
Position Paper: Progressive Memory Safety for WebAssembly
Craig Disselkoen

UC San Diego
cdisselk@cs.ucsd.edu

John Renner
UC San Diego

jmrenner@eng.ucsd.edu

Conrad Watt
University of Cambridge
conrad.watt@cl.cam.ac.uk

Tal Garfinkel
Stanford University
talg@cs.stanford.edu

Amit Levy
Princeton University

aalevy@cs.princeton.edu

Deian Stefan
UC San Diego

deian@cs.ucsd.edu

ABSTRACT
WebAssembly (Wasm) is a low-level platform-independent byte-
code language. Today, developers can compile C/C++ to Wasm
and run it everywhere, at almost native speeds. Unfortunately, this
compilation from C/C++ to Wasm also preserves classic memory
safety vulnerabilities, such as buffer overflows and use-after-frees.

New processor features (e.g., tagged memory, pointer authentica-
tion, and fine grain capabilities) are making it increasingly possible
to detect, mitigate, and prevent such vulnerabilities with low over-
head. Unfortunately, Wasm JITs and compilers cannot exploit these
features. Critical high-level information—e.g., the size of an array—
is lost when lowering to Wasm.

We present MS-Wasm, an extension to Wasm that bridges this
gap by allowing developers to capture low-level C/C++ memory
semantics such as pointers and memory allocation inWasm, at com-
pile time. At deployment time, Wasm compilers and JITs can lever-
age these added semantics to enforce different models of memory
safety depending on user preferences and what hardware is avail-
able on the target platform. This way, MS-Wasm offers a range of
security-performance trade-offs, and enables users to move to pro-
gressively stronger models of memory safety as hardware evolves.

CCS CONCEPTS
• Security and privacy→Web application security; Hardware
security implementation.

KEYWORDS
WebAssembly, Wasm, memory safety, tagged memory

1 INTRODUCTION
WebAssembly (Wasm) is a platform-independent bytecode designed
to run C/C++ and similar languages at near native speed in the
browser. Wasm’s linear memory model—i.e., loads and stores to an
untyped array of bytes, is the key feature that makes it possible for
C/C++ compilers like Clang to easily and efficiently target Wasm.
Unfortunately, this is also the reason memory safety vulnerabilities,
like buffer overflows and use-after-frees (UAFs), remain a problem
when C/C++ programs are compiled to Wasm [29, 32].

Wasm is designed to allow browsers to run code in a sandbox,
isolating the impact of vulnerabilities in Wasm code from the rest
of the browser.1 But keeping the browser safe from Wasm code
is not the same as keeping Wasm code safe from itself—isolation
doesn’t prevent attackers from exploiting memory-safety bugs to
compromise the Wasm code and any data it handles.

This is worrisome. Wasm is supported by all major browser ven-
dors, and already implemented in over 80% of all browsers on the
web [8]. Wasm is also starting to find uses beyond the browser—
from server-side runtimes [35, 44], to IoT platforms [17], and edge
computing [18, 42]. As Wasm proliferates, we risk creating yet an-
other ecosystem where memory-safety vulnerabilities are rampant.

Unfortunately, we can’t simply modify Wasm to enforce strong
memory safety by default, like past bytecodes for high-level lan-
guages (e.g., the Java bytecode or .NET common interface language).
Requiring strong memory safety would be an anathema to the sim-
plicity and performance that have fueled Wasm’s broad adoption.
Instead, we argue for a progressive approach to strong memory
safety that neithermandates high performance overheads that could
hinder widespread adoption, nor gives up on the goal of memory
safety in the name of performance.

This progressive approach is both necessary and timely. As hard-
ware acceleration makes memory safety increasingly cheap, the
boundary between safety and high performance will narrow. For
example, Sparc’s application data integrity (ADI) [40] andARM’s up-
coming memory tagging extension (MTE) [13] can probabilistically
detect and prevent many buffer overflow and UAF bugs at near zero
overhead—orders of magnitude faster than what’s possible without
dedicated hardware [40]. Similarly, ARM’s recent pointer authenti-
cation feature can efficiently mitigate pointer corruption [26]. Look-
ing further out, it seems likely that ARM will adopt some version of
CHERI [15, 45] to efficiently enforce full spatial safety and eliminate

1 For example, Wasm is type-safe, separates code and data, and enforces coarse-grained
control flow integrity (CFI) [48]. All these design choices simplify isolation.

1

buffer overflow bugs altogether. Unfortunately, Wasm can’t lever-
age these hardware features—too much high-level information is
lost when compiling from C/C++ to Wasm’s existing abstractions.

To bridge this gap, we propose Memory Safe WebAssembly (MS-
Wasm), a backwards-compatible extension to Wasm that makes
memory safety explicit at the language level. MS-Wasm extends
Wasm’s memory model with a new segment memory made up of
segments—temporally safe extents of memory—and ensures that
all accesses to the segment memory are via handles. Handles are
strongly-typed first-class values that encapsulate bounds-checked,
memory-safe pointers to the segment memory. With handles and
segments, a C/C++ compiler can can encode all the semantics neces-
sary to enforce memory safety [7]—in particular, spatial safety, tem-
poral safety, and pointer integrity. By allowing handles to be sliced,
MS-Wasm even captures fine-grained intra-object safety, e.g., to pre-
vent a buffer in one field of a struct from overflowing into the next.

These richer semantics provide MS-Wasm backends—compilers
and JITs—with everything they need to use different hardware and
software approaches to ensure safety. It’s then up to the backend to
determine what policy to enforce based on the available hardware
and needs of the user.

Some users might value detecting critical memory safety bugs
in production but are unwilling to tolerate much overhead for
enforcement—an MS-Wasm backend for ARM could use memory
tagging (when available) to achieve this efficiently. On the other
hand, a developer deploying a critical service, such as an authentica-
tion server, might value security more than performance, and thus
request that the MS-Wasm backend enforce the full set of MS-Wasm
safety properties, regardless of hardware support. A third user, e.g.,
a game developer unconcerned with security, might simply want
to eschew any overheads and get performance equivalent to what
normal Wasm would offer.

