
Constitutive model for shear-thickening suspensions: Predictions for steady shear with
superposed transverse oscillations
J. J. J. Gillissen, C. Ness, J. D. Peterson, H. J. Wilson, and M. E. Cates

Citation: Journal of Rheology 64, 353 (2020); doi: 10.1122/1.5129657
View online: https://doi.org/10.1122/1.5129657
View Table of Contents: https://sor.scitation.org/toc/jor/64/2
Published by the The Society of Rheology

ARTICLES YOU MAY BE INTERESTED IN

Preface: Physics of dense suspensions
Journal of Rheology 64, 223 (2020); https://doi.org/10.1122/8.0000016

Investigating the nature of discontinuous shear thickening: Beyond a mean-field description
Journal of Rheology 64, 329 (2020); https://doi.org/10.1122/1.5132317

A hydrodynamic model for discontinuous shear-thickening in dense suspensions
Journal of Rheology 64, 379 (2020); https://doi.org/10.1122/1.5134036

Experimental test of a frictional contact model for shear thickening in concentrated colloidal suspensions
Journal of Rheology 64, 267 (2020); https://doi.org/10.1122/1.5129798

Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition
Journal of Rheology 64, 227 (2020); https://doi.org/10.1122/1.5129680

Fluctuations at the onset of discontinuous shear thickening in a suspension
Journal of Rheology 64, 309 (2020); https://doi.org/10.1122/1.5131740

https://images.scitation.org/redirect.spark?MID=176720&plid=1084805&setID=376382&channelID=0&CID=358160&banID=519826876&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b2d45deb48677597b1286cc8c2e44938fdd7152c&location=
https://sor.scitation.org/author/Gillissen%2C+J+J+J
https://sor.scitation.org/author/Ness%2C+C
https://sor.scitation.org/author/Peterson%2C+J+D
https://sor.scitation.org/author/Wilson%2C+H+J
https://sor.scitation.org/author/Cates%2C+M+E
/loi/jor
https://doi.org/10.1122/1.5129657
https://sor.scitation.org/toc/jor/64/2
https://sor.scitation.org/publisher/
https://sor.scitation.org/doi/10.1122/8.0000016
https://doi.org/10.1122/8.0000016
https://sor.scitation.org/doi/10.1122/1.5132317
https://doi.org/10.1122/1.5132317
https://sor.scitation.org/doi/10.1122/1.5134036
https://doi.org/10.1122/1.5134036
https://sor.scitation.org/doi/10.1122/1.5129798
https://doi.org/10.1122/1.5129798
https://sor.scitation.org/doi/10.1122/1.5129680
https://doi.org/10.1122/1.5129680
https://sor.scitation.org/doi/10.1122/1.5131740
https://doi.org/10.1122/1.5131740


Constitutive model for shear-thickening suspensions: Predictions for steady shear
with superposed transverse oscillations

J. J. J. Gillissen,1,a) C. Ness,2 J. D. Peterson,3 H. J. Wilson,1 and M. E. Cates3

1Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
2Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS,

United Kingdom
3DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom

(Received 30 September 2019; final revision received 10 January 2020; published 4 March 2020)

Abstract

We recently developed a tensorial constitutive model for dense, shear-thickening particle suspensions that combines rate-independent micro-
structural evolution with a stress-dependent jamming threshold. This gives a good qualitative account for reversing flows, although it quantita-
tively overestimates structural anisotropy [J. J. J. Gillissen et al., Phys. Rev. Lett. 123(21), 214504 (2019)]. Here, we use the model to predict
the unjamming effect of superposed transverse oscillations on a steady shear flow in the thickened regime [N. Y. C. Lin et al., Proc. Natl.
Acad. Sci. U.S.A. 113, 10774 (2016)]. The model successfully reproduces the oscillation-mediated viscosity drop observed experimentally.
We compare the time-dependent components of the stress and microstructure tensors to discrete-element simulations. Although the model
correctly captures the main qualitative behavior, it generally over-predicts the microstructural anisotropy in steady shear, and it under-predicts
the number of particle contacts in oscillating shear. It also does not fully capture the correct variation in phase angle between the transverse
component of the microstructure and the shear rate oscillations as the amplitude of the latter is increased. These discrepancies suggest
avenues for future improvements to the model. © 2020 The Society of Rheology. https://doi.org/10.1122/1.5129657

I. INTRODUCTION

Dense suspensions of hard particles in a viscous solvent
are found in many application domains including the con-
struction industry, food production, and pharmaceuticals.
Such materials, which have a solid volume fraction f≳0:4,
often exhibit shear thickening, an increase (continuous or
discontinuous) in viscosity under increasing shear rate _γ.
Understanding and controlling this distinctive rheological
behavior is key to operating efficient and reliable processes
and has been the subject of many studies during the past
three decades.

Recent numerical [1,2] and experimental [3–5] data provide
evidence that, in contrast to scenarios envisaged in much of the
prior literature [6], shear thickening in non-Brownian, noniner-
tial suspensions is caused by the onset of direct interparticle
contacts that are frictional in character. In addition to tangential
contact friction forces, shear thickening may also arise due to
tangential lubrication forces that act between asperities on the
opposing particle surfaces [7]. In both (the contact friction and
the lubrication) scenarios, shear thickening results from con-
straints due to tangential forces. Although our theoretical treat-
ment of both scenarios would be similar, we follow the contact
friction narrative in this work. Experimental data [3] for the
steady-state viscosity as a function of shear rate are well
described by the theory of Wyart and Cates (WC) [8], in which

the appearance of such contacts under steady flow is governed
by a competition between a short-ranged interparticle repulsion,
of maximum force F*, and the macroscopic particle pressure
Π ¼ �TrΣ=3, with Σ being the particle stress tensor. In
suspensions of strictly hard spheres, whether frictional or not,
dimensional analysis predicts rate-independent rheology, i.e.,
Σ/ _γ [9]. However, the presence of a characteristic force scale
F* allows the physics to depend on a dimensionless shear rate,

_γr ¼
_γηs
Π* , (1)

with ηs being the solvent viscosity, a the particle radius, and
Π* � F*=a2 the so-called “onset stress.” At small flow rates,
where Π , Π*, the typical interparticle force remains less
than F*, and particles remain separated by lubrication films
[10]. At large flow rates, where Π . Π*, lubrication films
break down and particles enter into solid-solid frictional
contact. Friction restricts particle sliding so that steady flow
requires more tortuous particle trajectories, leading to an
increase in the suspension viscosity.

Based upon this principle, WC write, for a steady xy shear
flow, a relation between the nondimensionalized suspension
viscosity ηr ¼ Σxy=(ηs _γ), the volume fraction f, and the
dimensionless shear rate _γr. The relation is based on the
Krieger–Dougherty equation [11],

ηr � (1� f=fJ)
�2
, (2)

where fJ is the volume fraction at jamming. WC introduce
rate-dependence by relating fJ to the onset of friction
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described above, noting that friction imposes additional
constraints at particle contact, reducing the number of con-
tacts per particle (or coordination number, Z) required for
jamming. Moreover, they effectively assume that the steady-
state microstructure itself is friction-independent so that the
stress dependence enters not by changes in Z itself, but by
changes in the jamming point ZJ , which, for spheres in three
dimensions, can vary between four (all contacts rolling) and
six (all contacts sliding). This assumption causes the steady-
state Z value to depend solely on volume fraction, so reduc-
ing ZJ is equivalent to reducing fJ . Hence, WC postulated

fJ(f ) ¼ fJ
1(1� f )þ fJ

2f , f (Π) ¼ exp �Π*=Π
� �

, (3)

where f (Π) is the fraction of contacts that are constrained by
friction to roll rather than slide. {The particular form of f (Π)
is relatively unimportant; the above choice was made later,
on empirical grounds, in [12].} The limiting volume fractions
at which frictionless and fully frictional packings become
rigid, fJ

1 � 0:64 and fJ
2 � 0:57, respectively (in 3D), are

generally agreed upon in the literature.
Although Eqs. (2) and (3) have a featureless, monotonic

dependence of f on Π, they predict flow curves (shear stress
versus shear rate) that, depending on f, imply continuous and
discontinuous shear thickening as well as “full jamming”
(whereby the viscosity is infinite above a Π threshold compara-
ble in magnitude to Π*). In particular, discontinuous shear thick-
ening arises as a jump between the lower and upper branches of
a flow curve that is everywhere smooth, but S-shaped [8].

