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Summary 66 

Human glioblastomas (GBMs) harbour a subpopulation of glioblastoma stem cells (GSCs) that 67 

drive tumourigenesis. However, the origin of intra-tumoural functional heterogeneity between 68 

GBM cells remains poorly understood. Here we study the clonal evolution of barcoded GBM 69 

cells in an unbiased way following serial xenotransplantation to define their individual fate 70 

behaviours. Independent of an evolving mutational signature, we show that the growth of GBM 71 

clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative 72 

hierarchy rooted in GSCs. In this model, slow-cycling stem-like cells give rise to a more rapidly 73 

cycling progenitor population with extensive self-maintenance capacity, that in turn generates 74 

non-proliferative cells. We also identify rare “outlier” clones that deviate from these dynamics, 75 

and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant 76 

GSCs. Finally, we show that functionally distinct GSCs can be separately targeted using 77 

epigenetic compounds, suggesting new avenues for GBM targeted therapy.  78 
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Introduction 87 

Glioblastoma (GBM) is the most common and malignant form of adult brain tumour1. 88 

Central to our understanding of GBM biology is the idea that tumour initiation, maintenance, and 89 

regrowth following treatment are seeded by glioblastoma stem cells (GSCs)2,3. Evidence for a 90 

proliferative hierarchy in GBM has been derived from xenotransplantation of specific GBM 91 

subsets defined by surface marker expression2, genetic lineage tracing in mouse models3 and 92 

more recently, single-cell RNA-sequencing4,5. In parallel, GBMs exhibit substantial intra-93 

tumoural genomic heterogeneity6,7 that could theoretically be based in GSCs with variations in 94 

growth potential, treatment responsiveness, or invasiveness8-10. However, recent evidence from 95 

other systems demonstrate that the intrinsic growth dynamics of a functionally homogeneous 96 

population of stem cells is already sufficient to create a wide range of clonal growth 97 

behaviours11-14. Therefore, it is yet unclear whether the heterogeneity of human GBM clones is 98 

primarily derived from their genomic heterogeneity, or the stochastic outcome of their 99 

hierarchical mode of growth.  100 

DNA barcoding is a methodology that enables the proliferative capacity of individual 101 

cells to be resolved within polyclonal populations, with diverse applications in stem cell and 102 

cancer biology. Recent investigations with this strategy have already provided crucial insights 103 

into the lineage potential of normal stem cells15, the proliferative heterogeneity of their 104 

transformed counterparts16, as well as mechanisms of cancer drug resistance17 and metastasis18. 105 

Importantly, characterizations of population dynamics in a quantitative and unbiased way can be 106 

used to inform a mathematical framework to explain complex behaviours13,17. Here, we perform 107 

DNA barcoding of primary GBM cells in order to investigate the quantitative behaviours of GSC 108 

clones, creating a general, minimal model of GBM growth in which a high degree of intra-109 



 

 

tumoural functional complexity can be derived from a homogeneous population of stem-like 110 

cells. 111 

 112 

Lineage tracing of human GBM cells 113 

Lineage tracing assays based on genetic mouse models have demonstrated that quiescent 114 

stem-like cells promote brain tumour recurrence following chemotherapy3,19. However, it 115 

remains unclear how these cells contribute to tumour growth in genetically heterogeneous human 116 

GBM6,7,20,21. To identify potential differences in tumour clone-initiating potential, tolerance to 117 

chemotherapy and invasion capacity, we made use of a lentiviral barcoding strategy to trace the 118 

output of individual cells in vivo (Fig. 1a)15,16,22. Freshly dissociated cells from primary (GBM-119 

719, -729, -735, -743, and -754) and recurrent (GBM-742) GBMs were transduced with a library 120 

of biologically neutral barcodes prior to their transplantation into the brains of NOD/SCID/IL-2γ-121 

/- (NSG) mice within 24 hours of isolation, a time window below the doubling time of GSCs 122 

(Extended Data Fig. 1a-c). For each tumour sample, spiked-in controls were included to estimate 123 

relative clone sizes from barcode read counts (Extended Data Fig. 1d-f). Given the high library 124 

diversity (~2×105) and limiting transduction efficiency across experiments (<38%), the majority 125 

of labelled cells were expected to carry unique barcodes (Extended Data Fig. 1g-h and 126 

Supplementary Theory 1). 127 

Exome and RNA sequencing of primary tumours identified mutations in common GBM-128 

associated genes (TP53, EGFR, PDGFRA) and signatures of the Classical and Proneural 129 

transcriptional subgroups (Extended Data Fig. 2a-b)20. Histologically, xenografts resemble 130 

human GBM and have abundant expression of the neural precursor marker nestin (Fig. 1b and 131 



 

 

Extended Data Fig. 3a-b)2. Consistent with the significant inter-patient heterogeneity of human 132 

GBM20,21, tumours generated from different primary samples differed in proliferative activity, 133 

apoptosis rates, growth rates and response to temozolomide (TMZ) chemotherapy (Extended 134 

Data Fig. 3c-d). In the following, we focused first on GBM-719 for which the largest xenograft 135 

data set was available, using xenografts from other GBMs to test for consistency in their 136 

properties.  137 

Growth of GBM cells in vivo was concomitant with expansion in both the injected 138 

(ipsilateral) and non-injected (contralateral) hemispheres (Fig. 1c and Extended Data Fig. 4a-b). 139 

For GBM-719, 1,532 clones (derived from ~3% of barcoded cells) expanded above the detection 140 

threshold, with 475 present in both hemispheres. The sizes of these “surviving” clones were 141 

broadly distributed, with the majority remaining small (Fig. 2a). A further, smaller reduction in 142 

clone number was observed upon serial passaging, with a fraction becoming apparent only in the 143 

second passage, indicating that some clonogenic cells did not reach the detection threshold 144 

within the first passage (Fig. 1d). These observations suggest that the primary GBM population 145 

contained only a subset of cells with continuous tumour-maintaining activity (GSCs). However, 146 

the abundance of surviving clones and broad size distributions demonstrate that tumour growth 147 

does not rely on the activity of a few tumour-initiating cells (Fig. 2a and Extended Data Fig. 148 

4e)4,5.  149 

 150 

GBM clones are uniformly invasive 151 

We next sought to define the invasive capacity of barcoded GBM clones by comparing 152 

clonal composition between the ipsilateral and contralateral hemispheres, the latter representing 153 

expansion of invasive cells (Extended Data Fig. 4a-b). In all experiments, the sizes of clones in 154 



 

 

both hemispheres were either highly correlated from the first passage on, or became highly 155 

correlated soon thereafter (Extended Data Fig. 4c), indicating that clonal behaviour in the 156 

contralateral side reflected their behaviour in the ipsilateral side. We then asked whether clones 157 

that were exclusively found in the contralateral side have a higher invasive capacity. However, 158 

xenografts derived from re-injecting contralaterally-harvested cells were primarily composed of 159 

clones that had been present in both hemispheres in the previous passage (Extended Data Fig. 160 

4d). It follows that self-renewal and invasion capacity are coincident properties of the same 161 

labelled clones within each human GBM. Spatial separation of genetically distinct clones may 162 

therefore represent transient variations in local dispersal, which become amplified over 163 

time6,10,23,24. 164 

 165 

Neutral hierarchical growth dynamics  166 

A consistent feature of clone sizes across all passages and between hemispheres was their 167 

broad distribution (Fig. 2a and Extended Data Fig. 4e). Such functional heterogeneity could 168 

derive from engrained “fitness” advantages of some tumour-initiating cells over others, resulting 169 

from heritable genetic or epigenetic alterations8. Alternatively, variation in clonal output could 170 

result from “neutral” processes, reflecting the chance outcome of cell fate decisions obtained 171 

within an equipotent tumour-initiating population11,12. To discriminate between these 172 

possibilities, we looked for evidence of equipotency in the distribution of relative clone size. 173 

Remarkably, the distributions were found to be consistent with a negative binomial dependence 174 

— as evidenced by the exponential form of the first incomplete moment (Fig. 2b, Extended Data 175 

Figs. 5-6 and Supplementary Theory 2). Some xenografts also showed a minority (<4%) of large 176 

clones that lay outside this distribution (Fig. 2b and Extended Data Fig. 4g, red arrowhead), a 177 



 

 

feature returned to below. With clone size distributions across all 6 patient tumour samples 178 

largely characterized by just one parameter (the constant of the exponential), these observations 179 

suggest that GBM intra-tumoural heterogeneity derives primarily from the growth characteristics 180 

of a single equipotent cell population rather than an engrained differential fitness of subclones, 181 

an unexpected finding given the inter- and intra-patient genomic diversity of GBM and the 182 

ongoing genomic evolution observed in xenografts (Extended Data Fig. 5-6 and Supplementary 183 

Theory 3)6,7,20,21. 184 

How could a negative binomial clone size distribution arise? Such behaviour is common 185 

in population dynamics and is typically associated with processes involving the sporadic creation 186 

of “individuals” —cells in this case— that, when born, undergo a stochastic process, selecting 187 

with equal probability between duplication (birth) or loss (death) and supported by a slow influx 188 

from another compartment (immigration) – a “critical birth-death process with immigration” 189 

(Supplementary Theory 3)25. In the tumour context, this behaviour translates to a proliferative 190 

hierarchy in which a slow-cycling stem cell-like population undergoes serial rounds of invariant 191 

asymmetric cell division, giving rise to a self-sustaining, rapidly-dividing progenitor population 192 

that generates short-lived non-proliferative progeny (Fig. 2c and Supplementary Theory 4).  193 

But, is a mode of strictly invariant asymmetric cell division plausible? Since most 194 

barcoded clones survive dilution through serial passaging (Fig. 1d), individual clones at the end 195 

of the previous passage are likely to host a multiplicity of stem-like cells. Cell division must 196 

therefore also lead to symmetric fate outcomes so that their numbers can accumulate in 197 

individual clones. However, so long as asymmetric fate outcomes predominate, the resulting 198 

clone size distributions do not depart significantly from the observed negative binomial form 199 

(Supplementary Theory 4). 200 



 

 

 Based on a quantitative analysis of clone size, we propose that human GBM growth in 201 

xenografts is defined by a minimal model involving a defined GSC hierarchy (Fig. 2c and 202 

Supplementary Theory 4). To challenge the model and define the minimal set of parameters 203 

governing GBM growth, we used stochastic simulations to compare the predicted clonal 204 

dynamics with experimental findings (Fig. 2d-h and Supplementary Theory 5). In assessing the 205 

viability of the model, we constrained the simulation using a range of biologically plausible 206 

parameters based on the overall expansion of xenografts along with the proportion of actively 207 

dividing and apoptotic cells (Extended Data Fig. 3d and Supplementary Theory 5). Over the 208 

determined range of parameters, simulations revealed an approximately negative binomial clone 209 

size distribution across all serial passages (Fig. 2e), consistent with experiment. Using the unique 210 

barcoding of clones, we assessed correlations of clone size and survival likelihoods across serial 211 

passages. Remarkably, the minimal model captured the range of data to a high level of accuracy 212 

(Fig. 2f-h, Extended Data Fig. 4f and Supplementary Theory 6). Quantitative analysis of clone 213 

size distributions for GBM-742 and GBM-754, in addition to independent analysis of mutational 214 

data derived from GBM-719 xenografts, also provided strong evidence in favour of the same 215 

paradigm (Extended Data Fig. 6d-i, Supplementary Theory 6-7).  216 

 217 

Two divergent GSC phenotypes 218 

Building on the findings above, we next sought to define the effect of TMZ 219 

chemotherapy on clonal dynamics. Analysis of the TMZ-treated xenografts clearly distinguished 220 

two divergent behaviours: A majority of clones were sensitive to TMZ treatment and present at 221 

low abundances (“Group A” in Fig. 3a,b), while a minority were present at frequencies almost an 222 

order of magnitude greater, consistent with treatment resistance (“Group B” in Fig. 3a,b). 223 



 

 

Comparison of the TMZ-treated secondary xenografts with the untreated primary xenograft 224 

indicated that the sizes of sensitive clones were largely uncorrelated across serial passages, 225 

whereas the sizes of the resistant clones appeared to be positively correlated (Fig. 3a). 226 

Interestingly, the further coincidence of distinct resistant clones in drug-treated replicate 227 

xenografts (Figs. 3c,d) suggests that the resistance phenotype can be pre-existing within the 228 

parental population. 229 

Based on this classification, we analysed the clone size distribution within each group 230 

separately. Sensitive clones maintained an approximate negative binomial dependence (Extended 231 

Data Fig. 5a) suggesting that, in sharp contrast with the mouse model3, TMZ-treatment leaves 232 

the proliferative hierarchy of the majority of tumour cells unperturbed. In contrast, resistant 233 

clones could not be captured by the same dynamics (Extended Data Fig. 5a, red arrowheads). 234 

However, with an additional acquired resistance to apoptosis, we found that the original model 235 

parameters were sufficient to explain the scale of the observed behaviours of resistant clones 236 

(compare Fig. 3a to Fig. 3e and Fig. 3b to Fig. 3f, Supplementary Theory 6.5). Importantly, large 237 

outlier clones can be detected even in untreated tumours across different GBM cases (Extended 238 

Data Figs. 5-6). Taken together, these results demonstrate that a minority of clones in pre- and 239 

post-treatment tumours conform to perturbed growth dynamics, and may constitute a key driver 240 

in the clonal evolution of human GBM. We define these outliers as “Group B” clones, and the 241 

majority that behave according to the negative binomial distribution as “Group A”.  242 

 243 

Epigenetic targeting of distinct GSCs 244 

We next questioned whether the Group B phenotype exposes new therapeutic 245 

vulnerabilities. Primary GSC cultures26 established from xenografts maintained a mixture of 246 



 

 

clones seen in primary, secondary and tertiary passages (Extended Data Fig. 7a-b). Moreover, 247 

both cultures and xenografts derived from the same parental TMZ-treated xenograft were 248 

relatively concordant in their relative clonal abundances (Extended Data Fig. 7c), suggesting that 249 

GSC cultures can recapitulate their growth behaviour in vivo. Strikingly, Group A clones from 250 

the GBM-754 primary xenograft-derived culture model (1)754, for which the most data was 251 

available, maintained a negative binomial distribution after an approximate 7-fold expansion in 252 

vitro, consistent with maintenance of the proliferative hierarchy under culture conditions 253 

(Extended Data Fig. 7d,e). This included the correlations of outlier clones between replicates 254 

(Extended Data Fig. 7f), corroborating the previously observed presence of Group B clones in 255 

untreated xenografts (Fig. 2b). Most cultures derived from other xenografts also adhered to a 256 

negative binomial distribution once the largest outliers were removed (Extended Data Fig.8a-b). 257 

We next combined in vitro drug selection of the (1)754 culture with barcode sequencing to 258 

determine whether resistance arises proportionately from each clone type (Extended Data Fig. 259 

9a,b). GSC cultures analyzed by assay for transposase-accessible chromatin with high-260 

throughput sequencing (ATAC-seq) identified a shared epigenetic state, leading us to focus on 261 

epigenetic targets (Extended Data Fig. 2d). Cells subjected to drug selection were allowed to 262 

repopulate to a similar density as control, in order to model tumour regrowth following therapy 263 

(Extended Data Fig. 9b). The drug treatments induced a range of changes to clonal dominance 264 

patterns (Extended Data Fig. 9c). However, the same negative binomial distribution was 265 

maintained in most cases, indicating that the underlying dynamics of Group A clones are largely 266 

unperturbed (Extended Data Fig. 10a,b). Intriguingly, a Menin-Mixed Lineage Leukemia (MLL) 267 

interaction inhibitor (MI-2-2)27-29 was selective against Group B clones, as repopulation 268 

following selection derived primarily from Group A clones (Fig. 3g, Extended Data Fig. 9d). By 269 



 

 

the same logic, and consistent with the requirement for Enhancer of zeste homolog 2 (EZH2) in 270 

