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SUMMARY

Pluripotent stem cells are defined by their capacity to
differentiate into all three tissue layers that comprise
the body. Chimera formation, generated by stem cell
transplantation to the embryo, is a stringent assess-
ment of stem cell pluripotency. However, the ability
of human pluripotent stem cells (hPSCs) to form
embryonic chimeras remains in question. Here we
show using a stage-matching approach that human
induced pluripotent stem cells (hiPSCs) and human
embryonic stem cells (hESCs) have the capacity to
participate in normalmouse developmentwhen trans-
planted into gastrula-stage embryos, providing in vivo
functional validation of hPSC pluripotency. hiPSCs
and hESCs form interspecies chimeras with high effi-
ciency, colonize the embryo in a manner predicted
fromclassicaldevelopmental fatemapping,anddiffer-
entiate intoeachof the threeprimary tissue layers.This
faithful recapitulation of tissue-specific fate post-
transplantation underscores the functional potential
of hPSCs and provides evidence that human-mouse
interspecies developmental competency can occur.

Human pluripotent stem cells (hPSCs) are characterized by bio-
logical properties similar to mouse epiblast stem cells (EpiSCs)

but distinct from inner cell mass-like (ICM-like) ‘‘naı̈ve’’ mouse

embryonic stem cells (mESCs) (Mascetti and Pedersen, 2014).

As such, hPSCs represent an epithelial epiblast-like state of plu-

ripotency (Krtolica et al., 2007), commonly known as ‘‘primed.’’

For mESCs, confirmation of stem cell pluripotency includes a

demonstration of their ability to integrate into the preimplantation

embryo and subsequently contribute to all the tissues of the

developing mouse chimera (Bradley et al., 1984; Nagy et al.,

1993). Interestingly, epithelial epiblast-like PSCs (such as

mEpiSCs, hESCs, and hiPSCs), unlike their ICM-like counter-

parts (e.g., mESCs and miPSCs), are barely able to form preim-

plantation chimeras (James et al., 2006; Brons et al., 2007; Tesar

et al., 2007; Masaki et al., 2015; Chen et al., 2015). However,

mEpiSCs, which resemble the post-implantation epiblast,

instead form chimeras with the post-implantationmouse embryo

(Huang et al., 2012; Kojima et al., 2014). This raises a pivotal

question: are hPSCs capable of forming an interspecies chimera

by integrating into the post-implantation mouse embryo?
Based on these prior observations, we hypothesized that

stage-matching hPSCswith their appropriate embryonic context

would hold the key to unlocking chimeric competency. The

epithelial epiblast-like phenotype of hPSCs, similar in nature to

mEpiSCs, led us to predict that hPSCs would be able to form

a chimera with the gastrula-stage mouse embryo. To test this

idea, we transplanted three hiPSC and two hESC lines (together,

hPSCs), each transfected with a fluorescent reporter gene, into

early and late gastrula-stage mouse embryos at the primitive

streak or distal tip of the epiblast (Figure 1A). We found highly

efficient interspecies chimera formation in all transplant sites

ranging from 70% to 100% of transplanted embryos following

in vitro culture (Figure 1B). (Embryos were obtained and cultured

under University ethical review according to UK animal regula-

tions; see Supplemental Experimental Procedures.) We also

transplanted mEpiSCs in a similar manner as a positive control

for a putative interspecies barrier and saw similar incorporation

(data not shown).

Classical fate mapping studies have established an experi-

mental platform for assessing normal cellular participation

during embryo development (Tam, 1989; Lawson et al., 1991).

Accordingly, using these insights we developed a comprehen-

sive allocation map that predicts the distribution of hPSC

progeny from the transplantation site (primitive streak or distal)

and stage (early gastrula or late gastrula) to seven subregional

locations (Figure 1C). Together these subregions constitute the

building blocks of the developing fetus, and contribution to

them achieves embryonic, or primary, chimerism (McLaren,

1976).

We hypothesized that subregional cell fate could be used as a

metric for normal participation of hPSCs during chimeric embryo

development. We found that both hiPSC and hESC descendants

had the capacity to colonize each of the subregions in the devel-

oping fetus during culture (Figure 1D). This ability of hPSCs to

contribute to all subregions of the developing fetus is consistent

with the classical definition of pluripotency. We also used spe-

cific prediction of graft allocation based on gastrula stage at

transplantation to assay normal development of hPSC trans-

plants in both early and late gastrulating embryos (Figure 1E).

