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The development of magnetic tunnel junction 

fabrication techniques 

The discovery of large, room temperature magnetoresistance (MR) in magnetic tunnel 

junctions in 1995 sparked great interest in these devices.  Their potential applications 

include hard disk read head sensors and magnetic random access memory (MRAM).  

However, the fabrication of repeatable, high quality magnetic tunnel junctions is still 

problematic.  This thesis investigates methods to improve and quantify the quality of 

tunnel junction fabrication. 

Superconductor-insulator-superconductor (SIS) and superconductor-insulator-

ferromagnet  (SIF) tunnel junctions were used to develop the fabrication route, due to the 

ease of identifying their faults.  The effect on SIF device quality of interchanging the top 

and bottom electrodes was monitored.  The relationship between the superconducting and 

normal state characteristics of SIS junctions was investigated.  Criteria were formulated 

to identify devices in which tunneling is not the principal conduction mechanism in 

normal metal-insulator-normal metal junctions.     

Magnetic tunnel junctions (MTJs) were produced on the basis of the fabrication route 

developed with SIS and SIF devices.  MTJs in which tunneling is the principal 

conduction mechanism do not necessarily demonstrate high MR, due to effects such as 

magnetic coupling between the electrodes and spin scattering.  Transmission electron 

microscope images were used to study magnetic tunnel junction structure, revealing an 

amorphous barrier and crystalline electrodes.  

The decoration of pinholes and weak-links by copper electrodeposition was investigated.  

A new technique is presented to identify the number of copper deposits present in a thin 

insulating film.  The effect of roughness, aluminium thickness and voltage on the number 

of pinholes and weak-links per unit area was studied.   

High frequency testing of read heads at wafer level was performed with a network 

analyser.  Design implications for read head geometry were investigated, independent of 

magnetic performance.  This technique has great potential to aid the rapid development of 

read and write heads whilst improving understanding of the system.  
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Chapter 1:  

Introduction 
 

 

 

 

 

It is a good morning exercise for a research student to discard a 

pet hypothesis every day before breakfast.  It keeps him young.  

- Konrad Lorenz (zoologist) 
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Jullière first demonstrated spin polarized tunneling between two ferromagnets separated 

by an insulator in 1975 [Jullière, 1975].  He reported a variation in conductance of 14% at 

4.2 K on application of a magnetic field sweep for Fe/Ge/Co devices.  He defined the 

variation in conductance as the maximum difference in conductance over the maximum 

recorded conductance during the field sweep.  Such devices are termed magnetic tunnel 

junctions (MTJs).   Recently, a great deal of interest has been taken in MTJs due to the 

large magnetoresistance of 18% at room temperature first demonstrated by Miyazaki et 

al. [Miyazaki, 1995].  Magnetoresistance (MR), the change of resistance on application of 

a magnetic field, may be defined according to either of two conventions.  Equation (1.1) 

shows the definition of MR used in this thesis. 

max min

min

MR ,R R
R
−

=          (1.1)  

where Rmax and Rmin are the maximum and minimum resistance respectively, recorded as 

the magnetic field changes.  The interest in magnetic tunnel junctions displayed by the 

magnetic recording industry is discussed below, followed by the motivation for the 

specific work undertaken during this study.  The structure of the thesis is then presented. 

1.1 Motivation for MTJ development 

Research into the development of magnetic tunnel junctions has been driven by the 

magnetic data storage industry.  The fierce competition between companies to produce 

faster, cheaper computers with higher data storage capacity has led to the rapid 

development of magnetic storage media.  Two principle applications have been suggested 

for MTJs: as read head sensors for hard disks and as magnetic random access memory 

(MRAM).  Hard disk manufacturers Seagate Technology sponsored this work, and 

therefore this thesis concentrates on read head applications of MTJs.  However, MRAM 

has received a great deal of interest as a fast, non-volatile replacement for the current 

random access memory.  MRAM’s key advantage is its ability to store data with no 

applied power.   



Chapter 1 - Introduction 

3 

Figure 1.1 shows the huge increase in hard disk areal density achieved over the last forty 

years.  Areal density is defined as the number of bits of memory stored per unit area and 

is generally measured in megabytes per square inch.  Areal density has increased by 60% 

per year between 1991 and 1997, and has since increased by 100% per year.  However, 

the price per megabyte has decreased by 40-50% per year, whilst the internal data 

transition rate (measured in megabytes per second) increased by 40% per year 

[IBM, 2002].  In order to appreciate the pace of development of this industry, it is 

valuable to understand the principles of read head technology. 

1.1.1 Read head principles and technology 

A hard disk comprises a recording medium (the disk itself), a write head to transfer data 

to the disk, and a read head to recover data from the disk.  Figure 1.2 is a schematic 

diagram of a hard disk.  The disk spins at high speed; 5000 rpm to 7000 rpm is common.  

Binary data is stored on the disk as the direction of magnetisation within the bit.  The read 

and write heads are scanned extremely close to the disk surface by an actuator; recent 

laboratory demonstrations have been performed at a height of just 10 nm 

 

Production Year 

A
re

al
 d

en
sit

y 
(M

b 
in

2 ) 

 
Figure 1.1: Increase in areal density for hard disks over the lat 45 years.  CGR is 
compound growth rate.  GMR is giant magnetoresistance.  Adapted from IBM website 
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[Thompson, 2000].  Areal density is increased by reducing the size of each magnetic bit 

on a disk, as shown by Figure 1.3.  Read and write head dimensions must therefore 

decrease correspondingly.   

Initially, inductive read heads were used, consisting of tightly wound coils around a 

central magnetic core.  Changes in magnetisation as the coils are scanned across the disk 

surface induce a voltage, V, in the coils, according to Faraday’s law: 

dd ,
d

V N
t
Φ

= ⋅ = −∫ E l         (1.2) 

where d⋅∫ E l  is the line integral of the electric field, E, around the circuit, N is the 

number of turns of the coil, and d
dt
Φ is the rate of change of magnetic flux, Φ.  The sign of 

the induced voltage indicates the direction of magnetisation in a bit.  It is not practical to 

fabricate inductive read heads sufficiently small and sensitive for modern, high areal 

density disks.  Thin film magnetic sensors were developed to replace inductive heads, 

where the presence of a magnetic field induces resistance changes in the film.  The first 

magnetoresistive read head was introduced in 1991 by IBM.  Permalloy films achieved an 

MR of ≈2.5% in read heads.  Reduced bit size requires increased reader sensitivity, 

leading to the introduction of giant magnetoresistance (GMR) read heads in 1997.  GMR 
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Figure 1.2: Schematic diagram of a hard disk.  The shield between read head and writer has 
been omitted for clarity.   
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read heads have been demonstrated with a room temperature MR of around 25% in low 

magnetic fields [IBM, 2002].  In the future, magnetic tunnel junctions may replace GMR 

read heads, due to the high MR of MTJ devices of over 30% in very low fields. 

The requirements placed on magnetic tunnel junctions for read head applications are 

stringent.  The junctions must be thermally stable at operating temperatures, which may 

exceed 250°C.  The effect of grain size, shape, voltage bias, temperature, layer thickness 

and roughness should be understood and controllable, in order to produce reproducible 

junctions.  The most problematic requirement has been that of low resistance.  Magnetic 

tunnel junctions are intrinsically high resistance, due to the presence of an insulating 

barrier, and smaller sensors increase the resistance of the read head.  Resistances of the 

order of 1 kΩ have been suggested in order to facilitate high data rate operation, as 

discussed in Chapter 6. 
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Figure 1.3: Decrease in bit size over the last twelve years.  Trackwidth represents the 
difference in inner and outer diameter of the concentric rings of bits on a hard disk.  
Bit length is the size of the bit in the concentric direction. Adapted from IBM website. 
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1.1.2 Motivation for this thesis 

One of the key problems experienced by many workers on magnetic tunnel junctions is 

that, whilst the requirements on device fabrication are high, results of resistance against 

magnetic field indicate only whether the magnetic sensor is good or bad.  Non-optimal 

performance of magnetic tunnel junctions can result from a wide range of faults which 

can be difficult to diagnose, such as barrier inhomogeneity and pinhole formation.  The 

aim of the work described in this thesis was to improve the techniques to analyse 

magnetic tunnel junction quality.  Quantitative tests for junction and barrier quality were 

investigated and developed.   

Seagate Technology sponsored this project as a CASE partnership, as a consequence of 

which three months research work was undertaken on site in Londonderry.  This 

relationship presented the opportunity to research an exciting new technique to assess the 

effect of material and device parameters on the high frequency response of read heads 

using a network analyser.  This highly successful investigation gave insight into the 

parameters of importance to read head frequency response, in particular the requirement 

of low resistance.     

1.2 The form of this thesis 

Tunnel junction theory is introduced in Chapter 2, together with the concepts of 

superconductivity and magnetism required to understand different junction types.  

Normal metal-insulator-normal metal (NIN), superconductor-insulator-ferromagnet (SIF) 

and superconductor-insulator-superconductor (SIS) tunnel junctions are discussed.  

Magnetism, with emphasis on ferromagnetism, is then reviewed, followed by an 

introduction to magnetic tunnel junctions.  The practical techniques of film deposition, 

lithography and processing are considered in Chapter 3.   

The relationship between the normal state and superconducting characteristics of SIS and 

SIF tunnel junctions was investigated in Chapter 4.  A high quality tunnel junction 

fabrication route was developed.  The ratio of the superconducting state to the normal 

state resistance is a convenient measure of junction leakage, termed the figure-of-merit 

(FOM).  The relationship between the FOM and NIN characteristics was investigated.  
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Criteria were formulated to identify devices in which tunneling is not the principal 

conduction mechanism in normal metal-insulator-normal metal junctions. 

High frequency testing of read heads with a network analyser is presented in Chapter 5.  

The principles of high frequency testing and network analysers are introduced, facilitating 

the interpretation of a series of measurements on read heads.  The effect of sensor length, 

width, insulator thickness, shield size and type are investigated.  A simple electrical 

model of read heads at high frequency is developed.  Design implications of the results to 

the development of read heads for high data transmission rate applications are then 

considered.   

Magnetic tunnel junctions are discussed in Chapter 6.  Developments in the experimental 

and theoretical study of MTJs are reviewed.  Results are presented for magnetic tunnel 

junctions fabricated during this study.  The effect of lower electrode roughness on 

magnetic tunnel junction performance is investigated.  Transmission electron microscope 

images indicate the structure of the films produced. 

The use of copper decoration by electrodeposition, to identify pinholes and weak-links in 

the insulating barrier, is presented Chapter 7.  The experimental apparatus and technique 

are investigated, and the alterations and improvements to the method discussed.  The 

effect of lower electrode roughness, deposition voltage, and aluminium thickness, on 

number of copper deposits per unit area and electrodeposition current are presented.   

Finally, the conclusions and implications of this work are discussed in Chapter 8.  The 

complexity of high quality magnetic tunnel junction fabrication is reviewed in relation to 

the techniques developed over the course of this study.     
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“Anyone who is not shocked by quantum theory has not understood it.” 

-Niels Bohr 
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This work covers a wide range of topics, however this chapter concentrates on the main 

theme of the thesis: electron tunneling and magnetism.  The development of techniques to 

monitor and improve the quality of magnetic tunnel junctions for hard disk read head 

applications is better understood with an appreciation of background theory.  Firstly, the 

mechanisms for tunneling between metals separated by an insulator are considered, 

before building more complicated systems and introducing different electrodes.  A brief 

summary of the concepts of superconductivity required to identify the key features of 

superconductor-insulator-superconductor (SIS) and superconductor-insulator-ferromagnet 

metal (SIF) tunnel junctions is also presented.  Magnetism is discussed, with particular 

attention to the theory of ferromagnetism and polarisation.  Finally the basics of magnetic 

tunnel junctions are introduced, a more detailed literature survey is presented in 

Chapter 6. 

2.1 Tunneling 

Classical physics cannot explain the transmission of electrons through a potential barrier 

when the barrier potential energy is greater than the electron kinetic energy.  However, 

such transmission of electrons does occur and quantum mechanics is used to explain the 

observed effects.  Firstly, a simple model of electron tunneling through an idealised 

rectangular barrier is presented; it is then extended to derive expressions for the current 

density.  Two extremely important models of tunneling in metallic junctions are 

considered, Simmons’ and Stratton’s theories, followed by the effect of the image force 

on these models.  Specific examples of tunneling are discussed starting with the 

normal metal-insulator-normal metal (NIN) junction.  The behaviour of SIF and SIS 

junctions is then considered, after the concepts of superconductivity required to describe 

such junctions are introduced.  

2.1.1 One dimensional rectangular barrier 

A simple representation of quantum mechanical tunneling applies to electron transport 

through a barrier consisting of two free electron metals separated by an insulator.  A 

number of assumptions simplify the problem, which are that the metals are identical, the 

interface perfect, image potentials negligible and interactions elastic.  Figure 2.1 
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represents the rectangular barrier describing this situation.  Additionally, free electron 

metals can be considered to have potential energy, U(x) = 0, and the barrier has a 

potential U(x)= U0 > 0 acting over the region 0 ≤ x ≤ a.  When the particle energy, E, is 

such that E < U0, the wave function ψ(x) may be obtained by solving the time 

independent, one dimensional Schrödinger equation: 

2
2

0( ) ( )
2

E x U x
m

ψ ψ
 

= − ∇ + 
 

h .            (2.1) 

Where h = h/2π, h is Planck’s constant and m the mass of the particle.  The general 

solutions to the Schrödinger equation are: 

( ) ( )
( ) ( )
( )

1 1

2 2

1

exp exp                      0

( ) exp exp                     0

exp                                             ,

A ik x B ik x x

x C ik x D ik x x a

F ik x a x

ψ

+ − ≤


= + − ≤ ≤
 ≤

       (2.2) 

with wave numbers, k1 and k2:  

0
1 2

2 ( )2     and     
m U EmEk k

−
= =

h h
.            (2.3) 

At the boundaries of the potential barrier both the wave functions and their differentials 

must be continuous.  Solving Equation (2.2), the constants B, C, D and F are found in 

terms of A.  The transmission coefficient, T, which is defined as the ratio of the 

Incident electrons
Transmitted electrons

Reflected electrons

x=0 x=a

U0

1 2 3
 

Figure 2.1: The rectangular tunnel barrier. 
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transmitted probability current density to the incident probability current density, can now 

be calculated:   

( )
0 0

1
2

1 2
2

3 0 0

* sinh ( )1 16 1 exp 2 ,
* 4 (1 )E E

U U

v F F k a E ET k a
v A A U U

−
   

= = + ≈ − −   −    
       (2.4) 

where v1 and v3 are the group velocities in regions 1 and 3 respectively.  The wave 

number in regions 1 and 3 (Figure 2.1) are the same, thus after tunneling the momentum 

and effective mass of the electron are unchanged, so v1 = v3.  Despite the barrier potential 

exceeding the energy of the incident electron, it can be transmitted, the probability of 

which decreases exponentially as barrier thickness increases. 

2.1.1.1 Extending the simple model 

Consider the case when metal electrodes are not similar, resulting in an asymmetric 

barrier.  This trapezoidal barrier is simply represented in Figure 2.2.  The time invariant, 

one-dimensional Schrödinger Equation (2.1) is used with the same assumptions as above.  

However, the potential energy, U(x,V), is now a function of both distance, x, and the 

applied potential, V.  The Wentzel-Kramers-Brillouin (WKB) approximation includes the 

effect of a varying potential within the barrier region [Wolf, 1985].  This approximation 

involves solving the Schrödinger equation for the barrier, noting that it breaks down at the 

  

x 

eV 
  µ 2   

  

µ 1   

U(x,V) 

0 a 

E 2 =0   
E 1 =0   

ψ(x) 

 
Figure 2.2: The trapezoidal barrier. 
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classical turning points of the particles, and then interpolating solutions on either side of 

each turning point to produce a smooth wave function [Powell, 1961].  This allows the 

derivation of the transmission coefficient, as shown by Equation (2.5). 

0

2exp 2 ( ( ) )
a

T m U x E dx− = − 
 ∫h

       (2.5)    

2.1.1.2 Current density calculation 

The current density may be obtained by two methods: either the transfer Hamiltonian or 

the stationary state model [Wolf, 1985].  The latter method is discussed here, as it is 

simple and self-contained.  However, real junction effects such as spin flip and resonant 

barrier levels are better described in the transfer Hamiltonian method†.  It is assumed that 

each metal can be described by an equilibrium Fermi function: 

1
1 1

1
2 2

( ) exp 1 ,        

 ( ) exp 1 .

Ef E
kT

Ef E eV
kT

µ

µ

−

−

 −  = +    

 −  + = +    

         (2.6) 

The Fermi energies µ1 and µ2 are measured from the bottom of the respective bands, as 

are the energies E1 and E2 on the left and right of the junction respectively.  Following 

convention, the application of a positive bias, V, lowers the Fermi level of the right hand 

electrode (Figure 2.2).  Current may pass in either direction, J = J12– J21, where J is the 

total current density, J12 and J21 are the current densities from one to two and vice versa.  

J12 is the integral of the electron charge multiplied by the group velocity, transmission 

                                                 
† For completeness the Hamiltonian method is summarised: 
Consider a perturbation, H(t) to the harmonic approximation to the system, H1+H2.  The time dependent 
Schrödinger equation must be solved to find the wave function, Ψ (t):  

( ) ( ( )) ( )1 2
ti H H H t t

t
ψ ψ∂

= + +
∂

h           

Ψ(t) is expanded in terms of the eigenstates of H0.  Transitions occur between 1 and a range of final states, 
2, with density of states g(E2) per unit energy around E2, the energy of the destination state.  From Fermi’s 
Golden Rule, for the transition rate Γ12: 

( ) ( )22
'2 1 2 2 112 H g E E E

π
φ φ δΓ = −

h
        

the matrix element H′21  is identified to be that of the current density operator.   
Further details and a derivation of the resultant current density are available in [Wolf, 1985]. 
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coefficient, T and Fermi functions specifying that transport occurs between a full and an 

empty state over all available states in k-space: 

( ) ( )( )1
12 3

2 [1 ] d d d ,
(2 ) x y z

x

EJ e T f E f E eV k k k
kπ

− ∂
= − + ∂ 

∫∫∫ h    (2.7) 

where the factor 2 represents the spin degeneracy and 1/(2π)3 normalises to the number of 

states per unit volume in k-space.  J21 may be derived similarly.  The total current density 

can be calculated by changing the integration variable: 

( )
( ) ( )

 

3 0

2 d d d .
2

x y z
eJ E f E f E eV T k k

π

∞
= − +  ∫ ∫∫

h
     (2.8) 

Equation (2.8) may be developed further by considering that in this model, where thermal 

excitation is neglected, electrons between the Fermi energy, µ1 and µ1 − eV are able to 

tunnel to the right.  Figure 2.3 shows that as we integrate in k-space the areas are 

represented as either an annulus or disc, the integral is therefore separated into parts with 

appropriate limits.  Since dky = dkz = dkt in the transverse direction, a transverse density of 

states, ρt, may be defined: 

( )22
2

2d 2 d d 2 dt
t t t t t t

mk k k E Eππ π ρ= = =
h

.      (2.9) 

kmax 

kz 

ky 

kx 

kmin 
kmax

kz 

ky

kx

kmin

EF 

(EF - eV)

(a) (b) 
 

Figure 2.3: The integral may be split into two regions in k space, represented by an annulus 
(a) or disk (b). 
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Substituting Equation (2.9) and the limits into Equation (2.8) leads to: 

1 1

1
10

2( ) ( , )d ( , )( )d
eVt

eV

eJ V eV T E V E T E V E E
h

µ µ

µ

ρ µ
−

−

 = + −  ∫ ∫ .   (2.10) 

2.1.2 Normal metal - insulator - normal metal junctions 

J.G.Simmons used a very similar method to that in Section 2.1.1 to derive the current 

density for a normal metal-insulator-normal metal (NIN) junction [Simmons, 1963(a)].  

He considered an arbitrary shaped barrier, with mean barrier height φ  and transmission 

coefficient shown below: 

( )( )
( ) ( ) ( ){ }

( )

1
2

0

1

0

1
2

0 2

1 ( )d  ,                                

exp ,

exp exp ( )  ,  

4where          ,        2 ,
2 ( )

a
x x

a
T A E

J J A eV A eV

e aJ A m
h a h

φ φ

φ µ

φ φ φ φ

πβ
π β

=

= − − +

= − − + − +

= =

∫

    (2.11) 

and β is a correction factor close to unity.  For low voltages, when taking β =1, this 

reduces to: 

( ) 3

2

...

( ) 3 ...

J V V V

G V V

α γ

α γ

= + +

= + +
         (2.12) 

( ) ( ) ( )
1 22 222

Where:    exp     and    .
96 32

m Aee AeA
a h

γα φ φ
α φ φ

 = − = − 
 

  (2.13) 

The predicted conductance, G(V), is parabolic with applied voltage bias, but Simmons’ 

derivation incorrectly predicts it to be centred at zero.  In Chapter 4 the results for NIN 

tunnel junctions are presented demonstrating a negligible zero offset, due to the fact that 

both metallic electrodes were niobium.  The barrier height and width, a, can be 

conveniently calculated using a graphical interpretation of the above theory, which is 

discussed in Chapter 4. 
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2.1.2.1 Stratton’s theory 

Stratton modelled the same problem, using a different transmission coefficient, T 

[Stratton, 1962].  For the purposes of this work, it is sufficient to consider the results: 

( ) ( )1
13 2

1
1

2

1 0

1
2

1 0

4 exp
( ) 1 exp

8where     b ( ) ( ) d   

2and   ( ) ( ) d .

a

a

em b
J V c V

h c

m eVxV x x
a

m eVxc V x x
a

π

φ

φ
−

−
= − −  

 = − 
 

 = − 
 

∫

∫

h

h

      (2.14) 

Stratton’s theory leads to the temperature dependence of the tunnel current more readily 

than Simmons’ theory:   

21
1

1

( , ) 11 ( ) ...
( ,0) sin( ) 6

B
B

B

J V T c k T c k T
J V c k T

π π
π

= ≈ + +       (2.15) 

Equation (2.15) is commonly used to investigate the temperature dependence of 

tunnelling conductance in NIN junctions.  This relation is used to examine the 

temperature dependence of tunnel junctions in Chapter 4. 

2.1.2.2 Effect of the image force  

An electron leaving or approaching a metal surface will experience an image force which 

is strongly dependent on the dielectric constant and thickness of the barrier.  This problem 

has been treated in detail by Sommerfeld and Bethe [Sommerfeld, 1933] and applied to 

the NIN junction by Simmons [Simmons, 1963(b)].  Figure 2.4 shows the effect of the 

image force on a trapezoidal barrier, where the thickness and height of the barrier are 

reduced and the edges rounded off.  Brinkman et al. applied the approximated barrier 

form to produce conductance curves as shown in Figure 2.5 [Brinkman, 1970].  The 

resultant changes to the conductance are a slight reduction of the zero offset and steeper 

rate of increase with voltage.  They concluded that the effects were minor and subsequent 

authors have generally ignored image forces. 
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2.1.3 Superconductivity – a brief review 

In order that junctions containing a superconducting component may be understood, it is 

first necessary to review some concepts of superconductivity.  In 1911 Kamerlingh Onnes 

noticed the resistance of mercury vanished as temperature decreased below a critical 

temperature, Tc [Onnes, 1911].  A superconductor does not only have zero resistance, but 

it also exhibits perfect diamagnetism.  On cooling through Tc magnetic field is expelled 

from the superconductor, if it is below some critical field, Hc.  This is known as the 

Meissner effect [Meissner, 1933].  In the 1950’s it was determined that superconducting 

materials can be separated into two categories exhibiting different behaviour, type I and 

type II.  

When type I materials in their superconducting state are subjected to a magnetic field, a 

surface current is generated producing an internal magnetic field which cancels the 

external field.  This current flows in the characteristic penetration depth, λ.  The Meissner 

effect implies there is a critical magnetic field, Hc beyond which the external field will 

penetrate the material and superconductivity is destroyed.  At Hc the energy per unit 

 

Trapezoidal barrier 
True barrier 
Approx. barrier 

   
Figure 2.4: Effect of the image force    Figure 2.5: Conductance plot               
on the trapezoidal barrier. Where    showing the minimal effect of the    
K=dielectric constant and s=barrier    image force [Brinkman, 1970].   
thickness (Å) [Simmons, 1963(b)]. 
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volume associated with preventing external field penetration equals the condensation 

energy: 

2 ( ) ( ) ( ),
8
c

n s
H T f T f T

π
= −         (2.16)  

where fn(T) and fs(T) are the Helmholtz free energies per unit volume of the normal and 

superconducting states respectively.  For type I superconductors this is a first order 

transition.  Such materials are generally pure single element materials, with a low Tc, long 

electron mean free path, l and λ< ξ.  ξ is the coherence length measuring the average size 

of the electron pairs and the minimum length scale over which the superconducting wave 

function may change.  

In type II materials a mixed state follows the Meissner state on increasing the external 

magnetic field, before reaching the normal state.  A second order transition occurs, where 

singular magnetic flux quanta penetrate in the form of vortices, starting at Hc1.  

Superconductivity generally persists to higher magnetic fields than for type I materials, to 

the upper critical field, Hc2.  Here λ is the size of circulating currents around the vortices 

and ξ the core diameter.  Type II materials are alloys or dirty, short mean free path 

materials, where λ> ξ.   

Superconductors in SIF junctions may be tested in a high magnetic field, to measure the 

polarisation of the ferromagnet (Section 2.1.4.1).  As stated in Section 2.1.4.1, the 

superconducting electrode is generally aluminium, minimising spin orbit scattering, 

which increases according to Equation (2.17).   

( )4Spin orbit scattering Z∝          (2.17) 

Where Z is the atomic mass.  However, in its pure state aluminium is a type I 

superconductor and the bulk material only withstands the small field of 100 Oe.  Thin 

films are dirty compared to the bulk material and are therefore type II superconductors.  

The increase of the critical field by decreasing the aluminium thickness is discussed in an 

excellent review by Meservey and Tedrow [Meservey, 1994], they found that 4 nm thick 

films should have Hc2 = 48000 Oe.  Hc2 values are a direct result of film deposition 
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techniques and the aluminium thickness required for SIF junctions should be investigated 

experimentally.    

2.1.3.1  The BCS density of states 

In 1957 Bardeen, Cooper and Schrieffer produced an extremely successful electron 

pairing theory of superconductivity [Bardeen, 1957].  The fundamental concept is that of 

the Cooper pair, where weak interactions bind two electrons into a pair state.  The Fermi 

sea of electrons is unstable to the formation of such a pair, producing a distribution of pair 

states, described by the Bardeen-Cooper-Schrieffer (BCS) density of states.  They also 

predicted that in order to break the pair ground state into conducting quasiparticle 

excitations, some energy, 2∆, must be exceeded where ∆ is the energy gap.  The BCS 

density of states, ρs, represented by Equation (2.18), is used throughout this analysis of 

superconducting tunnel junctions.   

( )
1

2 2 2

(0)
             E

0                              E

s

s

E

E

ρ

ρ


≥ ∆= −∆


< ∆

       (2.18) 

2∆ 

S   I N 

 
Figure 2.6: Semiconductor model of a SIF junction in 
zero magnetic field. 
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Figure 2.7(a) illustrates the BCS density of states.  A full treatment of BCS theory is 

beyond the scope of this thesis and the reader is advised to refer to one of the many 

standard texts for further information [e.g.Tinkham, 1996].   

2.1.4 Superconductor-insulator-ferromagnet 

In zero applied magnetic field, SIF devices behave as superconductor-insulator-normal 

metal (SIN) tunnel junctions.  In this case, the conductance may be deduced from the 

results of Section 2.1.1.2 and a knowledge of the density of states of the superconductor, 

ρs.  The semiconductor model is a convenient representation of a superconductor close to 

equilibrium and is shown in Figure 2.6.  The band gap is twice the superconductor energy 

gap, ∆.  For simplicity, it is assumed that the density of states of the ferromagnetic 

electrode is independent of energy, Equation (2.8), which represents the current flowing 

in a tunnel junction, may be rewritten: 

 (a) 

(b) 

 
Figure 2.7: (a) The BCS density of states and (b) normalised 
conductance for an SIF junction in zero magnetic field. 
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[ ]( ) ( ) ( ) dSIF N sI C E f E f E eV Eρ
∞

−∞
= − +∫       (2.19) 

CN is the conductance of the junction when the superconductor is in its normal state, 

where its density of states, ρs(0) is assumed to be independent of energy.  BCS density of 

states is assumed to apply to the superconductor, as introduced in Section 2.1.3.1. 

The normalised conductance of such junctions may be calculated using the Fermi 

functions of Equation (2.6) and differentiating (2.19) with respect to V: 

( )
( )( )2

d
exp ( )d( ) ( )  d ,d 1 exp ( )

d

SIF

s
NIN

I
E eVVV E EI E eV

V

β β
σ ρ

β

∞

−∞

 + = =
 + + 

∫     (2.20) 

where β = 1/kBT and ININ is the current in the normal state.  Figure 2.7(b) illustrates the 

result of this integral, performed using Mathematica, at 4.2 K.  When  eV < ∆ 

quasiparticle states are filled by thermal excitation, but current rapidly increases when 

 eV exceeds the energy gap.  This corresponds to the BCS density of states shown in 

Figure 2.7(a).  The current approaches a linear dependence on voltage well beyond the 

energy gap, this is the same as for NIN junctions in low bias (at high bias we see the 

Figure 2.8: The effect of temperature on the normalised conductance of a 
SIF tunnel junction in zero magnetic field. 
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characteristic parabolic conductance).  The density of states of real electrodes may be 

investigated using such conductance measurements. 

We now consider the effect of temperature on SIF junction conductance in zero bias, as 

shown in Figure 2.8.  It is clear that thermal excitation decreases as the temperature is 

reduced, leading to less ‘smearing’ of the conductance, i.e. lower zero bias conductance, 

steeper walls and a higher peak in conductance.  Temperature also has a dramatic effect 

on junction leakage, represented by the ‘figure-of-merit’ (the conductance in the normal 

state divided by the conductance at zero bias.), which is discussed in Chapter 4. 

2.1.4.1 SIF in a magnetic field 

The treatment for SIF junctions in zero magnetic field, above, is identical to that for 

superconductor-insulator-normal metal junctions.  However, in a large applied field, the 

conductance characteristics of SIF devices deviate from those of SIN devices.  The 

polarisation of the ferromagnet can be deduced from the conductance against voltage 

curves of SIF junctions in a high magnetic field.  Firstly, it is necessary to consider the 

effect of a magnetic field, H, on the superconductor.  Aluminium is used to minimise the 

effect of spin orbit scattering, which increases according to Equation (2.17).  H is applied 

in the plane of the junction.  The quasiparticle energies are shifted by ±µmH where µm is 

the absolute value of the magnetic moment of an electron.  This leads to a modified BCS 

density of states: 

[ ]1( ) ( ) ( ) ( ) ( )
2s s m s mE E E E H E Hρ ρ ρ ρ µ ρ µ↑ ↓= + = + + − ,    (2.21) 

where ( )Eρ↑  and ( )Eρ↓  are the density of states of the up and down spins respectively.  

The problem is simplified by assuming the barrier is perfect and that negligible scattering 

sites exist in the interface layer, therefore spin is conserved during tunneling.  It is also 

assumed that the probability of tunneling is different for each spin state and these values 

are constant within the region of interest, about 10-3 eV of the Fermi energy.  The 

normalised conductance should be a sum of the conductance in the independent spin 

directions, so Equation (2.20) leads to:   
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   (2.22) 

The difference in tunneling probability in the spin-up and spin-down directions is 

represented by a, the fraction of tunneling electrons whose magnetic moment is in the 

direction of the magnetic field (majority carriers).  The polarisation of the ferromagnet, P, 

can therefore be defined as P = 2a – 1.  The normalised conductance of an SIF junction is 

shown in Figure 2.9 and was calculated using a magnetic field of 20000 Oe, at 0.3 K to 

reduce thermal broadening.  The conductances σ1, σ2, σ3 and σ4 are defined on the 

diagram and Equation (2.23) can be used to recover the polarisation of the ferromagnet 

[Meservey, 1994].  

( ) ( )
( ) ( )

4 2 1 3

4 2 1 3

2 1P a
σ σ σ σ
σ σ σ σ

− − −
= − =

− + −
       (2.23) 

This technique has been used to measure the polarisation of the ferromagnets.  Table 2.1 

shows polarisation values from the literature, a range of values have been observed for 

each ferromagnetic material.  This technique is sensitive to fabrication quality.  In 
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Figure 2.9: Conductance, normalized to the normal state conductance, as bias is 
increased for an SIF tunnel junction, polarisation 50% at 0.3 K in a magnetic 
field of 20000 Oe. σ1, σ2, σ3 and σ4 are measured at the peaks in conductance. 
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particular, scattering sites in the barrier or interface can cause spin-flip and reduce 

measured polarisation.  Additionally, certain problems are inherent in this method, that 

measurements take place at 0.4 K, 40000 Oe and low bias of a few mV.  In a magnetic 

tunnel junction the relevant polarisation is at room temperature, or above in read heads, 

small magnetic field, <200 Oe, and at a bias of up to 200 mV.  It is also not possible to 

determine the effect of the superconducting electrode on measured polarisation, as only 

aluminium is suitable due to spin orbit coupling.  The practical problems of this technique 

are discussed in Chapter 4. 

 
 

Material Polarisation by 
tunneling  at 
0.4 K (%)  

Polarisation by field 
emission for crystal 
directions shown (%) 

Polarisation by 
photoemission 
(%) 

Polarisation by 
Andreev 
reflection (%) 

Fe 40i, 44ii, 37iii (100): 25v,(111): 20v, 
(110): 5v 

54viii 45xi, 46xi, 42xi  

Co 35i, 33ii, 35iv   21viii 42 xi 

Ni 23i, 11ii, 8.5iii 13vi,(100): 3v,(110):5v 15viii, 15.5ix 46.5xi, 43xi, 44xi  

Gd 14i 8vii 5.5x  

Ho 7.5i    

Tb 6.5i    

Er 5.5i    

Dy 7.0i    

Tm 2.7i    

Co50Fe50 47iv    

Ni50Fe50 45iii    

Ni84Mn16 9.8iii    

Ni89Ti11 3.6iii    

Ni68Cu32 4.8iii    

Ni87Cr13 0.9iii    

Table 2.1: Polarisation of the ferromagnets. 

                                                 
i [Meservey, 1994], ii[Meservey, 1974], iii[Paraskevopoulos, 1977], iv[Moodera, 1998], v[Landolt, 1978], 
vi[Gleich, 1971], vii[Hofmann, 1967], viii[Busch, 1971],ix[Banninger, 1970], x[Busch, 1969], xi[Soulen, 1998]. 
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2.1.4.1.1 Alternative techniques for measuring polarisation 

A large number of techniques have been suggested to measure the polarisation of 

ferromagnets.  Meservey reviewed measurements taken by field emission, photoemission, 

electron capture spectroscopy, secondary electron emission, spin-polarised metastable-

atom de-exitation spectroscopy and photodetection of injected electron spins 

[Meservey, 1994].  Recently, Andreev reflection has been used to measure the 

polarisation of ferromagnets [Soulen, 1998].  Measurements of the polarisation by 

Andreev reflection have been made via pinholes, as discussed in Section 4.1.2.1 

[Akerman, 2000].  Table 2.1 displays some values from the literature.   

Andreev reflection occurs at the conversion of normal current to superconducting current 

at a metallic interface.  A superconducting point contact onto a ferromagnet allows the 

 
Figure 2.10: (A) Schematic when P=0, and Andreev reflection is unhindered by a minority   
spin population at the Fermi energy (EF). Solid circles denote electrons and open circles 
holes.  (B) Experimental measurement at T=1.6K, via a superconducting Nb contact on Cu.  
The dashed line is normal state Nb.  (C) Schematic for P=100%, when no supercurrent 
conversion occurs at the interface.  (D) Experimental results for a Nb point contact on CrO2 
at 1.6K.  The dashed line is for Nb in its normal state. [Soulen, 1998]. 
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estimation of polarisation without applying a magnetic field.  Consider an electron 

approaching the interface, as shown in Figure 2.10(A).  Electron pairs are required, so the 

metal donates an electron.  However, a corresponding hole state is created, which moves 

away from the interface in the opposite direction to the electron.  Therefore when the 

applied voltage is less than the energy gap, the conductance is doubled as compared to the 

normal state, as shown in Figure 2.10(B).  A Cooper pair comprises of a spin-up and spin-

down electron, obeying the Pauli exclusion principle.  An incident spin-up electron 

requires a spin-down electron to be donated by the metal and a spin-up hole is Andreev 

reflected back into the metal.  If the polarisation, P, is 100%, as shown in Figure 2.10(C), 

no minority spin carriers exist near the Fermi energy in the metal to provide the second 

electron for pairing.  Andreev reflection is therefore prevented and only single particle 

excitations can conduct across the interface. Due to the energy gap, conductance is 

suppressed, as shown in Figure 2.10(D).  The polarisation may be deduced from Equation 

(2.24), given the conductance at zero bias, Gv=0, and the conductance in the normal state, 

GN [Soulen, 1998].  
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Figure 2.11: Typical SIS current-voltage characteristic. 
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2.1.5 Superconductor-insulator-superconductor 

Consider superconductor-insulator-superconductor (SIS) junctions with identical metal 

electrodes, as fabricated during this work.  Taking a BCS density of states for both 

electrodes (Section 2.1.3.1), the current flowing through the junction, ISIS, on application 

of a potential, V, may be deduced from Equation (2.8): 

( )
[ ]

2 2 2 2
Re Re ( ) ( ) d ,SIS N

E E eV
I C f E f E eV E

E E eV

∞

−∞

   +   = − +   
−∆   + − ∆   

∫   (2.25) 

where symbols have the same meaning as in Section 2.1.4.  Typical current-voltage 

characteristics of a SIS junction are shown in Figure 2.11.  When  eV < 2∆, assuming no 

leakage through the barrier, transport occurs by thermally excited quasiparticles.  At 

 eV ≈ 2∆ there is a rapid increase in current corresponding to the peak in the BCS 

density of states.  For  eV  2∆, tunneling reverts to the behaviour of NIN junctions 

discussed in Section 2.1.2.  