GSC maintenance30, we found that an EZH2 inhibitor (UNC1999) was instead selective against 271 

Group A clones (Fig. 3g, Extended Data Fig. 9d). MI-2-2 is growth inhibitory in a polyclonal 272 

context, consistent with its specificity for the highly proliferative clone type (Extended Data Fig. 273 

9e). Targeting both clone types by combining MI-2-2 with an EZH2 inhibitor (UNC1999 or 274 

GSK343) was uniquely sufficient to eradicate self-renewal (Fig. 3h, Extended Data Fig. 9f-h). 275 

Consistent with TMZ-induced selection for Group B clones in GBM-719, MI-2-2 treatment of 276 

TMZ-transformed cells eradicated self-renewal and reduced tumour growth in vivo (Fig. 3i-j, 277 

Extended Data Fig. 9i). Efficacy of the UNC1999/MI-2-2 combination was mirrored in 4 278 

additional models (G523, G549, G564, G566) even when single drug treatments did not affect 279 

self-renewal, and in GBM-851 primary cells (Extended Data Fig. 9j-n). While Menin-MLL 280 

inhibition is especially effective in targeting paediatric glioma that carry histone 3 variant H3.3 281 

mutations27, these findings warrant further pre-clinical studies of MI-2-2 in advanced, post-282 

treatment adult GBM. 283 

 284 

Discussion 285 

Efforts to define the identity and behaviour of tumour-maintaining cells in human GBM 286 

have focused on genetic intra-tumoural heterogeneity9,31. Yet the majority of subclonal mutations 287 

in cancer may be biologically neutral14,32. At first sight, the emergence of clonal heterogeneity 288 

suggests that the evolving mutational landscape may confer a range of fitness advantages on 289 

GSCs. However, quantitative analysis of clone sizes indicates that clonal heterogeneity can be 290 

explained by robust features of a conserved proliferative hierarchy. In this model, heterogeneity 291 

in clonal expansion does not derive from genetic diversity but, in common with other cancer 292 



 

 

models11,12, emerges as the predictable outcome of chance fate decisions made by GSCs and 293 

their progeny. Given the correlation of human GBM cell transcriptomes with those of normal 294 

outer radial glial cells and intermediate progenitors33, these results suggest that the initiation of 295 

human GBM may be associated with the aberrant reactivation of a surprisingly normal 296 

developmental program. 297 

While the majority of GSC clones adhere to neutral, hierarchical growth dynamics 298 

(Group A), we identified a minority subset that showed a different growth characteristic (Group 299 

B). It is currently unknown whether Group B clones share common molecular features between 300 

different patient tumours. Intriguingly, however, these dominant clones are sensitive to an 301 

epigenetic drug (MI-2-2) previously shown to be effective in H3.3 mutant paediatric 302 

glioblastoma27. Together with the fact that adult GSCs can converge into an epigenetic state 303 

reminiscent of paediatric GBM due to selective downregulation of H3.3 expression29, it is 304 

tempting to speculate that Group B clones in adult GBM may share additional epigenetic features 305 

of H3.3 mutant paediatric GBM cells and H3.3-low adult GSCs29. Alternatively, Group B clones 306 

may arise from Group A clones after a gradual accumulation of genetic mutations that alters their 307 

mode of growth7. Future studies should target the origin and functional properties of these 308 

clones, and assess whether they contribute disproportionately to GBM malignancy. 309 

 310 

 311 

 312 

 313 

 314 

 315 



 

 

References 316 
 317 
1 Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for 318 

glioblastoma. N Engl J Med 352, 987-996, doi:10.1056/NEJMoa043330 (2005). 319 
2 Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396-320 

401, doi:10.1038/nature03128 (2004). 321 
3 Chen, J. et al. A restricted cell population propagates glioblastoma growth after 322 

chemotherapy. Nature 488, 522-526, doi:10.1038/nature11287 (2012). 323 
4 Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 324 

glioblastoma. Science 344, 1396-1401, doi:10.1126/science.1254257 (2014). 325 
5 Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human 326 

oligodendroglioma. Nature 539, 309-313, doi:10.1038/nature20123 (2016). 327 
6 Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer 328 

evolutionary dynamics. Proc Natl Acad Sci U S A 110, 4009-4014, 329 
doi:10.1073/pnas.1219747110 (2013). 330 

7 Johnson, B. E. et al. Mutational analysis reveals the origin and therapy-driven evolution 331 
of recurrent glioma. Science 343, 189-193, doi:10.1126/science.1239947 (2014). 332 

8 Greaves, M. Cancer stem cells: back to Darwin? Semin Cancer Biol 20, 65-70, 333 
doi:10.1016/j.semcancer.2010.03.002 (2010). 334 

9 Piccirillo, S. G. et al. Genetic and functional diversity of propagating cells in 335 
glioblastoma. Stem Cell Reports 4, 7-15, doi:10.1016/j.stemcr.2014.11.003 (2015). 336 

10 Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in 337 
glioblastoma. Cancer Cell 20, 810-817, doi:10.1016/j.ccr.2011.11.005 (2011). 338 

11 Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of 339 
tumour growth by clonal analysis. Nature 488, 527-530, doi:10.1038/nature11344 (2012). 340 

12 Sanchez-Danes, A. et al. Defining the clonal dynamics leading to mouse skin tumour 341 
initiation. Nature 536, 298-303, doi:10.1038/nature19069 (2016). 342 

13 Rulands, S. & Simons, B. D. Tracing cellular dynamics in tissue development, 343 
maintenance and disease. Curr Opin Cell Biol 43, 38-45, doi:10.1016/j.ceb.2016.07.001 344 
(2016). 345 

14 Simons, B. D. Deep sequencing as a probe of normal stem cell fate and preneoplasia in 346 
human epidermis. Proc Natl Acad Sci U S A 113, 128-133, doi:10.1073/pnas.1516123113 347 
(2016). 348 

15 Nguyen, L. V. et al. Clonal analysis via barcoding reveals diverse growth and 349 
differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14, 350 
253-263, doi:10.1016/j.stem.2013.12.011 (2014). 351 

16 Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed 352 
human mammary cells. Nature 528, 267-271, doi:10.1038/nature15742 (2015). 353 

17 Bhang, H. E. et al. Studying clonal dynamics in response to cancer therapy using high-354 
complexity barcoding. Nat Med 21, 440-448, doi:10.1038/nm.3841 (2015). 355 

18 Wagenblast, E. et al. A model of breast cancer heterogeneity reveals vascular mimicry as 356 
a driver of metastasis. Nature 520, 358-362, doi:10.1038/nature14403 (2015). 357 

19 Vanner, R. J. et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic 358 
hedgehog subgroup medulloblastoma. Cancer Cell 26, 33-47, 359 
doi:10.1016/j.ccr.2014.05.005 (2014). 360 



 

 

20 Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of 361 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. 362 
Cancer Cell 17, 98-110, doi:10.1016/j.ccr.2009.12.020 (2010). 363 

21 Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462-364 
477, doi:10.1016/j.cell.2013.09.034 (2013). 365 

22 Nguyen, L. V. et al. DNA barcoding reveals diverse growth kinetics of human breast 366 
tumour subclones in serially passaged xenografts. Nat Commun 5, 5871, 367 
doi:10.1038/ncomms6871 (2014). 368 

23 Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat Genet 47, 369 
209-216, doi:10.1038/ng.3214 (2015). 370 

24 Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit 371 
intratumour heterogeneity. Nature 525, 261-264, doi:10.1038/nature14971 (2015). 372 

25 Bailey, N. T. J. The Elements of Stochastic Processes with Applications to the Natural 373 
Sciences.  (John Wiley & Sons, 1990). 374 

26 Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have tumor-375 
specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 376 
568-580, doi:10.1016/j.stem.2009.03.014 (2009). 377 

27 Funato, K., Major, T., Lewis, P. W., Allis, C. D. & Tabar, V. Use of human embryonic 378 
stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346, 379 
1529-1533, doi:10.1126/science.1253799 (2014). 380 

28 Borkin, D. et al. Pharmacologic inhibition of the Menin-MLL interaction blocks 381 
progression of MLL leukemia in vivo. Cancer Cell 27, 589-602, 382 
doi:10.1016/j.ccell.2015.02.016 (2015). 383 

29 Gallo, M. et al. MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the 384 
Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell 28, 715-729, 385 
doi:10.1016/j.ccell.2015.10.005 (2015). 386 

30 Suva, M. L. et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. 387 
Cancer Res 69, 9211-9218, doi:10.1158/0008-5472.can-09-1622 (2009). 388 

31 Meyer, M. et al. Single cell-derived clonal analysis of human glioblastoma links 389 
functional and genomic heterogeneity. Proc Natl Acad Sci U S A 112, 851-856, 390 
doi:10.1073/pnas.1320611111 (2015). 391 

32 Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification 392 
of neutral tumor evolution across cancer types. Nat Genet 48, 238-244, 393 
doi:10.1038/ng.3489 (2016). 394 

33 Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical 395 
development. Cell 163, 55-67, doi:10.1016/j.cell.2015.09.004 (2015). 396 

 397 
 398 

 399 

 400 

 401 

 402 



 

 

Acknowledgements 403 

We thank R.D. Corbett, P. Plettner, N. Khuu and G. Edin for technical advice. We would also 404 

like to thank the SickKids-UHN Flow Cytometry Facility for assistance with FACS, SickKids 405 

Laboratory Animal Services for animal housing and veterinary support, and The Centre for 406 

Applied Genomics, Princess Margaret Genomics Centre, and Canada’s Michael Smith Genome 407 

Sciences Centre for sequencing and bioinformatics support. This study was supported by the 408 

Canadian Institutes of Health Research (funding reference number 142434). This study was 409 

conducted with the support of the Ontario Institute for Cancer Research through funding 410 

provided by the Government of Ontario. P.B.D. is supported by grants from Stand Up 2 Cancer 411 

(SU2C) Canada, Canadian Institutes for Health Research, Ontario Institute for Cancer Research, 412 

Canadian Cancer Society, the Hospital for Sick Children Foundation, Jessica’s Footprint 413 

Foundation, B.R.A.I.N. Child and the Hopeful Minds Foundation. P.B.D. also holds a Garron 414 

Family Chair in Childhood Cancer Research at The Hospital for Sick Children. B.D.S. 415 

acknowledges the support of the Wellcome Trust (grant number 098357/Z/12/Z). C.J.E. 416 

acknowledges grant support from the Canadian Cancer Society and the Terry Fox Run. Research 417 

supported by SU2C Canada Cancer Stem Cell Dream Team Research Funding (SU2C-AACR-418 

DT-19-15) provided by the Government of Canada through Genome Canada and the Canadian 419 

Institute of Health Research, with supplemental support from the Ontario Institute for Cancer 420 

Research through funding provided by the Government of Ontario. Stand Up To Cancer Canada 421 

is a program of the Entertainment Industry Foundation Canada. Research Funding is 422 

administered by the American Association for Cancer Research International - Canada, the 423 

scientific partner of SU2C Canada.The Structural Genomics Consortium is funded by AbbVie, 424 

Bayer, Boehringer Ingelheim, GSK, Genome Canada, Ontario Genomics Institute, Janssen, Lilly, 425 



 

 

Merck, Novartis, the government of Ontario, Pfizer, Takeda, and the Wellcome Trust.  426 

 427 

Author Contributions 428 

X.L. and P.B.D. conceptualized the study and were assisted by L.V.N., R.J.V., N.I.P., F.J.C., 429 

H.J.S., M.G., and C.J.E. in experimental design. P.B.D. and B.D.S. supervised the study. X.L. 430 

performed in vivo and in vitro barcoding experiments and drug validation studies. D.J.J., B.D.S., 431 

X.L., D.P., A.C., and P.B.D. analysed and interpreted barcoding results. D.J.J. and B.D.S. 432 

developed the theoretical model of tumour growth, performed simulations and wrote the 433 

supplemental theory section. F.M.G.C., L.M.R., M.D.T., and T.J.P. analysed WES and RNA-seq 434 

results. P.G. and M.L. performed ATAC-seq and analysed results. R.J.V., L.L., M.K., N.I.P., 435 

F.J.C., H.W., C.C., B.L., N.R., R.H., and S. Dolma assisted in performing the experiments. 436 

M.M., A.J.M., R.A.M., Y.M., and M.H. oversaw the generation of sequencing data. L.V.N. and 437 

C.J.E. designed, generated, and validated the barcode library. P.P. and C.H.A. assisted with in 438 

vitro drug assays. M.D.C., S. Das, M.B. contributed all GBM tumour samples used in the study. 439 

X.L., D.J.J., C.J.E., B.D.S., and P.B.D. wrote the manuscript, all authors contributed to data 440 

interpretation and approved the manuscript. 441 

 442 

Author Information 443 

Reprints and permissions information is available at www.nature.com/reprints. The authors 444 

declare no competing financial interests. Readers are welcome to comment on the online version 445 

of the paper. Correspondence and requests for materials should be addressed to P.B.D. 446 

(peter.dirks@sickkids.ca) and B.D.S. (bds10@cam.ac.uk). 447 

 448 
 449 



 

 

 450 

 451 

Figure Legends 452 

Figure 1 | Serial transplantation scheme and characterization of barcoded glioblastoma 453 

xenografts.  454 

a, General transplantation scheme for barcoded xenografts derived from primary GBM tumour 455 

cells (GBM-719). b, Staining of a secondary GBM-719 xenograft with the indicated markers, 456 

scale bar = 100 μm. c, Tumour growth quantified as the estimated fold-change in cell number 457 

between injection and harvesting for different ipsilateral derived GBM-719 xenografts. Lines 458 

indicate serial transplantation trajectories. d, Proportional Venn diagrams depicting the number 459 

of barcoded clones unique to each passage or shared between passages for the indicated 460 

experiment.  461 

Figure 2 | Clonal dynamics of GBM is consistent with a conserved proliferative hierarchy.  462 

a, Clone size distributions of xenografts derived from GBM-719 cells across different passages. 463 

For the primary passage, distributions for the ipsilateral (blue) and contralateral sides (red) are 464 

shown. For the secondary and tertiary passages, distributions for the ipsilateral side from 465 

different replicate experiments are shown (shades of blue). b, First incomplete moment of the 466 

corresponding clone size distributions shown in panel (a), displayed on a logarithmic scale 467 

(Supplementary Theory 2). Dashed lines show exponentials as a guide for the eye. The red 468 

arrowhead indicate deviations from exponential behaviour due to a small number (<4%) of 469 

outlier clones. c, A minimal model of tumour growth based on a three-component hierarchy 470 

involving transitions from a slow-cycling stem-like compartment (S) to a more rapidly cycling 471 

progenitor population (P) to a non-dividing compartment (D). Following S cell divisions, a 472 



 

 

fraction, ε, result in symmetric fate outcome while the remainder lead to asymmetric fate. With 473 

equal probability, P cells divide symmetrically or give rise to D cells which, in turn, rapidly 474 

undergo apoptosis. d, Representative clone size trajectories computed for the model shown in 475 

(c). Different curves correspond to different clones across three serial passages, along with the 476 

average over all trajectories, with the S cell division rate of 0.15/ day, the P cell division rate of 477 

1/day, the D cell apoptosis rate of 0.5/day and ε = 15% (for details, see Supplementary Theory 478 

5). e, First incomplete moment of the clone size distribution across passages derived from 2×106 479 

simulated clone trajectories. The shaded areas show the regions within which 95% of the 480 

respective curves fall for repeated simulations with 5×104 clones each. For each passage, the first 481 

incomplete moment follows an approximate exponential size dependence. Parameters as in panel 482 

(d). f, Clone size correlation for different passages in the model (distributions) and from 483 

representative xenografts derived from GBM-719 cells (data points). Distributions show model 484 

results within the biologically plausible parameter range (see Supplementary Theory, Table S2). 485 

