This
di�culty is resolved by the reparameterisation � = �2. Cf. Lee and Chesher (1986).
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Taking the limit lim�!0+ gives the score for � as

1

2
tr(

1

f(z; �0)

@2f(z; �0)

@�@�0
var[w]): (2.3)

Consequently, given the non-singularity of var[w], cf. Chesher (1984, Assumption

(ii), p.867), the expression (2.3) suggests a (conditional) moment or score test statistic

[Newey (1985b)] for the absence of parameter heterogeneity based on the non-redundant

elements of the moment indicator

1

f(z; �0)

@2f(z; �0)

@�@�0
; (2.4)

i.e., the indicators on which the IM test statistic is based; cf. (2.2). See Chesher (1984,

p.686). Apart from the scalar parameter case, however, the classical IM test is sub-

optimal examining a wider alternative hypothesis than neglected parameter heterogene-

ity, an optimal test being based on the diagonal elements of (2.4); see the discussion

preceding Theorem 3.1 below.

3 Moment Condition Models

In many applications, researchers �nd the requirement to provide a full speci�cation for

the (conditional) density f(z; �) of the observation vector z necessitated by ML to be

unpalatable. The alternative environment we consider is one that is now standard, where

the model is de�ned by a �nite number of non-linear unconditional moment restrictions;

cf. the seminal paper Hansen (1982).

Let g(z; �) denote an m � 1 vector of known functions of the data observation z

and, as above, � a p � 1 parameter vector with m � p. In the absence of parameter

heterogeneity, we assume there is a true parameter value �0 which uniquely satis�es the

moment condition

Ez[g(z; �)] = 0; (3.1)

where Ez[�] denotes expectation taken with respect to the (unknown) distribution of z.

[8]



Given their �rst order asymptotic equivalence under correct speci�cation, we adopt

the generic notation �̂ for both e�cient 2SGMM and GEL estimators for �0 obtained

under the moment constraint (3.1) where there is no possibility of confusion; see sections

4.1 and 4.2 below where 2SGMM and GEL are brie
y described.

3.1 Optimal m-Tests

To describe the form of an optimal m-statistic relevant for testing moment condition

neglected heterogeneity we initially consider a general hypothesis testing environment.

Write � = (�0; �0)0 where � is an r-vector of additional parameters. Suppose that

the maintained hypothesis is de�ned by a value �0 = (�00; �
0
0)
0 satisfying the moment

condition

Ez[g(z; �0)] = 0:

Also suppose the null hypothesis under test is �0 = 0 with the two sided alternative

hypothesis �0 6= 0; we then write the vector of moment functions under �0 = 0, cf. (3.1),

as g(z; �) = g(z; 0; �). Let gi(�) = g(zi; �), (i = 1; :::; n), and ĝ(�) =
Pn
i=1 gi(�)=n.

Then, by a random sampling CLT, under the hypothesis �0 = 0,
p
nĝ(�0)

d�! N(0;
)

where 
 = E[g(z; �0)g(z; �0)
0] which is assumed to be non-singular.

In this general setting, tests for �0 = 0 may be based on a linear combination L

of the sample moments ĝ(�) evaluated at �̂, i.e., L0ĝ(�̂); see, e.g., Newey (1985a). Let

G = (G�; G�) be f.c.r. p+ r where G� = E[@g(z; 0; �0)=@�
0] and G� = E[@g(z; �0)=@�

0].

The optimality concept employed here is de�ned in terms of asymptotic local power

against local alternatives of the form �0n = �=n1=2 where � 6= 0. Among the class

of test statistics with a limiting chi-square null distribution with r degrees of freedom

those statistics with largest non-centrality parameter are optimal. An optimal m-test

for �0 = 0 is then de�ned by setting L0 = G0�

�1, see Proposition 3, p.241, of Newey

(1985a). An asymptotically equivalent statistic to that given in Newey (1985a) is the

Lagrange multiplier (LM) version of Newey and West (1987), i.e.,

[9]



nĝ(�̂)0
̂�1Ĝ(Ĝ0
̂�1Ĝ)�1Ĝ0
̂�1ĝ(�̂); (3.2)

where Ĝ and 
̂ denote estimators for G and 
 respectively consistent under the null

hypothesis �0 = 0.

3.2 Neglected Heterogeneity

The approach adopted here is similar to that of Chesher (1984) for the classical likelihood

context described above in section 2.3. As there, for ease of exposition, we centre � at

�0 and write

� = �0 + �w;

in terms of the non-negative scalar parameter �, � � 0, and the p-vector of random

variables w.

Assumption 3.1 (Parameter Heterogeneity.) The parameter vector � is a random vec-

tor with (unconditional) mean �0.

Under Assumption 3.1, Ew[w] = 0, where Ew[�] is expectation taken with respect to the

marginal distribution of w. An absence of neglected heterogeneity corresponds to the

hypothesis � = 0; cf. fn.3 above and Chesher (1984).

With parameter heterogeneity, since it often represents an economic-theoretic con-

straint, we re-interpret the moment condition (3.1) as being agent speci�c. Hence, we

rewrite (3.1) in terms of expectation taken with respect to the distribution of z conditional

on �, i.e., w,

Ez[g(z; �)jw] = 0; (3.3)

where Ez[�jw] is expectation conditional on w; cf. section 2.3.
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Let Ez;w[�] be expectation with respect to the joint distribution of z and w. The

Jacobian with respect to � is then given by

G�(�0; �) = Ez;w[
@g(z; �)

@�
]

= Ez;w[
@g(z; �0 + �w)

@�0
w]

= Ew[Ez[
@g(z; �0 + �w)

@�0
jw]w]:

Evaluation of the Jacobian G�(�0; �) at � = 0 results in

G� = G�(�0; 0) (3.4)

= Ez;w[
@g(z; �0)

@�0
w]

= Ew[Ez[
@g(z; �0)

@�0
jw]w]:

In general, of course, the di�culty that arises in the classical context described in

section 2.3 is absent. That is, the null hypothesis Jacobian G� is not identically zero

unless w and @g(z; �0)=@�
0 are uncorrelated. However, the Jacobian expression (3.4)

does not permit an optimal m-statistic to be constructed without further elaboration

concerning the joint distribution of z and w.

The remainder of this section considers the leading case in which the null hypothesis

Jacobian G� is identically zero, i.e., conditions under which w and @g(z; �0)=@�
0 are

uncorrelated are examined. We return to the general case in section 4 when we consider

generalized IM statistics appropriate for the moment condition context and where this

leading case implicitly features centrally in the analysis; see, in particular, sections 4.1

and 4.2.

First, G� is identically zero if the derivative matrix @g(z; �0)=@�
0 is conditionally

mean independent of w since from (3.4) then

G� = Ez[
@g(z; �0)

@�0
]Ew[w] = 0

as Ew[w] = 0 from Assumption 3.1. Such a situation would arise when random variation

in the parameters is independent of the observed data. Indeed, this assumption may

[11]



be reasonable for many applications, but is likely not to be satis�ed in models with

simultaneity, where the data are partly determined by the value of the parameters.

We now summarise the above discussion in the following results.

Lemma 3.1 Under Assumption 3.1, the Jacobian with respect to � is identically zero in

the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if w and @g(z; �0)=@�
0

are uncorrelated.

Corollary 3.1 If Assumption 3.1 is satis�ed, the Jacobian with respect to � is identically

zero in the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if @g(z; �0)=@�
0

is conditionally mean independent of w.

To gain some further insight, consider a situation relevant in many applications in

which the moment condition (3.1) arises from a set of moment restrictions conditional

on a set of instruments or covariates x; see section 5. Consequently, we re-interpret the

moment condition under parameter heterogeneity (3.3) as being taken conditional on

both instruments x and w, i.e.,

Ez[g(z; �)jw; x] = 0;

where Ez[�jw; x] denotes expectation conditional on w and x. Assumption 3.1 is corre-

spondingly revised as

Assumption 3.2 (Conditional Parameter Heterogeneity.) The parameter vector � is a

random vector with conditional mean �0 given covariates x.

Now Ew[wjx] = 0 with Ew[�jx] expectation taken with respect to w conditional on x.

The conditional mean independence of w and x of Assumption 3.2 is rather innocuous

as it may not be too unreasonable to hazard that the heterogeneity component w should

not involve the instruments x. The Jacobian (3.4) with respect to � is then

G�(�0; �) = Ex[Ez;w[
@g(z; �0 + �w)

@�
jx]] (3.5)

= Ex[Ez;w[
@g(z; �0 + �w)

@�0
wjx]]:

[12]



Evaluation of the Jacobian G�(�0; �) at � = 0 results in

G� = Ex[Ez;w[
@g(z; �0)

@�0
wjx]]:

The next result is then immediate.

Lemma 3.2 Under Assumption 3.2, the Jacobian with respect to � is identically zero in

the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if w and @g(z; �0)=@�
0

are conditionally uncorrelated given instruments x.

The condition of Lemma 3.2 is satis�ed in the following circumstances. Rewrite the

Jacobian (3.5) using the law of iterated expectations as

G� = Ex[Ew[Ez[
@g(z; �0)

@�0
jw; x]wjx]]

= Ex[Ez[
@g(z; �0)

@�0
jx]Ew[wjx]];

the second equality holding if the derivative matrix @g(z; �0)
0=@� is conditionally mean

independent of w given x. We may therefore state

Corollary 3.2 Under Assumption 3.2, the Jacobian with respect to � is identically zero

in the absence of parameter heterogeneity, under � = 0, i.e., G� = 0, if @g(z; �0)
0=@� is

conditionally mean independent of w given covariates x.

