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The free-boundary problem between a liquid region and a mushy layer (a reactive porous
medium) must respect both thermodynamic and fluid dynamical considerations. We de-
velop a steady, two-dimensional forced-flow configuration to investigate the thermody-
namic condition of marginal equilibrium that applies to a solidifying mushy layer with
outflow and requires that streamlines are tangent to isotherms at the interface. We show
that a ‘two-domain’ approach in which the mushy layer and liquid region are distinct
domains is consistent with marginal equilibrium by extending Stokes equations in a nar-
row transition region within the mushy layer. We show that the tangential fluid velocity
changes rapidly in the transition region to satisfy marginal equilibrium. In convecting
mushy layers with liquid channels, a buoyancy gradient can drive this tangential flow. We
use asymptotic analysis in the limit of small Darcy number to derive a regime diagram
for the existence of steady solutions. Thus we show that marginal equilibrium is a robust
boundary condition and can be used without precise knowledge of the fluid flow near the
interface.
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1. Introduction

The boundary conditions between a mushy layer (a reactive porous medium) and a
liquid melt involve a complex interaction between thermodynamics and fluid flow (Beck-
ermann & Wang 1995; Schulze & Worster 1999, 2005). A mushy layer comprising den-
dritic crystals and residual melt often forms when a two-component mixture solidifies.
Pressure gradients, buoyancy gradients, external shear and internal phase change can all
drive fluid flows through the porous medium. Boundaries between a mushy and a liquid
region are a vital part of any description of a mushy layer. For example, at the wall
of a dissolution channel in a solidifying, convecting mushy layer (Copley et al. 1970),
there is an outflow into the channel, and appropriate boundary conditions are needed
to determine the size of the channel. For this situation, motivated by the idea that a
mushy layer grows to relieve supercooling of the liquid, Schulze & Worster (1999, 2005)
derived a condition of marginal equilibrium, which requires that streamlines are tangent
to isotherms at the boundary.

In this paper, we investigate a potential inconsistency of marginal equilibrium associ-
ated with a slip in the tangential velocity at a mush–liquid interface (Beavers & Joseph
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1967). We use the idea of a transition region inside the mushy layer that has a width of
a few pore lengths where we apply Stokes equation for viscous flow, following Le Bars &
Worster (2006). This allow us to investigate the effect of slip in the tangential velocity
within a two-domain formulation of mushy-layer theory, while retaining a continuous ve-
locity on the microscale, which is necessary for marginal equilibrium. We do not intend
the transition region to constitute a complete description of the fluid flow near the inter-
face. However, it is a self-consistent alternative to using the Darcy-Brinkman equation
to describe the flow in both the mushy layer and liquid region. These alternatives were
shown by Le Bars & Worster (2006) to give comparable results for a transition region of
prescribed dimensionless width

δ = cD1/2, where c = O(1), D = Π0/H
2, (1.1)

and the dimensionless Darcy number D is the ratio of a characteristic permeability Π0

to the square of a length scale H characteristic of the width of the mushy layer.
In sections 2 and 3 respectively we present interior equations and boundary conditions

for an ideal mushy layer (Worster 1997, 2000; Schulze & Worster 2005). In section 4,
we apply these equations to a simple ‘toy’ problem with a two-dimensional corner flow,
using a configuration originally formulated by Conroy & Worster (2006) and Le Bars
& Worster (2006), because the marginal equilibrium condition at an outflow boundary
is fundamentally two-dimensional. In section 5 we present semi-analytical results that
explain the regions of parameter space in which there is a steady mush–liquid interface,
and we discuss these results in section 6.

2. Mushy-layer and liquid-region equations

We work with the equations for an ideal mushy layer describing conservation of mass,
heat, solute and momentum, as well as a liquidus relationship between temperature T
and interstitial (or liquid region) concentration C, respectively

∇ · q = 0, (2.1)

DT

Dt
= κ∇2T +

L

cp

Dsφ

Dt
, (2.2)

DC

Dt
− φD

sC

Dt
= (C − CS)

Dsφ

Dt
, (2.3)

µu = −Π∇p, (2.4)

T = TL(C) ≡ Tm −m(C − CS). (2.5)

We use the material derivatives Ds/Dt moving with the solid phase of velocity v, and
D/Dt moving with the total flux q = u + v, where u is the Darcy velocity. In the
idealization, it is assumed that the phases have the same material and thermal properties
(particularly latent heat of solidification L and heat capacity cp) and that the liquidus is
linear with gradient −m. The concentration of the solid phase CS = 0 and the melting
temperature is Tm. The solute diffusivity, which is much less than thermal diffusivity κ,
is neglected. The permeability of the porous medium is Π and the dynamic viscosity of
the fluid is µ. We also neglect buoyancy-driven flow.