We found that subregional distribution of graft progeny was

significantly different in early versus late gastrula primitive streak

(PS) transplants for both hiPSCs and hESCs (hiPSC: X2, p = 0;

hESC: X2, p = 0). Moreover, this significant difference was

observed in each individual transplanted cell line, and we found

no significant difference in graft progeny subregional distribution

when comparing cell lines to each other (Table S1). More
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Figure 1. hPSCs Form Interspecies Chimeras with High Efficiency and Contribute to All Regions of the Developing Fetus

(A) Representative image of hPSCs (hiPSCs or hESCs) constitutively expressing a fluorescent reporter transgene (green) transplanted to the Early gastrula primitive

streak (EG-PS, left panel), Lategastrula primitive streak (LG-PS, center panel), or Distal tip (Dis, right panel) of gastrula-stagemouseembryos (shownbefore culture).

(B) hiPSC- and hESC-transplanted embryos showed high incidences of chimera formation. EG-PS, Early gastrula primitive streak; LG-PS, Late gastrula primitive

streak; Dis, Distal.

(C) Incorporation of transplanted hPSCs during mouse gastrulation was assessed in relation to the predictive fate map of the embryo. The contribution of

endogenous cells of early and late gastrula-stage embryos to the developing fetus predicts the fate of hPSC graft progeny. Schematics linking primitive streak

(PS) and distal (Dis) sites of early gastrula (EG) and late gastrula (LG) stage embryos with their fate in the developing fetus (early somite stage) are shown.

Subregions: red, extra-embryonic mesoderm (allantois and yolk sac); dark green, trunk ventral, including lateral plate mesoderm and mid-gut endoderm; purple,

anterior ventral, including foregut endoderm, heart, and anterior neural crest; orange, posterior ventral, including hindgut endoderm; light blue, brain and surface

ectoderm; and yellow, posterior dorsal, including presomitic mesoderm. See also Figure S1 for a representative image of fetus after culture.

(legend continued on next page)
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specifically, a comparison of gastrula transplant outcomes re-

vealed that hPSCs transplanted to the early gastrula PS contrib-

uted significantly more to early patterned tissues (Anterior

ventral, Trunk ventral, Posterior ventral, Extra-embryonic) when

compared to later patterned tissues (Trunk dorsal, Trunk ventral,

Posterior dorsal, Extra-embryonic) (hiPSC: X2, p = 0.006; hESC:

X2, p = 0.003). The converse is also true: late tissue outcomes

were predominantly derived from late gastrula PS transplants

(hiPSC: X2, p = 7.4 3 10�7; hESC: X2, p = 0). These outcomes

are propelled by the differences between total ventral and dorsal

tissue allocation at gastrula stages: comparison of hPSCs trans-

planted to early versus late gastrula PS revealed a highly signif-

icant shift from ventral to dorsal fates as gastrulation progressed

(hiPSC: X2, p = 1.6 3 10�4; hESC: X2, p = 0), as calculated by

summing ventral and dorsal fates for all regions (anterior, trunk,

posterior). More specifically, we observed a shift from Trunk

ventral to Trunk dorsal (hiPSC: X2, p = 0.000362; hESC: X2, p =

1 3 10�8) and Posterior ventral to Posterior dorsal (hiPSC: X2,

p = 73 10�7; hESC: X2, p = 9.193 10�6), but not Anterior ventral

to Anterior dorsal, when comparing early to late gastrula PS

transplants. Distal transplants did not significantly differ in rela-

tion to the gastrula stage of recipient embryos, as expected

from predictive fate mapping, so we grouped distal transplants

to the early and late gastrula for analysis. Subregional distribu-

tion of graft progeny from distal transplants differed significantly

from PS transplants for both hiPSCs and hESCs (hiPSC: X2, p =

0.0107; hESC: X2, p = 4 3 10�8). More specifically, this is re-

flected in the divide between distal patterned tissues (Anterior

dorsal, Anterior ventral) and PS patterned tissues (Anterior

ventral-EG, Trunk dorsal, Trunk ventral, Posterior dorsal, Poste-

rior ventral) (hiPSC: X2, p = 0.0132; hESC: X2, p = 2.66 3 10�4).

The hPSC patterning observed here reflects the progressive

allocation of transplanted mEpiSCs (data not shown), resident

epiblast descendants (Lawson et al., 1991), and orthotopic gas-

trula transplantations (Tam and Zhou, 1996; Kinder et al., 1999).