Cf. fn.3 in section 2.3. Such a situation would arise if the derivative matrix @g(z; �0)
0=@�

is solely a function of x. Examples include static (nonlinear) panel data models but the

conditions of Lemma 3.2 and Corollary 3.2 would generally not be satis�ed for dynamic

panel data or simultaneous equation models.

To deal with the general case of identically zero Jacobian with respect to � identi�ed

in Lemma 3.1, like Lee and Chesher (1986), as in other cases considered there, the simple

reparametrisation � = �2 su�ces to �x the problem, i.e., � = �0+�
1=2w; see also Chesher

(1984, pp.867-868) and section 2.3. The Jacobian with respect to � is

G�(�0; �) = Ez;w[
@g(z; �)

@�
]

=
1

2
��1=2Ez;w[

@g(z; �0 + �
1=2w)

@�0
w]; (j = 1; :::;m):

[13]



Evaluation at � = 0 results in the indeterminate ratio 0=0. De�neGj�(�0; �) = Ez;w[@g
j(z; �)=@�],

(j = 1; :::;m). Applying L'Hôpital's rule to the ratio

1

2
�1=2Ez;w[

@g(z; �0 + �
1=2w)

@�0
w]=�; (3.6)

and taking the limits lim�!0+ of numerator and denominator in (3.6), results in the

following expression for the Jacobian with respect to � at � = 0

Gj� = Gj�(�0) = lim
�!0+

Gj�(�0; �)

=
1

2
Ez;w[w

0 lim
�!0+

@2gj(z; �0 + �
1=2w)

@�@�0
w]

=
1

2
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]); (j = 1; :::;m):

See Appendix C.1.

If @2gj(z; �0)=@�@�
0, (j = 1; :::;m), are conditionally mean independent of w, then,

under Assumption 3.1,

Gj� =
1

2
tr(Ew[Ez[

@2gj(z; �0)

@�@�0
jw]ww0]) (3.7)

=
1

2
tr(Ez[

@2gj(z; �0)

@�@�0
]varw[w]); (j = 1; :::;m):

Cf. Corollary 3.1.

Alternatively, if @2gj(z; �0)=@�@�
0, (j = 1; :::;m), are conditionally mean independent

of w given instruments or covariates x, then

Ez[@
2gj(z; �0)=@�@�

0jw; x] = Ez[@2gj(z; �0)=@�@�0jx]; (j = 1; :::;m):

Hence, under Assumption 3.2, since Ew[wjx] = 0, using the law of iterated expectations,

Gj� =
1

2
tr(Ex[Ew[Ez[

@2gj(z; �0)

@�@�0
jw; x]ww0jx]])

=
1

2
tr(Ex[Ez[

@2gj(z; �0)

@�@�0
jx]varw[wjx]]); (j = 1; :::;m):

Cf. Corollary 3.2. Moreover, if the random variation in �, i.e., w, is also second moment

independent of x, varw[wjx] = varw[w], the resultant Jacobian is identical to (3.7), i.e.,

Gj� =
1

2
tr(Ez[

@2gj(z; �0)

@�@�0
]varw[w]); (j = 1; :::;m):

[14]



When � is scalar, from (3.7) the Jacobian with respect to � is

Gj� =
1

2
varw[w]Ez[

@2gj(z; �0)

@�2
]; (j = 1; :::;m);

cf. Chesher (1984, p. 868). In this case and under the above conditions the Jaco-

bian of an optimal m-test against neglected parameter heterogeneity equals the vector

Ez[@
2g(z; �0)=@�

2] since the LM-type statistic (3.2) is invariant to the scalar heterogene-

ity variance varw[w]; cf. section 3.1. More generally for vector �, by analogy with the

discussion in Chesher (1984, p.868) and in section 2.3, the expression (3.7) suggests a

form for the Jacobian given by the non-redundant elements of

Ez[
@2g(z; �0)

@�k@�l
]; (k � l; l = 1; :::; p): (3.8)

Although the LM-type statistic (3.2) based on the Jacobian de�nition (3.8) may

o�er an e�cacious test against parameter heterogeneity it examines a wider alternative

hypothesis than that of parameter heterogeneity and as such is likely to be sub-optimal

in the sense of section 3.1. To see this, consider a re-speci�cation of the elements of

the heterogeneous parameter vector � as �k = �0k + �
1=2
k wk, (k = 1; :::; p), that allows

for individual parameter heterogeneity, i.e., the absence of parameter heterogeneity now

corresponds to the hypothesis �k = 0, (k = 1; :::; p). Let G�k(�0; �) = Ez;w[@g(z; �)=@�k],

(k = 1; :::; p), where � = (�1; :::; �p)
0. A similar analysis to that following Corollary 3.2

leading to (3.7) yields the Jacobian with respect to �k

G�k = lim
�!0+

G�k(�0; �)

=
1

2
Ez;w[

@2g(z; �0)

@�2k
w2k]

=
1

2
varw[wk]Ez[

@2g(z; �0)

@�2k
]; (k = 1; :::; p):

The disparity between the Jacobians formed from (3.8) and (3.9) and the resultant dif-

ference in statistic degrees of freedom may be accounted for by the former essentially

failing to account for the covariances between the elements �
1=2
k wk, (k = 1; :::; p), taking

the value zero in the absence of parameter heterogeneity, �k = 0, (k = 1; :::; p), i.e., the

[15]



o�-diagonal components @2g(z; �0)=@�k@�l, (k < l; l = 1; :::; p), in the Jacobian (3.8) are

irrelevant to the construction of an optimal m-statistic against parameter heterogeneity.

As in the scalar case the optimal LM-type statistic (3.2) based on (3.9) is invariant to

the heterogeneity variances varw[wk], (k = 1; :::; p).
4

We summarise the above development in the following result.

Theorem 3.1 Either (a) under Assumption 3.1, if @g(z; �0)=@�
0 and @2g(z; �0)=@�

2
k,

(k = 1; :::; p), are conditionally mean independent of w, or (b) under Assumption 3.2,

if @g(z; �0)=@�
0 and @2g(z; �0)=@�

2
k, (k = 1; :::; p), are conditionally mean independent

of w given instruments or covariates x and w is second moment independent of x, the

Jacobian of an optimal m-test against neglected parameter heterogeneity consists of the

linearly independent vectors comprising

Ez[
@2g(z; �0)

@�2k
]; (k = 1; :::; p):

3.3 Test Statistics

Let 
̂(�) =
Pn
i=1 gi(�)gi(�)

0=n. De�ne

G�i(�) =
@gi(�)

@�0
; [G�i(�)]k =

@2gi(�)

@�2k
; (k = 1; :::; p):

We stack the vectors [G�i(�)]k, (k = 1; :::; p), as columns of the m � p matrix G�i(�),

(i = 1; :::; n).

Let G� = Ez[@g(z; �0)=@�
0] and [G�]k = Ez[@

2g(z; �0)=@�
2
k ], (k = 1; :::; p), stacked

similarly to [G�i(�)]k, (k = 1; :::; p), as the columns of the m � p matrix G�. As in the

classical case, there may be a linear dependence among the columns of the population

matrix G� taken together with G�. Moreover, for economic theoretic reasons, parameter

heterogeneity may only be suspected in a subset of the elements of �. Therefore, we

4The asymptotic local optimality of the LM-type statistic (3.2) concerns tests against a two-sided
local alternative of the form �0n = �=n

1=2 where � 6= 0. Correspondingly, as in section 3.1, the alternative
hypothesis for individual parameter heterogeneity is � 6= 0, i.e., �k 6= 0 for at least one k, (k = 1; :::; p).
Strictly speaking, the relevant alternative hypothesis is the one-sided hypothesis � � 0 with �k > 0 for
at least one k, (k = 1; :::; p). Tests incorporating these inequality restrictions, see inter alia Andrews
(2001), would display greater power than the LM-type statistic (3.2) but at the expense of increased
computational complexity.
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adopt the notation Gc� for those non-redundant r columns chosen from G� with G
c
�i(�),

(i = 1; :::; n), their sample counterparts..

To de�ne the requisite 2SGMM and GEL statistics, de�ne the sample Jacobian esti-

mators Ĝ�(�) =
Pn
i=1G�i(�)=n, Ĝ

c
�(�) =

Pn
i=1G

c
�i(�)=n and write Ĝ(�) = (Ĝ�(�); Ĝ

c
�(�))

with the consequent �̂(�) = (Ĝ(�)0
̂(�)�1Ĝ(�))�1.

The optimal 2SGMM or GEL LM-type statistic for neglected heterogeneity is

LMn = nĝ(�̂)
0
̂(�̂)�1Ĝ(�̂)�̂(�̂)Ĝ(�̂)0
̂(�̂)�1ĝ(�̂); (3.9)

see Newey and West (1987) and Smith (2011). Given the optimal 2SGMM or GEL

estimator �̂, de�ne �̂ = arg sup�2�̂n(�̂) P̂n(�̂; �) where P̂n(�; �) is the GEL criterion stated

in (4.5) below and the set �̂n(�̂) given in section 4.2. Since n
1=2�̂ = �
̂(�̂)�1n1=2ĝ(�̂) +

Op(n
�1=2) under local alternatives to (3.1), a score-type test asymptotically equivalent

to (3.9) may also be de�ned as

Sn = n�̂0Ĝ(�̂)�̂(�̂)Ĝ(�̂)0�̂: (3.10)

Cf. the �rst order conditions de�ning the GEL estimator �̂; see section 4.2 below.

The limiting distributions of the statistics LMn (3.9) and Sn (3.10) in the absence of

parameter heterogeneity may then be described. Let N denote a neighbourhood of �0.

Let G = (G�; G
c
�).

