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Abstract
We investigate level sets of the Gaussian free field on continuous transient metric
graphs ˜G and study the capacity of its level set clusters. We prove, without any further
assumption on the base graph G, that the capacity of sign clusters on ˜G is finite
almost surely. This leads to a new and effective criterion to determine whether the
sign clusters of the free field on ˜G are bounded or not. It also elucidates why the
critical parameter for percolation of level sets on ˜G vanishes in most instances in the
massless case and establishes the continuity of this phase transition in a wide range
of cases, including all vertex-transitive graphs. When the sign clusters on ˜G do not
percolate, we further determine by means of isomorphism theory the exact law of the
capacity of compact clusters at any height. Specifically, we derive this law from an
extension of Sznitman’s refinement of Lupu’s recent isomorphism theorem relating the
free field and random interlacements, proved along the way, and which holds under
the sole assumption that sign clusters on ˜G are bounded. Finally, we show that the
law of the cluster capacity functionals obtained in this way actually characterizes the
isomorphism theorem, i.e. the two are equivalent.

Mathematics Subject Classification 60K35 · 60G15 · 60J25 · 60J45 · 82B43

B Pierre-François Rodriguez
p.rodriguez@imperial.ac.uk

Alexander Drewitz
adrewitz@uni-koeln.de

Alexis Prévost
ap2195@cam.ac.uk

1 Division of Mathematics, Deptartment of Mathematics and Computer Science, Universität zu
Köln, Weyertal 86–90, 50931 Cologne, Germany

2 Faculty of Mathematics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-021-01090-0&domain=pdf
http://orcid.org/0000-0002-5546-3614
http://orcid.org/0000-0001-7273-0481
http://orcid.org/0000-0001-7607-0724


A. Drewitz et al.

1 Introduction

In this article, we consider the Gaussian free field ϕ on the cable system ˜G associated to
an arbitrary transient weighted graph G; see the discussion around (1.1) below for the
precise setup. Cable processes have increasingly proved an insightful object of study,
as shown for instance in the recent articles [7,8,19,21,27] and [29]. In the present
work, we investigate a well-chosen observable, the capacity of finite clusters in the
excursion set E≥h of ϕ above height h ∈ R, see (1.5) below. This quantity features
prominently in our article [10]. Our main result, stated below in Theorem 1.1 – see
also Sect. 3 for a more exhaustive discussion – underlines the central nature of this
observable and unveils some of its deeper ramifications.

To wit, our findings imply for instance that the cluster capacity observable at height
h = 0 is finite almost surely, for any transient graph G, see Theorem 1.1,1) (our setup
allows for a killing measure, including the degenerate case of Dirichlet boundary
conditions, which will play an important role below). This immediately leads to a
much improved understanding of why the height h = 0 tends to be critical for the
percolation problem {E≥h : h ∈ R} in the massless case, i.e. in the absence of killing,
and more generally when hkill < 1 (see (1.2) below). A simple criterion, see (Cap)
and Theorem 1.1,1), which covers an extensive number of cases, can then be used to
check if the sign clusters of ϕ percolate or not.

For instance, see Corollary 1.2, as a consequence of this criterion, our results yield
that the sign clusters of ϕ on any vertex-transitive graph with no killing are bounded
and thus establish the phase transition of {E≥h : h ∈ R} as being second order.
Corresponding results hold for the loop soup L1/2, see Corollary 3.6; see also the
discussion following Theorem 1.1 regarding the current state of affairs.

When the sign clusters of ϕ are bounded – which holds e.g. when (Cap) holds –
we are able to identify the distribution of the cluster capacity observable at any level
h ∈ R, see Theorem1.1,2) below. This law is explicitly characterized by (Lawh), intro-
duced above Theorem 1.1 (see also (3.8) for the corresponding density). Moreover, we
show that this information is equivalent to the ‘strong Ray-Knight-type’ isomorphism
recently derived in [27] (refining [19], see also (Isom) above Theorem 1.1) under
slightly stronger assumptions than those to follow. This identity relates the free field
itself with the local times of random interlacements on ˜G. Thus, we effectively obtain
a characterization of an isomorphism theorem (in the non-interacting case) in terms
of the free field alone. In fact, for massless graphs (or even if hkill < 1) our results
imply under (Law0) the dichotomy˜h∗ ∈ {0,∞}, where˜h∗ refers to the corresponding
critical level; cf. Theorem 1.1,3). We further refer to the forthcoming article [22] for
sharpness and limitations to the validity of these results. The identity (Lawh) is derived
in [10] by means of differential formulas, and has important consequences regarding
the (near-)critical regime for level sets of ϕ on ˜G; see [10] regarding these matters.

We now introduce our setup and refer to Sect. 2 for details. We consider a transient
weighted graph G = (G, λ̄, κ̄), where G is a finite or countably infinite set, λ̄x,y ∈
[0,∞), x, y ∈ G, are non-negative weights satisfying λ̄x,y = λ̄y,x ≥ 0 and λ̄x,x = 0
for all x, y ∈ G. Furthermore, κ̄x ∈ [0,∞], x ∈ G, is a killing measure, possibly
infinite. To deal with the latter in a convenient way, given G = (G, λ̄, κ̄),we introduce
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the triplet (G, λ, κ), to which we will mostly refer throughout the article, by setting

(G, λ, κ) = (G
M

, λ̄M , κ̄M ), the latter being defined in (2.12), with M a certain set
of ‘mid-points’ given by (2.11). In particular, this definition entails that (G, λ, κ) =
(G, λ̄, κ̄)whenever κ̄x < ∞ for all x ∈ G. Otherwise (G, λ, κ) is obtained by suitable
‘enhancement’ of G (exploiting network equivalence). As a result, the killing measure
κ is finite everywhere, i.e. κx < ∞ for all x ∈ G.

We always tacitly assume that the induced graph (G, E)with edge set E = {{x, y} :
x, y ∈ G, λx,y > 0} is connected and locally finite.Wewrite x ∼ y when {x, y} ∈ E,

and we define

λx = κx +
∑

y∈G
λx,y, ρx = 1

2κx
for x ∈ G and ρx,y = 1

2λx,y
for x ∼ y ∈ G (1.1)

(with ρx = ∞ when κx = 0 ). One naturally associates to G a continuous version
˜G, the corresponding cable system or metric graph, obtained by replacing each edge
e = {x, y} ∈ E by an open interval Ie of length ρx,y , glued to G through its endpoints
x and y. One further attaches to each vertex x ∈ G an additional interval Ix isometric
to [0, ρx ), glued to x through 0 (we refer to Sect. 2.3 and Remark 3.8,1) for their
raison-d’être).

One then defines (e.g. in terms of its associated Dirichlet form, see (2.1) and (2.2)
below for details) a diffusion process (Xt )t≥0 on ˜G∪{�}, where� denotes an (absorb-
ing) cemetery state, which can be viewed as Brownian motion on the cable system.
The process X induces a pure jump process Z = (Zt )t≥0 on G ∪ {�}, which we refer
to as its trace (or print) on G, see (2.4), associated to a corresponding trace form.
The induced process Z has the law of the continuous time Markov chain that jumps
from x ∈ G to y ∈ G at rate λx,y and is killed at rate κx . Similarly, the trace of X
on {x ∈ G : κ̄x < ∞} has the law of the continuous time Markov chain on G that
jumps from x ∈ G to y ∈ G at rate λ̄x,y and is killed at rate κ̄x . We write Px for the

canonical law of X · with starting point x ∈ ˜G, and occasionally P
˜G
x in place of Px

to stress the dependence on the datum ˜G. We say that X · is killed if X · exits ˜G via Ix
for some x ∈ G with κx > 0 (which is equivalent to Z being killed, i.e. entering �).
Accordingly, we define

hkill(x)
def.= Px (X · is killed), for all x ∈ ˜G. (1.2)

Moreover, we say that hkill < 1 if hkill(x) < 1 for all x ∈ ˜G, or equivalently if
hkill(x) < 1 for some x ∈ ˜G (recall that (G, E) is assumed to be a connected graph).
An important family of graphs satisfyinghkill < 1aremasslessgraphswith κ̄ = κ ≡ 0,
or equivalently hkill(·) = 0.

Our results deal with the graph G and its associated metric graph ˜G, when G is
transient; that is, when the Markov chain Z is transient, which we tacitly assume
from now on. In particular, the graph G may be finite when κ 	≡ 0. We then define
the Gaussian free field on ˜G, whose canonical law P

G (occasionally denoted as P
G
˜G ),

defined on the spaceC(˜G, R) endowed with the σ -algebra generated by the coordinate
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maps ϕx , x ∈ ˜G, is such that

under P
G , (ϕx )x∈˜G is a centered Gaussian field with covariance function g(·, ·).

(1.3)

Here, g(·, ·) refers to the Green density of X · with respect to the Lebesgue measure
m on ˜G, see (2.5). The restriction of this process to G has the same law as the usual
Gaussian free field on G associated to the discrete Markov chain Z .

We now describe our main results, which deal with the excursion sets E≥h def.= {y ∈
˜G : ϕy ≥ h} of ϕ, for varying height h ∈ R. We endow ˜G with the (geodesic) distance
d(·, ·) such that all intervals Ie, e ∈ E , and Ix , when ρx < ∞, have length one (rather
than ρe and ρx , respectively). Albeit not essential, we assume for convenience that
d also assigns length one to Ix when ρx = ∞ (by means of some strictly increasing
bijection [0, 1) → [0,∞)). The clusters, i.e. maximal connected components, of E≥h ,
are defined as

E≥h(x0)
def.= {

y ∈ ˜G : x0 ↔ y in E≥h
}

, for x0 ∈ ˜G, h ∈ R; (1.4)

here, for measurable A ⊂ ˜G and x, y ∈ ˜G, we write {x ↔ y in A} if there exists a
(continuous) path from x to y in A, and we say that A is connected in ˜G if z ↔ z′ in
A for all z, z′ ∈ A. A central role in this work will be played by the cluster capacity
functional

cap(E≥h(x0)), for h ∈ R, x0 ∈ ˜G; (1.5)

We refer to (2.20) and (2.27) below for the definition of cap(A), the electrostatic
capacity of A, for arbitrary closed, possibly unbounded subsets A of ˜G. For instance,
in case A ⊂ G is finite (or more generally if A′ ⊂ ˜G is compact and ∂A′ = A), then
cap(A) (and cap(A′)) coincide with the usual capacity of the set A for the discrete
chain Z .

One of our interests is on the percolative properties of the set E≥h (with respect to
d). We introduce the corresponding critical parameter

˜h∗ = inf
{

h ∈ R : for all x0 ∈ ˜G, P
G(E≥h(x0) is unbounded) = 0

}

(1.6)

(with the convention inf ∅ = ∞; note that ˜h∗ is equivalently defined as the small-
est level h such that P

G -a.s. E≥h contains no unbounded connected component). A
fortiori, (1.6) entails that for each h < ˜h∗, with positive P

G -probability the discrete
set E≥h ∩ G contains a percolating connected component in the usual sense (i.e., the
component is unboundedwith respect to the graph distance on (G, E)). In other words,
the corresponding critical parameter h∗ (see for instance (1.8) in [8] for its definition)
satisfies h∗ ≥˜h∗. Other natural definitions of critical parameters associated to the sets
{E≥h, h ∈ R} exist and will be of interest, see (3.1) and (3.2) below. They correspond
to several natural ways of measuring the ‘magnitude’ of clusters in E≥h , and (1.5)
reflects one such choice, based on capacity as a measure of size.
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We now briefly introduce the process of random interlacements on ˜G, see [11,24]
and [28], to the extent necessary to formulate our main findings; further details are
provided in Sect. 2.5. The interlacement process will play a prominent role in the
present context, due to recent isomorphisms, see [19,27] and (Isom) below, relating
it to ϕ in a very explicit fashion. Under a suitable probability measure P

I , for each
u > 0, random interlacements at level u on ˜G constitute a Poisson point process
ωu with intensity uν

˜G, where ν
˜G is a measure on doubly non-compact trajectories

modulo time-shift (when κ 	≡ 0, these trajectories may be killed by the measure κ

before escaping to infinity, i.e., they may ‘exit ˜G via Ix ’ for some x ∈ G with κx > 0;
see (2.39) and (2.40) for the precise definition of ν

˜G). We denote by (�x,u)x∈˜G the
continuous field of local times associated to ωu, i.e. the sum of the local time densities
relative to the Lebesgue measure on ˜G of all the trajectories in ωu . We then define the
interlacement set as Iu = {x ∈ ˜G : �x,u > 0}, a random open subset of ˜G. Without
any further assumptions on G, it can be shown that for all u > 0,

(

�x,u + 1

2
ϕ2
x

)

x∈˜G has the same law under P
G ⊗ P

I as
(1

2
(ϕx +

√
2u)2

)

x∈˜G under P
G;
(1.7)

see [25] for the original derivation of this result on the (discrete) base graph graph
G in case κ ≡ 0, based on the generalized second Ray-Knight theorem of [12]; see
also Proposition 6.3 of [19] and (1.27)–(1.30) in [27] for extensions to ˜G. We refer
to Remark 2.2 below regarding a justification for the validity of (1.7) in the present
setup, which is more general. As first observed in [19], the isomorphism (1.7) implies
a stochastic domination of each connected component of Iu by a level-set cluster of
ϕ, which straightforwardly yields (recall (1.2)) that

if hkill < 1, then˜h∗ ≥ 0, (1.8)

see the paragraph following (3.19) below for details. The reverse inequality˜h∗ ≤ 0 is
an entirely different matter and has so far only been verified in a handful of cases (see
below Theorem 1.1 for a list). Part of our main result addresses this issue.

Under additional assumptions, refining the link between Iu and level-sets of ϕ

described above (1.8), the identity (1.7) can be considerably strengthened. Indeed,
Theorem 2.4 in [27] asserts that, if

P
G -a.s., E≥0 only contains bounded connected components, (Sign)

and g|G×G is uniformly bounded on the diagonal, see also (1.42) in [27] for a slightly
weaker condition (but see below; our results will imply that this latter condition is in
fact unnecessary), then

(

ϕx1x /∈Cu +
√

ϕ2
x + 2�x,u 1x∈Cu

)

x∈˜G has the same law
under P

I ⊗ P
G as

(

ϕx +
√
2u
)

x∈˜G under P
G , for all u ≥ 0,

(Isom)
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where Cu denotes the closure of the union of the connected components of those sign
clusters {x ∈ ˜G : |ϕx | > 0} that intersect the interlacement set Iu . In particular, noting
that �x,u = 0 if x /∈ Cu , (Isom) is seen to yield (1.7) upon taking squares. In practice,
the main obstacle to deducing the identity (Isom) is showing that (Sign) holds (cf. the
discussion following Theorem 1.1).

Our main result investigates the newly introduced capacity observable (1.5) and
explores the links between this quantity, the value of the critical parameter˜h∗ in (1.6)
and the validity of the identity (Isom). A natural structural property that will appear
in this context is the (weak) condition that

cap(A) = ∞ for all (d-)unbounded, closed, connected sets A ⊂ ˜G (Cap)

(see (3.6) for an equivalent formulation in terms of the base graph G and below (1.5)
for the definition of cap(·) in the present context). One can for instance show that
(Cap) is verified whenever the Green function g|G×G is uniformly bounded on the
diagonal, see Lemma 3.4 below (cf. also (3.7) for a slightly more general condition).
In particular, (Cap) holds on any vertex-transitive graph.

We now present a succinct version of our main result. It entails several findings
which are discussed in Sect. 3 in a more comprehensive form. For later reference we
introduce the condition

E
G[ exp

(− u cap
(

E≥h(x0)
))

1ϕx0≥h
] = P

G(ϕx0 ≥
√

2u + h2
)

for all u ≥ 0, x0 ∈ ˜G;
(Lawh)

note that the Laplace transform in (Lawh) can be equivalently described in terms of
an associated density ρh , which is explicit, see (3.8) and Lemma 5.2 below.

Theorem 1.1 Let G be a transient weighted graph. Then:

(1) P
G-a.s., the random variable cap(E≥0(x0)) is finite for all x0 ∈ ˜G. In particular,

the condition (Cap) implies (Sign) (see Theorem 3.2 andCorollary 3.3 for details).
(2) The following implications hold true (cf. also Fig. 1 below):

˜h∗ ≤ 0
Cor. 3.12⇐⇒ (Sign)

Thm. 3.7�⇒ (Law0)
Thm. 3.9⇐⇒ (I som)

Thm. 3.9⇐⇒ (Lawh)h≥0.

In particular, in view of (1.8), if G is a transient weighted graph such that hkill < 1
and (Cap) is fulfilled, then˜h∗ = 0 and the law of cap(E≥h(x0)) is characterized
by (Lawh), for h ≥ 0 (equivalently, (Isom) holds).

(3) If (Law0) holds but (Sign) does not hold, then ˜h∗ = ∞ (see Corollary 3.11 for
details).
In particular, in view of (1.8), if (Law0) holds and hkill < 1, then˜h∗ ∈ {0,∞}.

To appreciate the strength of Theorem 1.1, we highlight one particular consequence,
which follows directly from items 1) and 2) above together with Corollary 3.4,2)
below.

Corollary 1.2 (No percolation at criticality) Let G be a vertex-transitive, massless,
transient weighted graph. Then (˜h∗ = 0 and) the clusters of E≥0 are P-a.s. bounded.
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We further refer toCorollary 3.6 below for interesting consequences of Theorem1.1
regarding loop soups, and to [10] regarding the (near-)critical picture associated to the
(continuous) phase transition exhibited by Corollary 1.2.

We now elaborate on the results of Theorem 1.1 in due detail and give some ideas
concerning their proofs. In part 1) of Theorem 1.1, the finiteness of the capacity
functional (1.5) at height h = 0 – which, remarkably, holds without any further
assumption on G – can loosely be regarded as an indication that the sign clusters of the
Gaussian free field on ˜G do not percolate, at least when measured in terms of capacity,
cf. also (3.2) and Theorem 3.2 below. Condition (Cap) formalizes this intuition, since
it directly implies that closed connected sets have finite capacity if and only if they
are bounded. Thus, if (Cap) holds true, so does (Sign), which in turn directly entails
˜h∗ ≤ 0, see (1.6). The condition (Cap) is moreover usually easy to verify, since it
depends only on the structure of the graph G, and not on the Gaussian free field. As
alluded to above, the inequality˜h∗ ≤ 0 had previously only been proved on a certain
number of graphs with κ ≡ 0, which all verify condition (Cap), namely:

• Z
d , d ≥ 3, with unit weights, see Theorem 1 and Proposition 5.5 in [19]. This

proof could actually be easily extended to all amenable, vertex-transitive graphs,
and such graphs verify (Cap), see Lemma 3.4,2).

• The (d + 1)-regular tree Td , d ≥ 2, with unit weights, see Proposition 4.1 in
[27]. It is easy to prove that these graphs verify (Cap), using Lemma 3.4,3), the
fact that eK ,Td (x) ≥ c(d) (which holds uniformly over connected finite subsets
K ⊂ Td and x ∈ ∂K ), along with the isoperimetric bound |∂K | ≥ c′(d)|K | (see
for instance [2], p.80).

• Any tree T with unit weights such that {x ∈ T : R∞x > A} only has bounded
components for some A > 0, where R∞x is the effective resistance between x and
infinity for the descendants of x, see Proposition 2.2 in [1]. These graphs verify
(Cap) by Lemma 3.4,3).

• Any transient graph with controlled weights (see e.g. condition (p0) in [8]), such
that the volume of balls have polynomial growth and the Green function decreases
polyonomially fast, see Proposition 5.2 in [8]. These graphs verify (Cap), see
Lemma 3.2 in [8].

Hence, Theorem 1.1 subsumes and generalizes all these previous results, and it covers
many new cases, such as all vertex-transitive graphs, see Lemma 3.4,2) below. What
is more, without assuming that (Cap) is fulfilled, it is possible to construct a graph G
such that ˜h∗ ≤ 0 fails to hold, see Proposition 8.1 in [22]. One can also easily find
examples of graphs such that (Sign) is verified, while (Cap) is not, see Remark 3.5,3),
or Proposition 7.1 in [22] for more details. A further, very interesting question is
whether there exist examples of graphs G not satisfying (Law0), or any of the other
equivalent conditions appearing in Theorem 1.1,2).

A stepping stone for the proof of Theorem 1.1,1) (and, as will soon turn out, of
Part 2) as well) is the observation that the identity (Isom), if assumed to hold, implies
(Lawh)h≥0, see Proposition 4.2 and Lemma 6.1 below. Crucially, this observation can
be applied immediately when G is a finite (transient) graph, for (Isom) is then a direct
consequence of the isomorphism between loop soups and the Gaussian free field, see
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Fig. 1 The detailed chain of
implications constituting
Theorem 1.1,2). The
implications in the second line
immediately yield the
equivalence of (Law0), (Isom)
and (Lawh)h≥0.

(b)(a)

(d)(c)

[17] and [19], that we recall in (4.6). We refer to Lemma 4.4, proved in the Appendix
B using similar ideas as in the proof of Theorem 8 in [20], for corresponding details.

Equipped with (Isom), and thus (Lawh)h≥0, on finite transient graphs we then
approximate the Gaussian free field on any infinite transient graph G by the Gaussian
free field on a sequence of finite transient graphs Gn increasing to G as n → ∞, see
(4.10) and Lemma 4.6. The fact that our setup allows for 0-boundary conditions (i.e.
κ̄x = ∞ for some x ∈ G) is central for this purpose. The capacity functional (1.5)
has certain desirable monotonicity properties under this approximation, see (4.16),
and Theorem 1.1,1) corresponds to the information that survives in the limit n →∞
without further assumptions on G.

Let us now comment on Part 2) of Theorem 1.1 and its proof. Figure 1 illustrates
the various implications involved in its statement in a more explicit fashion and will
hopefully provide some useful guidance for the reader.

The equivalence a) inFig. 1 entails that if˜h∗ = 0, then the level sets of theGFFnever
percolate at the critical point h = 0, even if (Cap) (which imply (Sign)) is not verified.
We comment on its proof at the very end of this discussion. Implication b) represents
the desired improvement over the argument delineated above yielding Theorem 1.1,1),
by which the full information (Lawh)h≥0 survives in the limit as n → ∞ under the
assumption that the sign clusters of ϕ are bounded (which holds e.g. under condition
(Cap)). In fact, when (Cap) is satisfied, we also provide an explicit formula for the law
of the capacity of clusters above negative levels, seeTheorem3.7 for further details; see
also Remark 3.10,4), Lemma 4.3 and Remark 5.3,2) regarding the (related) symmetry
properties relating compact clusters in E≥h and E≥−h , for arbitrary h > 0.

