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Abstract 32 

There is little robust, quantitative information on the impacts of the COVID-19 pandemic on the 33 

extinction crisis. Focusing on Madagascar, one of the world’s most threatened biodiversity hotspots, 34 

we explore if the cessation of on-site protected area management activities due to the pandemic 35 

were associated with increased burning inside protected areas. We identify monthly excess fire 36 

anomalies by comparing observed fires to those predicted based on historical and contemporary fire 37 

and weather data for all of Madagascar’s protected areas, for every month 2012-2020. Through to 38 

2019 excess fire anomalies in protected areas were few, short in duration, and in some years 39 

coincident with social disruption linked to national elections. By contrast in 2020, COVID-19 40 

meant on-site management of Madagascar’s protected areas was suspended from March to July. 41 

This period was associated with 76-248 % more fires than predicted, after which burning returned 42 

to normal. At a time when international biodiversity conservation faces unprecedented challenges, 43 

our results highlight the importance of on-site management for maintaining protected area integrity. 44 

Main 45 

The year 2020 was supposed to be a “super year” for biodiversity conservation during which the 46 

parties to the Convention on Biological Diversity (CBD) would agree ambitious targets for the next 47 

decade1. However, the COVID-19 pandemic has both postponed the decade’s most significant 48 

meeting in international biodiversity, and caused unprecedented disruption to conservation 49 

activities2–4. Lockdowns dramatically interrupted on-site protected area management activities in 50 

many countries3 and introduced uncertainty and economic difficulties to local communities5, 51 

including from reduced tourism revenue6. While early studies have shown that the pandemic 52 

increased fires in Colombia7 and decreased fires in the southeastern United States8, there has been 53 

no robust assessment of the impact of the pandemic on protected area integrity.  54 
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One of the most important threats to biodiversity in much of the world is land-use 55 

change and habitat conversion to agriculture9,10. Effectively preventing this is an important 56 

objective of many protected areas11. Where habitat loss is associated with shifting agriculture, such 57 

as in much of Africa9,12, the prevalence of fires is commonly used as an indicator of land 58 

conversion13,14 and the performance of conservation interventions15,16. Fires occur as a result of 59 

complex interactions between climatic and anthropogenic drivers13 making it essential to control for 60 

climatic drivers when exploring the impact of changes in direct anthropogenic drivers. Forecasting 61 

fire activity using seasonal climate variables is still in its infancy17,18, but precipitation is widely 62 

recognized as an important predictor19.  63 

Madagascar is world-renowned for its extraordinary biodiversity, but also for the 64 

exceptional pressures faced by that biodiversity20,21. Over the last decade Madagascar has seen a 65 

rapid expansion of its reserve network22. However, there are concerns that the network is 66 

inadequately managed and that protected area expansion efforts have paid insufficient attention to 67 

building local support and governance structures23,24.  68 

Drawing on the excess mortality approach which has become widely understood as a 69 

metric for quantifying the impacts of pandemics25, we explore whether the cessation of on-site 70 

protected area management activities which followed the start of the COVID-19 pandemic, and the 71 

subsequent extended period of closed borders and economic hardship, coincided with greater than 72 

expected fires in Madagascar’s protected areas. Using remote sensed data on fire and precipitation, 73 

we first predict the number of fires for each month for each year between 2012 and 2020 based on 74 

precipitation that month, precipitation in the previous month, accumulated precipitation over the last 75 

12 months, and interactions with biome, using a zero-inflated negative binomial model. We then 76 

look at the deviations between our predicted fires and those observed in order to estimate numbers 77 

of fires not predicted by weather conditions or forest type. Our analyses uncover an unprecedented 78 
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increase in fires in Madagascar’s protected areas between March and July 2020 (the period when 79 

on-site activities were prevented) but also reveal that fires quickly dropped to those predicted by our 80 

model as management activities resumed. Taking advantage of the unique quasi-experimental 81 

setting provided by the first year of the COVID-19 pandemic, we are thus able to show strong 82 

evidence for the importance of well-managed protected areas for retaining the integrity of globally 83 

important areas for biodiversity conservation. 84 

Seasonality of fires in Madagascar 85 

Madagascar’s climate is highly seasonal (Fig. 1) which affects the agricultural cycle. Farmers burn 86 

vegetation in preparation for planting crops before the rains, to provide fresh forage for cattle, and 87 

to control tree and shrub encroachment into pastures26. Such anthropogenic factors interact with the 88 

changing combustibility of vegetation, producing a distinct seasonal pattern of fires in 89 