2.1.5.1 The Josephson effect 

SIS junctions in zero bias voltage display a current, I, known as the Josephson current 

[Josephson, 1962].  The Josephson current is usually suppressed with a magnetic field for 

determination of junction quality, as discussed in Chapter 4, but is an important 

characteristic worth consideration.  When two superconductors are separated by a weak 

link, such as the insulating barrier in SIS devices, the two wave functions couple to 

produce a constant phase difference, ϕ.  Josephson deduced the results from BCS theory:     

d 2sin        and       ,
dJc

eI I V
t
ϕϕ= =

h
       (2.26) 

where IJc is the Josephson critical current of the junction and V is the voltage.  A magnetic 

field in the barrier, B, causes a modulation in the phase, given by Equation (2.27). 

2
xy z

edϕ∇ = B×n
h

         (2.27) 
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Where nz is the unit vector normal to the plane of the junction and d is the magnetic 

thickness of the barrier: 

 d = 2λL + t,           (2.28) 

t is the actual barrier thickness and λL the London penetration depth (as defined by the 

London theory equations) [London, 1935].  The application of such a magnetic field may 

be used to modulate IJc. 

2.2 Magnetism 

The aspects of magnetism of principal concern to ferromagnetic tunnel junctions and thin 

films of ferromagnetic metals are discussed in this section, beginning with an overview of 

some key concepts and the units of magnetism.  Models of ferromagnetism are then 

considered, followed by electron spin polarisation, domains and, briefly, magnetic tunnel 

junctions.  A detailed review of magnetic tunnel junctions is presented in Chapter 6.   

2.2.1 Basic magnetism reviewed 

 A material’s magnetic moment, susceptibility and magnetisation show its response to a 

magnetic field.  The magnetic moment, m, of a material is defined in terms of the torque τ 

it experiences under the influence of a magnetic field and the magnetic induction, B: 

.τ = m×B               (2.29) 

The magnetisation, M, of a material is its magnetic moment per unit volume.  The 

susceptibility, χ, of a material is the ratio of the magnitude of the magnetisation to the 

magnetic field strength, H, when the magnetisation and field are parallel.  None of the 

above properties are constant for a material.  Strongly magnetic materials have a high 

susceptibility.   

The units of magnetism and notation are frequently confused and confusing.  Here, 

Gaussian (CGS) units are used in accordance with the majority of literature on magnetic 

tunnel junctions.  Table 2.2 shows the units and corresponding expressions for magnetism 
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in the SI (Sommerfeld) and Gaussian systems.  A good review of magnetism can be found 

in Jiles [Jiles, 1996]. 

 

Quantity SI  CGS (Gaussian) 

Field, H A m-1 Oersted 

Induction/Flux density, B Tesla Gauss 

Magnetisation, M A m-1 emu cc-1 or (gauss = 
4πM) 

Flux, Φ Weber Maxwell 

Field equation B=µ0(H + M) B=H + 4πM 

Energy of magnetisation, E, due to 
applied field, H, in free space. 0E dvµ= − ⋅∫M H  E dv= − ⋅∫M H  

Table 2.2: Units of magnetism. 

 

2.2.2 Ferromagnetism 

Ferromagnetism arises when the magnetic moment of adjacent atoms or ions are strongly 

coupled in parallel.  A spontaneous magnetic moment can exist in the absence of an 

external magnetic field.  Three theories of ferromagnetism are considered.  Firstly, the 

molecular field theory of ferromagnetism is useful in developing an understanding of this 

phenomenon.  However, it does not describe the system well.  The itinerant electron 

model will then be presented.  Finally, the hybridisation of the s and d bands of 

ferromagnetic materials is discussed, this demonstrates aspects of both localisation and 

de-localisation.   

2.2.2.1  Molecular field model of ferromagnetism 

Weiss suggested the molecular field to describe ferromagnetism in 1907, since when it 

has been extensively developed [Weiss, 1907].  Spontaneous magnetisation in a material 

was speculated to be caused by a very strong molecular field, Hmolecular, proportional to 

the magnetisation.  The magnitude of this field may be estimated by equating the thermal 

energy to the molecular field energy at the Curie temperature, TCurie.  The Curie 

temperature is that at which ferromagnetic alignment is no longer favoured and the 

material becomes paramagnetic.  
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B molecular CurieH kTµ =          (2.30) 

Where µB 
4

eh
mcπ

 =  
 

 is one Bohr magneton, k is the Boltzmann constant, e the electronic 

charge, h is Planck’s constant, c the speed of light and m the mass of an electron.  This 

field is 6.4×106 Oe for iron, which is too large to be explained by magnetostatic fields 

from adjacent atoms, or ions in the case of a crystal.  The spontaneous magnetisation, Ms 

is described in terms of the maximum possible magnetisation, Mm and the maximum 

dipole moment of the atoms or ions, µm: 

,m
s m J

HM M B
kT
µ =  

 
         (2.31) 

where BJ is the Brillouin function.  In an applied field, Ha, the magnetic field acting on 

the spontaneous magnetisation, H, is given by: 

H=Ha+ γMs ,          (2.32) 

where γ is the molecular field constant and therefore γMs is the molecular field.  As 

shown above, the molecular field is much higher than a realistic applied field, so Ha may 

be neglected: 

.s m s
J

m

M MB
M kT

µ γ =  
 

         (2.33) 

The solution may be extracted using a graphical method or modelled numerically.   

The molecular field theory is particularly successful in representing the variation of 

Ms/Mm with temperature.  However, its key problem is that it predicts that the magnetic 

moments of the transition metal at low temperatures are integer multiples of the Bohr 

magneton (as shown in Table 2.3).  The non-integer values observed cannot be explained 

by the molecular field theory.   
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Ferromagnetic moment per atom Fe Co Ni 

Molecular field model, assuming a Landé 
splitting factor of 2 and total angular 
momentum quantum number, J = ½ 

1 1 1 

Itinerant electron model 2.6 1.6 0.6 

Experimental values 2.2 1.72 0.6 

Table 2.3: Predicted and experimental values of ferromagnetic moment. 

 

2.2.2.2 Itinerant electron model of ferromagnetism 

The itinerant electron model for ferromagnetism, also known as the collective electron 

model, was initially developed by Stoner and Slater [Stoner 1933; Slater 1936].  They 

reasoned that electrons in unfilled shells, contributing to the magnetic moment, are 

usually outer electrons.  These electrons are unlikely to be localised and instead they are 

conduction electrons in energy bands.  Figure 2.12 shows schematic density of states 

(DOS) diagrams for the 3d bands of cobalt, nickel and iron.  For comparison, the DOS 

calculated for nickel is shown in Figure 2.13 [Hodges, 1966].  The lower energy levels 

also form bands, but do not contribute to ferromagnetism, apart from 4s electrons.  All 

states are filled up to the Fermi level, in accordance with the Pauli exclusion principle 

(neglecting thermal effects) and the number of states filled is equal to the area of the 

shaded region in Figure 2.12.  The number of filled spin-up states is not equal to the 

number of spin-down states, leading to the polarisation of ferromagnets and consequently 

the magnetoresistance of ferromagnetic tunnel junctions.  The bands are shifted by the 

electrostatic exchange interaction, which is caused by the overlap between electron wave 

functions.   

Clearly, the complex band structure shown in Figure 2.13 is unlikely to produce integer 

values for the magnetic moment, m.  If the number of 3d + 4s electrons is n and the 

number of 4s electrons per atom is x, then Equation (2.34) represents the magnetic 

moment. 

( )10 Bm n x µ= − −            (2.34) 
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Experimentally, x = 0.6 for nickel.  If it is assumed that x is constant, m=(10.6 − n)µB, 

and the values shown in Table 2.3 can be derived.  Agreement between theory and 

experiment is good, but significant problems arise in the prediction of polarisation.   

2.2.2.2.1 Polarisation 

The electron spin polarisation of a ferromagnet, P, is defined as: 

   

EF 

E  E  E   

Density of states  

Ni   Co  Fe  

EF

EF   

Density of states Density of states 
 

Figure 2.12: Schematic representations of the 3d bands of nickel, cobalt and iron.   
E is the energy and EF the Fermi energy. Adapted from Comstock [Comstock, 1999] 

 

 
Figure 2.13: Calculated density of states of nickel [Hodges, 1966]. 
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,
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n n
↑ ↓

↑ ↓

−
=

+
          (2.35) 

where n↑  is the number of spin-up electrons and n↓  the number of spin-down electrons.  

Electrons close to the Fermi energy are expected to contribute to the tunneling current.  

Figure 2.13 shows the DOS of nickel, it is mismatched in the up and down spin directions 

at the Fermi energy so a polarisation is expected.  The majority carrier at the Fermi 

energy is spin-down, however tunneling electrons are found to be mainly spin-up.  For 

tunneling, in SIF and magnetic tunnel junctions, the spin polarisation and dominant spin 

direction are not explained by the itinerant electron theory of the d band.  Figure 2.14 

illustrates the distribution of magnetisation within an iron unit cell, [Shull, 1966].  The 

diagram shows some localisation and some itinerant behaviour, indicating that simple 

localisation and itinerant models cannot describe the electronic configuration.  

Hybridisation of the s and d bands is used to describe the system more accurately; the 

most commonly quoted model was suggested by Stearns [Stearns, 1977].   

 
Figure 2.14: Magnetisation distribution in a unit cell of 
iron as determined by neutron scattering [Shull, 1966]. 
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2.2.2.3 Domains 

The above treatment of ferromagnetism suggests that such materials should always 

exhibit a net magnetisation, which is not observed.  Weiss suggested that ferromagnets 

consist of a domain structure, where magnetisation is aligned within each domain but the 

magnetisation can be aligned differently in adjacent regions [Weiss, 1907].  Landau and 

Lifschitz showed that domains decrease the magnetic energy of the system 

[Landau, 1935].  The single domain structure of Figure 2.15(a) has high magnetic energy 

(defined in Table 2.2), due to the large spatial extent of the field outside the crystal.  In 

Figure 2.15(b) the magnetic energy is reduced to approximately half the value in (a) by 

dividing the crystal into two domains pointing in opposite directions.  The magnetic 

energy of the system is minimised in the presence of closure domains, shown in Figure 

2.15(c) and (d).  Domain structures can be very complicated, but minimise the magnetic 

energy of the system wherever possible. 

In an applied magnetic field, the magnetic moment of the sample increases by means of 

three processes.  At low field domain walls distort reversibly, increasing the volume of 

favourably aligned domains.  In moderate field the volume of domains favourably aligned 

to the field increases at the expense of those unfavourably oriented by means of 

irreversible processes.  Domain wall motion occurs.  In strong fields, the domain 

magnetisation rotates towards the direction of the field.   

 
Figure 2.15: Simple domain structures.  Adapted from [Kittel, 1996]. 
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Magnetisation does not jump discontinuously between domains, instead domain walls 

exist, over which the magnetisation gradually rotates.  Figure 2.16 shows a 180° Bloch 

wall [Bloch, 1932].  The total angular displacement of magnetisation across a domain 

wall is often 90° or 180° in cubic crystals, as assumed below.   

2.2.2.3.1 Exchange energy 

The interaction between magnetic moments produces an exchange interaction, with 

energy, Eex: 

0 ,ex eE µ= − m H          (2.36) 

where He is the interaction field and m the magnetic moment.  Considering nearest 

neighbours only (i and j), with interaction J, the exchange energy becomes: 

0 ,exE zJµ= − i jm m          (2.37) 

where z is the number of nearest neighbours.  For an angle, φ between magnetisations and 

approximating to small φ : 

 
 

Figure 2.16: Magnetisation rotation in a Bloch wall between magnetic domains.  

[Kittel, 1996] 
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2
2 2

0 0cos 1 .
2exE zJm zJm φµ φ µ

 
= − = − 

 
       (2.38) 

If a total change of π (180° domain wall) occurs in N equal steps, over N+1 atoms and 

there are 1/a2 lines of atoms normal to the plane of the wall, where a is the lattice 

constant: 

2 2
0

2 ,ex
Jm
Na

µ π
σ =          (2.39) 

where σex is the exchange energy per unit area. 

2.2.2.3.2 Anisotropy energy 

The anisotropy energy, or magnetocrystalline energy, directs the magnetisation along 

certain crystallographic orientations, the directions of easy magnetisation.  An anisotropy 

constant, K, is defined to represent the effect for specific crystallographic arrangements.  

The anisotropy energy per unit area, σa, is of the order of the anisotropy constant, K, 

times the thickness of the wall: 

a KNaσ ≈           (2.40) 

2.2.2.3.3   Total energy 

The total domain wall energy per unit area, σw, is the sum of the anisotropy and exchange 

contributions, given by Equations (2.39) and (2.40).  Energy is minimised in the system 

leading to an expression for the number of atoms involved in the domain wall: 

2 2
0

2 20w Jm Ka
N N a
σ π µ∂

= = − +
∂

 

2 2

3

JmN
Ka

π
∴ =          (2.41) 

2.2.2.3.4 Néel walls 

Figure 2.17 shows that in thin films the magnetisation of Bloch walls is normal to the 

plane of the material, causing a high demagnetisation energy.  However, magnetisation 
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rotates in the plane for Néel walls.  The demagnetisation energy in the Néel wall itself is 

high, therefore such domain walls are only formed in thin films, where the 

demagnetisation energy of the Bloch wall becomes larger than that in the Néel wall.     

2.2.3 Magnetic tunnel junctions 

The above introduction to tunneling and magnetism leads to the exciting phenomenon of 

large magnetoresistance (MR) in magnetic tunnel junctions.  MR is defined in 

Equation (2.42), also termed the tunneling magnetoresistance, TMR. 

max min

min

MR R R
R
−

=          (2.42) 

Where Rmax is the maximum resistance and Rmin the minimum resistance recorded during 

a magnetic field sweep.  A basic magnetic tunnel junction consists of two ferromagnets 

separated by an insulator.  Firstly, in the absence of a magnetic field this device behaves 

in the same manner as the NIN junctions described in Section 2.1.2.  In the presence of a 

magnetic field and in the absence of spin-flip events, spin is conserved during tunneling.  

Most of the electrons involved in tunneling originate from close to the Fermi level.  An 

imbalance in the number electrons in majority and minority spin states occurs at the 

Fermi level (Section 2.2.2.2.1).  Consider the situation illustrated by Figure 2.13, where 

the DOS for minority carriers is high and the DOS of majority states low at the Fermi 

level.  When the magnetisation of the ferromagnets is parallel, minority electrons tunnel 

into vacant states of the minority band in the second electrode.  The number of vacant 

states in the second electrode and the number of occupied states in the first electrode is 

 

·

·

·

· ·
(a)      (b) 

 
Figure 2.17: (a) Bloch domain wall (b) Néel wall.  After [Jiles, 1998]. 
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maximised, as is conductance.  However, if the magnetisations are aligned antiparallel, 

electrons must tunnel between minority states (high DOS) in one electrode and majority 

states (low DOS) in the other, conductance is minimised.  Jullière suggested this simple 

description to provide the basis for his model for the MR of tunnel junctions, 

[Jullière, 1975].   

For parallel magnetisation alignment, as shown in Figure 2.18(a), the conductance, G↑↑ , 

can be expressed in terms of the fraction of spin-up electrons, in the materials on either 

side of the barrier aA and aB respectively: 

( )( )1 1 ,A B A BG a a a aα↑↑ =  + − −          (2.43) 

where α is a  constant.  If the magnetic moment of one of the magnetic layers is reversed, 

for example electrode B, the majority and minority bands interchange spins, as shown by 

Figure 2.18(b).  The conductance is given by Equation (2.44). 

 
Figure 2.18: Band structures of two ferromagnets, magnetisations MA and MB 
respectively in a magnetic tunnel junction (a) parallel alignment of 
magnetisation (b) antiparallel magnetisation alignment. [Haili, 2001] 
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( ) ( )1 1A B B AG a a a aα↑↓ =  − + −          (2.44)  

The difference in conductance ∆G between the parallel and antiparallel alignments is: 

( )( )2 1 2 1 ,A B A BG a a P Pα α∆ = − − =        (2.45) 

where PA ( = 2aA − 1) is the polarisation in the first electrode and PB ( = 2aB − 1)is the 

polarisation in the second electrode.  The TMR is then given by: 

1 1

1

2 ,
1

A B

A B

G G P PR
R G P P

− −
↑↓ ↑↑

−
↑↑ ↑↑

−∆
= =

−
        (2.46) 

where ∆R is the difference in resistance between parallel and antiparallel alignment and 

R↑↑  the resistance when the magnetisation in electrodes is parallel. 

Hysteresis curves for magnetic tunnel junctions support Jullière’s theory.  A hysteresis 

curve and resistance plot for magnetic tunnel junctions is shown in Figure 2.19.  The 

main changes in resistance correspond to the steps in the hysteresis curve.  Resistance is 

minimised when the magnetisation of the two ferromagnetic layers is parallel, and is 

maximum for antiparallel alignment.  The steps in the hysteresis loop suggest that the 

ferromagnetic layers are able to switch independently, with minimal coupling.  Hysteresis 

 

(a) (b) 
 

Figure 2.19: (a) Magnetoresistance of a tunnel junction and (b) corresponding hysteresis 
loop [Miyazaki, 1995]. 
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curves from magnetic tunnel junctions have been studied to investigate the mechanism of 

tunneling.  A detailed review of magnetic tunnel junctions is presented in Chapter 6. 

2.3 Summary 

This chapter has introduced the concepts of tunnel junctions and magnetism required as a 

background to understand the experimental work of Chapters 4 and 6.  The treatment of 

NIN devices in Section 2.1.2 is used in Chapter 4 to investigate the relationship between 

the normal and superconducting state characteristics of SIS and SIF devices.  Magnetic 

tunnel junctions are considered in detail in Chapter 6, where an understanding of 

magnetism is essential.  The knowledge of the theory presented in this chapter is assumed 

in Chapters 4 and 6 and where necessary, development of the basic theory is undertaken.  
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Experimental methods 
 

 

 

 

 

 

 

“The thing with high-tech is that you always end up using scissors.” 

- David Hockney (artist)
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The principal experimental methods employed during the course of this work are 

introduced in this Chapter.  However, Chapters 5 and 7 concentrate on the development 

of new experimental methods, to test read heads at high frequency and identify pinhole 

and weak-links in insulators, respectively.  Fabrication techniques for devices are 

considered broadly in the order in which they were employed.  In Section 3.1 substrate 

choice and cleaning methods are discussed.  Deposition procedures and issues are then 

considered, followed by photoresist, lithography, ion milling, silica and contact pad 

deposition.  A large number of devices have been produced over the course of the study.  

Specific depositions and mill times are discussed in the appropriate experimental 

chapters.  Testing methods are then discussed in Section 3.4, starting with the analysis of 

thin films using the vibrating sample magnetometer (VSM) and the atomic force 

microscope (AFM).  Device testing at low temperature is introduced in Section 3.4.2, 

followed by measurements in a magnetic field.  Finally, nomenclature for deposition and 

device identification is discussed.  

3.1 Substrate choice and preparation 

Substrate choice is critical to the production of a good quality thin-film electronic device.  

The substrate should be a good insulator to avoid shorting-out high resistance devices 

during testing.  It should also be extremely flat, have a high thermal conductivity, good 

stability and have good adhesion properties.  Additionally, the choice is influenced by the 

cost and ease of handling during processing.  Silicon wafers, with the surface oxidised to 

form SiO2 are commonly employed as substrates, due to their favourable properties and 

price and were used almost exclusively during this work.  The substrate consisted of 

100 nm SiO2 on 0.5 mm silicon and shall be referred to as oxidised silicon throughout this 

thesis.  However, the earliest depositions of this work took place on r-plane sapphire, as 

previously used within the Device Materials Group. 

Substrate preparation prior to deposition must produce clean, unscratched material of 

appropriate size for device production and testing.  Firstly, photoresist was spun onto the 

wafer, to protect the surface from grease and scratching during dicing.  The wafer was 

stuck onto a glass plate using hot wax and cut to 10×5 mm chips using a dicing saw.  The 
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dicing saw blade was set to high rotation speed and advanced slowly, in order to prevent 

substrate chipping.  The 10×5 mm samples were then removed and submerged in a beaker 

of acetone, which was agitated in an ultrasound bath for 1 hour.  They were then 

airbrushed at close range with acetone and placed into a beaker of chloroform in the 

ultrasound bath for two hours, to remove grease deposits.  The substrates were dried using 

an airgun and placed into an acetone beaker in the ultrasound bath for a further two hours.  

Finally, the silicon oxide chips were airbrushed with acetone and visually checked for 

drying marks or traces of dirt using an optical microscope.  Dirty were cleaned gently 

using a cotton bud soaked in acetone and then airbrushed with acetone.  This procedure 

was found to be highly effective in the production of very clean, regular substrates. 

3.2 Deposition of thin films 

DC magnetron sputter deposition, in an ultrahigh vacuum system was used throughout 

this work.  Films were deposited as a whole wafer, without the use of lithography or 

shadow masks.  Sputtering is a versatile and common technique for producing metallic 

thin films, due to its speed, range of possible deposition materials and homogeneity of 

deposits.  The sputtering system and associated issues for the production of high quality 

tunnel junction films are discussed in this section. 

3.2.1 Deposition system 

The MkVII sputtering system used to deposit films is shown in Figure 3.1 and Figure 3.2.  

The schematic diagram shows the inner chamber, separated by a valve from the outer 

chamber, with liquid nitrogen jacket between the two.  Sputtering takes place in the inner 

chamber and the chambers are cooled with liquid nitrogen.  The purpose of this 

arrangement is to cool the chambers with liquid nitrogen during the final stage of 

evacuation.  This cooling encourages absorption of molecules into the walls, thereby 

lowering the pressure.  A rotary pump, followed by a turbomolecular pump, are used to 

evacuate the system.  A needle valve connects the outer chamber to the gas reservoir, 

providing control of gas pressure in the system.  Flowing argon gas was used during 

deposition, its pressure a combination of the needle valve and the gate valve settings. 
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The flange consisted of four targets at 90° intervals separated by shielding, as shown in 

Figure 3.3.  The targets used were high quality aluminium, cobalt, iron and niobium.  The 

magnetron shields were made from the same material as the target.  Prior to deposition 

the targets were cleaned with a copper wire brush.  The aluminium target was then placed 

in an ultrasonic bath for 30 minutes, in a beaker containing approximately 0.1 M aqueous 

solution of NaOH.  It was then rinsed with distilled water and dried with an air gun. 

Reservoir

To Gas Bottles

Reservoir Valve

Gate
ValveBacking Valve

Gas Line Roughing Valve

Roughing
Valve

Inner Chamber

Outer Chamber

Liquid N  Jacket2

Chamber Connect Valve

Turbo
Molecular
Pump

Needle
Valve

To Rotary
Pump

Sputtering Flange

 
Figure 3.1: Schematic diagram of the MkVII sputtering system (courtesy of Dr G.Burnell). 

 

 
Figure 3.2: Picture of the MkVII sputtering system. 
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Below the target, the substrates were placed in 20 mm wide grooves every 60° on an 

aluminium stage, radius 190 mm.  This arrangement, in conjunction with the shielding, 

prevented simultaneous deposition by a target on two substrate positions.  Depositions 

generally took place with a rotating stage.  The thickness deposited was dictated by the 

sputtering power, rate of rotation and number of turns and was controlled by a stepper 

motor and computer.  A stationary stage was used in the case of cobalt, the substrates lay 

directly below the target and thickness was controlled by the time and power.  This highly 

flexible arrangement allowed the variation of thickness and multilayer structure during 

one run.  Allowing for sufficient presputtering positions between substrates, up to three 

different junction types could be deposited in one run. 

3.2.2 Evacuation of the system 

The flange was bolted down onto the inner chamber, sealed with a copper gasket.  The 

chambers were evacuated overnight with the turbomolecular pump.  The chambers and 

gas reservoir were heated for 6 hours, to encourage out-gassing from the walls of the 

system and flange.  In the morning the bolts holding the flange were tightened and the 

pressure checked with a mass spectrometer.  The pressure was generally found to be 

 

Targets 

Rotating 
stage 

Shielding

 
Figure 3.3: The 4-target flange.
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approximately 5×10-8 mBar.  The magnetron cooling water was then connected and the 

liquid nitrogen jacket filled.  The system was pumped for a further 1.5-2 hours; the 

ultrahigh vacuum base pressure achieved was generally ≈2×10-9 mBar. 

3.2.3 Gas pressure 

Argon gas pressure is an important sputtering parameter.  The pressure must be high 

enough to maintain a glow discharge, but it also affects the stress and structure of the 

film.  The Thornton zone model of film deposition provides useful insight into the effect 

of temperature and pressure on film structure, it is represented by Figure 3.4 

[Thornton, 1974].  T is the substrate temperature and Tm the melting point of the 

deposited metal.  Zone 1 consists of fibrous grains.  Self-shadowing occurs due to the 

growth of cone shaped grains, voids exist between grains.  Due to the low temperature, 

surface diffusion is insufficient to overcome shadowing.  Zone 1 films have rough 

surfaces.  Zone T, the transition zone, occurs at low pressure and higher temperature than 

Zone 1.  Self-shadowing is significant due to the growth of cone shaped structures, but 

adatom mobility is sufficiently high to fill voids.  Zone T structures have smooth surfaces.  

Zone 2 and 3 structures both consist of columnar grains which grow epitaxially.  

 
Figure 3.4: Thornton zone model of thin film deposition.  T is the substrate temperature 
and Tm the melting point of the deposited metal. [Thornton, 1974]. 
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Increased temperature encourages higher adatom mobility, bulk diffusion becomes 

significant in Zone 3.   

Zone 2 and 3 structures are not expected in films deposited as described above, as no 

heating took place.  Low gas pressure was used, to encourage Zone T film growth.  

However, it is possible to damage the barrier by the deposition of subsequent layers at 

low pressure, where incident atoms have high kinetic energy.  The deposited material 

may impact the barrier with sufficient force to become embedded in the insulator.  

Damage was minimised by the deposition of a thin aluminium layer above the barrier.  

Aluminium is a light atom and therefore has low kinetic energy.  High initial deposition 

pressure was generally also used for the top electrode, which was decreased after a short 

time.   

3.2.4 Deposition rate calibration 

A thickness monitor, initially used for deposition rate calibration was built by wrapping a 

band of aluminium foil around a substrate prior to deposition.  The foil shadowed part of 

the substrate, enabling measurement of the film thickness with a profilometer.  A 

thickness monitor was placed at each substrate position during multilayer deposition, for 

measurement in the event of stepper motor failure.  Later, calibration took place by 

defining a series of parallel lines of resist on the substrate prior to deposition, using the 

techniques described in Section 3.3.2.  Following lift-off, thickness was measured using 

the atomic force microscope (Section 3.4.2.1).   

3.3 Processing 

Standard cleanroom processing techniques were used to fabricate devices.  An overview 

of the general route for fabrication of tunnel junctions is shown in Figure 3.5.  This 

diagram shows that mesa junction devices are produced.  The successful production of 

good quality devices depends on well-calibrated, reliable processes and equipment.  

Therefore, optimising the exact details of fabrication, modifying and developing 

equipment was a large part of this work.      
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Figure 3.5: Schematic diagram of the process route. 
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3.3.1 Photoresist 

AZ1529 photoresist was used throughout device production.  It was spun on to films at 

5000 rpm for 30 seconds.  The films had been previously cleaned by airbrushing with 

acetone. Great care was taken to ensure good resist coverage and minimal defects, 

obtained by using clean films, resist spinner and chuck.  Excess photoresist was wiped off 

the underside of the chip against a class 100 cleanroom wipe.  The sample was then baked 

for 1 minute at 100°C in an oven placed on a hotplate.   

3.3.2 Optical lithography 

Optical lithography was undertaken on a Karl Süss contact printer, using chrome masks 

on glass substrate, made by CompugraphicsTM to the design of CAM30.  This mask 

design is for simple mesa tunnel junctions, with common bottom electrode.  Mesa 

junctions of dimensions 6×6 µm (2), 8×8 µm (4), 20×30 µm (2) and 50×100 µm (2) were 

produced, where the figures in brackets denote the number of junctions that size per chip.  

Pictures of part-fabricated devices, illustrating the mask design, are presented in 

Section 4.2.2.  

3.3.2.1 Edge bead removal 

As a consequence of spinning photoresist onto the chip, surface tension at the edges 

produces a thick bead of photoresist.  This bead prevents flat contact to the mask, thereby 

reducing the resolution.  The edge bead was removed by exposing a 4×9 mm mask, in 

close proximity to the substrate, for 40-50 seconds.  Contact printing was not used as it 

often left traces of photoresist on the mask.  The edge bead mask was usually aligned and 

exposed twice, removing as much excess photoresist as possible, according to the size of 

the final feature.  Resolution is improved by removing all unnecessary photoresist.  This 

is particularly useful for small features at the centre of the substrate e.g. mesa junctions.   

The chip was developed by immersion and agitation in a solution of 80% AZ Developer, 

for approximately 30 seconds.  Development time is critically dependent on the 

temperature, humidity and exposure.  Cleanroom temperature and humidity was not 

controlled well, so immersion took place until the exposed resist was observed to 

disappear.  The sample was then rinsed in a bath of distilled water, washed in running 
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distilled water to remove all traces of developer, and dried with an air gun.  When a 

corner of edge bead remained after exposure, tweezers were used to remove it.  Prolonged 

immersion in developer was avoided, to avoid excess thinning, swelling and distortion of 

patterns.  To minimise the effect of swelling and to prevent wet photoresist sticking to the 

mask, the chips were baked at 100°C for 1 minute prior to further lithography.    

3.3.2.2 Feature definition 

Contact printing was used to define features on the chips, as it gives good resolution and 

minimises the effect of vibration.  The contact printing system is represented 

schematically in Figure 3.6.  In contact printing, the height above the mask, s, is zero.  

The resolution of a grating is limited by diffraction:  

minimum2 3 ,
2
zb sλ  = + 

 
        (3.1)   

 
Figure 3.6: Schematic diagram of contact printing and the intensity of 
light diffracted by a mask. [Thompson, 1994] 
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where b is the period of the grating, λ is the wavelength of the light (≈400 nm) and z the 

photoresist thickness (≈1 µm) [Thompson, 1994].  Substituting the values into 

Equation (3.1): bminimum ≈ 0.7 µm.  In practice the resolution is often limited by the 

uniformity of the resist coverage i.e. if the resist is not flat and good contact cannot be 

achieved, poor resolution will result.  The thickness of AZ1529 resulting from spinning at 

5000 rpm for 30 seconds was found to provide acceptable resolution for the features 

required.  Minimum object size on the CAM30 mask is 4×4 µm, for silica insulation of 

the mesa junctions.  Alignment was undertaken with great care and patience.  The mask is 

designed for an alignment accuracy of better than ±1 µm for the finest features.  The 

definition of resist for silica deposition around the mesa junctions required the most 

accurate alignment, of 4 µm squares inside 6 µm squares.  This requirement was relaxed 

by slight over development of the pattern, thus decreasing the resist feature size, with no 

adverse effect on device performance. 

3.3.2.2.1 Positive resist profile 

A positive resist profile is illustrated in Figure 3.7(a) and was used for lithography that 

did not require lift-off (mesa junction and base electrode definition).  The resist was 

generally exposed for 7 seconds in the Karl Süss contact printer, followed by immersion 

in 80% developer solution.  It was then rinsed in a distilled water bath and washed with 

running distilled water before being dried with an air gun.  Development time was judged 

by observing the resist removal and was approximately 20-25 seconds.   

3.3.2.2.2 Negative resist profile for lift-off 

Lift-off is the process of depositing a film over patterned photoresist, then removing the 

photoresist to leave the desired device structure on the substrate.  A negative resist 

profile, as shown in Figure 3.7(b), was used for steps requiring lift-off (silica and contact 

pad deposition).  The negative gradient of resist edges shadows the corners of the 

substrate from deposition.  It prevents tearing when the resist is removed and promotes 

acetone penetration.   

The mask was exposed for 12 seconds in the Karl Süss contact printer.  The chip was then 

soaked in chlorobenzene for 2.5 minutes, dried with an airgun and baked at 100°C for 

1 minute.  This process hardened the surface of the photoresist, increasing its 
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development time compared to that beneath the surface. This produced the desired 

profile, following the development process as described above in as above 

Section 3.3.2.2.2. 

3.3.3 Ion milling 

The ion milling system (Figure 3.6) with an 80% argon and 20% oxygen gas mixture was 

used to define film features.  Ion milling was used as the ferromagnets cobalt and iron do 

not plasma-etch at a reasonable rate in CF4.  Additionally, ion milling is a physical 

technique for etching materials and the roughly collimated beam of ions strike the surface 

vertically, producing no undercut beneath the resist.  Undercut could reduce the size of 

the tunnel junctions to an unknown area, and may prevent satisfactory insulation around 

the junction during silica deposition.  The disadvantages of ion milling are the lack of 

selectivity to materials (hence the rate must be well calibrated) and the redeposition of 

milled material on the sides of the junction which produces conducting shorts (Figure 

3.9).  To reduce the effect of redeposition, low ion milling pressure was used and the 

stage was angled at 15º to the normal incidence of ions.  The stage was rotated throughout 

the ion mill.  This angular ion mill was intended to clean the sides of the junction and 

(a.)

(b.)

Resist

Resist

Deposited material

   

Nb target 

 
Figure 3.7: (a.) Positive resist profile.        Figure 3.8: Ion milling and contact 
(b.) Negative resist profile.    pad deposition system. 
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proved to be highly effective in producing good quality tunnel junctions.  However, the 

rotating stage was regularly unavailable.  Ion milling with the stage at this position 

produced badly shorted junctions.  This was improved by ion milling at normal incidence, 

followed by gentle chip cleaning with a cotton bud soaked in acetone.  This treatment 

may have damaged some of the devices. 

A new system (Figure 3.10) was available in the last few months of study.  This system 

has a partial load-lock and turbomolecular pump.  The pumping time has been reduced to 

5 minutes, compared to a previous minimum of 1 hour.  However, the mill rate varied by 

up to 50% between ion mills.  This system was used to define the base electrode only, but 

not for junction definition.  Rotation was powered by hand and the stage was fixed at 

normal incidence to the ions. 

3.3.4 Silica deposition 

The system used to deposit silica is shown in Figure 3.11 and was rebuilt by the author 

before it could be used for device fabrication.  The system is far larger than required and 

the flange is sealed with a rubber gasket, despite which the pumping time to reach 

deposition pressure of approximately 5×10-5 mBar is 30 minutes.  The chips were 

attached to a copper block using silver dag and inserted into the chamber.  An AC power 

Metal atoms dislodged 
by incident ions

INCIDENT   IONS Redeposited metal

} tunnel junction trilayer

} Resist

  
Figure 3.9: Redeposition of milled material.                 Figure 3.10: The new milling system    

with load-lock. 



Chapter 3 - Experimental methods 

53 

supply and tuner box were used to sputter the silica substrate in argon at 2.7 Pa for one 

minute, then at 3.2 Pa for the remainder of the deposition.  Transmitted power, the 

difference between incident and reflected power, of 50 W was used throughout.  The 

30 minute deposition produced a silica film thickness of 360 ± 20 nm of silica (measured 

using the AFM).   

Following deposition and unloading of the system, the chips were removed from the 

copper block by soaking in acetone.  The deposited silica was found to be extremely 

robust and was removed by a 5 minute ultrasound bath in acetone, followed by 

airbrushing with acetone.    

3.3.5 Contact pad deposition 

Contact pads for the tunnel junction devices were made from niobium.  This provided a 

superconducting wiring layer at 4.2 K, which minimised the effects of wiring layer and 

contact resistance.  Niobium was deposited in the ion mill (Figure 3.6), using the 

indicated sputtering target.  The advantage of depositing contact pads in a system which 

is fitted with an ion gun is the ability to pre-mill the substrate before deposition.  During 

 
Figure 3.11: The silica deposition system. 
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processing a resistive top layer can form on the metals.  This is attributed to an organic 

layer resulting from the photoresist and oxidation of the top layer.  A large contact 

resistance may result, which is discussed in Chapter 4.  However, a short mill prior to 

contact pad deposition, removes such unwanted layers. 

The sample(s) were stuck to the stationary side of the stage with vacuum grease.  This 

position is much closer to the targets than for normal ion milling and therefore increases 

the rate.  The system was loaded, then evacuated overnight.  In the morning, the liquid 

nitrogen trap of the diffusion pump was filled and the system pumped down for a further 

hour in order to produce good quality niobium.  A base pressure of ≈5×10-7 mBar was 

obtained and the Tc of thick niobium films was approximately 9 K.  The chips were 

generally pre-milled at standard conditions in 80% Ar, 20% O2 at normal incidence to the 

ion gun.  Pure argon ion milling was unreliable.  Ion mill times varied according to the 

milling rate and devices produced, but were in the range 15–45 seconds.  Following 

evacuation for 20 minutes, niobium was sputter deposited at ≈3x10-3 mBar.  Niobium was 

deposited for 20 minutes, producing 820 ± 27 nm films.  This thickness is ample to cover 

the 360 nm steps in the silica. 