The exact formula (Lawh)h≥0 describing the law of the capacity functional (1.5)
is of course instrumental and witnesses a certain degree of integrability of the model
{E≥h : h ∈ R}. For instance, one can immediately deduce from it (see (3.8)) that the
capacity of critical clusters has heavy tails satisfying

P
G(cap

(

E≥0(x0)
) ≥ r

) ∼ (π2g(x0, x0)r
)−1/2

, as r →∞. (1.9)

Further to (1.9), one can use (Lawh)h≥0 to directly deduce bounds on various quantities
of interest related to the (near-)critical behavior for the percolation of {E≥h : h ∈ R},
see [10]. The approach using differential formulas developed therein actually leads to
an independent proof of the implication b), along with extended results valid on any
transient graph G, see Theorem 1.1 in [10]. Incidentally, an explicit formula for the
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probability of the event {x ←→ y in E≥0} has also been obtained in Proposition 5.2
of [19], and was a key ingredient for all previous proofs of the inequality˜h∗ ≤ 0.

We now turn to the equivalences c) and d) in the second line of Fig. 1. The direct
(i.e. right) implications appearing there already imply the equivalences. The direct
implication in d) is another application of our initial observation, Proposition 4.2,
applied above in the context of Theorem 1.1,1) for finite graphs only, but remaining
valid in infinite volume.

Remarkably, the direct implication in c) asserts that it is sufficient to know that
the law of the capacity of the sign clusters is given by (Law0) in order to deduce the
strong version (Isom) of the isomorphism theorem. In particular, together with b), this
implies that (Isom) holds whenever (Sign) is verified, which generalizes Theorem 2.4
of [27] that required stronger assumptions, cf. the above discussion leading to (Isom).

Extending the setting in which the identity (Isom) is valid is also interesting as this
relation has already been useful in [27] and [1] to compare the critical parameter for
the percolation of random interlacements and the Gaussian free field on discrete trees,
and in [8] to prove strong percolation for the level sets of the discrete Gaussian free
field at a positive level on a large class graphs, for instance Z

d , d ≥ 3, or various
fractal graphs. It is not always easy to check that the conditions (1.32) and (1.34), or
(1.42), of Theorem 2.4 in [27] are exactly verified, see the proof of Corollary 5.3 in
[8] which sparked our interest, and it can thus be interesting to replace them by the
weaker condition (Cap), which is easier to verify.

The proof of c) requires deriving a full-fledged isomorphism theorem relating
random interlacements and the Gaussian free field on an adequate class of graphs,
assuming the identity (Law0) alone. In order to prove (Isom), we employ an approx-
imation scheme, starting from a finite-volume setup. The scheme is similar in spirit
to the previously used approximation for ϕ, but more involved, as it requires approx-
imating random interlacements on infinite graphs by random interlacements on finite
graphs, see Lemma 6.3. Combining the approximations for the free field and the inter-
lacement process, we then obtain (Isom) if (Law0) is fulfilled, see Lemma 6.4.

Moreover, our proof of (Isom), which relies on taking a suitable limit rather than
proceeding directly in infinite volume and using theMarkov property as in [27], imme-
diately lets us derive a signed version of the isomorphism for random interlacements
on discrete graphs, taking advantage of the equivalent discrete isomorphism for the
loop soup, (4.8). As a by-product of the proof, we thus obtain a version of the iso-
morphism (Isom) for the discrete graph G in Theorem 3.9, see (3.16), similar to the
version of the second Ray-Knight theorem from Theorem 8 in [20].

Finally, the isomorphism (Isom) has another interesting consequence, stated in
Theorem 1.1,3) and Corollary 3.11: if (Law0) holds but (Sign) does not hold, then
˜h∗ = ∞. This can be regarded as a partial converse to the implication (Sign) �⇒
(Law0) from part 2), which leads to a dichotomy for the value of˜h∗ in case hkill < 1.
In particular, if G is a graph such that ˜h∗ ≤ 0, then E≥h is P

G -a.s. bounded for all
h > 0, and thus (Lawh) holds for all h > 0, see Theorem 3.7. Taking the limit as
h ↘ 0, one can then prove that (Law0), and thus (Isom), hold. Since ˜h∗ 	= ∞, this
means that (Sign) must hold, and thus we also obtain Theorem 1.1,2),a) (see Fig. 1).

We now explain how this article is organized. Section 2 recalls the main objects
of interest, the diffusion X , the Gaussian free field, and random interlacements on
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the cable system in the present (broad) setup. It also supplies suitable notions of
equilibrium measure and capacity on ˜G, see Lemma 2.1, (2.16) and (2.20).

Section 3 contains the detailed versions of all our findings, which together imply
Theorem 1.1, and that we prove in the rest of the article. The central results are the
three Theorems 3.2, 3.7 and 3.9, along with their respective corollaries.

Section 4 gathers various key preliminary results, notably Proposition 4.2, which
derives (Lawh)h≥0 as a consequence of (Isom) (or more precisely, an equivalent but
more handy formulation (Isom’) introduced in Sect. 3). It also contains the approx-
imation scheme for ϕ, see Lemma 4.6, as well as the isomorphism (Isom) on finite
graphs, see Lemma 4.4. These results are the ingredients of various arguments in the
sequel.

First, Sect. 5 is devoted to the proof of Theorems 3.2 and 3.7, which roughly
correspond to Theorem 1.1,1), and 2) ,b) in Fig. 1, but contain more detailed results.
Their proof quickly follows from the preparatory work done in Sect. 4.

Section 6 is then concerned with the proof of the isomorphism between random
interlacements and the Gaussian free field (Isom) under the condition (Law0), and to
its consequences, Corollaries 3.11 and 3.12. At the technical level, an important role
is played by the approximation of random interlacements on a graph G, by random
interlacements on a sequence of graphs increasing to G, see Lemmas 6.2 and 6.3.
Some concluding remarks and open questions are gathered at the end of that section.

Throughout the article, we will sometimes add ˜G as a subscript to the notation to
stress the underlying graph G that we consider. For the reader’s orientation, we note
that the conditions (Sign), (Lawh) and (Isom) are all introduced above Theorem 1.1,
and that the condition (Isom’) is introduced above Theorem 3.9.

2 Preliminaries and useful results

We return to the framework described around (1.1), consisting of a transient weighted
graph G, the induced triplet (G, λ, κ) satisfying κx < ∞ for all x ∈ G and the
associated cable system ˜G. We now define the various objects attached to this setup.
We first sketch a construction of the canonical diffusion X on ˜G and of its trace on
suitable subsets F of G from the associated Dirichlet form in Sect. 2.1. In Sect. 2.2 we
introduce several aspects of potential theory on ˜G in this general framework, which
can be conveniently defined probabilistically by ‘enhancements’, exploiting instances
of network equivalence on the base graph G, see Lemma 2.1 below. We then briefly
discuss the cables Ix (Sect. 2.3) and their role in taking suitable graph limits, recall
the Gaussian free field ϕ and its Markovian decomposition (Sect. 2.4), and supply the
definition of random interlacements in the present context (Sect. 2.5).

Recall the definition of the cable system ˜G: first, each edge e = {x, y} ∈ E is
replaced by an open interval Ie, isometric to (0, ρx,y), see (1.1). In addition, an open
interval Ix of length ρx (= 1

2κx
) (possibly unbounded) is attached to each vertex x of

G. The cable system ˜G is then obtained by glueing together the intervals Ie, e ∈ E, to
G through their respective endpoints, and by glueing one endpoint of Ix , x ∈ G, to
x . Note that G can be naturally viewed as a subset of ˜G. The elements of G will still
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be called vertices and the intervals Ie, e ∈ E, and Ix , x ∈ G, will be referred to as
the edges of ˜G.

The canonical distance on each Ie, e ∈ E, and Ix , x ∈ G, is denoted by ρ
˜G(·, ·).

Note that ρ
˜G(x, y) is only defined if x and y are on the same edge. In a slight abuse

of notation, for any edge e = {x, y} ∈ E and any t ∈ [0, ρx,y], we denote by
x + t · Ie = y + (ρx,y − t) · Ie the point of Ie at (ρ˜G-)distance t from x, and for any
vertex x ∈ G and t ∈ [0, ρx ), by x+ t · Ix the point of Ix at distance t from x .We also
consider the distance d on ˜G, cf. above (1.4), which is such that d(x, y), x, y ∈ ˜G, is
the minimal length of a continuous path between x and y, when changing the length
of each Ie, e ∈ E ∪ G from ρe to 1. In particular, the restriction of d(·, ·) to G ×G is
just the graph distance dG on G. We consider (˜G, d) as a metric space, and for A ⊂ ˜G
we define ∂A as the boundary of A in ˜G for d. Finally throughout the article, we say
that a set K ⊂ ˜G is compact if it is compact for the distance d.

2.1 The canonical diffusion on the cable system

We define the set of forward trajectories W+
˜G as the set of functions w+ : [0,∞) →

˜G∪{�},where� is a cemetery point (not in ˜G), for which there exists ζ ∈ [0,∞] such
thatw+

|[0,ζ ) ∈ C([0, ζ ), ˜G) and, when ζ < ∞, w+(t) = � for all t ≥ ζ. For each t ≥ 0

we denote by Xt the projection at time t, i.e. Xt (w
+) = w+(t) for all w+ ∈ W+

˜G , and

by W+
˜G the σ -algebra on W+

˜G generated by Xt , t ≥ 0. By m we denote the Lebesgue

measure on ˜G,which can be informally described as the sum of the Lebesguemeasures
on each Ie, e ∈ E, and Ix , x ∈ G,with the normalizationm(Ie) = ρe andm(Ix ) = ρx

(with, say, mass 1 associated to each sub-interval of Euclidean length 1). We proceed
to define a diffusion on ˜G, which we will characterize through its associated Dirichlet
form. In order to define the latter, introduce for measurable f : ˜G → R,

( f , f )m
def.=

∑

e∈E∪G

∫

Ie
f 2 dm|Ie , (2.1)

the corresponding Hilbert space L2(˜G,m)
def.= { f : ˜G → R measurable; ( f , f )m <

∞} (modulo the usual equivalence relation) and ( f , g)m the associated quadratic form
on L2(˜G,m) obtained via polarization. Let C0(˜G) be the closure for the ‖ · ‖∞-norm
of the set of continuous functions with compact support on ˜G and let D(˜G,m) ⊂
L2(˜G,m) be the space of functions f ∈ C0(˜G) such that f|Ie ∈ W 1,2(Ie,m|Ie ) for all
e ∈ E ∪ G and

∑

e∈E∪G
‖ f|Ie‖2W 1,2(Ie,m|Ie )

< ∞,
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where W 1,2(Ie,m|Ie ) denotes the respective Sobolev space on Ie. We now define the
Dirichlet form on L2(˜G,m) (in which D(˜G,m) is densely embedded),

E
˜G( f , g)

def.= 1

2
( f ′, g′)m for all f , g ∈ D(˜G,m). (2.2)

By Theorem 7.2.2. in [15], one associates to each x ∈ ˜G an m-symmetric diffusion
starting in x with state space ˜G∪{�} to theDirichlet form E

˜G .Wedenote by Px (= P
˜G
x )

its law on (W+
˜G ,W+

˜G ) and also define, for any non-negative measure μ on ˜G with
countable support supp(μ), the measures

Pμ
def.=

∑

x∈supp(μ)

μx Px . (2.3)

Note that ζ = inf{t ≥ 0 : Xt = �} is either∞, or the first time X blows up (i.e., X
escapes all d-bounded sets) or gets killed (i.e., exits ˜G through some Ix with κx > 0).
Informally, one can obtain a diffusionwith law Px as follows: first, one runs aBrownian
motion starting at x on Ie, with x ∈ Ie, e ∈ E ∪ G, until a vertex y is reached. Then
one chooses uniformly at random an edge or vertex v among {y}∪{{y, z} : z ∼ y} and
runs a Brownian excursion on Iv until a vertex is reached; this procedure is iterated
until either the process blows up or the open end of the interval Ix is reached for some
x ∈ G, in which case the process is killed at that time. We refer to Sect. 2 of [9] or
[19] for a more formal description of this construction on Z

d , d ≥ 3.
We now briefly review how to take traces of the process X on suitable subsets

F of ˜G. One can show, analogously to Sect. 2 of [19], that the process X under P
˜G
x

allows for a space-time continuous family of local times (�y(t))y∈˜G,t≥0. Therefore,
using that P

˜G
x lives on the canonical space (W+

˜G ,W+
˜G ), for all sets F ⊂ ˜G of the form

F = ⋃e∈F1 I e ∪
⋃

x∈F2{x}, where F1 ⊂ E ∪ G and F2 ⊂ G are arbitrary, we can
define the time change

τ F
t

def.= inf
{

s > 0 :
∫ s

0
1{Xu∈⋃e∈F1 Ie} du +

∑

y∈F2
�y(s) > t

}

for all t ≥ 0 and w+ ∈ W+
˜G .

Here, we use the convention inf ∅ = ζ and denote the trace of X on F by XF =
(Xτ F

t
)t≥0 with the convention X∞ = �, which corresponds to a time changed process

with respect to a positive continuous additive functional (PCAF), see (A.2.36) and
below in [15] for instance. As a first application of this definition, letting

Z
def.= XG (the trace of X on G) (2.4)

it follows from Theorem 6.2.1. in [15] that for all x ∈ G the law of Z under P
˜G
x is that

of the continuous time Markov chain that jumps from x ∈ G to y ∈ G at rate λx,y and
is killed at rate κx . Furthermore, the local times (�y(ζ ))y∈G of X after being killed
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have the same law under P
˜G
x as the total occupation times of that jump process (after

being killed), see for instance (1.97) and (2.80) in [26]. We also denote by (̂Zn)n∈N the
discrete time skeleton of Z , i.e. the sequence of elements of G visited by the process
Z , with the convention that ̂Zn = � for all large enough n if Z gets killed.

2.2 Elements of potential theory on ˜G

Our next goal is to supply workable notions of equilibrium measure and capacity on
˜G, for arbitrary closed (and in particular compact) subsets of ˜G, as necessary in order
to investigate observables like cap(E≥h(x0)) (cf. Theorem 1.1). We first define the
Green function of an open set U ⊂ ˜G by

gU (x, y) = Ex [�y(TU )] for all x, y ∈ ˜G, (2.5)

where Ex denotes expectationwith respect to Px = P
˜G
x and TU = inf{t ≥ 0 : Xt /∈ U }

is the first exit time of U , with the convention inf ∅ = ζ. We simply write g = g
˜G

for the usual Green function on ˜G.

We now introduce the notions of equilibrium measure and capacity on ˜G by
‘enhancements’, see Lemma 2.1 below. This will allow to directly reformulate the
equilibrium problem in a discrete setup and to thereby import the respective standard
versions of these notions on transient graphs, see (2.16), (2.20) and (2.27) below. In
particular, this approach immediately provides several useful identities, e.g. relating
exit distributions for the diffusion X with the corresponding equilibrium measure, cf.
(2.19) and (2.17).

On the (transient) graph (G, λ, κ) associated to G, for all finite A ⊂ G the equilib-
rium measure and capacity of A are defined by

eA,G(x)
def.= λx Px (˜HA(̂Z) = ∞)1A(x) for all x ∈ G, and capG(A)

def.=
∑

x∈A
eA,G(x),

(2.6)

where ˜HA(̂Z)
def.= inf{n ≥ 1, ̂Zn ∈ A}, with inf ∅ = ∞, is the first return time to A

for the discrete time random walk ̂Z on G, cf. below (2.4). The following observation
is key.

Lemma 2.1 (Enhancements). For all countable sets A ⊂ ˜G without accumulation
point in ˜G, there exists a unique graph GA = (GA, λA, κ A) with vertex set GA =
A ∪ G, such that

(with a slight abuse of notation), ˜G is a subset of ˜GA, the cable system of GA; (2.7)

for all x ∈ GA, the laws of the traces XGA = (X
τG

A
t

)t≥0 under P
˜G
x and P

˜GA

x

coincide; (2.8)
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Proof We first introduce the weights λA and the killing measure κ A. For each e =
{x0, x1} ∈ E , let A ∩ Ie = {z1(e), . . . , zn−1(e)}, where n = n(e) ≥ 1 is such that
n − 1 = |A ∩ Ie| and the zk(e)’s are labeled by order of appearance as one traverses
the (open) edge Ie from, say, x0 to x1 (the underlying choice of orientation of e
will not affect the definition of λA, κ A in (2.9) below). For later convenience, we set
z0(e) = x0 and zn(e) = x1, and drop the argument e in the sequel whenever no risk of
confusion arises. Similarly, for x ∈ G, we enumerate A ∩ Ix = {z1(x), . . . , zn−1(x)}
(with n = n(x) ∈ N ∪ {∞} such that n − 1 = |A ∩ Ix | if |A ∩ Ix | < ∞, and n = ∞
otherwise) according to increasing distance from x , and set z0(x) = x . We then define,
for z, z′ ∈ GA = G ∪ A,

λA
z,z′ =

{

1
2ρ
˜G(z,z′) , if {z, z′} = {zk−1(v), zk(v)} for some v ∈ E ∪ G and k ≥ 1,

0, otherwise,

κ A
z =

{

κx
1−2κxρ˜G(x,z) , if x = zn−1(x) for some x ∈ G (with n = n(x) < ∞),

0, otherwise.

(2.9)

Thus, each edge e ∈ E is replaced by a linear chain of n = n(e) edges {zk−1, zk},
1 ≤ k ≤ n, with weights λA

zk−1,zk , and similarly a chain of n(x)− 1 edges is attached

to each x ∈ G, with killing κ A
zn−1(x)

at its ‘dangling’ end. By (2.9) and (1.1), for all
e = {x0, x1} ∈ E and x ∈ G,

n(e)
∑

k=1

ρA
zk−1,zk =

n(e)
∑

k=1

ρ
˜G(zk−1, zk) = ρ

˜G(x0, x1) = ρx0,x1 ,

n(x)
∑

k=1

ρA
zk−1,zk +

1

2κ A
zn(x)−1

=
n(x)
∑

k=1

ρ
˜G(zk−1, zk)+ 1

2κx
− ρ

˜G(x, zn(x)−1)

= ρx , if n(x) < ∞,
∞
∑

k=1

ρA
zk−1,zk =

∞
∑

k=1

ρ
˜G(zk−1, zk) = ρx , if n(x) = ∞. (2.10)

Therefore, ˜G can be identified with the set ˜GA \ I , where ˜GA is the cable system
associated to (GA, λA, κ A) and I = I1 ∪ I2 ∪ I3, where

I1 =
⋃

e∈E

n(e)−1
⋃

k=1

Izk (e), I2 =
⋃

x∈G,n(x)<∞

n(x)−2
⋃

k=1

Izk (x) and I3 =
⋃

x∈G,n(x)=∞

∞
⋃

k=1

Izk (x).

By a similar reasoning as detailed below around (2.31), it then follows that for all
x ∈ ˜G (viewed as a subset of ˜GA), the law of the trace of X on ˜G under P

˜GA

x is P
˜G
x . In

view of (2.4), the claim (2.8) then follows. ��
By slightly adapting the above arguments, one defines the graph (G

M
, λ̄M , κ̄M )

alluded to at the beginning of Sect. 1, see above (1.1), as follows. Given G = (G, λ̄, κ̄),
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possibly with κ̄x = ∞ for some x ∈ G, let

M
def.= {a : midpoint of Ie for some e ∈ Eκ̄} (2.11)

where Eκ̄ = {{x, y} : x, y ∈ G, λ̄x,y > 0, κ̄x = ∞ and κ̄y < ∞} and Ie is an
interval isomorphic to the open interval (0, 1/(2λ̄x,y)) glued at 0 to y, with boundary
{x, y}. Now, by a small extension of Lemma 2.1, one constructs from G = (G, λ̄, κ̄)

the graph

(G, λ, κ)
def.= (G

M
, λ

M
, κM ) with G

M = {x ∈ G : κ̄x < ∞} ∪ M and M as in (2.11),

(2.12)

by treating Ie for e = {x, y} ∈ Eκ̄ with κ̄y < ∞ in the same manner as Iy in (2.9)
(whence λy,a = λ̄M

y,a = 2λ̄y,x , κy = κ̄M
y = 0 and κa = κ̄M

a = 2λ̄y,x for a ∈ M
the midpoint of Ix,y), and keeping the same weights and killing measures for the

other vertices. Plainly, (G
M

, λ
M

, κM ) satisfies κM < ∞. Similarly as below (2.4),
it follows from Theorem 6.2.1. in [15] that the law of the trace of X (under P

˜G
x ) on

{x ∈ G : κ̄x < ∞} is that of the continuous time Markov chain on G that jumps from
x ∈ G to y ∈ G at rate λ̄x,y and is killed at rate κ̄x , hence justifying our choice of
(G, λ, κ) as in (2.12) to define the cable system ˜G. Note also that (G, λ, κ) = G when
κ̄ < ∞ since Eκ̄ = ∅ in that case.

The following remark turns out handy in a couple of instances in this article.

Remark 2.2 (Generating any given cable system from a graph without killing) As an
application of Lemma 2.1, given (G, λ, κ) and the corresponding cable system ˜G, one
can naturally associate ˜G to a triplet (G ′, λ′, κ ′) with κ ′ ≡ 0. To do so, one considers,
for each Ix with κx ∈ (0,∞) a sequence zn(x), n ≥ 0, converging to the open end of
Ix (note that such a sequence does not have an accumulation point in ˜G). Then, with
A = {zn(x) : n ≥ 0, x ∈ G s.t. κx ∈ (0,∞)}, one defines G ′ = GA and λ′ = λA

as given by Lemma 2.1 (note that κ A ≡ 0 by (2.9)). By (2.7), one has that ˜G ⊂ ˜GA

and ˜G is in fact obtained from ˜GA by removing all (unbounded) cables Ix , x ∈ A.
In particular, combining this observation with the isomorphism [25], which holds on
(G ′, λ′), one readily infers that (1.7) holds for ˜G.

We now extend the definition of the equilibrium measure from (2.6) to the cable
graph setting. When K is a compact subset of ˜G, we define its exterior boundary

̂∂K = {x ∈ K : Px
(

XLK = x, LK > 0
)

> 0
}

, (2.13)

where LK = sup{t > 0 : Xt ∈ K } is the last exit time of K , with the convention
sup∅ = 0. Note that̂∂K is finite since K is bounded and Ie contains at most two
points of̂∂K for all e ∈ E ∪ G. Consider now any sets K , ̂K , A ⊂ ˜G such that

K is compact, ̂K finite, A has no accumulation point and̂∂K ⊂ ̂K ⊂ (K ∩ GA).