Comparing hPSC allocation and differentiation capacity with the

intricate process of gastrulation, as previously established by

classical fate mapping, provides a rigorous challenge of human

stem cell pluripotency. Hence predictive fate, established inde-

pendently, can be used to evaluate whether transplanted cells

behave normally. Based on that assessment, the hPSC fates

we observed not only confirm the integration of hPSCs into the

developing fetus but also indicate formation of a developmen-

tally normal interspecies chimera.

Strikingly, hPSC graft progeny, whether from early or late gas-

trula PS or distal sites, were frequently dispersed throughout and

across embryonic subregions. This distribution reflects the

normal dispersion of epiblast descendants during gastrulation
(D) Representative wholemount overlays (bright field plus fluorescence) with ma

(bottom) graft progeny after culture. hPSC graft progeny predominantly colonized

schematics represent clusters of cells (not individual cells) located in the spec

specified subregion. hiPSC lines are shown as follows: FiPS, Posterior ventral; A1

Trunk dorsal, Trunk ventral, Posterior dorsal, and Extra-embryonic; and BBHX8, A

follows: H9, Trunk ventral, Posterior ventral, and Extra-embryonic; and Shef-6, An

for each illustrated embryo was >4, except for Anterior ventral hESC embryo, wh

(E) Regional incorporation of hPSC progeny follows classical fate distribution. Su

progeny following transplantation of hiPSCs (combined BBHX8, A1ATD-1, and FiP

early gastrula (EG) and late gastrula (LG) stage mouse embryos or distal region (

poration, where graft progeny can colonize more than one subregion. See also T
and thus is evidence not only of cell integration but also of normal

development (Lawson et al., 1991). Graft progeny dispersion,

quantified as one-dimensional linear distance, averaged

963 mm and 1,171 mm for hiPSC and hESC transplants, respec-

tively (Figure 2A), indicating extensive chimeric contribution.

Graft progeny dispersionwas also extensive in relation to embry-

onic rostro-caudal length whereby graft progeny colonized over

one-fourth of the host embryo length in 70% of hiPSC chimeras

and 77% of hESC chimeras (Figures 2B and 2C). We also quan-

tified thecell areacoveredbydispersedgraft progeny (Figure2D).

Total estimated graft cell number (Figures 2E and 2F) indicated

that transplanted donor cells (�10) proliferated extensively

(hiPSC: mean = 70; hESC: mean = 64). Estimated cell numbers

overlapped the ranges found for orthotopic transplants of

comparable numbers of embryonic epiblast cells (proximal trans-

plants, 70–77 cells /embryo; Tam and Zhou, 1996) and for ortho-

topic transplants of PS cells (33–78 cells/embryo; Kinder et al.,

1999). For the purposes of dispersion analysis, we quantified

thenumberof separatecell clusters, asdistinct fromasingle clus-

ter (which could result from formation of an intra-embryonic tera-

toma by aberrant cell growth). Multiple (R2), dispersed clusters

were the predominant outcome in both early and late gastrula

transplants for both hiPSCs (96%) and hESCs (91%) and for indi-

vidual cell lines (Figures S2A and S2B). We also found no signifi-

cant difference in graft progeny dispersion metrics when

comparing hPSC cell type (hiPSC versus hESC) or transplant

sites (Early gastrula versus Late gastrula versus Distal). Thus,

we conclude that transplanted hPSCs and their progeny prolifer-

ate and contribute normally to the developing embryo, irrespec-

tive of transplant stage, site, or cell type.

Confirming the localization and dispersion analysis, hiPSC and

hESC graft progeny differentiated into endoderm, mesoderm, or

ectoderm as shown by marker gene expression. We found that

transplanted hiPSCs and hESCs co-expressed markers of the

tissue in which they resided (hiPSC: Figures 2G–2N; hESC: Fig-

ures 2O–2V), indicating that they have undergone location-

appropriate rather than random differentiation. Graft progeny

located outside the antibody-designated tissue regions did not

express the marker proteins, again showing that they were not

randomly differentiated. Marker staining therefore also supports

our conclusions that transplanted hiPSCs and hESCs differen-

tiate to the phenotype corresponding to their local environment.

