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Abstract

New Guinea shows human occupation since ~50 thousand years ago (kya), independent adoption 

of plant cultivation ~10 kya, and great cultural and linguistic diversity today. We performed 

genome-wide SNP genotyping on 381 individuals from 85 language groups in Papua New Guinea 

(PNG) and find a sharp divide originating 10-20 kya between lowland and highland groups, and a 

lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 

kya, with major population growth in the same period, suggesting population structure was 

reshaped following the Neolithic lifestyle transition. However, genetic differentiation between 

groups in PNG is much stronger than in comparable regions in Eurasia, demonstrating that such a 

transition does not necessarily limit the genetic and linguistic diversity of human societies.

The island of New Guinea contains some of the earliest archaeological evidence for modern 

humans outside of Africa, dating back to approximately 50 kya (1). Starting ~10 kya, 

systematic plant cultivation was developed in its central mountain range (2), approximately 

coinciding with similar, independent developments in the Near East, East Asia and the 

Americas. Today, the country of Papua New Guinea (PNG) occupies the eastern half of the 
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island and northern Island Melanesia, and is the most linguistically diverse country with 

approximately 850 languages (3). About half belong to the Trans-New Guinea phylum, 

spoken across all of the highlands and large parts of the lowlands and hypothesized to have 

spread alongside plant cultivation (4).

The Sahul continent appears to have been isolated from the rest of the world at least until the 

last few thousand years (5, 6), so its prehistory likely represents an independent instance of 

human genetic and cultural evolution over ~50 ky. Genetic studies are increasingly 

indicating that agriculture, languages and culture in Eurasia and Africa have primarily 

spread through the movement of people (7–10), and it is of great interest to understand if the 

shift from a hunter-gatherer to a sedentary, cultivation-based lifestyle in New Guinea – 

which we here refer to as a Neolithic transition – followed similar patterns.

We genotyped 381 individuals from 85 language groups across PNG at 1.7 million genome-

wide markers (Figs. 1A, S1, tables S1, S2, (11)), and analysed 39 previously generated high-

coverage whole-genome sequences (6, 12), including the PNG samples from the HGDP-

CEPH panel (which we find consists of one highland and one lowland subset (fig. S2, table 

S3, (11))).

We first examined the impact of external gene flow to PNG, particularly that derived from 

Holocene migrations from Southeast Asia (13). Highlanders show no excess shared ancestry 

with Asians relative to Aboriginal Australians (D-statistics (14), Z > 2 (11), and 

ADMIXTURE (15)), except for four individuals who likely reflect recent admixture via the 

lowlands (Fig. 1B). We also find no mitochondrial or Y chromosomes of recent non-Sahul 

origin in any highlander (figs. S4, S5). The lowlands, however, harbour widespread 

Southeast Asian ancestry, with substantially higher levels in Austronesian speakers than in 

non-Austronesian speakers (mean of 38.7% vs 11.6%, p = 1.4×10−13, Wilcoxon rank sum 

test). The lowest levels (mean of 4.3%) are found in northern groups speaking Sepik-Ramu 

phylum languages. Our results thus demonstrate a variable Southeast Asian genetic impact 

on different parts of PNG, and independence of highlander ancestry from non-Sahul sources.

Papuans diverged genetically from Aboriginal Australians long before rising sea levels 

separated New Guinea and Australia ~8 kya, and different groups across Australia display a 

uniform relationship to Papuans (6). When accounting for Southeast Asian admixture using 

admixture graphs and D-statistics (14), we similarly find that all genotyped Papuan 

individuals share a uniform relationship to Aboriginal Australians (fig. S6), revealing a lack 

of genetic continuity across Sahul.

The strongest genetic separation within PNG appears to be that between the mainland and 

the Bismarck archipelago islands (New Britain and New Ireland) (Figs. 2B, S7), consistent 

with previous studies (16). Highlanders fall into three clusters: one western, one eastern and 

one corresponding to a small set of Angan language groups from the south-eastern highlands 

(Figs. 2A, S8), the last showing evidence of genetic isolation (fig. S9).