(2.14)
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For all x, y ∈ A, by (2.8) as well as (1.56) in [26] (and its straightforward adaptation to
infinite transient weighted graphs; this also applies to subsequent references to [26])
applied to the graph GA, noting that L

̂K = LK a.s. and {L
̂K > 0, XL

̂K
= x} =

{L
̂K ,A > 0, XGA

L
−
̂K ,A

= x} where L
̂K ,A is the last exit time of ̂K for XGA

, the trace of

X on GA, and XGA

L
−
̂K ,A

is the last vertex of ̂K visited by XGA
before time L

̂K ,A,

P
˜G
y (LK > 0, XLK = x) = g(y, x)e

̂K ,GA (x). (2.15)

We now define the equilibrium measure of K in ˜G by

eK ,˜G(x)
def.= ê

∂K ,Ĝ∂K (x)1{x∈̂∂K }, (2.16)

with Ĝ∂K as supplied by Lemma 2.1 and the (discrete) equilibrium measure on the
right-hand side as defined in (2.6). For K , ̂K and A as in (2.14), we then have that

e
̂K ,GA (x) = eK ,˜G(x) for all x ∈ A. (2.17)

Indeed, (2.17) follows from (2.15) when x ∈̂∂K , and both terms of (2.17) are equal
to 0 when x ∈ A \̂∂K by (2.15) and (2.16). In particular if K ⊂ G, by (2.17) with
̂K = K and A = ∅, the definition (2.16) of the equilibrium measure on the cable
system coincides with the definition of the equilibriummeasure from (2.6). Moreover,
(2.17) can be used to obtain a description of the equilibrium measure purely in terms
of the diffusion X , instead of using the equilibrium measure on the discrete graph
Ĝ∂K as in (2.16). Indeed, denoting by Bρ(x, ε) the ball centered at x ∈ ˜G with radius
ε ≥ 0 for the distance ρ introduced above Sect. 2.1, which is well defined for small
enough ε, one has

eK ,˜G(x) = lim
ε→0

dx
2ε

Px (LK < H∂Bρ(x,ε)) for all x ∈̂∂K , (2.18)

where dx is the degree of x if x ∈ G, and dx = 2 otherwise. In order to prove (2.18),
one uses (2.17) with A = ∂Bρ(x, ε) ∪̂∂K and ̂K = A ∩ K , and (2.6), noting that

λA
x = dx/(2ε) by (2.9) and that ˜HK (XGA

) = ∞ if and only if LK < H∂Bρ(x,ε) for
ε small enough. Actually, the equality (2.18) thus still holds when removing the limit
as ε → 0, for small enough ε. Moreover, we obtain from (2.15) and (2.17) that

P
˜G
y (LK > 0, XLK = x) = g(y, x)eK ,˜G(x), for all x, y ∈ ˜G. (2.19)

The identity (2.19) is reminiscent of the equilibrium measure for the usual Brownian
motion (on R

d , with suitable killing when d = 1, 2), see for instance Proposition 3.3
in [23]. In fact, (2.19) (or (2.18)) could be used instead of (2.17) as defining eK ,˜G(·).
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The capacity of a compact set K ⊂ ˜G is defined as the total mass of the equilibrium
measure,

cap
˜G(K )

def.=
∑

x∈̂∂K
eK ,˜G(x). (2.20)

When there is no risk of ambiguity, we will simply write eK , cap(K ) instead of eK ,˜G ,
cap

˜G(K ).
Using (2.8), (2.16), and (2.17), we can now extend a variety of useful results on

equilibrium measures from the discrete case to ˜G. By (an adaptation of) [26, (1.57)],
one easily shows the following characterization of the capacity in terms of a variational
problem as

cap(K ) =
(

inf
μ

∑

x,y∈̂K
g(x, y)μ(x)μ(y)

)−1
, (2.21)

for K , ̂K ⊂ ˜G as in (2.14) with A = ̂K , where the infimum is over all probability
measures μ on ̂K , see e.g. Proposition 1.9 in [26]. In view of (2.17), when K ⊂ K ′
are two compacts of ˜G, using (1.59) in [26], one obtains the ‘sweeping identity’

PeK ′ (XHK = x, HK < ζ) = eK (x) for all x ∈ ˜G, (2.22)

where HK = inf{t ≥ 0 : Xt ∈ K }, with the convention inf ∅ = ζ. In particular,
summing (2.22) over x ∈ ∂K yields the monotonicity property

cap(K ) ≤ cap(K ′), for K ⊂ K ′ compacts of ˜G. (2.23)

Wenowproceed to extend the notion of capacity to closed (not necessarily bounded)
sets with finitely many components, cf. (2.26) below, which will turn out helpful in
the proof of Lemma 4.6 below. For any measurable function f : ˜G → R and K a
compact subset of ˜G, the harmonic extension η

f
K of f on K is defined as

η
f
K (x)

def.=
∑

y∈∂K

Px (XHK = y, HK < ζ) f (y) for all x ∈ ˜G. (2.24)

Note that the sum in (2.24) is well defined since for each x ∈ ˜G the set ∂x K
def.=

{y ∈ ∂K : Px (XHK = y, HK < ζ) > 0} contains at most two points per edge of ˜G
intersecting K , and hence is finite. In the sequel, a decreasing sequence of compacts
(Kn)n∈N is said to decrease to a compact K if K = ⋂n∈N

Kn . Moreover, in a slight
abuse of notation, we say that an increasing sequence of compacts (Kn)n∈N increases
to a compact K if K is the closure of

⋃

n∈N
Kn (later on, this notion permits to assert

for instance that if E≥h(x0) is compact, cf. (1.4), the clusters E≥h′(x0) increase to
E≥h(x0) as h′ ↘ h). The following convergence result for harmonic extensions will
be useful.
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Lemma 2.3 Let f : ˜G → R be a continuous function and Kn, n ∈ N, as well as K
be compact subsets of ˜G such that (Kn)n∈N increases or decreases to K . Then for all
x ∈ ˜G,

η
f
Kn

(x) −→
n→∞ η

f
K (x). (2.25)

Proof Fix some x ∈ ˜G. For all y ∈ ∂x K , let Ay
n = {z ∈ ∂x Kn : d(z, y) ≤

d(z, y′) for all y′ ∈ ∂x K }. Then maxz∈Ay
n
d(z, y) −→

n→∞ 0 for all y ∈ ∂x K , and there

exists an integer N such that for all n ≥ N , the set (Ay
n)y∈∂x K is a partition of ∂x Kn .

By (2.24), for all x ∈ ˜G and n ≥ N ,

η
f
K (x)− η

f
Kn

(x) =
∑

y∈∂x K

(

Px (XHK = y, HK < ζ) f (y)

−
∑

z∈Ay
n

Px (XHKn
= z, HKn < ζ) f (z)

)

.

By continuity, for any ε > 0 there exists N ′ ≥ N such that for all n ≥ N ′, y ∈ ∂x K
and z ∈ Ay

n we have | f (y)− f (z)| ≤ ε. Therefore, for all x ∈ ˜G and n ≥ N ′,

|η f
K (x)− η

f
Kn

(x)| ≤ ε +
∑

y∈∂x K

| f (y)| · ∣∣Px (XHK = y, HK < ζ)

−Px (XHKn
∈ Ay

n, HKn < ζ)
∣

∣.

Since for all x ∈ ˜G and y ∈ ∂x K the absolute value of the difference on the right-hand
side is bounded by

Px (XHK = y, XHKn
/∈ Ay

n, HK < ζ, HKn < ζ)+ Px (HK < ζ, HKn = ζ )

+ Px (XHK 	= y, XHKn
∈ Ay

n, HK < ζ, HKn < ζ)+ Px (HK = ζ, HKn < ζ)

and each of these terms tends to 0 as n →∞, (2.25) follows as f is uniformly bounded
on compacts. ��
An interesting and immediate consequence of Lemma 2.3 and (2.22) is the following:
if Kn , n ∈ N, and K are compacts of ˜G such that (Kn)n∈N increases or decreases
to K , consider the quantity

∑

x∈∂K eK (x)η1Kn
(x) in case the Kn are increasing and

∑

x∈∂K eK1(x)η
1
Kn

(x) in case the Kn are decreasing, respectively (which both equal
cap(Kn) by virtue of (2.22)). We can then take n → ∞ while applying (2.25) with
f = 1 to obtain that

lim
n→∞ cap(Kn) = cap(K ). (2.26)

Hence, we can extend the definition of the capacity to any closed set A ⊂ ˜G by setting

cap(A) = lim
n→∞ cap(A ∩ Kn), (2.27)
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where (Kn)n∈N is any increasing sequence of compacts of ˜G exhausting ˜G. This limit
exists and does not depend on the choice of the sequence (Kn)n∈N by (2.23), and it is
consistent with the existing definition of capacity for compacts, cf. (2.20), by means
of (2.26).

2.3 Varying killingmeasure and the cables Ix

In the sequel, it will repeatedly be useful to compare the diffusion X on ˜G for varying
killing measure. In particular, this comprises ‘infinite-volume’ limits, in which all but
finitely many x ∈ G initially satisfy κ̄x = ∞, and κ̄ is sequentially reduced, see (4.10)
below. Consider the family of graphs (Gκ̄ )κ̄ , where Gκ̄ = (G, λ̄, κ̄), for fixed G and
λ̄ and varying killing measure κ̄ ∈ [0,∞]G . Let ˜Gκ̄ be the cable system associated to
Gκ̄ (cf. below (1.1)). In view of (2.11), (2.12), one can interpret

˜Gκ̄ ′ ⊂ ˜Gκ̄ if κ̄ ′ ≥ κ̄, (2.28)

where κ̄ ′ ≥ κ̄ means κ̄ ′x ≥ κ̄x for all x ∈ G. We then set, under P
˜Gκ̄
x , x ∈ ˜Gκ̄ ′(⊂ ˜Gκ̄ ),

X κ̄ ′
t =

{

Xt , if t < ζκ̄ ′

�, if t ≥ ζκ̄ ′
where ζκ̄ ′ = inf{t ≥ 0 : Xt /∈ ˜Gκ̄ ′ }. (2.29)

By Theorem 4.4.2. in [15], the Dirichlet form associated to X κ̄ ′
t is E

˜Gκ̄′ , and so

the law of X κ̄ ′
t under P

˜Gκ̄
x is P

˜Gκ̄′
x for all x ∈ ˜G

κ̄
′ . (2.30)

We now briefly compare the above setup to existing definitions of the metric graph
˜G and its associated diffusion X , which do not usually involve attaching cables Ix to the
vertices x ∈ G (see e.g. Section 5 of [4], Section 2 of [14] or Section 2 of [19]). Upon
considering a suitable trace process in the present context, see (2.31) below, these two
descriptions are essentially equivalent and in particular, they lead to the same notion
of capacity for most sets of interest. Most important to our investigations is the feature
that the cables Ix provide natural embeddings as κ varies, see (2.28)–(2.29) above.
This will be useful for approximation purposes, see (4.10) and Lemmas 4.6 and 6.3
below, as well as to derive (Lawh) and (Isom) in the case κ 	= 0. We define ˜G− as the
closed subset of ˜G consisting of the closure of the union of the intervals Ie, e ∈ E , (or,
in other words, the subset of ˜G obtained upon removing the intervals Ix , x ∈ G) and
denote by X

˜G− the trace on ˜G− of X . One can prove by Theorem 6.2.1. in [15] that
the Dirichlet form on L2−(˜G−,m|˜G−) = { f ∈ L2(˜G−,m|˜G−) :∑x∈G κx f (x)2 < ∞}
associated to X

˜G− is

E
˜G−( f , g)

def.= 1

2
( f ′, g′)m|˜G− +

∑

x∈G
κx f (x)g(x)

for f , g ∈ D(˜G−,m|˜G−) ∩ L2−(˜G−,m|˜G−), (2.31)
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where we recall that the space D had been introduced below (2.1). If κ ≡ 0 on G, the
process X

˜G− thus corresponds to the usual diffusion on the cable system ˜G−. If κ ≥ 0
on G (i.e. ˜G = ˜Gκ ), it follows from Theorems 6.1.1. and A.2.11. in [15] that X

˜G− has

the same law under P
˜G
x as the diffusion X

˜G−0 under P
˜G0
x (where ˜G0 = ˜Gκ≡0) killed at

time ζ−κ = inf{t < ζ0 : ∑x∈G �x (t)κx ≥ ξ}, where ξ is an independent exponential
variable with parameter 1 (with the convention inf ∅ = ζ0). The latter is the process
studied e.g. in Section 2 of [19]. Moreover, the trace of X

˜G− (under P
˜G
x ) on G has the

same law as Z , hence the local times (�y(t))y∈˜G−,t≥0 have the same law under P
˜G
x

as those of the process X
˜G−0 (killed at time ζ−κ ) under P

˜G0
x , i.e. the local times of the

process introduced in [19].
Consequently, for compact K ⊂ ˜G− one could have defined a notion cap

˜G−(K )

similarly as in (2.16) and (2.20), but starting from the process X
˜G− and considering

suitable enhancements of ˜G−, resulting in cap
˜G−(K ) = cap

˜G(K ) for all K ⊂ ˜G−.
This can be further strengthened when κ ≡ 0, as asserted in the following lemma,
which records the capacity of the cables Ix for later purposes.

Lemma 2.4 For all x ∈ G, the following dichotomy holds:

if κx > 0, then cap(I x ) = ∞, and if κx = 0, then cap(I x ) = cap({x}). (2.32)

Moreover, if κ ≡ 0, then for all connected and closed sets A ⊂ ˜G such that A∩˜G− 	=
∅, one has cap

˜G(A) = cap
˜G−(A ∩ ˜G−).

Proof We first show (2.32). If κx > 0, then for all t ∈ (0, ρx ), writing yt = x+ (ρx −
t) · Ix (see the beginning of Sect. 2 for notation), we see by (2.9) that κ{yt }yt = 1

2t . Let

I tx = {x + s · Ix : 0 ≤ s ≤ ρx − t}. Then by (2.16) eI tx (yt ) = λ
{yt }
yt PG{yt }

yt (˜H{x,yt } =
∞) = κ

{yt }
yt , and so we see that cap(I tx ) ≥ eI tx (yt ) = 1

2t . Hence, by (2.27), we obtain

cap(I x ) = ∞ as t ↓ 0.
If κx = 0, then keeping the same notation, we have for all t ∈ (0,∞) that

PG{yt }
yt (˜HI tx = ∞) = 0, since X behaves like a Brownian motion on Ix and hence

always return to I tx in finite time. Moreover PG{yt }
x (˜HI tx = ∞) = PG{yt }

x (˜H{x} = ∞).

Therefore by (2.16), we get cap(I tx ) = eI tx (x)+0 = e{x}(x) = cap({x}), and by (2.27)
we obtain that cap(I x ) = cap({x}).

Suppose now that κ ≡ 0, and let K ⊂ ˜G be a connected and compact set such
that K ∩ ˜G− 	= ∅. Then since X cannot be killed via Ix for all x ∈ G, we have
̂∂(K ∩ ˜G−) =̂∂K and for all x ∈̂∂K

eK∩˜G−(x) = λ
̂∂K
x P

˜Ĝ∂K
x (˜HK∩˜G− = ∞) = λ

̂∂K
x P

˜Ĝ∂K
x (˜HK = ∞) = eK (x),

from which the claim follows for such K , and for arbitrary closed connected sets by
means of (2.27). ��
Remark 2.5 The second part of Lemma 2.5 implies that, when κ ≡ 0, one can
consider ˜G− instead of ˜G and all our results, for instance (Isom) or (Lawh) for
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cap
˜G−(E≥h− (x0)) instead of cap

˜G(E≥h(x0)), hold under the same conditions, where

E≥h− (x0) = E≥h(x0) ∩ ˜G− is the connected component of x0 in {x ∈ ˜G− : ϕx ≥ h}.
Note that this is not true anymore when κ 	≡ 0. Indeed for instance one has by (2.32)
that cap

˜G(I x ) = ∞, yet, cap
˜G−(I x ∩ ˜G−) = capG({x}) ≤ λx < ∞. Therefore,

one cannot simply replace cap
˜G(E≥h(x0)) by cap˜G−(E≥h− (x0)) in (Lawh), and, when

considering ˜G− instead of ˜G, one has to change the isomorphism (Isom) to take into
account the influence of the trajectories in the random interlacement process entirely
included in one of the cables Ix , x ∈ G with κx > 0, possibly hitting the sign clusters,
see Remark 3.10,4) for details.

2.4 The Gaussian free field

We now collect a few important properties of the Gaussian free field (ϕx )x∈˜G on the
cable system ˜G defined in (1.3). We first recall its strong spatial Markov property and
refer to Section 1 of [27] for details. For any open setO ⊂ ˜G,weconsider theσ -algebra
AO = σ(ϕx , x ∈ O), and for any compact K ⊂ ˜G we define A+

K = ⋂

ε>0 AK ε ,
where K ε is the open ε-ball around K for the distance d.We say thatK is a compatible
random compact subset of ˜G ifK is a compact subset of ˜G with finitelymany connected
components and {K ⊂ O} ∈ AO for any open set O ⊂ ˜G. We then define

A+
K = {A ∈ A

˜G : A ∩ {K ⊂ K } ∈ A+
K for all K ⊂ ˜G which are compact

and the closure of their respective interiors
}

.

(2.33)

The Markov property now states that for any compatible random compact K,

conditionally on A+
K, (ϕx )x∈˜G is a Gaussian field with mean η

ϕ

K and covariance gKc ,

(2.34)

where η
ϕ

K was defined in (2.24) and gKc in (2.5). An application of the Markov
property is that, conditionally on (ϕx )x∈G, if e = {y, z} ∈ E, the law of (ϕx )x∈Ie ,
is that of a Brownian bridge of length ρe between ϕy and ϕz of a Brownian motion
with variance 2 at time 1, and these Brownian bridges are independent as e varies.
Similarly, conditionally on (ϕx )x∈G , one can describe the law of (ϕx )x∈Iy , as that of a
Brownian bridge of length ρy between ϕy and 0 of a Brownian motion with variance
2 at time 1 if κy > 0, and as that of a Brownian motion starting in ϕy with variance
2 at time 1 if κy = 0, and all these Brownian bridges and Brownian motions are
independent. We refer to Sect. 2 of [9] for a proof of this result on Z

d , d ≥ 3, which
can easily be adapted to any transient graph. In particular, we have that

conditionally on (ϕx )x∈G , the random fields (ϕx )x∈Ie , e ∈ E ∪ G, are
independent, and for all e ∈ E ∪ G, the field (ϕx )x∈Ie only depends on ϕ|e,

(2.35)
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where ϕ|e = (ϕx , ϕy) if e = {x, y} ∈ E and ϕ|e = ϕx if e = x ∈ G. Moreover, using
the exact formula for the distribution of the maximum of a Brownian bridge, see e.g.
[3], Chapter IV.26, one knows that for all e ∈ E ∪ G

P
G(|ϕz | > 0 for all z ∈ Ie |ϕ|e) =

(

1− pGe (ϕ)
)

1e∈E , (2.36)

where for all e = {x, y} ∈ E and f : G → R,

pGe ( f )
def.= pGe ( f , 0) =

{

exp
(− 2λx,y f (x) f (y)

)

, if f (x) f (y) ≥ 0,

1, otherwise.
(2.37)

A useful notation pGe ( f , g) will later be introduced and include (2.37) as a special
case when g = 0, see (3.12) below.

2.5 Random interlacements

We now briefly introduce random interlacements on the cable system ˜G. We define
the set of doubly infinite trajectories W

˜G as the set of functions w : R → ˜G ∪�, for
which there exist −∞ ≤ ζ− < ζ+ ≤ ∞ such that w|(ζ−,ζ+) ∈ C((ζ−, ζ+), ˜G) and
w(t) = � for all t /∈ (ζ−, ζ+). For each w ∈ W

˜G, we also define p∗̃G(w) = p∗(w)

as the equivalence class of w modulo time shift; here, w and w′ are equal modulo
time shift if there exists t0 ∈ R such that w(t + t0) = w(t) for all t ∈ R, and
W ∗̃

G = {p∗(w) : w ∈ W
˜G}. Let W˜G be the σ -algebra on W

˜G generated by the

coordinate functions, and W ∗̃
G = {A ⊂ W ∗̃

G : (p∗)−1(A) ∈ W
˜G}. For each compact

K of ˜G, we denote by W 0
K ,˜G the set of trajectories w ∈ W

˜G with HK (w) = 0,

where HK (w) = inf{t ∈ R : w(t) ∈ K }, with the convention inf ∅ = ζ+, and
W ∗

K ,˜G = {w∗ ∈ W ∗̃
G : (p∗)−1(w∗) ∩ W 0

K ,˜G 	= ∅}. For w ∈ W
˜G, we define the

forward part of w as (w(t))t≥0 and the backward part of w as (w(−t))t≥0, which
are both elements of W+

˜G , see above (2.1). For w∗ ∈ W ∗
K ,˜G we define the forward

(resp. backward) part of w∗ on hitting K as the forward (resp. backward) part of the
unique trajectory in (p∗)−1({w∗}) ∩W 0

K ,˜G .

The intensitymeasure underlying random interlacements on ˜G is defined as follows.

For a set A ∈ W
˜G we write A± def.= {(w(±t))t≥0 : w ∈ A}, whence A+, A− ∈ W+

˜G .

The set of all A ∈ W
˜G with A ⊂ W 0

K ,˜G, such that A is equal to the set of w ∈ W 0
K ,˜G

whose forward part is in A+ and whose backward part is in A−, is denoted byW0
K ,˜G .