Lift-off took place in an acetone bath.  The chips were soaked for up to one hour and the 

acetone agitated gently using a pipette.  They were then dried with an air gun.  Tweezers 

were used, under a binocular microscope, to remove niobium when it failed to lift-off 

from around the edges of the pattern.        

3.4 Testing 

A wide range of testing techniques have been used to obtain data for thin films and 

devices.  This section outlines these methods and their practical limitations with relevance 

to this work.    
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3.4.1 Film characterisation 

3.4.1.1 VSM 

The magnetic properties of as-deposited films were investigated using a Kingston 

vibrating sample magnetometer (VSM).  Figure 3.12 shows a simplified VSM.  A VSM 

comprises of a field coil, to expose the sample to a variable magnetic field, and a sample 

holder, which is rapidly vibrated within the coil.  The change in induction is recorded as 

the sample vibrates, giving a direct measurement of its magnetisation. The Kingston VSM 

has a sensitivity of 10-6 emu and is ideal for the investigation of thin films. However, due 

to the small thickness of magnetic material in a typical tunnel junction film, a reasonable 

signal is not be obtained for small features.  Therefore the VSM may not be used to 

investigate fabricated devices. 

The VSM was calibrated using a nickel sample of known magnetisation before use.  The 

nickel sample is very small (500 µm square) and image charges on larger films are 

therefore not adequately calibrated.  Film sample size tested in the VSM was usually 

 
Figure 3.12: Schematic diagramof a vibrating 
sample magnetometer [Jiles, 1998]. 
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5×10 mm, image charges do influence such data.  Additionally, samples placed with the 

long axis of the film transverse to the field direction are not entirely within the strongest 

field and magnetisation may not be fully measured.  This problem was minimised by 

placing samples with their long axes in line with the magnetic field direction.  Samples 

were not cut or patterned to a smaller size, in order to allow their processing into devices.   

3.4.1.2 AFM 

The topography of samples was investigated using a Digital Instruments Nanoscope III 

atomic force microscope (AFM) in tapping mode.  The AFM is useful for investigating 

the roughness of films and assessing their quality.  In tapping mode, the AFM probe is 

vibrated at constant frequency while the silicon cantilever scans across the surface.  

Atomic forces close to the sample cause the cantilever to deflect.  This deflection is 

measured using a laser.  The data may be reconstructed into a three dimensional image of 

a sample surface. 

 A film from each substrate position from every deposition was measured with the AFM 

to assess its surface quality.  A particularly rough sample may indicate problems with 

substrate preparation or deposition.  A large number of post-measurement analysis tools 

are available for the AFM, which were used with caution.  For example, a data set must 

be flattened to return the surface from raw data.  Flattening with different plane-fit or 

polynomial-fit order generally produces a slightly different image.   

Roughness measurements are quoted in Chapters 6 and 7.  Calculation of the roughness 

with the AFM was undertaken using the root mean square (RMS) function, providing the 

standard deviation of height measurements about the mean.  This function does not 

correct for plane-fit or tilt, therefore measurements are affected by the flattening method 

employed.  First order plane fit flattening was used throughout.  Furthermore, roughness 

measurement depends on the area from which it is calculated and scale on which that data 

was collected.  This results from the fact that the number of pixels, each of which 

represents a measurement point, is constant.  A large sample area for roughness 

measurement does not record fine-scale variation.  Roughness measurements were 

therefore a function of the area over which they were measured.  A 1 µm square image 

was used throughout for roughness measurements, to provide consistency.  This small 



Chapter 3 - Experimental methods 

57 

sample area also records short period variation in the height, which is expected to be 

significant for shadowing during deposition.      

3.4.2 Device characterisation 

3.4.2.1 AFM 

The power of the AFM as an analysis tool was highlighted by its use to investigate the 

success of individual patterning steps.  The AFM may be used in tapping mode without 

damaging devices, even when used to investigate the height of tunnel junctions.  The 

processing of devices was therefore checked quickly, speeding up the development of 

techniques and calibration of ion mill and deposition rates.  The particular advantage of 

measuring devices regularly was that equipment faults were rapidly diagnosed.   

Two serious limitations exist for the use of the AFM to measure step heights of features.  

Firstly, the Nanoscope III software allows flattening by either plane fitting to a user 

defined area, or an algorithm based on the polynomial fitting of curves, usually line-by-

line.  Neither technique has been found to cope reliably with images incorporating large 

height steps.  A good fit of one side of the step, producing a flat film, but severe curvature 

on the other side is often observed, this an artefact of flattening.  In such situations the use 

of the in-built depth analysis tools, which compiles a histogram of the height of the 

sample, gives an incorrect step height.  Instead, section analysis, a vertical cut through the 

image, was used to measure heights along the step and the results averaged.  Even in this 

case the height is not easily defined, due to noise, roughness and curvature.  These are 

reflected in error estimates.  Secondly, AZ1529 photoresist was sometimes found to react 

with the surface of metals, forming thick deposits.  Such layers could often be identified 

optically, as a darker pigment on the metal, which was found to occur more regularly for 

old photoresist.  This problem was minimised by using the newest photoresist available 

and checking any large changes in ion mill rate.   

3.4.2.2 Testing at 4.2 K 

Prior to measurement, each chip was glued to a carrier using nail varnish.  The chip 

carriers consisted of a printed circuit with copper back plate and either socket or plug to 

attach to the probe.  The device contact pads were ultrasonically wire-bonded to the 
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circuit board contacts using 30 µm diameter aluminium wire.  Measurements were made 

using the standard four-point technique.  Samples were tested in the temperature range 

4.2 - 300 K by dipping into liquid helium, using one of two probes and associated 

electronics. 

3.4.2.2.1 Probes 

The two dip probes used between 4.2 K and 300 K were very similar in design, both 

fitting into a 50 mm diameter dewar neck.  Each probe has nineteen active signal lines 

and a thermometer.  They are of low thermal mass and each have a heater attached below 

the sample holder, thereby providing temperature control.  Coils may be attached to 

supply a moderate magnetic field, up to 300 Oe.  The main practical difference between 

the two probes is that the older, made by Dr Wilfred Booij, is designed to accept a sample 

holder with ‘D’ plug connection, whilst the newer probe, made by Dr Philip McBrien, 

accepts 0.9” dual-in-line sockets.   

3.4.2.2.2 Measurement electronics and control 

The two probes described in Section 3.4.2.2 were used in conjunction with two different 

electronics systems, both designed by Dr Wilfred Booij.  The older electronics system 

consists of a dual current supply and voltage amplifier.  A National Instruments 12 bit 

LabPC 1200 analogue-to-digital converter was used and the signal processed with a 

LabVIEWTM programme, written by Dr Gavin Burnell.   

The same LabVIEWTM programme as for the older electronics was also used to control 

measurement on the second probe.  A low noise current source was driven by a National 

Instruments 16 bit analogue-to-digital I/O card, which also transferred measurements of 

current and amplified voltage to the computer.  A diagram illustrating this measurement 

probe and electronics is shown in Figure 3.13.  

3.4.2.3 Testing at 0.3 - 4.2 K 

An Oxford Instruments HelioxTM He3 system was used to measure devices in the 

temperature range 0.3 - 4.2 K (Figure 3.14(a)).  This probe fits into a 50 mm diameter 

liquid helium dewar neck.  The older electronics and computer acquisition described in 

Section 3.4.2.2.2 were connected to perform measurements.  The sample was mounted 
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onto a 0.9” dual-in-line holder, although only 13 lines were available.  The tailpiece was 

fitted and the sample space evacuated overnight using a small diffusion pump.  In the 

morning, the tailpiece was cooled in liquid nitrogen for approximately one hour, before 

transferral to the liquid helium dewar, where it was cooled to 4.2 K.  The temperature was 

further reduced to 1.5 K by filling the 1 K pot with He4, then pumping the pot with a 

rotary pump.  At the same time, the He3 sorption charcoal was heated, so that it did not 

pump the He3.  This caused the He3 it to condense and run into the pot directly above the 

sample mount.  Base temperature of 0.3 K was then obtained by switching the sorption 

charcoal heater off, allowing it to pump the He3.  Temperatures in the range 0.3 - 1.5 K 

were obtained by heating the sorption charcoal to reduce its pumping efficiency.  

3.4.2.3.1 20000 Oe magnet extension 

A 20000 Oe Oxford Instruments magnet insert (Figure 3.14(b)) was driven by a computer 

controlled 50 A HP power supply.  This was used to investigate the effect of magnetic 

field on superconductor-insulator-ferromagnet junctions.  The additional length of the 
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Figure 3.13: Block diagram of the ‘new’ 4.2 K testing apparatus (courtesy of Dr P. McBrien). 
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magnet necessitated extension pieces to hold the sample in the plane of the magnetic field 

(Figure 3.14).  A 65 litre helium dewar was used to immerse the high-current magnet 

wiring.   

3.4.2.4 Lock-in measurements  

The parabolic nature of tunnelling conductance with applied voltage (Section 2.1.2) is 

difficult to observe for our low resistance junctions.  It was therefore investigated using 

the newer electronics and a lock-in amplifier, which reduced noise by acting as a narrow 

band filter.  An EG&G 5302 lock-in was used at signal amplitude of 5 mV and frequency 

of 1 kHz.  Differential resistance was calculated using the LabVIEWTM programme.   
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Figure 3.14:  (a) Schematic diagram of the Oxford Instruments Heliox cryogenic probe.  
Picture courtesy of Dr G.Burnell.   

(b)  Heliox probe showing extensions (left) and  Heliox 20000 Oe magnet tailpiece (right).  
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3.4.2.5 Magnetic device testing 

Magnetic properties of devices were investigated using four-point measurements in a 

magnetic field, provided by a Helmholtz pair (Figure 3.15).  Chips were mounted and 

wire bonded as in Section 3.4.2.2, to the standard 0.9” direct-in-line socket sample 

holders.  The probe is designed to allow 360º of rotation in the plane of the field.  A 

Kepco power supply was used to achieve fields up to 3500 Oe.  A LabVIEWTM 

programme, developed by Dr Gavin Burnell and Mr Neil Todd, was used to drive a 

current source and measure output from the voltage amplifier via a National Instruments 

16 bit I/O card.  The computer also controlled the Kepco power supply, reading the 

magnetic field with a hall probe which was mounted on the pole piece of one coil.  A 

flask of liquid nitrogen could be introduced to cool the probe.  A Lakeshore temperature 

controller was used in conjunction with a small heater and thermometer.  These were 

mounted directly above the sample in the probe and measured temperatures in the range 

77 – 300 K.  
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Figure 3.15: Schematic diagram of the magnetic testing apparatus. 
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3.5 Nomenclature 

Each deposition was assigned a unique identification number, using the sputtering 

database, in which conditions were also recorded.  Six different angular positions were 

available on the rotating stage.  Angular positions in which substrates were actually 

placed were numbered consecutively from one to six, unless deposition conditions were 

identical for all angles.  For example, all substrates in the third position for deposition run 

10445 are denoted 10445_3.  

Chips were assigned an additional number, according to the order in which they were 

fabricated.  The second fully fabricated chip from deposition 10445_3 is therefore 

denoted 10445_3_2.  Tunnel junction fabrication produced ten devices along a common 

bar, labelled a to j.  Sizes of the devices were 50×100 µm (a and j), 20×30 µm (b and i), 

8×8 µm (c, e, f and h) and 6×6 µm (d and g).  Continuing the above example, junction d 

is therefore assigned the unique code 10445_3_2d.     

3.6 Summary 

Experimental methods for the production and testing of magnetic tunnel junctions have 

been discussed in this chapter.  Tunnel junctions require high quality fabrication, with 

well-calibrated processes.  The identification of fabrication problems for superconductor-

insulator-superconductor and superconductor-insulator-ferromagnet tunnel junctions is 

discussed in Chapter 4.  Criteria to identify tunneling as the principal mechanism for 

conductance in normal metal-insulator-normal metal junctions are discussed.   

The effect of deposition conditions on magnetic tunnel junction performance is discussed 

in Chapter 6.  The insulating barrier is a key issue for high quality, low resistance 

magnetic tunnel junction fabrication.  A new experimental technique to identify pinholes 

and weak-links in insulating films is developed in Chapter 7.  
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The quality of magnetic tunnel junction device fabrication is not easily assessed.  

Measurements of resistance as a function of magnetic field demonstrate a good or bad 

magnetoresistance (MR), but give no indication of the source of problems in a non-

optimal result.  It is important to be able to identify reliable criteria for the assessment of 

device quality which are independent of MR.  Many workers have found the fabrication 

of high MR magnetic tunnel junctions extremely difficult and have not been able to 

separate issues concerning the magnetic properties of the devices from simple processing 

problems.  However, superconductor-insulator-superconductor (SIS) and superconductor-

insulator-ferromagnet (SIF) tunnel junctions are well understood and their failure modes 

easily identified.  Presented below is a practical approach to the optimisation of magnetic 

tunnel junction fabrication techniques using SIS and SIF junctions.   

The fabrication of SIS junctions was optimised first, followed by SIF junctions.  The 

effect of the material beneath and above the insulating barrier was observed by initially 

producing top electrode ferromagnet devices, and then bottom electrode ferromagnet 

devices.  The fabrication of magnetic tunnel junctions was then possible with confidence 

in basic processes.  Above TC SIS and SIF devices behave as normal metal-insulator- 

normal metal (NIN) tunnel junctions.  Techniques for assessing the quality of NIN tunnel 

junctions were investigated by comparing the figure-of-merit (Section 4.1.1) of SIS and 

SIF devices to their normal state characteristics.   

4.1 Previous work 

4.1.1 SIS junctions 

Figure 4.1 illustrates the effect on the current-voltage characteristics of the two main 

failure modes associated with SIS junction fabrication.  The schematics in Figure 4.1 

represent idealised behaviour and real junctions are slightly less clear, but it is generally 

simple to identify the causes of poor junction behaviour.  Contact resistance between the 

junction and wiring layer, discussed in Section 3.3.5, produces an increase in the 

observed energy gap and a non-vertical rise in the current as bias voltage approaches 2∆.  

As discussed in Section 2.14, SIS junctions may be simply represented as perfect tunnel 
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junctions having a BCS density of states in the electrodes.  A real junction may be 

modelled as a circuit consisting of a perfect junction, parallel leakage resistance, RL, and 

series contact resistance, RC, as shown in Figure 4.2.  The sub-gap current in a real 

junction at 4.2 K is often dominated by leakage and not thermal excitation.  The ratio of 

the sub-gap resistance, RS, to normal state resistance, RN, is a convenient measure of 

junction quality, termed the figure-of-merit (FOM). 

Figure-of-merit FOM S

N

R
R

= =         (4.1) 

An alternative measure of junction quality is the ratio of the current at the top of the gap 

edge (eV >2∆) to the current just below the gap edge (eV<2∆), the latter value is typically 

measured at a bias voltage of ~2 mV for niobium, where 2∆ = 2.3 meV.  

Values of FOM commonly quoted in the literature for niobium electrode SIS junctions 

with aluminium oxide barrier at 4.2 K up to 40 [Blamire, 1988].  The figure-of-merit has 
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Figure 4.1: Schematics of SIS junction behaviour.  (a) Perfect junction.         
(b) Resistance in series with junction.  (c) Resistance in parallel with junction. 
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been developed as a measure of the leakage of SIS and SIF tunnel junctions by many 

authors.  However, the correlation of such values with measurable quantities in the 

normal state have not been widely investigated.  Superconducting tunnel junctions were 

fabricated regularly throughout the course of the study to test the fabrication route, 

particularly following equipment failure. 

4.1.1.1 Fabrication of high quality SIS junctions 

The production of high quality Nb/Al2O3/Nb SIS junctions is reviewed, with particular 

reference to previous work performed within the Device Materials Group in Cambridge.  

Pertinent issues are surveyed concerning the effect of available equipment and techniques 

on junction quality.  The effectiveness of the barrier as a defect-free insulator has often 

been highlighted as the primary limit to tunnel junction quality.  The Al2O3 barrier can be 

damaged by the incidence of high kinetic energy atoms or ions during the deposition of 

subsequent layers, as discussed in Section 3.2 [Goodchild, 1996; Gurvitch, 1983].  

Goodchild et al. demonstrated the effect of decreasing the pressure of argon during 

niobium deposition above the barrier using the MkVII sputtering system discussed in 

Section 3.2.  Figure 4.3 shows that the deposition of a 4-6 nm buffer layer of niobium at 

6 Pa following barrier oxidation, significantly decreases sub-gap current compared with 

deposition at the ‘normal’ pressure of 1.3 Pa, increasing the FOM and the resistance-area 

product (RA).  They go on to calculate the decrease in barrier thickness due to deposition 

induced damage using the oxygen pressure time product, on the basis of Equation (4.2) 

[Lehnert, 1992]. 

  

Perfect tunnel 
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Figure 4.2: Circuit model of a real tunnel junction. 
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is the ratio of the resistances, φ the barrier height, Eg is the energy gap of the 

insulating barrier and δs the difference in barrier thickness.  They estimated δs = 0.5 Å, by 

assuming φ = 2 eV and Eg = 4 eV.  Considering calculations in Section 4.3.1.3, below, 

estimating the barrier height and thickness using Simmons theory, this value should be 

considered an aid to thought, not an accurate prediction of thickness changes.  Gurvitch et 

al. suggested an alternative solution to reducing barrier damage, by the inclusion of a thin 

aluminium buffer layer above the barrier [Gurvitch, 1983].  The proximity effect in the 

Nb-Al bilayer may result in a suppression of measured ∆ [Golubov, 1988].  Gurvitch et 

al. did not note any decrease of ∆ for aluminium thickness up to 3 nm.   

4.1.1.1.1 Anodisation 

The tunnel junction area can be defined by the selective niobium anodisation process 

(SNAP) [Kroger, 1981].  Devices may either be defined entirely by anodisation or by 

either etching or ion milling to form mesas, followed by anodisation around the edges. 

Kroger used a solution of ammonium pentaborate (156 g), ethylene glycol (1120 ml) and 

 
Figure 4.3: The effect of the thickness of niobium buffer layer deposited above 
the barrier on RA and FOM. [Goodchild, 1996]   
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distilled water (760 ml) to anodise at constant current of about 1 µA, recording the 

voltage.  The huge advantage of anodisation to insulate tunnel junctions is that it 

eliminates a major source of shorting in mesa junctions, the metal redeposited on the 

junction sides during ion milling, as discussed in Section 3.3.3.  Definition of the 

junctions by the selective niobium electing process (SNEP) does not lead to redeposition 

and has produced high quality SIS tunnel junctions.  However, etching of ferromagnets is 

very slow and this technique cannot be applied to magnetic tunnel junctions.  Some 

authors have adopted the voltage characteristics of anodisation as an indicator of trilayer 

quality [Blamire, 1993].  Figure 4.4 shows an example of such measurements, the rise in 

dV/dt at the Nb2/aluminium oxide interface followed by a maximum (1) was attributed to 

a homogeneous aluminium oxide barrier and a well-defined transition to the counter 

electrode free of niobium oxide and impurities [Lehnert, 1991].  A sharp decrease at the 

Al/Nb1 interface followed by a pronounced minimum, M, was interpreted as uniform 

coverage of the base niobium electrode with aluminium and low interdiffusion at the 

interface.  However, anodisation is not well suited to magnetic tunnel junction 

fabrication, due to possibility of spalling of the ferromagnetic oxides.  Anodisation was 

investigated, but not used in the production of devices for this work. 

4.1.1.1.2 Effect of deposition temperature 

Blamire et al. used a heated stage during the deposition of Nb/Al2O3/Al/Nb devices to 

investigate the effect on junction quality of substrate temperature during the bottom 

 
Figure 4.4: Anodization spectroscopy of SIS trilayer [Lehnert, 1991]. 
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niobium layer deposition [Blamire, 1988].  Figure 4.5 shows a summary of some of the 

results presented; the approximate temperature of each slide number is listed in Table 4.1.  

Temperatures were estimated using an optical pyrometer and are approximate.  Their 

results may be summarised by three findings.  Firstly, devices fabricated with a cool base 

layer of niobium have a poor quality, highlighted by the low FOM and low RA.  When 

the base layer is deposited on moderately heated substrates, device characteristics reach a 

maximum.  Finally, at the hottest temperatures there is a possible decrease in device 

quality, though this is not clear.  The authors suggest that the aluminium forms a layer of 

variable thickness and poor device performance may be due to a decrease in the minimum 

aluminium thickness within the film.  Whilst Blamire’s study highlights an important 

consideration for the growth of tunnel junction multilayers, the optimum substrate 

temperature for base layer deposition must be investigated for each material used. 

   

 
Figure 4.5: Effect of substrate temperature on SIS 
tunnel junction characteristics [Blamire, 1988]. 
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 Temperature of each slide (°C) 

Slide 

number 

1-5 6 7 8 9 10 11 12 13 14 15 16 17-20

 200/ 

500 

600/ 

550 

620/ 

570 

640/ 

590 

660/ 

610 

680/ 

630 

700/ 

650 

720/ 

670 

740/ 

690 

760/ 

710 

780/ 

730 

800/ 

750 

800 

Table 4.1: Temperature of the substrate during bottom niobium electrode deposition. 

4.1.2 SIF junctions  

Replacing the top superconducting electrode with a ferromagnet should not significantly 

degrade tunnel junction quality.  Naturally, proper fabrication is assumed, with well-

defined junctions and no sticking problems during the deposition of insulation and contact 

pads.  This provides a smooth transition between SIS and SIF tunnel junctions.  The 

effect of base electrode on tunneling characteristics may then be observed by fabricating 

SIF devices with ferromagnetic bottom electrode.  Similarly to SIS tunnel junctions, the 

ratio of the resistance at zero bias to that in the normal state is a convenient measure of 

the quality of SIF tunnel junctions and is again termed the figure-of-merit (FOM).     

As discussed in Section 2.1.3.1 above, quoted spin polarisation values of ferromagnets 

vary widely in the literature.  The effective polarisation of a magnetic tunnel junction 

electrode is the combination of intrinsic material properties, defect levels and device 

structure.  Production of appropriate SIF tunnel junctions and subsequent testing in high 

magnetic field, to determine the ferromagnet’s spin polarisation, could indicate electrode 

quality.  The polarisation values obtained are likely to be representative of the effective 

density of states contributing to spin polarised transport in similarly fabricated magnetic 

tunnel junctions, allowing better comparison between theory and experiment.   

4.1.2.1 Criteria to indicate tunneling 

Rowell suggested a series of criteria to which junctions are expected to adhere if their 

conductance is dominated by tunneling [Rowell, 1969].  These ‘Rowell criteria’ have 

been quoted recently in work investigating the reliability of methods to identify tunneling 

as the main source of conduction in a device.  It is important to note that Rowell clearly 
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states that these criteria are necessary, but not sufficient, to identify tunneling.  Firstly, at 

liquid nitrogen temperatures, the resistance of different sized junctions should be roughly 

inversely proportional to the area.  Clearly the resistances of many devices adhere to this 

principle, such as junctions where leakage originates from a number of randomly 

distributed pinholes and metallic junctions.  Secondly, on cooling to liquid helium 

temperatures the junction resistance should increase slightly and hence ‘an appreciable 

decrease in (the resistance of) any junction should eliminate it from further 

consideration’, indicating metallic shorting of the junction.  4.2 K is below the critical 

temperature, TC, of niobium, whereas Rowell commented on junctions with lead, tin, 

indium, tantalum and aluminium electrodes, which all have TC lower than 4.2 K.  The 

criteria may therefore be redefined to incorporate niobium electrodes: an increase in the 

resistance of tunneling devices should be observed when temperature is reduced.  Thirdly, 

an energy gap must be observed for superconducting tunnel junctions.  Fourthly, good 

quality SIF junctions at 1 K should display an S

N

R
R

 of 1000.  Moreover, he suggests that 

values of less than 10 are unacceptable.  The effect of thermal smearing on SIF junctions 

is discussed in Section 2.1.3, where it was shown that such values cannot be obtained at 

4.2 K.  Finally, he suggests that for SIS junctions the increase in resistance at ∆1+∆2 

should be sharp.  A non-vertical increase in current at ∆1+∆2 has been discussed in 

Section 4.1.1 and is generally attributed to a series resistance.  With different 

superconducting materials acting as the electrodes above and below the barrier, a cusp in 

the current-voltage characteristic should be well defined at ∆1−∆2, an effect which we 

may not observe in Nb/Al2O3/Nb junctions.     

A series of papers have been published by Akerman et al. investigating the ‘Rowell 

criteria’, of which they list three for non-superconducting tunnel junctions 

[Akerman, 2001; Rabson, 2001; Akerman, 2000].  Firstly, they claim that an exponential 

dependence of the conductance on the insulator thickness must be present for tunneling 

dominated transport.  Secondly, they identify the parabolic dependence of conductance on 

applied bias voltage which can be fitted to theoretical models [Simmons, 1963; 

Stratton, 1962].  Finally, a weak insulator-like temperature dependence of the 

conductance must be present.  Rowell does not suggest the first two of these criteria in the 

article cited and discussed above, to which they are credited.  However, many authors do 
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use these two well-documented properties of tunneling conduction as ‘proof’ that 

tunneling is the main source of conduction in their magnetic tunnel junctions.  Again, it 

should be noted that these characteristics are necessary, but not sufficient, to identify 

tunneling as the cause of conductance.  For example, many electronic devices display 

non-linear current-voltage characteristics at low applied bias, which may be fitted by a 

parabolic curve.  Rowell states: ‘the only test of tunneling is to put a superconductor on 

one side of the junction’; the identification of an energy gap and good FOM indicate 

tunneling.  However, the results of Akerman et al. provide insight into the issues 

associated with the identification of tunneling in magnetic tunnel junctions.  

Platt et al. propose that non-linear current-voltage (I-V) characteristics allow the 

distinction between conduction through pinholes and conduction by tunneling 

[Platt, 1997].  They argue that conduction through pinholes is metallic, resulting in linear 

I-V characteristics, but conduction by tunneling follows the predictions of Simmons and 

other workers [Simmons, 1963(a)].  However, Akerman et al. show that junctions 

demonstrating a non-linear I-V characteristic, modelled adequately by Simmons’ theory, 

  
Figure 4.6: Current-voltage characteristics      Figure 4.7: Conductance at                          
for (a) Sample A, at 90 K. (b) Sample B, at       4.2 K  for (a) Sample A. (b) Sample B.  
77 K. [Akerman, 2000]        [Akerman, 2000] 
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may actually contain pinholes, as shown by Figure 4.6.  Andreev reflection was observed 

for Sample B, for which modelling by Simmons theory produced reasonable values of 

barrier height, 0.71 eV, and thickness, 1.72 nm.  Measurements of polarisation from 

Andreev reflection are discussed in Section 2.1.4.1.1.  Using Equation (2.23) the 

polarisation of the iron was estimated as 43%, in good agreement with values from the 

literature (see Table 2.1).  Clearly a parabolic conductance dependence on voltage is a 

necessary, but not sufficient, requirement for the identification of tunneling as the main 

mechanism for electron transport.  Additionally, Garcia claims that non-linear I-V 

characteristics may be attributed to transport through nanocontacts (small pinholes) 

[Garcia, 2000].  His results are shown in Figure 4.8, representing the I-V curves for 

nanocontacts of size 1-7 conduction quanta in nickel.  The trends become increasingly 

linear as contact size increases.  He further claims that magnetoresistance effects in 

magnetic tunnel junctions may be described by conduction through pinholes, which is not 

a generally accepted description of the origin of MR.   

 
Figure 4.8: Experimental curves for ballistic Ni contacts for 
n quanta of conductance, n=1-7. Non-linear IV is observed 
for small contacts. [Garcia, 2000] 
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Rabson et al. have shown that the exponential dependence of conductance on barrier 

thickness may be explained not only by tunneling but also by transport through pinholes 

[Rabson, 2001].  Barrier growth is modelled two dimensionally as a random deposition of 

blocks of insulating material, leaving some pinholes.  The ratio of the metal-metal 

resistance R0 to the insulator resistance, R, influences the conductance dependence on 

thickness.  An exponential dependence of conductance on insulator thickness results from 

blocks of a perfect insulator.  However, as the ratio s = R0/R increases, the dependence of 

conductance on thickness deviates from exponential behaviour, as shown in Figure 4.9.  

No suggestion is made of the practical values of R and R0.  At a practical barrier thickness 

of 2 nm, roughly 10 monolayers of Al2O3, such an exponential dependence could be 

observed for conduction by pinholes.   

The third criterion of Akerman et al., initially suggested by Rowell, is that resistance 

should increase as temperature is decreased for tunneling dominated conductance.  

Studies by Akerman et al. and also by Rudiger, claim that resistance-temperature 

measurements are a reliable test for tunneling dominated conduction [Akerman, 2000; 

Akerman, 2001; Rudiger, 2001].  Consider a magnetic tunnel junction which has been 

undermilled, but displays a large contact resistance to the wiring layer due to organic 

 
Figure 4.9 : The dependence of conductance on insulator 
thickness.  s = R0/R , deviation from exponential dependence 
(straight line) occurs as s increases. [Rabson, 2001] 
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deposits (Section 3.3.3).  The resistance of such a device is expected to increase as 

temperature decreases, yet the magnetic tunnel junction does not work.  The presence of 

increasing resistance with decreasing temperature is not sufficient to indicate a working 

tunnel junction.  

The above experimental evidence supports Rowell’s claim that the only way to identify 

tunneling as the main cause of conduction in a device is by fabricating junctions with at 

least one superconducting electrode.  Below are the results of investigations into the 

relationship between the figure-of-merit of a SIS or SIF device and its parabolic I-V 

characteristics, resistance-area product, and dependence of resistance on temperature.  A 

relationship between the quality of superconducting tunnel junctions and their normal 

state characteristics should prove to be a useful analysis tool for magnetic tunnel 

junctions.  This study was initiated prior to the publication of the recent papers identified 

above by Akerman, Rudiger and Garcia. 

4.2 The fabrication of SIS and SIF tunnel junctions 

4.2.1 Deposition of films 

Films were deposited on 5×10 mm oxidised silicon substrates by whole wafer DC 

sputtering using the MkVII system.  The substrate preparation, deposition system and 

procedure are described in Section 3.2.  Thirteen depositions took place specifically for 

the production of tunneling devices.  Conditions associated with devices presented in this 

chapter are summarised in Table 4.2 and Table 4.3.  Care was taken to provide 

consistency throughout the course of study, particularly in deposition procedure, substrate 

and target cleaning.  The total electrode thickness was maintained on introducing the 

ferromagnetic material for SIF and magnetic tunnel junctions, providing good comparison 

between devices from different depositions.  Therefore a larger thickness of niobium was 

used for the SIS devices and the superconducting electrode of SIF devices than is required 

to provide a good quality superconducting electrode.   
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Material Deposition 
power (W) 

Deposition Rate 
(nmW-1min-1) 

Target-stage 
distance (mm) 

Aluminium 10 0.004/0.166 37 

Niobium 60 0.038 57 

Cobalt 30 0.225 68 

Iron 27 0.039 68 

Table 4.2 : Deposition power, rate and target stage distances for deposited materials.  
Aluminium rate changed dramatically after replacing the worn-out 1mm target with a new 
2mm target. 

 

 

Table 4.2 and Table 4.3 indicate the unexpected dramatic increase in deposition rate 

observed on changing the aluminium target.  The value of a thickness measurement to 

identify problems with deposition rates is highlighted by such results.  The films of 11247 

were used for device fabrication to test the viability of the processing route for aluminium 

electrodes.  The problems associated with the fabrication of Al/Al2O3/Al/Co/Nb devices 

to investigate the spin polarisation of cobalt are discussed in Section 4.4.3.   

  

 



 

 

Material Condition 10075 11150 10397_1/2/3 10445_1/2/3 10696_1 11247_1 

Niobium Passes, speed 2, 2× and 32, 2× 2, 2× and 32, 2× 1, 1× and 15 1× 2, 2× and 14, 2× 2, 2× and 14, 2× - 

 Pressure (Pa) 0.7 0.32 and 0.7 0.31 and 0.72 0.32 and 0.7 0.3 and 0.7 - 

 Thickness (nm) 38.8 38.8 36.5 19.4 19.4 - 

Cobalt Time (s) - - - 82/123/164 104 - 

 Pressure (Pa) - - - 1 1 - 

 Thickness (nm) - - - 9.2/13.8/18.5 11.7 - 

Aluminium Passes, speed 6, 1× 6, 1× 6, 1× 6, 1× 6, 1× 8, 2× and 22, 2× 

 Pressure (Pa) 0.7 0.7 0.71 0.71 0.71 0.29 and 0.7 

 Thickness (nm) 2.4 2.4 2.4 2.4 2.4 1.6/6.6 and 4.4/18.3 * 

Oxidation  1 hour, 1kPa 1 hour, 1kPa 1 hour, 1kPa 1 hour, 1kPa 1 hour, 1Pa 1 hour, 1kPa 

Aluminium Passes, speed 4, 1× 4, 1× 4, 1× 4, 1× 4, 1× 8, 2× 

 Pressure (Pa) 0.95 0.95 0.99 1.02 0.94 0.94 

 Thickness (nm) 1.6 1.6 1.6 1.6 1.6 1.6/6.6 * 

Cobalt Time (s) - - 82/123/164 - - 104 

 Pressure (Pa) - - 4 – 1.4 - - 5-1 

 Thickness (nm) - - 9.2/13.8/18.5 - - 11.7 

Niobium Passes, speed 2, 2× and 20, 2× 2, 2× and 20, 2× 6, 1× 1, 1× and 11, 1× 1, 1× and 11, 1× 3, 1× 

 Pressure (Pa) 4 and 0.7 4 and 0.7 0.68 4 and 0.72 4 and 0.72 0.7 

 Thickness (nm) 25.1 25.1 13.7 27.4 27.4 6.8 

Table 4.3: Deposition conditions for SIS and SIF films discussed below.  * A new Al target was used for this deposition and surprisingly the deposition 
rate was significantly increased, from 0.04nmW-1min-1 to 0.166 nmW-1min- 
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4.2.2 Fabrication of devices 

Devices were fabricated using standard contact lithography and processing techniques as 

described in Section 3.3.  For convenience, the fabrication route is summarised below.  

Firstly, the junction area was defined by contact lithography on as-deposited films, the 

mask-set CAM30 was used throughout.  The mesa junctions were defined by ion milling 

on the NOAR system, the majority of films were fabricated without use of the rotating 

stage.  The base layer was defined to the pattern shown in Figure 4.10(a) by lithography 

followed by ion milling.  The lift-off profiled lithography structure was defined for silica 

insulation of the junctions, followed by deposition, resulting in the features shown in 

Figure 4.10(b).  Finally, the wiring layer was defined and, following a brief pre-mill, 

deposition of niobium contacts took place in the NOAR, as shown in Figure 4.10(c).      

Base 
electrode

200µm 

(a)      

 
Silica 

Top of 
junction 

50µm 

(b)      

Nb 
wiring 200µm 

(c)    
Figure 4.10: Pictures of device fabrication (a) base electrode and junctions defined, silica 
deposited (b) greater detail of the silica and junctions (c) fully built device with Nb 
wiring layer.  
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4.2.3 Variation in the fabrication route 

Every effort was made to maintain good and repeatable practice during film deposition 

and processing, but the very nature of the deposition systems and processing techniques 

lead to unavoidable variation in conditions.  Certain depositions were undertaken at large 

intervals.  For example, the SIS depositions 10075 and 11150 were performed almost two 

years apart, over which time the system was used extensively for other materials.  System 

cleanliness therefore changed slightly over the course of study, but any variation was 

minimised by the use of the same flange, used only for this work.   

Lithography is a complex variable of temperature, humidity, bulb calibration, developer 

and photoresist age.  In the cleanroom used to fabricate devices, temperature and 

humidity was subject to seasonal variation.  A great deal of time was spent optimising 

lithography, and times altered accordingly to minimise differences in junction area.  The 

age of developer and photoresist was monitored and it was regularly replaced.  AFM 

measurements of junction height were used to check milling time and calibration also 

took place following a filament change.  Devices on separate chips are therefore 

considered very similar, but not identical.   

4.3 Results 

4.3.1 SIS tunnel junctions 

Superconductor-insulator-superconductor devices fabricated from the deposition runs 

10075 and 11150, as described above, were tested using the low temperature probes 

described in Section 3.4.  Figure 4.11 shows the SIS current-voltage characteristics of 

10075_4d, 6×6 µm junction, measurements in zero magnetic field and with the Josephson 

current suppressed by a magnetic field are shown.  The presence of the energy gap, ∆, 

clearly identifies tunneling as the primary transport mechanism within the junction.  The 

energy gap estimated from the diagram is ∆ ≈ 1.15 meV, significantly lower than the bulk 

value for niobium at 0 K, 1.5 meV, but similar to previous results for thin films 

[Goodchild, 1996].  The figure-of-merit of 11.7 is fair and typical of the devices produced 
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at 4.2 K.  The rapid increase in current at the energy gap indicates that there is no 

significant series resistance. 