The WC theory agrees well with experiments and particle-
based simulations under steady and homogeneous conditions
[3], at least for modest particle size polydispersity [13]. Its
predictions of nonmonotonic flow curves also signal the
presence of steady shear-banding and other instabilities
leading to spatiotemporal variations of the flow state [12].
However, it neither makes predictions for unsteady flow nor
does it quantitatively address the tensorial character of the
stress tensor. In other words, WC did not offer a full constitu-
tive model for shear-thickening suspensions. At first sight,
one might consider applying the WC equations (2) and (3) at
each point in time during an evolving flow, but the resulting
implicit assumption that the coordination number Z depends
only upon f is clearly invalidated by the flow-history depen-
dence of the microstructure.

To address this, we have recently formulated a tensorial
constitutive model in which the viscosity depends on a time-
evolving “jamming coordinate” ξ, defined in Eq. (37) below,
which can take over the role played by f in the WC theory
[14]. Although ξ is effectively a proxy for a time-evolving
microscopic coordination number Z, the jamming coordinate
is computable from the coarse-grained microstructure hnni
[see Eq. (24) below], allowing closure of our equations at that
level. Our model includes a microstructure-tensor evolution
equation, which was derived previously for rate-independent
suspensions [15] from which ξ is computed, with key intui-
tions for shear-thickening suspensions as described in the
scalar and time-independent WC approach [8]. These are the
(linear) interpolation between jamming conditions as a func-
tion of f (Π) and the singular (Krieger–Dougherty) dependence

of viscosity on 1� ξ=ξJ , where ξJ is the jamming coordinate
at the jamming point which is defined in Eq. (9) below.
In [14], we demonstrated that the new constitutive model
performs well under shear reversal, correctly predicting the
discontinuous drop in ηr ¼ Σxy=( _γηs) at very small strain
and its subsequent smooth recovery. Abrupt flow reversals
of this kind represent important test cases, which in the
literature have been used to gain insight into history-
dependent microstructure [16] and to distinguish the contact
and hydrodynamic contributions to suspension stress [4,17,18].
Their challenging character for constitutive models has been
previously pointed out [19,20].

In the present work, we further test the new constitutive
model by addressing the case of a steady shear flow (shear
rate _γ) with superposed transverse shear flow oscillations.
The latter is at 90� to the steady flow and has frequency ω
and strain amplitude γ [Fig. 1(a)]. The steady shear has flow
in x and gradient in y, while the transverse oscillations are in
+z with gradient in y. As opposed to an abrupt flow reversal,
such flows constitute a continuous family of time-dependent,
controlled distortions to the steady shear flow, characterized
by their amplitude γ {which, as discussed later, we fix at
γ ¼ 0:01 following the experiments of [21]} and a dimen-
sionless frequency _γ?, see Fig. 1(b),

_γ? ¼ ωγ
_γ
: (4)

Recent experiments [21] and discrete-element method
(DEM) simulations [22] demonstrate that the oscillations
break up the fragile jammed network of interparticle contacts
[23]. This breakup can substantially reduce the viscosity in
systems with f just below fJ

2 (where discontinuous shear
thickening arises). Moreover, for systems that are fully
jammed (f . fJ

2, Π � Π*), the viscosity falls from the
(effectively infinite) jammed value to a finite one. The mech-
anism behind the loss of contacts has been explained from
the perspectives of force chain dynamics [21] and random
organization [22]. Transverse shear flow oscillations may
enhance suspension flow in practical applications [24]. In
addition, this flow configuration also offers a subtle and

FIG. 1. (a) Model suspension with a coordinate definition in green. Blue
arrow indicates steady shear flow; red arrows indicate superposed transverse
oscillatory shear flow. (b) Top view of model suspension showing examples
of shearing trajectories with different _γ? ¼ γω= _γ.
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challenging test case for constitutive models for suspension
microstructure and stress.

The remainder of the paper is organized as follows.
Section II presents a self-contained derivation of our con-
stitutive model, including those parts first presented in [25]
and [15] as well as the new features added in [14] to address
shear thickening. In Sec. III, we give brief details of the
discrete-element simulation model from which we generate test
data in the chosen flow geometry. In Sec. IV, we compare the
results of the constitutive model to those of the DEM across a
range of _γr and _γ?. Our conclusions are given in Sec. V.

II. CONSTITUTIVE MODEL

We consider a collection of non-Brownian spheres of
radius a, suspended at a volume fraction of f and a number
density of n ¼ f=( 43 πa

3) in a fluid of density ρ and viscosity
ηs. The volume-averaged fluid velocity is U, and the fluid
velocity gradient and deformation tensors are given by
L ¼ ∇UT and E ¼ 1

2 Lþ LT
� �

, respectively. The particle
Reynolds number is _γρa2=ηs � 1 (allowing inertia to be
neglected), and f is assumed sufficiently large that hydrody-
namic interactions between particles can effectively be
modeled as lubrication forces.

Below, we derive an equation for the particle stress tensor Σ,
which is based on an equation of motion for the statistics of the
particle pair separation unit vector n, which is encoded in the
second moment hnni of the distribution function Ψ(n). In
Sec. II A, we derive an equation of motion for n for a single par-
ticle pair. In Sec. II B, we use this equation to derive the equa-
tion of motion for hnni, and in Sec. II C, we relate Σ to hnni.

A. Particle pair motion

Following [15], we start by writing an equation of motion
for the connection vector r of a particle pair, that points to
a so-called “test particle” (TP) from a so-called “pairing
particle” (PP). Under the conditions given above, Newton’s
equation of motion, applied to the TP, reads

0 ¼ C1aηs L � r� _rð Þ
� C2aηs _r � nð Þnþ C3a

2ηs _γΘ 2a� rð Þn: (5)

Here, n ¼ r=r is the interaction unit vector, r ¼ jrj, C1,2,3 are
dimensionless prefactors, specified below, and Θ(u) is the
Heaviside step-function, with Θ(u , 0) ¼ 0, Θ(u � 0) ¼ 1.
For strictly hard-core particles, the Θ function counts con-
tacts; in systems where hard-core contact is replaced by parti-
cle overlaps (as is often done in simulations), it continues to
do so. Note that in [15], we wrote C1=2 instead of C1.

The C1-term in Eq. (5) is the interaction force between
the TP and the background mixture, which is proportional to
the difference between the TP velocity _r and the mixture
velocity at the TP location, L � r. The C2-term in Eq. (5) is
the lubrication interaction force between the TP and the PP.
The leading order contribution to the lubrication force is
� a2(r � 2a)�1ηs _r � nð Þn, where (r � 2a) is the interparticle
gap [26]. In order to arrive at tractable expressions for the
suspension microstructure and stress [Eqs. (24) and (35)], we

have replaced the factor a(r � 2a)�1 with its averaged value
C2, which is taken to obey the Krieger–Dougherty form [11]

C2 � (1� f=fJ
1)

�2
, (6)

where fJ
1 is the particle volume fraction at random close

packing.
The C3-term in Eq. (5) is the contact force between the

TP and the PP. The expression for the contact force assumes
that this force (i) aligns with n, (ii) acts on the particle
surface, (iii) scales as a viscous force � a2ηs _γ, and (iv) is
proportional to a dimensionless prefactor C3.