We then observe thatW0
K ,˜G and {A ∈W

˜G : W 0
K ,˜G ∩ A = ∅} generateW

˜G . Recalling

the definition of the last exit time LK and the exterior boundarŷ∂K from (2.13) and
below, for all x ∈̂∂K let

PK ,˜G
x ≡ PK

x be the law of (Xt+LK )t≥0 under Px (· | LK > 0, XLK = x). (2.38)
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We now define a measure QK ,˜G on W
˜G, whose restriction toW0

K ,˜G is given by

QK ,˜G(A) =
∑

x∈̂∂K
eK (x)P

˜G
x (X ∈ A+)PK ,˜G

x (X ∈ A−), A ∈W0
K ,˜G, (2.39)

and such that QK ,˜G(A) = 0 for all A ∈ W
˜G with A ∩ W 0

K ,˜G = ∅. It is essentially

folklore by now that there exists a uniquemeasure ν
˜G onW ∗̃

G, such that for all compacts

K ⊂ ˜G,

ν
˜G(A∗) = QK ,˜G

(

(p∗)−1(A∗)
)

for all A∗ ∈W ∗̃
G, A∗ ⊂ W ∗

K ,˜G . (2.40)

We will not give a proof of the existence of the measure ν
˜G; instead, we refer to [28]

for a proof of the existence of such a measure on the discrete graph G when κ ≡ 0,
and to [19] for the setting of the cable system associated toZ

d , d ≥ 3. Indeed, one can
easily adapt these proofs to obtain a measure ν

˜G such that (2.40) holds for all compacts
K of ˜G witĥ∂K ⊂ G, also in the case κ 	≡ 0 (see also Remark 2.2). Considering
now the case of arbitrary compact subsets K of ˜G, one can thus construct a measure
ν
˜Ĝ∂K such that (2.40) holds for ν

˜Ĝ∂K and K . Using the fact that P
˜G
x is the law of the

trace of X on ˜G under P
˜Ĝ∂K
x , one easily deduces that ν

˜G is the ‘trace on ˜G’ of ν
˜Ĝ∂K ,

so that (2.40) also holds for ν
˜G and K . Alternatively, a direct proof of (2.40) on the

cable system is also presented in Theorem 3.2 of [22].
The random interlacement process ω is a Poisson point process on W ∗̃

G × (0,∞)

under the probability P
I
˜G with intensity measure ν

˜G ⊗ λ, where λ is the Lebesgue
measure on (0,∞). When κ 	≡ 0, the forward and backward parts of the trajectories
can be killed before blowing up; in our setup this is realized by either part of the
trajectory exiting ˜G to � via Ix for some x ∈ G with κx > 0. We also denote by
ωu the point process which consist of the trajectories in ω with label less than u,

by (�x,u)x∈˜G the continuous field of local times relative to m on ˜G of ωu and by
Iu = {x ∈ ˜G : �x,u > 0} the interlacement set at level u. The set Iu is characterized
by the following identity: for any measurable set A ⊂ ˜G,

P
I
˜G(Iu ∩ A = ∅) = exp

(−u cap(A)
)

(2.41)

(note that the set Iu is open, so it intersects A if and only if it intersects A). The trace
ω̂u of ωu on G has the same law under P

I
˜G as the usual discrete random interlacement

process, see [28] in the case κ ≡ 0. If κ 	≡ 0, a trajectory in ω̂u can start or end at
a fixed point x ∈ G, and in this case we say that this trajectory is killed at x . We
also define Iu

E ⊂ E ∪ G to be the set of edges in E crossed by at least one single
trajectory in ω̂u, union with the set of vertices at which a trajectory in ω̂u is killed.
In the case λx,y = T

T+1 for all x, y ∈ E and κx = deg(x)
T+1 for all x ∈ G, T > 0,

the discrete random interlacement process ω̂u corresponds to the model of ‘finitary
random interlacements’ studied in [5]. In view of Remark 2.2, this actually fits within
the framework of [28] upon suitable enhancement of G.
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The law of ωu can also be described as follows: for any compact K of ˜G, the law of
the forward trajectories in ωu hitting K is a Poisson point process with intensity uP

˜G
eK

which can be constructed from a Poisson point process of discrete trajectories with

intensity uP
˜Ĝ∂K
eK (̂Z ∈ ·) by adding Brownian excursions on the edges. Hence, ωu can

be constructed from ω̂u by adding independent Brownian excursion on the edges, see
[19] for details. In particular,

conditionally on ω̂u, the random variables (�x,u)x∈Ie , e ∈ E ∪ G, are
independent, and for all e ∈ E ∪ G, (�x,u)x∈Ie only depends on ω̂u,e,

(2.42)

where ω̂u,e is the set of trajectories in ω̂u hitting e. When there is no risk of ambiguity,
we abbreviate P

I = P
I
˜G, and ν = ν

˜G .

3 Main results

In this section, we state our main results, Theorems 3.2, 3.7 and 3.9, and explore their
consequences. Put together, these results in particular imply Theorem 1.1, see the
end of this section for the short proof, but in fact they provide more detailed results.
Theorem3.2, togetherwith itsCorollary 3.3, roughly corresponds to 1) inTheorem1.1.
Theorem3.7 investigates the properties of the cluster capacity observable. In particular,
it establishes that, when bounded almost surely, the cluster E≥h(x0) has a capacity
described by (Lawh). Theorem 3.9 then broadly speaking relates (Lawh)h≥0 and the
identity (Isom) between random interlacements and the Gaussian free field on ˜G. In
doing so, it also supplies new instances of (Isom), see Remark 3.10,1), along with
a version on the discrete base graph G, see (3.16). Finally, some further interesting
consequences are put together in Corollaries 3.11 and 3.12 .

We now lay the ground for our first main result, Theorem 3.2. Its true meaning
becomes transparent upon defining, next to˜h∗ (see (1.6)) two further critical parame-
ters. As will soon become clear, the conditions κ ≡ 0 or (Cap) appearing in Theorem
3.2 will cause various of these parameters to coincide, leading to streamlined results.
We first introduce

˜hcom∗ = inf
{

h ∈ R : for all x0 ∈ ˜G, P
G(E≥h(x0) is non-compact) = 0

}

(3.1)

(recall that compactness is with respect to the graph distance d). Every compact set
is (d-)bounded, so we always have˜hcom∗ ≥˜h∗. The third critical parameter, involving
the capacity of clusters in E≥h, is

˜hcap∗ = inf
{

h ∈ R : for all x0 ∈ ˜G, P
G(cap(E≥h(x0)) = ∞) = 0

}

, (3.2)

see (2.27) for the definition of capacity in this context. Note that (3.2) is well-defined
due to the monotonicity of cap(·), see (2.23), which extends to arbitrary closed sets
on account of (2.27). Every compact set has finite capacity, so˜hcom∗ ≥ ˜hcap∗ , and we
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therefore have that

on any transient graph,˜hcom∗ ≥˜hcap∗ and˜hcom∗ ≥˜h∗. (3.3)

On any graph such that κ ≡ 0 or (Cap) is verified, the situation becomes simpler, due
to the following basic result. Its proof can be omitted at first reading.

Lemma 3.1 (h ∈ R, x0 ∈ ˜G).
P
G-a.s., if either h ≥ 0, cap(E≥h(x0)) < ∞ or κ ≡ 0 on G, then E≥h(x0) is compact

if and only if it is bounded.

Proof Observe that by definition, a connected set K is compact if and only if it is
a closed and bounded subset of ˜G such that Ix ∩ K is a connected compact subset
of Ix for all x ∈ G. Therefore, if the level set E≥h(x0) of x0 is compact, then it is
bounded. Hence, we only have to show the reverse implication, and we assume from
now on that E≥h(x0) is bounded. First note that, as explained below (2.34), if κx = 0,
since ϕ on Ix conditioned on ϕx has the same law as a Brownian motion starting
in ϕx with variance 2 at time 1, we have that Ix ∩ E≥h(x0) is P

G -a.s. a connected
compact of Ix . Therefore E≥h(x0) is a.s. compact if κ ≡ 0. If κx > 0 we have by
(2.32) applied to the graph G{x+t ·Ix } (cf. Lemma 2.1 for notation) that cap(I tx ) = ∞,
where I tx = {x + s · Ix : t ≤ s < ρx }. If cap(E≥h(x0)) < ∞, by (2.23) we obtain
I tx 	⊂ E≥h(x0), that is Ix ∩ E≥h(x0) is a connected compact of Ix , and so E≥h(x0)
is compact. Finally, if κx > 0 and h ≥ 0, as explained below (2.34), since ϕ on Ix
conditioned on ϕx has the same law as a Brownian bridge of finite length between ϕx

and 0 of a Brownian motion with variance 2 at time 1, Ix ∩E≥h(x0) is a.s. a connected
compact of Ix , and so E≥h(x0) is a.s. compact. ��

Lemma 3.1 has two immediate consequences. On the one hand, in view of (1.6),
(3.1) and by (3.3), Lemma 3.1 (applied in the case κ ≡ 0) yields that

if G is a transient graph with κ ≡ 0, then˜hcom∗ =˜h∗ ≥˜hcap∗ . (3.4)

We refer to Remark 8.2,3) in [22] for an example of a graph for which the inequality in
(3.4) is strict. On the other hand, if condition (Cap) is fulfilled, then every connected
closed set with finite capacity is bounded, and so ˜hcap∗ ≥ ˜h∗ by (1.6) and (3.2). But
by Lemma 3.1, for all x0 ∈ ˜G, if cap(E≥h(x0)) < ∞, then E≥h(x0) is also compact,
and so˜hcap∗ ≥˜hcom∗ . Thus, we obtain that

if G is a transient graph verifying (Cap) then,˜hcom∗ =˜hcap∗ ≥˜h∗. (3.5)

In particular, if G satisfies (Cap) and κ ≡ 0, then from (3.5) and (3.4) it is clear
that the three critical parameters ˜hcom∗ , ˜h∗ and ˜hcap∗ coincide; hence, in this case, in
order to prove that they are equal to zero, it is sufficient to show that one of them is
non-negative while another one is non-positive. Our first main result provides such a
statement, without any further assumption on G (recall our setup from above (1.1)).

Theorem 3.2 Let G be a transient weighted graph. For each x0 ∈ ˜G and h ≥ 0, the
random variable cap(E≥h(x0)) is P

G-a.s. finite, and for each h < 0 the level set
E≥h(x0) of x0 is non-compact with positive probability.
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The proof of Theorem 3.2 appears over the next two sections. Note that the fact that
E≥h(x0) is non-compact with positive probability for all h < 0 could alternatively be
obtained from the Markov property (2.34) similarly as in [6], see also the Appendix
of [1] for details, or from the isomorphism (1.7), see (1.8) and above. Here, we will
obtain it as a direct consequence of our methods. In particular, Theorem 3.2 implies
˜hcap∗ ≤ 0 and˜hcom∗ ≥ 0. Thus, together with Lemma 3.1, (3.4) and (3.5), Theorem 3.2
has the following immediate

Corollary 3.3 Let G be a transient weighted graph.

(1) If G satisfies (Cap), then (Sign) holds and˜hcom∗ =˜hcap∗ = 0 (≥˜h∗).
(2) If κ ≡ 0, then for each h < 0, the level set E≥h(x0) of x0 is unbounded with

positive probability; hence (˜hcom∗ =)˜h∗ ≥ 0.

Therefore, if G satisfies (Cap) and κ ≡ 0, then˜h∗ =˜hcom∗ =˜hcap∗ = 0.

Notice that Theorem 3.2 and Corollary 3.3 immediately imply item 1) of Theo-
rem 1.1. We now comment on Theorem 3.2 and Corollary 3.3, and first elaborate
on the condition (Cap), which is central in obtaining ˜h∗ = 0. Further comments on
Theorem 3.2 and Corollary 3.3 are collected below in Remark 3.5.

The following lemma supplies a large class of graphs for which (Cap) holds. In
particular, by means of this lemma, Corollary 3.3 generalizes all previously known
results about ˜h∗ = 0 (see below Theorem 1.1 for a list). We highlight item 2) of
Lemma 3.4, comprising the condition (3.7) which is sufficient for (Cap) but stated
only in terms of the Green function on G, and thus can be easier to verify. It implies
for instance that any vertex-transitive graph verifies (Cap). Part 3) below accounts for
the trees studied in [1] and shows that Proposition 2.2 in [1] can be seen as direct
consequence of Corollary 3.3,1); see also the discussion following Theorem 1.1.

Lemma 3.4 (Criteria for (Cap)).

(1) Condition (Cap) holds true if and only if

cap(A) = ∞ for all infinite and connected sets A ⊂ G. (3.6)

(2) If

there exists g0 < ∞ such that {x ∈ G : g(x, x) > g0}
has no unbounded connected component

(3.7)

then condition (Cap) is verified for G. In particular, if G is vertex-transitive, (Cap)
holds.

(3) Let T be a transient tree with zero killing measure and unit weights and denote by
R∞x the effective resistance between x and∞ in Tx , the sub-tree of T consisting
only of x and its descendents (relative to a base point x0 ∈ T). If {x ∈ T :
R∞x > A} only has bounded connected components for some A > 0, then (Cap)
is verified.

Lemma 3.4 is proved in Appendix A.We proceed tomake further comments around
Theorem 3.2, Corollary 3.3 and Lemma 3.4.
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Remark 3.5 (1) In order to develop an intuition for the results of Theorem 3.2 and
Corollary 3.3, consider the case where G is a finite transient graph. Recall that for
x ∈ G such that κx > 0 (such x necessarily exists when G is finite and transient)
the field ϕ on Ix , conditionally on ϕx , has the same law as a Brownian bridge
of length ρx < ∞ between ϕx and 0 of a Brownian motion with variance 2 at
time 1, see the discussion below (2.34). Therefore, for all h < 0, we have that
P
G(ϕy ≥ h for all y ∈ Ix ) > 0, and since Ix is non-compact, we obtain˜hcom∗ ≥ 0.

Now similarly if h ≥ 0, then P
G(ϕy ≥ h for all y ∈ Ix ) = 0 for all x ∈ G, and

since G is finite, it follows that ˜hcom∗ ≤ 0. Since (Cap) is trivially verified on
finite graphs, we thus have by (3.5) that ˜hcom∗ = ˜hcap∗ = 0. Note, however, that
trivially˜h∗ = −∞ since there are no unbounded sets on finite graphs, and so the
inequality in (3.5) can be strict. In fact, the situation 0 =˜hcom∗ =˜hcap∗ >˜h∗ ≥ −∞
is emblematic of graphs with sub-exponential volume growth and (say) a uniform
killing measure, and one typically has both strict inequalities 0 >˜h∗ > −∞when
G is infinite, see Corollary 5.2 and Remark 5.7,2) in [22].

(2) We refer to Proposition 8.1 in [22] for an example of a graph for which (Cap) is
not satisfied, and˜hcap∗ ≤ 0 (necessarily by Theorem 3.2) yet˜hcom∗ =˜h∗ = ∞ – in
particular, this is a further example where the critical parameters do not coincide.

(3) We now construct an example of a graph not fulfilling (Cap), but for which we
still have ˜h∗ = ˜hcap∗ = ˜hcom∗ = 0 (and therefore, as will turn out, (Sign) holds,
cf. Corollary 3.12 below, or the first equivalence in Theorem 1.1,2)). Consider a
graph G with κ ≡ 0 except possibly at x ∈ G, where κx ∈ [0,∞). Let A ⊂ Ix be
an infinite sequence converging towards the open end of Ix , and, simultaneously
interpreting A as the set given by the values of A, consider GA the graph given

by Lemma 2.1. If G def.= Z
3 with unit weights and κ ≡ 0, then noting that (˜GA) \

⋃

x∈A Ix can be identifiedwith˜G (see (2.7) and below (2.10)), it readily follows that
˜h∗ = ˜hcap∗ = ˜hcom∗ = 0 on ˜GA. This chain of equalities follows (with a moment’s
thought) from the corresponding one on ˜G, where it holds by Corollary 3.3, for
instance using Lemma 3.4,ii) to argue that (Cap) holds on ˜G. But for An finite
with An ↗ A, the capacity of An is supported on at most two points, whence
cap(A) < ∞, by (2.27). In particular, GA does not fulfill (Cap).
The previous example remains instructive if one considers instead G a finite graph
and κx > 0, in order to appreciate the difference between ˜h∗ and ˜hcom∗ . With A
as above, one has ˜hcom∗ (G),˜hcom∗ (GA) ≥ 0 by Theorem 3.2. On the other hand,
˜h∗(G) = −∞ since G is finite, but˜h∗(GA) ≥ 0 by Corollary 3.3,ii) since κ A ≡ 0.
This shows that˜h∗ really depends on the choice of base graph G and not only on
˜G.We refer to Proposition 7.1 in [22] for a less trivial example of a graph verifying
(Sign) but not (Cap).

(4) An interesting direct consequence of Corollary 3.3 concernsLα , the discrete (Pois-
sonian) loop soup at intensity parameter α > 0 (we refer to [19] for precise
definitions).

Corollary 3.6 Let G be a transient weighted graph such that (Cap) holds. Then
L1/2 a.s. consists of finite clusters only.

Proof IfG satisfies (Cap), then byCorollary 3.3, i) and the symmetry and continuity
of ϕ, the set {x ∈ ˜G : |ϕx | > 0} only contains compact connected components.
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Hence, by Theorem 1 in [19], the loop soup ˜L1/2 on ˜G only contains compact
connected components on which its field of local times is positive. A fortiori,L1/2
only consists of finite clusters. ��

(5) The condition (3.7) is strictly stronger than the condition (Cap). Indeed, consider
G a rooted (d + 1)-regular tree, with weights 1/(n + 1) for each edge between a
vertex at generation n and one of its children at generation n+ 1, and zero killing
measure. Then g(x, x) ≥ n + 1 for each x in generation n, and so (3.7) does not
hold. On the other hand, for each infinite connected subset K of the tree having
at most one vertex per generation, denoting by Kn ⊂ K the subset of all points
in K having generation at most n, one sees that for x ∈ K at generation k and all
n ≥ k, the equilibrium measure of Kn at x is at least c(k+ 1)−1 for some absolute
constant c = c(d), and so Cap(K ) = ∞ on account of (2.27). Since any infinite
connected set A contains such K , (Cap) follows using Lemma 3.4,1) and (2.23).
All in all, G verifies (Cap) but not (3.7).

Next, we investigate the random variable cap
(

E≥h(x0)
)

, for x0 ∈ ˜G, h ∈ R (see
(2.27) for the definition of cap(·) in this context), whichwill play a central role through-
out the remainder of this article.

Theorem 3.7 Let G be a transient weighted graph. For all x0 ∈ ˜G and h ≥ 0, if
E≥h(x0) is P

G-a.s. bounded, then the random variable cap
(

E≥h(x0)
)

has moment
generating function given by (Lawh) and density given by

ρh(t) = 1

2π t
√

g(x0, x0)(t − g(x0, x0)−1)
exp

(

−h2t

2

)

1t≥g(x0,x0)−1 . (3.8)

Furthermore, assuming only that G satisfies (Cap), one has for each h ≥ 0 and x0 ∈ ˜G
that

(Lawh) holds, and (3.9)

cap
(

E≥−h(x0)
)

1cap(E≥−h(x0))∈(0,∞) has the same law as cap
(

E≥h(x0)
)

1ϕx0≥h .
(3.10)

In particular,

P
G(cap

(

E≥−h(x0)
) = ∞) = P

G(ϕx0 ∈ (−h, h)). (3.11)

Remark 3.8 (1) In case κ ≡ 0 one can replace ˜G in the statements of Theorems 3.2
and 3.7 by ˜G−, which corresponds to removing the edges Ix , x ∈ G, from ˜G, see
above (2.31) for notation, but not when κ 	≡ 0, see Remark 2.5.

(2) When G is a finite graph, one can deduce (3.11) directly from Corollary 1, (ii)
in [21] with constant boundary condition h ≥ 0, since saying that the random
pseudo-metric between x0 and the boundary of G introduced therein is equal to 0,
is equivalent to saying that E≥−h(x0) is non-compact, or equivalently has infinite
capacity. The statement (3.11) then follows by using the reflection principle and
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that the effective resistance between x0 and the boundary of G is equal to g(x0, x0).
When G = Z

d , d ≥ 3, (3.11) is equivalent to the statement in Theorem 3 of [7].

The proof of Theorem 3.7 (along with that of Theorem 3.2) is given in the next
two sections. Our starting point for both proofs is the observation (see Proposition
4.2 below) that, if true, the isomorphism (Isom) entails a great deal of information
about the observables cap

(

E≥h(x0)
)

, h ∈ R. We use this observation on suitable
finite-volume approximations of the free field on G, which our setup naturally allows
for (essentially obtained by iteratively reducing κ starting from κ = ∞ outside a finite
set). This is possible because (Isom) can be shown to hold without further assumptions
on finite graphs. The condition (Cap) then provides a very efficient criterion in order
to avoid losing too much information when passing to the limit (in particular, one
retains (Lawh)), thus yielding (3.9)–(3.11). In a sense, the first part of Theorem 3.2
describes the information that survives in the limit without any further assumptions
on G.

As (Lawh)h≥0 is essentially derived from (Isom) on finite-volume approximations
of ˜G, one naturally wonders how the validity of (Lawh)h≥0 compares to that of (Isom)
on ˜G itself. This is the object of our next main result, Theorem 3.9 below; see in
particular (3.14). Addressing this question will require us proving that the full strength
of (Isom) can be passed to the limit (which is rathermore involved thanwhat is required
for the proof of Theorem 3.7), and thereby obtain an isomorphism on ˜G, under suitable
assumptions (namely (Sign) or (Law0)).

In order to state Theorem 3.9, we introduce a variation (Isom’) of the identity
(Isom), which will sometimes be more convenient to work with. The two are in fact
equivalent, see (3.14) and Corollary 6.1 below. The appeal of (Isom’) is that it makes
certain symmetries more apparent (see for instance Lemma 4.3). It will also naturally
imply a certain discrete isomorphism on the base graph G, see (3.16) below, interesting
in its own right.

The identity (Isom’) involves additional randomness.Wehenceforth assume that, on
a suitable extension˜P

˜G ofP
G
˜G⊗P

I
˜G (whichwe simply denote by˜Pwhen there is no risk

of ambiguity) there exists for each u > 0 an additional process (σ u
x )x∈˜G ∈ {−1, 1}˜G,

such that, conditionally on (|ϕx |)x∈˜G and ωu, σ u is constant on each of the connected
components of {x ∈ ˜G : 2�x,u + ϕ2

x > 0}, σ u
x = 1 for all x ∈ Iu, and the values of

σ u on each other cluster of {x ∈ ˜G : 2�x,u + ϕ2
x > 0} are independent and uniformly

distributed. For x such that 2�x,u+ϕ2
x = 0, the value ofσ u

x will not play any role inwhat
follows, and one canfix it arbitrarily (e.g. to have the value+1).Recalling the definition
of Cu from below (Isom), it is clear that the clusters of {x ∈ ˜G : 2�x,u+ϕ2

x > 0} are the
union of the clusters of the interior of Cu and the clusters of {x ∈ ˜G : |ϕx | > 0}∩(Cu)c,
and so one can equivalently define σ u as follows: σ u

x = 1 for all x ∈ Cu, σ u is constant
on each of the clusters of {x ∈ ˜G : |ϕx | > 0} ∩ (Cu)c, and its values on each cluster
are independent and uniformly distributed. We will investigate the validity of the
relation

for each u > 0, the field
(

σ u
x

√

2�x,u + ϕ2
x

)

x∈˜G has the same

law under˜P as the field
(

ϕx +
√
2u
)

x∈˜G under P
G .

(Isom’)
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It is then an easy matter to see that (Isom) and (Isom’) are equivalent, see Lemma
6.1 below. Let pGe : R

G × [0,∞)G → [0, 1] for e = {x, y} ∈ E , and similarly pu,G
x ,

x ∈ G, be defined by

pe( f , g) ≡ pGe ( f , g) = exp
(

− λx,y
(

f (x) f (y)+
√

( f (x)2 + 2g(x))( f (y)2 + 2g(y))
)

)

,

(3.12)

px ( f , g) ≡ pu,G
x ( f , g) = exp

(

− κx

√

2u( f (x)2 + 2g(x))
)

. (3.13)

Our last main result is the following theorem, which is proved in Sect. 6.

Theorem 3.9 Let G be a transient weighted graph. Then

(Law0) ⇐⇒ (Lawh)h>0 ⇐⇒ (I som) ⇐⇒ (I som′). (3.14)

Moreover, defining for any u > 0 on a suitable extension̂P of P
G ⊗ P

I a random set
̂Eu ⊂ E∪G such that, conditionally on (ϕx )x∈G and ω̂u, the set ̂Eu contains each edge
and vertex that is contained in Iu

E (see below (2.41) for notation), and it contains each
additional edge and vertex e ∈ E ∪ G conditionally independently with probability
1− pe(ϕ, �.,u), the following holds: If any of the conditions in (3.14) is fulfilled, with

Eu def.= {e ∈ E ∪ G : 2�x,u + ϕ2
x > 0 for all x ∈ Ie},

̂Eu has the same law under̂P as Eu under˜P. (3.15)

In particular, if one defines (under ̂P) a process (̂σ u
x )x∈G ∈ {−1, 1}G , such that,

conditionally on (ϕx )x∈G , ω̂u and ̂Eu,
• The process σ̂ u is constant on each of the clusters (of edges) induced by ̂Eu ∩ E,

• σ̂ u
x = 1 for all x ∈ (Iu ∪ ̂Eu) ∩ G, and

• The values of σ̂ u on all other clusters are independent and uniformly distributed,

then

(

σ̂ u
x

√

2�x,u + ϕ2
x

)

x∈G has the same law under̂P as
(

ϕx +
√
2u
)

x∈G under P
G .