4.3.1.1 The effect of resistance-area product on FOM 

A large number of devices have been fabricated, primarily to improve and test the 

processing route.  Series resistance was generally insignificant and, neglecting devices 

where it was large, we expect leakage and tunnel current to dominate transport, leading to 

an increase in figure-of-merit as the resistance-area (RA) product rises.  FOM is plotted 

against RA in Figure 4.12.  RA was used to normalise the effect of junction area, A, using 

the normal state resistance, RN.  Modelled FOM is also shown on the graph, assuming a 

simple leakage model, as discussed below. 

Consider one device assumed to consist of a perfect tunnel junction, resistance RJ, and 

parallel leakage, resistance RL.  Here we use the device 10075_4d.  The normal state 

resistance of the junction, RN is then described by Equation (4.3). 
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Figure 4.11: Current-voltage characteristic for 10075_4d SIS tunnel 
junction.  The zero voltage bias current (Josephson current) is 
shown, in addition to a measurement when it is suppressed with a 
magnetic field. 
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J L
N

J L

R RR
R R

=
+

          (4.3)  

Figure-of-merit is defined by Equation (4.1).  Assuming conduction by thermal excitation 

is negligible compared to junction leakage, and that RL is not voltage dependent, RS = RL, 

from which we derive Equation (4.4). 

FOM 1 L

J

R
R

= +           (4.4) 

FOM and RN are known from device measurements.  Values for the leakage and true 

junction resistance may be derived using this model.  Substituting RN = 17.79 Ω and 

FOM = 11.7 into (4.3) and (4.4), as experimentally observed for 10075_4d and solving, 

we find RL = 208 Ω and RJ = 19.45 Ω.  This calculation reveals that even a small leakage, 

corresponding to high resistance, can lead to considerable reduction in the quality of the 

junction.  Extremely high quality tunnel junction fabrication is required to produce a good 

FOM.  Having calculated the model junction parameters, the leakage resistance may be 

varied, and the figure-of-merit calculated and as shown in Figure 4.12.   
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Figure 4.12: Figure-of-merit against resistance-area for SIS tunnel junctions.  Solid line is 
the result of modelling 10075_4d as a perfect junction and parallel leakage resistance. 
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The high scatter of points in Figure 4.12 indicates that a simple model of a real tunnel 

junction consisting of a perfect junction and leakage in parallel does not explain the 

variation in FOM of real junctions.  A certain amount of ‘clumping’ of results from 

devices on each chip is evident.  Though the trend is not clear, FOM does appear to 

increase as the resistance-area product rises.  This simple model neglects a number of 

important parameters, such as thermal transport and voltage dependent transport through 

the barrier.  Weak-links through the insulator may significantly affect transport 

properties.  Transport through real SIS tunnel junctions is clearly complex and significant 

variation is evident, even for devices on the same chip. 

This model does not differentiate between shorting due to pinholes and redeposition of 

metal during ion milling.  To identify significant redeposition, normal state resistance at 

300 K was plotted against junction area, during cooling to liquid helium temperatures.  

With minimal redeposition, junction resistance scales as the inverse of area.  This is a 

useful, quick test for ion milling problems. 

4.3.1.2 Temperature dependence of resistance 

The temperature dependence of the resistance is commonly used to indicate that tunneling 

dominates junction conductance, as discussed in Section 4.1.2.1.  Figure 4.13(a) 

illustrates the contrast between a working and shorted junction.  The shorted junction, 
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Figure 4.13: (a) Variation of resistance with temperature for a good SIS tunnel junction, 
10075_4f and shorted junction, 11198_2_3c, a SIF device. (b) 1/resistance against 
temperature squared for 10075_4f, the line is drawn as a guide to the eye.   
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11198_2_3c, displays an approximately linear decrease in resistance as temperature falls 

for most of the range, as expected for a metallic device.  Resistance increases as 

temperature drops for the good device, 10075_4f, as expected.  All working junctions 

displayed an increase in resistance as temperature decreased. 

Stratton’s theory, discussed in Section 2.1.2.1, predicts an increase in resistance with 

decreasing temperature.  From Equation 2.15, this theory suggests that a graph of 

1/resistance against temperature squared should be linear.  Figure 4.13(b) shows the 

results from 10075_4f, where the data may be adequately fitted to a straight line at 

temperatures above 50 K.  Fitting data to Stratton’s theory to indicate the variance of 

resistance with temperature appears to be a reliable technique to identify tunneling as the 

principal cause of conduction in the junction.     

The relationship between the resistance increase with decreasing temperature for working 

SIS tunnel junctions and FOM was investigated by plotting the ratio of resistance at 

various .low temperatures to that at room temperature.  Figure 4.14 shows figure-of-merit 

plotted against a ratio of the resistance at 10 K, R(10K), to that at 300 K, R(300K).  No 

trend is clear on the graph, though FOM possibly increases as R(10K)/R(300K) increases.  

However, the resistance-temperature characteristics for SIS devices displaying a series 
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Figure 4.14: The correlation between FOM and R(10K)/R(300K). 
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resistance were not measured, such series resistance could lead to a significant increase in 

R(10K)/R(300K) with decreasing temperature.  

4.3.1.3 Simmons’ theory fits as an indication of junction quality 

The junction height, φ, and thickness, t, are predicted by Equation 2.12, derived by 

Simmons’ theory of tunneling in NIN structures.  A variant on the graphical method 

suggested by Simmons to determine φ and t was used to recover barrier characteristics 

from measurements taken using the lock-in described in Section 3.4.2.4 

[Simmons, 1963(c)].  Figure 4.15(a) shows a typical conductance versus voltage plot for a 

SIS tunnel junction, 10075_2g.  No shorted devices displayed the parabolic dependence 

of conductance on bias voltage.  From Equation 2.12 we may write: 

2Differential conductance 3dJG V
dV

β βγ= = = +      (4.5) 
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t and φ may be recovered from Equations (4.7) and: 
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Figure 4.15 : (a) Conductance per unit area against voltage and (b) conductance per unit       
area against voltage squared for SIS tunnel junction, 10075_2g. 
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.  For tunneling devices adequately described by Simmons’ 

theory, a plot of differential conductance against bias voltage squared should be linear, 

with y-intercept β and gradient 3βγ.  The corresponding plot of differential conductance 

against voltage squared for device 10075_2g is shown in Figure 4.15(b).  Generally, no 

distinction could be made between tunnel junction performance in positive and negative 

bias.  Despite the prediction by Simmons’ theory that the parabolic conductance 

dependence on bias voltage should be centred at zero bias, we discussed in Section 2.1 

that an offset is usually present.  However, such an offset was not visible, due to a number 

of factors.  Firstly, since these devices have nominally identical electrodes, minimal offset 

is expected.  Due to the low resistance of devices, measurements became quantised and 

additionally, the applicable voltage range before destroying the device was small.  

Calculated values for 10075_2g are φ = 1.39 meV and t = 1.02 nm, which appear 

reasonable. 

Graphical analysis, followed by calculation of the barrier parameters was carried out for a 

number of SIS devices.  The dependence of figure-of-merit on calculated barrier height 

and thickness is shown in Figure 4.16(a) and (b).  No correlation is evident between 

figure-of-merit and either t or φ.  Also shown in Figure 4.16 is the variation of barrier 

height and thickness for 10075_2g, according to the model presented in Section 4.3.1.1, 

where a real device is pictured as a perfect tunnel junction and parallel leakage resistance.  

As found in Section 4.3.1.1, this model does not adequately explain the behaviour of the 

system.  Values of barrier thickness and height calculated by Simmons’ theory are not 

adequate indicators of tunnel junction quality.  Furthermore, it is likely that the calculated 

values do not represent the actual barrier height and thickness within a real junction and 

are, instead, effective barrier height and thickness.     
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4.4 SIF tunnel junctions 

4.4.1 Superconducting bottom electrode 

A typical conductance against voltage curve for a tunnel junction of the nominal structure 

Nb/Al2O3/Al/Co/Nb is shown in Figure 4.17.  A solid line representing the theoretical 
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Figure 4.16 : The variation of the barrier height and thickness, calculated using a variation  
of Simmons’ graphical method, for SIS tunnel junctions with figure of merit. 
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conductance of an SIF junction with niobium superconducting electrode in zero magnetic 

field at 4.2 K is also shown.  The curve was calculated from the model presented in 

Section 2.1.3, and uses the value of ∆ = 1.15 meV, found for SIS devices above 

(Section 4.3.1).  The figure-of-merit of this junction, 10397_1f, is 3.16.  The two sets of 

data evident near zero bias result from measuring the device at low and high current.  At 

low bias, the sub-gap structure is observed with minimal junction heating, but the high 

bias, necessary to observe the normal behaviour of the junction, causes self-heating and a 

decrease in FOM.  A small series resistance may cause the deviation from theoretical 

curve at the peaks in conductance.     

Figure 4.18(a) illustrates the effect of series resistance on conductance curves of SIF 

tunnel junctions.  The peak in conductance is raised well above the known energy gap of 

the niobium superconducting electrode.  Figure 4.18(b) shows the effect of leakage on a 

SIF tunnel junction: the conductance at bias voltage below the energy gap is significantly 

increased.  The cause of leakage is known to be poor barrier formation, produced by 

oxidising the aluminium at only 1 Pa, instead of 1000 Pa, the resistance of junctions on 

the chip scaled as the inverse of their area.   

 Normalised conductance

Bias voltage (V) 
 

Figure 4.17: Normalised conductance against applied bias for 10397_1f SIF 
tunnel junction showing the theoretical solid curve.   
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4.4.1.1 Temperature dependence of conductance in SIF junctions  

A useful measure of the quality of an SIF junction is the variation of the normalised 

conductance at zero bias as temperature, T, decreases.  The temperature dependence of 

the conductance at zero bias may be deduced from Equation 2.21:  

0

exp ,SIF

N BV

G
G k T

→

 ∆
∝ − 

 
        (4.9) 

where GSIF is the conductance of the SIF junction at zero voltage bias and GN is the 

normal state conductance.  Measurements were taken between 0.34 K and 4.2 K using the 

Oxford Instruments HelioxTM cryogenic probe.  Figure 4.19 shows normalised 

conductance at zero bias versus 1/T for 10397_1f and a line representing the relationship 

of Equation (4.9).  GN is assumed constant over the temperature range; at the value 

recorded at 4.2 K, changes shown by RT graphs are generally insignificant at such low 

temperatures.  Deviation from the theoretical line occurs at about 2 K for 10397_1f, at 

which point leakage or self-heating dominates the conductance of the device.  A 

respectable FOM of 98 was observed at 0.34 K.  This technique could provide useful 

insight into device quality, encouraging the optimisation of deposition and processing 

conditions.  However, the time taken to measure each chip with the HelioxTM probe is 
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Figure 4.18: Conductance against voltage for (a) high leakage device, 10696_1g (b) device   
with series resistance, 10397_2b.  Differential conductance is that calculated by      
numerical differentiation of dI/dV. 
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prohibitive for rapid device development, and this technique is not directly applicable to 

magnetic tunnel junctions.  

4.4.1.2 Nb/Co/Al2O3/Al/Nb devices in a large magnetic field 

A good quality SIF chip, 11175_3, with the nominal structure Nb/Co/Al2O3/Al/Nb was 

tested using the Oxford Instruments HelioxTM cryogenic probe with 20000 Oe magnet 

pole piece.  The purpose of this experiment was to test the apparatus and computer 

programme.  It was also hoped to observe some inflection in the band edge of a device at 

0.3 K and 20000 Oe.  Unfortunately, the magnet wiring (pictured in Figure 3.16) did not 

work to the manufacturer’s specified level and burnt out at a current just below the 50 A 

required to obtain 20000 Oe.  Following shortening of the magnet wiring, the device was 

tested again, but the wiring failed at 30 A.  The magnet was returned to the manufacturer 

for repair, causing considerable delay to the work of Section 4.4.3  
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Figure 4.19 : Variation of normalised conductance with inverse 
temperature.  Straight line indicates perfect theoretical behaviour. 
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4.4.2 SIF, ferromagnet bottom electrode   

Initially, junctions fabricated with a ferromagnetic bottom electrode were unsuccessful, 

demonstrating very poor figures-of-merit, generally below two.  The deposition of 

aluminium on top of cobalt was identified as the cause, since this was the only critical 

stage changed.  The SIS junctions verified the deposition of niobium on top of the barrier.  

The problem was overcome by allowing the samples to cool for 30 minutes in 50 Pa 

argon between cobalt and aluminium deposition, decreasing the aluminium mobility, and 

lessening structural rearrangement.  Junctions were obtained with good FOM at 4.2 K, up 

to 4.5, better than previously obtained for a superconducting bottom electrode. 

4.4.3 Al/Al2O3/Al/Co/Nb tunnel junctions 

Al/Al2O3/Al/ferromagnet/Nb tunnel junctions may be used in conjunction with a large 

magnetic field to investigate the spin polarisation of the ferromagnetic electrode, as 

discussed in Section 2.1.3.1.  The basic procedure for film deposition and device 

fabrication is described above in Section 4.2.  However, devices appropriate for spin 

polarisation measurements must have thin aluminium electrodes, in the range 5-10 nm.  

Such devices are generally defined by deposition through shadow masks, eliminating 

difficult processing [Meservey, 1994].  Three particularly challenging steps are present in 

the fabrication route.  Firstly, the deposition of superconducting thin aluminium films, 

less than 10 nm, requires optimisation of the deposition conditions.  However, given the 

high vacuum and cleanliness of the system used, this requirement can be easily met.  

Secondly, milling fully through the top electrode, yet stopping within roughly 1 nm in 

order to provide a thick enough bottom contact is extremely difficult, particularly with no 

rotation on the milling system.  This issue is aggravated by the final significant problem, 

that the pre-contact pad deposition mill must remove the aluminium oxide and organic 

deposits, but not significantly thin the electrode.  The milling rate of aluminium is high, 

generally 1.5 times that of niobium, but that of the oxide and organic deposits was found 

to be low. 

Careful ion mill calibration took place, followed by milling and subsequent AFM 

measurements to indicate mill depth.  Milling depth was repeatably controlled to within 

1 nm.  Calibration of the pre-deposition mill rate was also performed and found to be 



Chapter 4 – The use of SIS and SIF junctions to optimise device fabrication 

91 

approximately 3.5 times the rate of feature definition mills.  This difference is due to the 

fact that the ‘reverse’ of the stage, required to bring the sample close to the magnetron for 

depositions, is also much closer to the ion gun than the rotation stage.  Several chips were 

fabricated and the results of testing the junctions as normal metal-insulator-normal metal 

junctions are summarised below, in addition to characterisation at 0.3 K.     

4.4.3.1 Testing the Al/Al2O3/Al/Co/Nb junctions 

The criteria listed above (Section 4.1.2.1) were used to try and identify working tunnel 

junctions.  The results highlight the fact that whilst such criteria are satisfied if tunneling 

is the principal conduction mechanism, they are not sufficient to indicate working 

devices.  However, the identification of shorted junctions, not displaying series resistance 

is, possible.  

11247_3_1 was tested using the lock-in and the resistance of junctions found to be 

slightly lower than previously, ≈16 Ω at 300 K for 6×6µm devices, as opposed to the 

≈22 Ω generally observed.  The resistance of the junctions did not scale in proportion to 

the inverse of their areas.  No parabolic dependence of the conductance on the voltage 

bias was observed and resistance decreased approximately linearly with temperature.  

This behaviour is characteristic of a shorted device, due to undermilling of the mesa 

junction.   

Devices from 11247_1_2 and 11247_3_2 displayed similar resistances to previous 

working tunnel junctions and resistance was inversely proportional to junction area.  

Devices were tested using the lock-in to investigate the dependence of conductance on 

bias voltage.  Figure 4.20(a) shows the increase in conductance with increasing bias of a 

typical device, which may be fitted adequately by a parabolic curve.  Device resistance 

increased as the temperature was reduced, as shown in Figure 4.20(b).  This behaviour 

indicates that tunneling may be the principal conduction mechanism in the junctions.    

11247_1_2 was mounted on the extension for field-in-plane measurements and tested in 

the Oxford Instruments HelioxTM cryogenic probe, with the 20000 Oe magnet tailpiece in 

place, as described in Section 3.4.2.3.  No characteristic SIF properties were observed, 

and furthermore, measurements of the aluminium base electrode demonstrated no 

superconductivity, even at 0.3 K.  This highlights the fact that tests on NIN junctions do 
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not indicate that a tunnel junction works.  The likely cause of device failure is the 

formation of an oxide or organic layer prior to contact pad deposition, which was not 

removed adequately by the pre-deposition ion mill.   

The observed device failure suggests two areas for improvement and study.  Firstly, the 

device structure should be altered, incorporating a non-superconducting under-layer such 

as copper or gold.  This layer serves two purposes.  Most importantly, the demanding 

requirement on milling times is avoided and the aluminium can be completely milled 

through.  Secondly, a smooth, inert under-layer would protect the aluminium from 

oxygen diffusion from the substrate.  Depositing Cu/Al layers of different thickness and 

testing their superconducting properties should also be undertaken.  The critical field of 

thin aluminium films could then be investigated.        

4.5 Conclusions 

The work presented above indicates that the only reliable method to identify tunneling as 

the principal mechanism for conduction in a tunnel junction is to observe the 

characteristic I-V relationships for SIS and SIF devices.  The observation of an energy 

gap indicates that tunneling is present.  Additionally, the figure-of-merit may be used to 

estimate the quality of a junction.  This finding supports the route suggested above to aid 
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Figure 4.20 : (a) Conductance against bias voltage for 11247_1_2f (b) Resistance          
against temperature for 11247_1_2f.  ‘Glitches’ on both graphs are due to a loose contact        
in the probe head. 
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the production of high quality magnetic tunnel junctions, where SIS and SIF junctions are 

first fabricated and the effect of changing the electrodes on the FOM observed.  Since the 

analysis of the characteristics of SIS and SIF junctions is simple, they may be used to 

check and optimise the fabrication route.  The production of a stock of known good 

quality films is recommended for such work. 

Certain criteria must be met to make testing of a ‘tunnel junction’ worthwhile.  Failure to 

meet any of the criteria listed below indicates that the device does not work properly, yet 

satisfying all criteria does not indicate a working device.  Firstly, the resistance of devices 

should be approximately inversely proportional to the expected junction area.  The 

resistance-area product of devices should be similar to previous working tunnel junctions 

produced on the fabrication route.  Junction resistance should increase as temperature 

decreases, a drop in resistance indicating the presence of a conducting short.  The 

conductance of the device should increase parabolically with bias voltage.  Additionally, 

the prediction of Stratton that junction conductance increases as a function of temperature 

squared seems to hold.   

Investigation of the correlation between properties of normal metal-insulator-normal 

metal junctions and SIS figure-of-merit indicates that such measurements are unlikely to 

accurately predict junction quality.  The simple model of a device with no series 

resistance present, but as a perfect tunnel junction and parallel leakage resistance does not 

fit data well.  However, this model does provide the useful insight that a small leakage, 

represented by a large parallel resistance, significantly decreases junction quality.  The 

correlation between SIS figure-of-merit and either R(10K)/R(300K) or RA is not clear.  

However, in general, FOM does appear to increase as both RA and R(10K)/R(300K) rise.  

No trend in FOM is visible with changes in the barrier height and thickness derived by a 

variation on Simmons’ graphical method.  Whilst further work may indicate clear trends 

in the FOM of SIS junctions with the NIN characteristics measured above, this study 

shows that such results may not be considered a reliable indicator of junction quality in 

all cases.                      
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The development of magnetic materials for read head sensors has been a driving force for 

magnetic thin film research over the past ten years.  Increased storage capacity must be 

accompanied by faster data transfer, to satisfy the growing demand for high capacity 

drives in applications such as streamed video and other multimedia.  The response speed 

of a read head is generally measured by full read and write head build.  This requires well 

over 100 processing steps, followed by mounting to slider and associated electronics, it is 

then tested over a hard disk.  This technique provides a huge amount of information, 

including error rates, side-reading and rate of response.  However, the time from the 

initiation of reader build to testing is prohibitively long for rapid device development.  A 

need has arisen to identify a test, to provide preliminary data, which is quick to perform 

and does not require full wafer build.  High frequency testing of read heads at wafer level, 

using a network analyser, could be an appropriate, fast, technique.  This chapter details 

the theory and practice of network analyser operation, followed by results obtained during 

three months study at Seagate Technology Springtown.  Models of the electronic system 

are developed, followed by their relation to those suggested in the literature.  The 

implications of the results on read head design are discussed.  The use of a network 

analyser to measure the dielectric properties of materials is then considered and results 

are presented. 

5.1 Introduction to high frequency testing 

The fundamental concepts of transmission lines and network analyser operation are 

introduced below.  Firstly, wave propagation along a transmission line is considered, 

followed by the important concept of line termination.  S-parameters are introduced as a 

convenient tool for investigating the high frequency characteristics of devices.  Finally, 

the basic operational concept of network analysers, their limitations and errors are 

discussed.   

5.1.1 Transmission lines 

A system of two conductors separated by dielectric and capable of maintaining a rapidly 

oscillating potential difference and current may be modelled as a transmission line.  
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Consider the generalised section of transmission line illustrated by Figure 5.1.  L` and C` 

are the inductance and capacitance per unit length respectively.  G` is the leakage 

resistance per unit length, due to losses though the dielectric and R` is the resistance per 

unit length of the line.  Applying Kirchoff’s laws for a small section of the line, δz, the 

following expressions for the current, I and voltage, V are obtained: 

` ` ` `V I V IV V z L z IR z L IR
z t z t
δ δ δ∂ ∂ ∂ ∂   − + = + ⇒ = − +   ∂ ∂ ∂ ∂   

    (5.1) 

` ` ` `I V I VI I z C z VG z C VG
z t z t
δ δ δ∂ ∂ ∂ ∂   − + = + ⇒ = − +   ∂ ∂ ∂ ∂   

.   (5.2) 

For a sinusoidal variation in voltage and current with time, t: 

I = I0exp(iωt)     and     V = V0exp(iωt),       (5.3) 

where ω is the angular frequency of oscillation and V0 and I0 are constants.  Assuming a 

sinusoidal variation of voltage and current in the transmission line, differentiating (5.1) 

with respect to z and substituting Equation (5.2) into the result, produces Equation (5.4). 
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Figure 5.1: Schematic representation of a length of transmission line. 
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This is the general form for a wave equation and is solved by: 

( ) ( )
( )( )
exp exp ,

` ` ` ` ,

V A i t z B i t z

R i L G i C

ω γ ω γ

γ ω ω

= − + +

= + +
      (5.5) 

where A and B are arbitrary constants and γ is the propagation constant.  Equation (5.5) is 

substituted into (5.2) to find I.  The characteristic impedance of the transmission line, Z0, 

is deduced using Ohm’s law: 

0
` `
` `

R i LZ
G i C

ω
ω

+
=

+
.         (5.6) 

5.1.1.1 Termination of transmission lines 

The impedance ZT is the termination load of a transmission line.  Consider the simplified 

term for the voltage, V = V + + V -, where V + and V - are the incident and reflected 

contributions to the voltage respectively.  Similarly I = I + + I -, using Ohm’s law and 

noting that reflected current has the opposite sign to incident current: 

0 0

V VI
Z Z

+ −

= − .          (5.7) 

The termination impedance, ZT must satisfy the circuit parameters and solving to find the 

reflection coefficient, Γ Equations (5.8) and (5.9) are deduced. 
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         (5.9) 

The termination load dictates the reflection coefficient of the current and voltage signals.  

Three key regimes of reflection behaviour are important.  Firstly, when the circuit is 

open, ZT = ∞, so Γ = 1, total reflection of the wave.  Conversely, when the transmission 

line is terminated with a short circuit, ZT = 0, so Γ = −1 and all the voltage is reflected, 

with negative phase compared to the incident voltage.  Finally, the impedance matched 
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case, of particular importance to network analysers, occurs when ZT = Z0, so Γ = 0 and all 

the incident power is transmitted.     

5.1.2 Basic network analyser theory 

The operation of a network analyser is discussed below.  The S-parameter method of 

characterising termination loads of transmission lines is introduced followed by an 

introduction to network analyser hardware and limitations. 

5.1.2.1 S-parameters 

Measuring total voltage or current at high frequency is difficult.  The probe impedance 

and difficulty of placing the probes in the necessary positions effectively make it 

impractical.  Furthermore, such measurements often require the application of a short or 

open circuit, which has the tendency to destroy devices.  However, the response of a 

device terminating a transmission line may be conveniently represented by scattering (S-) 

parameters, as recorded by network analysers.  S-parameters should not be confused with 

the Laplacian operator, s, which is widely used in the modelling of high frequency 

electronics.  Consider a normalised input and output wave, a(z, t) and b(z, t) respectively, 

defining both voltage and current:   

0
0

1 ( , )( , ) ( , )
2

V z ta z t Z I z t
Z

 
= +  

 
       (5.10) 
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(DUT) 
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Figure 5.2: Incident and transmitted waves for a two-port network analyser. 
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Figure 5.2 illustrates the incident and transmitted waves for a two-port network analyser.  

The S-parameters are defined as: 
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.       (5.12)   

S11 is the reflection coefficient and S21 the transmission coefficient at port 1; S22 the 

reflection and S12 the transmission coefficient at port 2.  The condition a2 = 0 represents 

the termination of port 2 with a matched load so the reflection is zero, and similarly for 

a1 = 0.  The reflection coefficient for the transmission line (Section 5.1.1.1) may be 

redefined for port 1, Γ = S11.  For a network analyser transmission line, Z0 = 50 Ω.  The 

complex impedance of the termination can be deduced from S11, using Equation (5.9).  It 

is important to realise that S-parameters do not provide a measurement of individual 

devices in a circuit.  Instead, S-parameters measure the combined impedance of a circuit, 

which must be modelled to retrieve values of inductance, resistance and capacitance. 
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Figure 5.3: Block diagram and picture of a network analyser.  DUT is the device under test. 
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5.1.2.2 Network analyser hardware 

A network analyser is illustrated by the block diagram and photo in Figure 5.3.  An 

internal source is used for modern network analysers.  Signal separation is required for 

two functions.  Firstly, splitters or directional couplers are used to measure a portion of 

the incident signal, providing a reference.  Secondly, the incident and reflected waves are 

separated for input to the device under test (DUT).  Signal separation is a major cause of 

error in measurements, due to the requirements of high isolation, directionality and low 

loss.  Errors are discussed below in Section 5.1.3.1.  Generally, couplers are best for both 

separation purposes as they meet the above requirements, but they are difficult to make.  

Tuned receivers are used to detect signals; bandpass filters improve sensitivity and reduce 

noise.  An analogue-to-digital converter and digital signal processing are then used to 

extract magnitude and phase information.  

5.1.3 Errors and limitations 

5.1.3.1 Error analysis 

Systematic errors occur due to imperfections in the analyser and test apparatus.  Random 

errors are due to instrument noise, repeatability or drift over time.  Systematic errors are 

characterised during calibration and mathematically removed from the measurements.  

Calibration is performed with short circuit, open circuit and matched load, connections 

being identical to those used during testing of the device.  Two-port calibration allows the 

determination of twelve error terms, producing an extremely accurate result.  However, 

the test setup available was a one-port system, where three error terms may be calculated: 

directivity, source match and reflection tracking.  Accurate calibration requires good 

termination at port two of the device, which occurs internally for the HP8753es network 

analyser used in this study.  Figure 5.4 shows the effect of one-port calibration.  Initially a 

characteristic ripple pattern dominates the measurement, which is removed by calibration.  

The effect of poor calibration producing such ripples is reconsidered in Section 5.2.3.6.1 

below.    

Random errors originate from instrument noise and the difficulty of obtaining identical 

contacts, particularly because the test apparatus for devices on a wafer requires touch-

down contacts.  Drift errors are principally caused by temperature variation.  These may 
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be eliminated by regular calibration and a temperature controlled environment.  

Additionally, the network analyser should warm up for two hours, allowing the internal 

temperature to reach equilibrium. 

5.1.3.2 Limitations of the technique 

The fundamental limitation of the use of network analyser measurements to identify the 

characteristics of a circuit has been mentioned in Section 5.1.2.1, but must be stressed 

again.  Values for resistance, inductance and capacitance recovered from measurements 

are not actual values, but are determined by modelling the circuit.  Measurement of S-

parameters does not separate components of a device: it measures the whole device 

response.  A simple model may fit the data adequately, but the actual device may be 

considerably more complex. 

5.2 High frequency response of read heads 

The high frequency read-back response of the full build reader assembly has received 

much research by hard disk manufacturers.  Owing to corporate secrecy, only a small 
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Figure 5.4: The effect of error correction on measurements [HP, 1999]. 
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amount of research has been published, but the fundamental concepts are widely accepted 

and summarised below.   

A simple part-built reader is pictured in Figure 5.5.  Fabrication has taken place up to 

‘second half gap’; the bottom shield, insulation, wiring layer and sensor have all been 

deposited.  A thin layer of insulation above the sensor element is also defined; this layer 

is termed the second half gap.  Figure 5.5 shows that wiring passes over the shield, the 

two separated by an insulator (InsA).  InsA is not deposited in the region of the sensor 

element, where the first half gap insulates the sensor from the bottom shield and second 

half gap lies above it.  A simple electrical circuit model of a fully built reader is illustrated 

by Figure 5.6 [Mallinson, 1996].  Read-back signal is significantly influenced by the 

manner of amplification, the following treatment considers the effect of amplification on 

reader response.  Circuit resistance is dominated by the sensor, due to its small 

dimensions compared to the leads.  The sensor has resistance R0 in zero magnetic field, 

with a magnetically induced change δR.  The read head with its associated inductance, L, 

is shunted by the stray capacitance, Cs.  The circuit may be operated with two types of 

read amplifier: a high internal resistance voltage amplifier, as depicted in Figure 5.6(a), or 

a low internal resistance current amplifier, shown in Figure 5.6(b).  When a high internal 

impedance amplifier is used, the open circuit voltage, VOC, is measured.  The signal 
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Figure 5.5: A simple reader with square shield of dimensions x = 100 µm, y = 100 µm    
and y-offset = 0. 
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current in the loop, I, and the output voltage are represented by Equations (5.13) and 

(5.14). 

( )0
1

S

Vi
R R j L j C

δ
δ ω ω

=
+ + +

       (5.13) 

( ) ( )2
0 1OC

S S

i VV
j C j C R R LC

δ
ω ω δ ω

= =
+ + −

      (5.14) 

An undesirable resonance occurs at angular frequency 1
SLC

ω = , causing oscillation 

in the output voltage.  The inductance in magnetoresistive read heads (those using 

magnetoresistance, giant magnetoresistance or magnetic tunnel junctions) is low, 

generally less than 20 nH, compared with inductive heads where it is ~1000 nH.  The 

resonant frequency for magnetoresistive read heads is therefore higher than inductive 

heads, further evidence of their superiority.  Constant current is used for this mode of 

operation and it is therefore often termed the current-forcing, voltage-sensing mode. 

Figure 5.6(b) illustrates an amplification configuration with low internal impedance.  It is 

termed the voltage-forcing, current-sensing mode.  The short circuit current, ISC, is 

measured and represented by Equation (5.15); it does not depend on the stray capacitance.  

No resonance is present and an improved high frequency response is observed.   

 

Cs δ V  

R0+δR 

L 

Cs δ V  

R0+δR 
  

L   

VOC   ISC  
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Figure 5.6 : Electrical circuit models of a read head for (a) voltage sensing and (b) current 
sensing. 
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This latter configuration requires large gain for amplification of the signal and is therefore 

subject to higher noise than the current-forcing, voltage-sensing mode.  High amplifier 

impedance is generally used, although real amplifiers are significantly more complicated 

than suggested above.  The shunting effect of stray capacitance is extremely important for 

device performance. 

5.2.1 Roll-off frequency 

The roll-off frequency of a read head is the frequency at which the return loss falls to 

−3dB of the DC value.  The return loss, or attenuation, is generally displayed by the 

network analyser and defined by Equation (5.16). 

Attenuation 20log
DCZ

 Ζ
=   

 
        (5.16) 

The roll-off frequency is equivalent to the half-power of the circuit, at which point a 

signal may no longer be distinguished from noise.  This occurs when the impedance falls 

to DC value
2

.  Substituting into Equation (5.16), the attenuation is 3.010 (to 3 d.p.) at the 

half-power point.  Clearly data may often be read below the −3dB point, with the use of 

filtering and data processing.  However, determination of the −3dB point is widely used 

to provide a measure of the limit of data measurement.  

5.2.2 Experimental procedures   

Considerable effort has been made to investigate the frequency response of read heads, 

but such work is based on fully built devices, which are time consuming to fabricate.  The 

experimental methods employed in this study to investigate the frequency response of a 

part-built reader are discussed below.  Not only does this technique drastically reduce the 

time to investigate reader configurations, but also read heads and writers may be built up 

piece-by-piece to determine the effect of each layer on the frequency response.  Full build 

is still required for the determination of error and side reading rates, but the ability to 
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dissect read and write heads could dramatically improve understanding of the system.  

The giant magnetoresistive or tunnel junction sensor structure is regularly changed in 

industrial research making measurements of read-back from a hard disk difficult to 

compare.  However, measurement of readers with a network analyser does not depend 

significantly on the magnetic structure of the sensor element, thus allowing better 

comparison of wafers.   

5.2.2.1 Production of devices 

Read heads were fabricated up to second half gap, as described in Section 5.2 above.  

Figure 5.5 illustrates the terminology and standard reader configuration tested.  Standard 

lithography and processing techniques were used.  Figure 5.7 illustrates the key processes 

of device fabrication, excluding lithography, seed layers and other minor steps.  Details of 

precise processes are not included, in accordance with the wishes of Seagate Technology.  

The shields, read element, wiring and contact pads seed layer were deposited by DC 

magnetron sputtering.  Insulators were deposited by AC sputtering and the contact pads 

Wiring layer deposition by 
DC sputtering 

Sensor deposition by DC 
sputtering. 

Flattened Altec wafer 

Bottom shield deposition by DC 
sputtering. 

Bottom insulator deposited by RF 
sputtering (InsA).   

Insulates shield from leads.  Not deposited 
in region of sensor to minimise thickness.

First half gap.  
Thin layer insulating sensor from 

shields. 

Second half-gap deposition by RF 
sputtering. 

Insulates sensor from top shield. 

Contact pads thickened by 
electroplating. 

 
Figure 5.7: Overview of the fabrication route of the Y6 read head wafers. 
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electroplated with copper to make them more robust.  The read element on all heads was 

a giant magnetoresistance (GMR) spin valve structure.  The magnetic properties of some 

devices were investigated using a Kerrscope and prober, but are not presented here.     

Figure 5.8 illustrates the device layout for the wafers tested.  Each quadrant, A, B, C or D, 

consists of tessellations of this layout, with device numbers continuing incrementally so 

that each reader is assigned a unique name within the wafer.  The length of the sensor is 

termed the critical dimension, CD and stripe height is the width of the read head, as 

indicated in Figure 5.9(a).  The Flux-thief and Wyoming shield designs are illustrated in 

Figure 5.9(b) and (c) respectively.  Such designs have been devised to improve the 

magnetic shielding of the sensor from stray fields.  Lapped geometry approximates the 

configuration in the read head by removal of the shield and insulator below the sensor 

element, as shown in Figure 5.9(d).  The size and y-offset of square shields, as shown in 

Figure 5.5, were also varied.  Y-offset is defined as the displacement of the centre of the 

square shield from the sensor.   

 
  LOWER SHIELDS DIMS 

W0   X0   Y0   Z0 A1 B1   C1 D1 E1 F1 G1 H1 X   Y   Y-OFFSET
1   25µm   25µm   0µm 
2   10Gb   Wide   High 50µm   50µm   0µm 
3   Sensor   Sensor   Sensor 100µm   100µm   0µm 
4   Configuration   Configuration Configuration 200µm   200µm   0µm 
5   300µm   300µm   0µm 
6   CD 0.8µm   CD   50µm CD 50µm 300µm   300µm   64µm  
7   Stripe Height   Stripe  Height  Stripe Height 300µm   300µm   96µm  
8   5.2µm   5. 2µm   15µm 300µm   300µm   128µm  
9   300µm   300µm   147µm  

10   400µm   400µm   200µm  
11   Wyoming lapped   
12   Wyoming unlapped   
13   Flux Thief unlapped   
14   Flux Thief    
15   STRIPE HEIGHT STRIPE HEIGHT STRIPE HEIGHT STRIPE HEIGHT CD  0.4µm   
16   2   µm   5.2   µm   2 µm 5.2 µm CD  0.8µm   
17   CD  1.5µm   
18   CD  2.5µm   
19    UNSHIELDED UNSHIELDED   SHIELDED  SHIELDED CD  4.5µm   
20   CD  8.5µm   
21   CD  16.6µm   
22   CD  33µm   
23   CD  65µm   
24   
25   SHEET   
26   
27   
28   TOOLKIT BAR  
Figure 5.8: CAD design for one quadrant of the Y6 wafers.  One read head lies at each   
coordinate.  For example, the device at C115 is shielded, with 2 µm stripe height and 0.4 µm    
CD.   
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The mask-set is designed to provide a large quantity of data regarding the effect of shield 

and reader dimensions on the performance of a reader.  In addition to design alterations of 

the geometry, wafers were produced with different thickness insulating layers and copper 

instead of magnetic shields.  A summary of the differences between wafers studied is 

shown in Table 5.1, below.  A batch of wafers with varying InsA were started to measure 

directly the effect of the capacitance between the leads and shield.  However, due to other 

priorities within the facility and the difficulty of passing non-standard wafers through the 

cleanroom, they were not completed.  