See Supplementary Theory, Figure S3 for other patients. g, Fraction of initially injected clones 486 

growing above half of the characteristic clone frequency n0/2 for the same datasets as in (f) (see 487 

Supplementary Theory 6.3). See Supplementary Theory, Figure S2 for other patients. h, 488 

Simulated examples of clone size correlations across successive serial passages. Parameters are 489 

as in panel (d).  490 

Figure 3 | Chemotherapy reveals clonal transformations in GBM.  491 

a, Correlation of clone sizes for the primary, untreated xenograft with secondary xenografts 492 

treated with TMZ (light and dark dots indicate two replicate secondary xenografts). Light dataset 493 

– Group A: 1255 data points, Group B: 15 data points; dark dataset – Group A: 1228 data points, 494 

Group B: 10 data points. b, Correlation of clone sizes for a secondary TMZ-treated xenograft 495 



 

 

(light dots in panel (a)) with tertiary TMZ-treated xenografts, light and dark dots indicate two 496 

replicate tertiary xenografts. Light dataset – Group A: 95 data points, Group B: 15 data points; 497 

dark dataset – Group A: 117 data points, Group B: 15 data points. c, Correlation of the two 498 

replicate secondary xenografts shown in (a) with Spearman’s rho indicated. d, Correlation of the 499 

two replicate tertiary xenografts shown in (b) with Spearman’s rho indicated. e-f, Correlation of 500 

clone sizes obtained from simulations with a subset of clones being resistant to cell death (blue 501 

dots) and the remaining clones following unperturbed dynamics (green dots) for a primary and 502 

secondary passage (e) and a secondary and tertiary passage (f) (see Supplementary Theory 6.5). 503 

The S cell division rate is set at 0.1/day, the P cell division rate is 1.5/day, ε = 10%, and the 504 

apoptosis rate is set at 0.7/day with a 0.5% chance of each clone to show resistance to apoptosis 505 

(see Supplementary Theory, Table S3). g, Selectivity of UNC1999 and MI-2-2 for group A and 506 

B clones respectively, representative of 2 technical replicate experiments. Shown are relative 507 

clone sizes after DMSO treatment, or regrowth following selection with indicate compounds. 508 

The indicated values are clone sizes for groups A (black) and B (blue), lines connect the same 509 

barcoded clone under different conditions. h, Reduction of self- renewal ability upon treatment 510 

with epigenetic compounds alone and in combination as assessed by limiting dilution analysis 511 

(LDA), representative of 3 independent experiments (MI-nc: inactive control for MI-2-2, M: MI-512 

2-2, C: CI-994, G: GSK591, U: UNC1999). P = 0.0663 for DMSO vs. CI-994, 0.132 for DMSO 513 

vs. GSK591, 0.216 for DMSO vs. UNC1999, 5.74×10-13 for DMSO vs. MI-2-2, 4.11×10-18 for 514 

MI-nc vs. M, 1 for M vs. M+C, 0.432 for M vs. M+G, 8.53×10-8 for M vs. M+U. i, MI-2-2 515 

abrogates self-renewal in TMZ-transformed GBM-719 population, representative of 3 516 

independent experiments. P = 3.73×10-3 for DMSO vs. UNC1999, 1.16×10-27 for DMSO vs MI-517 

2-2, 1.61×10-16 for UNC1999 vs MI-2-2. All LDA results are representative of 3 independent 518 



 

 

experiments with the remaining experiments presented in Extended Data Fig. 9. Analysis of all 519 

LDA results was performed using ELDA software34, error bars represent 95% confidence 520 

interval (ns P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001). j, MI-2-2 inhibits tumour growth 521 

in subcutaneous xenografts derived from TMZ-transformed GBM-719 cells, n = 9 tumours per 522 

group, two-sided unpaired t-test. The horizontal line indicates the mean tumour weight of each 523 

experimental group. 524 

 525 
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 543 
 544 
Methods 545 

No statistical methods were used to predetermine sample size. For animal studies, all animals 546 

were included for the analysis. Animals from separate litters were randomly and evenly divided 547 

between experimental groups to control for animal age. The investigators were not blinded to 548 

group allocation during the experiments and outcome assessment. 549 

 550 

Processing of patient samples   551 

GBM tumour samples were obtained from consenting patients, and all procedures are approved 552 

by the Research Ethics Boards at The Hospital for Sick Children (Toronto, Canada), St. 553 

Michael’s Hospital (Toronto, Canada) and Toronto Western Hospital (Toronto, Canada). 554 

Following surgical resection, tumour specimens were immediately subjected to mechanical and 555 

enzymatic dissociation in artificial cerebrospinal fluid (aCSF) containing trypsin, hyaluronidase, 556 

and kyneuric acid at 37°C. GSC culture models were established as previously described26, and 557 

matched to primary GBM tumour tissue by microsatellite genotyping (The Centre for Applied 558 

Genomics, Hospital for Sick Children). GSC cultures were also randomly and intermittently 559 

tested for mycoplasma contamination by PCR. For barcoding experiments, primary single-cell 560 

suspensions were subjected to magnetic bead depletion to remove cells expressing human CD31 561 

and CD45 markers (130-091-935, 130-045-801, Miltenyi Biotech), thereby excluding endothelial 562 

and hematopoietic lineages prior to lentiviral barcoding.  563 

 564 

Exome sequencing 565 



 

 

For the primary tumour samples, DNA was extracted from flash frozen primary tumour pieces 566 

using an AllPrep DNA/RNA Mini Kit (80204, Qiagen). Genomic DNA libraries from which 567 

exons are captured were constructed according to British Columbia Cancer Agency Genome 568 

Sciences Centre plate-based and paired-end library protocols on a Microlab NIMBUS liquid 569 

handling robot (Hamilton, USA). Briefly, 1 µg of high molecular weight genomic DNA was 570 

sonicated (Covaris LE220) in 62.5 µL volume to 250-350 bp. Sonicated DNA was purified with 571 

PCRClean DX magnetic beads (Aline Biosciences). The DNA fragments were end-repaired, 572 

phosphorylated and bead purified in preparation for A-tailing using a custom NEB Paired-End 573 

Sample Prep Premix Kit (New England Biolabs). Illumina sequencing adapters were ligated 574 

overnight at 16°C and adapter ligated products bead purified and enriched with 6 cycles of PCR 575 

using primers containing a hexamer index that enables library pooling. 200 ng for each of 6 576 

different libraries were pooled prior to whole exome capture using Agilent SureSelect All Exon 577 

V6+UTR probes. The pooled libraries were hybridized to the RNA probes at 65°C for 24 hours. 578 

Following hybridization, streptavidin-coated magnetic beads (Dynal, MyOne) were used for 579 

exome capture. Post-capture material was purified on MinElute columns (Qiagen) followed by 580 

post-capture enrichment with 6 cycles of PCR using primers that maintain the library-specific 581 

indices. The pooled libraries were sequenced on Illumina Hiseq 2500 using V4 sequencing 582 

chemistry at PE125 following Illumina recommendations (Canada’s Michael Smith Genome 583 

Sciences Centre, BC Cancer Agency). 584 

 585 

For the GBM-719 xenograft samples, GFP positive barcoded cells were isolated by FACS 586 

(MoFlo Astrios, Beckman Coulter) from in vitro expanded cells (p3 TMZ TMZ) or directly from 587 

dissociated tumours (all remaining samples) and subjected to DNA extraction using a PrepGEM 588 



 

 

DNA extraction kit (PTI0050, ZyGEM) prior to whole-genome amplification using a REPLI-g 589 

Mini kit (150023, Qiagen). 200 ng of DNA per sample was used to generate cDNA libraries 590 

following Agilent SureSelect XT target enrichment kit as per protocol. 750 ng from each cDNA 591 

library was then hybridized for 24 hours using the All Exon V5 capture baits from Agilent. 592 

Captured, enriched libraries were size validated using the Agilent Bioanalyzer DNA high 593 

sensitivity chip and library concentration was validated by qPCR (Kapa Technologies). All 594 

libraries were normalized to 10 nM and diluted to 2 nM before being denatured with 0.1N 595 

NaOH. Denatured library pools were diluted for a final time down to 14 pM of pooled libraries 596 

and loaded onto Illumina cBot for cluster generation. The clustered flow cell was sequenced 597 

paired-end 100 cycles using an Illumina HiSeq 2000 (Princess Margaret Genomics Centre, 598 

University Health Network).  599 

 600 

For the germline reference sample, DNA was extracted from the patient’s whole blood using a 601 

DNeasy Blood & Tissue kit (69504, Qiagen). The library was prepared using Agilent SureSelect 602 

Human Exome Library Preparation V4 kit for paired end sequencing on a HiSeq 2500 platform. 603 

In brief, 750 ng of genomic DNA was fragmented to 200-bp on average using a Covaris LE220 604 

instrument. Sheared DNA was end-repaired and the 3' ends adenylated prior to ligation of 605 

adapters with overhang-T. Genomic library was amplified by PCR using 10 cycles and 606 

hybridized with biotinylated probes that target exonic regions; the enriched exome libraries were 607 

amplified by an additional 8 cycles of PCR. Exome libraries were validated on a Bioanalyzer 608 

2100 DNA High Sensitivity chip (Agilent Technologies) for size and by qPCR using the Kapa 609 

Library Quantification Illumina/ABI Prism Kit protocol (KAPA Biosystems) for quantities. 610 

Exome libraries were pooled and sequenced with the TruSeq SBS sequencing chemistry using a 611 



 

 

V4 high throughput flowcell on a HiSeq 2500 platform following Illumina's recommended 612 

protocol (The Centre for Applied Genomics, Hospital for Sick Children). 613 

 614 

Exome sequencing analysis of primary tumours 615 

For the primary tumour samples, Fastq files were aligned to the human reference genome hg38 616 

with BWA (0.7.9a, -M option)35. The BAM files were further processed using MarkDuplicates 617 

(Picard Tools 2.6.0), indel realignment (GATK 3.6 RealignerTargetCreator and IndelRealigner) 618 

and BaseRecalibration (GATK 3.6 BaseRecalibrator and PrintReads)36. Samtools 1.3.1 mpileup 619 

(-B, -q10 -d10000000 options)37 was run on the processed BAM files to generate the input to 620 

Varscan. Varscan (2.4.2), mpileup2cns was applied to call snp and indels in each sample (--p-621 

value 0.01 --min-var-freq 0.03, other default parameters)38. The calls were annotated with 622 

Annovar (20160201, using refGene genes)39. To identify the important somatic variants, the calls 623 

were further filtered to include only the following annotated events: nonsynonymous_SNV, 624 

stopgain, stoploss and frameshift_deletion. In addition, calls were removed if they were in the 625 

dbSNP database40 as part of the snp147Common file downloaded from the UCSC server which 626 

contains uniquely mapped variants that appear in at least 1% of the population or are 100% non-627 

reference. Therefore, the flagged SNPs (uniquely mapped variants, excluding Common SNPs, 628 

that have been flagged by dbSNP as "clinically associated") were not removed. In addition, calls 629 

were further filtered out if they had an AF>0.001 in ExAC (exac03, ExAC_ALL)41 or 1000 630 

Genome Project (1000g2015aug_all)42. Subclonal mutations with variant allele frequency < 0.2 631 

were excluded. 632 

 633 

Exome sequencing analysis of xenografts 634 



 

 

For the GBM-719 xenograft samples, read pairs were aligned to the hg19 reference sequence 635 

using the Burrows-Wheeler Aligner (v0.7.12)35, and samples were demultiplexed using Picard 636 

tools (v1.140).  Data were then sorted and duplicate marked using Picard and SAMtools37. Local 637 

realignment around insertions or deletions (indels) and base-quality score recalibration was 638 

performed using the Genome Analysis toolkit (v3.4-46)36. QualiMap (v2.1)43 was used to 639 

evaluate resulting sequencing alignment data. To correct for coverage discrepancies between 640 

Agilent V4 (germline reference sample) and V5 (xenograft samples) capture baits, an 641 

intersection of common regions was performed using bedtools (v2.26.0)44. Common regions with 642 

0X coverage in the blood or greater than 500X coverage in either reference or xenografts were 643 

removed from subsequent analysis.   644 

 645 

The MuTect (v.1.15) algorithm45 was used for somatic variant calling and false-positive filtering. 646 

Resulting variants were annotated using Oncotator (v.2.8.0)46, including common databased 647 

variants (ClinVar47, 1000 Genomes (phase 1 variant set)48, dbSNP (build 138)40, COSMIC 648 

(v71)49).  Germline variants found in the 1000 Genomes Project, dbSNP build 138 were 649 

excluded. Cellularity, ploidy and allele-specific copy number was estimated from normal-650 

xenograft pairs using the Sequenza algorithm (v2.1.2)50. Cutoffs of log 2 copy number ratios 651 

between -0.35 and +0.3 were set to assign genome losses and gains, respectively. 652 

 653 
RNA sequencing  654 

RNA was extracted from the same flash frozen primary tumour pieces as for exome sequencing 655 

using a Qiagen AllPrep DNA/RNA Mini Kit (80204, Qiagen). Qualities of total RNA samples 656 

were determined using an Agilent Bioanalyzer RNA Nanochip or Caliper RNA assay and 657 

arrayed into a 96-well plate (Thermo Fisher Scientific). Polyadenylated (PolyA+) RNA was 658 



 

 

purified using the NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490L, NEB) from 659 

500 ng total RNA normalized in 35 µL for DNase I-treatment (1 Unit, Invitrogen). DNase-660 

treated RNA was purified using RNA MagClean DX beads (Aline Biosciences, USA) on a 661 

Microlab NIMBUS liquid handler (Hamilton Robotics, USA). Messenger RNA selection was 662 

performed using NEBNext Oligod(T)25 beads (NEB) with incubation at 65°C for 5 minutes 663 

followed by snap-chilling at 4°C to denature RNA and facilitate binding of poly(A) mRNA to 664 

the beads. mRNA was eluted in 36 µL of Tris Buffer. 665 

 666 

First-strand cDNA was synthesized from the purified polyadenylated messenger RNA using the 667 

Maxima H Minus First Strand cDNA Synthesis kit (Thermo-Fisher, USA) and random hexamer 668 

primers at a concentration of 5 µM along with a final concentration of 1 µg/uL Actinomycin D, 669 

followed by PCR Clean DX bead purification on a Microlab NIMBUS robot (Hamilton 670 

Robotics, USA). The second strand cDNA was synthesized following the NEBNext Ultra 671 

Directional Second Strand cDNA Synthesis protocol (NEB) that incorporates dUTP in the dNTP 672 

mix, allowing the second strand to be digested using USERTM enzyme (NEB) in the post-adapter 673 

ligation reaction and thus achieving strand specificity. 674 

 675 

cDNA was fragmented by Covaris LE220 sonication for 55 seconds at a “Duty cycle” of 20% 676 

and “Intensity” of 5 to achieve 200-250 bp average fragment lengths. The paired-end sequencing 677 

library was prepared following the BC Cancer Agency Genome Sciences Centre strand-specific, 678 

plate-based library construction protocol on a Microlab NIMBUS robot (Hamilton Robotics, 679 

USA). Briefly, the sheared cDNA was subject to end-repair and phosphorylation in a single 680 

reaction using an enzyme premix (NEB) containing T4 DNA polymerase, Klenow DNA 681 



 

 

Polymerase and T4 polynucleotide kinase, incubated at 20°C for 30 minutes. Repaired cDNA 682 

was purified in 96-well format using PCR Clean DX beads (Aline Biosciences, USA), and 3’ A-683 

tailed (adenylation) using Klenow fragment (3’ to 5’ exo minus) and incubation at 37°C for 30 684 

minutes prior to enzyme heat inactivation. Illumina PE adapters were ligated at 20°C for 15 685 

minutes. The adapter-ligated products were purified using PCR Clean DX beads, then digested 686 

with USERTM enzyme (1U/µL, NEB) at 37°C for 15 minutes followed immediately by 13 cycles 687 

of indexed PCR using Phusion DNA Polymerase (Thermo Fisher Scientific Inc. USA) and 688 