In summary, we have shown that stage-matching PSC types

with their appropriate embryonic context can overcome barriers

to chimeric competency. Our approach was based on a predic-

tion that epithelial epiblast-like hPSCs would integrate efficiently

into gastrula-stage embryos. This stage-matching concept

explains the diversity of chimeric outcomes seen in previous
tched schematics illustrating subregional locations of hiPSC (top) and hESC

embryos as dispersed populations of fluorescent cells. Green or red dots in the

ified subregion; gray dots represent fluorescent clusters located outside the

ATD-1, Anterior dorsal (aerial dorsal view, Anterior dorsal subregion outlined),

nterior ventral (left side view of heart region outlined). hESC lines are shown as

terior dorsal, Anterior ventral, Trunk dorsal, and Posterior dorsal. Cluster score

ich was 3.

mmaries of number of chimeric embryos and subregional distribution of graft

S data) and hESCs (combinedH9 and Shef6 data) to the primitive streak (PS) of

Dis) are shown. Embryos were scored as wholemounts for subregional incor-

able S1 for data of individual hiPSC and hESC lines.
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studies. ICM-likemESCs,mouse iPSCs, rat iPSCs, andnaive-like

monkey ESCs form preimplantation chimeras (Bradley et al.,

1984; Okita et al., 2007; Wernig et al., 2007; Buehr et al., 2008;

Chen et al., 2015). However, epithelial epiblast-like hPSCs do

not share this preimplantation chimeric competency, as shown

in a recent report assessing hPSCs as non-chimera-forming cells

(Masaki et al., 2015), likely because they represent apost-implan-

tation cellular phenotype (Mascetti and Pedersen, 2014). Consis-

tent with this, we found that when stage-matched to the epiblast

of the gastrulating embryo, mEpiSCs (data not shown; Huang

et al., 2012; Kojima et al., 2014), hiPSCs, and hESCs (as shown

herein) demonstrate efficient chimeric formation not limited by

transplant site. Most importantly, our findings in conjunction

with previous studies indicate that chimeric competency relies

on pairing in vitro derived cells with their in vivo counterpart.

Moreover, while alternative human pluripotent states may be

demonstrable in vitro, if they are not as chimera competent as

shown herein, our findings imply that they are either not in fact

pluripotent or they have not been matched to the correct stage

of embryonic development. We would therefore argue that their

relevance remains inconclusive without confirmation of their

contribution to organized in vivo differentiation in the context of

normal embryogenesis. In this regard, our findings are distinct

from a recent paper by Wu et al., which states that H9-hESCs

do not integrate into the post-implantation mouse embryo (Wu
Figure 2. hPSC Graft Progeny Disperse in Host Embryos and Integrate

(A–F) Dispersion of graft-derived cells in host embryos is indicative of proper tiss

combined data) and hESCs (H9 and Shef-6 combined data) using the following p

caudal length; area occupied by graft cell descendants; and graft cell number. EG

Distal.

(A) hPSC progeny graft dispersion was measured along the greatest linear axis o

progeny were extensively dispersed (mean ± SEM).

(B) The extent of graft progeny spread was assessed as a fraction of embryo ros

(C) Examples of embryos with graft progeny spread of <1/4, 1/4–1/2, and >1/2.

(D) Area covered by dispersed graft progeny (mean ± SEM).

(E) Cell numbers were assessed in wholemount embryos as <20, 20–40, 40–80,

(F) Examples of embryos with <20, 20–40, 40–80, or >80 cells.

(G–V) Differentiated hPSCs co-localize with their residing tissue region. Integrati

staining for specific tissue proteinmarkers of the regions in which they resided. Co

in hPSC progeny (indicated by white arrowheads) confirmed tissue-specific g

Arrowheads are not representative of cell number. Insets show gene expression c

hPSC progeny).

(G) Schematic diagram of approximate section plane in hiPSC transplanted embry

sections; (J), (M), and (N), cross sections.

(H) TBX6 staining, showing nuclear localized H2B-Venus-expressing BBHX8 (BB

(I) TBX6 staining, showing cellular localized Cherry-expressing FiPS (FiPS) proge

(J) SOX1 staining, showing FiPS progeny in neuroectoderm.

(K) FOXA2 staining, showing BBHX8 progeny in definitive endoderm of the egg c

(L) Phalloidin staining, showing BBHX8 progeny in presomitic mesoderm.

(M) SNAI1 staining, showing FiPS progeny in brain mesenchyme.

(N) SOX2 staining, showing FiPS progeny in neuroectoderm.

(O) Schematic diagram of approximate section plane in hESC transplanted embry

sections.

(P) TBX6 staining, showing cellular localized GFP-expressing H9 (H9) progeny in

(Q) AP-2 alpha staining, showing H9 progeny in surface ectoderm.