Note that in treating C1,2,3 as constants, independent of a
local microstructure, we have already used a mean-field type
of averaging. (This applies particularly for the constraint
force C3 which, at a particular contact, can take any positive
value to balance the other forces acting.) After such averag-
ing, the interaction force between the TP and the background
must balance the dominant term of the interaction force with
the PP so that, in magnitude,

C1 � max (C2, C3): (7)

Note that there are no tangential (lubrication or contact fric-
tion) forces in Eq. (5) and we do not consider the torque
balance. When considering particle motion, the omission of
tangential contact forces, caused by friction, is justified by the
assumption, inherited from the WC theory, that microstructural
evolution is not itself altered by frictional forces (although the
stress for a given microstructure and flow is strongly altered).
This assumption is further justified by observations from
DEM (i) that the magnitude of the tangential contact forces is
small compared to that of the normal contact forces, even
under shear-thickened conditions [27] and (ii) that the micro-
structure is nearly unaffected by shear thickening [14].
Indirectly, the tangential contact friction forces are important
as they affect the suspension rheology by imposing constraints
on the particle motion [8]. The resulting increase in the sus-
pension viscosity is, however, mainly supported by the normal
contact forces. Therefore, although we exclude the tangential
contact friction forces in Eq. (5), we indirectly account for
these forces by incorporating the following jamming behavior
in the prefactor C3 for the normal contact forces:

C3 � (1� ξ=ξJ)
�2
, (8)

which depends on the jamming coordinate ξ, a mesoscopic
quantity, defined in Eq. (37) below. The jamming coordinate
ξ serves as a proxy for the coordination number Z, as f does
in the steady-state WC theory. Although the numerical
values of ξ and Z differ, as exemplified in Eq. (39) below, ξ
plays a similar role as Z, by defining a distance to the
jamming point, i.e., C3 diverges when ξ reaches its jamming
limit ξJ [Eq. (8)]. This jamming limit ξJ is, in turn, assumed
to decrease from a larger value ξJ1 to a smaller value ξJ2,
when the system transitions from “lubricated” to “frictional.”
This transition is encoded in the fraction f of frictional con-
tacts, which smoothly increases from zero to one as the parti-
cle pressure in the system, Π, passes through the onset
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threshold Π* � F*=a2. Here, F* is the maximum force sus-
tainable by the short-range repulsive interactions,

ξJ ¼ ξJ1 1� fð Þ þ ξJ2f , f ¼ exp �Π*=Π
� �

: (9)

For simplicity, we have adopted the same functional form for
f (Π) as in Eq. (3).

The normal and tangential components of the interparticle
velocity _r are readily obtained by projecting Eq. (5) onto the
relevant directions,

_r � n ¼ C1

C1 þ C2
E : rnþ C3

C1 þ C2
_γaΘ 2a� rð Þ, (10)

and, with δ being the unit tensor,

_r � δ � nnð Þ ¼ L � r � δ � nnð Þ: (11)

B. Microstructure evolution

Again following [15], we now introduce the distribution
function Ψ rð Þ of the particle-pair separation vector r, which
evolves according to the Smoluchowski equation for the two-
particle configuration space,

@tΨþ @k _rkΨð Þ ¼ 0, (12)

where @k ¼ @=@rk. Because the typical spacing between
the particles ϵ is small compared to the particle radius a, the
anisotropy in Ψ(r) is relegated to the so-called coarse-
graining shell 2a , r , 2aþ ϵ, where ϵ is related to f via
[a=(aþ ϵ)]3 � f=fJ

1, i.e.,

ϵ

a
� 1� f=fJ

1: (13)

By assuming that the number of interactions in the coarse-grain-
ing shell is � f, we see that Ψ(r)� [number of interactions]=
[volumeof shell]�f=(a2ϵ). Outside the coarse-graining shell,
steric constraints are dominant, and Ψ(r¼ [2aþϵ]þ)¼Ψouter

is assumed isotropic. By continuity, we write this as

Ψouter¼ f

4πa2ϵ
: (14)

Equation (14) suppresses an order-unity prefactor that can,
however, be absorbed into other constants appearing below.

Next, we derive the evolution equation for the second-
order orientation moments hnni of the distribution function
Ψ(r) in the coarse-graining shell, by inserting Eqs. (10) and
(11) into Eq. (12), multiplying the result with nn, applying
the following, so-called coarse-graining operator h� � �i,

h� � �i ¼
ðr¼2aþϵ

r¼2a
Ψ rð Þ � � � d3r, (15)

and approximating r � 2an [15],

@thnni ¼ L � hnni þ hnni � LT � 2L : hnnnni
� 2aC1

C1 þ C2
E :

þ
r¼2aþϵ

Ψ(r)nnnn d2r: (16)

The boundary surface integral in Eq. (16) corresponds to an
orientation probability flux between the coarse-graining shell
2a , r , 2aþ ϵ and the outer shell r . 2aþ ϵ. This flux is
carried by the rate of strain tensor E ¼ Ec þ Ee, which is
decomposed into its positive and negative eigenparts. For
instance, in a simple xy-shear flow,

Ee ¼ 1
2
_γnene, Ec ¼ � 1

2
_γncnc, (17)

where + 1
2 _γ are the expansive and the compressive eigenval-

ues of E and ne ¼ (1, 1, 0)=
ffiffiffi
2

p
and nc ¼ (1, � 1, 0)=

ffiffiffi
2

p
are

the corresponding eigenvectors.
The positive (extensional) eigenpart Ee and negative

(compressive) eigenpart Ec correspond to an outward and an
inward probability flux between the coarse-graining shell and
the outer shell, respectively. Note that the contact force
[C3-term in Eq. (5)] does not enter Eq. (16); this reflects the
fact that, for impenetrable particles, there is no probability
flux across the inner surface of the coarse-graining shell at
r ¼ 2a. Consequently, within our model, the evolution of the
coarse-grained microstructure tensor hnni is not directly sen-
sitive to contact forces.

With these assumptions, the surface integral in Eq. (16)
can now be recast as [15]

E :
þ
r¼2aþϵ

Ψ(r)nnnn d2r

¼ ϵ�1Ee : hnnnni þ ϵ�1Ec : hnnnniouter, (18)

where hnnnni and hnnnniouter are the orientation moments,
evaluated inside the coarse-graining shell and on the outside of
the coarse-graining shell [Eq. (14)], respectively. Combining
Eqs. (16) and (18), we obtain the following coarse-grained
microstructure evolution equation:

@thnni ¼ L � hnni þ hnni � LT � 2L : hnnnni
� β Ee : hnnnni þ Ec : hnnnniouter

� �
, (19)

where β is referred to as the microstructure association rate,

β ¼ 2aC1

ϵ C1 þ C2ð Þ , (20)

which controls the rate of particle pair association and disso-
ciation. The physical importance of β is that its inverse sets a
strain scale for structural evolution. On geometrical grounds,
β should depend on f so as to diverge at random close
packing fJ

1. To determine the dependence of β on f, we
make use of Eq. (13). We furthermore see from Eq. (7)
that C1≳C2 such that C1 þ C2 � C1. Inserting these approxi-
mations into Eq. (20), we find

β ¼ β0
1� f=fJ

1

, (21)

with β0 being a tuneable parameter. This shows that β is
roughly constant in the region just below fJ

2 where shear
thickening is seen. In [14], we determine β by matching in
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this region the constitutive model to DEM simulation data
after a reversal of steady shear.

The first line of Eq. (19) describes the rotational advection
of the contact vectors n, whereas the second line corresponds
to the association and dissociation of interacting particle
pairs by the action of compressive and extensional flow
deformations that, respectively, push particles together and
pull them apart. More specifically, the compressive rate of
strain Ec advects, into the coarse-graining shell, the isotropic
exterior distribution of noncontacting particles, importing pref-
erentially along the compression axis (or axes). In contrast, the
extensional rate of strain Ee advects the anisotropically distrib-
uted existing contacts out of the coarse-graining shell, export-
ing preferentially along the extension axis (or axes).