5

Theorem 3.2 If Assumptions A.1, A.2 and A.3 of Appendix A are satis�ed together

with Ez[sup�2N k@2g(z; �)=@�2kk] < 1, (k = 1; :::; p), rank(G) = p + r and p + r � m,

then

LMn;Sn d! �2r:

Assumptions A.1 and A.2 repeat NS Assumptions 1 and 2, p.226, respectively, with

Assumption A.3 the consistency of the preliminary estimator ~� required for e�cient

5Test statistics LMn (3.9) and Sn (3.10) based on the Jacobian (3.8) require the de�nitions
[G�i(�)]kl = @2gi(�)=@�k@�l, (k � l; l = 1; :::; p), with the vectors [G�i(�)]kl, (k � l; l = 1; :::; p), as
columns of the m � p(p + 1)=2 matrix G�i(�), (i = 1; :::; n). Similarly [G�]kl = Ez[@

2g(z; �)=@�k@�l],
(k � l; l = 1; :::; p), stacked similarly to [G�i(�)]kl, (k � l; l = 1; :::; p), form the columns of the
m � p(p + 1)=2 matrix G�. Theorem 3.2 requires the condition E[sup�2N k@2g(z; �)=@�k@�lk] < 1,
(k � l; l = 1; :::; p), in place of Ez[sup�2N k@2g(z; �)=@�2kk] <1, (k = 1; :::; p).
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2SGMM, cf. NS Assumption A.4, p.227. As noted in sections 4.1 and 4.2 below As-

sumptions A.1-A.3 are su�cient for the consistency for �0 and asymptotic normality of

2SGMM and GEL. Moreover, by a UWL, 
̂(�̂)
p! 
. The consistency of Ĝ(�̂) for G

also follows by a UWL from Ez[sup�2N k@2g(z; �)=@�2kk] < 1, (k = 1; :::; p), with the

additional hypothesis rank(G) = p + r, p + r � m, of Theorem 3.2 ensuring G0
�1G is

p.d. Hence, �̂(�̂)
p! (G0
�1G)�1. Since n1=2ĝ(�̂)

d! N(0;
 � G�(G0�
�1G�)�1G0�) by

a CLT the limiting distribution of LMn (3.9) and, likewise, that of Sn (3.10) stated in

Theorem 3.2 follow directly; see, e.g., Newey and West (1987) and Smith (2011).

Note that the Jacobian estimator Ĝ(�) may equivalently be replaced by its GEL coun-

terpart ~G(�) = ( ~G�(�)
0; ~G�(�)) =

Pn
i=1 �̂i(�; �̂(�))(G�i(�)

0; Gc�i(�)
0), where the implied

probabilities �̂i(�; �̂(�)), (i = 1; :::; n), are de�ned in (4.7) below. Likewise the variance

matrix estimator 
̂(�) may be replaced by ~
(�) =
Pn
i=1 �̂i(�; �̂(�))gi(�)gi(�)

0.

The above development critically relies on an assumption of (unconditional or condi-

tional) uncorrelatedness of the heterogeneity variate w and the sample Jacobian @g(z; �0)=@�
0,

i.e.,

Ez;w[
@g(z; �0)

@�0
w] = 0; (3.11)

necessitating the use of L'Hôpital's rule to obtain the Jacobian with respect to � evalu-

ated at � = 0. Cf. Lemmata 3.1 and 3.2 and Corollaries 3.1 and 3.2. The next section,

in particular section 4.2, develops an alternative approach to the construction of test sta-

tistics against moment condition parameter heterogeneity that mimics the classical IM

test of White (1982) discussed in section 2.2. Indeed, the GEL-based test de�ned in sec-

tion 4.2 incorporates a component that corresponds to an implicit particular correlation

structure between w and @g(z; �0)=@�
0; see the discussion following (4.10) below.

4 Generalized Information Matrix Tests

Optimal 2SGMM or GEL tests for neglected heterogeneity based on the moment indicator

own second derivatives @2g(z; �0)=@�
2
k , (k = 1; :::; p), described in section 3.3, may also be

interpreted in terms of 2SGMM and GEL versions of a generalized IM equality. As is well
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known, see, e.g., Tauchen (1985), the 2SGMM objective function satis�es a generalized

form of the IM equality described in (2.2). As described below a similar relation is

revealed for GEL.

Let G� = E[@g(z; �0)=@�
0] and 
 = E[g(z; �0)g(z; �0)

0].

4.1 GMM

The standard estimator of � is the e�cient 2SGMM estimator due to Hansen (1982).

Suppose ~� is a preliminary consistent estimator for �0. The 2SGMM estimator is de�ned

as

�̂2S = argmin
�2B

ĝ(�)0
̂( ~�)�1ĝ(�): (4.1)

Under (3.1) and, in particular, Assumptions A.1(a)-(e) and A.3 of the Appendix it is

straightforward to show that �̂2S
p! �0 and, in addition if Assumption A.2 holds, �̂2S

is asymptotically normally distributed, i.e., n1=2(�̂2S � �0) d! N(0;���) where ��� =

(G0�

�1G�)

�1. See, e.g., Newey and McFadden (1994, Theorems 2.6, p.2132, and 3.4,

p.2148). The matrix G0�

�1G� may be thought of as a generalized IM appropriate for

the moment condition context; cf. the classical information matrix I(�0) de�ned in

section 2.1. Indeed, its inverse ���, i.e., the asymptotic variance of the e�cient 2SGMM

estimator �̂2S, corresponds to the semiparametric e�ciency lower bound; see Chamberlain

(1987).

Although similar in structure to GMM, the continuous updating estimator (CUE)

criterion of Hansen, Heaton, and Yaron (1996) di�ers by requiring that the 2SGMM

criterion is also simultaneously minimized over � in 
̂(�), i.e., the CUE is given by

�̂CUE = argmin
�"B

ĝ(�)0
̂(�)�ĝ(�); (4.2)

where A� denotes any generalized inverse of a matrix A satisfying AA�A = A.

Now consider the rescaled 2SGMM objective function

Q̂n(�) = ĝ(�)
0
̂( ~�)�1ĝ(�)=2: (4.3)
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To describe a generalized IM equality similar to (2.2) for the 2SGMM criterion Q̂(�),

�rst, under Assumptions A.1-A.3, by a UWL and a CLT, the limiting normal distribution

associated with the score @Q̂(�0)=@� = Ĝ�(�0)
0
̂( ~�)�1ĝ(�0) obtained from (4.3) may be

stated as

n1=2
@Q̂n(�0)

@�
d! N(0; G0�


�1G�):

Secondly, the asymptotic variance and generalized IM G0�

�1G� is equal to the asymp-

totic limit of the Hessian matrix @2Q̂n(�0)=@�@�
0, viz.

@2Q̂n(�0)

@�k@�l
= [Ĝ�(�0)

0
̂( ~�)�1Ĝ�(�0)]kl +
@2ĝ(�0)

0

@�k@�l

̂( ~�)�1ĝ(�0)

= [G0�

�1G�]kl +Op(n

�1=2); (k � l; l = 1; :::; p);

with the �rst term by application of a UWL and the second term by a UWL and CLT.

Hence, analogously with the classical IM test statistic of White (1982), see section

2.2, a 2SGMM-based IM test for the moment speci�cation Ez[g(z; �0)] = 0 may be based

on the contrast between an estimator of the asymptotic variance of n1=2@Q̂(�0)=@�, i.e.,

the generalized IM G0�

�1G�, with the Hessian evaluated at the 2SGMM estimator �̂2S,

@2Q̂(�̂2S)

@�k@�l
= [Ĝ�(�̂2S)

0
̂( ~�)�1Ĝ�(�̂2S)]kl +
@2ĝ(�̂2S)

0

@�k@�l

̂( ~�)�1ĝ(�̂2S); (k � l; l = 1; :::; p):

A standard estimator for the generalized IM G0�

�1G� is Ĝ�(�̂2S)

0
̂( ~�)�1Ĝ�(�̂2S). This

estimator also has an interpretation as an outer product form of estimator based on the

\scores" Ĝ�(�̂2S)
0
̂( ~�)�1gi( ~�), (i = 1; :::; n); cf. the score @Q̂(�0)=@� = Ĝ�(�0)

0
̂( ~�)�1ĝ(�0).

The generalized 2SGMM IM speci�cation test statistic is therefore based on the non-

redundant \scores" from

@2ĝ(�̂2S)
0

@�k@�l

̂( ~�)�1ĝ(�̂2S); (k � l; l = 1; :::; p):

The Jacobian underpinning this generalized 2SGMM IM speci�cation test statistic is

thereby constructed from

Ez[
@2g(z; �0)

@�k@�l
]; (k � l; l = 1; :::; p); (4.4)

[20]



which is identical to the Jacobian (3.8) de�ned analogously to the classical IM statistic

against neglected heterogeneity of Chesher (1984) given in section 2.3. As discussed in

section 3.2 a generalized 2SGMM IM speci�cation statistic LMn (3.9) or Sn (3.10) based

on the above \scores" is likely to o�er a less powerful test against parameter heterogeneity

than those proposed in section 3.3 since the diagonal components @2g(z; �0)=@�
2
k , (k =

1; :::; p), only in the Jacobian (4.4) are relevant for the construction of an optimal m-

statistic against parameter heterogeneity; see Theorems 3.1 and 3.2. Recall from section

3.2 that the formulation (4.4) implicitly incorporates the (unconditional or conditional)

uncorrelatedness of w and @g(z; �0)
0=@�; cf. Lemmata 3.1 and 3.2 and Corollaries 3.1

and 3.2.

4.2 GEL

An alternative class of criteria relevant for the estimation of models de�ned in terms

of the moment condition (3.1) is the GEL class; see, e.g., NS and Smith (1997, 2011).

Indeed CUE (4.2) is included as a special case of GEL; see fn.6 below.

