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Abstract: Over the last decades, there has been an increasing interest in dedicated preclinical imaging
modalities for research in biomedicine. Especially in the case of positron emission tomography (PET),
reconstructed images provide useful information of the morphology and function of an internal organ.
PET data, stored as sinograms, involve the Radon transform of the image under investigation. The
analytical approach to PET image reconstruction incorporates the derivative of the Hilbert transform
of the sinogram. In this direction, in the present work we present a novel numerical algorithm for the
inversion of the Radon transform based on Chebyshev polynomials of the first kind. By employing
these polynomials, the computation of the derivative of the Hilbert transform of the sinogram is
significantly simplified. Extending the mathematical setting of previous research based on Chebyshev
polynomials, we are able to efficiently apply our new Chebyshev inversion scheme for the case
of analytic preclinical PET image reconstruction. We evaluated our reconstruction algorithm on
projection data from a small-animal image quality (IQ) simulated phantom study, in accordance with
the NEMA NU 4-2008 standards protocol. In particular, we quantified our reconstructions via the
image quality metrics of percentage standard deviation, recovery coefficient, and spill-over ratio.
The projection data employed were acquired for three different Poisson noise levels: 100% (NL1),
50% (NL2), and 20% (NL3) of the total counts, respectively. In the uniform region of the IQ phantom,
Chebyshev reconstructions were consistently improved over filtered backprojection (FBP), in terms
of percentage standard deviation (up to 29% lower, depending on the noise level). For all rods, we
measured the contrast-to-noise-ratio, indicating an improvement of up to 68% depending on the noise
level. In order to compare our reconstruction method with FBP, at equal noise levels, plots of recovery
coefficient and spill-over ratio as functions of the percentage standard deviation were generated,
after smoothing the NL3 reconstructions with three different Gaussian filters. When post-smoothing
was applied, Chebyshev demonstrated recovery coefficient values up to 14% and 42% higher, for
rods 1–3 mm and 4–5 mm, respectively, compared to FBP, depending on the smoothing sigma values.
Our results indicate that our Chebyshev-based analytic reconstruction method may provide PET
reconstructions that are comparable to FBP, thus yielding a good alternative to standard analytic
preclinical PET reconstruction methods.

Keywords: small-animal imaging; positron emission tomography (PET); preclinical PET imaging;
first-kind Chebyshev polynomials; medical image reconstruction
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1. Introduction

For the past two decades, there has been an increasing demand for preclinical imaging
systems. In this direction, several dedicated commercial and research imaging modalities
have emerged for the study of small animals [1], such as mice, rats, rabbits, etc., enabling the
implementation of longitudinal studies on the same animal. These imaging technologies
include computed tomography (CT) [2], magnetic resonance imaging (MRI) [3], ultrasound
(US) [4], and the nuclear medicine imaging modalities of single-photon emission computed
tomography (SPECT) [5] and positron emission tomography (PET) [6]. PET imaging of
small animals is an important, noninvasive imaging tool that has been used systematically
in modern biomedical research [7,8]. Small-animal PET, based on radioisotopes, has
been established as a powerful diagnostic tool in molecular biology, genetics, oncology,
cardiology, and drug development [9–11].

In preclinical PET, for the imaging of an internal organ’s morphology or function,
a radiopharmaceutical, such as 18F-2-deoxy-2-fluoro-D-glucose (FDG), is intravenously
injected into the blood stream of the small animal and is distributed in its body [12]. A
radiotracer targets the organ being imaged and localizes there: once the organ becomes
radioactive, it emits γ-rays. The emitted radiation is detected by the detectors which, in
turn, create an image of the radioisotope distribution within the organ under investigation.

PET data are usually stored in the form of sinograms or projections. Analytic image
reconstruction, considered as the solution of a corresponding inverse problem, is performed
by inverting the projection data. Measured data consist of the celebrated two-dimensional
Radon transform of the radioisotope distribution function. Therefore, analytical PET image
reconstruction involves the analytical inversion of the Radon transform of the radioiso-
tope distribution function. The analytic inversion of the Radon line integral involves the
derivative of the Hilbert transform of the sinogram.