Madagascar’s protected areas with a peak in all biomes in October (Fig. 1A), at the end of the dry 90 

season (Fig. 1B). Fires begin earlier in desert and xeric scrubland protected areas (April onwards) 91 

and dry broadleaf forest protected areas (May onwards), compared to the moist broadleaf forest 92 

protected areas (August onwards) (Fig 1A). Mean precipitation is quite variable across years (for 93 

example the beginning of 2020 was drier than previous years (Fig. 1B, Fig. S1), meaning a climate-94 

adjusted model of predicted fires is needed to identify fire anomalies. 95 
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 96 

Figure 1. Yearly seasonal patterns in fire occurrence (A) and precipitation (mm) (B) in protected 97 

areas across the different biomes. The boxplots (center line, median; box limits, upper and lower 98 

quartiles; whiskers, 1.5× interquartile range; points, outliers) show the variation for the years 2012-99 

2019 and diamonds show the values for 2020.  100 

 101 

Our climate-based model accounting for lags in precipitation and interactions with biomes (for 102 

details see Methods and SI) shows in general that an increase in precipitation in the same month is 103 

linked to a decrease in fires, and confirms that the timing of burning differs between biomes (SI 104 

Supplementary tables). Accumulated rainfall over the 12 past months is a significant, positive 105 

predictor of fires during the autumn months (Aug, Sept, Nov, Dec); (SI Supplementary tables). 106 

Overall, the model fit is reasonable, with observed fires falling within the 95 % confidence intervals 107 

around predicted fires for 63 out of 95 months (Fig. S2) and with model accuracy metrics (Mean 108 

Absolute Error (MAE); Root Mean Squared Error (RMSE); Normalized Root Mean Squared Error 109 

(nRMSE) indicating that the model performed poorly only in August 2015 (apparently because of  110 

unusually high rainfall during the past 12 months in three protected areas; SI; Fig S3).  111 
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Excess fires prior to pandemic 112 

Two noticeable differences between observed fires and those predicted by our model occurred in 113 

October-November 2013 and September 2018; both periods are associated with presidential 114 

elections (Fig. 2). The 2013 election (the first after the 2009 coup d'état) was particularly fiercely 115 

contested27 and our data show that this political unrest was associated with two consecutive months 116 

of excess burning. The finding that political events maybe correlated with increased deforestation 117 

has been observed in a recent study looking at election cycles and deforestation in Brazil28 and 118 

across 55 tropical forest nations29.  119 

 120 

Figure 2: The occurrence of months with excess fires in protected areas presented as the percent 121 

change between the total number of observed and predicted fires across all protected areas modelled 122 

for each month for the time period 2012-2020. Shaded area around the lines corresponds to the 95 123 

% confidence intervals. The size of the circles is relative to the number of excess fires in those 124 

months with significantly more fires than predicted based on climate and biome and the numbers 125 

above the circles refer to the number of excess fires for the month in question. 126 

Burning during the pandemic 127 

Madagascar responded rapidly to the threat of COVID-19 by closing its borders and instituting a 128 

series of lockdowns (Fig. 3). Travel around the country, including by ministry officials and 129 
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protected area managers, and field activities were substantially curtailed from March 20, 2020 and 130 

only started to recover from July onwards (Fig. 3). This meant that most on-site management 131 

activities (including enforcement patrols, community engagement and livelihood support projects) 132 

were effectively stopped for a period of approximately four months. International tourism into 133 

Madagascar, which contributed nearly 7% of gross national product in 201930 and is an important 134 

source of revenue for Madagascar’s protected area network31, only reopened in autumn 2021.  135 