(3.16)

Remark 3.10 (1) The conclusions of Theorem 3.7 in combination with (3.14) yield
the validity of (Isom) assuming either (Sign) or (Cap) only.

(2) The discrete isomorphism (3.16) bears similarities to the coupling derived in The-
orem 1.bis of [19] (see also (4.8) below) in the context of loop soups, as well as
with the coupling derived in Theorem 8 of [20] in the context of Markov jump
processes. Notice that by construction, see the definition of ̂Eu and (3.12), (3.13),
the couplinĝP yielding (̂σx )x∈G only requires information on G, i.e., the reference
to ˜G can be completely bypassed.

123



Cluster capacity functionals and isomorphism theorems…

(3) If h is a harmonic function on ˜G, one can define the notion of h-transform of
random interlacements, and an isomorphism between the h-transform of random
interlacements and the Gaussian free field on ˜G similar to (Isom) holds, under the
same conditions, see Theorem 6.5 in [22] for details.

(4) One can also deduce from Theorem 3.9 another isomorphism on ˜G−, see Sect. 2.3.
Let E−u ⊂ ˜G− be a random set such that, conditionally on (ϕx )x∈˜G− and ω

˜G−
u , the

trace of the random interlacement process ωu on ˜G−, the set E−u contains Iu ∩ ˜G−
and each additional vertex x ∈ G conditionally independently with probability
1 − pu,G

x (ϕ, �·,u) (or equivalently 1 − pu,G
x (ϕ, 0)). Let also C−u be the closure of

the union of the connected components of the sign clusters {x ∈ ˜G− : |ϕx | > 0}
intersecting E−u . Then the isomorphism obtained by replacing ˜G by ˜G− and Cu by
C−u in (Isom) is also equivalent to any of the conditions in (3.14). In particular, if
κ ≡ 0, then C−u = Cu ∩ ˜G−, and so the isomorphism (Isom) (or also (Lawh) in
view of Lemma 2.4) can be equivalently stated on ˜G or ˜G−.

(5) The conclusion (3.10) can a-posteriori be strengthened. Indeed, knowing that
(Isom’) holds (which follows from (3.9) and (3.14)), one easily shows that com-
pact clusters in E≥h and E≥−h have the same law, for all h > 0, see Lemma 4.3
below. In particular under (Sign), the clusters of E≥h have the same law as the
compact clusters of E≥−h, and so for all x0 ∈ ˜G

cap
(

E≥−h(x0)
)

1E≥−h(x0) is compact,ϕx0≥−h has the same law as cap
(

E≥h(x0)
)

1ϕx0≥h ,

(3.17)

whose law is described by (Lawh) in view of Theorem 3.7. Contrary to (3.10),
the conclusion (3.17) is however not sufficient to entirely describe the law of our
variable of interest cap(E≥−h(x0)). But if condition (Cap) holds, then on account
of Lemma 3.1 E≥−h(x0) is compact if and only if cap(E≥−h(x0)) < ∞, and so
(3.17) is then equivalent to (3.10).
Similarly, with regards to (3.11), using Lemma 4.3 (which applies under (Sign)
by means of Theorems 3.7 and 3.9 ), one finds that, under (Sign), for all h ≥ 0,

P
G(E≥−h(x0) is compact) = P

G(ϕ0 ≤ −h)+ P
G(∅ 	= E≥−h(x0) is compact)

= P
G(ϕ0 ≤ −h)+ P

G(∅ 	= E≥h(x0) is compact)

= P
G(ϕ0 ≤ −h)+ P

G(ϕ0 ≥ h),

(3.18)

using (Sign) and Lemma 3.1 in the last step. In particular, one recovers (3.11)
from (3.18) in case (Cap) holds. We further refer to Remark 5.3,2) regarding the
symmetry of clusters in E≥h and E≥−h contained in a given compact set K ⊂ ˜G,
which does not require (Isom’) to hold.

(6) Let us explain how to explicitly construct the processσ on˜G in (Isom’). Let (xn)n∈N

be a dense sequence in ˜G and (σ ′n)n∈N ∈ {−1, 1}N be a sequence of independent
and uniformly distributed random variables under ˜P. Let m(x) be the smallest
n ∈ N such that xn and x are in the same cluster of {y ∈ ˜G : 2�y,u + ϕ2

y > 0};
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since (xn)n∈N is dense and y �→ 2�y,u+ϕ2
y is continuous, we have thatm(x) < ∞

once 2�x,u + ϕ2
x > 0. We then define σx = σ ′m(x) if ϕ2

x > 0 and x /∈ Cu, and
σx = 1 otherwise, which has the desired properties. As an aside, note that in the
isomorphism (4.6) between loop soups and the Gaussian free field, one could also
construct explicitly the law of the signs σ by a similar procedure.

Let us now give several interesting consequences of Theorem 3.9, as well as the
usual isomorphism (1.7). By continuity of the Gaussian free field, as already noted in
(5.3) and below in [8], one can easily deduce from (1.7) that

there exists a coupling between Iu and ϕ such that a.s. each connected component

of Iu is either included in {x ∈ ˜G : ϕx > −√2u} or in {x ∈ ˜G : ϕx < −√2u}.
(3.19)

Moreover, if hkill < 1, see (1.2), then each forwards trajectory of the random inter-
lacement process has a positive probability to not be killed, and so Iu is unbounded
with positive probability for all u > 0. Hence, we obtain that for all u > 0 either
{x ∈ ˜G : ϕx > −√2u} or {x ∈ ˜G : ϕx < −√2u} is unbounded with positive
probability, and by symmetry of the Gaussian free field, it follows that (1.8) holds.

Note that this improves the result from Corollary 3.3, ii). However, the proof of
(1.8) relies on the isomorphism (1.7) between random interlacements and theGaussian
free field on infinite graphs, whereas the proof of Corollary 3.3, ii) only relies on this
isomorphism on finite graphs, or equivalently the second Ray-Knight theorem (see
Theorem 2 in [20]), or alternatively on an argument based on the Markov property for
the Gaussian free field from [6], as explained below Theorem 3.2.

The advantage of the isomorphism (Isom) is that when it holds, or equivalently
(Law0) by Theorem 3.9, one can directly improve (3.19) to prove that

there exists a coupling between Iu and ϕ such that a.s. Iu ⊂ {x ∈ ˜G : ϕx > −√2u}.
(3.20)

In particular, by symmetry of the Gaussian free field, we obtain that there exists a
coupling between Vu and ϕ such that E≥

√
2u ⊂ Vu, where Vu = (Iu)c is the vacant

set of random interlacements, thus generalizing Theorem 3 in [19] from Z
d to any

graph satisfying (Law0), or simply (Cap) by (3.9). We refer to [1,27] and [8] for
other applications of couplings similar to (3.20). Another interesting consequence of
Theorem 3.9 is the following for the value of˜h∗.

Corollary 3.11 Let G be a transient weighted graph satisfying (Law0). Then either P
G-

a.s. the sign clusters of the Gaussian free field on ˜G only contain compact connected
components, or E≥h contains for each h ∈ R at least one unbounded connected
component with P

G-positive probability. In particular, if (Law0) holds and hkill < 1,
then by (1.8),˜h∗ =˜hcom∗ ∈ {0,∞}.

The proof of Corollary 3.11 appears at the end of Sect. 6. We refer to [22] for an
example of a graph satisfying hkill < 1, but for which˜h∗ =˜hcom∗ = ∞.Note however
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that we still have˜hcap∗ ≤ 0 by Theorem 3.2. In view of Corollary 3.11, an interesting
open question is then whether a transient graph with˜h∗ ∈ (0,∞), or˜hcom∗ ∈ (0,∞),

exists or not. Another interesting consequence of Corollary 3.11 is that if˜h∗ = 0, then
the level sets of the Gaussian free field do no percolate at the critical point h = 0, as
implied by the following:

Corollary 3.12 If G is a transient graph such that ˜h∗ ≤ 0, then E≥0 contains only
bounded connected components.

We refer to the end of Sect. 6 for the proof of Corollary 3.12. We conclude this
section with the short

Proof of Theorem 1.1 Theorem 1.1,1) follows from the first conclusion of Theorem 3.2
and Corollary 3.3,i), The first equivalence in Theorem 1.1,2) is a consequence of
Corollary 3.12 (the reverse implication being immediate, see (1.6)). Finally, the impli-
cation (Sign)�⇒ (Law0) is a consequence of the first conclusion of Theorem 3.7 and
the remaining equivalences follow from Corollary 3.12 and (3.14) in Theorem 3.9.
Finally, Theorem 1.1,3) is implied by Corollary 3.11. ��

4 Some preparation

In this section, we prepare the ground for the proofs of Theorems 3.2 and 3.7. Their
proofs, given in the next section, combine three main ingredients, corresponding to
Proposition 4.2, Lemma 4.4 and Lemma 4.6 below. They also rely on a symmetry
property implied by (Isom’), stated in Lemma 4.3, which is of independent interest.
These results will also be useful in Sect. 6 in the course of proving Theorem 3.9, albeit
in a different manner.

Our starting point, Proposition 4.2 below, contains the key observation that
(Lawh)h≥0 follows from the identity (Isom’), if assumed to hold. Lemma 4.4 implies
a version of the isomorphism (Isom’), valid on finite graphs (this result is in fact a con-
sequence of the isomorphism theorems between loop soups and the Gaussian free field
from [19], see also (4.6) below; the proof of Lemma 4.4 is given in “Appendix B”).
Importantly, Lemma 4.4 allows for Proposition 4.2 to automatically apply in a finite
setup. Finally, Lemma 4.6 supplies a useful approximation scheme for ϕ based on
(2.28), see (4.10) below, which entails the important limits (4.16), (4.17) from Corol-
lary 4.7. With these results at hand, the proofs of Theorems 3.2 and 3.7 quickly follow.
They appear in the next section.

Unless specified otherwise, we tacitly assume that G is a transient weighted graph
(see above (1.1) for our setup). We begin with the following technical lemma.

Lemma 4.1 For each x0 ∈ ˜G and h ∈ R, defining E>h = {y ∈ ˜G : ϕy > h} and
E>h(x0) = {y ∈ ˜G : y ↔ x0 in E>h}, and denoting by E>h(x0) the closure of
E>h(x0), one has

E>h(x0) = E≥h(x0) P
G-a.s.
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Proof Since E≥h(x0) is closed, it is clear that E>h(x0) ⊂ E≥h(x0). Let us now fix
some compact K ⊂ ˜G, let E>h

K (x0) = {y ∈ ˜G : y ↔ x0 in E>h ∩ K }, and K be the

set containing E>h
K (x0) as well as each x ∈ G such that I{x,y} ∩ E>h

K (x0) 	= ∅ for
some y ∼ x . In order to apply the Markov property (2.34) to the random compact K,

we first need to show that it is compatible. Let us thus fix some open set O, and let
us define O ′ the set obtained from O by removing I{x,y} from O for all x ∼ y such
that I{x,y} ∩ O 	= ∅ and x /∈ O or y /∈ O . One then sees that K ⊂ O if and only

if E>h
K (x0) ⊂ O ′. Moreover, E>h

K (x0) ⊂ O ′ if and only if for every connected path
π from x0 to y ∈ ∂O ′, with π closed in x and open in y, there exists z ∈ π with

ϕz ≤ h. Therefore, the event E>h
K (x0) ⊂ O ′ is AO ′ ⊂ AO measurable, and so K is

compatible.

Let us now assume that E≥hK (x0) 	⊂ E>h
K (x0). Hence, there exists a closed path

π ⊂ E≥hK (x0) starting in x0 such that π 	⊂ E>h
K (x0). With probability one, we can

moreover assume that ϕ 	= h on G. Then by definition of K there exists an edge or
vertex e ∈ E ∪ G, x ∈ Ie ∩ ∂E>h

K (x0), with x in the interior of π, and, if e ∈ E,

y ∈ Ie ∩ ∂K with y 	= x . Since ϕx = h by continuity of ϕ, using the Markov property
(2.34) and a similar reasoning as above (2.9) in [9], one can show that when e ∈ E,

conditionally onA+
K, the law of ϕ on the edge between x and y is the same as the law

of a Brownian bridge with variance 2 at time 1, on the edge between x and y with
value h at x and ϕy at y. This Brownian bridge is a.s. strictly smaller than h infinitely
many times in any neighborhood of x, and so a.s. ϕ < h infinitely many times in
any neighborhood of x, that is x ∈ ∂E≥h(x0). If e ∈ G, one can prove similarly
that x ∈ ∂E≥h(x0) since the law of ϕ on the edge between x and the open end of
Ie is the same as the law of a Brownian bridge with variance 2 at time 1 between
ϕx and 0. This is a contradiction since x is in the interior of π ⊂ E≥hK (x0), and

so E≥hK (x0) ⊂ E>h
K (x0) ⊂ E>h(x0) a.s. Taking a sequence of compacts K = Kn

increasing to ˜G, we conclude. ��

Proposition 4.2 Suppose (Isom’) is verified on G. Then (Lawh)h≥0 holds true.

Proof Let

�h
def.= {y ∈ ˜G; |ϕy − h| > 0}, � ≡ �0 and �(x)

def.= {y ∈ ˜G : y ↔ x in �} for x ∈ ˜G
(4.1)

(see below (1.4) for notation). We first consider the case h = 0, and the sets �(x),
x ∈ ˜G, which are the closures of the sign clusters �(x). Note that if �(x)∩ Iu = ∅,

then the cluster of x in {y ∈ ˜G : 2�y,u + ϕ2
y > 0} is equal to �(x) (both �(x)

and Iu are open) and so σ u
x = ±1 with conditional probability 1

2 given (|ϕx |)x∈˜G
and ωu under ˜P (recall σ u as defined above Theorem 3.9). On the other hand, if
�(x) ∩ Iu 	= ∅, then x ↔ Iu in {y ∈ ˜G : 2�y,u + ϕ2

y > 0}, and so σ u
x = 1. As

E[sign(X + a)] = P(|X | < a) for any centered Gaussian variable X and a > 0, by
(Isom’), (2.41) and the symmetry of the Gaussian free field, we thus obtain, for all
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u > 0 and x ∈ ˜G,

2P
G(ϕx ≥

√
2u) = 1− E

G[sign(ϕx +
√
2u)
] = 1−˜E[σ u

x ]
= 1−˜P(�(x) ∩ Iu 	= ∅

) = E
G
[

exp
(

−ucap
(

�(x)
)

)]

.
(4.2)

Next, we note that by Lemma 4.1 for h = 0, P
G-a.s., �(x) = E≥0(x) on {ϕx > 0}.

Therefore, by symmetry of the Gaussian free field in combination with (4.2) we thus
have

E
G
[

exp
(− ucap

(

E≥0(x)
))

1ϕx≥0
]

= 1

2
E
G
[

exp
(

−ucap
(

�(x)
)

)]

= P
G(ϕx ≥

√
2u),

(4.3)

which is (Law0).
Let us now consider some h > 0, and let u0 = h2/2.Wewill reduce this to the case

h = 0. By the symmetry of the Gaussian free field, (Isom’) and Lemma 4.1, we have
that E≥h(x) has the same law under P

G as the closure of the connected component
of x in {y ∈ ˜G : σ

u0
y = −1} under ˜P, which is the law of the set that equals �(x)

if Iu0 ∩ �(x) = ∅ and σx = −1, and equals ∅ otherwise. Therefore, by (2.41) we
have for all u > 0

E
G
[

exp
(− ucap(E≥h(x))

)

1ϕx≥h
]

= ˜E
[

1Iu0∩�(x)=∅,σ
u0
x =−1 exp

(

−ucap(�(x))
)]

= 1

2
E
G
[

exp
(

−(u + u0)cap(�(x))
)]

= P
G(ϕx ≥

√

2u + h2
)

,

(4.4)

using (4.2) in the last step. ��
Next, we observe a symmetry property of compact clusters implied by (Isom’).

Lemma 4.3 Let G be a graph such that (Isom’) holds. Then for all h ≥ 0, the compact
clusters of E≥−h have the same law as the compact clusters of E≥h .

Proof If (Isom’) holds, then by Lemma 4.1 the compact clusters of E≥−
√
2u have the

same law as the closure of the clusters of {x ∈ ˜G : σ u
x = 1}whose closure is compact.

Each cluster of Iu is non-compact, and so by definition of σ u, the compact clusters of
E≥−

√
2u have the same law as the closure of the clusters of� (cf. (4.1)) whose closure

is compact, that do not intersect Iu and for which σ u = 1. By definition of σ u , the law
of these clusters of� is unchanged if one retains all the previous properties but the last
one and requires σ u = −1 instead. But by (Isom’), the resulting clusters have the same
law as those of {x ∈ ˜G : ϕx < −√2u} whose closure is compact, i.e. by Lemma 4.1
the clusters whose closures are the compact clusters of {x ∈ ˜G : ϕx ≤ −√2u}. Finally
by the symmetry of the Gaussian free field, these closures have the same law as the
compact clusters of E≥

√
2u . ��

The proofs of our next two ingredients, Lemmas 4.4 and 4.6 below, rely on certain
aspects of Poissonian loop soups. This requires a small amount of notation, which we
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now introduce. We also review certain features of loop soups, which will be used in
the sequel. Following e.g. [13], [17], one defines a measure μL on loops in ˜G with
compact closure in ˜G associated with P

˜G
x , x ∈ ˜G, and, under a suitable probability

measure P
L = P

L
˜G , for all α > 0 the loop soup ˜Lα with parameter α as the Poisson

point process on the space of (compact) loops on ˜G with intensity αμL . We denote
by (L(α)

x )x∈˜G its field of local times relative to m on ˜G (cf. above (2.1)), which can
be taken to be continuous, see Lemma 2.2 in [19]. Moreover, we denote by Lα the
Poisson point process consisting of the trace on G of each loop in ˜Lα, which has the
same law as the loop soup associated with PG

x , see Sect. 2 of [19] or Section 7.3 of
[13] for details. An important property of the loop soup ˜Lα is the restriction property,
see Sect. 6 of [13]: for all connected and open subsets A of ˜G, if ˜LA

α stands for the set
of loops in ˜Lα which are entirely included in A, then

˜LA
α has the same law under P

L
˜G as ˜Lα under P

L
˜GA∞
; (4.5)

here, GA∞ is the graph with the same vertices, edges and weights as G∂A (see
Lemma 2.1), but with killing measure equal to κ on (G ∩ A) \ ∂A, and equal to

infinity on ∂A∪ (G∩ Ac). I.e., for all x ∈ A, the diffusion X under P
˜GA∞
x has the same

law as X killed on exiting A under P
˜G
x .

When α = 1
2 , the loop soup ˜L1/2 is linked to the Gaussian free field on ˜G via the

following isomorphism, due to Lupu [19]; see also Le Jan, Theorem 2 of [17] for a
similar identity regarding the square of the Gaussian free field on the discrete base
graph G (not including the sign of ϕ). Introducing the shorthand L · = L(1/2)· for
the local time field of ˜L1/2 to simplify notation, let˜PL

˜G be a suitable extension of P
L
˜G

carrying a process (σx )x∈˜G ∈ {−1, 1}˜G such that, conditionally on ˜L1/2, σ is constant
on each cluster of {x ∈ ˜G : Lx > 0}, and its values on each cluster are independent
and uniformly distributed. Then

under˜PL
˜G the law of

(

σx
√

2Lx
)

x∈˜G is P
G
˜G ; (4.6)

the measure ˜PL
˜G is essentially the coupling constructed in Proposition 2.1 of [19],

where the (explicit) law of σ on ˜G follows from a version of Lemma 3.2 in [19] on ˜G
rather than ˜G−, cf. above (2.31).

The identity (4.6) also comes with the following discrete version. Define (still
under ˜PL

˜G) a random subset ̂E of E such that, conditionally on L 1
2
, ̂E contains each

edge crossed by some loop in L 1
2
, and each additional edge e ∈ E conditionally

independently with probability 1− pGe (
√
L), with pGe as given by (2.37). Then

̂E has the same law under˜PL
˜G(· |L 1

2
) as E def.= {e ∈ E : Lx > 0

for all x ∈ Ie} under P
L
˜G(· |L 1

2
). (4.7)
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In particular, if we define a process (̂σx )x∈G ∈ {−1, 1}G, such that, conditionally on
L 1

2
, and ̂E, σ̂ is constant on each of the (discrete) clusters induced by ̂E and its values

on each cluster are independent and uniformly distributed, then

(

σ̂x
√

2Lx
)

x∈G has the same law under˜PL
˜G as (ϕx )x∈G under P

G
˜G (4.8)

(Corollary 3.6 in [19] provides (4.7), and one can then directly derive (4.8), see Theo-
rem 1.bis in [19]). The identity (4.6) is an analogue in the context of loop soups of the
relation (Isom’) for interlacements (a similar analogy can be drawn between (4.8) and
(3.16)). In particular, the following holds on finite graphs, i.e. on graphs G = (G, λ̄, κ̄)

such that {x ∈ G : κ̄x < ∞} is finite (note that this implies that the induced graph
(G, λ, κ) has finite vertex set G, cf. (2.12)).

Lemma 4.4 If G is a finite transient weighted graph, then (Isom’) holds. Moreover,
conditionally on ω̂u and (ϕx )x∈G , the family {e ∈ Eu}, e ∈ E ∪ G (defined above
(3.15)) is independent, and for all e ∈ E ∪ G

˜P(e ∈ Eu | ω̂u, (ϕx )x∈G) = 1e∈Iu
E
∨ (1− pe(ϕ, �.,u)). (4.9)

For completeness, we have included the proof of Lemma 4.4 in “Appendix B”. We
briefly sketch the proof here. To deduce (Isom’), one essentially considers the decom-
position ˜L1/2 = ˜L in

1/2 + ˜L ∗
1/2 of the loop soup on the cable system ˜G∗ of a suitable

one-point compactification G∗ = G ∪ {x∗} of G (with killing at x∗, so G∗ is tran-
sient), into the ‘interior’ loops constituting ˜L in

1/2 which never hit x∗, and the loops
˜L ∗
1/2 which contain x∗. The two processes are independent. Inserting the correspond-

ing decomposition of the local times L · of ˜L1/2 into (4.6) (applied on ˜G∗), one can
then generate in law the field σ u·

√

2�·,u + ϕ2· appearing in (Isom’) by suitable con-
ditioning, and witnesses that this conditioning causes a global shift by

√
2u in (4.6).