Our hope is that by ensuring memory safety overheads never
exceed what is acceptable to the user, compiling with the semantics
necessary for full memory safety will become the default. This can
help incentivize the development of new hardware features: with
MS-Wasm, if a vendor develops a new feature and changes a single
JIT (e.g., V8 in Chrome) they can almost immediately expose its
value billions of users. At the same time, as better hardware be-
comes widely available, MS-Wasm backends can seamlessly enable
its use, providing a path to progressively better memory safety on
the web, and other places where Wasm is used.

Organization. Next, we offer a brief overview of Wasm and its lim-
ited form ofmemory safety, then survey potential hardware features
that could help (§ 2). We present MS-Wasm in § 4, and explore how
it can improve memory safety for low-level languages like C/C++.
In § 5 we discuss different hardware and software mechanisms MS-
Wasm backends could leverage to enforce safety. Finally we discuss
extensions to MS-Wasm and alternative design choices in § 6.

2 MOTIVATION
Our goal with MS-Wasm is to enhance Wasm for greater expres-
siveness, so that it can encode the semantics necessary to support
different approaches to accelerating memory safety—more specifi-
cally, by adding a model of pointers and memory allocation so that
this information isn’t lost when lowering to Wasm.

To see why this is necessary, we will start by discussing the
cause of memory safety vulnerabilities (§ 2.1); then sketch Wasm’s
basic structure, and why lowering to Wasm preserves these vulner-
abilities (§ 2.2); and finally survey some of the current and future
hardware support which MS-Wasm backends could use to prevent
or mitigate memory-safety vulnerabilities (§ 2.3).

2.1 Memory Safety
In loose terms, memory-safety bugs in C/C++ result from how
compilers interpret undefined behavior. For example, one valid in-
terpretation of writing beyond the end of an array in the C standard
is to crash the program—an easily understandable semantic. How-
ever, array bounds checking can induce unwanted performance
overheads, so compilers adopt the more dangerous interpretation:
write to whatever other object happens to be in that memory lo-
cation, and continue running.

This interpretation violates programmers’ assumptions about
separation between different data objects [7]; and when this in-
terpretation meets malicious inputs, they become memory-safety
vulnerabilities, as the programmer has inadvertently given a po-
tentially malicious input control over unintended parts of program
data and control flow.

To prevent these attacks, the compiler could take a more conser-
vative interpretation, and halt on undefined behaviors that violate
separation—i.e., enforce memory safety. In practice, this amounts
to ensuring three properties:

▶ spatial safety, which prevents out-of-bounds reads and writes;
▶ temporal safety, which prevents exploitation of use-after-free;
▶ pointer integrity, which prevents pointers from being manu-

factured from non-pointer values (e.g., casting an integer to
a pointer), and also makes it impossible to corrupt a pointer in
memory to create a different valid pointer.

Together, these three properties ensure that every pointer derefer-
ence in a program returns data from the corresponding, valid object.

Enforcing these properties efficiently requires some amount of
dynamic checking—such as tracking if a pointer’s referent has been
de-allocated to prevent use-after-free bugs. Often the overhead of
implementing these checks in pure software is prohibitive; even
optimized JIT-based approaches can incur over 2× performance
slowdowns for enforcing full memory safety [34].

Thus, the status quo for C/C++ has been to rely on system-level
mitigations such as ASLR and W⊕X rather than enforce memory
safety outright. Fortunately, hardware vendors are increasingly
adding features to bring down the overhead of memory safety.

2.2 WebAssembly (Wasm)
Wasm is a portable bytecode language, designed to be an efficient
target for low-level languages [16]. On the Web, developers use
Wasm to embed existing C/C++ libraries such as the libsodium
crypto library, video decoding libraries, and game engines into web-
pages. But Wasm’s reach extends far beyond the browser. Server-
side, Node.js application developers, for example, use Wasm to
safely embed fast native code alongside JavaScript. Even serverless
platforms (e.g., Fastly and Cloudflare) are making large bets on
Wasm as the future of efficient, edge computing [18, 42].

2

Structurally, Wasm is a stack machine language that has well-
typed stack (using simple primitive types: i32, i64, f32, and f64)
and a linear model of memory, i.e., load and store to an “untyped
array of bytes” [48] similar to native platforms. Consider, for exam-
ple, a Wasm function that increments (by 3) a value in memory at
a given address:

(func $add3 (param $addr i32)
(i32.load (get_local $addr))
(i32.add (i32.const 3))
(i32.store (get_local $addr)))

This example shows how Wasm’s values and stack operations are
typed, but also how memory addresses simply have type i32; thus,
loads and stores are free to arbitrarily read and write in Wasm’s
linear memory.

Because Wasm is designed to be an embedded in existing ap-
plications, Wasm code runs in an isolated sandbox. For example,
even though Wasm code can access arbitrary indices in its own
memory, there is no way for a Wasm instruction to access memory
outside of its sandboxed area. TheWasm backend similarly protects
return addresses with a separate stack and ensures that all indi-
rect function calls go through well-typed entry points. Together,
these protect Wasm code from stack-smashing attacks and make
traditional return-oriented programming (ROP) attacks impractical.

Unfortunately, Wasm’s safety is often misunderstood. For exam-
ple, Wasm is sometimes called a “memory-safe language” [46]. This
is not true: memory-safe languages provide spatial safety, temporal
safety, and pointer integrity (§ 2.1); Wasm provides none of these.

Wasm, like native platforms, allows load and store instructions
to operate on an untyped address space using arbitrary integer
addresses. While attackers cannot carry out stack-smashing or ROP
attacks, they can still exploit familiar memory-safety vulnerabil-
ities in the Wasm linear memory to read and write data, just as
they have in C/C++ applications on native platforms for decades.
These attacks neither enable nor require escaping the Wasm sand-
box. Indeed, compromising the Wasm application itself is often
enough—plenty of sensitive data (e.g., cryptographic keys in the
case of libsodium) is located within the sandbox.