5.2.2.2 Testing procedure 

An HP8753es network analyser was used to test devices at wafer level as shown in Figure 

5.10.  A simple two-probe touch-down contact with micrometer adjustment was used, 

with a microscope enabling alignment to contact pads.  Wafers were clamped firmly 

during measurement using a rising stage.  A constant probe pitch of 150 µm was used, 

matching the contact pad separation, as shown in Figure 5.11. 

 

CD 

Stripe 
height 

(a)      (b)  

(c)    (d) Shield removed  
Figure 5.9: Pictures of the reader geometry. (a) stripe height and CD on an unshielded    
reader. (b) The Flux-thief shield design (in blue).  (c) Wyoming shield, unlapped.    
(d) Wyoming shield, lapped. 
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Wafer code First half gap (nm) Other difference 

Y50196_Y6HJ0 26.4  

Y50316_Y6HL0 50.0  

Y50386_Y6HLS 51.4  

Y50326_Y6HL4 21.4  

Y50616_Y6H0C 42.8  

Y50646_Y6H00 42.8  

Y50486_Y6HMW 49.6/26.3  

Y50476_Y6HMS 26.7  

Y50426_Y6HN8 9.4  

Y50986_Y6HLK 51.2 Copper shields 

Y50566_Y6HNS 48.6/43.1/41.5  

Y50546_YHNK 42.8/48.1  

Table 5.1: Differences between the wafers presented.  Multiple values of the first 
half gap indicate measurement problems due to elipsometer or operator error. 

 

Thermal drift was minimised by the air-conditioned environment and by allowing the 

apparatus to warm up for two hours before use, as recommended in the manual and 

discussed in Section 5.1.3.1.  The network analyser was calibrated for one-port operation 

before use, using a short circuit, open circuit and matched load of 50 Ω.  The GG 

Industries CS-8 calibration substrate was used, over the range 1 MHz to 6 GHz.  The 

     
Figure 5.10: The measurement apparatus. Figure 5.11: Probe tips, 

measuring the matched 
resistance calibration sample. 
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second port was terminated internally with a 50 Ω matched load to minimize error.  

Errors introduced by variance in the exact positioning of the touch-down probes on the 

contact pads were investigated by aligning and measuring devices repeatedly.  No 

variation in attenuation characteristics was observed.  Additionally, ten devices on the 

wafer Y50566_Y6HNS were tested regularly over a period of one month, over which 

time no changes were detected in the attenuation of readers, indicating consistent 

calibration.  The probe was used in S-parameter mode with a moderate rate of frequency 

increase during measurements in order to ensure an effectively constant frequency over 

the electrical length of the device.  Measured S-parameters were recorded on a computer 

and Equation (5.9) (where Γ = S11) was used to recover the complex impedance.  The 

attenuation (Equation (5.16)) was recorded graphically. 

5.2.3 Results and discussion 

5.2.3.1 The effect of shield area on roll-off frequency 

Figure 5.12 shows attenuation against frequency for readers with increasing shield size 

for Y50566_Y6HNS, devices A168 to A172.  As shield size increases, roll-off frequency 
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Figure 5.12: Attenuation vs frequency as shield size is increased. 
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decreases.  At high frequency, the presence of a resonant peak is characteristic of LCR 

circuits and will be discussed below (Section 5.2.3.6).  Using a one-port system, only two 

system variables can be calculated; and therefore the simple RC circuit shown in Figure 

5.13 was used to model the behaviour.  The roll-off frequency for such an RC circuit is 

calculated by inserting the half-power criterion into the equation for the impedance of the 

reader.  At zero frequency, the shunt capacitance has no effect and the circuit impedance 

is simply the resistance of the wires and reader, R + δR, from which Equation (5.17) is 

derived.    
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C R Rπ δ

∴ =
+

,        (5.17) 

where f3dB is the roll-off frequency and CS the shunt capacitance.  The capacitor is 

expected to originate from the wiring-shield sandwich, with InsA and first half gap 

dielectric.  Assuming this is the sole cause of capacitance, Equation (5.18) should be 

applicable to the system.   

0 ,r
S

AC
d

ε ε
=           (5.18) 

CS R+δR 

 
Figure 5.13: Capacitively shunted model for a read head 
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where εr is the relative permittivity of the dielectric, ε0 is the permittivity of free space, A 

the area and d is the separation of capacitor plates.  The area of contact leads overlapping 

the shield and separated by InsA, AInsA, was calculated using the CAD for each 

configuration.  The area of the sensor separated from the shield by the first half gap, Agap, 

was also measured.  The effect of these two different areas and thickness is to replace the 

single capacitor in Figure 5.13 by two in parallel.  Total capacitance, Ctot, is the sum of 

the sum of the capacitance formed by the overlap between the shields and wiring with 
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Figure 5.14: The effect of overlap of shields with wiring on −3dB frequency.  (a) The 
data for all areas.  (b) Data for large area only. 
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dielectric InsA, CInsA, and that formed by the overlap between sensor and shield with first 

half gap as the dielectric, Cgap.  Using Equations (5.17) and (5.18): 

1

3
1 ,GapInsA

dB
InsA Gap InsA Gap

AAf
C C d d

−
 

∝ ∝ +  +  
      (5.19) 

where dInsA and dgap are the thickness of InsA and the first half gap, respectively.  Roll-off 

frequency was estimated from the data by taking the measurement point nearest to −3dB 

attenuation.  Figure 5.14 shows the roll-off frequency plotted against the expression of 

Equation (5.19).  This model fits the data well for large areas, as shown by Figure 

5.14(b), but at low area the increase of roll-off frequency flattens (Figure 5.14(a)).  

Consider a further, small, capacitance in parallel to that formed between the shield and 

wiring.  At high shield area this extra capacitance is insignificant compared to 

CInsA + Cgap.  However, at low area CInsA has dropped dramatically and the extra 

capacitance becomes significant, eventually dominating the device response and the roll-

off frequency falls below that predicted by Equation (5.19).  Figure 5.15 shows the roll-

off frequency against 1/CS, as calculated from the impedance data.  The linear trend to 

high frequency suggests that roll-off of the impedance is due to capacitive shunting of the 

sensor element.  The linear trend exhibited by Figure 5.15 at frequencies above those at 
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Figure 5.15: −3dB point against capacitance, calculated from the impedance data. 
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which Figure 5.14 deviates from linearity also suggests that an extra capacitance is 

present in the system.  The origin of this second capacitance is investigated in 

Section 5.2.3.6. 

5.2.3.1.1 Shield design 

Optimisation of the magnetic shielding of the sensor element has led to the development 

of a wide range of shield designs; Figure 5.9 shows the Flux-thief and Wyoming shields.  

Roll-off frequency decreased as shield area increased, in agreement with the capacitively 

shunted reader model.  As expected, no difference was observed between lapped and 

unlapped geometry.  Wafer level testing is not significantly affected by shield areas not 

directly below the wiring or sensor.  

5.2.3.2 The effect of sensor length on roll-off frequency 

Figure 5.16(a) shows the effect of reader length (CD) on roll-off frequency.  

Measurements were taken for shielded devices Y50566_Y6HNS_V050-58 (see Figure 

5.8).  The linear trend in Figure 5.16(a) supports the capacitively shunted reader model 

presented in Section 5.2.3.1, where roll-off is described by Equation (5.17).  No magnetic 

field is applied during measurement, so δR = 0.  Predicted roll-off frequency ∝1/R and 

sensor resistance ∝ CD.  R was also deduced from the real part of Equation (5.9) using S-

parameter measurements.  Roll-off frequency is plotted against calculated 1/R in Figure 

5.16(b).  The linear correlation at high resistance supports the use of the capacitively 

shunted reader model at large CD.  At low CD, both graphs deviate from the straight line 

predicted, but curve in different directions.  This indicates that the model breaks down at 

low resistance; recovery of the resistance from the impedance using Equation (5.17) is no 

longer valid.  The circuit is more complicated than shown in Figure 5.13, which may be 

an artefact of measurement errors.  Improvements to the model are discussed in 

Section 5.2.3.6. 

5.2.3.3 Stripe height    

Stripe height is the width of the sensor as shown in Figure 5.5.  Equation (5.17), 

representing the capacitively shunted reader model, predicts that roll-off frequency is 

proportional to reader width.  Only two comparable stripe heights were available, as 
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shown by Figure 5.8.  Roll-off frequency was observed to be consistently higher for 

larger stripe height readers.   

5.2.3.4 Gap thickness 

Equation (5.19) indicates that if the capacitance in the region of the sensor is significant, 

roll-off frequency should rise as the first half gap thickness increases.  Measurements of 

first half gap, using an ellipsometer, for available wafers are shown in Table 5.1.  The 

range of measured first half gap values for some wafers indicates that the measurements 

were either incorrectly performed or the ellipsometer poorly calibrated.  This occurred 
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Figure 5.16: (a) The effect of CD on the roll-off frequency. (b) −3dB point versus 
resitance, as calculated from the impedance. 
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because the wafers were not standard production lots and therefore some processes were 

not properly optimised or performed.  Figure 5.17 shows that no trend in roll-off 

frequency is evident as first half gap thickness changes.  Device resistance was checked 

and only devices of similar resistance presented.  Changes in to the sensor deposition are 

responsible for the changes in resistance.  The senor-to-shield capacitance is not 

significant for such resistance and shield configuration.  First half gap thickness could be 

significant for other geometries. 

5.2.3.5 Temperature dependence of roll-off frequency 

 

Read heads operate at up to 200°C and the demands of higher data transfer imply an 

increase in rotation speed, raising the head temperature.  The temperature dependence of 

read-back characteristics is critical to read head performance.  The effect of temperature 

on the devices was investigated by mounting the wafers on a Phasemetrics prober where 

measurements took place between 20°C and 100°C.  Roll-off frequency is plotted against 

1/(temperature) in Figure 5.18.  The line shown is a linear regression of the data, with r2 

of 94%, a reasonable fit.  The r2 value represents the proportion of the variation of the 

data which is described by the linear regression.  The resistance of the metallic sensor 
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Figure 5.17: No trend is evident in roll-off frequency as gap thickness changes.  Changes in 
sensor stack lead to variation in device resistance; only readers of similar resistance are 
shown. 
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element is expected to increase linearly with temperature.  Figure 5.18 is therefore in 

agreement with the capacitively shunted model, where resistance is inversely proportional 

to roll-off frequency.  However, visible quantisation of the data is evident, as reflected by 

the error bars, and other effects may contribute to the temperature characteristics. 

5.2.3.6 Modification of the model 

At low capacitance and resistance, behaviour of the read heads deviates from that 

predicted by the capacitively shunted model as discussed in Sections 5.2.3.1 and 5.2.3.2.  

The attenuation against frequency graphs at low capacitance and resistance exhibit a 

resonant peak, as shown Figure 5.12.  As frequency increases the impedance of a 

capacitor always decreases attenuation (making it more negative), but the impedance of 

an inductor increases, causing a rise in attenuation.  The observed resonant peak indicates 

that contributions are present from at least two capacitors and one inductor.  However, it 

is likely that the circuit is considerably more complicated.   

Figure 5.14(a) indicates that a second capacitance is present in parallel to the sensor, as 

discussed in Section 5.2.3.1.  The origin of this capacitance was investigated by 

measuring devices with no shields.  Figure 5.19 shows the attenuation against frequency 
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Figure 5.18: Dependence of the roll-off frequency on temperature for device 
Y50566_Y6HNS_QAA168.   
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curves for unshielded devices of varying CD, Y50566_Y6HNS_QAA150-55.  Capacitive 

roll-off of read head performance is still observed for high resistance sensors.  This 

indicates that a second capacitance, in parallel to the sensor is indeed present.  As 

expected, roll-off frequency is significantly higher than with shields present.  To account 

for the effect of this capacitor and the inductance in the system, the model is modified to 

that shown in Figure 5.20.  Two possible causes for the additional capacitance are the 

wiring-to-substrate geometry and calibration error.    
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Figure 5.19: The effect of CD on attenuation for unshielded devices. 
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Figure 5.20: Model for the read head including inductance and extra 
capacitance (C2) an extra resistance, R2 is added for the case of substrate 
resistance. 
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The contribution to capacitance from the wiring-to-substrate area was estimated from 

Equation (5.17) and the known device properties.  The substrate used was AltecTM, a 

relatively low resistance yet versatile and durable material.  The resistance of the AltecTM 

was assumed to be negligible.  Estimates took place for the highest resistance, 65 µm CD, 

assuming a dielectric constant of 8.5 for the alumina and dielectric thickness 50 nm.  The 

device resistance was measured and wiring layer area calculated from the mask-set 

design.  When substituted into Equation (5.17), these values produce a roll-off frequency 

of 650 MHz, lower than that observed (930 ± 15 MHz).   

The model shown in Figure 5.20 was used to investigate the substrate resistance required 

to produce the observed roll-off frequency.  Inductance was neglected.  Using the same 

values as above, two complex roots were derived for the impedance: 

ZAltec = 5723 + 151784i and ZAltec = 5309 + 140753i.  Whilst a real root is expected, the 

imaginary component is extremely high impedance.  The values of the real root are high 

and may be appropriate for the AltecTM substrate.  Since roll-off was observed with no 

shields present, a high resistance substrate, such as silicon oxide, may eventually be 

required to improve performance.  
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Figure 5.21: The variation of the magnitude of the impedance and modelled impedance 
for an unshielded device with CD = 0.4 µm, Y50566_Y6HNS_QAA158. 
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Figure 5.19 shows that unshielded devices with small CD and therefore low sensor 

resistance, display an increase in impedance.  This is inductive behaviour.  No resonant 

peak is present for CD = 0.4 µm and the circuit may be modelled as a resistor and 

inductor in series, as described by Equation (5.20). 

2Z R i fLπ= +            (5.20) 

Solving Equation (5.20) at 6 GHz, produces the very small inductance, L = 2.75×10-10 H.  

Using this value for inductance, modelled impedance is plotted against frequency in 

Figure 5.21.  The modelled values correlate well with experimental results. 

5.2.3.6.1 Origin of the inductance 

The inductance present in the circuit may be due to measurement artefacts, lead 

configuration or magnetic effects.  The effect of the shield material on the inductance was 

investigated by replacing the permalloy shields with copper.  The roll-off characteristics 

for equivalent devices with copper and magnetic shields were not found to be 

significantly different, as shown by Figure 5.22.  The inductance is not a result of 

magnetic effects in the shields. 
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Figure 5.22: The effect of copper versus magnetic shields.  Differences between comparable 
devices are attributed to sensor resistance variation. 
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Calibration error is a possible source of the inductance since one-port calibration only 

corrects three error terms opposed to the twelve of two-port calibration, as discussed in 

Section 5.1.3.1.  Figure 5.4 shows that calibration error may lead to ‘ripples’ in the 

observed attenuation.  Given that the inductance calculated above is so small, it is 

possible that it is an artefact of measurement and not a device characteristic.  The network 

analyser performance was further investigated by measuring resistors in the toolkit of the 

mask (Figure 5.8).  The characteristics of inductance were observed in attenuation 

measurements, despite the simple structure and short device wiring leads.  This implies 

that the principal origin of the inductance is calibration errors, though inductance could be 

significant for other reader configurations.    

5.2.4 Subsequent literature 

The frequency response of magnetic tunnel junction read heads of the geometry shown in 

Figure 5.23(a) has been investigated by Shimazawa et al. [Shimazawa, 2001].  They 

propose the model shown in Figure 5.23(b) to explain the frequency response, based on 

the work presented by Mallinson and discussed above in Section 5.2 [Mallinson, 1996].  

Measurements of read-back data from a hard disk were made.  Two tunnel junction areas 

were measured, varying the resistance of the reader.  The effect of dielectric was also 

 
Figure 5.23: (a) Reader geometry and (b) circuit model used by 
Shimazawa.  [Shimazawa, 2001] 
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investigated.  Values of inductance, capacitance and resistance were estimated using an 

impedance tester, following fitting to the model.  The inductance obtained was 8.2 nH, 

much larger than that discovered above (Section 5.2.3.6).  This was present when the 

measurement leads were shorted with a wire and therefore assumed to be parasitic.  The 

inductance was attributed to the measurement apparatus, as concluded in 

Section 5.2.3.6.1, and subsequently omitted from the reader model.  Curves produced by 

the impedance analyser were not presented and the effect of removing the top shield was 

not investigated.  Figure 5.24(a) shows that increased reader resistance decreases the roll-

off frequency, as found above (Sections 5.2.3.2 and 5.2.3.3).   

Shimazawa et al. found that roll-off frequency increased when the Al2O3 (head B) 

insulator was replaced with SiO2 (head-A), as shown by Figure 5.24 (b).  This is expected 

 

(a) 

 

(b) 

 
Figure 5.24: (a) Effect of resistance on read-back.           
(b) Effect of insulator material on read-back. [Shimazawa, 2001] 
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from Equations (5.17) and (5.18) which suggest that f3dB∝1/εr.  The dielectric constant of 

Al2O3 is higher than that of SiO2 and whilst Shimazawa et al. do not suggest values for 

these materials, we note from the literature that εr = 3.5-5 for SiO2 and 8.5 for Al2O3.  

Exact dielectric constant values cannot be estimated due to the effect of deposition 

technique and impurities.  They suggest a low impedance amplifier configuration for 

magnetic tunnel junctions (see Section 5.2) for operation at 400 MHz, corresponding to 

800 Mbps data transfer rate.  Jury and Wang suggest that improved performance is 

possible using a buffer amplifier [Jury, 2002].   

The particular significance of the work presented by Shimazawa et al. is that results on 

the basis of full wafer build and read-back from a hard disk support the conclusions of 

this study, performed using a network analyser on wafer level devices.  Further work is 

required to identify the exact relationship between the two measurement processes and 

limitations of the network analyser technique.  

5.2.5 Implications for read head design 

Network analyser measurements of part-built readers suggest a number of design 

considerations for read heads.  Increased read head sensor resistance decreases the roll-off 

frequency, therefore low resistance readers are desirable.  Decreasing the resistance of 

magnetic tunnel junctions is essential to their application to high-density hard disk read 

heads.  Whilst manufacturers strive to increase the bit density of hard disks, sensor size 

decreases, increasing their resistance and decreasing the maximum data rate.  Shield size 

should be minimised and innovations such as the ‘Flux-thief’ pictured in Figure 5.9, 

where a break in the metal between sides of the sensor element promotes isolation, may 

improve read head performance.  Shunt capacitance between wiring and substrate could 

become significant.  A high resistance substrate such as silicon oxide is recommended. 

The development of suitable insulators with low dielectric constant is important, in order 

to decrease the shunt capacitance.  The requirement of low capacitance is in direct 

conflict with that of high-density recording, as the reader size and insulator thickness 

must be reduced.  Finally, we note that the inductance of leads may be significant and 

should be minimised.   
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5.3 The high frequency performance of insulators 

The insulator between shields and wiring layer significantly affects high frequency read 

head performance.  In particular, a low dielectric constant is required (Section 5.2.4) and 

good insulation should be maintained, regardless of the decrease of thickness required to 

obtain a larger bit density.  The dielectric properties of insulators were investigated by 

fabricating simple parallel plate capacitors for high frequency testing.  The characteristics 

of capacitors at high frequency are reviewed, followed by literature investigating the high 

frequency dielectric properties of materials.  Experimental procedure employed during 

this study is discussed, together with the results, implications and limitations of this 

technique.   

5.3.1 Capacitors at high frequency 

Equations (5.17) and (5.18) indicate that at high frequency, with constant dielectric 

thickness and capacitor area, relative permittivity of the dielectric is critical to device 

performance.  Permittivity is not necessarily constant as frequency increases.  Consider 

the loss tangent of the dielectric, defined as: 

2tan ,
f
σδ
ε

=           (5.21) 

where σ is the conductivity of the material and f the frequency.  The loss tangent 

measures the proportion of capacitor input converted into heat.  The absolute value of the 

loss tangent is not an appropriate measure for insulator applications in the reader, since 

both low conductivity and low dielectric constant are required.  However, research on 

dielectric materials for high frequency applications generally concentrates on developing 

capacitors, hence the loss tangent is often quoted.  The dielectric constant is often 

approximately constant in the range 1 Hz to 10 GHz, in which case the loss tangent can 

be considered a measure of the conductivity over frequency.   

5.3.2 The dielectric properties of insulators 

Dielectric properties of insulators have been the subject of considerable research, but 

studies generally measure sintered materials using a resonant cavity.  Figure 5.25 shows 
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the variations with frequency of permittivity and loss tangent of 99.7% sintered alumina 

[Molla, 1995].  Measurements were made on cylinders of sintered material with a height 

of 30 mm and diameter of 30 mm, using a resonant cavity.  Both loss tangent and 

permittivity change considerably over the frequency range of importance to reader 

performance (100 MHz and above).  Bulk sintered material is structurally and chemically 

different from sputtered thin films, so these results do not necessarily indicate the trend in 

permittivity and loss tangent within read head insulators.  However, it is likely that loss 

tangent and dielectric constant vary as read-back frequency increases, affecting the −3dB 

point measured.   

Maeda et al. investigated the dielectric characteristics of metal-insulator-metal capacitors 

using a network analyser.  Plasma-enhanced chemical vapour deposition was used to 

 

(a) 

(b) 

 
Figure 5.25: (a) Frequency dependence of the permittivity of 99.7% sintered Al2O3    
(b) Frequency dependence of the loss tangent of 99.7% sintered Al2O3. [Molla, 1995] 
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produce silicon nitride thin films in the range 0.1 µm to 0.66 µm.  Measurements were 

made from 10 kHz to 100 MHz using an LCR meter and a network analyser in the range 

100 MHz to 1.4 GHz.  The recovery of appropriate values of capacitance, inductance and 

resistance requires a circuit model, but no model is quoted.  They show that capacitance is 

directly proportional to the area of the plates and inversely proportional to dielectric 

thickness at 1 MHz.  Higher capacitance was observed for silicon nitride deposited onto a 

heated substrate than at room temperature, which was attributed to an increase in 

roughness and a corresponding rise in effective surface area.  However, such 

measurements do not prove the validity of their model at high frequency, where stray 

inductance often becomes significant.  Figure 5.26 shows calculations of loss tangent, 

based on measurements of the system and subsequent modelling; no clear trend is visible 

in loss tangent.  Owing to the lack of explanation of the model used, Figure 5.26 cannot 

be assumed to represent dielectric behaviour and not measurement related artefacts.  The 

peak in loss tangent at approximately 100 MHz is a characteristic of parasitic inductance. 

 
Figure 5.26: Variation in loss tangent of silicon nitride as frequency 
is increased [Maeda, 1999] 
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5.3.3 Experimental Procedure 

Parallel plate capacitors were fabricated using standard lithography and processing 

techniques.  Figure 5.27 pictures a typical capacitor, the area, A, of which is indicated.  

The copper contact pads were deposited by DC magnetron sputtering a seed layer, 

followed by electroplating to provide thick, durable contacts.  The Ta/TiW or copper 

bottom electrode was deposited by DC magnetron sputtering.  Alumina dielectric was 

produced by either ion beam deposition (with the Nordiko IBD) or chemical vapour 

deposition (ALCVD).  Table 5.2 shows the wafers measured during this study, noting the 

alumina deposition thickness and system.  The wafers were tested with the network 

analyser, as described in Section 5.2.2.2.   

 

Wafer Predicted dielectric 
thickness (nm) 

Alumina deposition system 

S5024O_SOHKO 20 ALCVD 

S50260_SOHLO 20 ALCVD 

S50330_SOHLO 30 Nordiko IBD 

S5037O_SOHM4 20 Nordiko IBD 

S5059O_SOHOK 50 ALCVD 

S5060O_SOHOO 75 ALCVD 

S5061O_SOHOS 125 ALCVD 

S5062O_SOHOW 200 ALCVD 

Table 5.2: Capacitor wafer dielectric thickness and deposition system. 

 Copper   
Al2O3 Dielectric

Bottom electrode – Cu or Ti/TiW

d

Area, A

(a) 

A 

(b) 
 

Figure 5.27: (a) Cross-section of capacitor. (b) Picture of a tested capacitor. 
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5.3.4 Results and Discussion  

Figure 5.28 shows the variation of capacitance as dielectric thickness, d, increases, 

calculated at 1 MHz.  Values were obtained by modelling the circuit as a capacitor in 

parallel with a resistor.  As expected, capacitance increases linearly with 1/d, verifying 

the model at low frequency.  The magnitude of the impedance, Z , of a circuit consisting 

of a parallel resistor, R, and capacitor, C is described by Equation (5.22). 

2 2 2 1
RZ

C Rω
=

+
          (5.22)  

A typical plot of measured impedance against frequency is shown in Figure 5.29.  The S-

parameter values at 1 MHz were used to calculate the expected impedance changes 

according to Equation (5.22).  This model neglects the effect of permittivity and 

resistance changes.  When calculated from the data, the permittivity falls rapidly at 

100 MHz to less than 1.  Clearly, the permittivity is not accurately represented by this 

model.  Impedance levels-out as frequency increases at around 1 GHz.  This behaviour is 

characteristic of a series resistance, limiting the minimum measured impedance.  
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Figure 5.28: Variation of capacitance with 1/d.  Capacitance was modelled at 1MHz for a 
capacitor and parallel resistor.  Includes wafer series S50959-62O only, where the insulator 
was deposited with the same rate calibration. 
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However, incorporation of a series resistance into the model was no more successful in 

describing the data.  High frequency calibration error of the one-port network analyser is 

likely to be responsible for these problems.  Measurement with a two-port network 

analyser is required to provide more accurate calibration and may be suitable for 

investigating the high frequency properties of dielectrics.   

Attempts to determine the effect of deposition technique on the dielectric properties of 

alumina at low frequency were unsuccessful due to inaccuracies in deposition rate 

calibration.  Large variations were observed in the properties of capacitors on wafers 

where the insulator was deposited with the same method.  Since plate areas and 

fabrication route were not changed, this suggests that alumina deposition rate was not 

consistent.  It was not possible to measure accurately the alumina thickness on fabricated 

wafers, since the films were too thin, either for determination with the ellipsometer, or by 

slicing the cross-section with a focussed ion beam followed by scanning electron 

microscopy.   
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Figure 5.29: Magnitude of impedance for a real capacitor, S5059O_SOHOK_QCZ078 
and that expected by modelling the circuit as a resistor and capacitor in parallel. 
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5.4 Conclusions 

The high frequency characteristics of read heads can be investigated using a network 

analyser at wafer level, and the results correlate well to those obtained via hard disk read-

back from fully built devices.  Testing at wafer level has significant advantages over 

measurement at full build.  The effect of individual components may be isolated by 

building the wafer towards completion layer-by-layer, promoting better understanding of 

the electronic properties of the system.  Wafer level testing dramatically decreases the 

time taken to investigate the effect of changing device geometry and composition, since 

full reader build and testing is very time consuming.  Hard disk read-back measurements 

are required to determine cross-reading and error rates.  The technique could be also be 

used to assist write head development.  However, one-port network analyser 

measurements are not suitable for the investigation of the high frequency properties of 

dielectrics.   

A simple model of a capacitor and resistor in parallel satisfactorily represents a low roll-

off frequency read head built to first half gap.  The capacitor is formed between the 

wiring layer and shield.  For readers capable of higher frequency response, a more 

complex model is required to account for an extra capacitance and inductance.  Two-port 

network analyser measurements should allow more accurate calibration and the 

determination of more system parameters, allowing better characterisation of the read 

head.  

Roll-off frequency decreases as sensor resistance increases, and for high resistance 

readers the −3dB frequency is inversely proportional to resistance.  Reader length (CD) is 

directly proportional to sensor resistance, hence minimising CD increases the roll-off 

frequency and is necessary as bit density increases.  −3dB frequency rises as sensor width 

increases.  Raising read head temperature increases sensor resistance and decreases roll-

off frequency, which is an important consideration as future heads may operate at over 

200°C.  Roll-off frequency increases as stray capacitance decreases, and for large overlap 

area between shields and wiring the −3dB point is inversely proportional to area and 

capacitance.  No correlation was found between roll-off frequency and first half gap 

thickness, the insulator between shield and sensor, which is attributed to its small area.  A 

read head designed to operate at high frequency should have a low resistance sensor and 
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minimal shield size, which may incorporate insulation between the sensor sides.  The 

requirement of low resistance demonstrates the importance of the development of low 

resistance magnetic tunnel junctions for read head applications.  
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Research into magnetic tunnel junctions has been driven by their potential application to 

read heads and magnetic random access memory (MRAM).  Large magnetoresistance 

(MR) at room temperature for magnetic tunnel junctions was first demonstrated seven 

years ago [Miyazaki, 1995].  Since then, significant improvements have been made to 

both the understanding of the effect, and MR.  However, the fabrication of high quality 

magnetic tunnel junctions is still problematic.  Many research groups struggle to obtain 

junctions with a significant magnetoresistance.   

The basic properties of magnetic tunnel junctions have already been introduced in 

Section 2.2.3.  Developments in the field of magnetic tunnel junctions are reviewed in 

this chapter.  Particular note is made of the problems associated with producing high 

quality devices.  The techniques employed to fabricate tunnel junctions during the course 

of this study are then presented.  The MR obtained from magnetic tunnel junctions 

(MTJ’s) with different ferromagnetic electrodes is discussed.  Atomic force microscope 

(AFM), vibrating sample magnetometer (VSM) and superconductor-insulator-

ferromagnet (SIF) tunnel junction measurements are used to investigate trends in MR.  

Transmission electron microscopy (TEM) images are then presented, providing useful 

insight into the structure of the deposited films.       

6.1 Literature review 

In 1975 Jullière discovered significant spin polarized tunneling between two ferromagnets 

separated by an insulating barrier [Jullière, 1975].  He observed a 14% junction 

magnetoresistance (Equation (6.2)) for Fe/Ge/Co tunnel junctions at 4.2 K and in zero 

voltage bias.  MR decreased monotonically as voltage bias increased.  Jullière suggested 

the model discussed in Section 2.2.3, where MR is attributed to the difference in 

occupation level of the spin-up and spin-down energy bands at the Fermi level.  

Equation (6.1) represents the tunneling magnetoresistance (TMR), derived using 

Jullière’s theory. 

1 2

min 1 2

2TMR
1

R PP
R PP
∆

= =
−

        (6.1)    
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where ∆R is the maximum difference in resistance observed over the field range and Rmin 

is the minimum resistance, which corresponds to a state in the electrodes of parallel 

magnetisation.  P1 and P2 are the spin polarisation of the top and bottom electrodes 

respectively.  Jullière’s simple prediction has been widely investigated and developed and 

is generally considered an upper limit for tunnel junction performance.  Experimentalists 

commonly compare their results to predictions from Equation (6.1). 

It was 20 years after the first demonstration of magnetic tunnel junctions before 

reproducible devices were produced, with significant MR at room temperature.  In 1991 

Miyazaki et al. demonstrated a 2.7% TMR at room temperature for Ni82Fe18/Al-Al2O3/Co 

[Miyazaki, 1991], later improving the value to 18% [Miyazaki, 1995].  However, these 

values were not reproducible and it was found later that the results were influenced by 

geometrical enhancement of the MR (Section 6.1.7.4) [Moodera, 1999].  In 1995, 

Moodera et al. announced a consistent room temperature magnetoresistance of over 10% 

for CoFe/Al2O3/Co [Moodera, 1995].  The following year they reported a TMR of 22% 

for CoFe/Al2O3/Co tunnel junctions [Moodera, 1996(a)].  

The properties, theory and problems associated with fabricating magnetic tunnel junctions 

are discussed below.  Hundreds of papers have been written about magnetic tunnel 

junctions since 1995.  This review presents the most significant results and theories.   

6.1.1 The definition of magnetoresistance 

The concept of MR was introduced in Section 1.2, however clarification is required as 

two definitions are in use in the literature.  This work follows the most commonly used 

definition of the MR as the TMR (Equation (6.1)).  However, some authors and 

particularly Jullière use the junction magnetoresistance (JMR), defined as:     

1 2

max 1 2

2JMR ,
1

R PP
R PP
∆

= =
+

        (6.2)   

where Rmax is the maximum resistance, and ∆R, P1 and P2 have the same meaning as in 

Equation (6.1).  At Rmax the magnetisation in the electrodes is aligned in opposite 

directions.   
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TMR values are higher than JMR values, causing some confusion in the filed, particularly 

as some authors appear to use both terms interchangeably.  Some significant results in the 

literature were presented in terms of JMR, without sufficient data to reconstruct the TMR.  

These are highlighted in the text and are included as they provide some useful insight into 

the properties of magnetic tunnel junctions. 

6.1.2 Ferromagnetic electrodes 

Equation (6.1) indicates that the magnetoresistance of junctions should increase as the 

polarisation of the ferromagnets rises.  Many different combinations of ferromagnetic 

electrode materials have been investigated by different authors.  However, it is difficult to 

identify the effect of ferromagnetic electrodes on TMR due to differences in the 

fabrication route.  In particular, both the barrier preparation and thickness vary widely.  

At low temperatures, values approaching the prediction of Jullière have been obtained.  

Moodera demonstrated a TMR of 37% at 77 K compared to the predicted value of 37.2% 

for Co/Al2O3/Ni80Fe20 tunnel junctions [Moodera, 1998].  Amongst the highest room 

temperature TMR recorded is 41% for CoFe/Al2O3/CoFe/MnIr following annealing at 

300°C [Cardoso, 2000].  Taking the polarisation of CoFe to be 47%, the predicted value 

is 56.7%.                

6.1.3 Exchange bias 

Well-defined switching at low magnetic field can be obtained by exchange biasing one 

electrode of the magnetic tunnel junction, termed the ‘pinned layer’.  The other 

ferromagnetic electrode is then termed the ‘free layer’.  Exchange biased structures 

exploit the uniaxial anisotropy of an antiferromagnetic layer to pin the magnetisation of 

the ferromagnetic electrode in one direction.  This direction is specified during deposition 

by the application of an external magnetic field.  Figure 6.1 illustrates the effect of 

exchange bias on both the resistance and hysteresis characteristics of an MTJ [Lu, 1998].  

Exchange biased structures exhibit abrupt changes in resistance and a flat top of the 

resistance peaks, compared to those without exchange bias.  These abrupt changes create 

a more linear response, as required for read head applications [Mallinson, 1996].  The 

exchange biased tunnel junction behaves more like a single domain structure.   
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The effect of exchange bias on the hysteresis curve of a ferromagnet can be visualised by 

assuming an exchange interaction at the ferromagnet-antiferromagnet interface.  Consider 

a bilayer consisting of a ferromagnet (F) and antiferromagnet (AF).  F has a Curie 

temperature, TC, below which ferromagnetic alignment occurs.  AF has a Néel 

temperature, TN, below which antiferromagnetic alignment occurs.  At a temperature, T, 

such that TN<T<TC, and in the presence of a magnetic field larger than the coercivity, the 

spins of F are aligned parallel to the field.  As the temperature is decreased, until T<TN, 

the top layer of AF aligns with the field, whilst the other spin planes within it align to 

produce zero net magnetisation.  On reversal of the field F spins start to rotate.  However, 

for sufficiently large antiferromagnetic anisotropy, the AF spin state remains unchanged.  

The exchange interaction therefore acts to maintain parallel alignment of the spins at the 

F-AF interface.  The material behaves as if an internal bias field is present, thus shifting 

the hysteresis curve on the field axis.  Many different antiferromagnetic materials have 

been investigated for the purpose of exchange bias, including synthetic antiferromagnets.  

A good review of current materials for exchange bias was written by Nogués and Schuller 

[Nogués, 1999].      

Gider et al. presented results indicating that exchange biasing significantly increased the 

stability of junctions to magnetic switching [Gider, 1998].  They investigated the 

switching properties of magnetic tunnel junctions which had either a hard ferromagnetic 
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Figure 6.1: (a) Resistance and MR versus field of       (b) hysteresis curve for the          
an exchange biased magnetic tunnel junction              as-deposited film corresponding    
at  room temperature.  Structure                     to (a). [Lu, 1998].  
Pt/Ni80Fe20/FeMn/Ni80Fe20/Al2O3/Co/Pt. [Lu, 1998]. 
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electrode or an exchange biased electrode.  The junctions were exposed to fields less than 

that required to switch the hard ferromagnetic layer’s spin direction.  This simulated the 

effect of a writer in close proximity to a read head that incorporates a reference layer.  

They found that the magnetisation of the exchange biased structure was stable for over 

107 cycles.  However, the magnetisation of the hard structure tunnel junction decayed 

logarithmically with the number of field cycles.  The reference layer in a read head is 

required to withstand millions of cycles, making exchange biased tunnel junctions more 

desirable than those with a hard ferromagnetic electrode. 

6.1.4 Angular dependence of MR    

Figure 6.2 illustrates the angular dependence of MR [Moodera, 1996(a)].  The junction 

was subjected to a high field, which was greater than the switching field of both layers, 

aligning their magnetisation.  The field was then reversed to a low value, below that at 

which peak resistance occurred.  The sample was rotated and the junction resistance 

recorded every 5-10°, for both high and low field.  Figure 6.2 shows a periodic variation 

of the resistance at low field.  This is expected when the field is larger than that required 

 
Figure 6.2: The angular dependence of magnetoresistance, illustrated 
by the changes in resistance at high and low field [Moodera, 1996(a)]. 
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to rotate the magnetisation of the softer film, but not the hard electrode.  Resistance 

reaches a maximum value when the magnetisation of the two layers is antiparallel.    