136 
Figure 3. Timeline of key events associated with COVID-19 internationally and in Madagascar 137 

during 2020. For sources, see SI.  138 

Comparing observed fire frequency for 2020 in Madagascar’s protected areas with those predicted 139 

by our climate-adjusted model shows that the shutdown of conservation management activities from 140 

March to July was associated with an unprecedented 5-month upsurge in fires inside Madagascar’s 141 

protected areas (Fig. 4). In August 2020 there were slightly fewer fires than predicted, but burning 142 

quickly returned to levels predicted by our model after this. Despite a fear that the September onset 143 

of the burning period in the eastern humid forests would lead to elevated fires in the autumn of 144 

202032, this was not seen and burning inside protected areas remained at the levels predicted by 145 
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climatic variables for the rest of 2020 (Fig. 4). The period of excess burning persisted for far longer 146 

(5 consecutive months, cf median of 1 month for 12 previous anomalies in 2012-2019), and was 147 

characterized by far greater increases in relative fire frequency, with 76-248% more fires than 148 

predicted by our model (March: 209 %, April: 223 %, May 78 %, June 248 %, July 76 %; cf 32 –149 

134 % across all previous excess months, 2012-2019). 150 

 151 

 152 

Figure 4. Extent and location of excess protected area fires in 2020 in Madagascar. A) The 153 

occurrence of months with excess fires in protected areas presented as the percent change between 154 
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the total number of observed and predicted fires across all protected areas modelled for each month 155 

of 2020. Shaded area around the lines corresponds to 95 % confidence intervals. The size of the 156 

circles for those months with significantly more fires than predicted based on climate and biome is 157 

relative to the number of excess fires in those months and the numbers above the circles refer to the 158 

number of excess fires for the month in question. B) The spatial distribution of excess fires among 159 

Madagascar’s protected areas shown as the sum of excess fires March to July 2020 divided by size 160 

of protected area, and (C) the number of months (out of 5) for which a protected area experienced 161 

excess fires. 162 

Spatial patterns of burning 163 

Most of the excess fires registered in 2020 were concentrated in 16 protected areas in the west of 164 

Madagascar (Fig. 4). This pattern was not associated with any known management or governance 165 

factors, such as IUCN management category or management authority (Fig. S4). There were no 166 

differences in performance between protected areas managed by the parastatal Madagascar National 167 

Parks and the more recently established protected areas managed under different types of 168 

collaborative agreements with local communities and non-governmental organizations (Fig. S4). 169 

 However, during the period when management activities were on hold (March to July 2020) it is 170 

generally too wet for protected areas in the moist forest biome to burn (Fig. 1)33–35, which may 171 

explains why the excess fires were concentrated in the west where forests are more vulnerable at 172 

this time of year. Analysing the spatial distribution of fire anomalies in previous years (Figs. S5-11) 173 

confirms that excess burning occurring earlier in the year is clustered in the west (Figs. S5A; 174 

S8A,B,C; S10A; S11A,B), whereas anomalies later in the year are spread across the country (Figs 175 

S5B; S6C; S9A; S10B,C), supporting the conclusion that the time of the year the pandemic hit, 176 

rather than any specific type of protected area governance, explains the spatial patterns in excess 177 

burning.  178 
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Discussion 179 

Focusing on one of the world’s most megadiverse countries, we show for the first time that the 180 

COVID-19 pandemic was linked to a reduction in protected area integrity. The overlap between 181 

excess fires and the suspension of on-site management activities suggests a causal mechanism 182 

whereby fire prevention inside protected areas depends on such active engagement. However, 183 

increased pressures, driven by people clearing more land in anticipation of lost non-agricultural 184 

incomes, may also have played a role. Soon after on-site management resumed, burning inside 185 