2.3 Hardware Support for Memory Safety

Hardware taggedmemory.Taggedmemory associates additional
metadata, a tag, with each region of memory. Research hardware-
capability systems such as CHERI [45] and lowRISC [28] use tagged
memory to ensure that capabilities cannot be forged or modi-
fied [21]. Other tagged memory systems such as Sparc ADI [40]
associate, e.g., a 4-bit tag with each 64-byte aligned region of mem-
ory. In these systems, each pointer also contains a tag which is
compared with the tag of the target memory on each load and store;
if the tags don’t match, the operation fails. The efficiency of this
check makes memory tagging useful for enforcing a variety of pro-
tection policies [4]. For instance, memory tagging can be used for
probabilistically detecting many spatial and temporal safety bugs.

ARM recently added a memory tagging extension (MTE) to the
ARM 8.5-A ISA [13] which employ a 16-byte granule size but are
otherwise nearly identical to ADI. This makes it likely that hard-
ware tagged memory will be widely available in the near future.

Pointer authentication. ARM pointer authentication (PAC) is a
feature which stores a cryptographic MAC in the unused upper
bits of each pointer. PAC is supported by recent ARM processors,
and already used in today’s iPhones [38]. With PAC, memory op-
erations can be made to fail if the pointer being dereferenced does
not have a MAC from the appropriate private key (e.g., for kernel
pointers, the kernel’s private key) and context (an additional input
to the MAC that can be used to provide compartmentalization). PAC
instructions can be used to protect the integrity of data pointers,
function pointers, and even stack pointers for CFI.
Bounds registers. Intel attempted to support memory safety with
MPX bounds registers and bounds tables. WithMPX, upper and lower
bounds can be loaded into the bounds registers which are checked
during loads and stores. Unfortunately, MPX failed to offer better
performance than software-only solutions [36], leading to low adop-
tion in practice, and even to GCC dropping support for MPX [12].
Hardware capabilities. The CHERI architecture [45] supports ca-
pabilities as an alternative to pointers. Capabilities are unforgeable
references that contain both bounds data and access privileges, mak-
ing them ideal for memory safety. While to date the CHERI architec-
ture remains a research prototype, ARM recently announced plans
to incorporate some of CHERI’s ideas into future designs [15]. This
represents a promising path forward for hardware memory safety.

3 DESIGN GOALS
We propose to extend Wasm to provide the capability to efficiently
enforce full memory-safety guarantees, even inside the Wasm sand-
box. The design of our extension, MS-Wasm, has four major goals:
Strong safety guarantees. MS-Wasm seeks to provide abstrac-
tions that can be used to enforce memory safety, i.e., spatial and
temporal safety, and pointer integrity. At the same time, these ab-
stractions should also be sufficient to support weaker piecemeal
mitigation and detection mechanisms.
Backwards compatibility.MS-Wasm must be a minimally inva-
sive extension toWasm. This includes makingMS-Wasm backwards
compatible with existing Wasm toolchains, and making all of its
features opt-in. Thus, existing Wasm binaries should remain valid,
with the same semantics as before. Likewise, existing source-to-
Wasm compilers should continue to be valid.
Leveraginghardware.MS-Wasm backends should be able to lever-
age whatever memory-safety hardware features are available on a
given hardware platform. Thus, the design of MS-Wasm should be
general enough to accommodate different detection and enforce-
ment mechanisms, and not be specific to any particular hardware
mechanism, e.g., memory tagging or MPX.
Progressive enforcement. Enforcing full memory safety is the
ideal, but doing this without sufficient hardware support is prohib-
itive in many use cases—and requiring it would discourage users
from building and deploying their applications with MS-Wasm.

Instead, MS-Wasm should accommodate different design points
that trade off security and performance, and leave it to backends to
choose the best combination of software and hardware mechanisms
to implement the desired guarantees. For this reason, MS-Wasm sep-
arates the memory-safety abstraction—the Wasm-level semantics
needed to allow C/C++ compilers to encode sufficient information

3

to efficiently enforce memory-safety guarantees—from the enforce-
ment policy, i.e., how the backend actually implements whatever
checks are necessary in order to meet the desired security and
performance goals.

Different applications demand different points in the security-
performance tradeoff space. For example, many applications would
opt for mitigations over enforcement to stay within a reasonable
performance budget (e.g., 5-10% CPU overhead). Security-critical
applications, on the other hand, could demand full memory-safety
guarantees, no matter the cost. Other applications might even re-
quest no enforcement at all—e.g., because performance is critical or,
perhaps, because memory safety is enforced statically or dynami-
cally, with inline checks. Such a policy could ideally be implemented
with no overhead, equivalent to existing Wasm without any checks.

As hardware support improves and the cost of memory safety
decreases, MS-Wasm backends will be able to provide progressively
stronger guarantees at lower overheads, transparently increasing
safety without violating users’ performance requirements.

4 DESIGN
At the heart of MS-Wasm is a new segment memory that lives along-
side the Wasm linear memory. Unlike the linear memory, the seg-
ment memory is well-structured; it consists of segments—linearly
addressable, bounded regions of memory whose lifetimes are manu-
ally managed. Segments can only be accessed through handles, and
not via Wasm’s usual load and store instructions. This way, by
placing certain restrictions on how handles are used, MS-Wasm can
make strong guarantees about the memory safety of these segments.

In the rest of this section we describe MS-Wasm by showing how
languages like C and C++ can be compiled to MS-Wasm, and how
enforcing certain restrictions on MS-Wasm primitives can provide
strong memory-safety guarantees.

4.1 Handles and Segments
Handles are used to model pointers—specifically, pointers bounded
to particular live allocations of memory. Abstractly, handles are
described by the 4-tuple (base, offset, bound, isCorrupted). The
base of the handle represents the address of the start of the segment
(in segment memory) being pointed to. The offset is the offset
within the segment, i.e., within the bound, that the handle points
to. If we think of the handle as a pointer, the location it points to
in the segment memory is the base+offset.