To compare highlanders and lowlanders, we masked lowlander genomes for Southeast Asian 

ancestry tracts, achieving a misclassification rate of <0.5% (11). We find no differences in 

the affinity of lowlanders to different highlander groups using PCA and D-statistics (Figs. 
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2A,C, S10, (11)). Thus, all highlanders, regardless of geographic location, seem to form a 

clade relative to lowlanders. In line with this, there is not a single D-statistic (at Z > 3) in 

which a highlander group is more similar to any lowlander group than to any other 

highlander group (Fig. 2E, 2G).

In contrast, highlanders as a group are not equally similar to all lowlanders (Fig. 2D), 

displaying slightly higher affinity to groups from the Sepik river region (Fig. 2H). This is 

surprising linguistically, as the local Sepik-Ramu languages are unrelated to the Trans-New 

Guinea languages of the highlands. There is, however, archaeological evidence for Holocene 

cultural contact between the two regions (17). While highlanders are all similar amongst 

themselves, the same is not true of lowlanders (Fig. 2F) – both southern and northern 

lowlanders are more similar to highlanders than they are to each other.

To investigate when present-day groups in PNG separated, we applied MSMC (18) to 

whole-genome sequences for six highland groups and one Sepik lowlands group. We used 

10x Genomics linked-read whole-genome sequencing (19) to physically phase eight 

genomes (table S4), and also analysed perfectly phased male X chromosomes (11). The 

results suggest that highlanders and Sepik lowlanders separated 10-20 kya. All splits within 

the highlands seem to have occurred within the last ~10 kya (Figs. 3A, B, S12). A Y-

chromosomal phylogeny similarly revealed shared ancestry across groups within these 

timescales (fig. S13). We also find evidence of major increase in effective population sizes in 

most highlander groups in the last 10 ky (Figs. 3c, S14), using SMC++ (20) and MSMC. 

Sepik lowlanders do not share this increase, consistent with anthropological records of lower 

lowland population densities, likely linked to widespread malaria (21).

Genetic differentiation is much stronger in PNG than in regions of similar size in Eurasia, 

where FST values between major populations within Europe or East Asia are generally 1% 

or less (Fig. 4). Within the highlands, a sampled area about the size of Denmark, FST 

between eastern and western groups are 2-3%, and values between the Angan-speaking and 

other groups reach 4-5% (as high as between European and South Asian populations). 

Within each of the eastern and western highland clusters, values are below 2% but many are 

above 1%. Levels of FST in the lowlands are also high, suggesting that cultural-linguistic 

factors, rather than terrain, drive the differentiation. Between the highland, northern lowland 

and southern lowland regions, differentiation is even higher. Structure is stronger for the Y 

chromosome than for the mitochondrial genome, suggesting lower male effective population 

sizes and/or more female movement between groups (fig. S15).

Our results confirm the independent evolution of Sahul for most of the last 50 ky, and the 

independence of New Guinea from Australia for much of this time. Present-day mainland 

population structure, marked by a very sharp highland-lowland division, does not date back 

to the initial peopling of Sahul, but instead appears to have formed within the last 20 ky. 

Highland structure formed subsequently, mostly within the last 10 ky, which is within the 

general timescale of the spread of cultivation (2) and the Trans-New Guinea languages (4). 

We thus propose that an expansion of cultivating groups across the highlands could explain 

our observations, including the uniform relationship of highlanders to lowlanders and the 

recent increase in population sizes. Our data also suggest higher diversity in the western than 

Bergström et al. Page 3

Science. Author manuscript; available in PMC 2018 March 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the eastern highlands (figs. S9,S14), consistent with a hypothesized origin of cultivation in 

the former (22). Our results thus suggest that, as in many other parts of the world, the spread 

of cultivation in PNG was associated with an expansion of peoples and a reshaping of 

population structure.