Slonczewski developed the first model of magnetic tunnel junctions to consider the 

ferromagnet-insulator-ferromagnet trilayer as a single quantum mechanical system 

[Slonczweski, 1988].  He predicted the observed angular dependence of the 

magnetoresistance.  He modelled the system as a rectangular barrier (Section 2.1), with 

the ferromagnets described by parabolic bands.  It was assumed that the electrodes 

consisted of free electron metals with momentum conserved across the junction.  This 

model results in Equation (6.3) which represents the angular dependence of the 

conductivity, G. 

( )12 1 2` 1 cos ,G G PP θ= +         (6.3) 

where G`12 is the mean surface conductance and θ is the angle between the magnetisation 

direction of the electrodes.  P1 and P2 are the effective polarisations of the top and bottom 

ferromagnetic layers respectively.  This relation agrees with the experimentally observed 

angular dependence of the magnetoresistance shown in Figure 6.2.   

6.1.5 MR dependence on voltage 

Figure 6.3 shows the decrease in MR of magnetic tunnel junctions as the bias voltage is 

increased [Moodera, 1998].  This diagram shows the JMR rather than TMR 

(Section 6.1.1).  Device applications require a stable response to voltage and the use of 

small voltages is undesirable due to increased measurement noise.  Little variation in the 

MR is observed at a low bias, ~10 mV, particularly at room temperature.   

Figure 6.4 shows variation of the conductance with bias at room temperature and at 4.2 K 

for a magnetic tunnel junction [Moodera, 1996(a)].  At room temperature the curve shape 

is as expected from Simmons theory, discussed in Section 2.1.2 [Simmons, 1963(a)].  

However, at 4.2 K a zero bias dip is observed in conductance.  The zero bias anomaly has 

been recorded by a number of authors for tunnel junctions with one or more 

ferromagnetic electrode [Wolf, 1985].  It has been proposed that a decrease in spin 

independent tunneling with temperature is responsible for the zero bias anomaly 

[Moodera, 1996(a)].  Sources of spin independent transport include spin-flip scattering 
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caused by magnetic impurities, magnons, localisation effects, multistep tunneling, the 

presence of metal particles, and states in the barrier or at the interface.  Wolf discusses the 

zero bias anomaly in detail [Wolf, 1985], however no clear explanation exists for this 

effect.  It seems likely that the true mechanism is a combination of the factors listed 

above and depends on the precise deposition conditions of the tunnel junction.   

The rapid decrease in MR with increasing bias voltage (Figure 6.3) is still not fully 

understood.  Figure 6.3(b) shows the normalised JMR versus voltage.  It indicates that the 

shape of the MR dependence, apart from the zero bias effects, is independent of 

temperature.  A number of suggestions have been made to model the decrease of MR as 

voltage bias increases.  The most popular theories are the excitation of magnons, which 

are inelastic excitations of spin waves, [Zhang, 1997], bias dependence of the effective 

barrier height [Slonczewski, 1988], two stage spin-flip tunneling [Zhang, 1998] and 

energy dependence of the polarisation [Moodera, 1995].  The decrease in the effective 

barrier height with increasing bias voltage raises the probability of minority spin 

tunneling.  This decreases the effective spin polarisation.  However, the predicted 

variation in MR from this model is low and can account for less than 1% of the observed 

rapid decrease in MR [Moodera, 1995].  Zhang and White showed that the inclusion of 

 
Figure 6.3: (a) JMR against bias voltage         Figure 6.4: Tunnel conductance              
(b) normalized JMR against bias voltage.         dependence on bias at 4.2K and 295K.  
Note this paper quotes the JMR, not TMR         [Moodera, 1996(a)].                    
[Moodera, 1998]. 
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defects into the barrier increases the rate of MR decay as voltage bias increases 

[Zhang, 1998].  They modelled this as two stage spin-flip tunneling via defect states in 

the barrier.  Bratkovsky included phonon contributions to the magnon interactions 

suggested by S. Zhang et al., shows good agreement with the data [Zhang, 1997; 

Bratkovsky, 1998].  Recently, a great deal of research has centred on the effect of the 

barrier interface states, further developing the phonon-magnon theory.  Clear implications 

may be inferred from the theoretical treatment of the MR dependence on voltage bias: the 

barrier must be high quality and the barrier/ferromagnet interface clean and abrupt.    

6.1.6 MR dependence on temperature               

The temperature dependence of MR in a typical magnetic tunnel junction is shown by 

Figure 6.5 [Shang, 1998].  Two contributions to the temperature dependence of the MR 

must be considered: intrinsic material behaviour, and extrinsic behaviour due to defect or 

interface effects.  Intrinsic behaviour was not initially thought to significantly contribute 

to the MR temperature dependence as Fermi smearing and magnetisation changes for the 

3d ferromagnets are small below 300 K [Moodera, 1995; Zhang, 1998].  A number of 

researchers have suggested that spin independent tunneling makes a significant 

contribution to the temperature dependence of MR [Moodera, 1998; Zhang, 1998].  

Zhang and White suggested a two stage tunneling mechanism via defect states in the 

barrier, producing spin independent transport [Zhang, 1998].  They presented results 

supporting this theory showing that as temperature increased, magnetic tunnel junctions 

with a large number of defects experienced a more rapid MR decrease than those with 

fewer defects.  Shang et al. suggested that polarisation changes, principally caused by 

surface effects in the ferromagnetic electrodes, are the main cause of the decrease in MR 

[Shang, 1998].  They predicted that the polarisation changes as: 

( )
3
2

0 1P T P Tα
 

= − 
 

.         (6.4) 

P0 is the polarisation at 0 K, T is the temperature and α is a material dependent constant.  

Figure 6.5 shows the results of this model.  They found a less significant second source of 

conductance, due to spin independent tunneling, which was proportional to T 1.35±0.15.  

This is supported by Hagler et al., who found that only 10% of conduction at room 
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temperature in tunnel junctions was attributable to spin independent tunneling 

[Hagler, 2001].  Davis et al. have modelled the effect of Fermi smearing and exchange 

splitting on the temperature dependence of MR [Davis, 2001].  They found that such 

effects could account for 33% of the drop in MR between 0 K and 300 K for the tunnel 

junctions fabricated by LeClair et al. [LeClair, 2000].   

Spin independent tunneling is dependent upon junction quality.  The lack of significant 

room temperature MR between 1975 and 1995 may indicate the presence of significant 

spin-flip events due to poor barrier quality.  It is likely that all the above effects contribute 

to the temperature dependence of MR in different proportions, depending on the barrier 

and ferromagnetic electrode quality.   

6.1.7 Problems of magnetic tunnel junction fabrication 

6.1.7.1 Barrier production 

Barrier quality is critical to magnetic tunnel junction performance.  Ideal requirements for 

the barrier are stringent.  It should be homogeneous, have no pinholes, be defect free and 

be fully oxidised, yet not over oxidised.  The resistance-area product (RA) has been 

 
Figure 6.5: Temperature dependence of MR, ∆G(T) and ∆G(77 K)   are the 
difference between minimum and maximum conductance on sweeping the 
magnetic field at temperature T and 77 K, respectively [Shang, 1998]. 
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adopted as a convenient measure for the comparison of barrier resistance.  The lowest 

possible RA is required.  Values of less than 1 kΩµm2 may be suitable to permit rapid 

frequency response in read head applications, as discussed in Chapter 5.  This suggests 

that that barrier should be thin and its height as low as possible whilst maintaining 

tunneling dominated conductance.  Pinholes and weak-links are more likely to occur for 

thin barriers (Chapter 7) and are detrimental to device performance.  Barrier materials, 

aluminium deposition thickness for Al2O3 barriers, oxidation technique and barrier 

defects are discussed in Sections 6.1.7.1.1 to 6.1.7.1.4.    

6.1.7.1.1 Barrier material 

A number of materials have been investigated for use as a magnetic tunnel junction 

barrier.  Al2O3 is most commonly used, but other insulators include CoO, NiO, AlN, 

MgO, Ta2O5 and ZnS.  The lowest RA for a magnetic tunnel junction with Al2O3 barrier 

and large TMR (≈20%) is ≈1 kΩ µm2 (Section 6.1.7.1.3) [Boeve, 2001].  Various studies 

investigated the performance of magnetic oxides, such as CoO and NiO as tunnel barriers 

[Platt, 1997].  However, in the light of theoretical developments as described in 

Sections 6.1.5 and 6.1.6, it seems likely that magnetic scattering centres within the barrier 

led to the observed poor device performance.  Guth et al. recently demonstrated a room 

temperature TMR of 5.16% for a junction with ZnS barrier and CoFe electrodes 

[Guth, 2001].  They estimated a barrier height of 0.56 eV with a thickness of 1.4 nm by 

fitting the I-V characteristics to the Brinkmann model [Brinkmann, 1970].  The RA 

products for the devices were in the range 2-3 kΩµm2 and therefore higher than the 

lowest values for Al2O3.  The low barrier height makes junctions more susceptible to spin 

independent tunneling than Al2O3 barriers.  This is reflected in the low MR reported.  

Currently, ZnS barriers offer no improvement over Al2O3.   

Ta2O5 has recently been shown to exhibit 10% room temperature TMR, with a high RA 

of approximately 100 MΩµm2 [Gillies, 2001].  Gillies et al. reported a lower barrier 

height of 0.9 eV, compared with that generally reported for Al2O3, 1.5-2 eV.  However, 

tantalum expands by 125% during oxidation, compared to only 26% for aluminium, and 

therefore extremely thin tantalum layers must be deposited to form an acceptable barrier.  

Whilst it may be possible to reduce the RA for tantalum oxide barriers, the technological 
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challenge of depositing thinner layers of tantalum than aluminium, without pinhole 

formation or over oxidation, currently seems prohibitive to their development.   

MgO barriers have been demonstrated with lower TMR than that of Al2O3 junctions but a 

barrier height of only 0.9 eV [Moodera, 1996(a); Platt, 1997].  Moodera et al. measured 

the dependence of the MR on bias voltage for Al2O3 and MgO.  They found the MR 

decay of MgO to be much more rapid than that of Al2O3.  This poor performance of MgO 

barriers is likely to be predominantly due to the susceptibility of the lower barrier height 

to spin independent tunneling.  However, Moodera did not present any data from MgO 

barriers.  Platt presented magnetic tunnel junctions with TMR of over 20% at 77 K, but 

huge RA (≈1 GΩµm2).  This was due to the large barrier thickness required to eliminate 

pinholes.   

AlN is currently showing promise for low resistance magnetic tunnel junction barriers.  

Magnetic tunnel junctions with AlN barriers have been presented with room temperature 

TMR in the range 13-33% [Wang, 2001].  The corresponding RA was in the range 

73 Ωµm2 - 8.5 kΩµm2, with barrier height 0.7-2 eV.  Bias and temperature dependence of 

MR was not investigated.  Further research is required to investigate whether this barrier 

material offers any advantages over Al2O3 barriers.  Most current research concentrates 

on Al2O3 barriers due to their repeatability, high MR, and voltage and temperature 

dependence.  However, lowering RA is still a priority.          

6.1.7.1.2 Aluminium thickness 

The oxide barrier is generally produced by the deposition of aluminium, followed by 

oxidation, as discussed in Section 6.1.7.1.3.  The optimum aluminium thickness required 

for oxidation to form high quality Al2O3 barriers has been investigated.  Three causes of 

decreased TMR can be identified.  Oxidation of the bottom ferromagnetic electrode may 

occur if the aluminium is too thin.  The significant contributions to spin scattering at the 

interface caused by such surface defects have been discussed in Sections 6.1.5 and 6.1.6.  

This effect considerably decreases the TMR at room temperature, as shown by Figure 6.6.  

A second consequence of thin aluminium is the possible formation of pinholes or weak-

links through the barrier.  Such defects cause device failure.  However, large thickness 

leads to excess nonmagnetic, unoxidised material at the interface.  Investigation into the 
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effect of nonmagnetic layers was performed by inserting thin films of Au or Cu above the 

bottom electrode of ferromagnet-insulator-superconductor tunnel junctions [Pierce, 1974; 

Moodera, 1989].  The inclusion of such layers led to the rapid reduction of effective 

polarisation.  For example, a decrease from 40% to 3% was observed when 0.6 nm of Au 

was introduced between an iron electrode and barrier [Moodera, 1989].  Polarisation was 

inversely proportional to the thickness of normal metal.  Excess aluminium is expected to 

behave similarly, by reducing the electrode polarisation and thus lowering the MR of a 

magnetic tunnel junction.  An aluminium buffer layer is often deposited above the barrier 

(Section 4.1.1.1), this is also expected to reduce the effective polarisation of the 

ferromagnetic electrode.   

A very thick oxide may be formed, for example by the multiple deposition of thin 

aluminium followed by oxidation (Section 6.1.7.1.3).  Single step tunneling probability 

decreases as oxide thickness increases and multi-step, spin-independent transport 

becomes significant.  However, thick oxides produce a large RA and are not suitable for 

magnetic tunnel junction applications in MRAM or read heads.  Figure 6.6 shows the 

 
Figure 6.6: JMR variation as aluminum thickness is changed for    
(a) NiFe top electrode and (b) CoFe top electrode.  [Moodera, 1997]. 
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effect of aluminium thickness on the JMR of a series of tunnel junctions 

[Moodera, 1997].  The films of composition Co/Al2O3/Ni80Fe20 and Co/Al2O3/Co50Fe50 

were deposited by thermal evaporation and the oxidation performed by glow discharge 

plasma.   

Figure 6.6 illustrates that the use of different top electrodes requires different optimum 

aluminium thickness.  This variation may be caused by damage to the barrier during top 

electrode deposition.  Different deposition techniques and conditions will also change the 

observed behaviour.  Additionally, the oxidation method will influence the over-oxidation 

of junctions.  Moodera et al. used oxygen glow discharge.  This is a vigorous technique 

which generally forms thick oxides.  Natural oxidation may lead to less over-oxidation.  

The aluminium thickness required for optimum tunnel junction performance is likely to 

be specific to the materials, techniques and equipment used.  

6.1.7.1.3 Oxidation technique 

A number of different oxidation techniques have been investigated for the fabrication of 

the Al2O3 insulating barrier.  This barrier is most commonly used in magnetic tunnel 

junctions.  Natural oxidation has been investigated in atmospherei, pure oxygenii and 

ozoneiii, in addition to multiple deposition and oxidation in pure oxygeniv.  Oxidation has 

also been undertaken by RF or DC plasmav, and sputter deposition of aluminium in the 

presence of oxygenvi.  Plasma oxidation of the aluminium layer in an RF or DC bias is the 

most common method used in the fabrication of magnetic tunnel junctions.  This 

technique generally leads to high TMR but also a very high RA (~10 MΩµm2).  Sousa et 

al. have produced one of the lowest RA for tunnel junctions fabricated using this method, 

averaging 25 kΩµm2 for a TMR of 21% before annealing [Sousa, 1999].   

Miyazaki et al. performed oxidation by opening the deposition chamber to air after 

aluminium deposition [Miyazaki, 1995].  This produced the reasonable RA of 

6.4×103 Ωµm2 and TMR of 1.2% (corrected for geometrical enhancement from 18%, see 

                                                 
i [Miyazaki, 1995] 
ii [Boeve, 2001] 
iii [Park, 2001] 
iv [Wong, 1998] 
v [Moodera, 1997]; [Sousa, 1998] 
vi [Tondra, 1998] 
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Section 6.1.7.4).  However, this oxidation was performed for 24 hours, which is not 

practical for industrial application.  The time taken to evacuate the system twice is also 

prohibitive.  Surface contamination of the aluminium oxide is difficult to avoid in air and 

could severely reduce the TMR.  Natural oxidation in-situ, using ‘pure’ oxygen has been 

investigated by a number of authors.  This technique generally produces a lower RA than 

plasma oxidation.  As an example, Figure 6.7 shows TMR versus RA for tunnel junctions 

with naturally oxidised barriers [Boeve, 2001].  Oxidation took place for different times 

in 13.3 kPa O2.  Maximum observed TMR was 20% with an RA of approximately 

1 kΩµm2.   

Barrier production by sputtering aluminium in an atmosphere of argon with a small 

(unspecified) amount of oxygen has been used to produce tunnel junctions with 20% 

TMR and RA of 110 MΩm2 [Tondra, 1998].  However, sputtering aluminium in an 

atmosphere containing some oxygen is likely to cause intermixing at the interface, due to 

the incident kinetic energy of oxide molecules.  Boeve et al. were unsuccessful in their 

attempts to produce working magnetic tunnel junctions, producing the barrier by 

sputtering aluminium in an atmosphere of 85% argon and 15% oxygen [Boeve, 2001].  

The zero TMR recorded was attributed to oxidation of the ferromagnetic electrode, and 

was identified by TEM.       

 
Figure 6.7: MR variation with RA, showing time of oxidation in 
13.3 kPa oxygen. [Boeve, 2001]  
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A barrier may be fabricated by multiple oxidation.  Wong et al. used this method to 

demonstrate a TMR of 6.2% and RA of 0.96 kΩµm2 at room temperature [Wong, 1998].  

A thin aluminium layer was deposited and oxidised naturally in 1 kPa O2. This was 

followed by further thin aluminium layers and oxidation thus minimising the thickness of 

unoxidised aluminium.  TMR values were limited by the inclusion of an aluminium layer 

above the barrier, to protect the oxide from damage (Sections 4.1.1.1 and 6.1.7.1.2).  Park 

and Lee demonstrated magnetic tunnel junctions with Al2O3 barrier produced by 

aluminium oxidation in an atmosphere of ozone [Park, 2001].  They recorded TMR 

values of approximately 20% with RA of 8 MΩµm2.  The RA value is too high for read 

head sensor applications, although shortened oxidation times may lower this value.  

The low RA produced by natural oxidation, or multiple natural oxidation is attractive for 

the application of tunnel junctions to read heads.  Although higher MR has been obtained 

for plasma oxidation, large RA is generally produced.  Further investigation is required 

into oxidation technique to produce repeatable, low RA, high TMR magnetic tunnel 

junctions.   

6.1.7.1.4 Barrier defects 

Theories discussing the voltage and temperature dependence of the TMR in magnetic 

tunnel junctions have highlighted the significance of defects in the barrier [Zhang, 1997; 

Zhang, 1998].  These defects provide spin scattering sites or encourage two-stage spin-

flip tunneling.  High MR requires the dominance of spin dependent transport over spin 

independent transport.  Pinholes and weak-links in the barrier also decrease TMR.  

Incorporation of sub-monolayer amounts of cobalt, palladium, copper and nickel into the 

middle of the barrier has been investigated (Figure 6.8) [Jansen, 1998].  Figure 6.8 

represents results for the JMR as insufficient data was available to convert to TMR.  As 

expected, the diagram shows that MR decreases with increasing impurity concentration.  

Jansen et al. derived Equation (6.5) to represent the effect of scattering and spin-flip 

tunneling caused by impurities in the barrier.   

( )
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where f is the fraction of spin-flip events and MR0 the magnetoresistance in the absence of 

spin flip.   

The formation of pinholes is detrimental to device performance, as discussed in Chapter 4 

and Chapter 7.  Generally, pinholes are pictured as regions in which aluminium 

deposition has not occurred, thus allowing metallic contact between the top and bottom 

electrodes.  Pinholes act in parallel to the tunnel junction and, due to their low resistance, 

electrically short circuit the tunneling conductance.  Aluminium oxide barriers are 

generally amorphous [Dunin-Borkowski, 1999; Portier, 2001] and therefore produce a 

smooth layer.  The approximately 26% volume increase on oxidation of aluminium 

reduces the incidence of pinholes [Portier, 2001].  However, an inhomogeneous 

aluminium thickness may lead to weak-links in the barrier.  Such weak-links are not 

pinholes, but are thin oxide regions and therefore provide a lower resistance current path.  

They generally result from the use of extremely thin layers, underlayer roughness or 

deposition problems.  Weak-links are sometimes termed ‘hot-spots’ due to the higher 

currents carried and associated heating effects.  They break down rapidly on the 

application of a voltage bias, thereby leading to junction shorting.   

Tests to identify a tunnel junction with pinholes were investigated (Chapter 4).  It was 

found that a decrease in resistance as temperature drops is a reliable characteristic of 

 
Figure 6.8: Decrease in normalized JMR as the thickness of various defects 
incorporated into the center of the barrier increases [Jansen, 1998]. 
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pinholes.  Due to the requirements of a low resistance barrier, insulator thickness must be 

minimised.  This leads to a severe risk of pinhole and weak-link formation.  An increase 

in the number of randomly distributed pinholes and weak-links causes a decrease in the 

yield of working tunnel junctions.  Schad et al. proposed the decoration of pinholes and 

weak-links with copper, allowing identification by scanning electron microscopy (SEM) 

[Schad, 2000; Allen, 2001].  A bottom electrode/barrier structure was deposited on a 

silicon wafer, covered with 200 nm of silicon nitride.  The electrodeposition of copper 

then took place in a copper sulphate solution.  Pinholes in the barrier act as a conducting 

path and copper plating occurs, leading to the build up of cauliflower-like copper 

features.  Dielectric breakdown of the thin insulator at weak-links leads to the formation 

of conducting paths, where electrodeposition may also occur.  The copper features 

produced are easily identified in an SEM by their bright contrast due to their low 

resistance.  This allows the determination of the number of pinholes and weak-links per 

unit area.  This technique is discussed in depth in Chapter 7, where the cause of weak-

links and pinholes has been investigated using the electrodeposition of copper.     

6.1.7.2 Effect of electrode roughness 

Roughness of the bottom ferromagnetic electrode leads to two problems with the 

fabrication of high quality magnetic tunnel junctions.  These are magnetic coupling 

through the barrier and a non-uniform oxide layer.  Dipolar or orange peel coupling can 

prevent ferromagnetic electrodes from switching independently [Néel, 1962].  Néel 

derived Equation (6.6) for the coupling energy, J, between two ferromagnetic films.  M 

and M` are the saturation magnetisation of the films, which are separated by a barrier 

thickness t.  The interface roughness is described by a two dimensional sinusoidal relation 

with amplitude h and wavelength λ.    

( )
2 2

0
2 2` exp ,

2
h tJ MMπ πµ
λ λ

 −
=   

 
       (6.6) 

where µ0 is the permeability of free space.  The coupling field, HCP of the free 

ferromagnetic layer, with thickness tf and magnetisation M is then predicted by 

Equation (6.7) [Kools, 1996]: 
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Boeve et al. used Equations (6.6) and (6.7) to fit data for naturally oxidised tunnel 

junctions of the structure Co90Fe10/AlOx/Co90Fe10/Ni80Fe20 [Boeve, 2001].  x represents 

the degree of oxidation of the aluminium.  Figure 6.9 shows the variation of interlayer 

coupling field with aluminium thickness.  They found values of h = 0.22 nm and 

λ = 12.5 nm, which they assigned to the barrier thickness variation and grain size 

respectively.  However, their films were extremely regular and flat, as demonstrated by 

transmission electron microscope (TEM) images.  The results presented in Section 6.3.2 

and those of other authors show films with rough bottom electrodes [Bruckl, 2001; 

Clark, 1999; Portier, 2001].  Therefore the roughness of the bottom electrode generally 

dominates the height variation of the barrier.  Such roughness is also likely to induce 

thickness variation in the aluminium barrier.  This indicates that the switching fields of 

magnetic tunnel junctions may be shifted due to orange peel coupling [Boeve, 2001].  

Furthermore, the ferromagnetic layers may be strongly coupled preventing independent 

switching.  Orange peel coupling is discussed further in Section 6.3.1.1.2. 

 
Figure 6.9: The variation of interlayer coupling field with aluminium 
thickness [Boeve, 2001]. 
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The second problem associated with rough ferromagnetic electrodes is the non-uniformity 

of aluminium thickness due to deposition self-shadowing effects.  This leads to either 

incomplete coverage of the electrodes or weak-links in the insulator.  As discussed in 

Section 6.1.7.1.4, weak-links are likely to form ‘hot-spots’ and cause the barrier to break-

down at low voltage.  The relationship between electrode roughness and the number of 

weak-links and pinholes per unit area is discussed in Chapter 7. 

6.1.7.3 Annealing and temperature stability 

The effect of annealing magnetic tunnel junctions has been investigated by measuring 

device characteristics and studying TEM images.  A number of authors have identified an 

improvement in TMR after annealing at modest temperature, <230°C.  However, TMR 

drops for higher temperature annealing, as illustrated by Figure 6.10 [Sousa, 1999].  This 

figure shows the results of annealing exchange biased junctions of the structure 

Ta/NiFe/CoFe/Al2O3/CoFe/MnRh/Ta, with relatively low RA, in the range 25-60 kΩµm2.  

Annealing took place for one hour in the presence of an external magnetic field.  Sousa et 

al. presented Rutherford backscattering data to indicate the barrier oxygen content during 

annealing.  They suggested that the cause of the increase in MR for annealing at 

temperatures up to 200°C was the diffusion of oxygen from the CoFe/Al2O3 interface into 

the barrier, thus increasing the effective polarisation and decreasing scattering.  At higher 

temperatures they suggested that the changes in barrier height and thickness indicated 

structural change (Figure 6.10).  However, effective barrier height and thickness are 

calculated values rather than physical quantities.  It is likely that the diffusion of defects 

caused the changes in the effective barrier height and thickness.   

A number of research groups have investigated the annealing of magnetic tunnel 

junctions.  It is clear that the dependency of TMR on annealing depends on the deposition 

conditions and defect concentrations.  Generally, annealing for one hour in the presence 

of an external magnetic field at temperatures up to 230°C increases TMR.  Parkin et al. 

observed improvements in TMR at annealing temperatures up to 300°C [Parkin, 1999].  

The improvement in TMR is due to homogenisation of the barrier and diffusion of 

oxygen from the barrier interfaces to its bulk.  The decrease in TMR caused by annealing 

at high temperature has been attributed to the diffusion of atoms from the electrode metal 

into the barrier [Moodera, 1998].   



Chapter 6 – Magnetic tunnel junctions 

151 

6.1.7.4 Geometrical enhancement 

Geometrical enhancement of the TMR may be observed when the actual junction 

resistance, RT, becomes comparable to the resistance of the leads over the junction area, 

 
Figure 6.10: The effect of annealing on junction parameters (a) RA product (b) TMR 
(c) effective barrier thickness and (d) effective barrier height. [Sousa, 1999] 
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RL [Pederson, 1967].  When this occurs, the measured junction resistance, RJ, is less 

than RT, due to non-uniform current flow.  Figure 6.11 shows the effect of such 

geometrical effects on the TMR for magnetic tunnel junctions [Moodera, 1996(b)].  

Pederson and Vernon developed a one-dimensional model of coplanar tunnel junctions to 

explain this effect [Pederson, 1967].  They predict that when RL<30RT geometrical 

enhancement is negligible and when RL>3RT negative values for RJ may be observed, as 

shown in Figure 6.11 [Moodera, 1996(b)].  Van de Veerdonk et al. modelled the non-

uniform electrode current distribution, which can lead to significant voltage drop in the 

electrodes [Van de Veerdonk, 1997].  For a cross-geometry tunnel junction, when RL 

becomes comparable to RJ, the current flow becomes largest in the corner where the two 

leads meet.  When the leads are good quality and thick geometrical enhancement should 

not occur.    

 
Figure 6.11: Geometrical enhancement of MR [Moodera, 1996(b)]. 
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6.1.7.5 Shape anisotropy 

Magnetic tunnel junction shape can affect the switching response.  This is shown in 

Figure 6.12 [Gallagher, 1997].  Gallagher et al. deposited the film structure: 

Cu/Py/MnFe/Py/Al2O3/Py/Pt, where Py represents permalloy.  Junctions shown in the 

figure have the same area but different aspect ratios in relation to the magnetic field.  

Switching is most abrupt when magnetic field is aligned along the easy axis of the 

electrode.  The demagnetising field depends on shape anisotropy, intrinsic anisotropy, 

domain structure and inhomogeneities such as edge roughness.   

6.2 Fabrication and testing of magnetic tunnel junctions        

The fabrication and testing procedures for magnetic tunnel junctions have been discussed 

in Chapter 3.  Specific conditions for films and devices presented in this chapter are listed 

Figure 6.12: The effect of shape on magnetic tunnel junction response as the aspect ratio 
of junctions changes from (a) 2×128 µm2 to (f) 128×2 µm2 [Gallagher, 1997].  
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in this section.  A review of the deposition and processing route is included for 

convenience.   

Films suitable for SIF devices were deposited and subsequently fabricated to check the 

integrity of each magnetic tunnel junction deposition run.  The rotating stage and 

shielding on the flange allowed the deposition of up to three different types of device 

during one run, as discussed in Section 3.2.1.  The ability to deposit and subsequently 

fabricate magnetic tunnel junctions and SIF devices with ferromagnet bottom and top 

electrode during the same run was a considerable aid to MTJ development.  The use of 

SIF devices to characterise deposition and device fabrication quality was discussed in 

Chapter 4    

6.2.1 Film deposition 

Films were deposited on 5×10 mm oxidised silicon substrates by whole wafer DC 

magnetron sputtering, except run 9617 which used 3.5×12.5 mm r-plane sapphire 

substrates.  Substrate preparation and deposition procedure are described in Section 3.2.  

Tables 6.1 and 6.2 show the deposition conditions and layer thickness for films presented 

in this chapter.  Consistent procedures and rate calibrations were used throughout the 

study, deposition rates are shown in Table 4.2.  Table 6.2 shows that two depositions 

were undertaken with CoFe electrodes.  CoFe was deposited by co-sputtering the cobalt 

and iron targets, each at 13.5 W power, whilst rotating the stage rapidly.  The deposition 

rate from iron and cobalt is the same to within the experimental error.  The CoFe 

deposition rate was 0.096 nmW-1min-1.  The requirement of presputtering positions whilst 

depositing from two targets at once was prohibitive.  Therefore it was not possible to 

produce SIF films in addition to magnetic tunnel junctions.  CoFe was not pursued as an 

electrode of ferromagnetic tunnel junctions, but VSM investigation into magnetic 

coupling through the thick aluminium layers is presented below.  
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6.2.2 Device fabrication 

Standard processing and lithography techniques were used to fabricate devices.  These are 

described in Section 3.3 and part-built devices are shown in Figure 4.10.  The processing 

route may be summarised as: 

1. Junction area defined by optical lithography, mesa junctions produced by ion 

milling. 

2. Base layer defined by optical lithography followed by ion milling. 

3. Negative resist profile for lift-off defined by optical lithography followed by silica 

insulation deposition and lift-off in acetone. 

4. Negative resist profile defined by optical lithography followed by a brief ion mill, 

niobium wiring deposition and lift-off in acetone.   

All optical lithography took place on the Karl Süss contact printer, using AZ1529 

photoresist spun at 5000 rpm for 30 seconds.  Lithography conditions are a complex 

function of temperature, humidity, bulb calibration, age of resist and age of developer.  

Some variation in device definition is expected, as discussed in Section 4.2.3.  The effects 

of changes in the lithography, milling and deposition rates were minimised.   

 



 

Table 6.1: Deposition conditions for MTJ and SIF films presented in Section 6.3 
 
 

Layer Condition 9716_3 11336_(1/2/3) 11363_(1/2/3/4) 

Niobium Passes, speed 16, 1× 2, 2× and 15, 2× 2, 2× and 15, 2× 

 Pressure (Pa) 0.74 0.3 and 0.7 0.3 and 0.7 

 Expected thickness (nm) 36.5 19.4 19.4 

Cobalt/Iron Ferromagnet  Fe Fe Co 

 Passes, speed 10, 1× 10, 1× 104 secs stationary 

 Pressure (Pa) 2.7 2.7 1.02 

 Expected thickness (nm) 10.5 10.5 11.7 

Aluminium Passes, speed 2, 1× 3, 2× (_1/2) or 0.5× (_3) 3, 2× 

 Pressure (Pa) 0.67 0.7 0.7 

 Expected thickness (nm) 0.8 2.5 or 10 2.5 

Oxidation Pressure (Pa), time (mins). 1000, 60 1000, 60 1000, 60 

Aluminium Passes, speed 5, 1× 1, 1× 1, 1× 

 Pressure (Pa) 0.81 0.7 0.7 

 Expected thickness (nm) 2 1.7 1.7 

Cobalt/ Ferromagnet  Ni80Fe15.5Mo4.5 Co (_2 and _3 only) Fe (_1/2/3 only) 

Iron/  Passes, speed 10, 1× 104 secs stationary 10, 1× 

Permalloy Pressure (Pa) 0.59 4 reduced to 1 4 reduced to 2.7 

 Expected thickness (nm) 8.7 11.7 10.5 

Niobium Passes, speed 4, 1× 1, 1× and 11, 1× (_1) or 2× (_2/3) 1, 1× and 11, 2× (_1/2/3) or 1× (_4) 

 Pressure (Pa) 0.85 4 and 0.7 4 and 0.7 

 Expected thickness (nm) 9.12 27.4 (_1) or 13.7 (_2/3) 13.7 (_1/2/3) or 27.4 (_4)  



 

 
               Table 6.2: Deposition conditions for films presented in Section 6.6 
 
 
 

Layer Condition 11198_1 11259_1 11464_(2/3/) 

Niobium Passes, speed 2, 2× and 15, 2× 2, 2× and 15, 2× 2, 2× and 15, 2× 

 Pressure (Pa) 0.3 and 0.7 0.3 and 0.7 0.3 and 0.7 

 Expected thickness (nm) 19.4 19.4 19.4 

Cobalt/Iron Ferromagnet  Co Co Co (_2) or Fe (_3) 

 Passes, speed 104 secs stationary  104 secs stationary  104 secs stationary or 10,1× 

 Pressure (Pa) 1.04 1.04 1 or 2.7 

 Expected thickness (nm) 11.7 11.7 11.7 or 10.5 

Aluminium Passes, speed 24, 4× 24, 2× 0.5×  

 Pressure (Pa) 0.7 0.7 0.7 

 Expected thickness (nm) 10 20 7.5 

Oxidation Pressure (Pa), time (mins). 1000, 60 1000, 60 1000, 60 

Aluminium Passes, speed 8, 2× 8, 2× - 

 Pressure (Pa) 0.7 0.7 - 

 Expected thickness (nm) 6.6 6.6 - 

CoFe Passes, speed 4, 2× and 16, 2× 4, 2× and 16, 2× - 

 Pressure (Pa) 4 and 2.7 4 and 2.7 - 

 Expected thickness (nm) 13 13 - 

Niobium Passes, speed 1, 1× and 11, 2× 1, 1× and 11, 2× - 

 Pressure (Pa) 0.7 0.7 - 

 Expected thickness (nm) 13.7  13.7  9.12 
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6.3 Results 

6.3.1 The effect of bottom electrode 

Figure 6.13 shows the TMR obtained from devices 11336_2_1d and 11363_1_1g.  These 

6×6 µm magnetic tunnel junctions were tested at 77 K and room temperature.  Devices 

were fabricated from the film 11336_2 which was of the structure 

Nb/Fe/Al2O3/Al/Co/Nb.  These junctions exhibited 2.9% TMR (2.8% JMR) at 77 K, and 

1.8% TMR at room temperature.  Devices from 11363_1, of the structure 

Nb/Co/Al2O3/Al/Fe/Nb with Co bottom electrode, showed much smaller TMR of about 

0.3% at 77 K and negligible TMR at room temperature.  SIF devices were fabricated from 

both deposition runs and were reasonable quality with figure-of-merit (FOM) in the range 

2.5-4 at 4.2 K.  FOM is the ratio of the conductance of the SIF junction in the normal 

state to that at zero bias (Section 4.1.2).  This indicates that tunneling was the principle 

transport mechanism at 4.2 K and that the fabrication route was satisfactory. 
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Figure 6.13: TMR of devices 11336_2_1d and 11363_1_1g, Fe bottom and top electrodes 
respectively. 
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6.3.1.1 Film characteristics 

The difference in TMR caused by changing the bottom electrode from iron to cobalt was 

investigated using VSM and AFM measurements on as-deposited films.  Figure 6.14 

shows the hysteresis curve for the film 11336_2 as well as resistance-field measurements 

at 77 K for the corresponding device, 11336_2_1d.  Unlike Figure 2.19, there is no clear 
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Figure 6.14: The resistance-field characteristics for 11336_2_1d at 77K and the hysteresis 
curve for 11336_2.  Lines and arrows indicate possible inflections in the hysteresis curve. 
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Figure 6.15: Hysteresis curves at room temperature for 11336_2 magnetic tunnel junction 
film and corresponding individual magnetic layers. 
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independent magnetic switching of the layers is clear.  The straight lines act as visual aids 

which identify two slight inflections in the curve on each branch of the hysteresis loop.  

Figure 6.15 shows the hysteresis curve for the Nb/Fe/Al2O3/Al/Co/Nb trilayer in addition 

to those for iron, in the film Nb/Fe/Al2O3/Al/Nb and cobalt in the film 

Nb/Al2O3/Al/Co/Nb.  The volume of each ferromagnetic material in the SIF junctions is 

the same as that found in the respective layer of the magnetic tunnel junction films.  The 

relative saturation magnetisation of cobalt and iron in the SIF films suggest the proportion 

of the magnetic tunnel junction trilayer saturation magnetisation for which these materials 

are responsible.  Possible switching in the magnetic tunnel junction trilayer does not 

appear to correspond to the magnetisations suggested by results from the SIF films.  