As handles are used to model pointers, we introduce new Wasm
instructions for pointer arithmetic, including addition, subtraction,
and comparisons on handles; and we also define a NULL handle. For
example, the handle.add and handle.sub instructions modify the
handle offset without changing the base or bound. Pointer arith-
metic can give rise to out-of-bounds handles (i.e., when the offset is
negative or larger than the bound). We don’t prevent code from cre-
ating such handles; instead, memory-safe MS-Wasm backends will
trap when out-of-bounds handles are used, i.e., when the pointer
is dereferenced. Delaying this check until dereference is important
both for performance—it eliminates unnecessary checks during
pointer arithmetic—and compatibility—as pointers that temporarily
point out of bounds are common [11] and benign behavior in C
programs [30, 31].

MS-Wasm treats handles as opaque values and does not specify a
byte-level representation for them. This means that individual back-
ends can represent them in a way most suitable to each platform,
which may include storing some of this data separately and not as
part of the handle itself. Moreover, as discussed below, backends
which do not provide certain guarantees need not keep track of
some of this data at all.

Segments are linearly addressable, fixed sized, extents of memory.
(In § 4.3 we detail how segments are created and released.) Wasm
code can load and store values to the segment memory via handles:2

i32.segment_load(src: handle) -> i32
i64.segment_load(src: handle) -> i64
i32.segment_store(dst: handle, val: i32)
i64.segment_store(dst: handle, val: i64)

To enforce spatial safety, an MS-Wasm backend must ensure the
following property:3

Spatial safety for existing handles: For each segment load and
store, the handle being dereferenced is in-bounds, i.e., the
handle is not the NULL handle, and its offset is nonnegative
and less than its bound.

On the other hand, if these bounds checks are omitted by the back-
end, bounds information for handles need not even be tracked, and
the performance of the segment load and store instructions should
be similar to Wasm’s existing load and store.

4.2 Slicing Handles
With the checks above, handles provide inter-object spatial safety,
i.e., they restrict a pointer to accessing only the segment the handle
points to. We also use handles to provide intra-object spatial safety
through slicing. Wasm code can slice handles with:

segment_slice(parent: handle, base: i32,
bound: i32) -> handle

This copies the parent handle and then grows the base, shrinks the
bound, or both, to yield a smaller window into the segment. To
illustrate this, consider the following code snippet.

struct A {char foo[4]; char bar[4];}
struct A * my_str = malloc(sizeof(struct A));
char * subfield = my_str->foo;

When we create a pointer to foo on the third line, the compiler can
generate a new slice that includes only foo. Thus, if our code later
tries to overflow foo, it will be contained to this slice by the spatial
safety checks, and it will not be able to corrupt bar.

4.3 Segment Allocation and Deallocation
MS-Wasm code creates new segments and releases them with the
new instructions:

2On notation: When practical, we adopt the Wasm convention of prefixing instruction
names with their return type—for example, i32.add. When additional clarity is
necessary, we adopt the notation new_segment(size: i32) -> handle which
shows the arguments and return type explicitly.
3To fully prevent all out-of-bounds access to the segment memory, MS-Wasm
backends must also provide the handle integrity property defined later, which prevents
out-of-bounds handles from being forged by an attacker.

4

new_segment(size: i32) -> handle
free_segment(h: handle)

The new_segment instruction returns a handle to a newly-allocated
segment. New segments are initialized to all zeroes, much how
Wasm zero-initializes its linear memory [43]. These segments are
guaranteed to be live until released with free_segment.

MS-Wasm backends enforcing memory safety should ensure
temporal safety. We considered two different semantics for this. A
simple approach would require memory-safe implementations to
trap immediately when a segment is accessed after it has been freed.
However, this is often inefficient to implement—it adds overhead
to the critical path of free_segment and forces synchronization
between the allocator and embedding application thread. Instead,
we propose to adopt the relaxed model of Kedia et al. [22]:

(Relaxed) temporal safety: The backend guarantees a trap on
any access to a segment after it has been deallocated. That is,
the segment may remain accessible (and completely valid)
for an unspecified amount of time after free_segment has
been called, until the allocator reclaims the memory.

This definition allows backends to defer deallocation until the last
possible moment, while still preserving temporal safety. Moreover,
it allows us to efficiently support several different safe manual mem-
ory management systems [5, 22, 27] as further discussed later (§ 5.3).

4.4 Handle Integrity
Since we model pointers with handles, code must be able to load
and store handles from memory. Unlike C and C++, however, we do
not provide a way to cast handles to integers (and back). This also
means we cannot allow handles to be stored in the legacy Wasm
linear memory (we simply do not provide instructions to do so).
Instead, MS-Wasm provides instructions for explicitly loading and
storing handles from segment memory:

handle.segment_load(src: handle) -> handle
handle.segment_store(dst: handle, val: handle)

To ensure that a Wasm program cannot forge pointers (e.g., with
the i64.segment_store and handle.segment_load instructions),
MS-Wasm backends should enforce handle integrity:

Handle integrity: The backend conceptually associates either
the type data or the type handle to each handle-aligned
location in the segment memory. (New segments are initial-
ized to be entirely type data.) On each segment_load and
segment_store instruction, it then preserves these types:

▶ Storing data (handle) to a particular location updates the
containing segment element’s type to data (handle).

▶ Loading a handle from a location of type data produces
a corrupted handle, i.e., a handle with isCorrupted=True.
Like the NULL handle, corrupted handles are invalid—loads
and stores on corrupted handles are disallowed; the backend
should (conceptually) check the isCorrupted bit on every
segment load and store. However, corrupted handles can
themselves be written to segments with segment_store;

when storing such a handle, the value of the loaded
element is preserved, as is the type—data. This allows us
to efficiently support memcpy-like operations (see § 6.1).