Madagascar’s protected areas quickly reverted to levels predicted by our model. This is despite the 186 

economy of Madagascar not yet opening up and continued economic hardship36, including a 187 

drought-induced famine in the south37. Our findings therefore provide strong empirical evidence 188 

supporting previous correlational studies showing that active protected area management can buffer 189 

against population declines38–40 and providing evidence that this also applies for land-use change 190 

pressures for which the evidence base has been inconclusive41–43.   191 

Like any analyses relying on remotely-sensed data and building counterfactual 192 

scenarios, there are important caveats to our work. It is important to remember that the VIIRS 193 

thermal anomalies only serve as a proxy for fire incidence and ground validation was not possible 194 

due to the pandemic. However, previous studies have shown that the VIIRS product provides more 195 

coherent fire mapping compared to MODIS 1 km fire data and that the nominal confidence fire 196 

detections showed average commission error of 1.2%44. VIIRS is documented as having good 197 

capacity to detect real fires44 and temporal patterns converge with on-the-ground observations8. 198 

VIIRS is also commonly used for practical fire management45,46. Despite the high performance of 199 

the VIIRS data we nevertheless caution that our fire incidence data may underestimate the true 200 

number of fires as agricultural fires in sub-Saharan Africa are often small47. We chose to study fire 201 

because remote sensing data allows us to quantify changes in this threat at fine spatial and temporal 202 



11 
 

scales; however, this tells us nothing about the dynamics of other potentially important threats such 203 

as hunting, grazing, or extraction of wild harvested products3. Our analyses also do not account for 204 

COVID-19 induced burning outside protected areas, and, thus, we cannot say how well the 205 

protected areas mitigated potentially increased pressures compared to unprotected land. Finally, 206 

modelling what would have happened in the absence of the COVID-19 pandemic is challenging as 207 

such a counterfactual is inherently unknowable. Our predictive model only takes account of climatic 208 

drivers, for which we have relatively good annual data, however the fire frequency in any given 209 

year will have been influenced by a complex mix of social and economic drivers. 210 

The longer-term effects of COVID-19 on international conservation remain to be seen. The four 211 

times delayed meeting to agree the global post-2020 biodiversity framework1 is due to be held in 212 

the third quarter of 2022. However, this will be happening in the context of continued economic 213 

uncertainty in many parts of the world48, probably affecting international support for conservation. 214 

The prolonged effects of the pandemic on tourism and on economies more broadly will harm local 215 

livelihoods and place additional pressures on protected areas. It is important to keep monitoring the 216 

situation to evaluate long-term impacts of COVID-19 and to assess how the prolonged lack of 217 

tourism revenues may be affecting protected area performance. Our work has practical implications 218 

in that it can inform policy makers and park agencies about the importance of finding creative ways 219 

of keeping on-site protected area management going in times of turmoil. Our results clearly 220 

demonstrate the dramatic impact that management interruptions can have, and indicate that it may 221 

be important for politicians to consider protected area management an essential service which needs 222 

to continue through times of lockdowns and travel restrictions. In Madagascar, some protected area 223 

authorities started to increase collaboration with local communities to keep on-site activities 224 

running49 - an approach that might enhance conservation outcomes in the long-term50 and beyond 225 

the pandemic. 226 
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Methods 227 

Overview 228 

We built models (based on fire and climatic data from 2012-2020) to predict the monthly fires in 229 

Madagascar’s protected areas. We compared the observed number of fires in a given protected area 230 

in a given month to identify fire anomalies (where observed and predicted fires did not align) and 231 

used this to explore the temporal and spatial distribution of excess fires. Spatial analyses were done 232 

using ArcGIS 10.851 and Python 3.8.552 and all statistical analyses were performed using the 233 

software R 4.0.253. Package ggplot254 was used for visualizations. 234 

Data sets used 235 

Protected area boundaries were identified using spatial information from the World Database of 236 

Protected Areas55. The June 2020 release was compared to the list of protected areas by the 237 

Malagasy protected areas platform Forum Lafa and identified in Goodman et al.56 and those 238 

occurring in both were kept and clear overlaps removed, resulting in 114 protected areas being 239 

included in the analyses (Table S2). 240 

Data on biomes was sourced from the RESOLVE ecoregions project57 and we used 241 

the higher level classification identifying the following main biomes for Madagascar: Tropical & 242 