To this end, there are several analytic reconstruction techniques, including the pre-
dominant method of the so-called filtered backprojection (FBP) [13,14]. Recently, in our lab,
we have developed another approach to analytic image reconstruction, namely the spline
reconstruction technique (SRT) [15–18], as well as its attenuated generalization, referred to
as “aSRT” [19]. These analytic reconstruction methods focus on the use of third-degree
polynomial splines. Other analytic approaches involve Chebyshev decomposition and
backprojection, by utilizing Chebyshev polynomials of the second kind [20].

In the present work, we present a new numerical algorithm for the inversion of
the Radon transform based on Chebyshev polynomials of the first kind. By employing
first-kind Chebyshev polynomial approximation, the computation of the derivative of the
Hilbert transform of the sinogram is significantly simplified. Extending the mathematical
setting of our previous research based on Chebyshev polynomials [21], we are able to
efficiently apply a new Chebyshev inversion scheme for analytic PET image reconstruction.
The main novelty of this paper is the mathematical derivation of the analytic reconstruction
formula involving Chebyshev polynomials of the first kind for the first time, and the
investigation of its performance in comparison to FBP. The underlying hypotheses involved
in our present work are that Chebyshev polynomials of the first kind: (i) operate solely in
the physical space, without involving any Fourier transform, and (ii) are employed globally,
instead of locally, on the domain of approximation which is beneficial in terms of noise in
the reconstructed images. We tested our analytic reconstruction method on projection data
from a small-animal, image quality (IQ) simulated phantom study [22], in accordance with
the NEMA protocol NU 4-2008 [23]. We compared our reconstructions over FBP via three
image metrics, namely percentage standard deviation, recovery coefficient, and spill-over
ratio. Our results indicate that Chebyshev polynomials of the first kind provide analytical
PET reconstructions that are comparable to FBP, potentially yielding an alternative to
standard preclinical analytic reconstruction methods.
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2. Mathematical Formulation
2.1. Inversion of the Radon Transform via Chebyshev Polynomials

For analytic PET image reconstruction, one has to “reconstruct” the image f from its
corresponding sinogram, denoted by f̂ . The sinogram involves the Radon transform of the
image, denoted byR f , and is given by

f̂ (ρ, θ) = R{ f (x1, x2)} =
∫
L

f (x1(s, ρ, θ), x2(s, ρ, θ))ds, (1)

where ρ represents the signed distance from the origin, i.e.,

ρ := ρ(x1, x2, θ) = x2 cos θ − x1 sin θ, (2)

ds denotes an arc length differential along parallel lines L for all angles θ, s represents a
parameter along the line L, and x1, x2 are the usual Cartesian coordinates, as illustrated
in Figure 1. We assume that the integral on the right-hand-side of Equation (1) has finite
support for |ρ| 6 1, as commonly considered in medical applications [24,25], i.e.,

f̂ (ρ, θ) = 0, for |ρ| > 1, and ∀ θ. (3)

Figure 1. Cartesian geometry of the Radon transform.

As Equation (1) suggests, analytic PET reconstructions entail the inversion of the
Radon transform. In this direction, it has been established in [15,16] that the inverse Radon
transform (R−1) is given by the following expression:

f (x1, x2) = R−1
{

f̂ (ρ, θ)
}
= − 1

4π2

2π∫
0

∂H(ρ, θ)

∂ρ

∣∣∣∣∣
ρ=x2 cos θ−x1 sin θ

dθ, (4)

where H(ρ, θ) denotes the Hilbert transform (H) of the sinogram, namely

H(ρ, θ) := H
{

f̂ (ρ, θ)
}
=

∞∮
−∞

f̂ (ρ′, θ)

ρ′ − ρ
dρ′ =

1∮
−1

f̂ (ρ′, θ)