The strong genetic differentiation within PNG, however, sets it apart from other parts of the 

world that also underwent Neolithic lifestyle transitions. Ancient DNA studies in Europe 

and the Near East have documented a gradual but dramatic decrease in differentiation, 

showing that the genetic homogeneity of present-day west Eurasia emerged in the last few 

thousand years (10, 23). FST values in PNG fall between those of hunter-gatherers and 

present-day populations of west Eurasia, suggesting that a transition to cultivation alone 

does not necessarily lead to genetic homogenization.

A key difference might be that PNG had no Bronze Age, which in west Eurasia was driven 

by an expansion of herders and led to massive population replacement, admixture and 

cultural and linguistic change (7, 8), or Iron Age like that linked to the expansion of Bantu-

speaking farmers in Africa (24). Such cultural events have resulted in rapid Y chromosome 

lineage expansions due to increased male reproductive variance (25), but we consistently 

find no evidence for this in PNG (fig. S13). Thus, in PNG, we may be seeing the genetic, 

linguistic and cultural diversity that sedentary human societies can achieve in the absence of 

massive technology-driven expansions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

A Neolithic transition reshaped population structure in Papua New Guinea, but in 

comparison to other areas of the world, present-day genetic differentiation remains high.
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Fig. 1. PNG samples.
(A) Each language group is represented by a circle, the area of which indicates the number 

of genotyped individuals and the colour the top-level language phylum. 39 individuals are 

not included as the specific language is unknown or the two parents are from different 

language groups. Also see fig. S1. (B) Papuan (blue) and Southeast Asian (red) ancestry 

proportions as estimated by ADMIXTURE (K=2 with 504 East Asian individuals from the 

1000 Genomes Project, also see fig. S3); individuals are grouped by province and then 
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language group (separated by black bars). Ancestry proportions correlate strongly (r = 

0.988) with those estimated using f4-ratios (11).
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Fig. 2. PNG Population structure.
(A) When projected onto principal components constructed with only highlander genotypes, 

all lowlanders (excepting a few outliers) group uniformly. Also see fig. S10. (B) When 

projected onto principal components constructed with only lowlander genotypes, all 

highlanders (excepting a few outliers) group uniformly. Also see fig. S11. (C-F) Quantile-

quantile plots comparing Z-scores from D-statistics relating highlanders and lowlanders to 

those expected under a normal distribution (11). (C) Lowlanders are equally similar to 

different highlander groups. (D) Highlanders have stronger affinity to some lowlander 

groups than to others. (E) Highlanders are more similar to each other than to lowlanders. (F) 
Lowlanders are not always more similar to each other than to highlanders. (G) Z-scores 

(capped at 6) of two different D-statistics, the first measuring if the highland Gende speakers 

are more similar to the lowland Sop speakers, living just 40 km away, or to other highlanders 

(blue meaning more highlander similarity), and the second if Sop are more similar to Gende 

or to other lowlanders (red meaning more lowlander similarity). (H) Genetic affinity of 

highlanders (treated as a single group, in grey) to different lowland groups measured by the 
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outgroup f3 statistic f3(Highlanders,X;Aboriginal Australian) (red meaning higher affinity). 

C-H were calculated after masking lowlander genomes for Southeast Asian ancestry.
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Fig. 3. Time depth of population separation and growth in PNG.
(A) Cross-coalescence curves between highlanders and a northern lowlands Middle Sepik 

group suggests a split time between 10 and 20 kya. (B) Cross-coalescence curves between 

highland groups suggest split times within the last ~10 ky (Huli representing the western 

cluster, Gende and HGDP_H the eastern, figs. S8, S10). These were inferred using MSMC 

on genomes physically phased using linked-read sequencing. Also see fig. S12. (C) Effective 

population size histories inferred using SMC++ on five genomes per group. Also see fig. 

S14.
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Fig. 4. Genetic differentiation in PNG.
Geographical distance between groups plotted against FST, after masking lowlander 

genomes for Southeast Asian ancestry. Grey lines indicate FST between selected 1000 

Genomes Project populations.
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