Illumina’s PE primer set. PCR parameters: 98°C for 1 minute followed by 13 cycles of 98°C 15 689 

seconds, 65°C 30 seconds and 72°C 30 seconds, and then 72°C 5 minutes. The PCR products 690 

were purified and size-selected using a 1:1 PCR Clean DX beads-to-sample ratio (twice), and the 691 

eluted DNA quality was assessed with Caliper LabChip GX for DNA samples using the High 692 

Sensitivity Assay (PerkinElmer, Inc. USA) and quantified using a Quant-iT dsDNA High 693 

Sensitivity Assay Kit on a Qubit fluorometer (Invitrogen) prior to library pooling and size-694 

corrected final molar concentration calculation for Illumina HiSeq 2500 sequencing with paired-695 

end 75 base reads (Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency). 696 

 697 
RNA sequencing analysis 698 

Fastq files were aligned with STAR (2.4.2a)51 on the hg38 human reference genome. FPKM 699 

values were computed with the DESeq2 fpkm function52 using the raw read count per gene 700 

(ReadsPerGene.out.tab file from STAR output), with size factor normalization and gene length 701 

derived from the hg38 GTF files used for the alignment. Subgroup classification was done using 702 

the simple GBM classifier53. This 32-gene classifier permits greater accuracy of GBM subgroup 703 

classification when using RNA-seq data instead of gene expression microarrays, as was 704 

performed in the original subgrouping study20. One of the 32 genes was not quantified in the 705 



 

 

analysis so the classifier was run using 31 genes. 706 

 707 

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq)  708 

The open chromatin profiles of 11 GSC lines were defined using ATAC-seq as described 709 

previously54 and the prepared libraries were sequenced with 50 bp single end reads. Reads were 710 

mapped to hg19 using bowtie255 and peaks of open chromatin were called with MACS256. The 711 

correlation between samples was calculated as the Pearson correlation of the quantile-normalized 712 

signal across the peak catalogue. Here, the peak catalogue corresponds to all peak regions 713 

identified across the sample cohort, and the signal refers to the fold enrichment of the signal per 714 

million reads in a sample over a modelled local background. The chronic lymphocytic leukaemia 715 

(CLL) data used in this comparison was taken from a published dataset57, and the raw signal was 716 

normalized together with the GSC cohort. 717 

 718 

MGMT promoter methylation assay 719 

Primary tumour DNA was subjected to bisulfite conversion using the EZ DNA Methylation-720 

Gold Kit (D5005, Zymo Research), and MGMT promoter methylation status was assessed using 721 

a two-step PCR protocol as previously described58. PCR products, including water control, were 722 

visualized by electrophoresis on a 2% agarose gel along with a 100 base pair ladder (NEB). 723 

 724 

Lentiviral barcoding 725 

The lentiviral barcode library has been described previously15. For viral transduction, 1×106 726 

primary GBM cells were seeded per plate onto 10-cm cell culture dishes that are coated with 727 



 

 

poly-L-ornithine (PLO, Sigma) and laminin (Sigma). The culture media consisted of serum-free 728 

Neurocult NS-A Basal (Stemcell Technologies) media, supplemented with 2 mmol/L L-729 

gutamine, N2 and B27 supplements, 75 µg bovine serum albumin, 10 ng/mL recombinant human 730 

EGF (rhEGF), 10 ng/mL basic fibroblast growth factor (bFGF), and 2 µg/mL heparin (Sigma)26. 731 

Primary cells were incubated for approximately 12 hours at 37°C with lentivirus at an 732 

appropriate concentration to minimize multiple integration events. The concentration of 733 

lentivirus used was previously determined by titrating the library with a human fetal derived 734 

neural stem cell culture (HF7450), and assessing GFP positivity by flow cytometry (LSR II, BD 735 

Biosciences) 48 hours post-transduction. Barcoded cells were washed 5 times with PBS to 736 

remove remaining lentivirus, and immediately harvested by accutase (Sigma) treatment for 737 

orthotopic injection. A separate cell aliquot was cultured for 48 hours to allow for GFP 738 

expression, and transduction efficiency was determined by flow cytometry (LSR II, BD 739 

Biosciences). 740 

 741 

Mouse xenografts 742 

All mouse procedures were approved by The Hospital for Sick Children’s Animal Care 743 

Committee. For intracranial injections, animals were first anesthetized with isoflurane and given 744 

Ketoprofen as an analgesic. Tumour cells were then suspended in a 2 µl volume of PBS and 745 

injected in the forebrains of female NOD/SCID/IL-2γ-/- (NSG) mice of age 1-3 months with a 746 

Hamilton syringe and stereotactic device. The coordinates for orthotropic injections are 4 mm 747 

anterior of lambda, 2 mm to the right of the midline, and 3 mm deep. For secondary and tertiary 748 

xenografts, 25 mg/kg TMZ (Sigma) solubilized in Cremophor or vehicle controls were 749 

administered by gastric gavage for 5 consecutive days, 10 days post-injection. Mice were 750 



 

 

sacrificed for further processing once neurological symptoms are observed, or at experiment 751 

endpoint (6 months). Survival analysis was performed using GraphPad Prism 5 software. 752 

 753 

Processing of xenografts 754 

Forebrains were obtained from animals displaying neurological symptoms, and the two 755 

hemispheres (ipsilateral and contralateral) were dissected for processing separately. Each 756 

hemisphere was dissociated to single-cell suspensions as described in the “processing of patient 757 

samples” section. Cells were subsequently subjected to magnetic bead depletion to remove 758 

contaminating mouse cells (130-104-694, Miltenyi Biotech) prior to serial transplantation. Serial 759 

xenografts were always established without any intermediate culturing step. Either the ipsilateral 760 

or contralateral fraction from a single mouse was used to establish serial xenografts. 761 

Approximately 15% of xenograft cells were used without magnetic bead depletion for PCR 762 

amplification, library preparation and deep amplicon sequencing of barcodes. One xenograft per 763 

experimental group was set aside for histological analysis. Splinkerette PCR according to a 764 

previously published protocol59 was performed in order to identify unique barcode vector 765 

integration sites from xenografts. 766 

 767 

Histopathology and immunohistochemistry 768 

Mouse brains were fixed in 4% paraformaldehyde (PFA), washed in 70% ethanol and paraffin 769 

embedded. 6 μm coronal sections were generated for further analysis. Haematoxylin and Eosin 770 

staining was carried out according to manufacturer’s instructions (MHS32-1L, Sigma-Aldrich 771 

and 6766009, Thermo Scientific). Antibodies for immunohistochemistry include anti-Nestin 772 

(MAB5326, Millipore used at 1:500), anti-Ki-67 (M7240, Dako used at 1:500) and anti-Cleaved 773 



 

 

Caspase-3 (9661, Cell Signaling used at 1:500). A secondary anti-Mouse HRP antibody (A9044, 774 

Sigma 1:500) was used for detection using 3,3’-diaminobenzidine (DAB), Alkaline Phosphatase 775 

(AP) and Mouse on Mouse (M.O.M) detection kits (Vector Laboratories). Images were acquired 776 

using a 3DHistech Pannoramic 250 Flash II Slide Scanner and processed using Pannoramic 777 

Viewer software (3DHISTECH). Automatic detection and quantification of Ki-67 and Cleaved 778 

Caspase-3 staining was performed on six representative images per sample, using TMARKER 779 

software60. 780 

 781 

Barcode sequencing 782 

Spiked-in controls were generated using a human fetal derived neural stem cell line (HF7450) 783 

using the previously described protocol15, and combined into single wells of a 96-well plate. For 784 

the GBM-719 experiment and the first sequencing run, the cell numbers used as spiked-in 785 

controls were 10, 100, 250, 500, and 5000. For all subsequent in vivo experiments and the second 786 

sequencing run, the cell numbers used were 10, 100, and 5000. For all in vitro experiments and 787 

the third sequencing run, the cell numbers used were 10, 100, 500, and 5000. Separate spiked-in 788 

control only wells containing barcode sequences derived from 25,000 and 100,000 cells were 789 

also included in the GBM-719 experiment, to test accuracy of extrapolation for larger clones. 790 

The same was done in the third sequencing run for in vitro experiments, using a control of 791 

50,000 cells. Xenograft samples were combined with spiked-in controls and subjected to DNA 792 

extraction using a PrepGEM DNA extraction kit (PTI0050, ZyGEM) followed by ethanol 793 

precipitation and deep amplicon sequencing as described previously15. Briefly, a two-step PCR 794 

protocol was used to generate barcode amplicons with fault-tolerant sample indices, and 795 

equimolar samples were pooled and loaded onto a single lane of a flow cell for paired-end 796 



 

 

sequencing on the Illumina MiSeq platform (Canada’s Michael Smith Genome Sciences Centre, 797 

BC Cancer Agency). 798 

 799 

Barcode data analysis 800 

Barcode sequences were extracted from raw data files with custom scripts, and those with a 801 

minimum base quality of 20 that matched the flanking regions (with up to 3 mismatches) 802 

surrounding the barcode sequence were kept. A merging of highly similar barcodes was 803 

performed in order to limit the number of false positive barcode sequences that may arise from 804 

sequencing errors61. Specifically, a list of read counts corresponding to all unique barcode 805 

sequences was generated, and read counts corresponding to sequences with up to three 806 

mismatches were combined into the most abundant sequence. Barcode sequence logograms were 807 

generated using the R package ggseqlogo (https://github.com/omarwagih/ggseqlogo). Spiked-in 808 

controls were retrieved for defining noise thresholds and clone size estimation as described 809 

previously16,22. We defined fractional read value (FRV) as the read count for a particular barcode 810 

sequence divided by the sum read counts of all spiked-in controls in the sample. A relationship 811 

was generated between FRVs and control cell number for spiked-in controls across all samples. 812 

A Cook’s distance of 4/n was used to define outlier controls and the relationship was generated 813 

again with those outliers removed to estimate clone sizes. This step was performed to ensure that 814 

outlier controls do not influence the estimation of relative clone sizes in the majority of samples 815 

within a particular sequencing run. FRV thresholds were determined from spiked-in controls in 816 

order to maximize the difference between the true positive rate (TPR) and false positive rate 817 

(FPR), and only clones with FRVs greater than the threshold were kept. The total cell number for 818 

each sample was estimated by summing up estimated cell numbers for each clone in the sample 819 



 

 

that are above detection threshold. Relative clone sizes were then determined by dividing the cell 820 

numbers for each clone by the total cell number calculated for each sample. Proportional Venn 821 

diagrams for barcode sequences were generated with eulerAPE v3 software62. 822 

 823 

Generation of xenograft-derived cultures 824 

Dissociated primary GBM xenografts were cultured as described in the “lentiviral barcoding” 825 

section after depletion of contaminating mouse cells (130-104-694, Miltenyi Biotech). All short-826 

term cultures were subjected to 2 to 3 passages prior to barcode sequencing. Short-term cultures 827 

were not subjected to mycoplasma testing or microsatellite genotyping, although in all cases the 828 

identified barcode sequences of cultures matched those of the corresponding xenograft series.  829 

 830 

Cell culture assays 831 

For proliferation assays, GSCs were propagated for 11 days in triplicate under previously 832 

described conditions26. Viable cells were counted on days 0, 2, 4, 7, 9, and 11 with a Countess 833 

Automated Cell Counter (Thermo Fischer Scientific), excluding apoptotic cells that stained 834 

positive for trypan blue (Thermo Fischer Scientific). Doubling times were calculated during 835 

exponential growth phase (between days 4 and 11) using the formula t/log102 × log10(Nt2/Nt1), 836 

where Nt1 and Nt2 are the number of cells on days 4 and 11 respectively and t is the elapsed time 837 

in hours. For dosage response assays, GSCs were cultured with drug for 5 days with 6 technical 838 

replicates per dose, without any media changes. Cell viability relative to DMSO control was then 839 

assessed by AlamarBlue assay (Thermo Fisher Scientific) using a Gemini EM Fluorescence 840 

Microplate Reader (Molecular Devices). 841 

 842 



 

 

Drug screening 843 

Primary drug screens were carried out in 96-well format on passage 2-3 cultures that were grown 844 

under previously described conditions26. An Incucyte Zoom live-cell analysis system (Essen 845 

Bioscience) was used to quantify confluency according to manufacturer’s instructions. In order 846 

to characterize drug responsiveness of barcoded clones, a second screen was performed where 847 

cells were seeded on 6-well plates, subjected to a single round of drug selection in duplicate, and 848 

harvested for barcode sequencing when the culture reached approximately the same confluency 849 

as DMSO controls (~90%). In this assay, culture media was refreshed every 3 days without drug. 850 

The concentrations of drugs used for screening were as follows: Rapamycin: 20 nM, Dasatinib: 851 

125 nM, BIO; Daunorubicin: 1 μM, LGK-974; RO4929097; WP1066: 2 μM, Imatinib: 2.5 μM, 852 

Bromosporine; CI-994; GSK591; GSK-J4; GSK-LSD1; InSolution γ-Secretase Inhibitor X; 853 

IOX2; JQ-1; L-741,742; LAQ824; MI-2-2; MS023; OF-1; Olaparib; PFI-1; PNU96515E; SGC-854 

CBP30; UNC1999: 5 μM, Erlotinib: 10 μM, TMZ: 50 μM. Once ~90% confluency is reached, 855 

all surviving cells were used for DNA extraction and barcode sequencing as described above.  856 

 857 

Limiting dilution analysis (LDA) 858 

Cells were plated onto Flat bottom 96 well plates (Sarstedt) in 100 μL of culture media, 6 859 

replicates per cell dose. The culturing conditions are described previously26, with the exception 860 

that culture plates were not coated with PLO and laminin to allow for sphere formation. For 861 

analysis of primary, uncultured GBM cells, two-fold dilutions from 4000 cells to 8 cells were 862 

used and scored after two weeks of culture. For analysis of established GSC cultures, two-fold 863 

dilutions from 2000 cells to 4 cells were used and scored after one to two weeks of culture. 864 

Drugs were added only once on the first day at either 1 μM or 5 μM as indicated for each 865 



 

 

experiment, with 50 μL of fresh media added to each well after the first week. Investigators were 866 

blinded to the label for each plate during data collection. Data were analyzed using ELDA 867 

software34.  868 

 869 

In vivo drug assay 870 

To test the effect of MI-2-2 treatment in vivo on tumour growth, 200,000 (1,1T,1T)719 cells were 871 

transplanted subcutaneously into the flanks of NSG mice (6 mice per treatment group, total 12 872 

mice) and allowed to grow for 1 week prior to drug treatment. Mice were then treated with either 873 

20 mg/kg MI-2-2 (444825, Millipore) or vehicle control (15% DMSO, 25% PEG, 60% PBS) for 874 

2 weeks by intraperitoneal injection. The treatment schedule was Monday, Wednesday, Friday of 875 

each week for a total of 6 treatments. Mice were then monitored for tumour formation and 876 

sacrificed once the control tumours reached endpoint for measurement (127 days between 877 

injection and sacrifice). Flanks in which tumours were not visible were excluded from analysis. 878 

Subcutaneous tumour size did not exceed the limit set by the experimental protocol with The 879 

Hospital for Sick Children’s Animal Care Committee (17 mm in the longest dimension). 880 

 881 

Stochastic simulations 882 

A standard stochastic simulation algorithm63 was used to simulate realizations of the stochastic 883 

process defined by the model shown in Fig. 2c and described fully in Supplementary Theory 884 

section 5. Clone size distributions, clone size cross correlations and the ratio of surviving clones 885 

were then calculated from 100,000 realizations of the system for each parameter set. To compare 886 

the model with experiments, we simulated the system using 108 equidistant parameter sets 887 

located in the region of biologically plausible parameters and compared the results to 888 



 