Equation (19) contains the fourth order moment of the
inner probability density function hnnnni and of the isotropic
outer distribution function hnnnniouter. We next express
hnnnni in terms of hnni, using the linear closure model of
Hinch and Leal, which is accurate for microstructures that are
relatively close to isotropy [28],

hninjnknli ¼ � 1
35

hnmnmi δijδkl þ δikδ jl þ δilδ jk

� �
þ 1
7

�
δijhnknli þ δikhnjnli þ δilhnjnki

þ hninjiδkl þ hninkiδ jl þ hninliδ jk

�
: (22)

The same closure, when applied to the isotropic outer distri-
bution function Ψouter [Eq. (14)], reduces to

hnnnniouter ¼ f

þ
(4π)�1ninjnknld

2n

¼ f

15
δijδkl þ δikδ jl þ δilδ jk

� �
: (23)

By combining Eqs. (19) and (23), we finally arrive at the
closed Gillissen–Wilson equation for microstructural evolu-
tion [15],

@thnni ¼ L � hnni þ hnni � LT � 2L : hnnnni

� β Ee : hnnnni þ f

15
2Ec þ Tr(Ec)δð Þ

	 

, (24)

in which hnnnni is now shorthand for the right hand side
(rhs) of Eq. (22).

A significant novelty of Eq. (24) is its separate linearity in
the compressive and extensional components of the rate of
strain tensor, making it overall nonlinear in the rate of strain
and thus distinct from various previous models that failed to
adequately predict reversal flows without excessive parameters
[20]. On reversal, the compressive and extensional compo-
nents interchange so that contacts that were being pushed
together are now pulled apart.

C. Particle stress and contacts

A two-body approximation for the particle stress reads

Σ ¼ nhFri, (25)

where h� � �i is the coarse-graining operator defined in Eq. (15)
and F is the interparticle force. In the absence of tangential
contact forces, this F equates to the last two terms of Eq. (5),

F ¼ C2aηs _r � nð Þn� C3a
2ηs _γΘ 2a� rð Þn: (26)

We continue to use this equation even in the presence of fric-
tion. This might appear to be a drastic additional assumption
but in fact our own data (generated with the DEM simulation
introduced below), and also that of [27], show that in the
shear thickening range of volume fractions, tangential contri-
butions to the stress remain subdominant. This subdominance
does not contradict the fact that friction, by constraining
tangential particle motion, greatly enhances normal contact
forces. This enhancement is captured by Eq. (8) for C3, which
diverges at a jamming point that depends on both time-
dependent microstructure (via ξ) and stress-dependent friction
(via ξJ).

Combining Eqs. (10), (15), (25), and (26) gives

Σ ¼ ηsαE : hnnnni � ηsχ _γhnnic, (27)

where hnnic is the second order orientation moment of the
contact part of Ψ(r),

hnnic ¼
ðr¼2aþϵ

r¼2a
Ψ rð ÞΘ(2a� r)nn d3r: (28)

The leading order behaviors of the prefactors α and χ in
Eq. (27) are found from Eqs. (6)–(8) as

α(f) ¼ α0

1� f=fJ
1

� �2 , χ(f, ξ, ξJ) ¼ χ0

1� ξ=ξJ
� �2 : (29)

Here, α0 and χ0 are fitting parameters, and ξJ depends on the
particle pressure as specified in Eq. (9).

To obtain a closed form, the contact moments hnnic need to
be approximated in terms of the coarse-grained moments hnni,
which includes all particle pairs in the coarse-graining shell. To
relate hnnic to hnni, we assume the following approximate
parameterization for Ψ(r) within the coarse-graining shell:

Ψ(r) ¼ Ψn(n)Ψr(r)

¼ Ψn(n)a�2 ϵ�1 � 2C4
Ec : nn
jEcj δ(r � 2a)

	 

, (30)

where Ψn(n) is the orientation distribution function (with no
dependence on the radial distance), Ψr(r) is the radial distri-
bution function (with no dependence on orientation), δ( � � � )
is the Dirac delta function, C4 is a prefactor of order unity,
and jEcj ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec :Ec

p
. Since closed contacts (r ¼ 2a) are pre-

dominantly oriented in a direction set by Ec, Eq. (30) approx-
imates the probability for closed contacts [Ψ(r ¼ 2a)] with
the probability for open contacts [Ψ(r . 2a)], weighted with
the alignment of n in the compressive direction
�Ec : nn=jEcj. Combining Eqs. (15) and (30), we find for
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the coarse-grained moments

hnni ¼
þ
Ψn(n)nn d2n

� C4
Ec

jEcj :
þ
Ψn(n)nnnn d

2n: (31)

Assuming hnnic � hnni [see Fig. 5(b)], we ignore the
second term on the rhs of Eq. (31) and obtain

hnni ¼
þ
Ψn(n)nn d2n: (32)

Combining Eqs. (28) and (30) gives for the contact
moments,

hnnic ¼ �C4
Ec

jEcj :
þ
Ψn(n)nnnn d2n: (33)

By combining Eqs. (32) and (33), we arrive at the following
relation between the contact microstructure hnnic and the
coarse-grained microstructure hnni

hnnic ¼ � Ec

jEcj : hnnnni: (34)

Here, we have set the proportionality constant C4 to unity;
Eq. (34) thus identifies an approximated, non-normalized,
contact microstructure that is calculable within our coarse-
grained constitutive model. Inserting Eqs. (29) and (34) into
Eq. (27) gives

Σ ¼ ηs
α0E

1� f=fJ
1

� �2 þ χ0Ec

1� ξ=ξJ
� �2

" #
: hnnnni, (35)

where the “jamming coordinate,”

ξ ¼ Trhnnic, (36)

serves as a proxy for the coordination number Z for direct
particle contacts. Combining Eqs. (34) and (36) gives

ξ ¼ �hnni : Ec

jEcj : (37)

Without a relation such as Eq. (34), the distance from
jamming is not deducible from the coarse-grained microstruc-
ture tensor hnni: a proxy of some sort is essential for our
constitutive model of shear thickening to be closed at a coarse-
grained level. However, Eq. (37) comprises a relatively crude
approximation; some other combination of hnni and flow
tensors might approximate Z more accurately. Indeed, it is
found in particle-based simulations that the reduced viscosity
ηr in steady shear flow has a different power-law dependence
on each: (1� ξ=ξJ )

�2 � ηr � (1� Z=ZJ)�4 [14]. Moreover,
we will see in Fig. 4 below that hnnic has some shortcomings
when compared with the results of particle-based simulations.

With this in mind, although ξ was constructed above as an
estimator of Z, we note that its conceptual role in our constitu-
tive model does not require this interpretation. Instead, it can

be viewed as a microstructural scalar that can capture the dis-
tance from a jamming point, ξ� ξJ , in time-dependent flows,
just as f� fJ does in the WC theory for steady flow [14].
The jamming coordinate ξ thereby emerges as the central vari-
able to model shear thickening: in Eq. (9), the stress is
assumed to diverge when ξ reaches a critical value ξJ , that
smoothly reduces from a larger frictionless value ξJ1, to a
smaller frictional value ξJ2, when the pressure Π in the system
exceeds the onset value Π*.