Equations (2.1–2.3) hold in the liquid region where q is the fluid velocity and φ = 0.
In the liquid region, fluid flow is governed by Stokes equation

µ∇2q = ∇p. (2.6)

Neglect of solute diffusion in the liquid region implies that the concentration is constant
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along streamlines there, which is an important consideration in the development of the
interfacial conditions between mush and liquid (Schulze & Worster 1999).

An important feature of the model is that there is a transition region between the
mushy layer and the liquid region in which the solid fraction is non-zero and the thermo-
dynamics is described by the mushy-layer equations while the flow is described by Stokes
equation.

3. Mushy-layer boundary conditions

At a mush–liquid interface, we apply continuity of temperature and heat flux

[T ]ml = 0, V Lφm = cpκ[n · ∇T ]ml , (3.1a, b)

where V is the velocity of the interface relative to the solid phase in the direction normal
to the interface (from mush to liquid) and subscripts m and l denote quantities evaluated
on the mush and liquid sides of the interface respectively. Solute conservation across the
interface implies that

−[C]ml U = φm(Cm − CS)V, (3.2)

where U is the velocity of the liquid phase relative to the mush–liquid interface. So if, as
in the case of outflow, [C]ml = 0 (the concentration is continuous), then φm = 0 at the
interface, and vice versa.

Schulze & Worster (1999, 2005) have shown that the conditions of heat and salt conser-
vation are insufficient to determine the location of the interface for a solidifying mushy
layer, V > 0. Therefore, motivated by the fact that a mushy layer grows to alleviate
constitutional supercooling, they derive a condition of marginal equilibrium. For inflow,
U < 0, the marginal equilibrium condition extends the liquidus condition (2.5) into the
liquid such that the temperature satisfies n · ∇Tl = n · ∇TL(Cl), as originally proposed
by Worster (1986). For outflow, U > 0, the marginal equilibrium condition requires that

DT

Dt
= 0. (3.3)

4. Solidification with a corner flow

4.1. Problem formulation

We consider a semi-infinite rectangular channel of width H in a directional solidification
configuration (with the pulling speed V in the negative z-direction, which is equivalent
to a solidification rate V ). This configuration permits steady solutions in which the
mush–liquid interface is fixed, the solid phase has velocity v = −V ẑ, and corresponds to
the experimental apparatus of Peppin et al. (2007). We impose boundary temperatures
T = Tm − (k1,2/H)x, 0 < x <∞, on two permeable walls, where x is the distance along
the channel. We impose k1 > k2 such that the lower wall, which is adjacent to a mushy
layer, is colder than the upper wall, which is adjacent to a liquid melt that occupies a
fraction 1− η of the channel, as shown in figure 1(a). To control the flow, we impose
the total normal flux q · n = Q1,2 at the permeable walls. We also impose no slip at the
upper wall in the figure.

Figure 1(b) shows the dimensionless version of this problem. We non-dimensionalize
lengths with respect to the dimensional channel width H and velocities with respect
to Q1. Henceforth, x and z denote dimensionless lengths. The ratio of imposed fluxes
r = Q2/Q1 determines the direction of the flow, with r < 1 corresponding to flow towards
the positive x-direction. We restrict attention to the case r > 0 to ensure outflow.
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Figure 1. Problem formulation in (a) dimensional variables and (b) dimensionless variables.
The dimensionless temperature θ(z) and flow function f(z) are defined in equations (4.1, 4.2).

The transition region has a prescribed dimensionless width δ = cD1/2.

We seek a self-similar solution in which the dimensionless temperature and interstitial
concentration can be written in the form

T − θ(z) =
Tm − T

(k1 − k2)x
=
m (C − CS)

(k1 − k2)x
, (4.1)

where T = k2/ (k1 − k2) > θ gives a measure of the ratio of horizontal to vertical
temperature gradients at the upper boundary.

Motivated by the separable solution for Stokes flow in a corner (Batchelor 1967), we
seek a corresponding similarity solution for the dimensionless material flux in the form

q/Q1 = [−xf ′(z), f(z)] , (4.2)

cf. Le Bars & Worster (2006). This mathematical framework allows for a two-dimensional
flow to be analysed conveniently with one-dimensional equations in z. We note that this
similarity solution is consistent with symmetry boundary conditions on the flow at x = 0,
and T (0, z) = Tm.