 

experimental data points. 889 

 890 

Data availability 891 

ATAC-seq data have been deposited at the Gene Expression Omnibus 892 

(http://www.ncbi.nlm.nih.gov/geo) under the accession number GSE96088. WES and RNA-seq 893 

data have been deposited at the European Genome-phenome Archive (http://www.ebi.ac.uk/ega) 894 

under the accession number EGAS00001002424. All other data are available as Supplementary 895 

Data Tables, Source Data, or upon reasonable request from the corresponding authors (P.B.D. 896 

and B.D.S.). 897 

 898 

Code availability 899 

Code used throughout this study are available upon reasonable request from the corresponding 900 

authors (P.B.D. and B.D.S.). 901 
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Extended Data Figure Legends 1002 
 1003 

Extended data figure 1 | Barcode data processing.  1004 

a, Summary of GBM models used for barcoding experiments indicating TCGA subgroups as 1005 

determined by RNA-Seq20, self-renewing frequency as assessed by primary limiting dilution 1006 

analysis (LDA), the number of primary xenografts successfully established and the cell dose 1007 

used for primary xenografts (n.d: not done, n.s: no spheres). b, Proliferation kinetics of GSC 1008 

cultures in vitro. Data are shown as mean ± sd of 3 technical replicates. c, Cell doubling times of 1009 

GSCs grown in culture calculated using the data in (b). Data are shown as mean ± sd of 3 1010 

technical replicates, horizontal line marks 24 hours. d-f, Relationship between fractional read 1011 

value (FRV) and input cell numbers in spiked-in controls for the three sequencing runs. The 1012 

highly influential data points (Cook’s distance > 4/n) are grayed out and not used for regression 1013 

analysis to estimate relative clone sizes. The black line is the line of best fit, and the grey box 1014 

indicates sequencing noise threshold. g, Analysis of barcode sequence saturation across six in 1015 

vivo experiments. h, Position weight matrices depicting the representation of variable nucleotides 1016 

in the barcode library, the (1)719 ipsilateral sample, as well as the largest and smallest 100 clones 1017 

in that sample. The height of nucleotides at each position represents its relative frequency, with 1018 

the most frequently occurring nucleotide shown in the top position. i, Summary of unique 1019 

barcode integration sites identified by splinkerette PCR.  1020 

 1021 

Extended data figure 2 | Molecular characterization of GBMs and GBM xenografts. 1022 

a, Oncoprint plot of mutations identified in primary GBM tissue samples that are of the top 200 1023 

recurrently mutated genes in the provisional TCGA dataset21. b, Multidimensional scaling plot 1024 

for the 32-gene simple GBM classification method using RNA-Seq53. Shown are the TCGA 1025 



 

 

samples with RNA-Seq data and 5 patient samples used in the current study. TCGA samples are 1026 

labelled and coloured according to their original subgroup as determined from microarray 1027 

expression analysis20. c, Methylation-specific PCR assay for the MGMT promoter in 6 primary 1028 

GBMs. L: ladder, -ve: water only control, U: unmethylated PCR product, M: methylated PCR 1029 

product. Specific ladder marker sizes are shown in base pairs. d, Pairwise correlation of ATAC-1030 

Seq peak intensities across GSC culture models and compared with a chronic lymphocytic 1031 

leukaemia (CLL) control57. Black outline highlights correlations for GSC cultures derived from 1032 

the GBMs used for the in vivo barcoding study (G719, G729, G754). e, Summary of somatic 1033 

mutations identified using exome sequencing from representative GBM-719 barcoded 1034 

xenografts, grouped according to type. p2 Veh: passage 2; treated with vehicle, p2 TMZ: passage 1035 

2; treated with TMZ, p3 Veh Veh: passage 3; treated with vehicle at passages 2 and 3, p3 TMZ 1036 

TMZ: passage 3; treated with TMZ at passages 2 and 3 and briefly expanded in vitro prior to 1037 

sequencing. f, Heat map representing relative copy number profiles from whole exome 1038 

sequencing of GBM-719 xenograft samples. Segments of gains (red) or deletions (blue) are 1039 

colour-coded based on log2 copy number ratios. Frequent loss of chromosome 10 is a common 1040 

observation in GBM. g, Summary of patient characteristics for all tumour samples used 1041 

throughout the study, and the experiment(s) that each sample is used for. 1042 

 1043 

Extended data figure 3 | Functional characterization of GBMs and GBM xenografts. 1044 

a, H&E and human-specific nestin staining in primary glioblastoma specimens, scale bar = 100 1045 

µm. b, H&E and human-specific nestin staining for representative GBM xenografts, scale bar = 1046 

100 µm. c, Survival analysis of xenografts derived from the indicated GBM model and treatment 1047 

conditions. All survival analyses were performed using a log-rank test (n = 4 mice per group 1048 



 

 

with the exception of the GBM-754 experiment, Vehicle – Vehicle group which contains 3 1049 

mice). d, Quantification of percentage proliferative activity in serial xenografts by Ki-67 staining 1050 

and percentage apoptosis by cleaved Caspase-3 staining, mean ± sd of 6 representative sections 1051 

from the same xenograft sample.  1052 

 1053 

Extended data figure 4 | GSCs are able to invade contralaterally and have heterogeneous 1054 

clonal outputs. 1055 

a, Human-specific nestin staining in representative xenografts between ipsilateral and 1056 

contralateral hemispheres (scale bar = 1mm, Ipsi: ipsilateral hemisphere, Contra: contralateral 1057 

hemisphere). b, Comparison of cell numbers recovered from xenografts between the ipsilateral 1058 

and contralateral fractions, two-sided paired t-tests. Single data points are overlaid over the box 1059 

plot, the horizontal line represents the median, and the lower and upper hinges represent the 25th 1060 

and 75th quartiles respectively. The lower and upper whiskers extend from the hinge to the 1061 

lowest and highest values within 1.5 times the inter-quartile range (IQR). c, Plot of Pearson 1062 

correlation coefficients comparing relative clone sizes between two hemispheres, for the 1063 

indicated sample groups. The box-plots are displayed as with panel (b).  d, Clonal composition 1064 

of tumours generated serially from contralateral fractions, grouped according to the geographical 1065 

distribution of each detected clone in the previous (primary) passage. e, Clone size distributions 1066 

for representative xenograft samples. All data shown are from ipsilateral hemispheres, not treated 1067 

with TMZ, and generated from ipsilateral-derived cells from the previous passage (in the case of 1068 

secondary and tertiary xenografts). Fits to a negative binomial distribution (curve) are included 1069 

for patients with rich data sets (GBM-719, GBM-742, and GBM-754), used for quantitative 1070 

analyses. Plot titles identify the respective sequence of serial passages by the nomenclature 1071 



 

 

introduced in the Supplementary Theory. f, Representative correlation of clone size between 1072 

successive serial passages of GBM-719 untreated xenografts with Pearson’s r indicated. P1: 1073 

primary passage, P2: secondary passage, P3: tertiary passage. g, Representative correlations of 1074 

clone size between different secondary passage replicate experiments derived from the same 1075 

primary xenograft as panel (f), with Pearson’s r indicated. The red arrowhead shows deviations 1076 

from a linear correlation due to large outliers. R1: replicate 1, R2: replicate 2, R3: replicate 3. 1077 

 1078 

Extended data figure 5 | First incomplete moment of clone size distributions for GBM-719, 1079 

-729, and -735 xenografts. 1080 

a-c, First incomplete moments of the clone size distributions for all xenograft samples derived 1081 

from patient tumours GBM-719 (a), GBM-729 (b), and GBM-735 (c). Samples are named 1082 

according to the sequence of samples injected, V: vehicle treated, T: TMZ treated, C: generated 1083 

from the contralateral fraction of the previous passage. For illustrative purposes, GBM-719 1084 

xenografts (a) that are TMZ-treated are marked with a red arrowhead where the distribution 1085 

appears to deviate from the negative binomial. The indicated fit parameter n0 describe a 1086 

characteristic clone size of the population (Supplementary Theory 2-3). Where Group B clones 1087 

(large outliers) were removed to generate a more accurate fit, the number of clones removed is 1088 

indicated and the re-calculated first incomplete moment distributions with outliers removed are 1089 

plotted in grey. d, Schematic describing how a sequence of treatments resulting in a particular 1090 

xenograft sample is incorporated into the sample nomenclatures. 1091 

 1092 

Extended data figure 6 | First incomplete moment of clone size distributions for GBM-742, 1093 

-743, and -754 xenografts and variant allele frequencies (VAFs) for GBM-719 xenografts. 1094 



 

 

a-c, First incomplete moments of the clone size distributions for all xenografts derived from the 1095 

tumours GBM-742 (a), GBM-743 (b), and GBM-754 (c). Sample and plot annotations are as 1096 

described for Extended data figure 5. d, Distribution of variant allele frequencies (VAFs) across 1097 

GBM-719 xenograft samples. Mutations with a VAF of 0.5 likely corresponds to variants in the 1098 

clonal population (found in all cells within the tumour), while less prevalent mutations 1099 

correspond to subclonal populations defined by recent mutational events found only in a subset 1100 

of cells. e, Comparison of VAF values for mutations in paired secondary and tertiary passages. f, 1101 

First incomplete moments show a negative binomial distribution for VAF values below 0.5 1102 

across xenograft samples. The dashed line shows a fit to the exponential and the vertical line 1103 

marks a VAF of 0.5. g, First incomplete moments for mutations that are newly detected in the 1104 

tertiary vehicle- and TMZ-treated passage. h, Same as panel (f) after filtering out mutations that 1105 

do not occur in diploid regions of the genome. i, Same as panel (g) after filtering out mutations 1106 

that do not occur in diploid regions of the genome. 1107 

 1108 

Extended data figure 7 | Barcode analysis of xenograft derived cultures. 1109 

a, Proportional Venn diagrams depicting the number of unique and shared barcoded clones as 1110 

defined by the in vivo passages (primary, secondary, or tertiary), that are also detectable within 1111 

the specified xenograft-derived cultures. b, Comparison of clone sizes between paired primary 1112 

xenografts and primary xenograft-derived GSC cultures. c, Correlation of clone sizes between 1113 

TMZ-treated GBM-719 xenografts, and cultures derived from these xenografts. A select cluster 1114 

of clones that become outcompeted after secondary xenografts are outlined in blue, and 1115 

Spearman’s rho coefficients are as indicated. d, First incomplete moments of the full clone size 1116 

distributions for GBM-754 primary xenograft cultures at different times throughout culture 1117 



 

 

expansion. e, First incomplete moments of the clone size distributions used in panel (d), with the 1118 

14 largest outlier clones removed from each sample. f, Pairwise clone size comparisons between 1119 

replicate cultures in (d), with Spearman’s rho indicated. 1120 

 1121 

Extended data figure 8 | First incomplete moment of clone size distributions for remaining 1122 

GBM xenograft derived cultures. 1123 

a, Plots of first incomplete moment for cultures derived from the indicated GBM xenografts. b, 1124 

Same as (a), with the indicated number of large outlier clones removed from the analysis.  1125 

 1126 

Extended data figure 9 | Epigenetic drug screening of GBM-754 primary xenograft culture. 1127 

a, Primary drug screen of GBM-754 primary xenograft-derived culture, with growth assessed as 1128 

culture density relative to DMSO control. Compounds highlighted in blue were used in 1129 

subsequent experiments. b, Strategy to identify clonal differences in drug response. Cells are 1130 

treated in duplicate with each compound, and allowed to repopulate to the same density as 1131 

DMSO controls prior to barcode sequencing. c, Summary of results from drug repopulation 1132 

experiments. The top plot shows the ratio between sum relative clone sizes of Group B and 1133 

Group A, technical replicates are denoted as 1, 2, or 3. The horizontal line marks the mean 1134 

Group B/Group A ratio for DMSO treated cultures. The bottom plot shows the number of reads 1135 

obtained from each sample after repopulation, relative to DMSO. The horizontal line marks the 1136 

mean number of reads for DMSO samples. d, Additional technical replicate experiments related 1137 

to Fig. 3g, demonstrating selectivity of UNC1999 and MI-2-2 on Group A and B clones 1138 

respectively. e, Dose response assays for the indicated GSC culture models upon UNC1999 and 1139 

MI-2-2 treatment, mean ± sd of 6 technical replicates. f, Two additional independent experiments 1140 



 

 

related to Fig. 3h. P values for the left and right replicates respectively are 6.95 × 10-4; 0.148 for 1141 

DMSO vs. CI-994, 0.338; 0.55 for DMSO vs. GSK591, 3.31 × 10-3; 0.0177 for DMSO vs. 1142 

UNC1999, 2.15 × 10-11; 1.59 × 10-7 for DMSO vs. MI-2-2, 1.49 × 10-10; 3.7 × 10-12 for MI-nc vs. 1143 

M, 0.963; 0.408 for M vs. M + C, 0.355; 0.408 for M vs. M + G, 2.68 × 10-9; 6.06 × 10-8 for M 1144 

vs. M + U. g, Combined effect of GSK343 and MI-2-2 on self-renewal. P = 4.42 × 10-6 for 1145 

DMSO vs GSK343, 2.96 × 10-12 for DMSO vs MI-2-2, 3.62 × 10-6 for GSK343 vs M + G, 0.0125 1146 

for MI-2-2 vs M + G. h, Combined effect of UNC1999 and MI-2-2 on self-renewal when used at 1147 

1 μM, representative of 3 independent experiments. P = 0.147 for DMSO vs. UNC1999, 0.129 1148 

for DMSO vs MI-2-2, 9.84 × 10-4 for DMSO vs. M + U. i, Two additional independent 1149 

experiments related to Fig. 3i. P values for the left and right replicates respectively are 4.59 × 10-1150 

5; 4.81 × 10-15 for DMSO vs. UNC1999, 3.28 × 10-25; 1.13 × 10-31 for DMSO vs MI-2-2, 1.86 × 1151 

10-11; 3.61 × 10-6 for UNC1999 vs MI-2-2. j-m, Combined effect of UNC1999 and MI-2-2 on 1152 

self-renewal in the indicated GSC culture models. P values for the G523, G549, G564, G566 1153 

experiments respectively are 1.9 × 10-5; 1; 0.758; 0.799 for DMSO vs UNC1999, 8.14 × 10-18; 1154 

2.14 × 10-4; 0.503; 6.12 × 10-4 for DMSO vs MI-2-2, 2.72 × 10-12; 3.28 × 10-30; 1.15 × 10-21; 2.54 1155 

× 10-8 for UNC1999 vs M + U, 7.69 × 10-3; 1.26 × 10-15; 2.61 × 10-18; 8.82 × 10-3 for MI-2-2 vs 1156 

M + U. n, Combined effect of UNC1999 and MI-2-2 on self-renewal of uncultured GBM-851 1157 
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0.01, *** P ≤ 0.001).  1161 
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Extended data figure 10 | First incomplete moment of the clone size distributions for drug-1163 



 

 

treated GBM-754 primary xenograft cultures. 1164 

a, First incomplete moments of the full clone size distributions of GBM-754 primary xenograft 1165 

cultures treated with different drugs. b, First incomplete moments of the clone size distributions 1166 

used in panel (a), with 5 group B clones removed. 1167 
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In this Supplementary Text, we describe the quantitative analysis of clonal data ob-
tained from serial transplantation experiments of human glioblastoma (GBM) xeno-
grafts involving lentiviral barcoding. Our strategy is to analyse the features of bar-
code frequency distributions to infer the underlying cell fate dynamics giving rise to
the heterogeneity of clonal behaviour observed in experiments. This heterogeneity
could either be (i) a consequence of differential engrained or evolving fitness advan-
tages of cells or (ii) reflecting stochastic fate choices of equipotent progenitor pools
(Clayton et al., 2007; Blanpain and Simons, 2013). Here we show that the experi-
mental data is consistent with the latter scenario and that the key features of barcode
frequency distributions and correlations can be explained by a simple proliferative
hierarchy with glioblastoma stem-like cells at the apex.