▶ Loading data from a location of type handle is also allowed,
but results in an implementation-defined data value. Impor-
tantly, the restrictions above ensure that such a data value
can never be used as (or turned back into) a valid handle.

An MS-Wasm backend that does not enforce handle integrity need
not keep track of data/handle types in the segment memory, and
likewise need not distinguish corrupted handles from valid han-
dles (need not keep track of isCorrupted); this should provide
performance equivalent to existing Wasm. On the other hand, by
enforcing handle integrity with the semantics described above, an
MS-Wasm backend can ensure that valid handles can only be cre-
ated during memory allocation or from existing valid handles with
segment_slice, and furthermore that handles cannot be overwrit-
ten (even partially) in memory without becoming invalid.

5 IMPLEMENTATION STRATEGIES
MS-Wasm enables backend compilers and runtimes to enforce mem-
ory safety using a variety of hardware and software mechanisms.
We review some of the promising current and future approaches.

5.1 Spatial Safety
To ensure memory safety, MS-Wasm backends must ensure that all
dereferenced handles are in-bounds (§ 4.1).
In software. Enforcing full spatial safety in software often imposes
relatively high overheads. For instance, Baggy Bounds [1] reported
average runtime overheads around 60% (highly varying by work-
load) and memory overheads around 15%. ManagedC [14] reports
full spatial safety with runtime overheads around 15% on average,
but is highly workload dependent and relies on an optimized just-
in-time compiler (JIT), resulting in additional memory overheads.

Lower overheads can be achieved by relaxing certain safety
properties. Delta Pointers [23] achieves around 35% average run-
time overhead and negligible memory overhead, partly by ignoring
buffer underflow errors and only detecting buffer overflow. Going
further, Duck et al. [10] report overheads similar to Baggy Bounds
for full spatial safety, but by omitting certain checks (e.g., only
checking writes), runtime overhead can be reduced below 10% [9].
However, even the fastest software schemes cannot match the ef-
ficiency possible with hardware support.
In hardware. The most promising and well-researched approach
to strong spatial safety in hardware today is the Capability En-
Hanced RIsc (CHERI) system [45], which encodes spatial safety
information in capability pointers—a fat pointer encoding that in-
cludes bounds information plus additional protection metadata.
Current work suggests that overheads often in the low single digits
are possible [6], and it seems likely that a production-quality pro-
cessor could achieve even more impressive results. ARM recently
announced plans to incorporate some of CHERI’s ideas into future
processors, and we feel optimistic about its prospects as the future
of hardware-accelerated enforcement of full spatial safety.

5

Hardware tagged memory systems such as ARM MTE (§ 2.3)
provide a weaker approach to spatial safety in the near term, but
are very efficient. Using MTE, a MS-Wasm backend can ensure that
the memory allocator assigns each allocation a different “color” (tag
value) and ensure that adjacent allocations never share the same
color. This is an incomplete solution, as many buffer overflows
allow an attacker to address beyond adjacent objects. However, it
does provide an efficient means of (probabilistically) detecting both
spatial and temporal bugs. With 4-bit tags (as provided by ARM
MTE), by randomly assigning a color to each allocation we can
expect to detect both spatial and temporal bugs with a relatively
high probability.

As MTE is only a mitigation, its security guarantees are not ab-
solute, and it is unclear how much protection it provides against a
determined attacker. For instance, an attacker may be able to brute-
force the protection provided by randomly coloring allocations. In
the end, the security benefits are highly dependent on details such
as the particular type of vulnerability and how tags are assigned.

Finally, as discussed in § 2.3, Intel’s MPX is already widely avail-
able, but is slower than comparable software solutions [36].

5.2 Handle Integrity
As specified in § 4.4, full memory safety requires MS-Wasm back-
ends to track the type of memory in segments, either handle or
data. This can also be done in either software or hardware.
In software. Efficiently implementing handle integrity in software
is challenging: the overheads of software tagged memory systems
such as ASan [39] suggest that both memory and CPU overheads
can easily be prohibitive. With enough type information, it seems
possible to do better—e.g., ManagedC [14] achieves surprisingly
modest overheads for full memory safety with the help of full C
type information. ExtendingMS-Wasmwith additional semantics to
support a scheme like this might be worth exploring in future work.
In hardware. Hardware tagged memory is the most direct and
efficient way to support handle integrity. CHERI uses tags to dis-
tinguish between pointers and data, as does lowRISC [28].

Unfortunately, hardware tagged memory implementations such
as Sparc’s ADI and ARM’s MTE cannot easily be used to provide
handle integrity because they provide tags for 16-byte (MTE) or
64-byte (ADI) regions of memory only. This means that each region
of this size must have a single tag at any given point in time. Even
if it were practical to ensure that every 16-byte or 64-byte region
of memory contained either only handles or only data at all times—
which is far from clear—this would require coordination between
Wasm compilers and backends to, e.g., provide proper padding for
structs in C (as a Wasm backend could not easily redo this padding
on its own). Moreover, MS-Wasm would have to choose a granu-
larity for this padding independent of backend, which would either
exclude certain platforms (if it were too small) or incur unnecessary
space overheads (if it were too large). For tagged-memory systems
to be useful for pointer integrity, they must provide tags (of at least
one bit) at the granularity of pointer-size or smaller. At present, no
commercial hardware tagged memory implementation does this.

ARM PAC (see § 2.3) seems like a natural fit for providing handle
integrity. Unfortunately, it has some limitations. First, the over-
head of using PAC to protect all pointers (as MS-Wasm proposes) is

around 20% [26], much worse than what memory tagging can pro-
vide. Further, storing a MAC in the upper bits of each pointer makes
these bits unavailable for use in the fat pointer encodings required
for many spatial safety approaches (see § 5.1). Thus, although PAC
may be a promising mitigation for protecting function or vtable
pointers, it is not well-suited for providing handle integrity.