Subtropical Moist Broadleaf Forests (comprised of the humid and subhumid forests), Tropical & 243 

Subtropical Dry Broadleaf Forests (comprised of the dry deciduous forest), and Deserts and Xeric 244 

Shrublands (comprised of the spiny thickets and the succulent woodlands; Fig. 4). Protected areas 245 

were assigned to one biome based on highest spatial overlap (Table S2).  246 

We used the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m active fire product from the 247 

joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 248 
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satellites58 as this product provides near real-time open-access data on thermal anomalies and active 249 

fires at a finer spatial resolution than other satellite-based fire products44. The 375 m data 250 

complements Moderate Resolution Imaging Spectroradiometer (MODIS) fire detection and the 251 

previous VIIRS product at resolution 750 m44. Previous studies have shown that these coarser 252 

resolution products tend to miss especially smaller fires47,59. At the moment, the VIIRS 375 m data 253 

is the finest resolution publicly available data; we note its use for near real-time fire management 254 

alerts45,60. We sourced the full data for Madagascar from the first observation (20 January 2012) 255 

until the 31 December 2020. Note that the data is almost immediately released as a near real-time 256 

version, and later undergoes post-processing, meaning that in our dataset downloaded the 257 

29.01.2021 the data consisted of the final full product from 20.1.2012-31.5.2020 and the near real-258 

time release for 1.6.2020-31.12.2021. The confidence values are set to low, nominal and high by the 259 

data provider60. According to the data provider, low confidence daytime fire pixels are typically 260 

associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-261 

infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination 262 

during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. 263 

High confidence fire pixels are associated with day or nighttime saturated pixels. We only included 264 

the nominal and high confidence pixels and omitted the low confidence observations (13.88 % of all 265 

pixels), possibly omitting some smaller fires, in order to make sure our predictions are conservative. 266 

This might have increased the zero observations in our dataset, something we consequently dealt 267 

with using a zero-inflated negative binomial approach, specifically incorporating the uncertainty 268 

behind zero observations (see details below). The resulting data was overlayed with the protected 269 

area polygons and after that summed to number of observed fires per month per protected area for 270 

all the years (2012-2020). We excluded January 2012 due to its incomplete nature (only 11 days of 271 

data).  272 
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Monthly precipitation data was sourced from the Global Precipitation Measurement 273 

(GPM) mission61 (for years 2016-2020) and its predecessor The Tropical Rainfall Measuring 274 

Mission (TRMM)62 (for years 2011-2015) at spatial resolution 10 km. Mean precipitation per 275 

protected area per month for 2011-2020 was calculated as the average of the precipitation data cells 276 

that intersected the protected area (zonal mean).   277 

Explanatory variables in the fire prediction model 278 

In the tropics and subtropics, the total amount of fires reflects a complex interaction between 279 

climate and human activities63 with precipitation being an exceptionally important driver of inter-280 

annual and seasonal variability in burned area19. Thus controlling for precipitation variability is 281 

critical for assessing trends in fire activity. Higher precipitation prior to the onset of the main fire 282 

season may increase fire activity in arid regions because greater moisture availability enhances 283 

biomass production and this vegetation can then burn, whereas higher levels of precipitation during 284 

the fire season may suppress fires due to the increased moisture13. In general, precipitation is 285 

negatively correlated to burned area in the short term in humid savannas and tropical forests, but 286 

positively correlated in the long term in more xeric savannas and grasslands19.  287 