In Section 1, we address statistical properties of lentiviral barcoding and give
estimates of the amount of uniquely labelled cells. In Section 2, we show that the ex-
perimentally obtained barcode frequencies follow a negative binomial distribution.
This behaviour is characteristic of a specific class of proliferative hierarchies—in
Section 3, we show how such a distribution generically arises. Based on these ob-
servations, we develop a minimal model of tumour growth in Section 4 and study its
predictions on tumour expansion and composition. In Section 5, we use our model
to develop a simulation of the serial transplantation experiments which permits a
direct comparison of our model with experiments. In Section 6, we infer plausi-
ble parameter ranges for our model on biological grounds and compare the model
results of our theory with experiments. In Section 7, we use the experimentally ob-
tained data from exome deep sequencing to probe the mutational heterogeneity of
the parent tumour and as an independent window on the clonal dynamics of GBM
cells.

1 Statistical properties of lentiviral barcoding
Lentiviral barcoding relies on the random infection of cells. While it entails the pos-
sibility to uniquely identify clone lineages, the randomness of the barcoding proce-
dure may lead to the same cell acquiring multiple barcodes or to the same barcode
being present in more than one cell. Since this can affect the statistical properties of
the derived barcode frequency distributions, we here give an estimate for the relative
amount of multiply labelled cells and barcodes present in multiple cells.

For a library consisting ofNB unique barcodes with a barcoding event occurring
with probability pB, the number nB of barcodes acquired by a single cell follows
the binomial distributionQ.nB/ D PBinomial.nBjNB; pB/, where PBinomial.njN;p/ D!

N
n

"
pn.1 ! p/N !n. For large NB, the distribution Q can be approximated by a
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Patient NC .10
4/ ! Q0 Q1 Q>1 R0 R1 R>1 Q

GBM719 12:5 37:8 62:2 29:5 8:3 74:3 22:1 3:6 69:6

GBM729 12:5 21:6 78:4 19:1 2:5 85:9 13:1 1:0 84:4

GBM735 3 37:6 62:4 29:4 8:2 93:2 6:6 0:2 91:6

GBM742 2:4 28:7 71:3 24:1 4:6 96:0 3:9 0:1 95:3

GBM743 8 17:3 82:7 15:7 1:6 92:7 7:0 0:3 92:0

GBM754 12:5 33:2 66:8 27:0 6:2 77:7 19:6 2:7 74:1

Table S1 Probabilities characterising the statistical properties of lentiviral barcoding with
a library of NB D 2 " 105 barcodes (L. V. Nguyen, M. Makarem, et al., 2014).

Poisson distribution,

Q.nB/ ' "nB

nBŠ
e!! ; (1)

where " D pBNB. Using Eq. (1), the relative amount of unlabelled cells, Q0 D
Q.0/, the relative amount of cells labelled with one barcode, Q1 D Q.1/, and the
relative amount of cells carrying more than one barcode,Q>1 D P

nB>1Q.nB/, are
obtained as

Q0 D e!! ; Q1 D "e!! ; Q>1 D 1 ! .1C "/e!! : (2)

The parameter " characterizing the distribution of barcodes can be obtained from the
labelling efficiency !, which denotes the relative amount of cells that bear at least
one barcode, by requiring 1 !Q0 D !. This yields

" D !ln.1 ! !/ : (3)

Conversely, we can ask how likely it is that the same barcode appears in multiple
cells. Out of a total of NC cells prepared for barcoding, the number nC of cells ac-
quiring the same barcode is distributed according to R.nC/ D PBinomial.nCjNC; pB/.
Again, for a large number of cells NC, this can be approximated by a Poisson distri-
bution,

R.nC/ ' $nC

nCŠ
e!" ; (4)

where $ D pBNC D "NC=NB. Analogous to Eqs. (2), we obtain the relative amount
of barcodes that are present in no cell, R0 D R.0/ D e!" , the relative amount of
barcodes present in exactly one cell, R1 D R.1/ D $e!" and the relative amount of
barcodes that have been acquired by more than one cell, R>1 D P

nC>1R.nC/ D
1 ! .1C $/e!" .
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Multiple barcoding of the same cell is unproblematic for the quantitative anal-
ysis of barcode frequency distributions—it generates copies of clones which are
however subject to the same distribution of barcode frequencies. On the other hand,
barcodes distributed to multiple cells lead to an effective merging of the sizes of
derived clones and thus may alter the statistical properties of the barcode frequency
distribution. Among the labelled cells, the relative amount of uniquely labelled cells,
i.e., cells with a unique combination of one or more barcodes, is given by

Q D 1

1 !Q0

1X
nBD1

Q.nB/
#
.1 ! pB/

NC!1
$nB

; (5)

which, for NC # 1 and pB $ 1, can be approximated in terms of the probabilities
Q0 and R0 as

Q ' 1 !Q!R0

0

1 !Q!1
0

: (6)

Table S1 summarizes the respective probabilities for all xenografts used in this
study; a large majority of labelled cells carries a unique combination of barcodes
in all xenografts.

2 Barcode frequencies follow a negative binomial
distribution

To obtain a quantitative understanding of tumour growth, we analyse the distribution
of barcode frequencies obtained from serial transplantation experiments. Here, we
show that the distributions p.n/ of barcode frequencies above the detection thresh-
old for all passages and replicate experiments follow a negative binomial distribu-
tion,

p.n/ D 1

N0

e!n=n0

n
; (7)

where n0 is a characteristic barcode frequency of the respective population andN0 is
a normalisation constant. A robust method to detect negative binomial distributions
is to obtain the first incomplete moment of the distribution p, defined by

%.n/ D 1

hni

1X
n0Dn

n0p.n0/ ; (8)

where hni D P
n np.n/ is the average barcode frequency. By definition,%.n/ is the

relative average barcode frequency of all barcode frequencies larger than n. If the
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barcode frequency distribution p.n/ has the negative binomial form Eq. (7), the first
incomplete moment acquires an exponential dependence on the barcode frequency,

%.n/ D 1

N1

e!n=n0 ; (9)

whereN1 is another normalization constant. Since the first incomplete moment, to-
gether with the average barcode frequency hni, carries the same information as the
original barcode frequency distribution1, an exponential dependence of % is com-
pletely equivalent to a negative binomial barcode frequency distribution.

Fig. 2b in the main text and Extended Data Figs. 5-6 show all first incom-
plete moments of the experimental barcode frequency distributions. They clearly
exhibit an exponential behaviour (linear on a logarithmic scale) over many decades
of barcode frequencies, indicating negative binomial distributions across different
patients, xenografts, passages, and replicate experiments. By definition of the first
incomplete moment, data points with large barcode frequencies outside the negative
binomial distribution show up as a strong deviation from the exponential behaviour
(see, e.g., red arrowhead in Fig. 2b). This is caused by the barcode frequency enter-
ing as a multiplicative term in the definition Eq. (8). Importantly, this does not affect
its ability to detect negative binomial distributions for small barcode frequencies.

3 Emergence of negative binomial distributions
What can the barcode frequency distribution tell us about the proliferative dynamics
underlying tumour growth? A generic mechanism giving rise to a negative binomial
distribution is a process long-known in population dynamics, termed ‘critical birth-
death process with immigration’ (Bailey, 1990; Simons, 2016). Translated into the
language of cell population dynamics, such a process can be realized by a popula-
tion of cells that stochastically divide (‘birth’) and differentiate (‘death’) with equal
probability (‘critical’), with a slow influx of cells from another cell compartment
(‘immigration’) through differentiation. In the tumour context, such a process could
naturally arise if there is (i) a slowly cycling glioblastoma stem cell (GSC) compart-
ment at the apex of a proliferative hierarchy that sporadically gives rise to progenitor
cells by asymmetric division and (ii) the resulting progenitor population undergoes
division and differentiation that are balanced on the population level. Schematically,
the dynamics of stem cells (S) and progenitors (P) can be expressed as

S S P P
P P prob. 1/2

prob. 1/2
; (10)

1The barcode frequency distribution can be retrieved from the first incomplete moment via the
relation p.n/ D hniŒ%.n/ ! %.n ! 1/&=n.
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where ' is the loss-and-replacement rate of the progenitors and ! is the asymmet-
ric division rate of the stem cells, also called ‘immigration rate’ since it describes
the rate at which cells enter the progenitor compartment. If the immigration rate
! is small compared to the loss-and-replacement rate ', uniquely barcoded stem-
like cells produce clones with a negative binomial barcode frequency distribution,
Eq. (7). To show this, we describe the cell fate dynamics shown in scheme (10) as
independent Poisson processes with rates! and ', respectively. Formally, the corre-
sponding master equation that governs the dynamics of the probability P D P.n; t/

to find n progenitor cells in a clone derived from a single uniquely labelled S-type
cell,

@P

@t
D

²
!. OE! ! 1/C '

2
.n ! 1/ OE! C '

2
.nC 1/ OEC ! 'n

³
P ; (11)

where we have introduced the ladder operators OE˙, defined by OE˙P.n; t/ D P.n˙
1; t/. The first term in brackets describes the asymmetric division of a single S-type
cell whereas the remaining three terms describe symmetric division and death of
P-type cells2. Note that asymmetric division of S-type cells leaves the number of
S-type cells unchanged so that it is sufficient to only describe the number n of P-type
cells.

The master equation (11) describes the dynamics of S-type and P-type cells
shown in the scheme (10) as independent Poisson processes. An analytical solution
can readily be obtained by standard methods (Walczak et al., 2012). For initially
no progenitor cells being labelled, P.n; 0/ D ın;0, the exact solution to the master
equation (11) is given by the negative binomial distribution

P.n; t/ D 1

nŠ

(.) C n/

(.)/

'
n0.t/

1C n0.t/

(n '
1 ! n0.t/

1C n0.t/

(#

; (12)

where n0.t/ D 't=2, the dimensionless parameter ) D 2!=' is the ratio of immi-
gration rate and progenitor loss-and-replacement rate, and (.x/ D

R 1
0 ux!1e!u du

2The structure of the master equation (11) can be understood by considering, for instance, a
reduced dynamics that only describes asymmetric divisions of the S-type cell. This amounts to setting
' D 0 in Eq. (11) which yields the reduced equation @P=@t D !P.n ! 1; t/ ! !P.n; t/, where we
have used the definition of the ladder operator OE!. This equation describes the rate of change of the
probability P.n; t/ to find n P-type cells. A state with n P-type cells can only be reached if there are
already n! 1 P-type cells and an asymmetric division of an S-type cell occurs, giving rise to another
P-type cell. The corresponding contribution !P.n!1; t/ to the rate of change @P=@t is given by the
probability P.n ! 1; t/ to find the system in the state n ! 1 multiplied by the rate ! of asymmetric
divisions. Conversely, the state with n P-type cells is left if another asymmetric division of the S-
type cell occurs, raising the number of P-type cells to nC 1. The analogous contribution !!P.n; t/
enters with a negative sign as it describes the process of leaving the state n. The other terms in the full
master equation (11) follow the same logic. For more detailed reviews on general master equations
and birth-death processes, we refer the reader to standard textbooks (Gardiner, 2009; Bailey, 1990)
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is the Gamma function. On average, barcode frequencies grow linearly in time,

hn.t/i D 1C !t ; (13)

where hn.t/i D 1CP
n nP.n; t/ is the average barcode frequency with the first term

accounting for the stem cell. For small immigration rates !, the barcode frequency
distribution of cell populations with at least one progenitor cell, given byP".n; t/ D
P.n; t/=.1 ! P.0; t//, acquires the form Eq. (7),

P".n; t/ D 1

ln.1C n0/

1

n

'
n0.t/

1C n0.t/

(n

C O.!/

% 1

N0.t/

e!n=n0.t/

n
;

(14)

where N0.t/ D ln n0.t/. For non-vanishing but small immigration rates !, the re-
sulting barcode frequency distribution is still well-approximated by Eq. (14). Thus,
the dynamics (10) generically give rise to negative binomial barcode frequency dis-
tributions and hence are the starting point for our quantitative analysis.

Comparison with clone size distributions emerging from engrained prolifera-
tive heterogeneity
Could a negative binomial barcode frequency distribution also be caused by en-
grained proliferative heterogeneity instead of equipotency? To address this ques-
tion, let us consider a large population of clones in which the cell of each clone i
undergoes loss and replacement with clone-specific probabilities. For concreteness,
we consider the following cell fate dynamics in which each cell undergoes loss and
replacement with different probabilities,

prob. 1/2 + δi

iprob. 1/2 – δ
: (15)

The parameter ıi determines whether cell i is primed for proliferation (ıi > 0) or
loss (ıi < 0). The average size of a clone derived from cell i evolves according to
hni.t/i D e2ıi $t and on average, clones will thus either grow exponentially (ıi > 0)
or die out (ıi < 0). In this picture, engrained proliferative heterogeneity is captured
by a broad distribution of the ıi , so that some clones expand faster than others while
some clones die. For a clone with a given ıi , the resulting surviving clone size
distribution at large times is exponential (Bailey, 1990),

p.nj˛i/ ' ˛ie!˛i n : (16)

with an exponent ˛i that depends on the proliferative potential and on time. Hence,
a distribution in engrained proliferative advantages ıi entails a distribution in the
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shape parameter ˛i of the clone size probabilities for the different clones. As an
example, let us consider the distribution of ˛i at a fixed time t D t0. For simplicity,
we here consider a Gamma distribution3 for ˛, which ensures that ˛ > 0,

Np.˛/ D ˛m!1e!m˛=˛0

.˛0=m/m(.m/
: (17)

The clone size distribution resulting from this distribution of clone size scales is
given by

p.n/ D
Z 1

0

p.nj˛/ Np.˛/ d˛ D ˛0

.˛0n=mC 1/mC1
; (18)

which asymptotically has the power law behaviour n!.mC1/ and is therefore dis-
tinctly different from the negative binomial form e!n=n0=n. Which distribution of
proliferative potentials would be needed to generate a negative binomial clone size
distribution under these circumstances? In fact, a negative binomial form can only
be obtained under very artificial conditions: the distribution for ˛ would have to
take the non-normalizable discontinuous form Np.˛/ / ˛!1‚.˛ ! ˛0/ where ‚ is
the Heaviside step function; in this case, the clone size distribution would sensitively
depend on the position ˛0 of the step as it determines the characteristic scale of clone
sizes, p.n/ D e!˛0n=n. While being simplistic, this minimal model of engrained
proliferative heterogeneity illustrates that negative binomial clone size distributions
do not generically arise from a mere loss and replacement of clones—rather, the
cell fate dynamics have to display certain distinctive features, such as the minimal
hierarchy of the type (10), which robustly leads to such clone size distributions.

4 Theoretical model of tumour growth
In Section 3, we have shown how a negative binomical barcode frequency distribu-
tion can arise from a single uniquely labelled stem cell at the apex of a critical birth-
death process with immigration. However, there are several reasons why growth
of glioblastoma as observed in serial transplantation experiments warrant a more
comprehensive model: First, the model (10) only considers strictly asymetrically
dividing stem cells, leading to linear growth of barcode frequencies on average.
However, there is no reason to a priori rule out symmetric stem cell divisions, which
potentially provide a considerable contribution to tumour growth. Second, in the
model (10), loss of the stem cell leads to a remaining progenitor cell population
that will not grow on average and will eventually die out (Clayton et al., 2007). In

3The Gamma distribution as defined in Eq. (17) has mean ˛0 and variance ˛2
0=m; in the limit

of large m, it is approximately equal to a normal distribution with the same mean and variance. For
m D 1, the Gamma distribution reduces to an exponential distribution.

9
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the serial transplantation experiments, only small fractions of a harvested tumour
(& 5 ) are chosen for reinjection. If clones were indeed maintained by a single
stem cell, it would thus be likely that the stem cell is lost upon reinjection, giving
rise to a massive loss of barcodes across passages which is not observed in experi-
ments. Third, the model (10) neglects the potential presence of a non-proliferating
compartment undergoing apoptosis that may affect the tumour size and composi-
tion. This non-proliferating compartment may be the differentiating progeny of the
progenitor population or a quiescent progenitor population.