4.2. Dimensionless fluid flow

In the liquid and transition regions, the flow satisfies the dimensionless Stokes equation
∇2q = ∇p. Eliminating the pressure, we find that Stokes equation becomes f (4)(z) = 0.
In the mushy layer, the flow satisfies Darcy’s law (2.4), which becomes (f ′/Π)′ = 0. In the
simplest case of uniform permeability Π = Π0, the solution that satisfies the boundary
conditions at z = 0 and z = 1 is

f = C0z + 1 0 6 z 6 η − δ, (4.3)

f = B0(1− z)3 +A0(1− z)2 + r η − δ 6 z 6 1, (4.4)

where A0, B0, and C0 are constants that can be derived from mass conservation, no slip,
and continuity of pressure at the boundary between Stokes and Darcy flow, respectively

[f ] = 0, [f ′] = 0, f ′′′|+ = − f ′|− /D (z = η − δ). (4.5a, b, c)

We find that

A0 = −3B0

[
γ

2
+
D
γ

]
, B0 =

2(r − 1)

γ3 + 6D(2− γ)
, C0 = 6DB0, (4.6a, b, c)
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where γ = 1 − η + δ. Note that the streamfunction f is continuously differentiable (al-
though its second derivative is not continuous and we use superscripts in equation (4.6c)
to denote relevant side of the Stokes–Darcy boundary). Thus there are well defined
streamlines at the mush–liquid interface, essential both to deriving and also imposing
the marginal equilibrium condition (Schulze & Worster 2005). We now solve the thermo-
dynamic part of the problem.

4.3. Dimensionless interior equations

The ideal mushy-layer equations (2.2, 2.3) in the case of steady directional solidification
give

fθ′ − f ′(θ − T ) = θ′′/Pe − SVφ′ 0 6 z 6 η, (4.7)

fθ′ − f ′(θ − T ) = −V [φ(θ − T )]
′

0 6 z 6 η, (4.8)

where V = V/Q1 represents the ratio of the solidification rate to the imposed flow and
Pe = Q1H/κ is a Péclet number representing the ratio of advection by the imposed flow
to diffusion of heat. The Stefan number S = L/(cp(k1 − k2)x), so we can neglect latent
heat release at sufficiently large x where S � 1.

Equation (4.7) with φ = 0 is also the heat equation for the liquid region η 6 z 6 1.
Salt conservation in the liquid region is governed by q · ∇C = 0, so C ∝ xf(z).

4.4. Dimensionless boundary conditions

The dimensionless boundary conditions on temperature are

θ(0) = −1, θ(1) = 0, [θ]ml = 0, [θ′]ml = 0, (4.9a − d)

provided S � 1 so that latent heat release at the interface is insignificant.
For solidifying outflow (V,U > 0), conservation of solute (3.2) and marginal equilibrium

(3.3) require that

[C]lm = 0⇒ φm = 0, (4.10)

q · ∇θ = 0⇒ fθ′ − f ′(θ − T ) = 0 (z = η). (4.11)

In general, we solve these equations numerically, iterating such that equation (4.11) is
satisfied. We find the first integral of equation (4.8) analytically, using (4.7), to determine

φ =
1

PeV

θ′ − θ(η)

T − θ 0 6 z 6 η, (4.12)

where PeV = V H/κ = VPe is a Péclet number based on the solidification rate. Thus
the solid fraction is inversely proportional to the solidification rate V . Figure 2 shows a
typical example of a solution. Note that marginal equilibrium is satisfied, so streamlines
are tangential to isotherms at the mush–liquid interface.

5. Results in the case of a solidifying mushy layer with outflow

Steady solutions only exist in a limited region of parameter space (figure 3) because of
two crucial constraints. (I): If the outflow Q2 becomes too strong relative to the inflow
Q1, the isotherms become convex, which is inconsistent with the twin requirements of
marginal equilibrium and a positive solid fraction, as shown in sketch A in figure 3.
Physically, the mushy layer is dissolved away as there is not enough advection from the
cold lower boundary. An important implication of this first constraint is that there are
no solutions without a transition region. (II): If Q2 is too weak, the direction of the



6 D. W. Rees Jones and M. G. Worster

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

z f

−f ′
θ + 1

θ′

(a) (b) (c)

θ′′

Isotherm

Streamline

φ(z)