5.3 Temporal Safety
Temporal safety can be enforced in pure software, with the aid of
virtual memory hardware, or using custom hardware designed for
the purpose. MS-Wasm accommodates many recently proposed
techniques by providing a separate segment memory and allocation
interface (new_segment and free_segment) to support platform-
specific allocators, and by slightly relaxing its temporal safety se-
mantics (§ 4.3) to align with the guarantees these systems provide.
In pure software. Garbage collection is a traditional software-
based solution for providing temporal safety. While an MS-Wasm
implementation could employ garbage collection, recent systems
provide substantially lower overheads while retaining manual mem-
ory management.

One approach, explored by DangSan [41] and other systems [25,
49], provides temporal safety by tracking all pointer aliases. When a
pointer is freed, they rewrite its aliases to NULL. These systems still
impose non-trivial overheads, e.g., DangSan incurs averages of 12%-
41% runtime overhead, and 56%-140% memory overhead, on various
single- and multi-threaded workloads (with results highly varying
by workload, from 0% to over 700%). pSweeper [27] uses concur-
rent thread(s) to detect dangling pointers and avoids maintaining a
precise points-to map; this results in lower runtime overheads than
DangSan (12%-17% on average) with similar memory overheads.
More efficient approaches are possible with help from the virtual
memory system.
Using the virtual memory system. Both OSCAR [5] and Project
Snowflake from MSR [22, 37] leverage the virtual memory system
to efficiently provide temporally safe manual memory management.
Project Snowflake tracks when most of the objects on a page have
been freed, then unmaps the page (so that future dereferences of
dangling pointers will trap) while copying the remaining live ob-
jects to a new page and lazily patching references to them. This is
conceptually similar to a copying GC, but compared to GC, they
reduced peak working set size by 3×, and runtime overhead by 2×.
OSCAR maps a unique virtual page for each allocation and unmaps
on each deallocation. So long as no virtual addresses are re-used,
accesses to freed objects will hit an unmapped page. This provides
strong temporal safety with very low runtime overhead. pSweeper,
OSCAR, and Project Snowflake all leverage the delayed-free seman-
tics of MS-Wasm.
In pure hardware.Watchdog [33] shows that dedicated hardware
support can provide both temporal and spatial safety efficiently. It
incurs a runtime overhead of 18%, and memory overheads averag-
ing 32%-56% (again highly workload-variant), while providing full
spatial and temporal safety.

ARM MTE style tagging can also be used to enforce temporal
safety. Specifically, each memory allocation can be assigned a ran-
dom tag when allocated, and re-tagged with a new random tag
when freed. This has the potential to detect use-after-free bugs

6

efficiently enough to be used in production workloads. Unfortu-
nately, this protection is probabilistic; an attacker could potentially
easily brute-force this protection with, say, a 1/16 chance of suc-
cess each time. Nonetheless, this presents an intriguing option in
the security-performance tradeoff space which may be suitable for
some applications.

6 DISCUSSION
In this section, we discuss some of the challenges with compiling
MS-Wasm, how MS-Wasm can be used to further harden legacy
code, alternative approaches to implementing memory safety for
Wasm, and how future hardware mechanisms should shift to more
efficiently support MS-Wasm and memory safety in general.

6.1 Compiling MS-Wasm

Handle sizing.We need to specify the size of handles at the Wasm
level (independent of backends) so that compilers can target MS-
Wasm. Handles are perhaps most naturally implemented as fat
pointers, where bounds information is encoded directly in the
pointer. We believe that 64-bit handles represent the optimal trade-
off: they are small enough to be efficient on modern architectures,
while large enough to represent a handle (i.e., base, bound, offset)
for Wasm’s 32-bit address space when efficiently encoded [10, 23,
24]. Additionally, 64-bit handles are large enough to support most
of the other schemes described above (for all safety properties).
Pointer semantics. The relationship between pointers and integer
types in C is an important question forMS-Wasmwhichmay impact
compatibility with real-world C. The ISO C standard (§6.2.3.2) [19]
is relatively strict as it defines casting integers to and from pointers
as implementation-defined behavior or undefined behavior, with ex-
ception of NULL pointers (which MS-Wasm supports with the NULL
handle). However, real-world C programs may rely on behavior
beyond what is specified in the ISO standard.

With MS-Wasm the compiler can support some more liberal
behaviors by modeling pointers with corrupted handles (see § 4.4)
across casts in many situations, while MS-Wasm’s strict rules on
segment loads and stores ensure handle integrity is nevertheless
always maintained. We believe our semantics maintains both broad
compatibility with C programs and (for backends implementing
the handle integrity checks) strong safety guarantees. An alternate
semantics could allow more permissive casting between integers
and handles while tracking provenance across integer types; how-
ever, this requires more invasive changes to Wasm’s core semantics
(e.g., to track data/handle types on the Wasm stack).

Another challenge is supporting functions like memcpy() and
memmove() that can copy both data and pointers (e.g., by casting
pointers to integers). But, since our handle.segment_load and
handle.segment_store preserve the data loaded even when op-
erating on a non-handle, they can be used to implement memcpy()
and preserve all data and type information when copying segments.

6.2 Beyond Heap Memory Safety

Protecting the stack.MS-Wasm can be straightforwardly used to
provide memory safety for heap allocations. However, the stack
needs additional protection as well. C/C++-to-Wasm compilers like

Emscripten [50, 51] currently unsafely store stack-allocated aggre-
gate values like struct and array in linear memory, as Wasm
stack and local variables can only hold scalars. To fully protect
these values, we propose to store them in the segment memory.
Much like Emscripten’s current practice, the compiler could make a
one-time large allocation for the entire stack. Then, when pointers
to stack-allocated aggregate values are needed, the compiler can
generate slices corresponding to those specific aggregates. These
slices would not be temporally safe—they would remain valid af-
ter their target stack frame is popped—but would still be bounds
checked and provide pointer integrity. Previous studies suggest that
this tradeoff is reasonable, as they have failed to find exploitable
use-after-free vulnerabilities on the stack [2, 25].
Protecting Wasm function pointers. The Wasm spec makes it
clear that Wasm has no function pointers. Instead, functions are
accessed through a table, ensuring that one can only branch to a
function entry point. However, the indexes to this table still live in
memory, and are thus vulnerable to control flow bending attacks [3].