ρ′ − ρ
dρ′, (5)

and
∮

denotes principal value integral. For the numerical implementation of the inversion,
we employ Chebyshev polynomials of the first kind [21]. To this end, we approximate the
sinogram function f̂ (ρ, θ) by

f̂ (ρ, θ) ' 1
2

c0(θ) +
N

∑
n=1

cn(θ)Tn(ρ), (6)

where Tn(ρ) denotes Chebyshev polynomials of the first kind [26], i.e.,
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Tn(ρ) = cos (n arccos ρ), ρ ∈ [−1, 1], n ∈ N, (7)

and N denotes the maximum degree of the Chebyshev polynomial Tn(ρ) taken into ac-
count in the sum on the right-hand-side of Equation (6). Taking into account Equation (6),
Equation (5) may be rewritten as

H(ρ, θ) =
c0(θ)

2
ln
(

1− ρ

1 + ρ

)
+

N

∑
n=1

cn(θ)

1∮
−1

Tn(ρ′)

ρ′ − ρ
dρ′. (8)

Proposition 2.3(i) and Equation (2.17) of [27] suggest that:

1∮
−1

Tn(ρ′)

ρ′ − ρ
dρ′ = ln

(
1− ρ

1 + ρ

)
Tn(ρ) + 4

b n+1
2 c

∑′

k=1

Tn−2k+1(ρ)

2k− 1
, (9)

where bac denotes the integer part of a real number a, while the primed sum implies
that the last term of the sum must be halved when n is odd. Inserting Equation (9) in
Equation (8) yields:

H(ρ, θ) =
c0(θ)

2
ln
(

1− ρ

1 + ρ

)
+ ln

(
1− ρ

1 + ρ

) N

∑
n=1

cn(θ)Tn(ρ) + 4
N

∑
n=1

cn(θ)

b n+1
2 c

∑′

k=1

Tn−2k+1(ρ)

2k− 1
. (10)

Taking the partial derivative with respect to ρ in Equation (10), we are able to compute
the integrand of the integral on the right-hand-side of the inversion Formula (4), namely:

∂H(ρ, θ)

∂ρ
= − c0(θ)

1− ρ2 −
2

1− ρ2

N

∑
n=1

cn(θ)Tn(ρ) + ln
(

1− ρ

1 + ρ

) N

∑
n=1

cn(θ)T′n(ρ)

+ 4
N

∑
n=1

cn(θ)

b n+1
2 c

∑′

k=1

T′n−2k+1(ρ)

2k− 1
, (11)

where T′n(ρ) denotes the first derivative of Tn(ρ) with respect to ρ, derived by differentiating
Equation (7), namely:

T′n(ρ) =
n sin (n arccos ρ)√

1− ρ2
. (12)

The inversion of the Radon transform, as Equation (4) suggests, is resolved by appro-
priately integrating Equation (11) over the angle variable θ.

2.2. Numerical Implementation of the Inversion of the Radon Transform via Chebyshev Polynomials

For the evaluation of all quantities involved in the inversion Equation (4), we assume
that f̂ (ρ, θ) is given for K projection angles, θ, and for Λ detector locations, ρ, namely:

θ = θk, θk ∈ [0, 2π], ∀ k 6 K, and ρ = ρλ, ρλ ∈ [−1, 1] ∀ λ 6 Λ. (13)

The values of ρλ represent the roots of the Chebyshev polynomial Tn(ρ), hence they
belong to the zero set of Tn(ρ), denoted by ker (Tn),

ρλ ∈ ker (Tn) :=
{

ρ ∈ [−1, 1]
∣∣∣ Tn(ρ) = 0

}
. (14)

Equation (7) implies that ρλ must be located in

ρλ = cos
[(

2λ− 1
n

)
π

2

]
, λ 6 Λ, n ∈ N. (15)
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Taking into account the above assumptions, we present the computational steps of
our proposed, Chebyshev-based reconstruction algorithm in Algorithm 1.