D. Determination of parameters

The critical values ξJ1 and ξJ2 are found by demanding that
in steady shear frictionless and frictional jamming occur at
volume fractions fJ

1 and fJ
2, respectively. For steady xy shear

flow, the solution to Eq. (24) reads

hnni ¼ f

9β2 þ 54β þ 416
� �
	 1

15
129β2 � 374β þ 3256
� �

δ1δ1

�

� 28
5

β2 � 3β
� �

δ1δ2 þ δ2δ1ð Þ

þ 1
15

129β2 þ 410β þ 904
� �

δ2δ2

þ 1
15

87β2 þ 564β þ 820
� �

δ3δ3

�
, (38)

where we recall that β depends on f [Eq. (21)]. Inserting
Eq. (38) into Eq. (37) gives for the jamming coordinate in
steady shear,

ξ ¼ f
213β2 � 234β þ 2080
� �
15 9β2 þ 54β þ 416
� � : (39)

The factor f in Eq. (39) follows from the assumption
[Eq. (23)] that the outer distribution of the pair separation
vector is proportional to f.

Requiring that frictionless and frictional jamming occur at
volume fractions fJ

1 and fJ
2 demands the following critical

values for the frictionless and frictional jamming coordinates:

ξJ1,2 ¼ fJ
1,2

213β2 � 234β þ 2080
� �
15 9β2 þ 54β þ 416

� � : (40)

Equations (9), (21), (24), (29), (35), (37), and (40) form a
closed system for the microstructure and stress. For any given
volume fraction f, the model contains parameters α0, β0, χ0,
Π*, fJ

1 and fJ
2. Of these parameters, fJ

1 and fJ
2 are directly

determinable from experimental or computational data per-
taining the dependence of the viscosity on the volume frac-
tion under frictionless and frictional conditions, respectively,
and Π* enters only through the scale factor relating the
reduced shear rate _γr [Eq. (1)] to the actual one, _γ. In previ-
ous work, we used steady state microstructural and viscosity
data (for various f), and microstructural reversal data (for
f ¼ 0:56), from particle-based simulations, to fit
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fJ
1 ¼ 0:65, fJ

2 ¼ 0:57, Π* ¼ 0:037F*=a2, α ¼ 120, β ¼ 50,
and χ0 ¼ 2:4, which for f ¼ 0:56 corresponds to α0 ¼ 2:3
and β0 ¼ 6:9. It is noted that these fJ

1,2 differ slightly from
the values extrapolated from the DEM data
fJ
1 ¼ 0:644, fJ

2 ¼ 0:578. In [14], the model was then used to
predict, without further parameter fitting, the rheological
reversal data at f ¼ 0:56, with qualitatively good agreement
in most respects [14]. It is also noted that according to Eq.
(40), ξJ1,2 � 0:88, 0:78, while the corresponding coordination
numbers are ZJ

1,2 ¼ 6, 4. It is, therefore, re-emphasized that,
although ξ might be interpreted as an approximation for Z,
these parameters differ numerically, and they are not linearly
proportional. They nevertheless play similar roles, in provid-
ing the distance to the jamming point.

We next briefly review the particle-based simulation
methodology before making a similar comparison of the con-
stitutive model with a contrasting type of flow, in which
transverse oscillations are superposed onto steady shearing.

III. DISCRETE-ELEMENT MODEL

Our DEM simulation model considers non-Brownian,
almost noninertial, neutrally buoyant particles in a periodic
cubic box at volume fraction f. The particles are an equimolar
mixture of radii a and 1:4a, and have density ρ. The box is
initialized with 1500 nonoverlapping particles, and we report
averages over 10 realizations. The simulation box (volume V)
is deformed with a superposition of a steady shear flow (rate
_γ) and a transverse oscillating shear flow (amplitude γ and fre-
quency ω) with a velocity gradient L and rate of strain tensor
E that are given by Eqs. (45) and (46) below, respectively.
The nondimensional control parameters for this family of
flows are, when applied to shear-thickening suspensions, the
volume fraction f, the oscillation strain amplitude γ, the
dimensionless oscillation frequency _γ? [Eq. (4)] and the
dimensionless shear rate _γr [Eq. (1)]. For the transverse flow
to be effective at reducing the viscosity, its amplitude must be
large enough to break direct contacts yet small enough to
inhibit significant contact formation in yz. Within this range
(approximately 10�4 , γ , 0:05), the results are almost inde-
pendent of γ [21], and in the following, we fix γ ¼ 0:01.

Hydrodynamic interactions between particles are com-
puted as described in [26] and [29–31]. For neighboring par-
ticles 1 and 2, translating with velocities U1, U2 and rotating
at Ω1, Ω2, and with center-center vector r (and n ¼ r=jrj)
pointing from particle 2 to particle 1, the force Fh and torque
Γh on particle 1 are given by

Fh=ηs ¼ XA
11nnþ YA

11(δ � nn)
� � � (U2 � U1)

þ YB
11(Ω1 	 n)þ YB

21(Ω2 	 n), (41a)

Γh=ηs ¼ YB
11(U2 � U1)	 n� (δ � nn) � (YC

11Ω1 þ YC
12Ω2),

(41b)

where ηs is the solvent viscosity. The surface-surface
separation is given, for particle radii a1 and a2, by
h ¼ jrj � (a1 þ a2), which is nondimensionalized as
2h=(a1 þ a2). The scalar resistances XA

11, Y
A
11, Y

B
11, Y

B
21, Y

C
11,

and YC
12 are given elsewhere [32]. We neglect interactions

that have h . 0:05a. A drag force and torque act on particle
1 at position x1, given by

Fd ¼ �6πηsa1(U1 � U(x1)), (42a)

Γd ¼ �8πηsa
3
1(Ω1 �Ω(x1)), (42b)

with Ω ¼ 1
2∇	 U being the fluid vorticity vector, and the

streaming velocity is given by U(x) ¼ L � x.
Below a separation hmin ¼ 0:001a, hydrodynamic forces

are regularized and particles enter into direct contact. Particle
pairs with overlap δ ¼ ((a1 þ a2)� jrj)Θ((a1 þ a2)� jrj)
(with Heaviside function Θ) and center-center unit vector n
lead to contact force and torque on particle 1 according
to [33]

Fc ¼ knδn� ktt, (43a)

Γc ¼ a1kt(n	 t), (43b)

where t represents the incremental tangential displacement,
reset at the initiation of each contact. Here, kn and kt are stiff-
nesses, with kt ¼ (2=7)kn. The tangential force component is
restricted by a friction coefficient μ ¼ 1 so that jkttj 
 μknδ.
Stress-dependence enters through μ, following [1],

jkttj 
 μkn(δ � δ*) for δ . δ*,
0 otherwise,

�
(44)

where F* ; knδ
* is the normal force above which friction is

activated, leading to a nondimensional shear rate
_γr ¼ _γηs=Π

* � _γηsa
2=F*.

Particle trajectories are computed from the above forces,
and the components of the stress tensor Σ are calculated by
summing �Fr over all interacting particle pairs and dividing
by V. The contact microstructure is computed as hnnic,
where h� � �ic denotes averaging over all particle pairs for
which the contact forces [Eq. (43a)] are activated. We also
construct a coarse-grained microstructure hnni, where h� � �i
averages over all particle pairs that interact via direct contact
forces or lubrication forces, the latter being cut-off beyond a
separation distance of h ¼ 0:05a. Below, we will compare
these quantities to constitutive model predictions. In addition
to the control parameters described above, the model leads to
a Stokes number St ¼ ρ _γa2=ηs and a kn-scaled shear rate
_̂γ ¼ 2 _γa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn=(2ρa)

p
. We set St , 10�3 and _̂γ , 10�5 to

approximate inertia-free, hard sphere conditions. The model
is implemented in LAMMPS [34].