Figure 2. A typical solution for the dimensionless variables (magenta curves, labelled). The
transition region between the dashed horizontal line and the solid horizontal line at the mush–liq-
uid interface has width δ = 0.05 (c = 0.5,D = 0.01). Other parameters are r = 0.47, Pe = T = 1.
(a) Flow function f and the negative of its derivative, proportional to the vertical and horizontal
velocities respectively. (b) Temperature θ and its derivatives. Note that θ′′ becomes increasingly
negative in the mushy layer and only starts to increase in the transition region, and θ′′(η) = 0.
(c) the solid fraction φ, which increases away from the interface, and an illustration of the
marginal equilibrium condition: a streamline (blue, direction of flow indicated by an arrow) and
an isotherm (red, dashed) are tangential at the mush–liquid interface.
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Figure 3. A regime diagram showing the dependence on the imposed flow. In region A, there
are no steady solutions because the solid fraction is negative. This region is divided into two by
the dashed line r = 1 (Q2 = Q1), which separates flow to the left from flow to the right. In region
B, there is a unique steady solution. The width of the liquid region decreases towards region
C, in which there are no steady solutions because the mushy layer occupies the whole channel.
The boundaries are labelled (I) and (II) and are discussed in sections 5.1 and 5.2 respectively.
The right column shows sketched streamlines (blue, direction of flow indicated with an arrow)
and isotherms (dashed, red) and a vertical arrow showing the retreat (A), steady state (B) or
advance (C) of the mush–liquid interface. The regime diagram is in the physically meaningful
limit of small Darcy number D → 0, T = 1, and it is independent of c > 0. Thus the regime
diagram does not depend on the absolute size of the transition region, provided it is nonzero.

temperature gradient at the upper wall reverses, which is inconsistent with marginal
equilibrium, as shown in sketch C in figure 3. Physically, the mushy layer advances and
the width of the liquid region goes to zero.
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5.1. The concavity of isotherms (I)

We take the asymptotic limit Darcy number D → 0, in which both the transition region
and liquid region are narrow (see section 5.3). Mathematically, it is required to prove that
θ′′(z) 6 0 in the mushy layer given that φ > 0. Informally, the argument is that equation
(2.3) shows that DC/Dt > 0, since all the terms on the right hand side are positive,
at least sufficiently close to the mush–liquid interface. Then the liquidus condition (2.5)
shows that DT/Dt < 0, whence ∇2T < 0 using (2.2), as required. More formally, we
differentiate (4.7) with respect to z to find

θ′′′/Pe = fθ′′ − f ′′(θ − T ). (5.1)

In the mushy layer (excluding the narrow transition zone) f ′′ = 0 and f > 0, so θ′′ has a
definite sign. However, in the transition zone, f ′′ 6= 0 and θ′′ changes rapidly (as D−1/2)
to satisfy θ′′(η) = 0 (cf. figure 2b). Given that φ(η) = 0, φ must increase as z decreases
away from the interface z = η. From equations (4.7, 4.8), this requires θ′′(η−) < 0, so
θ′′(0) < 0, as claimed.

The physical reason why the transition region is crucial can also be inferred from
equation (5.1). In the mushy layer, the horizontal velocity is uniform. However, in the
transition region it decreases rapidly, cf. figure 2(a, c). This decrease allows horizontal
and vertical advection of heat to balance at the mush–liquid interface, as required by the
marginal equilibrium condition (4.11). (Note that only the horizontal velocity changes
across the transition region to leading order as D → 0.)

Furthermore, our asymptotic analysis shows that f , f ′, θ, θ′ and θ′′ are all O(1) in the
Darcy number, so the full solution for θ and θ′ can be found to leading order in the Darcy
number by solving (4.7) with the linear flow function f(z) = 1 + C0z because the mush
occupies almost all the domain. Now C0 ∼ (r − 1) from equation (4.6). For notational
simplicity, we introduce a depth-dependent Péclet number P (z) = Pe [1− z(1− r)] and
difference ∆P = Pe(1− r). Then we find the exact solution for the temperature field

θ(z) = T +K1P +K2

[√
π

2∆P
P erf

(
P√
2∆P

)
+ exp

(−P 2

2∆P

)]
, (5.2)

where K1 and K2 are constants determined by the boundary conditions θ(0) = −1 and
θ(1) = 0. Thus there is a unique solution that satisfies the boundary conditions, except in
the singular, one-dimensional case of ∆P = 0. Note that equation (5.2) holds if ∆P < 0,
and gives real solutions.