Extending MS-Wasm to protect function pointers is a relatively
simple change. We could add a function_index type that is in
other ways like a normal i32 function index, but leverages segments
for integrity protection similar to handles. Like for handles, MS-
Wasm backends could trap on any attempt to use a function_index
that has been overwritten by a non-function_index value.

PAC is an ideal fit for this task, as prior work puts its overhead
for protecting both code pointers and return addresses at (< 0.5%)
on average [26].

6.3 Alternative Paths to Memory Safety
Memory-safe languages. One way to ensure Wasm programs
are memory-safe would be to write them in a memory-safe lan-
guage like Rust, or safe variants of C (e.g., [11, 20]). This, unfor-
tunately, is not realistic—developers want to deploy legacy C/C++
code to Wasm—and even memory-safe languages can benefit from
the hardware-accelerated memory safety provided by MS-Wasm.
Leaving enforcement to compilers.Another option is to put the
onus for enforcing memory safety solely on compilers or language
runtimes, and leave Wasm agnostic to these concerns. This again is
unrealistic: many state-of-the-art techniques for efficient memory
safety rely on architecture- or OS-specific features, from temporal
safety techniques that leverage page level protections [5, 22], to
hardware features like ARM PAC and MTE. For Wasm backends to
efficiently leverage these features, we need abstractions to express
memory-safety properties directly in Wasm.
Object-based memory models. One way to encode memory-
safety properties inWasmwould be to extendWasmwith a strongly
typed, object-based memory model that relies on garbage collection,
like those in the JVM and CLR. These kinds of memory models
offer both strong spatial and temporal safety (through garbage
collection). Such a model has been proposed as an extension to
Wasm to support higher level GC’d languages [47]. However, map-
ping C/C++ to this model seems to be fundamentally inefficient.
Garbage collection brings additional space and compute overheads
that are unnecessary in languages with manual memory manage-
ment [37]. Moreover, the type systems of these languages are also
too restrictive to model real C/C++ code [14].

7

6.4 Future Directions for Hardware
Web platforms have a long history of waiting until security prob-
lems are out of control before starting to address them. Memory
safety vulnerabilities are the most common and dangerous vulner-
abilities of our time. It is absurd to assume these issues will not
impact Wasm. Now is the time to start addressing this challenge.

In the future, Wasm standards bodies could benefit from engag-
ing with the architecture community on how to best surface future
memory safety capabilities in Wasm, and ensure the Wasm road
map takes these features into account. Conversely, future hardware
designs could benefit from considering how to add value through
surfacing memory features in the Wasm ecosystem. Providing a
standard IR for memory safety, such as MS-Wasm, provides a target
for hardware designers to work against and can play a critical role
for enabling cooperation between these two communities.

ACKNOWLEDGMENTS
This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. Watt was supported by the
REMS EPSRC program grant (EP/K008528/1), and an EPSRC DTP
award (EP/N509620/1). And the Gnome.

REFERENCES
[1] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking: An

efficient and backwards-compatible defense against out-of-bounds errors.
USENIX, 2009.

[2] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early detection of
dangling pointers in use-after-free and double-free vulnerabilities. ISSTA, 2012.

[3] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow
bending: On the effectiveness of control-flow integrity. USENIX, 2015.

[4] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible information flow
architecture for software security. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA, 2007.

[5] T. H. Y. Dang, P. Maniatis, and D. A. Wagner. Oscar: A practical page-permissions-
based scheme for thwarting dangling pointers. USENIX, 2017.

[6] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore, J. Baldwin,
D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou, B. Laurie, A. T.
Markettos, J. E. Maste, A. Mazzinghi, E. T. Napierala, R. M. Norton, M. Roe,
P. Sewell, S. Son, and J. Woodruff. CheriABI: Enforcing valid pointer provenance
and minimizing pointer privilege in the POSIX C run-time environment. In
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, 2019.

[7] A. A. de Amorim, C. Hritcu, and B. C. Pierce. The meaning of memory safety.
arXiv:1705.07354, 2017.

[8] A. Deveria. Can i use WebAssembly?, 2019. https://caniuse.com/#feat=wasm.
[9] G. J. Duck. LowFat. https://github.com/GJDuck/LowFat.
[10] G. J. Duck and R. H. C. Yap. Heap bounds protection with low fat pointers. CC,

2016.
[11] A. S. Elliott, A. Ruef, M. Hicks, and D. Tarditi. Checked C: making C safe by

extension. SecDev, 2018.
[12] GCC Wiki. Intel Memory Protection Extensions (Intel MPX) support in the GCC

compiler. http://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%

20compiler, 2018.
[13] M. Gretton-Dann. Arm A-Profile architecture developments 2018: Armv8.5-A,

Sep 2018. https://community.arm.com/processors/b/blog/posts/arm-a-profile-

architecture-2018-developments-armv85a.
[14] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and H. Mössenböck.

Memory-safe execution of C on a Java VM. PLAS, 2015.
[15] R. Grisenthwaite. Supporting the UK in becoming a leading global player in cy-

bersecurity. https://community.arm.com/blog/company/b/blog/posts/supporting-

the-uk-in-becoming-a-leading-global-player-in-cybersecurity, 2019.
[16] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,

A. Zakai, and J. Bastien. Bringing the Web up to speed with WebAssembly. PLDI,
2017.

[17] A. Hall and U. Ramachandran. An execution model for serverless functions at
the edge. IoTDI, 2019.

[18] P. Hickey. Announcing Lucet: Fastly’s native WebAssembly compiler and
runtime, Mar 2019.

[19] Information technology – programming languages – C. Standard, International
Organization for Standardization, June 2018.

[20] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. ATEC ’02. USENIX Association, 2002.