Figures 6.14 and 6.15 indicate that the magnetic layers in the film 11336_2 are strongly 

coupled.  Similar curves were observed for 11636_1 and other magnetic tunnel junction 

films.   

AFM measurements made on the films 11336_2 and 11363_1 indicated a negligible 

difference in roughness between the complete multilayers.  Films were deposited to the 

barrier and not beyond (deposition 11464) to investigate the roughness at the barrier and 

the number of pinhole and weak-links per unit area.  Figure 6.16 shows cross-sections of 

images measured with the AFM for these films.  The diagram shows that a cobalt bottom 

electrode produces a considerably rougher interface at the barrier than iron.  Roughness 

values estimated using the AFM (Section 3.4.1.2) are 1.8 nm for a cobalt bottom 

electrode and 0.3 nm for an iron bottom electrode.  Measurements were made in a 1 µm 

square to measure short range height variation.  The layers deposited above the barrier for 

tunnel junction films homogenise the profile thereby decreasing the observed roughness.  

Increased electrode roughness can produce two problems (discussed in Section 6.1.7.2), 

higher pinhole or weak-link formation and increased orange peel coupling.   

6.3.1.1.1 Copper decoration 

The effect of the choice of bottom electrode on pinhole and weak-link density was 

investigated by copper decoration (Section 6.1.7.2).  This technique, which is the subject 

of Chapter 7, involves the electrodeposition of copper onto films deposited up to the 

barrier (deposition run 11464).  The method is based on the work of Schad et al. 

[Schad, 2000].  The experimental technique, apparatus and issues are discussed in detail 
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in Chapter 7.  A drop of 0.1 M copper sulphate 0.1 M sulphuric acid solution was placed 

on the film with a pipette (Figure 7.15).  A sprung-loaded touch-down tip placed on the 

bare film provided the anode.  A copper needle cathode was lowered into the drop of 

electrolyte.  A Keithley 487 was used to apply a voltage of –300 mV for thirty seconds 

and to measure the current.  The Keithley 487 was controlled via a LabVIEWTM computer 

programme, written by Dr G. Burnell.  The chip was removed, rinsed gently in distilled 

water and then dried in air.  Digital images of the area which had been covered by the 

drop were recorded with a JEOL 820 scanning electron microscope.  Copper features 

were clearly visible due to their high conductance compared to the insulating barrier.  The 

number of copper features per image was estimated using the UTHSCSA ImageToolTM 

graphics package.  The number of features represents the number of pinholes and weak-

points in that region.   

The number of copper features per unit area was 1.35×1010 m-2 for a film with cobalt 

bottom electrode (11464_2), and was 4.56×109 m-2 for an iron bottom electrode 

(11464_3).  The number of weak-links and pinholes per unit area increases when the iron 

bottom electrode is replaced by cobalt.  This is in accordance with the decrease in 

magnetic tunnel junction TMR from 3% to 0.2%, at 77 K.  However, in zero magnetic 

field at 77 K, the resistance of equivalent devices 11336_2_1d (Fe) and 11363_1_1g (Co) 

was extremely similar (≈32.3 Ω).  The distribution of pinholes and weak-links over the 

junction area is random.  It is likely that no significant barrier defect is present in the 

6×6 µm area of device 11363_1_1g (Co).  The decrease in TMR for working devices 

(a) (b) 

 

Figure 6.16: Cross-sections of the surface, measured by AFM.  (a) 11464_2, Co bottom 
electrode, (b) 11464_3, Fe bottom electrode.  Red triangles indicate a typical height and half 
period of the variation.  Note different scales on the height of (a) and (b). 
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caused by replacing the iron bottom electrode with cobalt is not likely to be caused by an 

increase in weak-link and pinhole density.  The increase in defect density in the barrier 

may be reflected in the yield of working devices.  Six working magnetic tunnel junctions 

were present on 11336_2 (Fe) compared to only three on 11363_1_1 (Co).     

6.3.1.1.2 Magnetic coupling 

Orange peel coupling increases with roughness, as shown by Equations (6.6) and (6.7).  

The amplitude, h, and period, λ, of roughness at the interface were estimated from the 

sections shown in Figure 6.16.  The red triangles indicate the measurements taken.  For 

the cobalt lower electrode, values of h = 1.7 nm and λ = 79 nm were estimated.  Those for 

iron lower electrode were h = 0.32 nm and λ = 12 nm.  Such values are extremely 

difficult to estimate from Figure 6.16, since the real section is not a regular sinusoidal 

variation.  As a result, values of orange peel coupling estimated from Equations (6.6) and 

(6.7) are subject to large error.  The saturation magnetisations per unit volume were 

estimated from VSM data and scaled to the junction area.  Iron was considered the pinned 

electrode due to its higher coercive field (≈145 Oe compared to ≈20 Oe).  Layer thickness 

was taken from Table 6.1.  Coupling fields, HCP ≈ 55 Oe and ≈ 0.7 Oe, were estimated for 

cobalt and iron lower electrodes respectively.  As expected, HCP predicted by Néel’s 

model for orange peel coupling is much larger for cobalt than iron lower electrodes.  The 

values of the coercivity indicate that considerable independent switching should still 

occur.  However, the application of this model is not as simple as suggested above.  The 

thickness variation of the barrier is likely to be considerable due to such a large 

roughness.  Coupling occurs through regions of the barrier thinner than that estimated 

from the deposition rate, further pinning the layers together.  These results indicate that 

magnetic coupling between layers with cobalt lower and iron top electrode is much higher 

than that for films in which the ferromagnets are interchanged.  This may explain the low 

TMR of devices from the deposition run 11363. 

The strong orange peel coupling predicted between ferromagnetic electrodes when the 

lower ferromagnet is cobalt (145 Oe) may explain the failure of this study’s 

Nb/Co/Al2O3/Al/Co/Nb devices to exhibit a TMR.  SIF devices with cobalt lower and top 

electrode exhibited good FOM (Section 6.3.1).  The different environment and deposition 

procedure of the top and bottom electrode yields layers with slightly different coercivity.  
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It was hoped to produce devices with a sharp peak in TMR at low fields.  However, the 

predicted orange peel coupling and additional magnetic coupling through thin regions of 

barrier appear to exceed the small coercivity difference.  The cobalt electrodes behave as 

if they are ‘locked together’ with no independent switching and no TMR. 

6.3.1.2 Effect of thick aluminium 

The decrease in TMR obtained by depositing a thick layer of aluminium was discussed in 

Section 6.1.7.1.2.  Non-magnetic material between a ferromagnetic electrode and the 

barrier has been found to decrease the effective polarisation of the electrode.  From 

Equation (6.1), reduced polarisation lowers the TMR.  This effect is evident in devices on 

the chip 11336_3_1, which displayed negligible TMR at 77 K.  Aluminium thickness for 

these films was 10 nm which is four times that for 11336_2.     

6.3.1.2.1 Effect of aluminium thickness on magnetic coupling 

Figure 6.17 shows the effect on hysteresis curves of increasing the spacer thickness from 

16.6 nm to 26.6 nm for Nb/Co/Al/Al2O3/Al/CoFe/Nb multilayers (11198_1 and 

11259_1).  Arrows indicate inflections where, for a totally decoupled film, magnetic 
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Figure 6.17: Hysteresis curves for the films 11198_1 (16.6 nm Al) and 11259_1 
(26.6 nm Al).  Arrows indicate positions at which it appears that the cobalt has 
completely aligned to the magnetic field. 
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switching of the lower coercivity film would be complete and the field would not be high 

enough to switch the magnetisation of the second layer.  Magnetic coupling clearly 

decreases as aluminium thickness increases.  The layers behave more like independent 

magnetic films.  However, the aluminium thickness for both films is too high to allow 

fabrication of working magnetic tunnel junctions.    

6.3.2 Device and TEM characterisation 

Structural properties of films were investigated using transmission electron microscopy 

(TEM), in collaboration with Dr Stephen Lloyd of the High Resolution TEM group in the 

Materials Science Department at the University of Cambridge.  Details of the deposition 

of the films studied (from 9716_3) are shown in Table 6.1.  Devices were fabricated and 

then tested using the variable temperature magnetoresistance apparatus (Section 3.4.2.5).  

Bottom Nb 

Top Nb 

Permalloy 

Barrier 

Fe 

20nm 
 

Figure 6.18: TEM image of film 9716_3.  Crystalline grains of niobium, 
permalloy and iron   are visible. 
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The magnetic properties of the as-deposited films were further investigated with the 

VSM.   

The TEM image of 9716_3, shown in Figure 6.18, reveals the crystalline structure of the 

niobium contacts and ferromagnetic electrodes.  Roughness of the oxide layer appears to 

be induced by the crystallographic growth of layers onto which it was deposited.  As 

discussed above in Sections 6.1.7.2 and 6.3.1.1.2, such roughness encourages orange peel 

coupling and an inhomogeneous barrier with associated weak-links and pinholes.   

High resolution TEM (Figure 6.19(a)) and oxygen mapping (Figure 6.19(b)) was used to 

investigate the barrier region in detail.  The crystalline nature of the electrodes shown in 

Figure 6.19(a) is associated with the regular diffraction pattern observed.  However, the 

barrier appears to be amorphous.  This agrees with previous work, described in 

Section 6.1.7.1.4.  The observed aluminium thickness is also greater than expected, 

≈1.6 nm on the image, compared with a  predicted 0.8 nm.  A 26% increase of volume 

due to aluminium oxidation has been reported in Section 6.1.7.1.4 which is insufficient to 

explain the difference.  The likely cause of this disparity is an increased aluminium 

deposition rate, due to either fluctuation in the power or calibration error with the 

profilometer.  Variation in the barrier width was approximately 0.3 nm in the small 

sample area of Figure 6.19(a).  Shadowing effects of deposition onto a rough substrate are 

may be responsible for the barrier thickness inhomogeneity.   

Oxygen mapping took place with electron energy loss spectroscopy (EELS), which 

identifies the oxygen atoms within a film by observing the energy loss of incident 

electrons and characterising materials by their spectra.  Energy loss depends on phonon 

excitations, electron transitions, plasmon excitation and absorption edges [Brandon 1999]  

In Figure 6.19(b) oxygen is depicted in white.  The white line running through the middle 

of the sample is the barrier, however its edges are not well defined.  Since such thin 

aluminium was used, oxidation may have occurred at the interface of the bottom 

electrode.  As discussed in Sections 6.1.5 and 6.1.7.1.2, such magnetic oxides at the 

interface contribute to spin scattering and significantly decrease TMR.  Diffusion of 

oxygen from the barrier into the aluminium capping layer, combined with damage during 

its deposition, may have caused the indistinct oxide definition at the upper barrier 

interface.  
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Figure 6.20 shows resistance versus field at 77 K for 9716_3_1d.  It also shows film 

behaviour measured with the VSM at room temperature.  The TMR is small (0.2%), 
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Crystalline electrodes 
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Figure 6.19: (a) High resolution TEM image of 9716_3, showing crystalline electrodes and 
amorphous barrier.  Fringes in the bottom right corner are an artifact of preparing the film 
for TEM. (b) Oxygen map of 9716_3 indicating that the barrier interfaces are not abrupt. 
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however switching between high and low resistance states is abrupt.  The low TMR is 

may result from spin scattering due to over oxidation of the barrier, as well as the 

reduction of polarisation caused by a non-magnetic aluminium layer above the barrier.  

No independent switching of the layers is visible in the hysteresis curve of 9716_3, 

shown in Figure 6.20.  Strong magnetic coupling between the layers may reduce the 

TMR. 

6.4 Conclusions 

Magnetic tunnel junctions have been fabricated with TMR in the range 0.2-2.9% at 77 K.  

Tunnel junctions of the structure Nb/Fe/Al2O3/Al/Co/Nb exhibited TMR up to 2.9%, 

whereas interchanging the iron and cobalt layers to produce a cobalt bottom electrode led 

to a much smaller TMR of 0.3% at 77 K.  As-deposited films were investigated with the 

AFM and VSM.  Magnetic switching was not clearly visible on the hysteresis curves for 

the films.  Roughness measurements between tunnel junction films indicated negligible 
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Figure 6.20: Resistance-field characteristic of 9716_3d and hysteresis loop for 9716_3. 
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difference between the order of electrodes.  However, measurements on films only 

fabricated to the barrier with the AFM indicated a low roughness for an iron bottom 

electrode (0.3 nm) and far higher roughness for a cobalt lower electrode (1.8 nm).  Néel’s 

model for orange peel coupling was applied to the films, using the AFM cross-section to 

estimate the height and period of roughness.  Orange peel coupling was estimated to be 

55 Oe for these films with a cobalt bottom electrode and only 0.7 Oe with an iron bottom 

electrode.  Additional coupling is expected due to variation in the barrier thickness.  

Stronger coupling between the magnetic layers in tunnel junctions fabricated with a 

cobalt bottom electrode may impede independent switching of the layers and reduce 

TMR.  

Copper decoration of pinholes and weak-links was performed by electrodeposition using 

films only deposited to the barrier.  Copper feature density was more than doubled when 

the iron bottom electrode was replaced with cobalt.  Insignificant differences in the 

resistance of working devices indicates that significant defects are not likely in these 

junction areas.  The yield of working devices was lower from films with a cobalt bottom 

electrode than with iron.  This may reflect the increase in barrier defect density.   

Thick aluminium deposition led to a decrease in TMR at 77 K from 2.9% for 2.5 nm thick 

aluminium in 11336_2_1d to 0.2% for 10 nm thick aluminium in 11336_3_1f.  This is 

attributed to a decrease in the effective polarisation of the ferromagnetic electrodes due to 

the excess non-magnetic layer at the interface.  The effect of aluminium thickness on the 

shape of hysteresis loops was investigated for films with cobalt and CoFe electrodes.  

More pronounced step-features in magnetisation data were present after the aluminium 

thickness was increased from 16.6 nm to 26.6 nm.  This supports the hypothesis that 

magnetic coupling is significant between the two ferromagnetic layers in tunnel junction 

films fabricated during this study. 

TEM images of the film 9716_3 indicate crystalline electrodes and niobium contact 

layers.  The aluminium layer appears to be amorphous as expected.  However, an oxygen 

map of the film indicates that the barrier did not have well defined, sharp boundaries.  

The oxidation may have progressed through the thin aluminium into the lower electrode.  

Magnetic oxides at the interface have been shown to decrease the TMR from devices due 

to spin scattering [Zhang, 1997].  Additionally, damage due to aluminium deposition on 
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top of the barrier and diffusion from the oxide may have produced the poorly defined top 

surface of the barrier.  Devices fabricated from these films had low TMR (0.2% at 77K), 

but rapid switching to and from the high and low resistance state.  No visible independent 

switching of the magnetic layers was evident in the hysteresis curves of the corresponding 

film.  

The technique of fabricating SIF tunnel junctions prior to magnetic tunnel junctions has 

proved useful in device development.  SIF films deposited during the same run as 

magnetic tunnel junction films facilitated the checking of the deposition and fabrication 

route, which was extremely valuable.  However, it has been found that working tunnel 

junctions with ferromagnetic electrodes do not necessarily produce a good TMR.  The 

fabrication of superconducting tunnel junctions allows the identification of such problems 

as magnetic, rather than tunneling device effects.    
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Read head applications require low resistance magnetic tunnel junctions, so the insulating 

barrier must be thin.  The requirement of low resistance magnetic tunnel junctions for 

read head applications suggests a thin insulating barrier should be produced.  However, as 

discussed in Section 6.1.7.1.1, a thinner barrier increases the incidence of pinholes and 

weak-links.  Although the distribution of these defects is random, raising their density per 

unit area decreases the yield of working devices.  This yield must be high if the 

manufacture of magnetic tunnel junctions for read heads is to prove economically viable.  

Furthermore, a high incidence of pinholes in tunnel junctions makes analysis difficult and 

performance unpredictable.  Weak-links consist of a thin barrier region, this is a lower 

resistance path and carries a great deal of current, forming hot-spots which break down 

prematurely.  Device performance is affected by many different variables and barrier 

characteristics are difficult to identify.  Improvements to existing techniques for studying 

barrier quality, independent of device performance, are needed. 

The electrodeposition of copper onto pinholes and weak-links in the barrier is developed 

in this chapter as a viable analytical technique.  Firstly, electrodeposition is discussed, 

with emphasis on practical aspects, followed by a review of the relevant literature.  Initial 

results of basic plating experiments are presented.  These include the variation of copper 

feature density with voltage and its relation to the E model of dielectric breakdown.  

Improvements to experimental apparatus and techniques developed over the course of this 

study are then discussed.  Results for the variation of pinhole and weak-link density with 

roughness and aluminium thickness are presented, in addition to the relationship between 

copper feature density and current. 

7.1 Introduction to electrodeposition 

The concepts of electrochemistry required to understand the copper decoration of weak-

links and pinholes are introduced below.  A broader understanding of physical chemistry 

may be obtained from a standard text, such as Atkins [Atkins, 1994].  Electrodeposition, 

also termed electroplating or simply plating, is rarely discussed in detail.  Specific texts 

tend to concentrate on industrial applications and recipes for metal deposition.  

Satisfactory treatment is found in Canning [Canning, 1978].  Firstly, electrochemical cells 
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and potentials are introduced below, followed by simple electrodeposition, then Faraday’s 

laws and apparatus. 

7.1.1 Electrochemical cells 

An electrochemical cell consists of two electrodes dipped into electrolyte.  The 

arrangement is termed a galvanic cell when used as a source of energy.  When a reaction 

within the cell is driven by an external source of power, it is called an electrolytic cell.  

Figure 7.1 shows a simple electrolytic cell.  Firstly, consider a copper electrode dipped 

into copper sulphate solution.  An equilibrium forms between the copper ions in solution, 

electrons and copper in the anode: 

2+ -Cu 2e Cu+          (7.1) 

When the electrode is first placed in solution, the tendency of copper either to dissociate 

from the electrode, or to form on it, causes an exchange of electrons and thus a potential 

exists.  The equilibrium is partly determined by the chemical potentials of the copper ions 

in solution, 2Cu
µ + , electrons from the metal electrode, 

e
µ − and metal atoms Cuµ .  The free 

energies of the copper ions and electrons, but not the uncharged copper atoms, are 

affected by the electric potentials of the solution, φS, and metal, φM.  At equilibrium the 
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Figure 7.1: Simple electrodeposition apparatus for the deposition of copper. 
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combination of the electric potential and chemical potential, the electrochemical potential, 

is the same for reactants and products: 

[ ]2 CuCu e
2 2 .S MF Fµ φ µ φ µ+ −   + + − =           (7.2) 

The factor 2F is introduced to convert electric potentials to free energies of the ions and 

electrons in the reduction of one mole of ions.  F is the Faraday constant, the magnitude 

of the charge on one mole of electrons.  The electrode potential difference, ∆φ, is given 

by Equation (7.3). 

2 - CuCu e

1 2 .
2M S F

φ φ φ µ µ µ+ ∆ = − = + −        (7.3)  

Equation (7.3) indicates that a potential difference forms on the introduction of a metal 

into a solution containing its ions.  Furthermore, the magnitude of this potential depends 

on the specific metal used, the concentration of the solution and the temperature.  The 

standard electrode potential is defined as the difference between the measured potential 

 
Figure 7.2: Harned cell used to measure standard potentials.  
Pictured measuring the standard potential of silver. [Matthews, 1985] 
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and a standard hydrogen electrode in a 1 M solution of metal ions.  The standard 

hydrogen electrode is arbitrarily assigned zero potential.  Measurements are made with a 

Harned cell, as shown in Figure 7.2.  Table 7.1 shows the electrochemical series, deduced 

by placing the elements in order of their standard electrode potentials.  The 

electrochemical series provides an indication of the reducing power of elements.  A metal 

high in the series may be used as an electrode and a placed into a solution containing ions 

of a metal lower in the series (e.g. zinc and copper, respectively).  Some of the ions are 

displaced from the solution, forming metal (copper) deposit on the electrode (zinc) they 

are reduced (electrons are added).  Metal (zinc) from the electrode therefore dissolves in 

the solution, becoming ionised.  Potentials vary with solution concentration, and the 

relative reducing power of the metals in Table 7.1 may alter.  

 

Metal Standard electrode 
potential (V) at 25°C. 

Zinc –1.18 

Chromium –0.76 

Iron (ferrous) –0.44 

Cobalt –0.28 

Nickel –0.25 

Tin (stannous) –0.14 

Copper +0.34 

Silver +0.8 

Gold +1.5 

       Table 7.1: The electrochemical series. 

7.1.2 Electrodeposition 

Figure 7.1 shows simple apparatus for the electrodeposition of metals.  The metal to be 

deposited is in solution, and also often used as the anode, the item to be electroplated is 

the cathode.  The application of a potential encourages the migration of positive ions 

within the solution towards the cathode and negative ions towards the anode.  

Considering the specific case of a copper sulphate solution, both H+ and Cu2+ ions are 

present and either hydrogen gas or copper metal may be produced at the cathode.  
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However, copper ions are deposited as copper metal at lower potential than hydrogen ions 

bind to form hydrogen gas.  The main reaction at the cathode is: 

2+ -Cu +2e Cu→          (7.4) 

As the applied potential is increased, the rate of copper deposition rises and eventually the 

co-production of hydrogen occurs.  Most of the hydrogen is released as gas, but 

absorption into the metal leads to brittle copper.  The anode reaction depends on the 

anode material. 

7.1.2.1 Copper anode 

At moderate potential, dissolution of the copper anode dominates the reaction, forming 

copper ions in solution.  This reaction maintains the copper concentration in solution.   

- 2+Cu 2e +Cu→          (7.5) 

At higher potentials, reactions involving OH−  and 2
4SO −  may occur, however the sulphate 

ion reaction is usually negligible.   Oxygen is a by product of the hydroxyl ion reaction: 

- -
2 24OH 2H O O 4e .→ + +         (7.6) 

Assuming the electrodeposition occurs at low voltage, whilst the choice of copper anode 

maintains the overall copper concentration, localised copper ion depletion occurs at the 

cathode.  The effect of ion motion on the solution, by migration, diffusion and convection 

is discussed in Section 7.1.2.3. 

7.1.2.2 Inert anode  

An inert anode dissolves extremely slowly in the electrolyte and is therefore sometimes 

termed an insoluble anode.  Common materials for such anodes are graphite and 

platinum.  The anodic reaction is represented by Equation (7.6).  The hydroxyl ions 

required for this reaction are produced by the dissociation of water: 

+
2H O H OH .−→ +          (7.7) 
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Therefore the by-product of these reactions is the increasing acidity of the solution.  The 

plating current depends on the solution acidity and is therefore affected.  Additionally, the 

concentration of copper ions in solution is depleted. 

7.1.2.3 Ion transport 

Three mechanisms for ion transport exist in the solution: migration; diffusion; and 

convection.  Migration of ions due to the application of an electric potential is a slow 

process.  Whilst migration is significant very close to the electrode, it is not sufficient to 

equalise the concentration of ions throughout the electrodeposition cell.  Diffusion is a 

relatively slow process, strongly dependent on temperature, and does not regulate ion 

concentration throughout the solution.  Convection, caused by agitation or heating is often 

used to equalise ion concentration in electrodeposition cells.   

7.1.2.4 Faraday’s laws 

There is a simple relationship between the deposition rate and charge passed in the cell.  

Faraday investigated electrodeposition and proposed two laws: 

1. The mass of product formed is directly proportional to the charge passed 

(current × time); and 

2. for a specific quantity of charge passed, the masses of products formed are 

proportional to their electrochemical equivalents (assuming an efficiency of 

100%).  

These laws are represented by Equation (7.8), where m is the mass of the deposit, M is the 

atomic or molecular weight, I is the current, F is Faraday’s constant, z is the metal ion 

charge and t the elapsed time. 

ItMm
zF

=           (7.8) 

The cathode efficiency is defined as the proportion of total current used to electrodeposit 

the desired metal.  The production of hydrogen at the cathode is the principal source of 

efficiency loss.  Electrodeposition has high efficiency when performed at low voltage.  
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7.1.2.5 Cell voltage 

The voltage required to maintain finite plating current is termed the cell voltage, or 

liberation potential.  The cell voltage, VC, is therefore subjective, depending on apparatus 

sensitivity.  On application of a small potential, a current flows and rapidly decreases to 

zero, due to a back EMF caused by solution polarisation.  The cell voltage is given by: 

total cathodic polarisation total anodic polarisation ,C cellV E IR= + + +   (7.9) 

where Ecell is the minimum voltage required to cause the electrode reactions to take place.  

The resistive contribution, IR, represents the normal Ohmic potential for the current, I,  

and electrolyte resistance, R.  Polarisation at the anode and cathode has three 

contributions: the concentration; activation; and Ohmic overpotentials.  The concentration 

overpotential represents the potential associated with the depletion of ions around the 

cathode and excess ions around the anode, discussed in Section 7.1.2.3.  The energy 

required to move ions across the interface between the electrolyte and electrode, that is 

remove atoms from the anode and add atoms to the crystal structure of the cathode, is 

referred to as the activation overpotential.  Other electrode reactions contribute, including 

the hydration and dehydration of ions.  Activation overpotential is a complicated function 

of the electrodes, ions and complexes formed.  The presence of ionically conducting films 

on the interfaces of the electrodes produces Ohmic overpotential.  It is a function of the 

solution and films, such as oxides, which may be present at the interface. 

The cell voltage is a highly complicated function of the electrodes and solution.  It is 

extremely difficult to predict as it depends on the precise environment in the cell.  Cell 

voltage is generally determined experimentally and is reduced by various additions to the 

solution.  For example, sulphuric acid is often added to a copper sulphate solution.   

7.1.3 Electrodeposition apparatus 

Figure 7.1 shows simple electrodeposition apparatus.  However, due to the potential 

formed between a metal and solution of its ions (Section 7.1.1), uncertainty arises in the 

potential experienced within the cell.  The potential of a cell is therefore measured 

relative to a reference electrode.  The most commonly used reference is the standard 
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calomel electrode.  Calomel is mercurous chloride, Hg2Cl2; the electrode design is shown 

in Figure 7.3.  The EMF of a calomel electrode is 0.244 V at 25°C.    

Constant voltage relative to the standard calomel electrode is achieved using a 

potentiostat.  The reference electrode is dipped into a salt solution, and linked to the 

deposition vessel via a salt bridge providing a complete electrical circuit.  Wenking 

potentiostats are regularly used for laboratory electrodeposition due to their excellent 

stability and ease of operation.  The Wenking potentiostat provides a voltage source as 

well as current monitoring over a wide range of scales.  It may be computer interfaced 

and used in conjunction with Equation (7.8) to estimate the mass of deposited metal.   

7.2 Previous work 

7.2.1 Copper decoration of pinholes 

As discussed in Section 6.1.7.1, barrier quality is critical to device performance.  Schad et 

al. proposed the identification of pinhole and weak-link density (number per unit area) in 

tunnel barriers by electrodeposition [Schad, 2000].  This uses the obvious property of 

pinholes, of increased conduction compared to the barrier.  Weak-links may undergo 

dielectric breakdown in the applied electric field, forming conducting shorts.  By 

electrodeposition at low voltage, copper only forms on pinholes and weak-links below 

some critical barrier thickness.  These authors observed cauliflower shaped structures on 

the barrier by scanning electron microscopy (SEM).  These features were identified by 

Porous fibre 
tips 

Mercury 

Paste of Hg, 
Hg2Cl2, and 
saturated 
KCl solution.

Saturated 
KCl solution

 
Figure 7.3: Standard calomel reference electrode. 
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energy dispersive X-ray spectroscopy (EDX or EDS) as copper.  The electron beam of an 

SEM is used to excite the atoms just below the surface of the sample.  Electrons in these 

atoms return to the ground state, emitting characteristic X-rays associated with their 

energy levels.  These X-rays are measured in EDX and their frequencies matched to the 

known peaks of elements.  

Schad et al. prepared samples by radio frequency (RF) diode sputtering 12.5 nm NiFeCo 

followed by 1.2 nm aluminium on a 4 inch silicon wafer, covered with 200 nm silicon 

nitride.  Oxidation occurred by sputtering aluminium in an atmosphere containing some 

oxygen (unspecified pressure).  Identical conditions were used to fabricate magnetic 

tunnel junctions with high tunneling magnetoresistance (TMR) [Tondra, 1998].  Prior to 

electrodeposition, the samples were washed thoroughly in acetone and dried in a nitrogen 

stream.  If the samples are not contaminated after deposition such cleaning with acetone 

should not be required.  Polymeric paint was used to define 1 cm2, although no use was 

later made of recorded plating currents.  Electrodeposition was performed using a three-

electrode electrochemical cell, calomel reference electrode and potentiostat.  The calomel 

electrode was at a potential of 242 mV compared to the standard hydrogen electrode; all 

voltages are quoted relative to the calomel electrode.  A platinum anode and electrolyte of 

0.1 M CuSO4 and 0.1 M sulphuric acid completed the circuit.  Electrodeposition took 

place at room temperature, an initial voltage of –0.5 V was applied for 10 seconds and 

then reduced to –0.3 V for 300 seconds.  No hydrogen was released at the cathode. 

A sample was immersed in the solution without metal electrodeposition to investigate the 

effect of the solution on the film surface.  AFM roughness measurements, small-angle X-

ray diffraction (SA XRD) and X-ray photoemission spectroscopy (XPS) were used to 

indicate structural change.  XPS is particularly sensitive to chemical changes occurring at 

the surface, with a depth resolution close to atomic dimensions [Brandon, 1999].  XPS 

measures the characteristic energies of secondary electrons emitted from a surface 

following electronic excitation with X-rays.  The solution used had no significant effect 

on the film quality, whereas a high concentration of sulphuric acid deteriorated the 

surface.   

Schad et al. identified copper features of diameter ≈200 nm after 10 seconds at –0.5 V.  

Following full deposition the diameter had increased to ≈4 µm and the number per unit 
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area was ≈2500 mm-2.  They did not investigate the cross-section of the copper features.  

Feature size is dependent on the current distribution, caused by electrolyte concentration 

and plating current, in addition to pinhole size and density.  Dielectric breakdown in 

Al2O3 generally occurs in field strengths exceeding 109 Vm-1 [Oepts, 1998].  Using this 

value, Schad et al. calculated that the initial –0.5 V potential lead to the dielectric 

breakdown of all areas of barrier thickness less than 0.5 nm.  No copper features were 

observed on omission of the initial –0.5 V electrodeposition voltage.  They suggested that 

the lack of copper deposition at –0.3 V indicates that no intrinsic pinholes were present.   

7.2.2 Dielectric breakdown 

The dielectric breakdown process of weak-links in the Al2O3 barrier is fundamental to the 

copper decoration process.  The dielectric breakdown of SiO2 in capacitors has been 

widely studied, however no clear single mechanism is responsible for breakdown over the 

full range of voltage and thickness.  Oepts et al. analysed the dielectric breakdown of 

magnetic tunnel junctions, relating their results to the models of breakdown for SiO2 

[Oepts, 1999].  Figure 7.4 shows the effect of voltage ramp speed on dielectric 

breakdown.  Dielectric breakdown was observed with thin liquid crystal films deposited 

on the junction [Oepts, 1998] and almost always occurred at a single point in each device.  

The junctions were prepared by shadow mask deposition.  The authors noted a significant 

 
Figure 7.4: The effect of voltage ramp speed on dielectric breakdown 
voltage [Oepts, 1999] 
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decrease in barrier quality and thickness for a band of width 10 µm around the edge of 

each junction.  Breakdown occurred in this region for ~50% of devices.  Due to this edge 

effect, no relationship was observed between the area of the junctions and breakdown 

voltage.  Figure 7.5 shows the results of Shimazawa et al., who investigated the effect of 

junction area on dielectric breakdown voltage [Shimazawa, 2000].  Defects leading to 

dielectric breakdown are randomly distributed within a barrier.  Increasing junction area 

should decrease the breakdown voltage, due to an increase in the likelihood of 

encountering a significant barrier defect.  They therefore suggest that smaller junctions 

facilitate better study of the intrinsic behaviour of Al2O3.  Figure 7.5 also shows 

reasonable fits to the data by the E model (Section 7.2.2.3). 

Three models are commonly discussed for the dielectric breakdown of SiO2, the Qbd 

model, anode hole injection model and E model.  The key problem to interpreting the 

relationship between such models and breakdown in thin Al2O3, is that most studies have 

taken place on thick SiO2.  Direct tunneling is not the main transport mechanism in thick 

barriers, instead multistage Fowler-Nordheim tunneling occurs, with inelastic scattering 

of tunneling electrons by the conduction band of the dielectric [Wolf, 1985].  The 

treatment of the models of dielectric breakdown in this section follows that of Oepts et al. 

[Oepts, 1999] 

 

 
Figure 7.5: The effect of junction area on dielectric breakdown voltage.         
Lines are fits to E model. Adapted from [Shimazawa, 2000] 
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7.2.2.1 Qbd model 

 The Qbd model applies when electrons have sufficient energy to damage the oxide layer 

locally, termed wearing.  The fundamental concept of this model is that breakdown 

occurs after the passage of a certain amount of charge, Qbd.  It predicts breakdown at a 

total charge independent of the ramp speed.  Figure 7.6 shows the effect of ramp speed on 

Qbd, measured by Oepts et al., breakdown charge is not constant [Oepts, 1999].  The Qbd 

model does not describe the dielectric breakdown in these magnetic tunnel junctions. 

7.2.2.2 Anode hole injection model 

The anode hole injection model leads to the 1/E model.  This model assumes that incident 

electrons at the anode excite deep valence band electrons to a state above the Fermi level, 

creating a hole in the anode that may tunnel into the oxide.  This hole may lead to an 

electron trap in the oxide, with high local current density, increasing the likelihood of 

breakdown.  In the Fowler-Nordheim tunneling regime, Equation (7.10) representing the 

break down probability density, p(E), has been derived [Schuegraf, 1994]. 

( ) ( ) 2 exp Dp E CJ E E
E
− =  

 
        (7.10) 

 
Figure 7.6: The effect of voltage ramp speed on total charge passed at 
breakdown for thin aluminium oxide insulator.  Decrease in Qbd as ramp 
speed increases implies that Qbd model does not apply. [Oepts, 1999]   
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Where C is a constant, J(E) the current density and D a parameter independent of the 

electric field, E.  Whilst this model adequately fits the data of Oepts et al., it is unlikely to 

describe breakdown in magnetic tunnel junctions as tunneling is not in the Fowler-

Nordheim regime for thin aluminium oxide barriers 

7.2.2.3 E model 

The E model, or thermochemical model, of dielectric breakdown concerns the distortion 

of atomic bonds in the oxide.  A quantitative thermodynamic model for breakdown has 

been developed for SiO2 [McPherson, 1998].  Silicon is normally surrounded by a 

tetrahedron of oxygen atoms.  However, in the presence of an external field or growth 

defect, distortion of the bonds may occur.  Above a critical distortion angle an Si-Si bond 

can form, which is believed to be a precursor to breakdown.   Dielectric breakdown 

occurs when this Si-Si bond, or a number of them, breaks.  McPherson and Mogul 

derived Equation (7.11). 

( ) ( )exp exp ,
B

HE a E
k T

τ γ
 ∆

= − 
 

         (7.11) 

where τ (E) is the average time to breakdown, a is a constant, γ is the field acceleration 

factor, T is the temperature, kB is the Boltzmann constant and ∆H is the enthalpy of 

breaking the Si-Si bond.  The E model fits the data presented by Oepts et al.; they found a 

value of γ approximately twice that of SiO2.  They suggest that the larger γ results from 

three factors.  Firstly, the electric susceptibility of Al2O3 is larger (≈7) than SiO2 (≈2.9), 

leading to higher polarisation and local field and in turn larger γ.  Secondly, Al2O3 bonds 

are more ionic than those of SiO2.  This may lead to a higher ionic charge of aluminium, 

compared to silicon, and therefore greater dipole moment and larger γ.  Finally, the 

structure of amorphous Al2O3 is more complex than SiO2 and local octahedral symmetry 

has been observed [Van Beek, 1984].  Tetrahedral coordination is common in amorphous 

aluminium oxide; migration of aluminium could occur via the octahedral vacancies.  

Additionally, the lack of threshold voltage required by this model supports the low 

voltages at which breakdown occurred in the junctions.  Oepts et al. conclude that 

dielectric breakdown in their junctions is likely to conform to the E model.  



Chapter 7 – Copper decoration of pinholes and weak-links  

184 

7.2.2.4 Dielectric breakdown and copper decoration 

Allen et al. (including Schad) presented results from the dielectric breakdown in magnetic 

tunnel junctions in addition to the decoration of pinholes and weak-links with copper 

[Allen, 2001].  Tunnel junctions were subjected to a current ramp speed of 0.4 µAµm-2s-1 

and their breakdown voltage noted.  The defect density was determined by calculating the 

breakdown probability in an applied voltage and fitting to a Poisson distribution.  The 

copper feature density was determined for films only grown to the barrier and 

subsequently electroplated at a range of voltages for 10 seconds (Figure 7.7).  They claim 

that the good correlation indicates the worth of copper electrodeposition as a ‘reliable tool 

for indicating insulator defect density in the early stages of tunnel junction preparation’.  

However, Figure 7.4 shows that the breakdown voltage depends on voltage ramp speed.  

Assuming that similar behaviour occurs for a current ramp, the calculated defect density 

depends on the rate of current increase.  Electrodeposition did not take place with a 

controlled ramp rate and the authors do not justify their choice of ramp speed for the 

investigation of magnetic tunnel junction breakdown.  Whilst their data indicates good 

correlation for the current ramp speed of 0.4 µAµm-2s-1, it may be a fortuitous choice.   