Algorithm 1: Computational steps of the proposed Chebyshev-based reconstruc-
tion algorithm

Reconstruction algorithm: Chebyshev approximation of the sinogram
Input: f̂ (ρ, θ) given at ρλ, ∀ λ 6 Λ and θk, ∀ k 6 K

Compute: tr =
1

(1− ρ2)
for all x1, x2 and θk, via Equation (2),

t` = ln
(

1− ρ

1 + ρ

)
for all x1, x2 and θk, via Equation (2),

Tn(ρ) for all n, via Equation (7),

T′n(ρ) for all n, via Equation (12),

cn(θ) for all n, via Equation (6) as in [28],

t1 = −trc0(θ) for all ρ and θk,

t2 = −2tr

N

∑
n=1

cn(θ)Tn(ρ) for all ρ and θk,

t3 = t`
N

∑
n=1

cn(θ)T′n(ρ) for all ρ and θk,

t4 = 4
N

∑
n=1

cn(θ)

b n+1
2 c

∑′
k=1

T′n−2k+1(ρ)

2k− 1
for all x1, x2 and θk,

∂H(ρ, θ)

∂ρ
=

4

∑
i=1

ti,

− 1
4π2

2π∫
0

∂H(ρ, θ)

∂ρ
dθ, via numerical integration

Output: f (x1, x2)

3. Materials and Methods
3.1. Phantom Study: Simulated Micro-PET IQ Phantom via the NEMA NU 4-2008 Protocol

For the purposes of our studies, we simulated an image quality (IQ) phantom in the
open-source library STIR (Software for Tomographic Image Reconstruction) [29], following
the “NEMA NU 4-2008 standards” protocol for the performance measurements of small
animal PET [23]. The IQ phantom is a poly(methyl methacrylate) (PMMA) cylindric
container with internal dimensions of 50 mm in length and 30 mm in diameter, and
comprises three main regions: (i) a uniform cylindrical chamber 30 mm in diameter and
30 mm in length, (ii) a 20 mm long solid region, containing five fillable rods with diameters
of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm, respectively, and (iii) a lid supporting two,
equally-sized, cold region chambers of 14 mm in length and 8 mm in diameter, filled
with non-radioactive water and air, respectively. The phantom grid size employed was
119 × 119 × 161.

3.2. Sinograms

All sinograms, denoted by f̂ (ρ, θ) as in Equation (1), of the simulated IQ phantom
described above were generated in MATLAB® R2019b (The Mathworks Inc., Natick, MA,
USA). In particular, all sinograms involved had dimensions of 119× 180 pixels, correspond-
ing to 119 detectors and 180 angles (180 views over 180 degrees), respectively, with a bin
size of 1.17 mm and 161 image slices. For the purposes of our Chebyshev and FBP-based
simulations we created two types of sinograms: sinograms with equally spaced ρ for FBP
reconstructions, and sinograms evaluated in ρ locations corresponding to the roots of the
Chebyshev polynomials, as in Equation (15). The simulated sinograms were acquired for
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three noise levels (NL), taking into account 100% (NL1), 50% (NL2) and 20% (NL3) of the
total counts, respectively. The noisy sinograms were generated by adding Poisson noise in
ten realizations (R = 10) at each of the three noise levels.

3.3. Reconstructions

The reconstructions of all sinograms were performed with our Chebyshev-based method
and with FBP, and were implemented in Matlab. The reconstruction grid for the recon-
structed images generated by both reconstruction algorithms was 119 × 119 × 161 pixels,
corresponding to scale factors of 1.17, 1.17 and 0.585 mm/pixel, respectively. For the FBP
reconstructions, a ramp filter was applied with a cut-off frequency equal to the Nyquist
frequency. In our computations, we chose to take Chebyshev polynomials, Tn(ρ), up to
N = 119, i.e., equal to the number of the total segments of the ρ domain, available from the
sinogram. The reason for this selection is dictated by the mathematics of Chebyshev poly-
nomials. More specifically, when interpolating via Equation (6), we take into account that
the number of points available, located at the roots of the corresponding Chebyshev poly-
nomial, are Λ, as in Equations (13) and (15). Furthermore, when choosing N in this fashion,
the approximation Formula (6) is exact for ρ equal to the N zeros of TN(ρ), as in Section
5.8 of [28]. Initially, for both Chebyshev and FBP reconstructions, no post-reconstruction
filtering was applied. However, in order to fairly compare the algorithms at equal noise
levels, we also employed Gaussian post-reconstruction filtering in the reconstructions of
NL3. In this direction, all images corresponding to NL3 (20% of the total counts) were
blurred in Matlab with a Gaussian smoothing kernel of three different standard deviations,
namely 0.5×, 1×, and 1.5× sigma. NL3 was selected for further filtering, as in [18], since
it corresponds to the noise level of FBP for acquisition duration of 1200 s, which is the
suggested acquisition duration according to the NEMA protocol [23].