To control for the effect of precipitation on fire occurrence and thus establish a robust 288 

counterfactual of expected fires against which to compare observed fires, we built monthly models 289 

predicting the number of fires inside protected areas based on a set of precipitation variables. We 290 

expected precipitation to interact with biome and so included biome as an interaction term. To 291 

account for the possible difference in long- versus short-term effects of precipitation we explored 292 

including a number of time lags but were also concerned to avoid over-fitting. Thus we calculated 293 

accumulated precipitation over the last 12 months based on summing the precipitation during the 294 

past 12 months. Our final model included accumulated precipitation together with the precipitation 295 

in the month in question, plus precipitation during the past month, plus their interactions with biome 296 
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(factor). Explanatory variables were standardised using the R function ‘scale’ on all precipitation 297 

variables in the data set by dividing the (centered) columns of each factor by their standard 298 

deviations. Standardised variables were evaluated for collinearity by visual inspection of the data 299 

and by calculating Pearson’s correlation coefficients. 300 

Predicting fires and identifying fire anomalies 301 

To establish the null model for expected occurrence of fires given the levels of precipitation and in 302 

the absence of COVID-19 and other changes in human activities, we built monthly models 303 

explaining the sum of fires inside protected areas from 2012 to 2020 based on fires in other years 304 

and precipitation variables. The fire occurrence data is count data and since we had many protected 305 

areas with not a single fire in a given month, our data was also zero inflated. To account for this, we 306 

explored the use of zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) 307 

regression models using the R package pscl64. Using a likelihood ratio test, we found that ZINB 308 

outperformed ZIP (SI) for our data due to overdispersion in the non-zero count data65, and therefore 309 

proceeded with ZINB. Previous studies have also found that ZINB-models are well suited for 310 

modelling fire incidence66,67.  311 

The number of fires was thus modeled using a zero-inflated negative binomial 312 

modelling approach65. The probability density function for the random variable  denoting the fire 313 

count is 314 

 315 

 316 

where  denotes the probability of having a zero count,  is the mean, k is the dispersion 317 

parameter and  is the gamma function65,68. The mean  was modeled using the log link 318 
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function and predictor variables. The zero counts were modeled assuming equal probability for each 319 

zero count. The fire count predictor variables were monthly precipitation, precipitation from 320 

previous month and accumulated precipitation during last 12 months, which all had an interaction 321 

with the biome type. The log-transformed size of protected areas was used as an offset variable. 322 

We fitted the model for each month for each year (2012-2019), using data from the 323 

corresponding month during all other years in the data series. Further model selection was not done 324 

as we were not interested in finding out which specific explanatory variables best explained fires, 325 

but rather in excluding the potential effect of any of them. Model validation was done using residual 326 

diagnostics following the procedures described in Zuur et al69. Based on the fitted model, we 327 

predicted the expected fires based on the model parameters and precipitation values for the month 328 

and year in question. For example, fires in April 2016 were predicted using the model fitted based 329 

on April 2012, 2013, 2014, 2015, 2017, 2018, and 2019. Excess fires were defined as the difference 330 

between observed and predicted fires. For 2020, we repeated the same procedure and fitted the 331 

model for each month using the 2012-2019 data and then predicting 2020 fires based on the 2020 332 

covariate values. We assessed model forecasting accuracy using two commonly used measures, the 333 

Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE)70. However, as these are 334 

both absolute measures, we also report the Normalized Root Mean Squared Error (nRMSE), which 335 

divides the RMSE by the range (max-min) and thus allows for comparisons across the months and 336 

years70.  337 

Effect size measures and confidence intervals 338 

We summed predicted and observed fires across the 114 protected areas for each month of each 339 

year and created 95% confidence intervals around the predictions by bootstrapping71. We resampled 340 

the predicted values for each month of each year 10 000 times using package boot in R72. We used 341 

the normal 95 % confidence intervals to determine for which months there were statistically 342 
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significantly more fires than predicted by our model. For these months, we identified individual 343 

protected areas with excess fires as those with more fires than the 95 % confidence interval around 344 

the mean for all protected areas in that month.  345 

For the 2020 anomaly, for each protected area we calculated excess fires per km2 by 346 

summing excess fires for March, April, May, June, and July 2020 and dividing by the size of the 347 

protected area (km2). We tested if the excess fires per km2 differed by IUCN management category 348 

or management authority using the nonparametric Kruskal–Wallis one-way analysis of variance test 349 

due to the non-normality of the data.  350 

Data Availability 351 
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