 
Figure 7.7: The relationship between defect density and voltage derived from 
electrodeposition experiments, where the circles represent data from complete oxidation 
of the aluminium and the triangles incomplete oxidation.  Also shown are dots to indicate 
calculated defect density from the dielectric breakdown in tunnel junctions. [Allen, 2001]   
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7.3 Experimental technique  

The experimental methods for the decoration of pinholes and weak-links by copper 

deposition used in initial investigations are described in this section.  Section 7.5, 

describes the development of new experimental apparatus and techniques for the 

determination of defect density of thin insulators.  

7.3.1 Deposition of thin films 

Thin films of aluminium on tantalum were deposited onto four inch diameter oxidised 

silicon substrates, by Seagate Technology, Springtown.  The metals were DC magnetron 

sputter deposited at high vacuum.  Oxidation of the aluminium took place in flowing 

oxygen at a pressure of 0.3 Pa for one hour.  This was the largest pressure possible in the 

system.  The insulator was formed in two of the films by oxidation in air, rather than in 

situ.  Aluminium of 3 nm thickness was used throughout.  Table 7.2 shows the tantalum 

thickness and oxidation method of films corresponding to data presented below.  These 

films were fabricated to investigate the effect of lower electrode roughness on pinhole 

density.  Roughness is expected to increase as layer thickness rises.  A series of films with 

varying aluminium thickness were also deposited and measured, but the density of copper 

features produced was extremely low.  It was not possible to collect sufficient data for 

statistical significance.  This is discussed in Section 7.4.5.  Results of the study of 

aluminium thickness on weak-link and pinhole density in films provided by Seagate 

Technology are not presented.  The films were broken into 8×15 mm chips and dust was 

removed with compressed air prior to electrodeposition.   

7.3.2 Electrodeposition 

Electrodeposition took place using a three electrode system, with a standard calomel 

reference electrode.  A Wenking potentiostat was used as the electrodeposition source, 

current was monitored using the appropriate scale on the potentiostat and a Keithley 197 

meter.  A copper anode was used to reduce the cell voltage and to ensure that the solution 

did not become copper deficient.  Figure 7.8 shows the apparatus.  The calomel electrode 

was placed in a 0.1 M sulphuric acid solution, minimising its contamination by salts.  The 

reference and electrodeposition vessels were connected via a bridge containing 0.1 M 
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sulphuric acid.  The electrodeposition vessel contained a solution of 0.1 M copper 

sulphate and 0.1 M sulphuric acid.  Good metallic contact with the film was made by 

clamping it firmly between sharp, straight tweezers with a crocodile clip.  The thin 

aluminium oxide on the wafers was easily damaged, producing good contact to the 

tantalum bottom electrode.  Plating generally took place at –500 mV for 10 seconds, 

followed by five minutes at –300 mV.  Investigation into the effect of voltage on defect 

density was undertaken by electrodeposition onto samples with 250 nm tantalum 

thickness.  The specified voltage was applied for 10 seconds, followed by growth at         

–300 mV for five minutes.  Following electrodeposition, the samples were carefully 

removed and gently rinsed in distilled water, then dried in air.  Vigorous rinsing or drying 

using a compressed air line removed a large number of copper features.   
 

Tantalum thickness (nm) Oxidation method  

10 In system 
10 In air 
70 In system 
70 In air 
100 In system 
130 In system 
200 In system 
250 In system 

Table 7.2: Tantalum thickness and oxidation technique for films        
deposited by Seagate Technology and presented below. 

 Wenking potentiostat 

0.1 M copper sulphate 
and 0.1 M sulphuric 
acid. 

Film to be electroplated 
(cathode). 

Tweezers held together 
with crocodile clip. 

Copper anode. 

Calomel reference 
electrode. 

0.1 M 
sulphuric acid 
solution. 

Bridge of 0.1 M sulphuric 
acid solution.  

Figure 7.8: Apparatus used for electrodeposition. 
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7.3.3 Analysis of electrodeposited films 

Following electrodeposition, analysis took place using an SEM.  Initial results were 

observed with a high resolution JEOL 5800 SEM.  This system allowed feature 

identification using EDX.  Determination of the chemical composition of features 

provided proof that copper deposition occurred.  Such features were easily distinguishable 

by eye.  Later results were taken with a JEOL 700 SEM, due to its speed of operation and 

ample resolution for the identification of copper features.  Digital images were stored and 

the number of copper features counted.  Due to the low number of copper features per 

unit area, a large number of films were measured to improve statistical significance.  

Further identification took place in a focussed ion beam system, allowing canting of the 

sample relative to normal to the film.  The ion beam was also used to ion mill features, 

providing a view of their interior. 

7.4 Results of initial experimental investigations    

7.4.1 Feature identification    

Figure 7.9(a) shows an SEM image of a copper feature deposited by electroplating as 

described in Section 7.3.2.  The feature was identified as copper using EDX, as shown by 

Figure 7.9(b).  The shape and internal structure of copper features was further 

 (a) 

15 µm 

(b)

 
Figure 7.9: (a) Copper feature formed by electrodeposition. (b) EDX on the same feature. 
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investigated using a focussed ion beam (FIB).  Figure 7.10(a) shows a copper feature at 

an angle to the film normal.  It has a cauliflower-like shape.  The effect of more rapid 

deposition was studied, using a voltage of –500 mV for the entire electrodeposition.  

Figure 7.10(b) shows the copper dendrites formed during rapid deposition.  Growth 

occurs preferentially along certain orientations, which may be the result of the crystal 

structure or current distribution.  Figure 7.11 shows the cross-section of a copper feature, 

milled using the focussed ion beam.  A regular, crystalline granular structure is visible 

inside the ‘cauliflower’.  A poorly conducting outer layer is present due to a combination 

of copper oxidation, gallium ion implantation during FIB imaging and chemical residues.   

   
Figure 7.10: (a) Copper feature at 45° to the normal, grown at –500 mV 10 secs and    
–300 mV 5 mins.  (b) Dendritic copper feature formed by increasing plating voltage to    
–500 mV throughout. 

 
Figure 7.11:  FIB cut cross-section of copper feature shown   

 in Figure 7.10(a).  Crystallographic grains are clear 
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7.4.2 Effect of roughness 

Figure 7.12(a) and (b) show the variation of pinhole density with the roughness and 

thickness of the tantalum underlayer, respectively.  Pinhole density appears to increase 

with both underlayer roughness and thickness.  The points have been fitted by a linear 

regression to provide a guide to the eye and also to permit statistical analysis.  Two 

assumptions of linear regression are significant to the data, that the trend is actually linear 

and also that there is no error in the values of roughness.  A theoretical model of the 

system will not predict a linear trend, since a residual number of pinholes and weak-links 

should exist for very smooth films.  However, the trend may be fitted to a straight line 
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Figure 7.12: Dependence of the copper feature density on (a) roughness and (b) tantalum 
thickness circles are data for wafers oxidised in air. 
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over the region of interest.  The R2 value shown on the graph represents the percentage of 

the data variation for which the fitted regression may be responsible; 63% is a poor fit.  A 

student t-test was used to investigate the hypothesis that the true linear regression best fit 

line to the data has gradient greater than zero.  The calculated t value of 13.8 is much 

higher than the t99.9 value of 5.9, representing 99.9% certainty that the gradient is greater 

than zero.  It is highly likely that copper feature density increases with roughness.     

Two factors significantly affect interpretation of the results.  These are measurements of 

the roughness and statistical significance of the number of copper features counted.  

Measurements of roughness were made using the AFM, as discussed in Section 3.4.1.2.  

This technique does not generally provide high accuracy, reflected in the error bars 

displayed.  It is also important to consider the distance over which height variation occurs 

for roughness measurements.  Consider the profile of a simplified layer as the 

superposition of two oscillations, of small amplitude (<5 nm) relative to the period.  

Height variation is pictured as a long period (>1 µm) height variation and a short period 

(<100 nm) variation.  The long period oscillation has shallow gradient and is unlikely to 

cause significant shadowing or discontinuity in subsequent depositions.  However, short 

range variation has a much steeper gradient, causing the inhomogeneous deposition of 

aluminium and weak-links in the insulator.  Roughness was calculated within a 1 µm box 

for the Ta/Al multilayers, excluding most long period height variation.  The roughness of 

Ta/Al was also considered identical to that for the tantalum underlayer, since the 

difference in aluminium thickness should be small compared to the tantalum roughness.  

It was not possible to determine the roughness accurately with X-ray analysis, as fits to 

the data produced a wide range of possible values. 

A large number of events must be observed to assign significance to the results since 

dielectric breakdown occurs randomly (Section 7.2.2.3).  As discussed in Section 7.4.5, 

the key problems encountered were the time required to identify features with the SEM 

and the low defect density of the wafers supplied by Seagate Technology.  Figure 7.12 

represents the collation of data for a large number of chips for each thickness of tantalum.  

However, the number of observed copper features was still low (from 14 to 123 in total).  

Takatsuji and Arai also observed an increase in pinhole density with surface roughness 

[Takatsuji, 2000].  They deposited films onto glass substrates.  Pinholes were counted 

using optical microscopy, illuminating the films from behind to indicate holes in the film.     
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7.4.3 The effect of voltage  

Figure 7.13 shows the effect of voltage on the number of copper features per unit area.  

The increase in the density of copper features with plating voltage exhibits a good fit to 

an exponential trend.  The E model predicts such a relationship, where Equation (7.11) 

indicates that the time to dielectric breakdown is proportional to exp(-E).  E is the electric 

field.  The relationship between voltage and the number of breakdown events may be 

derived from the work of McPherson and Mogul, who deduced Equation (7.12) on the 

basis of the E model [McPherson, 1998]. 

( ) ,dN kN t
dt

= −          (7.12) 

where dN
dt

 is the rate of thermochemical bond-breakage, N(t) is the number of bonds at a 

time t and k is the reaction rate constant, given by: 

( )0
0 exp ,

B

H aE
k v

k T
∆ − 

= − 
 

        (7.13) 
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Figure 7.13: The dependence of copper feature density on electrodeposition voltage. 
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where v0 is a characteristic collision frequency, ∆H0 is the enthalpy of activation of Al-Al 

bond breakage, T is the temperature, kB the Boltzmann constant and a is the effective 

dipole moment.  Integrating to find the number of broken bonds at time t: 

( ) ( )
 0

0  0
exp .

t

B

H aE
N v N t dt

k T
∆ − 

= − − 
 

∫       (7.14)  

Since it is assumed that N(t) is independent of voltage and if it is further assumed that the 

number of broken bonds is directly proportional to the density of breakdown events: 

( )Number of pinholes exp E∝        (7.15)  

The data shows good fit to the E model prediction of the density of copper features, 

represented by Equation (7.15).   

7.4.4 The effect of oxidation technique 

Figure 7.12(b) shows that the copper features density for wafers oxidised in air was 

higher than that for wafers oxidised in the system.  It is surprising that such a large 

difference in the weak-link and pinhole density resulted from such similar oxidation 

techniques.  This difference is possibly caused by the absorption of contaminant 

molecules onto the surface of the aluminium in air, hindering oxidation.  Likely 

candidates to prevent the full oxidation of aluminium in air include airborne grease and 

dirt particles.  These contaminants are present in much smaller quantities when 

aluminium is oxidised in situ with ‘pure’ oxygen. 

7.4.5 Problems with the technique 

The application of the electrodeposition of copper onto pinholes and weak-links is limited 

by the time taken to analyse film quality and the equipment required.  Attempts were 

made to relate the deposition current to the number of copper features recorded in a 

known area.  A 5×5 mm area was defined on chips with photoresist using standard 

lithography techniques (Section 3.2).  Photoresist was removed from one end to allow 

electrical contact.  Details of this technique are given below (Section 7.5.2).  Current was 

monitored on the Keithley 197 during electrodeposition.  No relationship was determined 
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between the number of copper features present within the defined area and the current.  

Close inspection revealed the deposition of copper around the edges of the samples.   

The low pinhole and weak-link density of wafers provided by Seagate Technology was 

also prohibitive, due the low number of copper features observed.  It was difficult and 

extremely time consuming to collect sufficient data for statistical significance.  SEM 

analysis took a particularly long time.   

7.5 New experimental technique 

The time taken and equipment required to perform the decoration of pinholes and weak-

links in the manner described above (Section 7.3.2) is prohibitive to the development of 

this technique as a standard tool to investigate barrier quality.  There is a need for a 

simple method of determining pinhole and weak-link density, requiring apparatus 

generally available within a device fabrication and testing laboratory.  The technique 

suggested below uses a computer controlled voltage source and current meter to 

electrodeposit copper.  The relationship between the current and number of copper 

features per unit area was investigated as a convenient and quick analysis tool.  Films 

were deposited, with a higher pinhole and weak-link density than previously.  Details of 

the depositions and lithography techniques are listed below. 

7.5.1 Film deposition 

Films were deposited onto oxidised silicon substrates of size 6×11 mm, using the Mk VII 

sputtering system described in Section 3.2.  Substrate preparation and film deposition 

technique are described in Sections 3.1 and 3.2.  The deposition details and estimated 

layer thickness for films presented in this chapter are listed in Table 7.3.  Particular care 

was taken over handling films, since the thin oxide barrier was easily damaged. 

 

 



 

 

 

 

Material Process 11286_(1/2/3/4/5) 11317_(1/2/3) 11328_(1/2) 11352_(1/2/3/4/5) 

Niobium Passes, speed 2 and 15, 2× 2 and 15, 2× 2 and 15, 2× 2 and 15, 2× 

 Pressure (Pa) 0.3 and 0.69 0.3 and 0.69 0.3 and 0.69 0.3 and 0.69 

 Expected 
thickness (nm) 

19.4 19.4 19.4 19.4 

Cobalt Time (s) 104 - - - 

 Pressure (Pa) 1 - - - 

 Expected 
thickness (nm) 

11.7 - - - 

Aluminium Passes, speed 6, 4×/2×/1×/0.25×/0.5× 24, 1× 24, 1× 6, 4×/2×/1.33×/1×/0.5× 

 Pressure (Pa) 0.7 0.3/0.5/1 3/2 0.7 

 Expected 
thickness (nm) 

4.9/10/19.9/79.7/39.8 39.8 39.8 4.9/10//14.9/19.9/39.8 

Oxidation Pressure (Pa) 1000 1000 1000 1000 

       Table 7.3: Deposition conditions for films presented in this study.  Chapter 3 provides greater detail and explanation of techniques. 
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7.5.2 Lithography and film preparation 

Square regions of area 3×3 mm were defined using lithography to the pattern shown in 

Figure 7.14.  Preparation of the chips prior to lithography is discussed in Section 7.5.2.1.  

AZ1529 photoresist was spun onto the substrates at 5000 rpm.  Excess resist was 

removed from the underside of chips with a class 100 cleanroom wipe.  The chips were 

then baked at 100°C for 1 minute.  The Canon projection printer was used in conjunction 

with the CAM 31 maskset to define the area, aligned as shown in Figure 7.14.  An 

exposure time of 40 seconds was used.  Projection printing was used to allow the edge 

bead of photoresist, formed during spinning, to remain in place.  The chips were then 

developed in 80% developer solution and rinsed in distilled water.  The contact area for 

the sprung loaded cathode contact was cleared of resist by wiping with a cotton bud 

soaked in acetone.  Care was taken throughout lithography not to scratch the samples. 

7.5.2.1 Film preparation 

Generally, dirt deposits are removed from samples by airbrushing with acetone prior to 

lithography.  However, there is no obvious reason to clean a film which has not been 

handled or left uncovered prior to lithography.  In this situation very little dirt should be 

present on the surface, dust is easily removed with an airgun.     

The effect of damage caused to films by photolithography processes was investigated by 

comparing the density of observed copper features for differently prepared samples.  

Films from the deposition 11352 were patterned either without cleaning or with the chip 

 

Area for touch-down 
contact 

Photoresist 

Area for 
electrodeposition  

Figure 7.14: Lithography pattern. 
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cleaned by airbrushing in acetone.  Electrodeposition of the pattered films, in addition to 

unpatterned films, took place at –500 mV, as described in Section 7.5.3, below.  Copper 

features were identified by SEM analysis.  Negligible difference in the number of copper 

features per unit area was noted between as-deposited films and those with defined areas, 

but not cleaned with acetone.  However, the average pinhole and weak-link density 

increased from 6.7×108 m-2 to 1.58×109 m-2 when samples were cleaned by airbrushing 

with acetone.  The fragile Al2O3 insulating layer is damaged by airbrushing with acetone; 

it was not undertaken during lithography. 

7.5.3 Apparatus and electrodeposition technique   

Figure 7.15 is a schematic of the apparatus used for the electrodeposition of copper to 

identify pinholes and weak-links in insulating films.  A Keithley 487 was used as both an 

ammeter and low noise voltage source.  Current measurements were possible between 

10 fA and 2.5 mA, with voltage steps of 10 mV.  Shielded wire was used for all 

connections to reduce the effect of noise.  A sprung-loaded tip provided the cathode 

contact to the chip.  A copper needle was used as the anode, which was clamped into a 

manipulator.  This allowed accurate alignment and lowering into the electrolyte.  The film 

surface was not touched with the copper anode.  A solution of 0.1 M copper sulphate and 

   
Keithley 487.  

 
Ammeter and voltage source   Touch-down 

contact held 
in clamp. 

Copper anode held 
by manipulator. 

Drop of 
electrolyte   

Copper anode  

 
Figure 7.15: New apparatus for the electrodeposition of copper. 
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0.1 M sulphuric acid was used as the electrolyte, which was dropped onto the chip with a 

pipette.  Care was taken to ensure that the defined area, but not beyond, was fully covered 

with electrolyte.  Surface tension at the film-photoresist edge confined the solution well.  

The Keithley 487 was controlled via a LabVIEWTM computer programme written by 

Dr G. Burnell.  The programme provided an on-screen graphical display of current versus 

time.  It was used to control the applied voltage, current range and sampling rate.  Current 

and time were recorded at the specified sampling rate. 

Electrodeposition generally took place at constant voltage for 30 seconds.  Different 

electrodeposition conditions are highlighted below where used.  Following 

electrodeposition the samples were rinsed gently in a beaker of distilled water and dried 

in air. 

7.5.4 Analysis of the films 

The samples were imaged using the JEOL 700 SEM.  A large number of copper features 

per unit area were observed.  The UTHSCSA ImageToolTM image analysis programme 

was used to count the number of copper features.  Successful processing required high 

contrast between the copper and the insulating film, as shown by Figure 7.16(a).  This 

image was converted into a threshold plot, containing only two colours: black, 

representing features to be counted, and white background (Figure 7.16(b)).  The 

    
(a)      (b) 

Figure 7.16: (a) Digital SEM image of plated area (b) threshold of the same image. 
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threshold limits were set by hand to allow visual interpretation of image reproduction.  

The programme was then used to count features in the image.  Noise was excluded from 

the feature count by setting a minimum pixel size, which was set to 2 pixels in Sections 

7.6.1 to 7.6.3.  The effect of minimum pixel size on the observed trends is discussed in 

Section 7.6.3.1.  Image analysis took approximately five minutes per picture.  Up to 2000 

copper features were measured on a single image, decreasing the time required to obtain 

statistical significance. 

7.6 Results 

The effect of aluminium roughness and thickness on the number of pinholes and weak-

links per unit area has been investigated.  The effect of bottom electrode material on 

copper feature density was studied using this technique and is presented in 

Section 6.3.1.1.1.  The relationship between the electrodeposition current and copper 

feature density is discussed in Section 7.6.3. 

7.6.1 Effect of roughness 

The effect of roughness on pinhole and weak-link density was investigated using films 

provided by Seagate Technology, using the original electrodeposition apparatus 

(Section 7.4.2).  Further investigation into the effect of roughness on the number of 

pinhole and weak-links per unit area was undertaken to obtain a clearer correlation.  Film 

roughness was altered by varying the deposition pressure of niobium, as shown in 

Table 7.3 (depositions 11317 and 11328).  Figure 7.17 shows the dependence of 

roughness on deposition pressure.  Roughness values were measured in images of 1 µm 

square using the AFM (Section 7.4.2).  The Thornton zone model of deposition is useful 

to explain the trends in roughness and is illustrated by Figure 3.4 [Thornton, 1989].  At 

low pressure and normal system temperature, deposition is expected to occur in Zone T.  

This is the transition zone, consisting of closely packed fibrous grains.  The voids 

between grains caused by self-shadowing are largely overcome by adatom diffusion.  As 

pressure rises the structure increasingly resembles that of Zone 1.  Self-shadowing 

becomes more significant at higher pressure, producing larger voids between grains.  

Adatom mobility is not sufficient to fill the large gaps.  As pressure rises, the surface 
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becomes increasingly rough.  The Thornton zone model does not predict increased 

roughness at the lowest pressures.  A number of different mechanisms may be responsible 

for this structural change.  Compressive film stress at low pressure may be relieved by the 

formation of surface texture: whisker growth and extrusions from the surface are possible.  

Sputtered atoms encounter fewer scattering events at low pressure and therefore have 

high kinetic energy on impact with the film.  This high energy input may promote 

diffusion and lead to island growth.  Preferential resputtering of certain crystallographic 

directions is also possible, although this should be accompanied by a decrease in 

deposition rate, which was not observed [Chiu, 1999].  

Figure 7.18 shows that as expected, pinhole and weak-link density increases with 

roughness.  The correlation is better than that presented in Section 7.4.2, although it is not 

sufficient to derive an empirical relationship.  A linear regression fit to the data is shown, 

with a respectable R2 value of 0.89.  The regression line is not a suggestion of the actual 

relationship between roughness and the number of pinholes and weak-links per unit area.  

The variation of plating current with roughness is shown in Figure 7.19.  The standard 

deviations of current and roughness measurements were used to estimate error bars.  The 

linear regression fit to the data shown is reasonable, with an R2 value of 0.86.  This line is 

primarily intended as a guide to the eye and is not a suggestion of the actual relationship 
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Figure 7.17: The effect of niobium deposition pressure on film roughness. 
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between current and roughness.  The current after electrodeposition for 20 seconds clearly 

increases with roughness, supporting the use of the current to indicate pinhole density.  

The dependence of current on pinhole density is discussed in Section 7.6.3.          

7.6.2 The effect of aluminium thickness on pinhole density 

Figure 7.20 shows that the number of pinholes and weak-links per unit area decreases as 

aluminium thickness increases.  Electrodeposition took place for 20 seconds at –300 mV 

using films from 11286 (Table 7.3).  The model of Rabson et al., discussed in 
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Figure 7.18: The effect of film roughness on pinhole and weak-link density. 
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Figure 7.19: The effect of roughness on deposition current. 
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Section 4.1.2.1, may be applied to this situation.  They pictured barrier growth as the 

random deposition of regular blocks of insulator onto a two dimensional grid.  The height 

of deposited material was modelled with a Poisson distribution.  Rabson et al. predicted 

that two regimes exist for the probability of any given grid point containing no insulator, 

p(0): 

( )exp      small thickness,
(0) 1               large thickness,

p
µ

µ


∝ 



       (7.16) 

where µ is the average film height in monolayers.  ,tµ ∝ where t is the aluminium 

thickness.  Figure 7.21(a) shows the natural log of the number of copper features against 

aluminium thickness.  A good correlation is observed with high R2 value of 0.93.  The R2 

value represents the proportion of the data variation that may be accounted for by the 

fitted regression.  Figure 7.21(b) shows a plot of copper feature density against 

1/(aluminium thickness).  The trend is also adequately fitted by a straight line, with a high 

R2 value of 0.95.  It is not possible to distinguish between the two regimes of the pinhole 

dependence on insulator thickness.  During electrodeposition, dielectric breakdown 

occurs for oxide thickness of less than 0.3 nm.  This thickness was estimated by assuming 

dielectric breakdown in Al2O3 occurs for electric fields in excess of 109 Vm-1, given the 
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Figure 7.20: Decrease of pinhole and weak-link density as the aluminium thickness 
increases. 
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applied voltage was –0.3 V (Section 7.2.1) [Oepts, 1998].  Therefore copper features 

represent regions in the barrier with thickness of less than 0.3 nm (weak-links) rather than 

the intrinsic pinholes.  It is reasonable to assume that incidence of weak-links follows the 

same distribution as that of pinholes.  

7.6.3 The relationship between current and pinhole density 

Figure 7.22 shows the linear relationship between electrodeposition current and the 

number of copper features per unit area.  This relationship is expected from a simple 
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Figure 7.21: (a) Trend of ln(number of Cu features per unit area) with aluminium thickness 
and (b) number of copper features per unit area against 1/(aluminium thickness) 
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interpretation of Faraday’s laws (Section 7.1.2.4), that the rate of deposition is directly 

proportional to the current.  Current is therefore also directly proportional to the area onto 

which deposition occurs.  When the size of copper features is negligible, this suggests that 

current is directly proportional to the total area of pinholes and weak-links on the film.  

For the large sample sizes of this study, it is reasonable to assume that the number of 

weak-links and pinholes is directly proportional to their total area on a film.  However, 

current distribution and copper feature size affect electrodeposition current.  The non-

linearity of the current distribution becomes significant as deposition rate increases.  

Following a fixed deposition time, the copper features formed on films with a large 

number of pinholes and weak-links per unit area were much smaller size those when few 

features were present.  The surface area of copper ‘cauliflowers’ encourages high current.  

This surface area effect could be mistaken for a high pinhole and weak-link density.  It 

was found that as plating time rose, the relationship between the number of copper 

features per unit area and current deviated from a linear trend.  The effect of feature size 

on plating current was minimised by recording current at short deposition time.  

Measurements shown in Figure 7.22 were taken at 20 seconds, to allow initial transients 

to settle.   
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Figure 7.22: The relationship between copper feature density and electrodeposition 
current at 20 seconds.  Fit to a linear trend is good. 
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The strong correlation between plating current and pinhole density shown in Figure 7.22 

proves the concept of this technique.  Scatter in the data is likely to result from two main 

causes.  Firstly, SEM measurements did not sample the whole film surface, but current 

measurements do utilise the entire film area.  A large number of images were taken across 

each area measured, but the sampled images will deviate slightly from the true 

population.  Secondly, the copper ‘cauliflowers’ were extremely fragile and it is likely 

that some were removed during rinsing.  Care was taken when handling the films, but it is 

inevitable that some scatter in the data will result from the loss of copper.     

7.6.3.1 The effect of minimum pixel size on data analysis 

The ImageToolTM analysis software was chosen specifically because it allowed the 

exclusion of features below a minimum pixel size during counting.  Figure 7.23 shows the 

effect of the minimum pixel size on the relationship between electrodeposition current 

and pinhole density.  The number of features counted when including all pixel sizes was 

strongly affected by image threshold values and a great deal of noise was measured.  

Therefore, measurements of features of size one pixel and above are not included on the 

graph.  The R2 value for a linear regression fitted to each set of data is shown on the 

graph.  Minimum pixel sizes of 2, 3 and 4 all correlate well to a straight line, with R2 of 
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Figure 7.23: variation of copper feature density and current as the minimum pixel 
recognition size of the image analysis software is increased from 2 to 4.  Good 
correlation to a linear regression is obtained for all three sizes. 
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≈0.90.  Minimum pixel size of two was used in Sections 7.6.1 to 7.6.3, to include all data 

including small copper features.  

7.7 Conclusions 

Copper has been successfully electrodeposited to identify weak-links and pinholes in thin 

aluminium oxide.  Copper features were identified on SEM images and using EDX, as 

bright, highly conducting regions.  The focussed ion beam was used to image copper 

features at an angle to the film normal, revealing that they are ‘cauliflower shaped’ at low 

electrodeposition voltage, but become dendritic at higher voltage.  Copper ‘cauliflowers’ 

were milled with the FIB, revealing crystalline grains in the cross-section.    

A new technique has been developed to estimate the density of pinholes and weak-links 

in a barrier by measuring the electrodeposition current at short deposition time.  A linear 

trend was discovered between the number of copper features and the current at 

20 seconds.  This method dramatically reduces the time required to measure barrier defect 

density thus making the technique highly practical.  The apparatus is more simple than 

that generally used for electrodeposition; in particular, it does not use a reference 

electrode.  This electrodeposition technique may be performed using equipment available 

within a normal magnetic tunnel junction device fabrication or measurement laboratory. 

The number of copper features per unit area rose as electrodeposition voltage increased.  

The data fitted an exponential trend well.  It has been shown that the E model of dielectric 

breakdown leads to an exponential increase in breakdown events at a fixed time in the 

barrier as voltage rises.  This data provides evidence that the E model applies to the 

breakdown of aluminium oxide thin films.   

Pinhole and weak-link density increased with film roughness.  It was not possible to infer 

an empirical relationship due to the large scatter of data.  This scatter in the recorded data 

is likely to result from measurement errors, particularly in the roughness.  The amount of 

pinhole and weak-link formation in aluminium deposited on a rough electrode will 

depend on the amplitude and length scale over which profile changes occur.  Steep 

gradients in the film profile are likely to cause significant shadowing and encourage 

pinhole and weak-link formation. 
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The number of pinholes and weak-links per unit area decreased as the thickness of the 

aluminium layer increased.  The drop in the density of copper features recorded can be 

adequately fitted to either a 1/t or exp(–t) dependence, where t is the aluminium thickness.  

This supports the simple two dimensional model of insulator growth by the deposition of 

regular blocks, as suggested by Rabson et al. [Rabson, 2001].  However, it was not 

possible to differentiate between a 1/t (thick film) and exp(–t) (thin film) dependence.  

Other models may also fit the data.   

This new technique for the identification of pinholes and weak-links by electrodeposition 

of copper may be applicable to a wide range of fields.  Thin film insulator defects are 

particularly significant in capacitors, tunnel junctions and hard disk shield-to-wiring 

insulation.  The final two applications are experiencing increasingly stringent insulator 

requirements as read head size decreases, forcing the insulator thickness to be reduced.  

The technique has already been used to aid the development of magnetic tunnel junctions 

in Section 6.3.1.1.1.         
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8.1 Device fabrication 

Superconductor-insulator-superconductor (SIS), superconductor-insulator-ferromagnet 

(SIF) and magnetic tunnel junctions (MTJs) have been successfully fabricated.  SIS and 

SIF devices were found to be an extremely useful aid to the optimisation of film 

deposition and processing.  The current-voltage characteristics of such devices are easily 

interpreted to indicate problems in the fabrication process, also making them useful for 

fault-finding in processing procedures.   

The reliability of characteristics commonly used to identify tunneling as the principal 

cause of conductance were investigated using SIS devices.  Measurements were made at 

4.2 K and in their normal state, where they behave as normal metal-insulator-normal 

metal (NIN) tunnel junctions.  As suggested by Rowell, it was established that the only 

reliable characteristic to indicate a working device was the observation of an energy gap 

in its superconducting state [Rowell, 1969].  This highlights the value of fabricating SIS 

and SIF devices prior to magnetic tunnel junctions, in order to develop deposition and 

processing techniques.  Working tunnel junctions were found to satisfy certain criteria in 

their normal state.  Absence of any of the criteria listed below indicates a poor device.  

However, meeting of all criteria does not necessarily indicate a working device.  Firstly, 

the resistance of devices should be approximately inversely proportional to the junction 

area.  The resistance-area product of devices should be comparable with previous 

working tunnel junctions produced on the fabrication route.  Junction resistance must 

increase as temperature decreases; a drop in resistance indicates the presence of a 

conducting short.  The conduction should increase, according to Stratton’s theory, as a 

function of temperature squared [Stratton, 1962].  The conductance of the device must 

increase parabolically with bias voltage, according to Simmons’ theory [Simmons, 

1963(a)].   

The figure-of-merit (FOM) of SIS and SIF junctions is a good measure of device leakage, 

permitting the determination of barrier problems and redeposition during ion milling.  

The relationship between the FOM of SIS junctions and NIN tunneling characteristics 

was not an accurate indicator of device quality.  The correlation between FOM and both 
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the ratio of the resistance at 10 K to that at 300 K, R(10K)/R(300K), and the resistance-

area product, RA, was not clear.  However, FOM appeared to increase as both RA and 

R(10K)/R(300K) rose, although a significant scatter of points was evident.  The simple 

model of leakage, as a resistor in parallel to the tunnel junction, did not fit the data well.  

No correlation was found between FOM and the barrier height and thickness derived by 

fitting conductance curves of NIN junctions to Simmons’ theory.   

Magnetic tunnel junction and SIF films were deposited during the same run, enabling the 

deposition integrity to be checked.  The SIF devices produced were of a reasonable 

quality at 4.2 K.  However, working SIF devices did not necessarily indicate that the 

magnetic tunnel junctions would display a significant tunneling magnetoresistance 

(TMR).  Devices with cobalt lower and iron upper ferromagnetic electrodes were of poor 

quality, displaying a TMR of just 0.3% at 77 K, but inverting the deposition order of 

these electrodes produced a TMR of 2.9% at 77 K.  Replacing cobalt with iron 

significantly reduced barrier roughness as a result of lower electrode profile.  Increased 

roughness raises both magnetic coupling between the layers and pinhole and weak-link 

density.  Hysteresis curves of working magnetic tunnel junction films displayed no clear 

indication of magnetic switching, indicating strong coupling between the ferromagnetic 

electrodes.  Increasing barrier thickness reduced magnetic coupling, but significantly 

decreased TMR by reducing the effective polarisation of the ferromagnetic electrodes.   

Transmission electron microscope images of MTJ films were used to identify the 

crystalline electrodes and amorphous barrier.  The oxygen map indicated poor definition 

of the oxide at barrier interfaces.  The lack of well-defined boundaries may indicate over 

oxidation, forming a magnetic oxide at the top of the electrode and therefore encouraging 

spin scattering.  Oxygen may also have diffused into the aluminium capping layer or have 

been dispersed by damage due to deposition above the barrier.  MTJ devices produced 

from these films had a low TMR of 0.2% at 77 K.    

8.2 Copper decoration of pinholes 

Weak-links and pinholes in thin aluminium oxide have been successfully identified by the 

electrodeposition of copper.  Scanning electron microscopy and energy dispersive X-ray 
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spectroscopy were used to identify copper features.  A focussed ion beam (FIB) was used 

to image copper features at an angle to the film normal, revealing their ‘cauliflower’ 

shape at low plating voltage.  The shape became dendritic at higher deposition voltage.  

Copper ‘cauliflowers’ were milled with the FIB, to reveal the cross-section exhibiting 

crystalline grains.    

The time taken to measure the defect levels of barriers was dramatically reduced by the 

development of an electrodeposition technique using simple apparatus available within a 

normal fabrication or measurement laboratory.  The number of copper features increased 

linearly with electrodeposition current after 20 seconds, providing a rapid analysis tool to 

identify weak-links and pinholes in the barrier.  This technique may be suitable for 

identifying insulator defects in a range of applications, including capacitors, read head 

insulation and tunnel junctions.   

The number of copper features per unit area rose as electrodeposition voltage was 

increased.  The data fitted an exponential trend well, as predicted by the E model of 

dielectric breakdown.  Pinhole and weak-link density increased as film roughness rose.  

The density of copper features decreased as the thickness, t, of the aluminium layer 

increased.  The decrease in the number of weak-links and pinholes per unit area was 

adequately described by both a 1
t and an exp(–t) dependence.  The simple two-

dimensional model of insulator growth by the deposition of regular blocks, suggested by 

Rabson et al. may describe these films [Rabson, 2001].  It was not possible to distinguish 

between the regimes of film growth.   

8.3 High frequency testing of read heads 

A network analyser was used to investigate the high frequency response of read heads at 

wafer level.  Previously, full-build was required to measure read heads, producing read-

back data from hard disks.  Tests at wafer level enable the rapid investigation of changes 

to the reader geometry on the system frequency response.  Furthermore, this technique 

allows the step-by-step build and testing read and write head structures, isolating the 

effect of parameters on the response.  However, one-port network analyser measurements 

were subject to significant error and are not suitable for the investigation of dielectrics.   
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The −3dB frequency, or roll-off frequency, is the point at which the signal attenuation 

becomes −3dB and is a convenient measure of the limit of read-back.  Wafers were 

fabricated to first half gap (bottom shield, insulators, sensor and wiring).  The shield, 

insulator and wiring layer form a capacitor.  The simple model of a capacitor and resistor 

in parallel satisfactorily represented a low roll-off frequency read head.  A more complex 

model was required to account for the extra capacitance and system inductance of the 

read head and network analyser calibration errors.  Two-port network analyser 

measurements are necessary for more accurate analysis of the system, since they allow 

the determination of more parameters and reduce calibration error.  

Roll-off frequency decreases with increasing sensor resistance, for high resistance readers 

the −3dB frequency is inversely proportional to their resistance, R.  Corresponding trends 

were observed in roll-off frequency with sensor length, CD, (∝ R) and sensor width 

(∝ 1/R).  This highlights the requirement of low resistance magnetic tunnel junctions for 

read head sensors.  Raising read head temperature increases sensor resistance and 

decreases roll-off frequency.  Roll-off frequency increases as stray capacitance decreases.  

For large overlap area between shields and wiring, the −3dB point is inversely 

proportional to overlap area and modelled capacitance.     

High frequency data transfer requires read heads with a low resistance sensor and 

minimal shield size.  Creating a thin break in the shield between the sides of the wiring 

layer may increase roll-off frequency by decreasing the conductance of the parallel 

transport path.  High frequency testing of read heads with a network analyser has 

significant potential as an analysis tool. 
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