GEL estimation is based on a scalar function �(v) of a scalar v that is concave on its

domain, an open interval V containing zero. Without loss of generality, it is convenient

to normalize �(�) with �1 = �2 = �1 where �j(v) = @j�(v)=@vj and �j = �j(0), (j =

0; 1; 2; :::). Let �̂n(�) = f� : �0gi(�) 2 V ; i = 1; :::; ng. The GEL criterion is de�ned as

P̂n(�; �) =
nX
i=1

[�(�0gi(�))� �(0)]=n (4.5)

with the GEL estimator �̂ of � given as the solution to a saddle point problem; viz.6

�̂ = argmin
�2B

sup
�2�̂n(�)

P̂n(�; �): (4.6)

Let �̂(�) = arg sup�2�̂n(�) P̂n(�; �) and �̂ = �̂(�̂). Under Assumption A.1 of the

Appendix, by NS Theorem 3.1, p.226, �̂
p! �0 and �̂

p! 0 and, with the additional

6Both EL and exponential tilting (ET) estimators are included in the GEL class with �(v) = log(1�v)
and V = (�1; 1), [Qin and Lawless (1994), Imbens (1997) and Smith (1997)] and �(v) = � exp(v),
[Kitamura and Stutzer (1997), Imbens, Spady and Johnson (1998) and Smith (1997)], respectively, as is
the CUE, as indicated above, if �(v) is quadratic [NS]. Minimum discrepancy estimators based on the
Cressie and Read (1984) family h(�) = [
(
 + 1)]�1[(n�)
+1 � 1]=n are also members of the GEL class
[NS].
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Assumption A.2, n1=2(�̂ � �0) d! N(0;���) and n
1=2�̂

d! N(0;
�1 � 
�1G����G0�
�1)

by NS Theorem 3.2, p.226.

Similarly to Back and Brown (1993), empirical or implied GEL probabilities may be

de�ned for a given GEL function �(�) as

�̂i(�; �̂(�)) =
�1(�̂(�)

0gi(�))Pn
j=1 �1(�̂(�)

0gj(�))
; (i = 1; :::; n); (4.7)

cf. NS and Brown and Newey (1992, 2002).7

A similar analysis to that described above in section 4.1 for 2SGMM may be based on

the GEL criterion with its re-interpretation as a pseudo-likelihood function to obtain a

generalized IM equality. To do so consider the pro�le GEL criterion obtained from (4.5)

after substituting out � with �̂(�), i.e.,

P̂n(�) = P̂n(�; �̂(�)): (4.8)

Hence, by the envelope theorem, the score with respect to � is

@P̂n(�)

@�
=

nX
i=1

�1(�̂(�)
0gi(�))G�i(�)

0�̂(�)=n: (4.9)

The corresponding Hessian with respect to � from the pro�le GEL criterion P̂n(�) (4.8)

is

nX
i=1

�2(�̂(�)
0gi(�))G�i(�)

0�̂(�)[�̂(�)0G�i(�) + gi(�)
0@�̂(�)

@�0
]=n

+
nX
i=1

�1(�̂(�)
0gi(�))[

mX
j=1

@2gji (�)

@�@�0
�̂j(�) +G�i(�)

0@�̂(�)

@�0
]=n:

The derivative matrix @�̂(�)=@�0 is given by application of the implicit function theorem

to the �rst order conditions de�ning �̂(�); see (C.1) in Appendix C.2.

Let �̂0 = �̂(�0), gi = gi(�0), �1i = �1(�̂
0
0gi), �2i = �2(�̂

0
0gi), G�i = G�i(�0) and

G�ki(�) = @gi(�)=@�k, (k = 1; :::; p), (i = 1; :::; n).

7The GEL empirical probabilities �̂i(�; �̂(�)), (i = 1; :::; n), sum to one by construction, satisfy

the sample moment conditions
Pn

i=1 �̂i(�; �̂(�))gi(�) = 0 that de�ne the �rst order conditions for

�̂(�), and are positive when �̂(�̂)0ĝi(�̂) is small uniformly in i. As in Brown and Newey (1998),Pn
i=1 �̂i(�̂; �̂(�̂))a(zi; �̂) is a semiparametrically e�cient estimator of Ez[a(z; �0)].
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Evaluating the Hessian (4.10) at �0, Appendix C.2 demonstrates that the �rst term is

Op(n
�1) whilst the second and third terms are both Op(n

�1=2). The fourth term consists

of the Op(1) component

�
nX
i=1

�1iG
0
�i=n[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�1iG�i=n;

a consistent estimator for generalized IM G0�

�1G�, and the Op(n

�1=2) component

�
nX
i=1

�1iG
0
�i=n[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�2igi�̂
0
0G�i=n:

Let ĝi = gi(�̂), �̂1i = �1(�̂
0ĝi), �̂2i = �2(�̂

0ĝi), Ĝ�i = G�i(�̂) and Ĝ�ki = G�ki(�̂), (k =

1; :::; p), (i = 1; :::; n). Similarly to 2SGMM, a GEL IM test for the moment speci�cation

Ez[g(z; �0)] = 0 is based on the contrast between an estimator of the generalized IM

G0�

�1G� and the GEL Hessian (4.10) evaluated at �̂. A GEL estimator for G

0
�


�1G� is

�
nX
i=1

�̂1iĜ
0
�i[

nX
i=1

�̂2iĝiĝ
0
i=n]

�1
nX
i=1

�̂1iĜ�i=n;

this estimator has the approximate interpretation as an outer product form of estimator

based on the \scores" �[Pn
i=1 �̂1iĜ

0
�i=n][

Pn
i=1 �̂2iĝiĝ

0
i=n]

�1p��̂2iĝi, (i = 1; :::; n); cf. (4.9)

and the asymptotic representation (C.2) in Appendix C.2 for
p
n�̂0.

Therefore in the GEL context the generalized IM equality gives rise to the score

[
nX
i=1

�̂1i
@2ĝ0i
@�k@�l

=n

+ �G0�k
�
�1

nX
i=1

�̂2iĝiĜ
0
�li
=n

+ �G0�l
�
�1

nX
i=1

�̂2iĝiĜ
0
�ki
=n]�̂; (k � l; l = 1; :::; p);

where �G0�k =
Pn
i=1 �̂1iĜ�ki=n, (k = 1; :::; p), and

�
 = �Pn
i=1 �̂2iĝiĝ

0
i=n. Asymptotically,

therefore, the implicit Jacobian is

Ez[
@2g(z; �0)

0

@�k@�l
] (4.10)

+G0�k

�1Ez[g(z; �0)G�l(z; �0)

0]

+G0�l

�1Ez[g(z; �0)G�k(z; �0)

0]; (k � l; l = 1; :::; p);
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where G�k = Ez[@g(z; �0)=@�k], (k = 1; :::; p).

The �rst term in (4.10) is identical to the 2SGMM Jacobian (4.4) but, interestingly,

the second and third terms are absent for 2SGMM. This occurs because of the use of

the preliminary consistent estimator ~� to estimate 
 in 2SGMM whereas GEL implicitly

also optimises a variance component over �, cf. CUE (4.2). This �rst term might be

regarded as arising from that component of the heterogeneity random variate w that is

(unconditionally or conditionally) uncorrelated with the sample Jacobian @g(z; �0)=@�
0.

The additional terms in (4.10) involve the covariances between the moment indicator

derivative matrix G�k(z; �0) and the \score" G
0
�l

�1g(z; �0) and likewise G�l(z; �0) and

the \score" G0�k

�1g(z; �0), (k � l; l = 1; :::; p). Cf. G� (3.4). These terms thereby

implicitly allow for a particular form of correlation between the heterogeneity variate

w and the sample Jacobian @g(z; �0)=@�
0. To see how this arises rewrite the implicit

Jacobian (4.10) as the non-redundant terms of

Ez[
@2gj0
@�@�0

] +G0�

�1Ez[g0

@gj0
@�0

] + Ez[
@gj0
@�
g00]


�1G�; (j = 1; :::;m);

where g0 = g(z; �0), @g
j
0=@� = @g

j(z; �0)=@� and @
2gj0=@�@�

0 = @2gj(z; �0)=@�@�
0, (j =

1; :::;m). Suppose that the heterogeneity random vector w, see section 3.2, may be decom-

posed as w = �1=2varv[v]G
0
�


�1g0+v. The random vector v is assumed here to satisfy hy-

potheses (a) and (b) on w in Theorem 3.1. Hence, the covariance between the heterogene-

ity variate w and the sample Jacobian @g(z; �0)=@�
0 is �1=2varv[v]G

0
�


�1Ez[g0@g
j
0=@�

0],

(j = 1; :::;m). Then, a similar analysis to that in section 3.2 yields,

Gj� =
1

2
tr(Ez[

@2gj0
@�@�0

]varv[v]) + tr(Ez[
@gj0
@�
g00]


�1G�)varv[v])

=
1

2
tr((Ez[

@2gj0
@�@�0

] + Ez[
@gj0
@�
g00]


�1G� +G
0
�


�1Ez[g0
@gj0
@�0

])varv[v]);

(j = 1; :::;m); cf. (3.8). Therefore, the implicit Jacobian (4.10) corresponds to one

associated with an LM-type statistic (3.2) de�ned analogously to the classical IM statistic

against neglected parameter heterogeneity; see section 2.3.

The discussion in section 3.2 preceding Theorem 3.1 suggests that an optimal m-

statistic against parameter heterogeneity that incorporates the above form of implicit
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correlation between the heterogeneity variate w and the sample Jacobian @g(z; �0)=@�
0

would be based on the linearly independent vectors comprising

Ez[
@2g0
@�2k

] +G0�k

�1Ez[g0

@g00
@�k

] + Ez[
@g0
@�k

g00]

�1G�k ; (k = 1; :::; p): (4.11)

In this case, the heterogeneity random vector w is decomposed as wk = �
1=2
k varv[vk]G

0
�k

�1g0+

vk, (k = 1; :::; p).