3.4. Image Metrics

For the evaluation of our reconstructions, we employed the following image quality
metrics: (i) percentage standard deviation (%STD), (ii) recovery coefficient (RC), and
(iii) spill-over ratio (SOR), corresponding to the uniform, “hot” and “cold” regions of the
IQ phantom, respectively.

3.4.1. Percentage Standard Deviation

The percentage standard deviation, denoted by %STD, is related with the uniform
cylindrical chamber of the phantom and is defined as the standard deviation divided by
the mean multiplied by 100%, namely:

%STD = 100%
σu

µu
, (16)

where σu and µu denote the standard deviation and mean, respectively, of the pixel values
in the uniform region of the simulated phantom. In the “NEMA NU 4-2008 standards”
protocol [23], %STD is described as a measure of image uniformity (image noise).

3.4.2. Recovery Coefficient

The recovery coefficient, denoted by RC, is defined as the measured activity concentra-
tion in each hot fillable rod of the IQ phantom, divided by the mean activity concentration
in the uniform cylindrical chamber, namely:

RCi =
mi,h

mu
, (17)

where mi,h and mu denote the average measured counts in the region-of-interest (ROI)
corresponding to each hot rod, i = 1, . . . , 5, and in the uniform area, respectively, and ai,h
and au denote the actual counts in the ROI corresponding to each hot rod, i = 1, . . . , 5, and
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in the uniform area, respectively. The measurements corresponding to Equation (17) are
averaged over all realizations, R, namely:

mi,h =
1
R

R

∑
r=1

m(r)
i,h , and mu =

1
R

R

∑
r=1

m(r)
u , (18)

where m(r)
i,h and m(r)

u denote the measured counts in the ROI corresponding to the hot
rod i and the uniform region, respectively, in the realization r. It is worth noting that
the recovery coefficient (RC) quantifies the “activity recovery” in environments with zero
activity background [30], therefore is indicative of the spatial resolution of the imaging
system [31–34]. The values of RC vary between 0 and 1. Furthermore, we note that, in
the literature, the recovery coefficient is also referred to as “hot recovery coefficient” [35],
similar to the so-called contrast recovery coefficient [36].

It is worth noting that for the RC calculations related to the simulated IQ phantom,
we have followed the methodology of the NEMA protocol [23]. In particular, according
to the NEMA protocol, the image slices covering the central 10 mm in length of the five
fillable rods were averaged, in order to obtain a single image slice of lower noise. Around
each fillable rod, circular ROIs with diameters twice the physical diameter of the rods
were drawn in the averaged image. The maximum values in each of these ROIs were
measured. The transverse image pixel coordinates of the locations with the maximum ROI
values were recorded and used to create line profiles along the five fillable rods in the axial
direction. The pixel values measured along each axial line profile, divided by the mean
activity concentration found in the uniform cylindrical chamber of the phantom, were used
to determine the mean of the RC for each rod size.

Furthermore, we included the contrast-to-noise-ratio (CNR) [37,38], given by

CNR = 100× RC
%STD

, (19)

where RC and %STD are defined in Equations (16) and (17), respectively. The CNR metric
combines both metrics presented above.

3.4.3. Spill-Over Ratio

The spill-over ratio, denoted by SOR, is defined as the activity concentration in each
cold cylinder divided by the mean activity concentration in the (hot) uniform cylindrical
chamber of the IQ phantom:

SORi =
mi,c

mu
, (20)

where mi,c and mu denote the average measured counts in the region-of-interest (ROI)
corresponding to each cold rod, i = 1, 2, and in the uniform area, respectively. As in
the case of RC where the measurements are perceived in terms of Equation (18), SOR
measurements are averaged over all realizations, R, i.e.,

mi,c =
1
R

R

∑
r=1

m(r)
i,c , (21)

where m(r)
i,c denotes the measured counts in the ROI corresponding to the cold cylinder i in

the realization r. We note that with the spill-over ratio, we are provided with a measure of
the imaging system’s ability to implement scatter correction [23].