Roughly speaking, the local times of ˜L in
1/2 generate ϕ2· /2 in this procedure by (4.5)

and (4.6), whereas the local times of ˜L ∗
1/2 give rise to �·,u ; see also [20], or Sect. 2

of [18], for similar ideas to deduce the second Ray-Knight theorem from (4.6), which
is related to the interlacement by concatenating the trajectories contributing to �·,u
to represent the successive excursions of a single diffusion X ·∧τu under P

˜G∗
x∗ stopped

at τu = inf{t ≥ 0 : �x∗(t) ≥ u}. The conditional law in (4.9) is then obtained by
following ideas of [20], Section 2.5.

Remark 4.5 The proof of Lemma 4.4 delineated above uses the isomorphism (4.6)
relating loop soups and the Gaussian free field. Similarly to the proof of Theorem 2.4
of [27], one could alternatively use the Markov property (2.34) to prove that (Isom)
(which is easily seen to be equivalent to (Isom’), see Lemma 6.1 below) holds on any
finite transient graph (or more generally on any transient graph with bounded Green
function such that (Sign) holds). However, this approach does not directly provide the
discrete isomorphism described by (4.9).

We proceed to state the third ingredient, Lemma 4.6 below, which supplies a way to
approximate the Gaussian free field on any transient graph G by Gaussian free fields
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on finite graphs. The following definition is key. For a given graph G = (G, λ, κ), we
say that

a sequence of graphs Gn increases to G if Gn = (G, λ, κ(n)) for a sequence

κ(n) ⊂ [0,∞]G of killing measures such that κ(n)
x ↘ κx as n →∞ for all x ∈ G.

(4.10)

In particular, we will be interested in finite-volume approximations of G, for which
κ(n) = ∞ outside of a finite set Un for every n, with Un exhausting G as n → ∞.
The graphs Gn thus considered are finite (in the sense defined above Lemma 4.4).

Due to the observations made around (2.28), for Gn as in (4.10), we can view ˜Gn as
a subset of ˜G such that the sequence ˜Gn increases to ˜G and such that for each compact
K ⊂ ˜G we have K ⊂ ˜Gn for large enough n.

Lemma 4.6 Let G be a transient weighted graph, and let Gn, n ∈ N, be a sequence
of transient weighted graphs increasing to G∞ = G. There exists a probability space
(�,F , P) on which the processes (ϕ

(n)
x )x∈˜Gn

, n ∈ N, and (ϕ
(∞)
x )x∈˜G are defined, with

the following properties:

for all n ∈ N ∪ {∞}, (ϕ(n)
x )x∈˜Gn

has law P
G
˜Gn
; (4.11)

P-a.s. for all compact K ⊂ ˜G, one has ϕ(n)
x = ϕ(∞)

x for x ∈ K and n large enough.
(4.12)

Proof Let (�,F , P) be a probability space carrying a process ˜L(∞) with the same law
as ˜L1/2 under P

L
˜G (for instance one can choose P = P

L
˜G). For each n ∈ N we denote

by (L(n)
x )x∈˜Gn

the accumulated local times of those loops in ˜L(∞) which are entirely

contained in the open set ˜Gn ⊂ ˜G. One can clearly identify ˜Gn with ˜G˜Gn∞ , and by (4.5),
the law of (L(n)

x )x∈˜Gn
is the same as the law of (Lx )x∈˜G under P

L
˜Gn

.Moreover, for each

x ∈ ˜G, the sequence L(n)
x , n ∈ N, is increasing, and we denote by L(∞)

x its limit. Since
each loop of ˜L(∞) is relatively compact, it is contained in ˜Gn for n large enough, and
so (L(∞)

x )x∈˜G equals the total local times of the loops in ˜L(∞), whence

L(∞)· = lim
n
↑ L(n)·

law= L · (4.13)

where L · is the occupation time field of ˜L1/2 (on ˜G).
For each n ∈ N, let (A(n)

p )p∈N be some enumeration of the countably many clusters

of {L(n) > 0}(= {x ∈ ˜G : L(n)
x > 0} ⊂ ˜Gn), and let (σp)p∈N ∈ {−1, 1}N be an

independent sequence of uniformly distributed random variables. For each n ∈ N and
x ∈ ˜Gn we define EL

n (x) = {y ∈ ˜Gn : x ↔ y in {L(n) > 0}}, and if L(n)
x 	= 0, we

denote by kn(x) ∈ {1, . . . , n} the smallest index k such that ˜Gk intersects the cluster
of x in {L(n) > 0}, i.e. EL

n (x) ∩ ˜Gkn(x) 	= ∅ and EL
n (x) ∩ ˜Gkn(x)−1 = ∅, with the

convention ˜G0 = ∅.
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We also define pn(x) = inf{p ∈ N : A(kn(x))
p ⊂ EL

n (x)}, with the convention

inf ∅ = +∞. Note that since L(n)
x , n ∈ N, is increasing for all x ∈ ˜G and kn(x) ≤ n,

we have that pn(x) < ∞ if L(n)
x 	= 0. For each n ∈ N and x ∈ ˜Gn, we then let

σ
(n)
x = σpn(x) if L

(n)
x > 0 and σ

(n)
x = 1 otherwise, and set

ϕ(n)
x

def.= σ (n)
x

√

2L(n)
x . (4.14)

Due to (4.6), (ϕ(n)
x )x∈˜G has law P

G
˜Gn

. Moreover, for each x ∈ ˜G with L(∞)
x > 0, for

all n large enough we have x ∈ ˜Gn as well as L(n)
x > 0, hence kn(x) is constant for

n large enough since EL
n (x) increases to EL∞(x). As a consequence, the sequence

pn(x), n ∈ N, is decreasing for n large enough, and we denote by p∞(x) its limit.
Note that we then have pn(x) = p∞(x) for n large enough. We define σ

(∞)
x = σp∞(x)

if L(∞)
x > 0 and σ

(∞)
x = 1 otherwise, and ϕ

(∞)
x = σ

(∞)
x

√

2L(∞)
x . We then have

ϕ
(n)
x −→

n→∞ϕ(∞)
x for all x ∈ ˜G due to (4.13), (4.14) and since sign(ϕ(n)

x ) = sign(ϕ(∞)
x )

for all large enough n. Finally, g
˜Gn

(x, y) −→
n→∞ g

˜G(x, y) = g(x, y) for all x, y ∈ ˜G,

whence

lim
n

E
[

exp(i〈μα, ϕ(n)〉)] = exp
(− 〈μα,Gμα〉/2

) = E
G[ exp(i〈μα, ϕ〉)] (4.15)

for any finite point measure μα = ∑

x∈A αxδx , α ∈ R
A with A ⊂ ˜G finite and

(Gμ)(x) = ∫
˜G g(x, y)dμ(y). The statement that (ϕ(∞)

x )x∈˜G has law P
G follows from

(4.15) and convergence of ϕ(n) (in law). This shows (4.11).
With probability 1, for each K ⊂ ˜G connected compact, there exists a random

N ∈ N, such that for all n ≥ N , one has K ⊂ ˜Gn, and no trajectory in ˜L(∞) hitting
K hits ˜G \ ˜Gn . One then has the equality L(n)

x = L(∞)
x for all n ≥ N and x ∈ K ,

and the clusters of {L(n)· > 0} in ˜G whose closure is contained in K are equal to the
clusters of {L(∞)· > 0} whose closure is contained in K . As a consequence, once
n ≥ N , on has that σ (n)

x = σ
(∞)
x on all these clusters. Since ∂K is finite, we also have

σ
(n)
x = σ

(∞)
x (= 1) for all x ∈ ∂K and n large enough. The claim (4.12) follows. ��

Lemma 4.6 yields the following important result.

Corollary 4.7 (Limits of cluster capacities) Let E≥hn (x0) = E≥h
n,˜G(x0), where

E≥hn,K (x0) = {x ∈ ˜Gn ∩ K : x0 ↔ x in {ϕ(n) ≥ h} ∩ K }, for K ⊂ ˜G. Then P-a.s., for

all h ∈ R, x0 ∈ ˜G,

lim
n→∞ cap

˜Gn

(

E≥hn,K (x0)
) = cap

˜G
(

E≥h∞,K (x0)
)

, for compact K ⊂ ˜G, and (4.16)

lim
n→∞ cap

˜Gn

(

E≥hn (x0)
) = cap

˜G
(

E≥h∞ (x0)
)

, if E≥h∞ (x0) is compact. (4.17)

Proof As a consequence of (4.12) one knows that for compact K ⊂ ˜G, one has
ϕ(n) = ϕ(∞) on K for large enough n, whence cap

˜Gn
(E≥hn,K (x0)) = cap

˜Gn
(E≥h∞,K (x0))
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for such n. From this, (4.16) follows using that cap
˜Gn

(A) → cap
˜G(A) for compact

A as n → ∞, applied with the choice A = E≥h∞,K (x0) (indeed, using (2.6), (2.16)
and (2.20), it is not hard to show that the equilibrium measure of any compact set A
on ˜Gn converges –in fact decreases– to the equilibrium measure of A on ˜G). Now, if
E≥h∞ (x0) is compact, then E≥h∞ (x0) = E≥h∞,K (x0) = E≥hn,K (x0) for large enough n and
K depending on ϕ. Together with (4.16), this immediately gives (4.17). ��

5 Proofs of Theorems 3.2 and 3.7

With the results of the last section at hand, we are ready to give the proofs of The-
orems 3.2 and 3.7. This is the subject of the present section. Both proofs rely on
Proposition 4.2 in combination with Lemmas 4.4 and 4.6 and Corollary 4.7.

First, as a consequence of Proposition 4.2 and Lemma 4.3, we collect the following

Corollary 5.1 If (Isom’) and (Cap) are satisfied on G, then (3.10) and (3.11) hold.

Proof If (Isom’) and (Cap) are satisfied, (Sign) follows from (Law0) (which holds
on account of Proposition 4.2) by letting u ↓ 0 and using (Cap). Therefore (3.17)
holds, which, together with (Cap) and Lemma 3.1, yields (3.10). Then, using (3.10)
we have that P

G
(

cap(E≥−h(x0)) ∈ (cap({x0}),∞)
) = P

G(ϕx0 ≥ h). Since
P
G
(

cap(E≥−h(x0)) ≤ cap({x0})
) = P

G(ϕx0 ≤ −h), we infer (3.11). ��
We now give the

Proof of Theorem 3.2 For a given graph G = (G, λ, κ), consider an increasing
sequence Un, n ∈ N, of finite connected subsets of G exhausting G, i.e. satisfy-
ing Un ⊂ Un+1 for all n and

⋃

n Un = G. Now, define Gn = (G, λ, κ(n)) with killing

measure κ̄
(n)
x = κ̄x if x ∈ Un, and κ̄

(n)
x = ∞ otherwise. The sequence of graphs Gn,

n ∈ N, increases to G in the sense of (4.10), and Gn is finite for each n ∈ N in the
sense as above Lemma 4.4. Fixing a point x0 ∈ ˜G, we may furthermore assume that
x0 ∈ ˜Gn for all n ∈ N (for instance by choosing Un = Bd(z0, n + 1), where z0 ∈ G
is the vertex closest to x0 relative to d).

Considering the sequence (ϕ
(n)
x )x∈˜Gn

, n ∈ N, from Lemma 4.6, which is in force,
we obtain, applying Lemma 4.4 and Proposition 4.2, which implies (Lawh), that for
all n ∈ N,

E

[

exp
(

−ucap
˜Gn

(E≥hn (x0))
)

1
ϕ

(n)
x0 ≥h

]

=P(ϕ(n)
x0 ≥

√

2u + h2) for all u > 0, h ≥ 0.

(5.1)

Fixing h = 0, (5.1) and the monotonicity property (2.23) thus yield, for any compact
K ⊂ ˜G,

E

[

exp
(

−ucap
˜Gn

(E≥0n,K (x0))
)

1
ϕ

(n)
x0 ≥0

]

≥ P(ϕ(n)
x0 ≥ √

2u) for all u > 0. (5.2)
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with E≥hn,K (x0) as defined above (4.16). Now, applying (4.16) and dominated conver-
gence to take the limit n → ∞ on both sides of (5.1), and subsequently considering
an increasing sequence of compacts K exhausting ˜G, one obtains, in view of (2.27),

E
G
[

exp
(

−ucap
˜G(E≥0(x0))

)

1ϕx0≥0
]

≥ P
G(ϕx0 ≥

√
2u) for all u > 0. (5.3)

Hence, taking u → 0 we obtain by dominated convergence that

P
G(cap(E≥0(x0)) < ∞, ϕx0 ≥ 0

) ≥ 1

2
.

Since E≥0(x0) = ∅ when ϕx0 < 0 and P
G(ϕx0 < 0) = 1

2 , we obtain that
cap(E≥0(x0)) is P

G -a.s. finite, which proves the first part of the statement.
Let us now fix some h < 0. If E≥hn (x0) is a non-compact subset of ˜Gn for infinitely

many n, then for all compacts K of ˜G we have E≥hn (x0) 	⊂ K for infinitely many
n ∈ N. Since ϕ(n) = ϕ(∞) on a neighborhood of K for n large enough, we then have
that E≥h∞ (x0) 	⊂ K for all compacts K , that is E≥h∞ (x0) is a non-compact subset of ˜G.

Since (3.11) holds on Gn by Lemma 4.4 and Corollary 5.1, we moreover have that

P(E≥hn (x0) is non-compact in ˜Gn i.o.) ≥ lim inf
n→∞ P(E≥hn (x0) is non-compact in ˜Gn)

= lim inf
n→∞ P(ϕ(n)

x0 ∈ (−h, h))

= P
G(ϕx0 ∈ (−h, h)) > 0,

and so E≥h∞ (x0) is non-compact with positive probability. ��
Prior to giving the proof of Theorem3.7, we first briefly study some properties of the

law of the capacity of the level sets of the Gaussian free field, when their the Laplace
transform is given by (Lawh) (see above Theorem 1.1). The next lemma computes the
corresponding density (on the event {E≥h(x0) 	= ∅}).
Lemma 5.2 For all u ≥ 0 and h ∈ R,

∫ ∞

g(x0,x0)−1
ρh(t) exp(−ut) dt = P

G(ϕx0 ≥
√

2u + h2
)

, (5.4)

with ρh as defined in (3.8).

Proof Taking v = u + h2/2 and a = g(x0, x0)−1, it is enough to show that

∫ ∞

a

1

t
√
2π(t − a)

exp(−vt) dt =
∫ ∞
√
2v

exp
(

− at2

2

)

dt for all v, a ≥ 0. (5.5)

For v = 0 we have, taking s = √
t − a,

∫ ∞

a

1

t
√
2π(t − a)

dt =
√

2

π

∫ ∞

0

1

s2 + a
ds =

√

2

aπ

[

arctan
( s√

a

)]∞
0
=
√

π

2a
,
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and so (5.5) holds for v = 0. Moreover, by dominated convergence, the left-hand side
of (5.5) viewed as a function of v > 0 is continuously differentiable with derivative

−
∫ ∞

a

1√
2π(t − a)

exp(−vt) dt = −
√

2

π

∫ ∞

0
exp

(− v(a + s2)
)

ds

= − 1√
2v

exp(−va),

and so is equal to the derivative with respect to v of the term on the right-hand side of
(5.5). This yields (5.5) and hence (5.4). ��

We now proceed to the

Proof of Theorem 3.7 Consider the approximating sequenceGn introduced at the begin-
ning of the proof of Theorem 3.2. In particular, (5.1) still holds (as a consequence of
Lemma 4.4 and Proposition 4.2). Now, let h ≥ 0 and suppose E≥h(x0) is P

G -a.s.
bounded, hence compact in view of Lemma 3.1. Then (4.17) holds and one can safely
pass to the limit in (5.1) using dominated convergence, thus obtaining that (Lawh)
holds on ˜G. Then, (3.8) holds on ˜G by means of Lemma 5.2. In particular, the previous
argument shows that, if h ≥ 0 and E≥h(x0) is P

G -a.s. bounded, then

cap
˜Gn

(E≥hn (x0)) converges in law to cap
˜G(E≥h(x0)),which is given by (Lawh).

(5.6)

Assume now that (Cap) is fulfilled on G. Then (Sign) holds by Corollary 3.3, and so
we obtain (3.9) from (5.6). In order to deduce (3.10), first observe that (3.10) holds
on ˜Gn by means of Lemma 4.4 and Corollary 5.1, as (Cap) is trivially satisfied on
˜Gn . For all h ≥ 0, due to (5.6) the random variable cap(E≥hn (x0))1ϕ

(n)
x0 ≥h

converges

in law to cap(E≥h(x0))1ϕx0≥h , hence so does cap(E
≥−h
n (x0))1cap(E≥−h

n (x0))∈(0,∞)
. To

identify this with the law of cap(E≥−h(x0))1cap(E≥−h(x0))∈(0,∞), one applies domi-
nated convergence, noting that, due to (Cap) and Lemma 3.1, cap(E≥−h(x0)) < ∞ is
tantamount to E≥−h(x0) being compact, and using (4.17). All in all, this gives (3.10).
Finally (3.11) is an immediate consequence of (3.10), as in the proof of Corollary 5.1.
This completes the proof of Theorem 3.7. ��
Remark 5.3 (1) In view of the above proof of Theorem 3.7, we see that the validity

of (Law0) (and thus equivalently of (Isom) by (3.14) after Theorem 3.9 is proved)
can be viewed as a question about removing the compactness assumption in (4.17).
Indeed (Law0) holds if and only if there exists a sequence Gn of graphs verifying
(Law0) increasing to G in the sense of (4.10) such that, P-a.s.,

cap
˜Gn

(

E≥0n (x0)
) n→∞−→ cap

˜G
(

E≥0∞ (x0)
)

for all x0 ∈ ˜G. (5.7)

(2) Let K ⊂ ˜G be connected and compact. By Lemmas 4.4 and 4.3, it follows that
if G is a finite graph, then the compact clusters of E≥−h and E≥h have the same
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law. In particular,

the clusters of E≥−h and E≥h included in K have the same law. (5.8)

The conclusion (5.8) remains true for arbitrary transient graphG. Indeed, by follow-
ing the arguments of Proposition 1.11 in [26], starting from G∂K , one can construct
a transient weighted graph G∂K∗ with (finite) vertex setG∂K ∩K (recall Lemma 2.1
for notation) whose weights coincide with λ∂K

x,y whenever x, y ∈ G∂K ∩ K are

neighbors in G∂K , in such a way that (ϕx )x∈K has the same law under P
G
˜G as under

P
G
˜G∂K∗

. The conclusion (5.8) for arbitrary G then simply follows by regarding the

clusters of E≥−h and E≥h included in K as parts of ˜G∂K∗ . One can also prove that
the conclusion (3.17) holds under condition (Sign) using (5.8), by considering a
sequence of compacts increasing to ˜G.

6 Proof of Theorem 3.9

In this section, we prove Theorem 3.9, along with its corollaries. In particular, this
comprises the isomorphism between random interlacements and the Gaussian free
field and the equivalences (3.14), as well as its discrete counterpart (3.16). We first
compare random interlacements on G = Gκ̄ (recall the notation from above (2.28))
with random interlacements on Gκ̄ ′ for some κ̄ ′ ≥ κ̄ in Lemma 6.2, and then take
advantage of this comparison to approximate random interlacements on any tran-
sient graphs by random interlacements on finite graphs as in (4.10), see Lemma 6.3.
Together with the corresponding ‘finite-volume’ approximation of the Gaussian free
field fromLemma 4.6 and in combinationwith the fact that Theorem 3.9 holds on finite
graphs (see Lemma 4.4), we can then prove the isomorphism (Isom), see Lemma 6.4,
under suitable assumptions. This is the key step of the proof of Theorem 3.9, pre-
sented thereafter. Finally, at the end of the section, we deduce from Theorem 3.9 that
Corollaries 3.11 and 3.12 also hold.

We first dispense with the equivalence between (Isom) (see above Theorem 1.1)
and (Isom’) (see above Theorem 3.9).

Lemma 6.1 The identity (Isom) holds true if and only if (Isom’) does.

Proof It suffices to argue that (ϕx1x /∈Cu +
√

ϕ2
x + 2�x,u 1x∈Cu )x∈˜G has the same law

underPI⊗P
G as (σ u

x

√

2�x,u + ϕ2
x )x∈˜G under˜P. Bydefinition ofCu and since |σ u

x | = 1,

the absolute value of either field equals
√

2�·,u + ϕ2· in law. To deal with the signs,
rewriting ϕx = sign(ϕx )

√

ϕ2
x + 2�x,u for all x /∈ Cu , one observes that the law of

(sign(ϕx )1x /∈Cu + 1x∈Cu )x∈˜G under (PI ⊗P
G)(· | |ϕ|, ωu) is the same as the law of σ u

under ˜P
˜G(· | |ϕ|, ωu), which follows immediately from the definitions of Cu and σ u ,

respectively, together with Lemma 3.2 in [19] (the latter asserts that given |ϕ|, the field
sign(ϕ) is constant on each cluster of {|ϕ| > 0}, and the values on each cluster are
independent and uniformly distributed, a consequence of the strongMarkov property).

��
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We are now going to approximate random interlacements on any transient graph
G by random interlacements on a sequence of finite graphs Gn increasing to G in the
sense of (4.10). To this end, we first compare random interlacements on two graphs
G = (G, λ̄, κ̄) and G′ = (G, λ̄, κ̄ ′) with killing measures κ̄ ′ ≥ κ̄ , and corresponding
cable systems ˜G and ˜G′. Thus, ˜G = ˜Gκ̄ , ˜G′ = ˜Gκ̄ ′ in the notation from the beginning of
Sect. 2.3 and in particular, cf. (2.28), one can regard ˜G′ as a subset of ˜G. Accordingly,
for all trajectories w ∈ W

˜G with ζ− < 0 < ζ+ (see Sect. 2.5 for notation; recall in
particular that ζ± are such that w(t) = � if and only if t /∈ (ζ−, ζ+)), we define the
killing times ζ±

κ̄ ′ by

ζ±
κ̄ ′ (w)

def.= ± inf
{

t ∈ [0,±ζ±(w)) : w(±t) /∈ ˜G′}

with the convention

inf ∅ = ±ζ±(w) (6.1)

so that ζ−(w) ≤ ζ−
κ̄ ′ (w) < 0 < ζ+

κ̄ ′ (w) ≤ ζ+(w) for any w ∈ W
˜G . For any compact

K ⊂ ˜G, we then introduce πK : W 0
K ,˜G → W 0

K ,˜G′ by

πK (w) ≡ πK ,˜G,˜G′(w) =
{

w(t), if t ∈ (ζ−
κ̄ ′ (w), ζ+

κ̄ ′ (w)),

�, otherwise,
(6.2)

and denote by π∗
K : W ∗

K ,˜G → W ∗
K ,˜G′ the unique function such that p∗̃G′ ◦ πK (w) =

π∗
K ◦ p∗̃G(w) for all w ∈ W 0

K ,˜G . In words π∗
K (w∗) is the doubly infinite trajectory

modulo time shift on ˜G′, whose forward and backward parts seen from the first time
of hitting K are the forward and backward parts of w∗ seen from the first time of
hitting K , both stopped on exiting ˜G′.
Lemma 6.2 (˜G = (G, λ̄, κ̄), ˜G′ = (G, λ̄, κ̄ ′), κ̄ ′ ≥ κ̄). Let V ⊂ K be compact
subsets of ˜G′. There exists a non-negative measure μK ,V = μ

K ,V
˜G,˜G′ on W

∗
K ,˜G′ such that

(

ν
˜G1W ∗

K ,˜G\W ∗
V ,˜G

) ◦ (π∗
K )−1 + μK ,V = ν

˜G′1W ∗
K ,˜G′ \W ∗

V ,˜G′
(6.3)

(with a slight abuse of notation, the right-hand side is viewed as a measure on W ∗
K ,˜G′ ).