Note that the additional terms in (4.10) and (4.11) are absent when the derivative

matrix @g(z; �0)
0=@� is solely a function of x and the moment indicator obeys the condi-

tional moment constraint Ez[g(z; �0)jx] = 0, e.g., static (nonlinear) panel data models.

However, as noted above, these terms are likely to be relevant for dynamic panel data or

simultaneous equation models.

After substitution of �̂ for �0, the above score is expressed in terms of the La-

grange multiplier-type estimator �̂ = �̂(�̂). Hence the resultant statistic will be of

the LM type LMn. An equivalent score-type test, cf. Sn, is obtained by substitution of

��
(�̂)�1n1=2ĝ(�̂) for n1=2�̂(�̂) since n1=2�̂(�̂) = �
�1n1=2ĝ(�̂)+Op(n�1=2) in the absence

of parameter heterogeneity.

4.3 An Example: Empirical Likelihood8

To illustrate the development above we consider empirical likelihood (EL), a special case

of GEL; see fn.3. As is well-known, see inter alia Owen (1988, 2001) and Kitamura

(2007), EL may be interpreted as non-parametric ML. Indeed EL is ML when z has

discrete support. Hence, EL is an example of GEL where the classical ML-based (con-

ditional) IM test moment indicators (2.2) and (2.4) may be applied directly to derive

a test against parameter heterogeneity. The resultant EL-based statistic may then be

compared with the GMM and GEL Jacobians (4.4) and (4.10) obtained in sections 4.1

and 4.2 respectively.

The EL implied propbabilities, cf. (4.7), are

�̂i(�; �) =
1

n(1 + �0gi(�))
; (i = 1; :::; n);

8We are grateful to Y. Kitamura for suggesting this example.
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where � is a vector of Lagrange multipliers corresponding to imposition of the moment

restrictions
Pn
i=1 �̂i(�; �)g(zi; �) = 0. The EL criterion is then de�ned as

ELn(�; �) =
1

n

nX
i=1

log �̂i(�; �)

= � 1
n

nX
i=1

log n(1 + �0gi(�)):

Given � the Lagrange multiplier vector � may be concentrated or pro�led out using the

solution �̂(�) to the likelihood equations

0 = �
nX
i=1

�̂i(�; �̂(�))g(zi; �) (4.12)

= �
nX
i=1

1

n(1 + �̂(�)0gi(�))
gi(�);

obtained from setting @ELn(�; �̂(�))=@� = 0. The resultant pro�le EL criterion is

ELn(�) =
1

n

nX
i=1

log �̂i(�; �̂(�))

= � 1
n

nX
i=1

log n(1 + �̂(�)0gi(�))

with likelihood equations

0 = �
nX
i=1

�̂i(�; �̂(�))G�i(�)
0�̂(�)

= �
nX
i=1

1

n(1 + �̂(�)0gi(�))
G�i(�)

0�̂(�):

Therefore, a classical EL-based IM test or, equivalently, test for the absence of para-

meter heterogeneity uses the non-redundant elements of the moment indicators

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
; (k � l; l = 1; :::; p);

evaluated at the EL estimator �̂; cf. sections 2.2 and 2.3. As detailed in Appendix C.3

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
= [

nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0 +Op(n

�1);
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(k � l; l = 1; :::; p), where

�
(�) =
nX
i=1

1

n(1 + �̂(�)0gi(�))2
gi(�)gi(�)

0:

These terms are exactly those given in section 4.2 above for the GEL IM statistic spe-

cialised for EL since, de�ning �(v) = log(1 � v), see fn.3, �1i = �1=n(1 � �̂00gi) and

�2i = �1=n(1� �̂00gi)2, (i = 1; :::; n).

5 Many Instruments

The development of earlier sections has been primarily concerned with unconditional

moment restrictions. In our discussion of moment condition neglected heterogeneity in

section 3, it was noted that many models expressed in terms of unconditional moment

restrictions arise from consideration of conditional moment constraints. This section

adapts the above analysis of moment condition neglected heterogeneity to the conditional

moment context. Like Appendix A, for ease of reference, Appendix B collects together

assumptions given in Donald, Imbens and Newey (2003), DIN henceforth, su�cient for

the consistency and asymptotic normality of 2SGMM and GEL.

To provide an analysis for this setting, let u(z; �) denote a s-vector of known functions

of the data observation z and �. The model is completed by the conditional moment

restriction

Ez[u(z; �)jx] = 0 w.p.1; (5.1)

satis�ed uniquely at true parameter value �0 2 int(B). In many applications, the condi-

tional moment function u(z; �) would be a vector of residuals.

It is well known [Chamberlain (1987)] that conditional moment conditions of the type

(5.1) are equivalent to a countable number of unconditional moment restrictions under

certain regularity conditions. Assumption 1, p.58, in DIN, repeated as Assumption B.1

of Appendix B, provides precise conditions. To summarise, for each positive integer K,

if qK(x) = (q1K(x); :::; qKK(x))
0 denotes a K-vector of approximating functions, then we

require qK(x) such that for all functions a(x) with E[a(x)2] <1 there are K-vectors 
K
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such that as K !1, E[(a(x)� qK(x)0
K)2]! 0. Possible approximating functions are

splines, power series and Fourier series. See inter alia DIN and Newey (1997) for further

discussion. DIN Lemma 2.1, p.58, formally shows the equivalence between conditional

moment restrictions and a sequence of unconditional moment restrictions of the type

considered in this section.

Like DIN we de�ne an unconditional moment indicator vector as

g(z; �) = u(z; �)
 q(x);

where q(x) = qK(x) omitting the index K where there can be no possibility of confusion;

thus, from earlier sections, m = s � K. Assumption B.2, i.e., Assumption 2, p.59, of

DIN, imposes the normalisation requirement that, for each K, there exists a constant

scalar �(K) and matrix BK such that ~q
K(x) = BKq

K(x) for all x 2 X , where X denotes

the support of the random vector x, with supx2X



~qK(x)


 � �(K) and pK � � (K).

E�cient 2SGMM and GEL are applied based on the consequent unconditional mo-

ment condition Ez[g(z; �0)] = 0; cf. (3.1). De�ne the conditional Jacobian matrix

D�(x; �) = Ez[@u(z; �)=@�
0jx] and conditional second moment matrix V (x; �) = Ez[u(z; �)u(z; �)0jx].

By stipulating that K approaches in�nity at an appropriate rate, dependent on n and

the type of estimator considered, then DIN, Theorems 5.4, p.66, and 5.6, p.67, respec-

tively, shows that GMM and GEL are root-n consistent and achieve the semi-parametric

e�ciency lower bound I(�0)�1 where I(�) = Ex[D�(x; �)
0V (x; �)�1D�(x; �)], i.e.,

9

n1=2(�̂ � �0) d! N(0; I(�0)�1):

Let u�(z; �) = @u(z; �)=@�0 and ui(�) = u(zi; �), u�i(�) = u�(zi; �), (i = 1; :::; n).

Also let gi(�) = ui(�) 
 qi, where qi = q(xi), (i = 1; :::; n). Write G�i(�) = u�i(�) 


qi, (i = 1; :::; n), Ĝ�(�) =
Pn
i=1G�i(�)=n and, likewise, 
̂(�) =

Pn
i=1 gi(�)gi(�)

0=n =Pn
i=1 ui(�)ui(�)

0 
 qiq0i=n.
9GMM and GEL require Assumptions B.1-B.5 and Assumptions B.1-B.6 respectively of Appendix

B. The respective rates for the scalar normalisation �(K) for GMM and GEL are �(K)2K=n ! 0 and
�(K)2K2=n! 0. See DIN, Theorems 5.4, p.66, and 5.6, p.67, respectively.
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5.1 Neglected Heterogeneity

The relevant Jacobian terms follow directly from the analysis for the unconditional mo-

ment case. Thus, if w is conditionally uncorrelated with @g(z; �0)
0=@� given x, see section

3.2, cf. Theorem 3.1 and the 2SGMM IM test of section 4.1, de�ne10

[G�i(�)]k =
@2gi(�)

@�2k

=
@2ui(�)

@�2k

 qi; (k = 1; :::; p): (5.2)

Incorporating an implicit (conditional) correlation similar to that described above for the

GEL IM statistic of section 4.2 in the unconditional case, cf. (4.11), de�ne11

[G�i(�)]k =
@2gi(�)

@�2k
(5.3)

+G�ki(�)gi(�)
0
�1G�k

+G�ki(�)gi(�)
0
�1G�k

=
@2ui(�)

@�2k

 qi

+[
@ui(�)

@�k
ui(�)

0 
 qiq0i]
�1G�k

+[
@ui(�)

@�k
ui(�)

0 
 qiq0i]
�1G�k ; (k = 1; :::; p):

5.2 Test Statistics

As previously, de�ne the m � p matrix G�i(�) with columns [G�i(�)]k, (k = 1; :::; p),

de�ned in (5.2) or (5.3), (i = 1; :::; n). Since there may be linear dependencies among

10The terms corresponding to the 2SGMM Jacobian (4.4), cf. (3.8), are [G�i(�)]kl = @
2gi(�)=@�k@�l =

@2ui(�)=@�k@�l 
 qi, (k � l; l = 1; :::; p).
11The terms for the GEL Jacobian (4.10) are

[G�i(�)]kl =
@2gi(�)

@�k@�l
+G�ki(�)gi(�)

0
�1G�l +G�li(�)gi(�)
0
�1G�k

=
@2ui(�)

@�k@�l

 qi + [

@ui(�)

@�k
ui(�)

0 
 qiq0i]
�1G�l

+[
@ui(�)

@�l
ui(�)

0 
 qiq0i]
�1G�k ; (k � l; l = 1; :::; p):
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the population counterparts of these columns taken together with those of G�i(�), (i =

1; :::; n), let Gc�i(�) denote those r non-redundant columns chosen from G�i(�), (i =

1; :::; n).