[21] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N.
Watson, D. Chisnall, M. Roe, B. Davis, et al. Efficient tagged memory. In 2017
IEEE International Conference on Computer Design, ICCD, 2017.

[22] P. Kedia, M. Costa, D. Vytiniotis, M. Parkinson, K. Vaswani, and A. Blankstein.
Simple, fast and safe manual memory management. PLDI, June 2017.

[23] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida. Delta pointers:
Buffer overflow checks without the checks. EuroSys, 2018.

[24] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. DeHon. Low-fat
pointers: Compact encoding and efficient gate-level implementation of fat
pointers for spatial safety and capability-based security. CCS, 2013.

[25] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee. Preventing
use-after-free with dangling pointers nullification. NDSS, 2015.

[26] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J. Ekberg, and N. Asokan. PAC
it up: Towards pointer integrity using ARM pointer authentication. CoRR, 2018.

[27] D. Liu, M. Zhang, and H. Wang. A robust and efficient defense against
use-after-free exploits via concurrent pointer sweeping. CCS, 2018.

[28] lowRISC. lowRISC: A fully open-sourced, linux-capable, system-on-a-chip.
https://www.lowrisc.org/.

[29] B. McFadden, T. Lukasiewicz, J. Dileo, and J. Engler. WebAssembly: A new world
of native exploits on the browser. In Blackhat briefings 2018, 2018.

[30] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Watson,
and P. Sewell. Exploring C semantics and pointer provenance. POPL, 2019.

[31] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson,
and P. Sewell. Into the depths of C: Elaborating the de facto standards. PLDI, 2016.

[32] M.Miller. Trends, challenges, and strategic shifts in the software vulnerability mit-
igation landscape. https://www.youtube.com/watch?v=PjbGojjnBZQ, 2019. BlueHat.

[33] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Watchdog: Hardware for safe
and secure manual memory management and full memory safety. ISCA, 2012.

[34] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of
legacy code. POPL ’02. ACM, 2002.

[35] Node.js Foundation. Node.js. https://nodejs.org/en/, 2019.
[36] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel MPX

explained: A cross-layer analysis of the Intel MPX system stack. Proc. ACM
Meas. Anal. Comput. Syst., 2(2), June 2018.

[37] M. Parkinson, K. Vaswani, M. Costa, P. Deligiannis, A. Blankstein, D. McDermott,
J. Balkind, and D. Vytiniotis. Project Snowflake: Non-blocking safe manual
memory management in .NET. Technical report, July 2017.

[38] Project Zero. Examining pointer authentication on the iPhone
XS. https://googleprojectzero.blogspot.com/2019/02/examining-pointer-

authentication-on.html, 2019.
[39] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer:

A fast address sanity checker. USENIX, 2012.
[40] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and D. Vyukov. Mem-

ory tagging and how it improves C/C++ memory safety. CoRR, abs/1802.09517,
2018.

[41] E. van der Kouwe, V. Nigade, and C. Giuffrida. DangSan: Scalable use-after-free
detection. EuroSys, 2017.

[42] K. Varda. WebAssembly on Cloudflare workers, Dec 2018.
[43] W3C. WebAssembly core specification, 2019. https://webassembly.github.io/

spec/core/bikeshed/index.html#data-segments%E2%91%A0.
[44] Wasmer. Wasmer - universal WebAssembly runtime. https://wasmer.io/, 2019.
[45] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,

D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton,
M. Roe, S. Son, and M. Vadera. Cheri: A hybrid capability-system architecture
for scalable software compartmentalization. SP, 2015.

[46] WebAssembly Community Group. WebAssembly, 2018. http://webassembly.org.
[47] WebAssembly Community Group. GC extension, 2019. https:

//github.com/WebAssembly/gc/blob/master/proposals/gc/Overview.md.
[48] WebAssembly Community Group. Semantics, 2019. https://github.com/

WebAssembly/design/blob/master/Semantics.md.
[49] Y. Younan. FreeSentry: Protecting against use-after-free vulnerabilities due to

dangling pointers. NDSS, 2015.
[50] A. Zakai. Emscripten: An LLVM-to-JavaScript compiler. OOPSLA, 2011.
[51] A. Zakai. Compiling to WebAssembly: It’s Happening!, 2015. https:

//hacks.mozilla.org/2015/12/compiling-to-webassembly-its-happening/.

8

https://caniuse.com/#feat=wasm
https://github.com/GJDuck/LowFat
http://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
http://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://community.arm.com/blog/company/b/blog/posts/supporting-the-uk-in-becoming-a-leading-global-player-in-cybersecurity
https://www.lowrisc.org/
https://www.youtube.com/watch?v=PjbGojjnBZQ
https://nodejs.org/en/
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://webassembly.github.io/spec/core/bikeshed/index.html#data-segments%E2%91%A0
https://webassembly.github.io/spec/core/bikeshed/index.html#data-segments%E2%91%A0
https://wasmer.io/
http://webassembly.org
https://github.com/WebAssembly/gc/blob/master/proposals/gc/Overview.md
https://github.com/WebAssembly/gc/blob/master/proposals/gc/Overview.md
https://github.com/WebAssembly/design/blob/master/Semantics.md
https://github.com/WebAssembly/design/blob/master/Semantics.md
https://hacks.mozilla.org/2015/12/compiling-to-webassembly-its-happening/
https://hacks.mozilla.org/2015/12/compiling-to-webassembly-its-happening/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Memory Safety
	2.2 WebAssembly (Wasm)
	2.3 Hardware Support for Memory Safety

	3 Design Goals
	4 Design
	4.1 Handles and Segments
	4.2 Slicing Handles
	4.3 Segment Allocation and Deallocation
	4.4 Handle Integrity

	5 Implementation Strategies
	5.1 Spatial Safety
	5.2 Handle Integrity
	5.3 Temporal Safety

	6 Discussion
	6.1 Compiling MS-Wasm
	6.2 Beyond Heap Memory Safety
	6.3 Alternative Paths to Memory Safety
	6.4 Future Directions for Hardware

	References