(R) PDGF receptor b staining, showing H9 progeny in branchial arch mesenchym

(S) FOXA2 staining, showing H9 progeny in hindgut endoderm.

(T) Troponin T staining, showing cellular localized tdTomato-expressing Shef-6 (

(U) Phalloidin staining, showing BBHX8 progeny in endoderm and mesoderm.

(V) SOX1 staining, showing Shef-6 progeny in neuroectoderm.

For (A)–(F), see also Table S2 for graft progeny rostro-caudal spread and cell num

separate channel images of each germ layer.
et al., 2015). By contrast, we found highly efficient engraftment

and extensive dispersion of graft progeny in each of the five

hPSC lines transplanted, regardless of transplantation site (PS

or distal tip), with integration and location-appropriate differenti-

ation. The hESC mean linear dispersion that we observed was

40-fold and 84-fold greater for distal transplants, and 39-fold

and 5-fold greater for LG-PS transplants than described by Wu

et al. for H9-hESC and region selective-hESC dispersion,

respectively. The technical challenges of the experimental sys-

tem may be contributing factors in the disparity of the results.

It is also possible that a ‘‘region-selective’’ cell type with

restricted capacity is not in fact fully pluripotent, but instead is

a partially differentiated cell that has been transplanted to its

own permissive stage and location-matched environment.

Our demonstration that hPSCs contribute to multiple tissue

layers reveals their in vivo pluripotency. This key observation

has been lacking from previous in vitro assays, teratoma studies,

and biased in vivo contribution, all of which are limited by their

lack of organized tissue context and thus likely harbor artifacts.

Evidence for hPSC pluripotency from in vitro differentiation and

teratoma assays has been used to ascribe pluripotent status to

both hPSCs and EpiSCs. Our approach goes beyond those as-

says by providing evidence for the capacity of hPSCs to partic-

ipate in normal organized tissue development in an embryonic

context. Contribution to terminally differentiated tissues would
within Their Residing Tissue Region

ue integration. Dispersion was assessed for both hiPSCs (A1ATD-1 and FiPS

arameters: graft linear dispersion; graft spread as a fraction of embryo rostro-

-PS, Early gastrula primitive streak; LG-PS, Late gastrula primitive streak; Dis,

f the progeny population (see Supplemental Experimental Procedures). Graft

tro-caudal length (<1/4, 1/4–1/2, or >1/2).

or >80 cells.

on of hiPSC (G–N) and hESC (O–V) graft progeny was confirmed by immuno-

-localization of the fluorescent reporter and staining formarker gene expression

ene expression; yellow arrowheads indicate non-co-localized graft progeny.

hannel plus DAPI of region with hPSC progeny (with white arrowheads denoting

os at somite stage (left) or egg cylinder stage (right): (H), (I), (K), and (L), sagittal

HX8) progeny in presomitic mesoderm.

ny in presomitic mesoderm.

ylinder.

os at somite stage: (P), sagittal sections; (Q)–(S), cross sections; (T)–(V), frontal

presomitic mesoderm.

e.

Shef-6) progeny in heart.

ber data of individual hiPSC and hESC lines. For (G)–(V), see also Figure S2 for
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not be expected in the assay within the timeframe of embryo cul-

ture. Instead, the strength of our functional evidence for hPSC

pluripotency is underpinned by normal mouse embryo develop-

ment during this period (Figure S1). Our in vivo validation of hPSC

developmental competency therefore provides a more rigorous

demonstration of hPSC pluripotency than has been possible

from prior approaches.

Moreover, our approach also confirms the capacity of hPSCs to

participate in the intricately choreographed events of gastrulation

by replicating the embryo’s own pluripotent cell migration and

acquisition of specialized phenotypes. This also reveals that hu-

man pluripotent cells are able to correctly respond to the com-

plex and progressively changing ‘‘permissive/stage-matched’’

signaling environment in which they reside after chimeric trans-

plantation. As such, chimera competency with post-implantation

mouseembryosunderscoreshPSCrelevance formodelinghuman

gastrulation in vitro, a developmental stage that would otherwise

be inaccessible in vivo. Reciprocally, by mimicking the cues of

gastrulation, we are able to extrapolate the conditions that pattern

PSCs to specific tissue types in vitro (Mendjan et al., 2014).

In sum, faithful recapitulation of tissue-specific chimeric fate

provides in vivo functional validation for human stem cell pluri-

potency. Our work provides evidence that hPSCs are not an arti-

fact of culture and further endorses their utility as a bona fide

resource for regenerative medicine.
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