For the requisite 2SGMM and GEL statistics, let the sample Jacobian estimator

Ĝc�(�) =
Pn
i=1G

c
�i(�)=n and write Ĝ(�) = (Ĝ�(�); Ĝ

c
�(�)) with the consequent �̂(�) =

(Ĝ(�)0
̂(�)�1Ĝ(�))�1.

The respective optimal 2SGMM or GEL score and LM statistics for neglected het-

erogeneity are then de�ned exactly as in the unconditional case above, i.e.,

Sn = n�̂0Ĝ(�̂)�̂(�̂)Ĝ(�̂)0�̂;

and

LMn = nĝ(�̂)
0
̂(�̂)�1Ĝ(�̂)�̂(�̂)Ĝ(�̂)0
̂(�̂)�1ĝ(�̂):

We employ Lemmata A.3, p.73, and A.4, p.75, of DIN in our proofs for the limiting

distributions of LMn and Sn in the absence of parameter heterogeneity. This requires

the strengthening of the assumptions therein, in particular, Assumption B.5 of Appendix

B.

Let u�k�k(z; �) = @
2u(z; �)=@�2k , (k = 1; :::; p), and u�k�k�(z; �) = @

3u(z; �)=@�2k@�
0,

(k = 1; :::; p). Also let N denote a neighbourhood of �0 and D� (x) = Ez[u�(z; �0)jx]. We

writeDc
� (x; �) as the linearly independent components selected from eitherEz[u�k�k(z; �)jx]

or Ez[u�k�k(z; �)jx] + Ez[u�k(z; �)u(z; �)0jx]V (x; �)�1D�k(x; �) + Ez[u�k(z; �)u(z; �)
0jx]

�V (x; �)�1D�k(x; �), (k = 1; :::; p), with D(x; �) = (D�(x; �); D
c
�(x; �)) and D(x) =

D(x; �0).
12

Assumption 5.1 (a) u(z; �) is thrice di�erentiable in N ; (b) Ez[sup�2N ku�k�k(z; �)k
2 jx]

and Ez[sup�2N ku(z; �)u�k(z; �)0k
2 jx], (k = 1; :::; p), are bounded; (c) Ez[ku�k�k�(z; �0)k

2 jx],

12Jacobians (4.4) and (4.10) require the additional conditions: (b') Ez[sup�2N




uj��(z; �)


2 jx] and
Ez[sup�2N



uj(z; �)u�(z; �)

2 jx], (j = 1; :::; s), are bounded and (c') Ez[



uj���k(z; �0)


2 jx], (k =

1; :::; p), Ez[ku�(z; �0)k4 jx] and Ez[



uj(z; �0)uk��(z; �0)


2 jx], (j; k = 1; :::; s), are bounded. Also

Dc
� (x; �) is now de�ned as the non-redundant components selected from either Ez[u�k�l(z; �)jx] or

Ez[u�k�l(z; �)jx]+Ez[u�k(z; �)u(z; �)0jx]V (x; �)�1D�l(x; �)+Ez[u�l(z; �)u(z; �)0jx]V (x; �)�1D�k(x; �),
(k � l; l = 1; :::; p).
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Ez[



u�k(z; �0)uj�(z; �0)


2 jx], and Ez[ku�k�(z; �0)uj(z; �0)k2 jx], (j = 1; :::; s), (k = 1; :::; p),

are bounded; (d) Ex[D(x)
0D(x)] is nonsingular.

Consequently, similar results to those in the unconditional case may be stated for the

LM and score statistics LMn and Sn.

Theorem 5.1 Let Assumptions B.1-B.5, ~� = �0+Op(n
�1=2) and �(K)2K=n! 0 be sat-

is�ed for GMM or, for GEL, let Assumptions B.1-B.6 and �(K)2K2=n! 0 hold, where

the scalar �(K) is de�ned in Assumption B.2 of Appendix B. Then, under Assumption

5.1, in the absence of parameter heterogeneity,

LMn;Sn d! �2r:

Indeed, as the proof of this theorem attests, LMn and Sn are asymptotically equiv-

alent in the absence of parameter heterogeneity, i.e., LMn � Sn
p! 0.

5.3 Test Consistency

Similarly to Lemma 6.5, p.71, in DIN, we may obtain a test consistency result for the

LM statistic LMn.

Theorem 5.2 Suppose �̂
p! �� such that Ez[u(z; ��)jx] 6= 0. Under Assumption 5.1

and Assumptions B.1-B.6 with �� replacing �0, if Ex[D(x; ��)
0V (x; ��)

�1D(x; ��)] has

smallest eigenvalue bounded away from zero, then the �-level critical region LMn > �
2
r(�)

de�nes a consistent test against parameter heterogeneity if

Ex[D
c
�(x; ��)V (x; ��)

�1E[u(z; ��)jx]] 6= 0:

The conclusion of Theorem 5.3 critically depends on the point-wise consistency of �̂ for

some parameter vector ��. In general this condition may be violated under parameter

heterogeneity, in particular, no such �� may exist. To gain some insight into the purport

of this condition, suppose that limn!1Pf�̂ 2 B�g = 1 for some set B� � B. Although

we do not attempt to establish results formally here, it might be hazarded that if the
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conditions Ez[u(z; ��)jx] 6= 0 and Ex[D
c
�(x; ��)V (x; ��)

�1E[u(z; ��)jx]] 6= 0 hold for all

�� 2 B� then the conclusion of Theorem 5.3 could continue to be valid. If, however,

there exists some subset B�� � B� such that either condition fails for all �� 2 B�� then

Theorem 5.3 is unlikely to hold.

6 Simulation Evidence

This section presents the results from a limited set of simulation experiments designed

to elicit the potential e�cacy for empirical research of the tests introduced above. The

experiments concern the LM statistic LMn (3.9).

6.1 Experimental Design

The simulation study is based on a nonlinear regression speci�cation inspired by a panel

Poisson regression model and considers a simple design based on the panel exponential

regression model. More precisely, the analysis examines the conditional moment condi-

tions

Ez[yt � exp(�xt)jfxsg2s=1] = 0; (t = 1; 2);

where � is a scalar parameter, p = 1. Thus, the neglected heterogeneity dimension and

the number of restrictions under test is unity, r = 1.

The conditional moment conditions are reformulated as m = 4 unconditional moment

restrictions de�ned by

Ez[xs(yt � exp(�xt))] = 0; (s; t = 1; 2):

Therefore, the moment function m-vector g(z; �) has elements

xs(yt � exp(�xt)); (s; t = 1; 2):

The respective derivative vectors @g(z; �)=@� and @2g(z; �)=@�2 have elements

�xsxt exp(�xt); (s; t = 1; 2);
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and

�xsx2t exp(�xt); (s; t = 1; 2)

The covariates xs, (s = 1; 2), are independently distributed as N(0; 1) and N(1; 1)

variates respectively and distributed independently of the regression errors yt�exp(�xt),

(t = 1; 2), which are themselves independently and standard normally distributedN(0; 1).13

The true value �0 = 0 with the heterogeneity error term w distributed N(0; 1) indepen-

dently of the covariates fxsg2s=1. Under this design only the moment function second

derivative @2g(z; �)=@�2 is relevant since the additional terms in the implicit GEL IM

test Jacobian (4.11) are null. The initial estimator ~� required for implementation of

2SGMM is obtained by non-linear least squares.

The range of values for the heterogeneity parameter � = �1=2 is 0:00, 0:25, 0:50, 0:75,

1:00, 1:50 and 2:00. Random sample sizes n = 100, 200, 500 and 1000 were considered.

Each experiment comprised 5000 replications.

6.2 Results

Table 1 presents the results under parameter homogeneity, i.e., � = �0. The columns

titled En[�̂] and En[LMn] detail the simulation means of the 2SGMM estimator �̂ (4.1)

and the LM-type statistic LMn (3.9) respectively. Columns c10 and c05 are the respec-

tive empirical rejection probabilities (ERPs) associated with the 0:10 and 0:05 critical

values of the nominal chi-square distribution with one degree of freedom.

Table 1 about here

As expected, the 2SGMM estimator �̂ (4.1) is approximately unbiased, the bias de-

creasing as the sample size increases, and the simulation mean of the LM-type statistic

LMn (3.9) likewise very closely approximates that of the nominal �
2
1 variate. Similarly

empirical and nominal sizes are very similar at both nominal 0:10 and 0:05 levels.

13It is necessary to impose a non-zero mean for at least one of the covariates xs, (s = 1; 2). Let
G = (G� ; G�), where G� = Ez[@g(z; �0)=@�] and G� = Ez[@

2g(z; �0)=@�
2], cf. section 3.3. Then, if

the the covariates xs � N(�s; 1), (s = 1; 2), are independently distributed, the matrix G is full rank if
�1; �2 6= 0 but if �1 = �2 = 0 G has rank 1.
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Tables 2 and 3 about here

Since empirical and nominal sizes are approximately equal, Tables 2 and 3 present

ERPs that are not size-adjusted. As the heterogeneity parameter � increases from 0:25

to 0:50 ERPs increase dramatically at all sample sizes for both 0:10 and 0:05 nominal

critical values as does the simulation mean En[LMn] of the LM-type statistic LMn (3.9)

. However, for � = 0:75, although ERPs increase for sample sizes n = 100 and 200

they decline for n = 500 and 1000 relative to � = 0:50, which is re
ected in the relative

increase in the simulation mean En[LMn]. The phenomena of non-monotonic power and

moderate increase in En[LMn] are repeated for further increases in the heterogeneity

parameter �; indeed ERPs for � = 2:00 are less than those for � = 0:50 except at

n = 100. Such results are unsurprising since the LM-type statistic LMn (3.9) (and

likewise the score-type statistic Sn (3.10)) is designed to yield an asymptotically locally

most powerful test; see section 3.1. Overall ERPs increase with sample size n although

the relative increase in ERPs declines and is very moderate for higher values of �.