3.4.4. Image Analysis

All reconstructed images of the simulated IQ phantom were analyzed with Image
Quality Center (ver. 5.01), a Matlab-based software provided by Mediso Medical Imaging
Systems [37]. This software calculates the image quality metrics: %STD, RC, and SOR
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as described above, per the “NEMA NU 4-2008 standards” protocol [23]. It is worth
mentioning that each metric, x, evaluated, was presented in the following form:

x = x± σx, (22)

where x denotes the mean of x, σx denotes the so-called standard error of the mean [39],
given by

σx =
σx√

R
, (23)

σx denotes the standard deviation of the metric x, and R represents the total number
of realizations.

4. Results

For the simulated NEMA IQ phantom, reconstructed images using Chebyshev and
FBP for all noise levels are presented in Figure 2. The figure was created in the free software
tool for multimodality medical image analysis AMIDE [40]. The reconstructions depicted
in this figure are representative reconstructions of one out of ten Poisson noise realizations
at all noise levels, namely NL1, NL2 and NL3, since no visual differences were apparent
between the realizations simulated. In Figure 2, scalar values are represented accordingly
in the colorbar, namely zero values are represented by the all-black color, whereas the
maximum values of the simulated IQ phantom by the all-white color. By visual comparison,
the FBP reconstructed images appear of higher noise than the Chebyshev reconstructed
images. Furthermore, in Figure 3 we present the line profiles of the IQ phantom, in its
uniform and cold regions, respectively, for all noise levels.

In Table 1, we present the percentage standard deviation (%STD) measurements in
all noise levels, for both Chebyshev and FBP reconstructions. The images reconstructed
via Chebyshev exhibited considerably lower noise, compared to the ones reconstructed
via FBP, in all noise levels. We note that the %STD measurements in NL3 for FBP agree
with the corresponding measurements in [18]. In this direction, the FBP level of noise
in our %STD measurements in NL3 is consistent with the one corresponding to FBP for
acquisition duration of 1200 s, recommended by the NEMA protocol [23].

Figure 4 illustrates the recovery coefficient, RC, calculated for each of the five hot
rods in the hot region of the simulated IQ phantom, namely for the rods with diameters
of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm, respectively. The RC values are plotted for all
three noise levels, and for Chebyshev and FBP reconstructions. We observe that the FBP
reconstructions present slightly higher RC values than the Chebyshev ones in the expense
of higher noise. Furthermore, we observe that the RC is independent of the noise level,
as expected. It is worth noting that in the Chebyshev-based reconstructions, the recovery
coefficient values for the hot rods with diameters 4 and 5 mm are larger than 1. This
overestimation is not uncommon in PET, and is usually accepted by several commercial
preclinical systems, including the Mediso nanoScan® PC small-animal PET/CT scanner
used in [18,37]. RC values greater than 1 are due to few-pixel measurements from the
average image, generated by averaging larger axial regions, especially in cases were small,
pointlike sources are located inside regions with no background activity [41].

Table 1. Percentage standard deviation (%STD) measurements for the uniform region of the simu-
lated IQ phantom for Chebyshev and FBP reconstructions, for all noise levels.

NL1 NL2 NL3

Chebyshev 2.72 3.65 5.90
FBP 3.58 5.17 8.31
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Figure 2. Reconstructions of the simulated IQ phantom via Chebyshev and FBP, for NL1, NL2,
and NL3.
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Figure 3. Line profiles of the IQ phantom, in its uniform (left) and cold (right) regions, for all noise levels.

Figure 4. Recovery coefficient (RC) measurements for each of the hot fillable rods (diameters 1 to
5 mm) of the simulated IQ phantom, over the percentage standard deviation (%STD), for Chebyshev
and FBP reconstructions, corresponding to all noise levels. Note that the leftmost data point in each
curve corresponds to NL1 (less noise), whereas the rightmost data point corresponds to the NL3 case.
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In Figure 5, we illustrate the RC values as a function of the five rod diameters of the
simulated IQ phantom, namely 1 mm, 2 mm, 3 mm, 4 mm and 5 mm, for both reconstruction
methods investigated. This specific plot may be referred to as the recovery coefficient curve.
As shown in Figure 5, Chebyshev reconstructions exhibited similar RC values with FBP
for the hot rods with diameters 1 to 3 mm, whereas for the hot rods with diameters 4 and
5 mm exhibited higher RC values. The RC values decrease as the rod size decreases for
both algorithms [41,42].