IV. RESULTS

We now test the microstructure and stress predicted by our
constitutive model against data generated by the DEM simu-
lation at volume fraction f ¼ 0:56, under a homogeneous,
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time-dependent velocity gradient,

L ¼
0 _γ 0
0 0 0
0 ωγcos(ωt) 0

0
@

1
A, (45)

corresponding to a deformation rate

E ¼
0 1

2 _γ 0
1
2 _γ 0 1

2 γω cos (ωt)
0 1

2 γω cos (ωt) 0

0
@

1
A: (46)

In the limit of large _γ?, we have that

Ee ¼ 1
2
γωjcos(ωt)jnene, Ec ¼ � 1

2
γωjcos(ωt)jncnc, (47)

where + 1
2 γωjcos(ωt)j are the expansive and compressive

eigenvalues of E of Eq. (46) and ne ¼ x(0, 1, 1)=
ffiffiffi
2

p þ
(1� x)(0, �1, 1)=

ffiffiffi
2

p
and nc ¼ (1� x)(0, 1, 1)=

ffiffiffi
2

p þ
x(0, �1, 1)=

ffiffiffi
2

p
are the corresponding eigenvectors, with

x ¼ Θ[cos(ωt)] and Θ(�) is the Heaviside step function. Note
that these eigenvectors interchange their direction after each
half oscillation period and, on average, �Ec ¼ Ee � γω
δyδy þ δzδz
� �

.
Setting γ ¼ 0:01 and f ¼ 0:56, the remaining control

parameters are _γr [Eq. (1)] and _γ? [Eq. (4)] which quantify
the influence, respectively, of frictional contact forces and
transverse oscillations. Below, we first focus on the limiting
cases of _γ? ¼ 0 and _γ? ¼ 1, before considering the behav-
ior of shear-thickened suspensions ( _γr � 1) at intermediate
values of _γ?. We finally present full maps of the viscosity as
functions of _γr and _γ?.

A. Steady behavior with _γ⊥= 0

A flow curve for steady shear without transverse oscilla-
tion ( _γ? ¼ 0) is shown in Fig. 2(a), demonstrating good
agreement in the viscosity prediction of the DEM simulation
and the constitutive model. The parameter values are those
chosen in [14] as detailed in Sec. II D. The constitutive
model predicts for the shear component of the coarse-grained
microstructure that hnnixy , 0 and for the normal compo-
nents that hnniyy . hnnixx . hnnizz, and similar behavior for
the contact microstructure hnnic,ij. The model thus predicts a

positive first normal stress difference ζ1 ¼ (Σxx � Σyy)=Σxy

and a negative second normal stress difference
ζ2 ¼ (Σyy � Σzz)=Σxy. This is in partial agreement with DEM,
which predicts that hnnixy , 0 and that hnnixx . hnniyy
. hnnizz, and similar behavior for hnnic,ij. Correspondingly,
DEM predicts that ζ1 , 0 (but very small) and ζ2 , 0. In
general, the constitutive model overestimates the microstruc-
tural anisotropy and jζ1,2j, as compared to the DEM simula-
tion [14]. Further results and discussion relating to the steady
shear stress and the microstructure predicted by our model
are given in [14].

B. Shear reversal with _γ⊥= 0

Figure 2(b) shows the recovery of the jamming coordinate
ξ [Eq. (37)] after shear reversal for various values of the
microstructure association rate β. In this case, the suspension
is subjected to a negative xy-shear flow, without zy-shear
oscillations. When the steady state is reached, the shear flow
is reversed at t ¼ 0. It is seen that, for β ≳ 30, the microstruc-
tural recovery rate � β _γ=50 and full recovery is achieved after
a strain of � 50=β. This suggests that, in the constitutive
model, the (transverse) oscillatory strain γ ¼ 10�2 is unable to
induce significant microstructural reorganization, for the
present case, where β ¼ 50.

C. Limiting behavior for large _γ⊥

Next, we consider hnni predicted by the constitutive
model, in the limit of a very large oscillation frequency
_γ? � 1. In this limit, hnni is dominated by the oscillatory
flow, while the steady shear component only presents an
O( _γ�1

? ) perturbation to hnni. We have seen in Fig. 2(b) that
substantial microstructural reorganization requires βγ=50≳1,
which is not met by current conditions, in which β ¼ 50
and γ ¼ 10�2. Under present conditions, the periodic
changes in hnni are O(βγ=50), while on average, hnni
remains isotropic and equilibrated to the external microstruc-
ture hnni ¼ hnniouter þO(βγ=50), where hnniouter ¼ fδ=3.

The nearly isotropic hnni at _γ? � 1 corresponds to a
jamming coordinate of ξ � f=3 [found by inserting
hnni ¼ fδ=3 in Eq. (37)], roughly four times smaller than
ξ � 1:4f, which follows from inserting the steady shear
microstructure [Eq. (38)] into Eq. (37) and using our chosen
model parameter β ¼ 50.

If one now imposes a small steady shear flow perpendicu-
lar to this oscillatory state, the ability to flow in the steady
direction is governed by the time-averaged hnni, which is
isotropized by the dominant oscillatory flow. This isotropiza-
tion corresponds to a lower ξ � f=3 as compared to that in
steady shear ξ � 1:4f, taking the system further from
jamming, thereby causing a reduction in the modeled stress,
via Eq. (35); for a system close to the steady-shear jamming
point, this reduction can be arbitrarily large. This explanation
of the unjamming effect of transverse oscillation in the large
_γ? limit is broadly consistent with previous discussions [21]
and [22].

In what follows, we solve the full constitutive model
numerically, across a wide range of _γ?. We thereby confirm
that for very large _γ?, the model predicts an isotropic

FIG. 2. (a) Relative suspension viscosity ηr in steady shear as a function of
dimensionless shear rate _γr , measured in the absence of transverse oscilla-
tions, _γ? ¼ 0. Shown are results from the constitutive model (solid line) and
discrete-element simulation (triangles) at f ¼ 0:56. (b) Recovery of the
jamming coordinate ξ after shear reversal scaled with its values at t ¼ 0 and
at t ¼ 1, for various values of the microstructure association rate β.
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coarse-grained microstructure hnni � fδ=3 [Fig. 5(c)]
with ξ � f=3.

D. Role of _γ⊥: Transient behavior

We next compare results for intermediate values of _γ?,
focusing again on the shear-thickened case, Π � Π*. This
case is described by the limit _γr ¼ 1 where frictional con-
tacts are maximized [Π* ¼ 0 and f ¼ 1 in Eq. (9)] so that the
role of particle-particle contact forces, at least under steady
shear flow, is maximally important. We first present the
behavior observed in discrete-element simulations before dis-
cussing the constitutive model predictions.

Shown in Figs. 3(a) and 3(c) are examples of time series
for the steady shear stress Σxy, and the transverse one Σyz, as
well as the corresponding components of the contact micro-
structure tensor, hnnic,xy and hnnic,yz, as obtained by DEM
simulations with _γr ¼ 1 and _γ? ¼ 0:2. Starting from a
contact-free state, the steady shear flow component leads to a
gradual building of particle contacts, predominantly oriented
along the compressive direction of the steady shear. This
process results in a large shear stress Σxy and a negative
contact microstructure component hnnic,xy. (Note that the
definition of hnnic,xy is such that it is negative under xy-shear
flow with positive @yux.) Meanwhile, the transverse shear
generates oscillations in Σyz in phase with the oscillatory
shear rate γωcos(ωt), whose amplitude increases during the
first few cycles as the steady flow component generates con-
tacts. The transverse component of the contact microstructure
hnnic,yz oscillates in antiphase with the oscillatory shear rate,
which is understood by noting that, at _γ? ¼ 0:2, the micro-
structural response is sufficiently fast compared to the
change in flow direction that we essentially have a series of
steady-state shear flows with a slowly changing direction
[21,22].

In Figs. 3(b) and 3(d), we show time series of the stress
components Σxy, Σyz and of the contact microstructure

components hnnic,xy and hnnic,yz, predicted by the constitu-
tive model with _γr ¼ 1 and _γ? ¼ 0:2. The constitutive
model agrees qualitatively with the DEM [Figs. 3(a)
and 3(c)]. The contact microstructure hnnic,xy develops over a
few steady strain units, accompanied by substantial growth
of Σxy and Σyz. After the initial transient, hnnic,xy is nearly
steady and negative, while hnnic,yz oscillates in antiphase to
the transverse shear rate γωcos(ωt). Quantitatively, the consti-
tutive model requires a larger strain for Σxy to develop fully,
and it does not capture the transient peak in hnnic,xy.