7 Concluding Remarks

This paper considers parameter heterogeneity in models speci�ed by moment conditions

and provides a framework for the development of optimal m-tests against its possible

presence. Both unconditional and conditional model settings are examined. In a leading

case, the optimal m-test statistic is expressed in terms of the second order own derivatives

of the moments with respect to the potentially random parameters. We also consider

generalized IM equalities associated with e�cient 2SGMM and GEL estimation. The

GMM-based version of the generalized IM test statistic corresponds to an m-statistic

employing all second order derivatives including cross-derivatives of the moments whereas

the GEL form involves additional components. These additional terms are associated

with a more general form of parameter heterogeneity test that may be interpreted in

terms of a particular form of correlation structure between the sample Jacobian and the

random variables driving potential parameter heterogeneity.
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The paper also provides the results from a limited set of simulation experiments.

These experiments indicate that although the LM-type test proposed in this paper dis-

plays non-monotic power it may prove to be e�cacious against moderate parameter

heterogeneity.

Appendix A: Unconditional Moments: Assumptions

This Appendix repeats NS Assumptions 1 and 2, p.226, and gives a revised NS Assump-

tion 4, p.227.

Let G� = Ez[@g(z; �0)=@�
0] and 
 = Ez[g(z; �0)g(z; �0)

0].

Assumption A.1 (a) �0 2 B is the unique solution to Ez[g(z; �)] = 0; (b) B is compact;

(c) g(z; �) is continuous at each � 2 B with probability one; (d) Ez[sup�2B kg(z; �)k
�] <

1 for some � > 2; (e) 
 is nonsingular; (f) �(v) is twice continuously di�erentiable in

a neighborhood of zero.

Assumption A.2 (a) �0 2 int(B); (b) g(z; �) is continuously di�erentiable in a neigh-

borhood N of �0 and Ez[sup�2N k@g(z; �)=@�0k] <1; (c) rank(G�) = p.

Assumption A.3 The preliminary estimator ~� satis�es ~� = �0 +Op(n
�1=2).

Appendix B: Conditional Moments: Assumptions

This Appendix collects together DIN Assumptions 1-6 for ease of reference.

Assumption B.1 For all K, Ex[q
K(x)0qK(x)] is �nite and for any a(x) with Ex[a(x)

2] <

1 there are K-vectors 
K such that as K !1,

Ex[(a(x)� qK(x)0
K)2]! 0:

Let X denote the support of the random vector x.

[35]



Assumption B.2 For each K there is a constant scalar �(K) and matrix BK such that

~qK(x) = BKq
K(x) for all x 2 X , supx2X




~qK(x)


 � �(K), Ex[~qK(x)~qK(x)0] has smallest
eigenvalue bounded away from zero uniformly in K and

p
K � � (K).

Next let u�(z; �) = @u(z; �)=@�
0,D� (x) = Ez[u�(z; �0)jx] and uj��(z; �) = @2uj(z; �)=@�@�0,

(j = 1; :::; s). Also let N denote a neighbourhood of �0.

Assumption B.3 The data are i.i.d. and (a) there exists a unique �0 2 B such that

Ez[u(z; �)jx] = 0; (b) B is compact; (c) Ez[sup�2B ku(z; �)k
2 jx] is bounded; (d) for

all �; ~� 2 B,



u(z; �)� u(z; ~�)


 � �(z)




� � ~�



� for some � > 0 and �(z) such that

E[�(z)2jx] <1.

Assumption B.4 (a) �0 2 int(B); (b) u(z; �) is twice di�erentiable in N , Ez[sup�2N ku�(z; �)k
2 jx]

and Ez[



uj��(z; �0)


2 jx], (j = 1; :::; s), are bounded; (c) Ex[D�(x)

0D�(x)] is nonsingular.

Assumption B.5 (a) �(x) = Ez[u(z; �0)u(z; �0)
0jx] has smallest eigenvalue bounded

away from 0; (b) Ez[sup�2N ku(z; �)k
4 jx] is bounded and, for all � 2 N , ku(z; �)� u(z; �0)k �

�(z) k� � �0k and Ez[�(z)2jx] is bounded.

Assumption B.6 (a) �(�) is twice continuously di�erentiable with Lipschitz second deriv-

ative in a neighbourhood of 0; (b) Ez[sup�2B ku(z; �)k

] < 1 and �(K)2K=n1�2=
 ! 0

some 
 > 2.

Appendix C: Proofs of Results

C.1 Neglected Heterogeneity Jacobian

Applying L'Hôpital's rule to the ratio

1

2
�1=2E[

@g(z; �0 + �
1=2w)

@�0
w]=�;

[36]



and taking the limits lim�!0+ of numerator and denominator yields

Gj�(�0) = lim
�!0+

Gj�(�0; �)

=
1

2
lim
�!0+

1

2�1=2
E[
@g(z; �0 + �

1=2w)

@�0
w] +

1

4
Ez;w[w

0 lim
�!0+

@gj(z; �0 + �
1=2w)

@�@�0
w]

=
1

2
lim
�!0+

Gj�(�0; �) +
1

4
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]):

Therefore,

Gj�(�0) =
1

2
tr(Ez;w[

@2gj(z; �0)

@�@�0
ww0]); (j = 1; :::;m):

C.2 GEL IM Test

The �rst order condition determining �̂(�) is
Pn
i=1 �1(�̂(�)

0gi(�))gi(�) = 0. Hence, by

the implicit function theorem

@�̂(�)

@�0
= �[

nX
i=1

�2(�̂(�)
0gi(�))gi(�)gi(�)

0=n]�1 (C.1)

�
nX
i=1

[�1(�̂(�)
0gi(�))G�i(�) + �2(�̂(�)

0gi(�))gi(�)�̂(�)
0G�i(�)]=n:

Recall that by Lemma A1 of NS

�j(�̂
0
0gi)

p! �1; (j = 1; 2);

uniformly, (i = 1; :::; n). From the �rst order condition
Pn
i=1 �1(�̂

0
0gi)gi = 0, w.p.a.1,

n1=2�̂0 = [
nX
i=1

�2igig
0
i=n]

�1n1=2ĝ(�0) +Op(n
�1=2): (C.2)

Thus, by a UWL,
@�̂(�0)

@�0
= �
�1[G+Op(n�1=2)]

where the jth row of the Op(n
�1=2) term may be written as

�̂00Ez[G�ig
j
i ] +Op(n

�1); (j = 1; :::;m):

Hence, by a UWL,
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nX
i=1

�2iG
j
�iG

k0
�i=n

p! �Ez[Gj�iGk0�i];

nX
i=1

�2iG
j
�ig

0
i=n

p! �Ez[Gj�ig0i]; (j; k = 1; :::;m);

nX
i=1

�1iG�i=n
p! �G�;

nX
i=1

�2igig
0
i=n

p! �


and
nX
i=1

�1i
@2gji (�0)

@�@�0
=n

p! �Ez[
@2gj(�0)

@�@�0
]; (j = 1; :::;m):

Therefore, evaluating the GEL Hessian (4.10) at �0, the �rst term of the GEL Hessian

is Op(n
�1) and both second and third terms are Op(n

�1=2). The fourth term consists of

two components: the Op(1) component

�
nX
i=1

�1iG
0
�i[

nX
i=1

�2igig
0
i=n]

�1
nX
i=1

�1iG�i=n;

which by a UWL is a consistent estimator for the asymptotic variance matrix G0�

�1G�,

and the Op(n
�1=2) component

�
nX
i=1

�1iG
0
�i[

nX
i=1

�2igig
0
i]
�1

nX
i=1

�2igi�̂
0
0G�i=n

Therefore in the GEL context the generalized information equality gives rise to the score

[
nX
i=1

�1i
@2g0i
@�k@�l

=n

+ �G0�k
�
�1

nX
i=1

�2igiG
0
�li
=n

+ �G0�l
�
�1

nX
i=1

�2igiG
0
�ki
=n]�̂0; (k � l; l = 1; :::; p);

where �G0�k = �
Pn
i=1 �1iG�ki=n, (k = 1; :::; p), and

�
 = �Pn
i=1 �2igig

0
i=n. Asymptotically

the implicit Jacobian is

Ez[
@2g(z; �0)

0

@�k@�l
]

+G0�k

�1Ez[g(z; �0)G�l(z; �0)

0]

+G0�l

�1Ez[g(z; �0)G�k(z; �0)

0]; (k � l; l = 1; :::; p):
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C.3 Empirical Likelihood

The relevant indicators for an EL-based test for the absence of parameter heterogeneity

are the non-redundant elements of

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
; (k � l; l = 1; :::; p):

First

@�̂i(�0; �̂0)

@�k
= � 1

n(1 + �̂00gi)
2
[�̂00G�ki +

@�̂(�0)
0

@�k
gi]; (k = 1; :::; p):

Secondly

@2�̂i(�0; �̂0)

@�k@�l
=

2

n(1 + �̂00gi)
3
[�̂00G�ki +

@�̂(�0)
0

@�k
gi][G

0
�li
�̂0 + g

0
i

@�̂(�0)

@�l
]

� 1

n(1 + �̂00gi)
2
[G0�ki

@�̂(�0)