In Figure 6, we present the spill-over ratio (SOR) measurements for the water-filled
and the air-filled chambers in the cold region of the simulated IQ phantom, for all noise
levels, and for Chebyshev and FBP reconstructions. We observe that the impact of %STD
in SOR is minimal. It is worth mentioning that in both Figures 5 and 6, the small standard
error of the mean (SEM) bars indicate that the variation of the mean values is negligible in
the metrics evaluated, namely RC and SOR.

Figure 5. Recovery coefficient (RC) for all hot fillable rods in the hot region of the simulated IQ
phantom as a function of rod diameter (in mm), for Chebyshev and FBP reconstructions in NL2.

Figure 6. Spill-over ratio (SOR) measurements for the two water-filled and air-filled chambers in
the cold region of the simulated IQ phantom, over the percentage standard deviation (%STD), for
Chebyshev and FBP reconstructions, corresponding to all noise levels. Note that the leftmost data
point in each curve corresponds to NL1 (less noise), whereas the rightmost data point corresponds to
the NL3 case.
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Furthermore, in Table 2 we present the CNR measurements, resulting from the com-
bination of the corresponding ones of RC and %STD. As shown in Table 2, Chebyshev
reconstructions exhibited consistently higher CNR values than FBP, for all hot rods and for
all noise levels investigated.

Table 2. Contrast-to-noise-ratio (CNR) measurements for the hot region of the simulated IQ phantom
for Chebyshev and FBP reconstructions, for all hot fillable rods, for all noise levels.

Rod Noise Level Chebyshev FBP

1 mm
NL1 6.62 5.94
NL2 4.68 4.15
NL3 3.00 2.47

2 mm
NL1 17.90 15.74
NL2 12.91 10.93
NL3 8.03 6.84

3 mm
NL1 32.42 24.65
NL2 23.34 17.21
NL3 14.41 10.66

4 mm
NL1 42.75 29.52
NL2 30.62 20.42
NL3 18.85 12.86

5 mm
NL1 46.84 28.73
NL2 33.76 20.06
NL3 20.84 12.39

Figure 7 illustrates the RC versus %STD plots, for each of the hot fillable rods (diam-
eters 1 to 5 mm) of the simulated IQ phantom, for Chebyshev and FBP reconstructions,
corresponding to all sigma values, namely from right to left: NL3 (no smoothing), 0.5×,
1×, and 1.5× sigma, respectively. We observe that, for all rod sizes, Chebyshev-based
reconstructions exhibit higher RC values for %STD between 3% to 6%, whereas, for %STD
between 1% to 2%, FBP reconstructions have higher RC values than the corresponding
ones of Chebyshev. As expected, more Gaussian smoothing (larger sigma) leads to lower
%STD as well as RC values.

Finally, in Figure 8 we have plotted SOR versus %STD, for the water-filled and air-
filled chambers in the cold region of the simulated IQ phantom, for Chebyshev and FBP
reconstructions, corresponding to all sigma values, namely from right to left: NL3 (no
smoothing), 0.5×, 1×, and 1.5× sigma, respectively. We observe that the calculated SOR
values for both analytic reconstruction algorithms are similar. As expected, for both FBP
and Chebyshev reconstructions, the SOR value increases as the %STD increases.
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Figure 7. Recovery coefficient (RC) measurements for each of the hot fillable rods (diameters 1 to
5 mm) of the simulated IQ phantom, as functions of percentage standard deviation (%STD), for
Chebyshev and FBP reconstructions, corresponding to all sigma values, namely from right to left:
NL3 (no smoothing), 0.5×, 1×, and 1.5× sigma, respectively.