However, while the transverse viscosity response found
by DEM simulation remains in phase with the transverse
shear rate for all _γ?, the phase angle of hnnic,yz shows a non-
monotonic dependence on _γ?. Shown in Fig. 4 are the phase
angle θ of hnnic,yz relative to minus the zy-strain [�γsin(ωt)]
found by DEM simulation and the same phase angle for
both hnni and hnnic in the constitutive model. The DEM
simulations show that θ transitions as a function of _γ? from
(i) θ � π=2 (antiphase with the zy-shear rate), via (ii) θ � π
(in-phase with the zy-strain), to (iii) θ � 0 (antiphase with
the zy-strain). The physics of this sequence is explored in
detail elsewhere [21]. Briefly, the three regimes correspond
to (i) instant adaptation, where the contact microstructure
tensor tracks the velocity gradient tensor as this oscillates
around its mean value in a quasisteady-state fashion; (ii)
chain tilting, where the oscillatory flow deforms contacts
faster than they are replaced by new ones but does not break
up force chains; and (iii) chain breaking where the flow-
induced contact network of the steady shear is substantially
disrupted by the transverse oscillation.

The constitutive model predicts different behaviors of the
phase angle depending on whether the contact microstructure
hnnic or the coarse-grained microstructure hnni is consid-
ered. The first of these shows θ � π=2 over the entire
_γ?-range and is quite unlike the DEM data. Interestingly, this
discrepancy is inherent in the definition of hnnic in Eq. (34).
It follows from this definition that the oscillations in hnnic
must remain almost in antiphase with the oscillations in
E. This is readily seen in the limit _γ? ¼ 1, where
Ec ¼ Ec,yz(δyδz þ δzδy) since Ec,xy=Ec,yz � _γ�1

? ¼ 0, and
hnni � fδ=3 (see Sec. IV C). Inserting these expressions
and Eq. (22) into Eq. (34) gives hnnic,yz ¼ �(f=15)
Ec,yz=jEc,yzj, which is in antiphase with Ec,yz. This phase dis-
crepancy shows that improvement of our ansatz Eq. (34) for

FIG. 3. Transient response of DEM simulation and constitutive model to
shear flow with superposed transverse oscillations for _γr ¼ 1 and _γ? ¼ 0:2.
Shown are steady shear viscosity Σxy=( _γηs) (black) and oscillatory viscosity
component Σyz=(ωγηs) (gray) for DEM (a) and constitutive model (b), and
contact microstructure components hnnic,xy (black) and hnnic,yz (gray) for
DEM (c) and constitutive model (d).

FIG. 4. Phase angle θ for the coarse-grained microstructure component
hnniyz in the constitutive model (solid line), for the contact microstructure
component hnnic,yz in the constitutive model (dashed line) and for the
contact microstructure component hnnic,yz in DEM simulation (markers).
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the contact microstructure should be a priority for future
refinement of our constitutive model.

The oscillations of the coarse-grained microstructure
tensor hnni, on the other hand, are not enslaved to those of
E. As a result, the phase angle for the coarse-grained micro-
structure hnni evolves in better qualitative agreement with
the contact microstructure hnnic found from the DEM simu-
lations. Figure 4 shows that with increasing _γ?, the corre-
sponding phase angle transitions smoothly from θ � π=2
(antiphase with the zy-shear rate) to θ � 0 (antiphase with
the zy-strain). The transition in the constitutive model occurs
when the oscillation frequency ω exceeds the microstructure
formation rate _γβ=50 [see Fig. 2(b)], which corresponds to
_γ? ¼ βγ=50 ¼ 10�2. In the classification of [21], the model
seemingly captures both regime (i) instant adaptation and
regime (iii) chain breaking. However, the peak in the phase
angle plot at _γ? � 1, which corresponds to the chain-tilting
regime (ii), is notably absent from the prediction of our con-
stitutive model. This regime is characterized by a pseudoelas-
tic microstructural response, while the stress response itself
remains viscous. (See Sec. V for further discussion.)

E. Role of _γ⊥: Time-averaged response

We next present the viscosity and the microstructure, as
predicted by the DEM simulation and the constitutive model,
averaged over the oscillation cycle, again focusing on the
fully shear-thickened case with _γr ¼ 1.

The constitutive model qualitatively predicts the
_γ?-mediated decrease in suspension viscosity ηr ¼ Σxy=( _γηs),
Fig. 5(a), consistent with our DEM simulation data and

with experimental data measured under equivalent shearing
conditions [21] and indeed under acoustic perturbations [24].
Quantitatively, however, the DEM simulations show a
decrease in the viscosity by a factor of around 20 at this
volume fraction (in an earlier article, we showed within DEM
the dependence of this decrease on f [22]), whereas the con-
stitutive model predicts a drop by a factor of around 200.

This difference reflects that the contact stress in the consti-
tutive model depends too strongly on the number of contacts
[Eq. (8)]. The main discrepancy is that while the constitutive
model predicts for large _γ? a complete collapse of the
contact contribution leaving only the lubrication part, the
DEM data show that the stress remains contact-dominated
even at large _γ?. Although in this regime (the chain-breaking
regime of [21]) the microstructure is severely disrupted, in
the DEM simulations, direct contacts are not so diminished
as to contribute negligibly to stress, as the constitutive model
predicts. This is due in part to the chosen operating condition
of f ¼ 0:56 and μ ¼ 1. Close to fJ

2, even small numbers of
frictional contacts are sufficient to give a dominant contact
stress. At lower f and μ, the DEM simulation does indeed
predict hydrodynamic stress dominance at large _γ? [22].

Shown in Fig. 5(b) are the number of contact interactions
Trhnnic and the number of coarse-grained interactions
Trhnni, as functions of _γ? predicted by the DEM simulation
and the constitutive model. For the DEM simulations, hnnic
includes direct contacts only [those for which we compute
Eq. (43a)], while hnni corresponds to all (direct and lubri-
cated) interactions within the lubrication cutoff length
h ¼ 0:05a. Trhnnic decreases steadily with increasing _γ? as
the oscillations increasingly break up force chains created by
the steady shearing flow. Trhnni, on the other hand, is only
weakly affected by the transverse oscillations. This is due to
the low strain amplitude, γ ¼ 0:01, which is sufficient to
move particles out of direct contact, but not to move interact-
ing particles out of each other’s lubrication films (as cut-off
at h ¼ 0:05a). This result is independent of γ, provided γ
remains within the range mentioned above (approximately
10�4 , γ , 0:05). Overall, there is qualitative agreement in
Trhnnic between the constitutive model and discrete-element
simulation, with both predicting a similar _γ?-dependence.
For Trhnni on the other hand, there is disagreement, where
the constitutive model predicts a decrease, and the DEM pre-
dicts a constant as a function of _γ?.

Figure 5(c) shows the time-averaged microstructural
anisotropy, defined as

A ¼ 1� 27Det X=Tr(X)½ �f g1
3, (48)

for the contact microstructure X ¼ hnnic and for the coarse-
grained microstructure X ¼ hnni, both in the constitutive
model and in DEM. In DEM, hnnic has A � 0:3 and hnni
has A � 0:1. In the constitutive model, the microstructure is
more anisotropic with A � 0:8, for hnnic and A � 0:7, for
hnni, until _γ? becomes large. This over-prediction of micro-
structural anisotropy within our constitutive model has previ-
ously been reported for steady flows [14].