Therefore, in this section, we now formulate a more comprehensive model of
glioblastoma growth and study its predictions on tumour growth and composition.
Our model makes falsifiable predictions and to compare it with experiments, we in-
troduce a simulation procedure that combines the clonal dynamics with harvesting
and reinjection scheme to mimic the experimental procedure (Section 5). Subse-
quently, we compare our model to experimental data and show that it captures the
key features of clonal dynamics (Section 6).

4.1 Stochastic dynamics of cell division and differentiation
Our model of tumour growth describes the dynamics of three cell compartments: a
stem-like cell compartment (S), a progenitor compartment (P), and a non-prolifera-
ting compartment that may account for differentiating progeny (D). In our model,
stem-like cells divide symmetrically with a probability " and asymmetrically with
probability 1 ! ". Progenitor cells either divide symmetrically or differentiate into
their progeny, both with probability 1=2, so that division and differentiation are
balanced on the population level. The differentiating compartment has a finite life-
time and constitutes the lowest level of the differentiation hierarchy in our model.
Schematically, the model can be expressed as

S
S S

S P
P

P P

D
D

1/2

1/2
; (19)

where ! and ' are the division rates of stem cells and progenitors, respectively, and
( is the apoptosis rate of the differentiating progeny. Defining P.nS; nP; nD; t / as
the probability to find nS stem cells, nP progenitor cells, and nD differentiated cells
at time t within a clone, we write down a master equation governing the stochastic
dynamics in the same spirit as in the previous section,

@P

@t
D

²
"!

!
nS ! 1

" OE!
S C .1 ! "/!nS OE!

P ! !nS C '

2

!
nP ! 1

" OE!
P

C '

2
nP OEC

P
OE!
D ! 'nP C (

!
nD C 1

" OEC
D ! (nD

³
P ;

(20)
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wherewe have again used ladder operators defined by OE˙
S P.n

S; nP; nD; t / D P.nS˙
1; nP; nD; t / and analogously for the other cell compartments P and D. Together with
an initial condition P.nS; nP; nD; 0/ that characterizes the initially barcoded popu-
lation, Eq. (20) permits to compute the clone composition and barcode frequency
distribution of our model at any later time. The distribution p.n; t/ of total barcode
frequencies n D nS CnP CnD is obtained from the joint distribution P by summing
over all barcode frequency configurations that lead to a total size n,

p.n; t/ D
nX

n0D0

n!n0X
n00D0

P.n0; n00; n ! n0 ! n00; t / : (21)

While the full clonal dynamics of our model can only be explored by means of
numerical simulations, several important insights about growth and composition of
the tumour can be drawn from analytical arguments.

4.2 Composition of the tumour
Using the master equation (20), we can obtain insights into the composition of the
tumour in our model, i.e., its relative content of stem cells, progenitors and differ-
entiating progeny. The time evolution of the mean cell numbers is given by

h PnSi D "!hnSi ;
h PnPi D .1 ! "/!hnSi ;
h PnDi D 1

2
'hnPi ! (hnDi ;

(22)

where the dot denotes the time derivative. In particular, the evolving clone, while
steadily growing, acquires a steady-state composition characterized by a constant
relative amount of stem-like cells, progenitor cells, and differentiated cells: Defining
the relative cell contents *S D hnSi=hni, *P D hnPi=hni, and *D D hnDi=hniwhere
hni D hnSiChnPiChnDi is the total barcode frequency, this stationary composition
satisfies P*S D P*P D P*D D 0 and is given by

*S D "+!1 ; *P D .1 ! "/+!1 ; *D D 1 !+!1 ; (23a,b,c)

with + being a dimensionless parameter given by

+ D 1C '

2

1 ! "
( C "!

: (24)

Eqs. (23a–c) show that the probability " for symmetric stem cell division determines
the relative fraction of stem-like and progenitor cells while the composite parameter
+ determines the relative fraction of the differentiating progeny and the remaining
two compartments. Note that in general the ratio of averages does not correspond
to the average of the ratio, hnXi=hni ¤ hnX=ni for X D S; P;D. However, simula-
tions show that Eqs. (23a–c) are excellent approximations for the averages hnX=ni
in the considered parameter ranges.

11
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4.3 Tumour expansion
The average growth of a clone (and thus the tumour) can be determined fromEqs. (22)
as well. Defining the fold-change in cell number compared to the initial barcode fre-
quency, ,.t/ D hn.t/i=hn.0/i, we obtain

,.t/ D e"!t ; (25)

given that, from the outset, the tumour has the stationary composition given by
Eqs. (23). Hence, the tumour expands exponentially with the growth speed given
by the rate "! of symmetric stem cell divisions.

5 Simulation of transplantation experiments
To capture the dynamics of the serial transplantation experiments, we develop a
simulation of the clonal dynamics involving the repeated procedure of injection,
unperturbed growth, and harvesting of the tumour. To this end, we use a stochastic
simulation algorithm to compute many realizations of the clonal dynamics (Gille-
spie, 1977). The simulation consists of (i) the injection of a single uniquely labelled
cell, (ii) unperturbed clonal dynamics according to the process (19), and (iii) subse-
quent harvesting of cells for sequencing and reinjection. Key observables such as
barcode frequency distributions, numbers of surviving barcodes, and clonal growth
are then obtained by performing statistics over the computed realizations.

5.1 Primary injection
Tomimic the experimental procedure in our simulation, we start the primary passage
by injecting a single labelled S or P cell, each with a probability that reflects the
steady-state fractions given in Eqs. (23a,b). Differentiating progeny (represented
by the D compartment in our model) are unlikely to survive the process of serial
transplantation. The corresponding initial condition for the probability P is thus
given by

P.nS; nP; nD; 0/ D *SınS;1ınP;0ınD;0 C *PınS;0ınP;1ınD;0

*S C *P : (26)

5.2 Tumour growth
After the injection, the clone is subject to unperturbed growth according to Eq. (20)
for the duration -i of the corresponding passage i .

5.3 Harvesting and reinjection
After each passage, the next passage i is initiated by reinjecting cells harvested from
the previous passage i ! 1. This amounts to setting a new initial condition for the

12
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probability P at the injection time t inji , which coincides with the harvesting time
t harvi!1 D Pi!1

j D1 -j of the previous passage, where -i is the passage duration of pas-
sage i . Again, assuming that it is unlikely for differentiating cells (D) to survive
the process of serial transplantation, only stem-like cells (S) and progenitors (P) are
reinjected, each such a cell with a probability pinj

i . The probability pinj
i is deter-

mined by requiring that on average, the number ninji of injected cells matches the
number in the corresponding experiment. The probability pinj

i can be calculated as
follows. From Eqs. (22), the average growth of a clone can be calculated for any
initial composition of the clone. If only S and P cells are injected, with cell num-
bers that reflect the stationary composition given by Eqs. (23a,b), the fold change
,.t/ D hn.t/i=hn.0/i in cell number is given by

,.t/ D +e"!t ! .+ ! 1/e!%t : (27)

with + defined in Eq. (24). Hence, the total tumour size after passage i is given
by ninj,.-/ where ninj is the number of injected cells and - is the passage duration.
Since the composition of the tumour quickly acquires the stationary composition
given by Eqs. (23a,b,c) during the passage, the total number of S and P cells upon
harvesting is given by .*SC*P/ninj,.-/. Therefore, to inject an average of ninji cells
at the beginning of passage i , the probability pinj

i must be chosen as

p
inj
i D n

inj
i

.*S C *P/n
inj
i!1,.-i!1/

: (28)

Then, the system again evolves according to Eq. (20) till t harviC1 and the same procedure
is repeated for the next passage.

5.4 Example
Fig. S1 and Fig. 2d in the main text show numerical examples of the simulation. The
upper panel displays different trajectories of barcode frequencies across three pas-
sages. Because of stochastic cell fate decisions, clones stochastically grow or shrink
during a passage. Therefore, individual trajectories may emerge above and drop be-
low a detection threshold (shaded area in Fig. S1) several times over the course of
time (see yellow trajectory in Fig. S1 for an example). While the majority of clones
are lost, a few clones grow very large by chance, acquiring several hundreds of
cells. After each passage, all barcode frequencies abruptly drop due to harvesting
and reinjection of a small sample of the tumour (& 5 ). From many realizations
of the system, statistical properties of the clones such as barcode frequency distri-
butions and correlations can be obtained: the lower panel of Fig. S1 shows, e.g.,
the average barcode frequency. Note that the average barcode frequency is strongly
affected by the majority of clones becoming extinct very quickly while only a few

13



Lan et al. Supplemental Information

��
��
��

�
���

��
��

��

�

�

��

��

���

���
������� ��������� ��������

��
��

��
��
��

�
���

��

� �� �� ��� ��� ���
�

��

��

��

���� (����)

Figure S1 Numerical examples of barcode frequency trajectories across three serial pas-
sages on a logarithmic scale. The shaded area indicates an example detection threshold. The
yellow curve shows a clone that emerges above and drops below the detection threshold sev-
eral times. The lower plot shows the average over all trajectories. Parameters are given in
Table S3.

clones become large. Fig. 2e in the main text shows the first incomplete moment of
the barcode frequency distribution, revealing a negative binomial distribution over
many decades as discussed in Section 2. We now use these simulations to system-
atically compare experimental data with our theory.

6 Comparison of theory and experiments
We now compare our theory with experiments. First, we discuss biologically sen-
sible parameter ranges for our model. We then compare barcode frequency distri-
butions and number of barcodes that survive the serial transplantations with exper-
iments, highlighting that many qualitative key features of our theory are actually
independent of the specific choice of parameters.
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6.1 Parameter estimates
Can all experiments be characterized by the same set of parameters? Experimental
data show a considerable degree of variation in the growth of different xenografts:
for instance, referring to Table S4, the tertiary xenograft of the transplantation se-
ries labelled .1; 2; 1/719 grows by 42-fold over a duration of 55 days, while the ter-
tiary xenograft of .1; 2; 3/719 grows by only 26-fold over the longer duration of 78
days, with both xenografts having been derived from the same secondary xenograft
.1; 2/719. While there are many potential sources for these variations among repli-
cate experiments, this example already indicates that it is not possible to characterize
all experiments with a single set of parameters. Rather, it suggests a corresponding
degree of variation for the proliferation and differentiation rates of stem-like cells
and progenitors as well as the apoptosis rate of the differentiating progeny. Here we
aim at constraining plausible parameter ranges using experimental data.

An estimate for the apoptosis rate ( of the differentiating progeny can be in-
ferred from the steady-state composition of the tumour: we used Ki67 staining of
xenograft samples to determine the relative amount of proliferating cells as 50% on
average, see Extended Data Fig. 3d. Based on this estimate we fixed the relative
amount of progenitor cells among the progenitor population,  D nP=.nD CnP/, as
 % 0:5. Using Eqs. (23) and (24), the apoptosis rate ( can be expressed in terms
of  and the other parameters as

( D '

2

1

 !1 ! 1 ! "! : (29)

Hence, given numerical values for the other parameters !, ", and ', this fixes the
value of ( . For the loss-and-replacement rate ' of the progenitors, we choose an
upper bound of ' D 1:5=day, motivated by the fact that in mammalian cells, the typ-
ical S phase duration is already 5 to 6 hours which constrains the cell cycle speed.
In Section 3, we have seen that progenitors have to divide much faster than stem-
like cells (' # !) in order to generate the characteristic negative binomial form
of the barcode frequency distribution. Therefore, we restrict the stem cell division
rate ! to values of at least an order of magnitude less, ! ! 0:3=day. In our model,
overall growth of the tumour crucially depends on the rate "! of symmetric stem
cell divisions (see Sections ?? and 5.3). Considering fast death of the differentiating
progeny (( # "!) and a small ratio of symmetric divisions (" $ 1), Eq. (27) en-
ables us to estimate the symmetric division rate of the stem cells as "! % -!1 ln , ,
where - is the passage duration, , is the fold-change in cell number from injection
to harvesting and  is the amount of proliferating cells introduced above. Given the
range of values for , and - shown in Table S4, we obtain an estimate for the range
of "! of 0:02 : : : 0:06=day. Since " < 1, this automatically yields a lower bound of
! " 0:02=day for the stem cell division rate. In our model, the ratio " of symmetric
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Param. Range Description

! 0:02 : : : 0:3 d!1 stem cell division rate
" < 1 : : : 20 probability of symmetric stem cell division
' 0:5 : : : 1:5 d!1 progenitor loss-and-replacement rate
( 0:2 : : : 1:5 d!1 death rate of the differentiating progeny

Table S2 Parameter ranges for the model of tumour growth, Eq. (19).

stem cell divisions sets the relative size of the stem cell pool and the progenitor pool,
see Eq. (23). Assuming that the stem-like cells form a minority population, we here
restrict " ! 20 .

A summary of the thus inferred parameter ranges is given in Table S2. To show
that these estimates for the parameter ranges are consistent with the clonal behaviour
observed in experiments, we now compare numerical solutions of the model with
experimental data.

6.2 Barcode frequency distributions
A direct quantitative comparison of barcode frequency distributions is currently not
possible because of limitations in experimentally determining absolute barcode fre-
quencies. However, the characteristic functional shape of the barcode frequency
distributions is independent of absolute barcode frequencies and can be compared
with experiments. To assess the barcode frequency distributions generated by our
model, we obtain their first incomplete moment% as defined in Eq. (8) fromEq. (21).
Fig. 2e in the main text shows examples for % for each passage, obtained from a nu-
merical simulation of 2 " 106 realizations of the system. The linear behaviour over
many decades of barcode frequencies indicates a negative binomial size distribu-
tion as discussed in Section 2. In fact, we find these negative binomial distributions
within a large range of parameters. This linear behaviour is preceded by a short non-
linear transient behaviour for very small barcode frequencies that are likely below
the experimental detection threshold.

6.3 Barcode survival
The survival of barcodes is reflected by the number of detected barcodes across pas-
sages. In experiments, the number of detected barcodes depends on the detection
threshold and the fraction of sequenced cells. To obtain a measure for clone sur-
vival that is independent of these experimental constraints, we make use of the fact
that barcode frequency distributions have the negative binomial form Eq. (7), which
entails a characteristic barcode frequency n0. This enables us to define the number
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of clones that exceed a specified fraction . of the characteristic barcode frequency
n0 as

P
n>&n0

h.n/, where h.n/ is the number of clones with size n. The ratio of
clones derived from initially injected barcoded cells that exceed the size .n0 at a
given passage therefore serves as a measure for barcode survival,

ˇ& D 1

NB

X
n>&n0

h.n/ ; (30)

whereNB is the number of uniquely barcoded cells injected before the first passage,
given by NB D !n

inj
1 with ! being the labelling efficiency and ninj1 being the number

of cells injected.
Fig. S2 shows the results from simulations4 covering the parameter ranges

indicated in Table S2, along with the corresponding experimental data5. Density
bars show the distribution of values for ˇ1=2, dots show experimental data points6.
Clearly, most of the values obtained in the biologically plausible parameter range
also capture the experimentally obtained values. Moreover, simulations show a sys-
tematic decline of the barcode survival probability with increasing passage number.

6.4 Correlations of barcode frequencies across passages
We now make use of the fact that unique barcoding enables us to identify clones
throughout different passages and replicate experiments. A characteristic feature
of the clonal dynamics that includes this longitudinal data is the correlation of the
size of a uniquely labelled clone across passages, see Extended Data Fig. 4f and
Fig. 2h in the main text. To quantify these correlations, we define the normalized

4A total of 108 parameter sets equally distributed in the parameter ranges for!, ", and ' indicated
in Table S2 have been used to sample the parameter space. The parameter ( was fixed according
to Eq. (29). Each simulation consists of 100 000 realizations of clones using the passage times and
number of injected cells reported in Table S4.