@�l
+
@2gi(�0)

0

@�k@�l
�̂0

+
@�̂(�0)

0

@�k
G�li + g

0
i

@2�̂(�0)

@�k@�l
]:

Recall from the EL likelihood equations (4.12)

nX
i=1

1

n(1 + �̂00gi)
gi = 0:

Hence,

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
=

nX
i=1

2

n(1 + �̂00gi)
2
[�̂00G�ki +

@�̂(�0)
0

@�k
gi]

�[G0�li�̂0 + g
0
i

@�̂(�0)

@�l
]

�
nX
i=1

1

n(1 + �̂00gi)
[G0�ki

@�̂(�0)

@�l
+
@2gi(�0)

0

@�k@�l
�̂0 +

@�̂(�0)
0

@�k
G�li]:

From the implicit function theorem applied to the likelihood equations (4.12)

@�̂(�)

@�k
= �
(�)�1

nX
i=1

[
1

n(1 + �̂(�)0gi(�))
G�ki(�)�

1

n(1 + �̂(�)0gi(�))2
�̂(�)0G�ki(�)gi(�)]; (k = 1; :::; p);

(C.3)

where

�
(�) =
nX
i=1

1

n(1 + �̂(�)0gi(�))2
gi(�)gi(�)

0:
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Therefore, substituting for @�̂(�0)=@�k, (k = 1; :::; p), from (C.3), after cancelling terms,

1

n

nX
i=1

1

�̂i(�0; �̂0)

@2�̂i(�0; �̂0)

@�k@�l
= 2�̂00

nX
i=1

1

n(1 + �̂00gi))
2
G�kiG

0
�li
�̂0

�2�̂00[
nX
i=1

1

n(1 + �̂00gi)
2
G�kig

0
i]
�
(�0)

�1[
nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0

= [
nX
i=1

1

n(1 + �̂00gi)
G0�ki]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�li
]�̂0

+[
nX
i=1

1

n(1 + �̂00gi)
G0�li]

�
(�0)
�1[

nX
i=1

1

n(1 + �̂00gi)
2
giG

0
�ki
]�̂0

�[
nX
i=1

1

n(1 + �̂00gi)

@2gi(�0)
0

@�k@�l
]�̂0 +Op(n

�1);

(k � l; l = 1; :::; p). Note that the �rst three terms are each Op(n�1=2).

C.4 Proofs of Theorems

Proof of Theorem 5.1: We �rst consider the LM statistic LMn. Note that, asymp-

totically, in the absence of parameter heterogeneity, LMn�nĝ(�̂)0
̂(�̂)�1Ĝc�(�̂)S�̂(�̂)S 0

�Ĝc�(�̂)0
̂(�̂)�1ĝ(�̂)
p! 0 where the r � (p + r) matrix S = (0; Ir) selects out the com-

ponents of Ĝ(�) corresponding to the neglected heterogeneity hypothesis, i.e., SĜ(�)0 =

Ĝc�(�)
0. Secondly,

LMn � nĝ(�̂)0
̂(�̂)�1Ĝc�(�̂)S(Ex[D(x)0V (x)�1D(x)])�1S 0Ĝc�(�̂)0
̂(�̂)�1ĝ(�̂)
p! 0;

since �̂(�̂)
p! (Ex[D(x)

0V (x)�1D(x)])�1 by a similar argument to that used in the proof of

Lemma A.3, pp.73-75, of DIN. Thirdly, since



Ĝ(�̂)� Ĝ(�0)


 p! 0,





̂(�̂)� 
̂(�0)


 p! 0,

by DIN Lemmata A.6, p.78, and A.7, p.79, and

n1=2(�̂ � �0) + �̂(�0)Ĝ�(�0)0
̂(�0)�1n1=2ĝ(�0)
p! 0;

[40]



cf. DIN Proofs of Theorems 5.4, pp.81-82, and 5.6, pp.86-87, Ĝc�(�̂)
0
̂(�̂)�1

p
nĝ(�̂) is

asymptotically equivalent to

Ĝc�(�0)
0(
̂(�0)

�1 � 
̂(�0)�1Ĝ�(�0)�̂(�0)Ĝ�(�0)0
̂(�0)�1)n1=2ĝ(�0):

Now, by Lemma A.3, p.73, of DIN, Ĝc�(�0)
0
̂(�0)

�1Ĝ�(�0)
p! Ex[D

c
�(x)

0V (x)D�(x)] where

Dc
�(x) comprises the selected vectors from [D�(x; �0)]k = Ez[@

2u(z; �0)=@�
2
kjx], (k =

1; :::; p), and Ĝ�(�0)
0
̂(�0)

�1Ĝ�(�0)
p! I(�0) = Ex[D�(x)

0V (x)D�(x)]. Furthermore,

by DIN, Lemma A.4, p.75, Ĝ(�0)
0
̂(�0)

�1pnĝ(�0) �
Pn
i=1D(xi)

0V (xi)
�1ui(�0)=n

1=2 p!

0, where D(xi) = (D�(xi); D
c
�(xi)), (i = 1; :::; n). Therefore, Ĝc�(�̂)

0
̂(�̂)�1
p
nĝ(�̂) is

asymptotically equivalent to

(�Ex[Dc
�(x)

0V (x)�1D�(x)]I(�0)�1; Ir)
nX
i=1

D(xi)
0V (xi)

�1ui(�0)=n
1=2:

Hence, by an i.i.d. CLT,

Ĝc�(�̂)
0
̂(�̂)�1n1=2ĝ(�̂)

d! N(0; [S(Ex[D(x)
0V (x)�1D(x)])�1S 0]�1): (C.4)

The result LMn
d! �2r then follows.

For the score statistic Sn, by the mean value value theorem applied to the �rst order

conditions determining �̂, i.e.,
Pn
i=1 �1(�̂

0ĝi)ĝi = 0, n
1=2�̂�(�[Pn

i=1 �2(
_�0ĝi)ĝiĝ

0
i=n]

�1n1=2ĝ(�̂))
p!

0 for some _� on the line segment joining 0 and �̂. By a similar argument to that used

above for LMn

Ĝ(�̂)0n1=2�̂� Ĝ(�0)0
̂(�0)�1n1=2ĝ(�̂)
p! 0:

Moreover, Ĝ�(�0)
0
̂(�0)

�1n1=2ĝ(�̂)
p! 0. Hence, recalling S = (0; Ir),

Ĝ(�̂)0n1=2�̂� S 0Ĝc�(�0)0
̂(�0)�1n1=2ĝ(�̂)
p! 0:

Therefore, the result Sn d! �2r follows from (C.4).

Proof of Theorem 5.2: Application of Lemma A.3, p.73, of DIN, yields Ĝ(�̂)0
̂(�̂)�1ĝ(�̂)
p!

Ex[D(x; ��)V (x; ��)
�1Ez[u(z; ��)jx]] and Ĝ(�̂)0
̂(�̂)�1Ĝ(�̂)

p! Ex[D(x; ��)V (x; ��)
�1D(x; ��)],

Therefore,

LMn=n
p! Ex[Ez[u(z; ��)jx]0V (x; ��)�1D(x; ��)]

�(Ex[D(x; ��)0V (x; ��)�1D(x; ��)])�1Ex[D(x; ��)V (x; ��)�1Ez[u(z; ��)jx]]:
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Since Ex[D�(x; ��)V (x; ��)
�1E[u(z; ��)jx]] = 0, test consistency requires

Ex[D
c
�(x; ��)V (x; ��)

�1E[u(z; ��)jx]] 6= 0:
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Table 1. Empirical Size
n � En[�̂] En[LMn] c10 c05

100 0:00 �0:0018 1:0125 0:1030 0:0502
200 0:00 �0:0008 1:0137 0:1024 0:0520
500 0:00 �0:0007 1:0092 0:1050 0:0532
1000 0:00 �0:0003 1:0081 0:0986 0:0492

[45]



Table 2. Empirical Power: � = 0:25, 0:50 and 0:75

n � En[�̂] En[LMn] c10 c05

100 0:25 0:0382 1:1829 0:1306 0:0700
200 0:25 0:0404 1:4446 0:1752 0:0990
500 0:25 0:0420 2:2367 0:3052 0:2012
1000 0:25 0:0424 3:5904 0:4936 0:3698
100 0:50 0:1325 2:1457 0:3080 0:1886
200 0:50 0:1432 3:6945 0:5394 0:3978
500 0:50 0:1523 7:0720 0:8560 0:7730
1000 0:50 0:1583 14:1523 0:9746 0:9548
100 0:75 0:2411 2:9231 0:4360 0:2936
200 0:75 0:2714 4:7618 0:6402 0:5182
500 0:75 0:3045 8:6731 0:8200 0:7546
1000 0:75 0:3239 13:8112 0:8660 0:8298

[46]



Table 3. Empirical Power: � = 1:00, 1:50 and 2:00

n � En[�̂] En[LMn] c10 c05

100 1:00 0:3052 3:1092 0:4412 0:3160
200 1:00 0:3356 4:3417 0:5304 0:4298
500 1:00 0:3617 6:0517 0:5810 0:5096
1000 1:00 0:3915 7:6099 0:6012 0:5354
100 1:50 0:3424 2:8626 0:3914 0:2804
200 1:50 0:3845 3:1605 0:4064 0:3020
500 1:50 0:4428 3:5256 0:4136 0:3136
1000 1:50 0:4637 3:8138 0:4172 0:3258
100 2:00 0:3822 2:5593 0:3646 0:2434
200 2:00 0:4330 2:6515 0:3616 0:2486
500 2:00 0:4780 2:8244 0:3764 0:2656
1000 2:00 0:5293 2:9611 0:3786 0:2762

[47]