When _γ? does become large, the constitutive model pre-
dicts near isotropization of the coarse-grained microstructure,

FIG. 5. Time-averaged response of constitutive model and DEM simulation
to shear flow with superposed transverse oscillations. (a) Total suspension
viscosity Σxy= _γηs (circles and solid line), contact contribution to viscosity
(squares and dashed line) and hydrodynamic contribution to viscosity (trian-
gles and dotted line) in constitutive model (lines) and DEM (markers). (b)
Number of coarse-grained interactions Trhnni (triangles and solid line) and
contact interactions Trhnnic (circles and dashed line) normalized by ξJ1
[Eq. (40)] in constitutive model (lines), and normalized by ZJ

1 ¼ 6 in DEM
(markers). (c) Anisotropy A [Eq. (48)] of the coarse-grained microstructure
X ¼ hnni (triangles and solid line) and contact microstructure X ¼ hnnic
(circles and dashed line), in constitutive model (lines) and DEM (markers).
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A ¼ O(βγ=50), and saturating anisotropy of the contact
microstructure, A � 0:5f, which is found by inserting
(1=2) δyδy þ δzδz

� �
for the time averaged value for

�Ec=jEcj, and hnni � fδ=3 into Eqs. (22), (34), and (48).
This contrasts with the DEM behavior which shows a mild
maximum in anisotropy in hnnic in the chain-tilting regime
[regime (ii) as defined above]. This discrepancy is presum-
ably related to the failure to capture the phase angle between
the yz-component of hnnic and the transverse strain in this
regime (see Fig. 4). Failure of the DEM to reach complete
isotropy in hnni and hnnic at large _γ? is consistent with
there being continuing dominance of the contact contribution
to the shear stress, discussed above.

We finally present in Fig. 6 plots of the suspension vis-
cosity as functions of _γr and _γ?, found by DEM simulation
and predicted by the constitutive model (the simulated large
_γr data were previously reported in [22]). The model and
DEM simulation both predict that the viscosity reduction
obtained under transverse oscillatory shearing is largest for
shear-thickened suspensions. This follows naturally from the
fact that the oscillations act by breaking up particle-particle
contacts: frictional flowing states of Π � Π* are dominated
by particle-particle contact stresses and stand to lose a sub-
stantially larger proportion of their viscosity by having such
contacts removed, compared to lubrication-dominated sus-
pensions (Π � Π*). For these purposes, the term “shear-
thickened” suspensions of course includes rate-independent
materials of high friction for which Π* is effectively zero [3].

Overall, the qualitative agreement between Figs. 6(a)
and 6(b) represents encouraging success of our constitutive
model under conditions of both rate- and time-dependent
flow. Nonetheless, some discrepancies are apparent within
the ( _γr, _γ?) range shown here. At small _γr , for which con-
tacts are frictionless and the resulting DEM contact stress is
subdominant, the viscosity in DEM simulation is roughly
independent of _γ?. Under these conditions, where the hydro-
dynamic stress is dominant, it is to be expected that the
oscillation-mediated loss of contacts does not lead to a signif-
icant change in the viscosity. The constitutive model, mean-
while, predicts a decrease in viscosity with _γ? at small _γr.
This reflects that changes in the coarse-grained microstruc-
ture and the lubrication stress are more pronounced in the
constitutive model than in the DEM. At large _γ?, the viscos-
ity in DEM increases with _γr since (at this proximity to fJ

2)
the onset of friction leads to a substantial contact stress
(albeit lower than when _γ? is small). In the constitutive
model, however, the viscosity at large _γ? is independent of
_γr, reflecting that the modeled oscillations over-predict the

breakup of the microstructure (Fig. 5) and providing further
indication that the contact stress is too sensitive to the
number of contacts [Eq. (35)].

V. DISCUSSION AND CONCLUSIONS

We have presented a self-contained derivation for a
recently proposed constitutive model for the microstructure
and stress of shear-thickening particle suspensions, discuss-
ing en route the roles played by the “jamming coordinate”
ξ ¼ Trhnnic and the contact microstructure hnnic, which is
related, within the model, to the coarse-grained microstruc-
ture tensor hnni. This relation allows a closed constitutive
model at the coarse-grained level, while making testable pre-
dictions for the contact statistics. Along with the stress and
other observable quantities, these can be compared with
experiment or, as done in this paper, with simulations of
particle-based models based on the DEM formalism. The use
of DEM simulation data, for which microstructural data can
be interrogated almost ad infinitum (in contrast to experi-
ments which generally cannot resolve individual contact
forces), offers a set of stringent tests for rheological constitu-
tive models, as emphasized recently by Chacko et al. [20].

In [14], we confronted the new constitutive model with
such data for the case of reversal of steady shear flow. The
model was found qualitatively correct in most aspects, but
with a systematic over-prediction of microstructural anisot-
ropy which was reflected in relatively poor prediction of
normal stress differences.

In the present paper, we have taken the simulation-based
testing of the model considerably further by addressing
steady shear flows with superposed transverse oscillations.
For friction-dominated systems (Π � Π*), this protocol has
been shown capable of drastically reducing the mean viscos-
ity, in some cases unjamming systems whose viscosity
would otherwise be infinite [21,22]. This protocol may find
utility in active rheology control [24] for various industrial
applications. Because of its strong influence on time-
dependent suspension microstructure, it provides a range of
stringent tests for any constitutive model. Since flow conditions
evolve continuously, these tests complement those offered by
sudden flow reversal.

Overall, we again found qualitative agreement between
the constitutive model predictions and data generated by
discrete-element simulation. This applies, in particular, to the
decrease in the contacts with increasing oscillation frequency
[Fig. 5(b)] and to the transient buildup of the amplitude of
the transverse shear stress and its phase relative to the trans-
verse shear rate [Figs. 3(a) and 3(b)].

However, the model falls short in other respects, such as
the corresponding phase relation for the yz-component of the
contact microstructure hnnic. This shows a discrepancy that
is at least partly the fault of our ansatz for hnnic in terms of
hnni, given in Eq. (34). Improvement to this ansatz is, there-
fore, a target for future refinement of our constitutive model.
A second discrepancy is that the constitutive model predicts
the contact contribution to viscosity to collapse to extremely
low levels at high transverse oscillation frequencies so that
lubrication terms dominate, whereas the DEM simulations

FIG. 6. Suspension viscosity as a function of dimensionless shear rate _γr
and dimensionless frequency _γ? for DEM (a) and constitutive model (b).
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show the collapse to be much more moderate, with direct
contact terms still dominating the stress, at least when f is
close to the frictional jamming point fJ

2. Third, although
Fig. 6 shows broad qualitative agreement for the viscosity as
a function of the reduced shear rate _γr and oscillation fre-
quency _γ?, the behaviors seen in DEM simulations along
both the small _γr and the large _γ? edges of the diagram are
not properly captured by the constitutive model.

The explanations of these shortcomings remain a topic of
ongoing research, to which we hope to return in future publi-
cations. Candidates for improvement include not only the
specific approximation for hnnic mentioned above [Eq. (34)],
but also the relation between the contact force and the
number of contacts [C3-term in Eq. (5)]; a microstructure-
based interaction force with the background [C1-term in
Eq. (5)], which should limit anisotropy in dense systems; the
assumption of a friction-independent microstructural evolu-
tion [absence of a friction term in Eq. (5)]; the Hinch–Leal
type closure relation [Eq. (22)]; and our simplified approach
to the angular distribution of birth and death processes
among contacts [Eq. (18)].

Pending further exploration of all these aspects, the work
reported above already confirms the value of comparing
constitutive models for dense suspensions not only with mac-
roscopic experimental observations (which are generally
limited to measurements of stress), but also with particle-
based simulations that can give detailed microstructural statis-
tics. Such comparisons increasingly allow the assumptions of
the model to be tested individually rather than collectively,
an approach that we hope should speed future progress
toward a fully predictive constitutive rheology for dense
suspensions, both shear-thickening and otherwise.
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