5We obtain ˇ& from experimental data as follows. Barcode frequency distributions h.x/ with x
being the relative barcode frequency are generated by binning the experimentally obtained barcode
frequencies with a bin size of .xmax!xmin/=100where xmax and xmin are the largest and smallest rela-
tive barcode frequencyies, respectively. We then fitted the resulting barcode frequency distributions
using the negative binomial form p.x/ D N!1

0 e!x=x0=x with n0 and the normalisation constantN0

as fit parameters. Since the detection threshold from sequencing may distort the distributions for
small barcode frequencies, we truncate the barcode frequency distributions from below (within the
first 20 data points) such that the coefficient of determination R2 of the fit is maximized. This yields
the characteristic barcode frequency x0 and ˇ& is readily obtained as ˇ& D N!1

B
P

x>&x0
h.x/. The

standard error /x0
on x0 obtained from the fit is used to calculate positive and negative errors for ˇ&

as /˙
ˇ D N!1

B
P

x>&.x0˙'x0
/ h.x/.

6The value . D 1=2 was chosen because the corresponding threshold n0=2 lies well above the
detection threshold from sequencing and at the same time takes into account most of the acquired
data.
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Figure S2 Fraction ˇ1=2 of initially injected barcodes growing above half of the character-
istic barcode frequency n0=2 as defined in Eq. (30) for all experimental trajectories given in
Table S4. Density bars show the distribution of simulation results pooled over the parame-
ter ranges indicated in Table S2. Dots show experimental data. The plot titles indicate the
experimental trajectory as given in the first column of Table S4.

cross correlation of the barcode frequency for passages i and j as

Cij D hninj i ! hniihnj iq
hn2

i i ! hnii2
q

hn2
j i ! hnj i2

; (31)
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! " ' ( '

Figs. 2d,e,h and S1, S4 0:15 d!1 15 1 d!1 0:48 d!1 0

Figs. 3e,f 0:1 d!1 10 1:5 d!1 0:74 d!1 0:5

Table S3 Parameter values used for the numerical examples in Figs. S1 and S4 and Figs. 2
and 3 in the main text. The parameters !, ", ', and ( are introduced in Sec. 4.1; the pa-
rameter ' is introduced in Sec. 6.5. These parameter sets are used to illustrate the model
behaviour and have therefore been chosen to be located in the center of the biologically
plausible parameter ranges indicated in Table S2.

where ni D n.t harvi / is the barcode frequency after passage i . The normalized cross
correlation Cij takes values between !1 and 1, where Cij D 1 indicates perfect
correlation of barcode frequencies (i.e., small/large clones in passage i correspond
to small/large clones in passage j ), Cij D 0 indicates that barcode frequencies are
completely uncorrelated, and Cij D !1 indicates perfect anticorrelation (i.e., large
clones in passage i correspond to small clones in passage j and vice versa).

Fig. S3 shows a comparison of the correlations for the same simulations and
experimental data sets as in Fig. S2. Density bars show the distribution of values for
the cross correlations Cij , dots show experimental data points. Without a fine tun-
ing of the parameters, the theoretically computed cross correlations not only cover
the experimentally obtained values in most cases but also clearly capture the correct
trend between different pairwise comparisons within a particular injection series. In
the case of the GBM754 experiment, deviations from experimental results is likely
due to the comparably small number of detected clones which makes the cross cor-
relation a less reliable measure; nevertheless, that the trend of correlations is largest
between the secondary and tertiary passage is correctly captured.

6.5 Effects of chemotherapy
In the main text, we observed that the clonal behaviour after treatment of xenografts
with temozolomide (TMZ) can be characterized by two distinctive groups of small
and large clones (termed Group A and Group B, respectively), see Fig. 3a–d. There,
we hypothesized that such a behaviour is consistent with a subset of clones exhibit-
ing a resistance to apoptosis. To assess whether our results support this scenario, we
modified the simulation such that with a certain probability ', a clone’s differenti-
ating progeny does not die off during the second passage (( D 0 for the respective
clones). Fig. 3e,f in the main text shows the resulting correlations of barcode fre-
quencies for the clones resisting apoptosis (blue dots, ( D 0) and clones following
the unperturbed dynamics (green dots, ( ¤ 0) for an example simulation with pa-
rameters given in Table S3. Indeed, the resulting behaviour recapitulates the experi-
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Figure S3 Barcode frequency cross correlationsCij as defined in Eq. (31) for all experimen-
tal trajectories given in Table S4. Density bars show the distribution of simulation results
pooled over the parameter ranges indicated in Table S2. Dots show experimental data. The
plot titles indicate the experimental trajectory as given in the first column of Table S4.

mental findings: two clusters of small and large clones, respectively, with the size of
large clones being positively correlated between subsequent passages, see Figs. 3a,b
in the main text. The qualitative features of these correlations robustly appear with-
out fine-tuning and within a large range of parameters, supporting that resistance to
apoptosis of a subset of clones generically leads to the observed behaviour.
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7 Exome deep sequencing as a window on the mutational
heterogeneity and clonal dynamics of GBM cells

To probe the mutational heterogeneity of the parent tumour and its evolution over
time, we applied exome sequencing to xenografts from GBM719, focusing first on
passage (p)2 and 3 of the untreated system. This analysis identified 546 mutations
at p2 with variable allele frequencies (VAFs) that were above the threshold of de-
tection, and 112 at p3. Analysis of the distribution of VAFs revealed a wide varia-
tion, with the majority clustered around the threshold value while some appeared to
be clonally fixed within the population with VAFs of 0.5 or more. Note that copy
number variation can amplify VAFs above the value of 0.5, the value expected for
a heterozygous point mutation that has become clonally fixed across of the pop-
ulation. Comparison of the mutational signature between p2 and p3 identified 68
mutant clones that were shared by both groups and therefore likely to be present in
the parental tumour, emphasizing the mutational heterogeneity of both the parent
tumour sample, and its conservation in the xenograft model.

As well as indicating the mutational heterogeneity of the tumour sample, the
VAF also carries quantitative information on the relative abundance of point mu-
tations within a sample and therefore carries information about the relative size
of host mutant clones. Indeed, such data sets can often be used to identify can-
cer drivers and, in some cases, the phylogeny of mutations that drive non-neutral
transformation (Williams et al., 2016; Eirew et al., 2015). However, in the present
context, the current barcoding study indicates “neutral” competition between grow-
ing mutant clones suggesting that the vast majority of heterozygous point mutations,
even when they occur in cancer genes, may leave the fate behaviour of tumour cells
largely unperturbed. In this case, we can instead use point mutations as a surrogate
clonal mark from which information on clonal dynamics of tumour cells can be in-
ferred. However, in contrast to cellular barcoding, where the clonal mark is created
at a given instant in time, mutations occur sporadically leading to modified “clonal”
distributions. As a result, the VAFs obtained from exome sequencing represent a
product of both the underlying fate dynamics of the mutant cells within the sample
and the mutational dynamics (Simons, 2016), involving the ongoing acquisition of
new point mutations and copy number variations. Nevertheless, when copy num-
ber variation is low, such approaches can be used to quantify cell fate behaviour, as
exemplified by a recent study of stem cell dynamics in physiological normal human
epidermis obtained from punch biopsies of eyelid epidermis (Martincorena et al.,
2015; Simons, 2016).

To develop a similar approach here, we reasoned that biopsies from primary
tumours are likely to contain geographically restricted mutations (Johnson et al.,
2014), further compounding the potential complexity of the VAF distribution. How-
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ever, since normal cells are unlikely to survive passaging through the xenograft, we
reasoned that VAFs obtained at p2 and p3 were likely to be rooted in the tumour-
maintaining population. To address this data, we first considered the qualitative
behaviour of the raw VAF distributions in both control (untreated) samples from
p2 and p3. If, for a given locus, mutations of both alleles occur at a negligible
rate, a VAF of 0.5 indicates a mutation present in the entire cell population and is
therefore fixed across the population. Indeed, the VAF distributions in both samples
(Extended Data Fig. 6d) exhibit an abundance of small clones as well as a smaller
peak at VAFs of around 0.5, which likely corresponds to mutations that have already
become fixed in the population after the respective passage.

Examining the correlations of VAFs between passages in xenografts (Extended
Data Fig. 6e), we found a population of larger clones that are present after both pas-
sages, as expected for mutations that have become fixed (or almost fixed) at the end
of p2. Alongside these clones, we also found both (i) clones that became extinct
(or, more accurately, fell below the threshold of the deep sequencing) during repop-
ulation and expansion in p3 as well as (ii) new clones that emerge during p3. If we
assume that these new mutant clones arise from new mutations acquired during p3
(rather than from pre-existing clones that grew above the detection threshold), we
can use the dynamics inferred from the barcoding to derive expected features of the
VAF distribution of these newly-generated clones.

To predict the large-scale dependence of the VAF distribution, we adapted our
simulation to take into account random “induction” of clones through mutations
during the tertiary passage7. Model simulations suggested that the resulting VAF
distribution again approximates a negative binomial form, or, equivalently, acquires
an approximately exponential first incomplete moment consistent with experiment
(Extended Data Fig. 6f-g, Fig. S4). Remarkably, focusing on the first incomplete
moment of the 44 clones that emerge during the tertiary passage, we find that the first
incompletemoment of the VAF distribution again reveals an exponential distribution
(Extended Data Fig. 6g), in accordance with expectations from the barcoding study.
By comparison, the TMZ-treated samples show (i) a much larger number of newly
acquired mutations during p3 (Extended Data Fig. 6d) and (ii) a broad distribution

7Considering a constant mutation rate for each locus in each cell (Simons, 2016), the probability
for a mutation to occur is proportional to the instantaneous number of cells in the tumour. Therefore,
knowing that in our model specified by Eq. (20), the time-dependent fold-change in cell number is
given by ,.t/ D e"!t , see Eq. (25), we reasoned that the time-dependent probability distribution for
a mutation to have occured during the tertiary passage is given by pind.t/ D ,.t/=

R (3

0 ,.t/ dt with
0 ' t ' -3 where t D 0 refers to the start of the passage and where -3 is the passage duration of the
tertiary passage. Hence, for each clone, we drew a time tind from the distribution pind and simulated
the respective clone for the time -3 ! tind, i.e., the remaining time from induction during the tertiary
passage to the end of the passage. We then obtained the clone size distribution and first incomplete
moment from the resulting clone population.
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Figure S4 First incomplete moment of the clone size distribution obtained from a simulation
of 105 clones with random induction times during the tertiary passage7. Parameters are
given in the first row of Table S3. The red dashed line shows an exponential fit of the first
incomplete moment.

of VAFs after p3 with a considerable subset of clones displaying VAFs larger than
0.5 (Extended Data Fig. 6d), both pointing at a treatment-induced higher genomic
variability.

Although the agreement between the theoretical prediction based on the bar-
coding data and experiment is encouraging, we must also exercise some caution.
While correction of VAFs to account for copy number variation (CNV) is already
challenging in the parent tumour, with new mutations, the challenge is even greater.
When CNV occurs before the mutation, the VAF provides a faithful read-out of
clone size; where it occurs afterwards, the VAF is corrupted by the amplification.
The correlation between VAFs associated with shared mutations between p2 and
p3 of the control xenograft suggests that CNV may be rather infrequent as com-
pared to the clonal dynamics, consistent with the systematic behaviour of the mea-
sured clone size distribution as predicted by a conserved proliferative hierarchy. In
addition, we repeated the same analysis only taking genomic regions that are pre-
dicted to be diploid within each sample based on exome sequencing. After filtering,
the VAF distributions continue to conform to the negative binomial (Extended Data
Fig. 6h-i). However, a more detailed quantitative analysis would require a compre-
hensive investigation and understanding of the interplay between tumour growth,
mutational dynamics and, indeed, chemotherapy-induced mutation (Johnson et al.,
2014), which are beyond the scope of the current study.
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8 Remarks
Here we have introduced a theoretical model of human glioblastoma (GBM) growth
based on a critical birth-death process with immigration, describing the stochastic
cell fate dynamics of a proliferative hierarchy with glioblastoma stem cells (GSCs)
at the apex. Our model is able to robustly capture key features of the clonal dy-
namics assessed experimentally: importantly, it explains the characteristic negative
binomial barcode frequency distributions across all serial passages observed in ex-
periments. Moreover, comparison of (i) the number of surviving barcodes across
serial passages and (ii) correlations of barcode frequencies between serial passages
show that the inferred parameter range covers the observed behaviour in the over-
whelming majority of cases.

Note that the model presented here is still a minimal model in the sense that
more complex alterations and refinements are conceivable. These may include a
slight imbalance between loss and replacement of progenitors as well as multiple
progeny compartments. Also, small amounts of cell death may occur in the stem
cell and progenitor compartments. However, if the death rate was of comparable
size (or larger) than the rate of symmetric proliferation, we would expect a massive
loss of clones. If, on the contrary, cell death only represents a small contribution
relative to the symmetric proliferation rate, it could be accounted for by an effective
adjustment of the other model parameters that, e.g., determine the net tumour growth
and would only be visible in subtle changes of the barcode frequency distributions
that are impossible to detect in the experimentally given distributions. Importantly,
these alterations do not change the basic characteristics of our model. Moreover, we
have neglected the spatial aspect of tumour growth and potential ongoing driver gene
mutations (Michor et al., 2006; Waclaw et al., 2015), assuming that cell division and
loss-and-replacement occur at constant rates as the tumour expands within the brain.
Despite its simplicity, the fact that our model is able to capture the main features of
the clonal dynamics indicates a remarkably simple proliferative behaviour of human
GBM despite the genomic variability of GBM cells.
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ID Passage inj. cells ninj - surv. prob. ˇ1=2 growth ,

GBM719

.1/719 Primary 1:25 " 105 79 d 1:44C0:
!0:26 40

.1; 1/719 — Secondary 3 " 105 64 d 0:32C0:06
!0:07 7.7

.1; 2/719 — Secondary 3 " 105 68 d 0:31C0:08
!0:07 18

.1; 2; 1/719 —— Tertiary 3 " 105 55 d 0:13C0:07
!0:03 42

.1; 2; 2/719 —— Tertiary 3 " 105 70 d 0:25C0:04
!0:03 43.3

.1; 2; 3/719 —— Tertiary 3 " 105 78 d 0:18C0:04
!0:03 26

.1; 3/719 — Secondary 3 " 105 89 d 0:03C0:05
!0:01 16.3

.1; 3; 1/719 —— Tertiary 3 " 105 66 d 0:13C0:03
!0: 15.1

.1; 3; 2/719 —— Tertiary 3 " 105 62 d 0:07C0:03
!0:01 47.7

GBM754

.1/754 Primary 1:25 " 105 99 d 0:26C0:
!0: 26

.1; 1/754 — Secondary 6 " 104 79 d 0:19C0:
!0: 42.7

.1; 2/754 — Secondary 6 " 104 86 d 0:1C0:
!0: 98.3

.1; 2; 1/754 —— Tertiary 6 " 104 72 d 0:24C0:
!0: 56

.1; 2; 2/754 —— Tertiary 6 " 104 73 d 0:11C0:
!0: 31.7

GBM742

.1/742 Primary 2:4 " 104 78 d 0:78C0:
!0: 530

.1; 1/742 — Secondary 3 " 105 43 d 0:13C0:06
!0: 5.7

.1; 2/742 — Secondary 3 " 105 47 d 0:01C0:78
!0:01 1.8

.1; 3/742 — Secondary 3 " 105 50 d 0:12C0:22
!0:03 8.5

Table S4 Experimental data sets used to compare with theory. Here, ninj is the number
of injected cells, - is the passage duration, s is the fraction of cells sequenced, ˇ1=2 is
the fraction of initially injected barcodes growing above half of the characteristic barcode
frequency n0=2, as defined in Eq. (30), and , is the estimated fold-change in cell number
between injection and harvesting, which quantifies tumour growth. In all cases, cells were
harvested and injected from the ipsilateral side.
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