Moreover,

μK ,V (W ∗
K ,˜G′) = cap

˜G′(K )− cap
˜G′(V )− cap

˜G(K )+ cap
˜G(V ). (6.4)

Proof Throughout the proof, let̂∂K be as in (2.13) but relative to P
˜G′
x (rather than

Px = P
˜G
x ). Let (G, λ, κ) and (G ′, λ′, κ ′) refer to the induced graphs corresponding

to G and G′, respectively (cf. (2.12)). By considering the graphs GA and (G′)A for
any A ⊃ ̂∂K , see Lemma 2.1 instead of G and G′, we can assume without loss of
generality that ̂∂K ⊂ (G ∩ G ′). By choosing A = A′ ∪̂∂K where A′ ⊂ ˜G′ is a
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set containing exactly one (arbitrary) vertex between each x ∈ ̂∂K and y ∈ ∂˜G′
which are connected by a cable, we can further ‘move away’̂∂K from ∂˜G′, so that
d(̂∂K , ∂˜G′) > 1, where d is the canonical distance on ˜G defined above (1.4). All in
all, we thus assume henceforth that

̂∂K ⊂ (G ∩ G ′) and d(̂∂K , ∂˜G′) > 1, (6.5)

which is no loss of generality. Recall X ′ ≡ X κ̄ ′ and ζ ′ ≡ ζκ̄ ′ from (2.29) and note
that for all w ∈ W 0

K ,˜G, the forward part {(πK (w))t : 0 ≤ t ≤ ζ+
κ̄ ′ } of πK (w) from the

time of first hitting K onward, is precisely {X ′
t (w

+) : 0 ≤ t ≤ ζ ′}, where w+ is the
forward part of w. Recalling (6.1) as well as the notation from (2.16) and (2.38), we
then define the countably additive set function μ̃K ,V on W0

K ,˜G′ by

μ̃K ,V (A)
def.=

∑

x∈̂∂K

(

eK ,˜G′(x)P
˜G′
x

(

X ∈ A+, HV = ζ
)

PK ,˜G′
x (X ∈ A−)

− eK ,˜G(x)P
˜G
x

(

X ′ ∈ A+, HV = ζ
)

PK ,˜G
x

(

X ′ ∈ A−
)

)

(6.6)

(note that following our convention below (2.22), {HV = ζ } under P ˜Gx refers to the
event that V is not visited by X ) with A± denoting {(w(±t))t≥0 : w ∈ A} for all
A ∈ W0

K ,˜G′ and X ′ as introduced below (6.5). In (6.6), we also used implicitly the

convention that eK ,˜G(x)PK ,˜G
x = 0 for all x ∈ ̂∂K with eK ,˜G(x) = 0. Moreover,

eK ,˜G(x) ≤ eK ,˜G′(x) for all x ∈ ˜G by (2.6) and (2.17), and so it follows from (2.19)

that supp(eK ,˜G) ⊂ ̂∂K . If μ̃K ,V is non-negative on W0
K ,˜G′ we can extend it to a

measure onWK ,˜G′ by taking μ̃K ,V (A) = 0 for all A ∈WK ,˜G′ with A ∩W 0
K ,˜G′ = ∅.

Defining μK ,V = μ̃K ,V ◦ (p∗̃G′)
−1, in view of (6.6), (2.39) and (2.40), it then follows

that (6.3) is fulfilled.
We now show that μ̃K ,V is non-negative. Recall ̂Z , the discrete skeleton of Z , from

below (2.4). We denote by ̂LK = sup{n ∈ N : ̂Zn ∈ K } the last exit time of K
for ̂Z and by LK = sup{t ≥ 0 : Xt ∈ K } the last exit time of K for X , with the
convention sup∅ = ∞, so in particular {XLK = x} = {̂Z

̂LK
= x} for all x ∈̂∂K (on

the event {LK < ∞} = {̂LK < ∞}, which has full P
˜G
x -measure by transience). We

also define (Yt )t≥0 the same process as (Xt+LK )t>0, but killed the first time (Xt )t≥LK

hits ∂˜G′. By definition of PK ,˜G
x , see (2.38), and (2.19), we have for all x ∈̂∂K with

eK ,˜G(x) > 0 that

eK ,˜G(x)PK ,˜G
x (X ′ ∈ · )

= eK ,˜G(x)P
˜G
x

(

(Yt )t>0 ∈ · | XLK = x
) = 1

g
˜G(x, x)

P
˜G
x

(

(Yt )t>0 ∈ ·,̂ẐLK
= x

)

= 1

g
˜G(x, x)

∑

n≥0
P
˜G
x

(

(Yt )t>0 ∈ ·,̂Zn=x,̂LK=n
)=λx P

˜G
x

(

(Yt )t>0 ∈ ·,̂LK = 0
);
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here, we used in the last equality the strong Markov property at the time of n-th jump
and the fact that g

˜G(x, x) = 1
λx

∑

n≥0 P
˜G
x (̂Zn = x). By a similar calculation, and in

view of (2.30), we obtain for x ∈̂∂K ,

eK ,˜G′(x)P
K ,˜G′
x (X ∈ · ) = λ′x P

˜G′
x

(

(Xt+LK )t>0 ∈ ·,̂LK = 0
)

= λ′x P
˜G
x

(

(Xt+LK )t>0 ∈ ·,̂L ′K = 0
)

,

where L ′K , ̂L ′K are defined as above but with X ′ in place of X . On the event ̂LK = 0,
since d(̂∂K , ∂˜G′) > 1 due to (6.5), we have L ′K = LK , (Yt )t>0 = (X ′

t>L ′K
)t>0 and

λx = λ′x for all x ∈̂∂K . Hence, for all x ∈̂∂K with eK ,˜G(x) > 0,

eK ,˜G′(x)P
K ,˜G′
x (X ∈ · )− eK ,˜G(x)PK ,˜G

x

(

X ′ ∈ ·)

= λx P
˜G
x

(

(X ′
t>L ′K

)t>0 ∈ ·,̂L ′K = 0 < ̂LK
)

= eK ,˜G′(x)P
˜G
x

(

(X ′
t>L ′K

)t>0 ∈ ·, L ′K < LK | XL ′K = x
)

. (6.7)

Note that if eK ,˜G(x) = 0 and x ∈ ̂∂K , then L ′K < LK P
˜G
x -a.s., and so the previous

equality still holds. Moreover, using (2.30), we have for all x ∈̂∂K that

P
˜G′
x

(

X ∈ ·, HV = ζ
)− P

˜G
x

(

X ′ ∈ ·, HV = ζ
) = P

˜G
x

(

X ′ ∈ ·, ζ > HV > ζ ′
)

.

(6.8)

Combining (6.6), (6.7) and (6.8), we thus obtain that, for A ∈W0
K ,˜G′ ,

μ̃K ,V (A) =
∑

x∈̂∂K

(

eK ,˜G′ (x)P
˜G′
x

(

X ∈ A+, HV = ζ
)

P ˜Gx
(

(X ′
t>L ′K

)t>0 ∈ A−, L ′K < LK | XL ′K = x
)

+ eK ,˜G(x)P ˜Gx
(

X ′ ∈ A+, ζ > HV > ζ ′
)

PK ,˜G
x

(

X ′ ∈ A−
)

)

,

(6.9)

and so μ̃K ,V is positive on W0
K ,˜G′ . Finally, we have by (2.20) and (2.22) that

μK ,V (W ∗
K ,˜G′) = μ̃K ,V (W 0

K ,˜G′)
(6.6)=

∑

x∈̂∂K

(

eK ,˜G′(x)P
˜G′
x (HV = ζ )− eK ,˜G(x)P

˜G
x (HV = ζ )

)

= cap
˜G′(K )− cap

˜G′(V )− cap
˜G(K )+ cap

˜G(V ),

which gives (6.4) and completes the proof. ��
In words, the difference between the trajectories under ν

˜G and ν
˜G′ that hit K but

not V , when V ⊂ K are compact subsets of ˜G′, comes in two parts: first it is more
likely for the forward trajectories to not hit V before time ζ ′ than before time ζ, and
secondly it is more likely for the backward trajectories to not come back to K before
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time ζ ′ than before time ζ . These two differences are contained in the measure μ
K ,V
˜G,κ ′

from (6.3), see (6.9).
Taking a sequence (Kp)p∈N of compacts increasing to ˜G′, one can then use

Lemma 6.2 to construct a random interlacement process on ˜G′ from the random inter-
lacement process ω on ˜G: take the image through π∗

Kp
of each trajectory in the support

of ω hitting Kp but not Kp−1 for all p ∈ N, with K0 = ∅, and add Poisson point

processes with intensity μ
Kp,Kp−1
˜G,˜G′ ⊗ λ for all p ∈ N. Using this construction and

the estimate (6.4), we will now suitably approximate random interlacements on G by
random interlacements on a sequence of finite graphs, thus mirrorring Lemma 4.6.

Lemma 6.3 Let G be a transient weighted graph and Gn, n ∈ N, be a sequence of
transient weighted graphs increasing to G∞ = G in the sense of (4.10). There exists a
probability space (�′,F ′, P

′) on which one can define a sequence of processes ω(n),

n ∈ N, and ω(∞) with the following properties:

for all n ∈ N ∪ {∞}, the process ω(n) has the same law as ω under P
I
˜Gn
; (6.10)

there exists an increasing sequence (an)n∈N such that for each u > 0, P
′-a.s. for

all compact K ⊂ ˜G, the restriction to K of the set of trajectories hitting K is the

same for ω
(an)
u and ω

(∞)
u for all n large enough.

(6.11)

Proof Let (Kn)n∈N be a sequence such that Kn is a compact subset of ˜Gn for each
n ∈ N, and such that Kn, n ∈ N, increases to ˜G. Let ω(∞) be a Poisson point process
under (�′,F ′, P

′) with the same law as the random interlacement process ω under
P
I
˜G . For each n ∈ N and k ∈ {1, . . . , n}, we define, recalling the notation from (4.10),

the process ω
(k,n)
1 as the Poisson point process which is given by the image through

π∗
k,n ≡ π∗

Kk ,˜G,˜Gn
, cf. (6.2), of all the trajectories in ω

(∞)
u which hit Kk but not Kk−1,

with the convention K0 = ∅; this constitutes a Poisson point process with intensity
(ν
˜G1W ∗

Kk ,˜G\W ∗
Kk−1,˜G

) ◦ (π∗
k,n)

−1. By suitably extending P
′ we further introduce ω

(k,n)
2

as an independent Poisson point process with intensity μ
Kk ,Kk−1
˜G,˜Gn

⊗λ (see Lemma 6.2)

and ω
(n)
3 as an independent Poisson point process with intensity (ν

˜Gn
1(W ∗

Kn ,˜Gn )c )⊗ λ.

Thus, defining for each n ∈ N

ω(n) def.= ω
(n)
3 +

n
∑

k=1

(

ω
(k,n)
1 + ω

(k,n)
2

)

,

we have by (6.3) that ω(n) has the same law as ω under P
I
˜Gn

, whence (6.10).

We now argue that (6.11) holds. Let u > 0 and p ∈ N.By definition, no trajectories
ofω(k,n)

1 , ω
(k,n)
2 andω

(n)
3 hit Kp if p < k ≤ n.Moreover, there is a only a finite number

of trajectories in ω
(∞)
u hitting Kp, each returning finitely many times to Kp, and so

for each k ∈ {1, . . . , p}, we have that the restriction to Kp of all the trajectories of
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ω
(k,n)
1 at level u hitting Kp is constant for all n large enough. By (6.4), for each n ≥ p,

the number of trajectories in
∑p

k=1 ω
(k,n)
2 at level u is a Poisson random variable with

parameter u(cap
˜Gn

(Kp)− cap
˜G(Kp)), and one can easily prove by (2.6), (2.16) and

(2.20) since Kp is compact that cap
˜Gn

(Kp) − cap
˜G(Kp) → 0 as n → ∞. As a

consequence of Borel-Cantelli, one can thus find a sequence (an)n∈N such that P′-a.s.,
∑p

k=1 ω
(k,an)
2 contains no trajectory at level u for all u > 0 and n large enough, and by

a diagonal argument, one can take (an)n∈N independent of the choice of p. Since for
all compacts K ⊂ ˜G, there exist p ∈ N such that K ⊂ Kp, and P

′-a.s., the restriction
to Kp of all the trajectories of ω

(an)
u hitting Kp is constant for all n large enough, we

conclude (6.11). ��
Together, Lemmas 4.6 and 6.3 supply suitable ‘finite-volume’ approximations for

the Gaussian free field and random interlacements on a general transient weighted
graph ˜G. With the help of Lemma 4.4, this yields the following result, from which
Theorem 3.9 will readily follow.

Lemma 6.4 If either (Sign) or (Law0) is fulfilled, then (Isom) and (4.9) hold true on
G.

Proof Let Gn, n ∈ N be a sequence of finite graphs increasing to G in the sense of
(4.10) (for instance, the one introduced at the beginning of the proof of Theorem
3.2) and consider the space (� × �′,F ⊗ F ′, P ⊗ P

′), which is the product of the
probability spaces from Lemmas 4.6 and 6.3. By passing to a subsequence of Gn,
n ∈ N, we may assume that an = n in (6.11). Note that Lemma 4.4 applies to Gn . For
each n ∈ N∪{∞}, let (�(n)

x,u)x∈˜Gn
denote the total local times of the trajectories ofω(n)

u ,

Iu
n = {x ∈ ˜Gn : �

(n)
x,u > 0}, �n(x) = {y ∈ ˜Gn : x ↔ y in {z ∈ ˜Gn : |ϕ(n)

z | > 0}} and
�n(x) its closure for all x ∈ ˜Gn, as well as Cu,n the closure of {x ∈ ˜G : �n(x)∩ Iu

n 	=
∅}. Let us first prove that there exists a sequence (bn)n∈N such that, P⊗P

′-a.s. for all
x ∈ ˜G with |ϕ(∞)

x | > 0,

{

x ∈ Cu,∞
} = lim inf

n→∞
{

x ∈ Cu,bn

} = lim sup
n→∞

{

x ∈ Cu,bn

}

. (6.12)

For this purpose, consider x ∈ ˜G with |ϕ(∞)
x | > 0. If x ∈ Cu,∞, then there exists

y ∈ Iu∞ ∩�∞(x). By (6.11), y ∈ Iu
n for n large enough and there is a path π ⊂ ˜G

between x and y in {z ∈ ˜G : |ϕ(∞)
z | > 0}. Since π can be chosen to be compact, by

(4.12) we have ϕ(n) = ϕ(∞) on π for all n large enough. Therefore, π is also a path
between x and y in {z ∈ ˜G : |ϕ(n)

z | > 0}, and so y ∈ Iu
n ∩�n(x) for n large enough,

that is x ∈ Cu,n . As a consequence,

{

x ∈ Cu,∞
} ⊂ lim inf

n→∞
{

x ∈ Cu,n
}

(⊂ lim sup
n→∞

{

x ∈ Cu,n
}

). (6.13)

To prove the reverse inclusions in (6.12), first assume that (Sign) is fulfilled and that
x ∈ Cu,n for infinitely many n. By (4.12) and (6.11), since �∞(x) is compact, we
have that ϕ(n) and Iu

n are constant for n large enough on �∞(x), and then �n(x) ∩
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Iu
n = �∞(x) ∩ Iu∞ for n large enough. Therefore, infinitely often, Iu∞ ∩ �∞(x) =

Iu
n ∩ �n(x) 	= ∅ (note that x cannot lie in the boundary since Iu∞, Iu

n are open and

|ϕ(n)
x | > 0 for large enough n), that is x ∈ Cu,∞. Combining with (6.13), we obtain

(6.12) with bn = n.

Now suppose that (Law0) holds on G. For all n ∈ N ∪ {∞}, by (2.41), since Iu
n is

open,

(P⊗ P
′)
(

x ∈ Cu,n
) = (P⊗ P

′)
(Iu

n ∩�n(x) 	= ∅)

= 1− E

[

exp
(

− ucap
˜Gn

(

�n(x)
)

)]

. (6.14)

As Gn is finite for each n ∈ N, Lemma 4.4 and Proposition 4.2 imply that (Law0)
holds on ˜Gn . Therefore, denoting by� the distribution function of a standard Gaussian
random variable, by symmetry of ϕ(n) we obtain that

(P⊗ P
′)
(

x ∈ Cu,n
) (6.14),(Law0)= 1− 2P

G
˜Gn

(ϕx ≥
√
2u) = 2�

(√
2u(g

˜Gn
(x, x))−1/2)− 1

−→
n→∞ 2�

(√
2u(g

˜G(x, x))−1/2)− 1 = (P⊗ P
′)
(

x ∈ Cu,∞
)

,
(6.15)

taking advantage of the validity of (Law0) for the graphG and (6.14) in the last equality.
Hence, using (6.13) and (6.15), there exists a sequence (bn)n∈N such that for all n ∈ N,

∑

n∈N

P⊗ P
′({x ∈ Cu,bn

} \ {x ∈ Cu,∞
})

< ∞,

and Borel-Cantelli entails that (P⊗ P
′)-a.s., lim supn→∞

{

x ∈ Cu,bn

} = {x ∈ Cu,∞
}

.
Using a diagonal argument and the separability of ˜G, we can actually choose the
sequence (bn)n∈N uniformly in x ∈ ˜G. Combining with (6.13), we obtain (6.12).

By passing to a subsequence of Gn, n ∈ N, we assume without loss of generality
from now on that bn = n in (6.12), which, together with (4.12) and (6.11) directly
implies that

lim
n→∞

(

ϕ
(n)
x 1x /∈Cu,n +

√

(ϕ
(n)
x )2 + 2�(n)

x,u 1x∈Cu,n

)

= ϕ
(∞)
x 1x /∈Cu,∞ +

√

(ϕ
(∞)
x )2 + 2�(∞)

x,u 1x∈Cu,∞ .

(6.16)

for all x ∈ ˜G with ϕ
(∞)
x 	= 0. Moreover if ϕ

(∞)
x = 0, then by (4.12) and (6.11) we

have ϕ
(n)
x = 0 and �

(n)
x,u = �

(∞)
x,u for all n large enough, and so (6.16) remains true.

Since Gn is finite for all n ∈ N, Lemma 6.1 and Lemma 4.4 yield that (Isom) holds
on Gn for all n ∈ N, and, noting that ϕ

(n)
x + √

2u → ϕ
(∞)
x + √

2u as n → ∞ and
applying (6.16), we infer that (Isom) holds for G∞ = G.

It remains to show that (4.9) holds (on G). Fix e ∈ E ∪ G. For sufficently large n,
which we will tacitly assume henceforth, e ∈ En ∪ Gn , where (Gn, En) refers to the
graph induced by Gn . Define for all n ∈ N∪ {∞} the random set of edges and vertices
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E (n)
u = {e ∈ En ∪ Gn : 2�(n)

x,u + (ϕ
(n)
x )2 > 0 for all x ∈ Ie}. By Lemma 4.4 applied

to Gn , we have for all n ∈ N that

(P⊗ P
′)
(

e ∈ E (n)
u | ω̂(n)

u , ϕ
(n)
|Gn

) = 1e∈Iu
E,n

∨ pGn
e (ϕ(n), �(n)

.,u ),

where Iu
E,n is the union of the set of edges crossed by the trace ω̂

(n)
u ofω(n)

u onGn, and

of the set of vertices on which a trajectory of ω̂(n)
u is killed. Moreover, using (2.35) and

(2.42), we have that for any finite set S ⊂ (E ∪ G), conditionally on (ϕ
(n)
x )x∈Gn and

ω̂
(n)
u , the family {e ∈ E (n)

u }, e ∈ S, is independent for all large enough n (including
∞), and for all e ∈ S,

(P⊗ P
′)
(

e ∈ E (n)
u | ω̂(n)

u , ϕ
(n)
|Gn

) = (P⊗ P
′)
(

e ∈ E (n)
u | ω̂(n)

u,e, (ϕ
(n))|e

)

.

Note that (P ⊗ P
′)-a.s., for all large enough n, we have and (ϕ(n))|e = (ϕ(∞))|e and

ω̂
(n)
u,e = ω̂

(∞)
u,e as well as 1{e ∈ Iu

E,n} = 1{e ∈ Iu
E,∞} for each e ∈ S by (4.12) and

(6.11). Now due to (3.12) and (3.13), we also have pGn
e (ϕ(n), �

(n)
.,u ) = pGe (ϕ(∞), �

(∞)
.,u )

for each e ∈ S and all n large enough, and so

(P⊗ P
′)
(

e ∈ E (∞)
u | ω̂(∞)

u , ϕ
(∞)
|G
) = 1e∈Iu

E,∞ ∨ pGe (ϕ(∞), �(∞)
.,u ),

which yields (4.9) for the graph G on account of (4.11), (6.10) and since S ⊂ (E ∪G)

was arbitrary. ��
Let us now quickly explain how to deduce Theorem 3.9 and Corollaries 3.11 and

3.12 from Lemma 6.4.

Proof of Theorem 3.9 We start with the proof of (3.14). If (Isom’) holds, then
(Lawh)h>0 also holds by Proposition 4.2. If (Lawh)h>0 holds, then (Law0) also holds
by taking the limit as h ↘ 0 in (Lawh) and using (2.23). If (Law0) holds, then (Isom)
also holds by Lemma 6.4. Since (Isom’) and (Isom) are equivalent by Lemma 6.1, we
obtain (3.14).