Figure 8. Spill-over ratio (SOR) measurements for the water-filled and air-filled chambers in the
cold region of the simulated IQ phantom, as functions of percentage standard deviation (%STD), for
Chebyshev and FBP reconstructions, corresponding to all sigma values, namely from right to left:
NL3 (no smoothing), 0.5×, 1×, and 1.5× sigma, respectively.

5. Discussion

In this work we have presented a new analytic reconstruction technique based on
Chebyshev polynomials of the first kind, and have evaluated it, in comparison to the
analytic industry-standard method of FBP, in a simulated IQ phantom according to the
NEMA NU 4-2008 protocol. For the evaluation of the performance of our new method,
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we employed several image metrics, including the percentage standard deviation for the
uniform region of the phantom, the recovery coefficient for the hot region of the phantom
and the spill-over ratio for the cold region of the phantom. Our results suggest that
our Chebyshev-based reconstruction algorithm is capable of producing accurate analytic
reconstructions for the simulated IQ phantom.

It is important to note that the main hypotheses involved in our current work are
supported by our findings. Firstly, the hypothesis that Chebyshev polynomials of the first
kind operate exclusively in the physical space, without incorporating the Fourier transform,
which is expected to benefit the contrast of the reconstructed images. Secondly, the fact
that Chebyshev polynomials operate globally, instead of locally, when interpolating the
sinogram, which proved to be beneficial in terms of noise in the reconstructed images.
Furthermore, we note that Chebyshev polynomials for PET reconstruction have similar
computational efficiency to other analytical reconstruction formulations, such as SRT (based
on splines), as in [18], where a thorough comparison of the spline technique with FBP has
been performed following the same NEMA protocol. Chebyshev had similar computation
complexity to other polynomial-based analytical transformations [16], however simpler
transformations like FBP are less computationally expensive.

In particular, for the uniform region of the simulated IQ phantom, our new analytic
method provided images with percentage standard deviation (%STD) considerably lower
than FBP in all noise levels investigated. In the uniform region, Chebyshev reconstructions
were consistently improved over FBP, in terms of percentage standard deviation (up to 29%
lower %STD values, depending on the noise level). For the hot regions of the simulated
IQ phantom, our Chebyshev-based method provided images with recovery coefficients
similar to FBP in the rods with diameter 1, 2 and 3 mm, whereas higher RC values in the
rods with diameter 4 and 5mm. When post-smoothing was applied, in order to compare
at similar noise levels, Chebyshev demonstrated RC values up to 14% and 42% higher, for
rods 1–3 mm and 4–5 mm, respectively, compared to FBP, depending on the smoothing
sigma values. Especially in the cases of the 4 and 5 mm rods, RC values were overestimated
and above 1. However, the measured contrast-to-noise-ratio indicated an improvement of
Chebyshev versus FBP of up to 68%, depending on the noise level. Our CNR measurements
provide a better indication of the advantages of Chebyshev reconstructions. Furthermore,
at equal noise levels, namely between 3% to 6%, higher RC values were achieved via
Chebyshev, whereas at lower noise levels FBP seems to have an advantage. For the cold
regions of the simulated IQ phantom, Chebyshev provided images with spill-over ratios
similar to FBP in the water-filled and air-filled chambers. In the SOR measurements, there
occurred several negative values. This is due to the fact that analytic methods are expected
to produce negative values in pixels where the corresponding phantom value is either very
low or zero [17,43].

6. Conclusions

In the present study we have presented a new mathematical formulation for the
analytical inversion of the Radon transform and its corresponding numerical implemen-
tation based on Chebyshev polynomials of the first kind. We have tested our algorithm
on a simulated IQ phantom and compared our results with FBP, the industry-standard
analytic reconstruction method in PET. For the evaluation of our simulated studies based
on Chebyshev polynomials of the first kind, we employed the “NEMA NU 4-2008 stan-
dards” protocol. Our results indicate that our Chebyshev-based reconstruction technique is
comparable with FBP, probably providing a good analytic alternative for two dimensional
reconstructions. In future studies, we aim to investigate the performance of our analytic
reconstruction algorithm in clinical PET studies, especially as it compares with FBP and
ordered subsets expectation maximization (OSEM).
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