Let us now assume that one of the conditions in (3.14) holds. Then by Lemma 6.4,
we have that (Isom’) and (4.9) hold. Moreover, the family {e ∈ Eu}, e ∈ E ∪ G, is
independent conditionally on ω̂u and (ϕx )x∈G by (2.35) and (2.42), and, by (4.9) we
thus have that (Eu, (ϕx )x∈G , ω̂u) has the same law under˜P as (̂Eu, (ϕx )x∈G, ω̂u) under
̂P. Finally, since by (2.41) and (2.32) P

I (Iu∩ Ix 	= ∅) = 1 for all x ∈ G with κx > 0,
for each x ∈ G,we have x ∈ Cu ∩G if and only if there is a path π ⊂ Eu ∩ E between
x and some y ∈ (Iu ∪ Eu) ∩ G, and so (σx )x∈G and σ̂ also have the same law. The
equality (3.16) then follows directly from (Isom’). ��
Proof of Corollary 3.11 Let G be a graph such that (Law0) is fulfilled. Then (Isom)
holds by (3.14). Let us assume that E≥0 contains at least one non-compact component
with positive probability. In particular, there exists x0 ∈ ˜G such that E≥0(x0) is non-
compact with positive probability. By Theorem 3.2, we know that cap(E≥0(x0)) < ∞
P
G -a.s, and so by Lemma 3.1, E≥0(x0) is also unbounded with positive probability.
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Now, by (2.41), it follows that for all u > 0, with (PI ⊗ P
G)-positive probability,

E≥0(x0) is unbounded and x0 /∈ Cu . By (Isom) and symmetry of the Gaussian free
field, we obtain that for all u > 0 E≥

√
2u(x0) is unbounded with positive probability.

In particular, if˜hcom∗ > 0, then E≥0 contains a non-compact component with positive
probability, and so E≥h contains an unbounded component for all h > 0 by the above
reasoning, that is ˜h∗ = ∞. If moreover hkill < 1, then ˜h∗ ≥ 0 by (1.8). Therefore
by (3.3), we have ˜hcom∗ ≥ ˜h∗ ≥ 0. Since ˜h∗ = ∞ if ˜hcom∗ > 0, we thus obtain
˜h∗ =˜hcom∗ ∈ {0,∞}. ��
Proof of Corollary 3.12 Let us assume that˜h∗ ≤ 0, then E≥h is P

G -a.s. bounded for all
h > 0. By Theorem 3.7, we thus have that (Lawh) holds for all h > 0, and so (Law0)
also holds by (3.14). Since E≥h is P

G -a.s. bounded for all h > 0, we thus obtain by
Corollary 3.11 that E≥0 is P

G -a.s. bounded. ��
Remark 6.5 (1) From Proposition 4.2, Corollary 5.1 and Lemma 6.4, one could imme-

diately prove again Theorem 3.7 (which however does not require accessing to
the information (Isom’) on ˜G).

(2) Similarly to Theorem 8 of [20], one could also use (4.6) to deduce an isomorphism
theorem between random interlacements and the Gaussian free field even if G
is infinite. More precisely, if G is a graph such that |{x ∈ G : κx > 0}| <

∞, one can merge all the open ends of the cables Ix , x ∈ G with κx > 0,
into a new vertex x∗, and apply (4.6) to the new (locally finite) graph G ∪ {x∗}.
Decomposing the loop soup into loops hitting x∗ and loops avoiding x∗ similarly
as in “Appendix B”, one can then prove an isomorphism similar to Theorem 3.9,
but replacing random interlacements on ˜G by killed random interlacements on ˜G,

that is all the trajectories in the random interlacement process whose forward and
backward parts are both killed before escaping all bounded sets, and replacing
ϕ +√

2u by ϕ +√
2uhkill, see (1.2). In Corollary 6.9 of [22], this isomorphism

between killed random interlacements and the Gaussian free field is extended to
any graphs satisfying (Law0).

(3) An interesting open question is whether a transient graph G exists such that (Law0)
does not hold, or any of the other equivalent conditions appearing in (3.14). In view
ofCorollary 3.11, one could also ask if a transient graphG exists, such thathkill < 1
is fulfilled, but˜h∗ ∈ (0,∞) or˜hcom∗ ∈ (0,∞), and then (Law0) would not hold.
On such a graph, we would still have by Theorem 3.7 that (Lawh) holds for all
h >˜hcom∗ .
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A Appendix: the condition (Cap)

We gather in this section various pertinent observations around the condition (Cap)
appearing on above Theorem 1.1, including a proof of Lemma 3.4. The following
result is simple but useful in absence of any quantitative information on the asymptotic
behavior of g(·, ·).
Lemma A.1 (Decay of Green’s function). If A ⊂ G is an infinite set, then for all
sequences xn ∈ A, n ≥ 0, such that limn dG(x0, xn) = ∞ and g(xn, xn) ≤ g0 ∈
(0,∞) for all (but finitely many) n, one has

g(x0, xn) → 0, as n →∞. (A.1)

Proof We argue by contradiction. Suppose that for some ε > 0 and some xn ∈ A with
g(xn, xn) ≤ g0, n ≥ 0 and limn dG(x0, xn) = ∞

g(x0, xn) ≥ ε, for all n ≥ 0. (A.2)

By passing to a subsequence we may also assume that dG(x0, xn) > n, for all n ≥ 0.
Let ̂Hy = inf{n ∈ N : ̂Zn = y} the hitting time of y for the discrete skeleton ̂Z ,

with inf ∅ = ∞. Since for all x, y ∈ G g(x, y) = Px (̂Hy < ∞)g(y, y) and g is
symmetric, one then has by (A.2)

Px0(̂Hxn < ∞)≥ g−1
0 ε and Pxn (̂Hx0 < ∞)≥ g−1

0 ε, for all n ≥ 0. (A.3)

Since dG(x0, xn) > n, (A.3) and the strong Markov property then imply, for all n ≥ 0

Px0(∃ p ≥ ̂TB(x0,n) : ̂Z p = x0) ≥ Px0(Hxn < ∞, ∃ p ≥ ̂Hxn : ̂Z p = x0) ≥ g−2
0 ε2,

where ̂TB(x,n) = inf{p ∈ N : ̂Z p /∈ B(x, n)} is the first exit time of the discrete
ball B(x, n) for the graph distance dG on G, with inf ∅ = ∞. Since ̂Tn = ̂TB(x0,n)

increases to∞, there exists a sequence (nk)k≥0 such that

Px0
(∃ p ∈ {̂Tnk , . . . ,̂Tnk+1 − 1} : ̂Z p = x0

) ≥ ε2

2g20
, for all k ≥ 0,

whence

g(x0, x0) = 1

λx0
Ex0

[
∞
∑

p=0

1
̂Z p=x0

]

≥ 1

λx0

∑

k≥0
Ex0

[
∑

̂Tnk≤p<̂Tnk+1

1
̂Z p=x0

]

≥
∑

k≥0

ε2

2g20λx0

= ∞,
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a contradiction to the transience of G. ��
The utility of a control like (A.1) is illustrated by the following criterion.

Lemma A.2 (Criterion for infinite capacity) If A ⊂ G satisfies

{

|A| = ∞, and

g(x, x) ≤ g0, for all x ∈ A,
(A.4)

then cap(A) = ∞.

Proof A proof of this can be found in [16], Lemma 2.13. We give a different proof.
Let ε > 0 and n ≥ 1. Consider the ‘refined’ set Aε,n = {x0, . . . , xn} ⊂ A defined as
follows. Fix x0 ∈ A arbitrary. Given {x0, . . . , xk−1} for some 1 ≤ k < n, applying
Lemma A.2, which is in force due to (A.4), we find by means of (A.1) a point xk ∈ A
such that g(xk, xk′) < ε for all k′ < k. Overall it follows that

g(x, y) ≤ ε, for all x 	= y ∈ Aε,n . (A.5)

Now, by the variational principle (2.21) and by monotonicity, see (2.23), one obtains
that

cap(A) ≥ cap(Aε,n) ≥
(

1

n2
∑

x,y∈Aε,n

g(x, y)

)−1
(A.4),(A.5)≥

(g0
n
+ ε
)−1

.

from which cap(A) = ∞ follows by letting first n →∞ and then ε → 0. ��
We conclude this section with the

Proof of Lemma 3.4 1) Let us first assume that (Cap) holds true for the graph G. In this
case, for all infinite and connected A ⊂ G, writing ˜A for the union of the Ie for all
edges e ∈ E between two vertices of A, we have by (2.16) and (2.27)

cap(A) = cap(˜A) = ∞,

since ˜A is an unbounded and connected set of ˜G, and so (3.6) is satisfied. Assume now
that G is a graph such that (3.6) is verified, and let ˜A be a connected and unbounded
subset of ˜G. Then ˜A contains an infinite and connected set A ⊂ G, and so by (2.23)
and (3.6) cap(˜A) ≥ cap(A) = ∞, that is (Cap) holds.

2) By (3.7), the set A′ def.= {x ∈ A : g(x, x) ≤ g0} is infinite for any infinite
and connected sets A ⊂ G. Thus, A′ satisfies (A.4), and Lemma A.2 yields that
(cap(A) ≥) cap(A′) = ∞. Hence by Lemma 3.4,1), (Cap) holds. If G is vertex-
transitive, then g(x, x) = g0 is constant, and so (3.7) holds.

3) ByLemma 3.4,1), (2.23) and (2.27), it is enough to prove that cap(B) = ∞ for all
infinite and connected sets B containing exactly one vertex per generation. Let us fix
some x0 ∈ B, and for all i ≥ 0 define recursively xi+1 as the first descendants x ∈ B of
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xi in B such that Tx \ B is infinite. Note that such a vertex xi+1 must exists, otherwise
R∞x = ∞ for all descendants x of xi in B. For each i ∈ N, {x ∈ Txi \ B : R∞x > A}
is finite, and so there exists a cut-set Ci between xi and infinity in Txi \ B, such that
R∞y ≤ A for all y ∈ Ci . Taking Bn = {x0, . . . , xn}, we have for all n ∈ N and
i ∈ {1, . . . , n − 1} that

eBn (xi ) = λxi P
T

xi (Zn ∈ Txi \ B for all n ∈ N)

≥ λxi

∑

y∈Ci

PT

xi (ZHCi
= y, HCi < ˜Hxi )Py(Hy− = ∞)

≥ λxi

∑

y∈Ci

PT

xi (ZHCi
= y, HCi < ˜Hxi )

1

1+ R∞y
≥ λxi

1+ A
PT

xi (HCi < ˜Hxi ),

where y−i is the first ancestor of yi and we used (1.11) in [1] in the second inequality.
Since T is transient and the random walk on Z is recurrent, it is easy to see that B
is visited infinitely often with probability 0. Therefore, for each i ∈ N, under PT

xi , if
Zn ∈ Txi for all n ∈ N, then there exists p ≥ i such that HCp < ˜Hxi , and so

1

R∞xi
≤ λxi P

T

xi (∃ p ≥ i, HCp < ˜Hxi ) ≤
∑

p≥i
λxp P

T

xp (HCp < ˜Hxi ), (A.6)

where in the last inequality we used λxi P
T
xi (Hxp < ˜Hxi ) = λxp P

T
xp (Hxi < ˜Hxp ) ≤

λxp . Moreover, for all y ∈ B between xi and xi+1, the effective resistance between
y and ∞ in Txi is R∞y , and so using a series transformation we have R∞y ≥ R∞xi+1
Therefore, since B is an unbounded and connected set, we have R∞xi ≤ A infinitely
often, and so the sum on the right-hand side of (A.6) must be infinite. Using (2.20)
and (2.27) we conclude that

cap(B) = lim
n→∞

∑

i∈{0,...,n}
eBn (xi ) ≥

1

1+ A

∑

i∈N

λxi P
T

xi (HCi < ˜Hxi ) = ∞,

which completes the proof. ��

B Appendix: Proof of Lemma 4.4

In this Appendix we are going to prove that the coupling between loop soups and the
Gaussian free field, (4.6), implies the coupling between random interlacements and
the Gaussian free field on finite graphs, Lemma 4.4, following similar ideas to the
proof of Theorem 8 in [20]. Let us define

Uκ
def.= {x ∈ G : κx > 0}
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and let G∗ be the graph with vertex set G, plus an additional vertex x∗. The symmetric
weights on G∗ are

λ∗x,y =

⎧

⎪

⎨

⎪

⎩

λx,y when x, y ∈ G

κx when x ∈ Uκ and y = x∗
0 when x /∈ Uκ and y = x∗,

and the killing measure κ∗ = 1x∗ . We write G∗ = G ∪ {x∗} and E∗ = {{x, y} ∈
G∗ × G∗ : λ∗x,y > 0} for the vertex and edge set of G∗. Note that each edge Ie of
˜G∗, e ∈ E∗, can be identified with some edge Ie of ˜G, e ∈ E ∪Uκ , and one can
then identify the cable system ˜G∗ \ {Ix∗ ∪

⋃

x∈Uκ
Ix } with ˜G. By (2.30), for all x ∈ ˜G

the law of the trace of X on ˜G killed on hitting x∗ under P
˜G∗
x is thus P

˜G
x . Recall the

decomposition of the loop soup ˜L 1
2
= ˜L in

1
2
+ ˜L ∗

1
2
on G∗ defined below Lemma 4.4, and

let (L∗x )x∈˜G∗ be the local times of ˜L ∗
1
2
under P

L
˜G∗ , and L ∗

1
2
be the trace of ˜L ∗

1
2
on G∗.

Each loop in L ∗
1
2
can be decomposed into its excursions outside x∗, that is a trajectory

entirely contained in G, starting and ending inUκ , and the process Le,∗
1
2

of excursions

is then defined as the point process consisting of all the excursions outside x∗ for all
the loops inL ∗

1
2
.We can now compare the Gaussian free field on ˜G∗ with the Gaussian

free field on ˜G, and the loops ˜L ∗
1
2
hitting x∗ on ˜G∗ with random interlacements on ˜G.

Proposition B.1 Let G be a transient graph such that G is finite. For any u > 0,

(ϕx )x∈˜G has the same law under P
G
˜G∗(· |ϕx∗ =

√
2u) as (ϕx +

√
2u)x∈˜G under P

G
˜G , (B.1)

and

Le,∗
1
2

has the same law under P
L
˜G∗(· | Lx∗ = u) as ω̂u under P

I
G . (B.2)

In particular,

(L∗x )x∈˜G has the same law under P
L
˜G∗(· | Lx∗ = u) as (�x,u)x∈˜G under P

I
˜G . (B.3)

Proof We begin with (B.1). By the Markov property applied to the graph G∗, see
(2.34), conditionally onA+

{x∗}, (ϕx )x∈˜G is a Gaussian field with mean η
ϕ
{x∗} = ϕx∗ and

variance g{x∗}c = g
˜G, and thus (ϕx − ϕx∗)x∈˜G has the same law under P

G
˜G∗(· |A

+
{x∗})

as ϕ under P
G
˜G , and (B.1) follows.

Let us now prove (B.2). By Proposition 3.7 in [20], conditionally on Lx∗(= L∗x∗) =
u, the excursions outside x∗ in L∗1

2
have the same law as the excursions of the Markov

jump process Z outside x∗ stopped when reaching local time u at x∗ under P
˜G∗
x∗ (Z ∈

· | �x∗(ζ ) > u), which can be described as follows: first stay an exponential time with
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parameter λ∗x∗ −κ∗x∗ in x∗, then jump to an x ∈ Uκ with probability
κx

λ∗x∗−κ∗x∗
and follow

on G a process with the same law as Z under P
˜G
x . Once this process is killed, jump

back to x∗ and iterate this process until reaching local time u at x∗. By a property of
exponential variables, the number of time this process is iterated is a Poisson variable
with parameter u(λ∗x∗ − κ∗x∗), and thus, conditionally on Lx∗ = u, Le,∗

1
2

is a Poisson

point process with intensity

u
∑

x∈Uκ

κx P
˜G
x (Z ∈ ·).

Note that, under P
˜G
x , we have ˜HG = ∞ if and only if x ∈ Uκ and the discrete

skeleton ̂Z of Z is killed at time 1, and thus eG(x) = κx for all x ∈ Uκ and eG(x) = 0
otherwise. Therefore by (2.39) and (2.40) with K = G, conditionally on Lx∗ = u,

Le,∗
1
2

is a Poisson point process with intensity uνG, where νG is the print on G of the

intensity measure ν
˜G of random interlacements, and we obtain (B.2). This implies in

particular that (L∗x )x∈G has the same law under P
L
˜G∗(· | Lx∗ = u) as (�x,u)x∈G under

P
I
˜G, and thus (B.3) follows by considering the graph GA for any finite subset A of ˜G,

see Lemma 2.1. ��
Using (4.6) for the graph G∗, and decomposing ˜L 1

2
on ˜G∗ into ˜L in

1
2
and ˜L ∗

1
2
, we are

now ready to prove Lemma 4.4.

Proof of Lemma 4.4 Let us define (L in
x )x∈˜G∗ the total local times of the loops in ˜L in

1
2

under P
L
˜G∗ . By (4.5), (L in

x )x∈˜G has the same law as the restriction to ˜G of the local

time of a loop soup on ˜G {x∗}c∞ , and thus the same law as the local time of a loop
soup on ˜G. By (4.6), (L in

x )x∈˜G has thus the same law under P
L
˜G∗ , or also

˜P
L
˜G∗(· | σx∗ =

1, L∗x∗ = u), as 1
2ϕ

2 under P
G
˜G . Moreover, under ˜PL

˜G∗(· | σx∗ = 1, L∗x∗ = u), using

the equality Lx = L in
x + L∗x for all x ∈ ˜G, the law of (σx )x∈˜G can be described

as follows: conditionally on (L in
x )x∈˜G and (L∗x )x∈˜G, σ is constant on each cluster of

{x ∈ ˜G : L∗x + L in
x > 0}, with σx = 1 for all x ∈ ˜G such that L∗x > 0, and the values

of σ on each other cluster are independent and uniformly distributed. Using (B.3) we
thus have that, under˜PL

˜G∗(· | σx∗ = 1, L∗x∗ = u),

(σx
√

2Lx )x∈˜G has the same law as
(

σ u
x

√

2�x,u + ϕ2
x

)

x∈˜G under˜P
˜G .

According to (4.6), the law of (σx
√
2Lx )x∈˜G under˜PL

˜G∗(· | σx∗ = 1, Lx∗ = u) is the

same as the law of (ϕx )x∈˜G under P
G
˜G∗(· |ϕx∗ =

√
2u), and thus by (B.1) the same as

the law of (ϕx +
√
2u)x∈˜G under P

G
˜G , and we obtain (Isom’).

By (2.35) and (2.42), it is clear that, conditionally on ω̂u and (ϕx )x∈G , the family
{e ∈ Eu}, e ∈ E ∪ G, is independent, and we now turn to the proof of (4.9). Let
E in = {e ∈ E∗ : L in

x > 0 for all x ∈ Ie}, and, conditionally on E in, let (σ in
x )x∈G be
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an independent additional process, such that σ in is constant on each cluster induced
by E in, and its values on each cluster are independent and uniformly distributed. Note
that the clusters of G induced by E in are the same as the intersection with G of the
clusters of {x ∈ ˜G∗ : L in

x > 0}, and so by (4.5) and (4.6), (σ in
x

√

2L in
x )x∈G has the

same law under P
L
˜G∗(· | Lx∗ = u) as ϕ under P

G
˜G , and by (B.3), E has the same law as

E ′u := Eu \ {Ix , x ∈ G \Uκ} under˜P˜G, where E is defined in (4.7). Therefore using
(B.2) we obtain that

(E,
(

σ in
x

√

2L in
x

)

x∈G,Le,∗
1
2

)

has the same law under˜PL
˜G∗(· | Lx∗ = u)

as
(E ′u, ϕ|G , ω̂u) under˜P. (B.4)

For each e ∈ E∗, the event {e /∈ E in} is independent of L∗1
2
, and, conditionally on {e /∈

E in}, L∗1
2
and L in|G = (L in

x )x∈G, the event {e /∈ E} is independent of σ in|G = (σ in
x )x∈G .

Therefore, since {e /∈ E} ⊂ {e /∈ E in}, we obtain

˜P
L
˜G∗
(

e /∈ E |L∗1
2
, L in|G, σ in|G

) =˜PL
˜G∗
(

e /∈ E in | L in|G, σ in|G
)

˜P
L
˜G∗
(

e /∈ E |L∗1
2
, L in|G , e /∈ E in).

(B.5)

Now, since (σ in
x

√

2L in
x , {e /∈ E in}) has the same law as ((ϕx )x∈G , {∀y ∈ Ie : |ϕy | >

0}c) under P
G
˜G , it follows from (2.36) that for all e ∈ E∗,

˜P
L
˜G∗
(

e /∈ E in | (σ in
x

√

2L in
x

)

x∈G
)

= pGe (σ in
√
2L in)1e∈E + 1e/∈E , (B.6)

where we identified e with the corresponding edge or vertex of E ∪ G. Let us write
ILE ⊂ E ∪ G for the set of edges of G crossed by at least one single trajectory in
Le,∗

1
2

, union with the set of vertices of G at which a trajectory in Le,∗
1
2

is killed, which

corresponds to the set of edges of G∗ crossed by at least one single trajectory in L∗1
2
.

Now since {e /∈ E in} is independent of L ∗
1
2
, we have by (4.7) that for all edges e ∈ E

˜P
L
˜G∗
(

e /∈ E |L∗1
2
, L in|G , e /∈ E in) =

˜E
L
˜G∗
[

˜P
L
˜G∗
(

e /∈ E |L 1
2

) |L∗1
2
, L in|G

]

˜E
L
˜G∗
[

˜P
L
˜G∗
(

e /∈ E in |L in
1
2

) | L in|G
]

= pG∗e

(√
L in + L∗

)

pGe (
√
L in)

1e/∈IL
E
.

Combining with (B.5) and (B.6), we thus obtain that for all edges e ∈ E,
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˜P
L
˜G∗
(

e /∈ E |L∗1
2
, L in|G , σ in|G

) = pG∗e
(
√

L in + L∗
)

pGe
(

σ in
√
2L in

)

pGe
(
√
L in
)

1e/∈IL
E

= pGe
(

σ in
√

2L in, L∗
)

1e/∈IL
E

,

(B.7)

where we used (3.12) and (2.37) in the last equality. Now if e ∈ E∗ \ E, then one
can identify e with some xe ∈ Uκ , and by (B.6), we have e /∈ E in

˜P
L
˜G∗ -a.s, and so e is

crossed by a loop in L 1
2
, if and only if e is crossed by a loop in L ∗

1
2
, that is xe ∈ ILE .

Therefore by (4.7),

˜P
L
˜G∗
(

e /∈ E |Le,∗
1
2

, L in|G , σ in|G , L∗x∗ = u
) =˜PL

˜G∗
(

e /∈ E |Le,∗
1
2

, L in|G , L∗x∗ = u
)

= pG∗e

(

√

L in + L∗
)

1xe /∈IL
E ,L∗x∗=u

= pu,G
xe

(

σ in
√
2L in, L∗

)

1xe /∈IL
E
, (B.8)

where we used (3.12) and (2.37) in the last equality. Finally, if x ∈ G \Uκ , then
κx = 0, x /∈ Iu

E , and˜P
˜G(x /∈ Eu | ω̂u, (ϕx )x∈G) = 1 = pu,G

x
(

ϕ, �·,u
)

. Therefore since

ILE is obtained from Le,∗
1
2

in the same way that Iu
E is obtained from ω̂u, we obtain

(4.9) by (B.4), (B.7) and (B.8). ��
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