We determine the boundary (I) in figure 3 by considering the marginal case θ′′(z) = 0,
which occurs if and only if

r = T /(1 + T ). (5.3)

A consequence is that r < 1 (greater inflow than outflow meaning that flow is from left
to right and so from fresher to saltier).

5.2. The heat flux from the upper heat exchanger is positive (II)

The marginal equilibrium condition (4.11) requires that horizontal advection of warm
fluid from the left is balanced by the vertical advection of cold fluid from below. Thus
there are no steady solutions unless θ′(1) > 0.

We determine the boundary (II) in figure 3 by considering the marginal case θ′(1) = 0.
To fix ideas, consider the natural special case of no flux through the upper wall, r = 0.
There is a critical T = TC , above which there are no solutions, where

TC =
[√

πPe/2 erf
(√

Pe/2
)

+ exp (−Pe/2)− 1
]−1

. (5.4)
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Figure 4. (a) The critical temperature gradient ratio TC in the special case r = 0. The dashed
lines give the asymptotic scalings described in the main text. (b) The critical ratio of outflow
to inflow rc, above which there are steady solutions, for three given values of T . Note that the
rc = 0 intercept is the critical PeC in (a). The solid black squares denote the asymptotic value
rc ∼ T /(1 + T ) (equation 5.6). Note that for small T , at Pe = 20 the ratio is much less than
the asymptotic value, indicating a wide region of solutions.

The inverse of this relationship gives a critical PeC(T ) (i.e. input flux Q1). Note that
TC ∼ 2/Pe as Pe → 0 and TC ∼

√
2/πPe as Pe →∞, as shown in figure 4(a).

More generally, we find the boundary (II) – defined by, say, r = rc(Pe, T ) – that
satisfies a transcendental equation

(1 + T ) exp

(
−rcPe2

2∆P

)
− T exp

(
− Pe2

2∆P

)
=

T
√

π

2∆P
Pe

[
erf

(
Pe√
2∆P

)
− erf

(
rcPe√
2∆P

)]
. (5.5)

It is not difficult to show that this equation has a solution for all Pe > PeC , which we
plot in figure 4(b), and that, asymptotically for large Pe,

rc ∼ T /(1 + T ). (5.6)

This ratio also defines the top of region B. Thus the region of parameter space where
solutions exist becomes asymptotically narrow for large Pe. However, if T is small, there
is a relatively wide region of solutions for a given Pe. Thus if the horizontal temper-
ature gradient is weak compared to the vertical gradient near the interface, marginal
equilibrium is a much weaker constraint, because a smaller change in horizontal velocity
is required to balance the horizontal and vertical transport of heat near the interface.

5.3. Liquid channel width and the necessity of a transition region

We now find a scaling for the liquid channel width in this configuration. Marginal equi-
librium (4.11) gives

−f ′(η) = f(η)θ′(η)/(T − θ(η)) ∼ rθ′(1)/T . (5.7)

Note that θ′(1) is a function of (r, T ,Pe) that can be determined from equation (5.2).
Now the conditions on the flow (4.5) give scalings

f ′′′+ = f ′−/D ∼ f ′+/D (z = η − δ), (5.8)

where subscript + denotes the quantity on the transition zone side of the mush–transition
zone interface and subscript − the mush side. These scalings combine to give a liquid
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region width

1− η ∼ a0D1/2. (5.9)

An alternative way to interpret this is to note that equation (5.1) implies that f ′′(η) ∼
δ−1 ∼ D−1/2, so the liquid region width must scale with D1/2 to balance viscous shear
stresses. We determine the prefactor a0 from the asymptotic solution for the flow f(z)
and equation (5.7). These yield the quadratic equation for a0

a0

(
c

2
+

1

a0 + c

)
=

rθ′(1)

T (1− r) . (5.10)

For any finite c > 0, this equation has exactly one positive solution a0. However, for
c = 0 there are no solutions (c → 0 is a singular limit). Therefore, the transition region
is crucial for the the existence of steady solutions to the problem.

5.4. Solid fraction

Since θ′′ < 0 in the mushy layer, φ > 0. Furthermore, equation (4.12) shows that

φ =
1

PeV

θ′(z)− θ′(η)

T − θ(z) , (5.11)

so φ increases as z decreases away from the mush–liquid interface. The physical require-
ment that φ 6 1 gives a critical PeV (or solidification rate V ) above which solutions are
physically meaningful. One important feature of the case of solidifying outflow is that
both the size of the solid fraction in the mushy layer and also the concentration in the
liquid region are determined everywhere by heat and salt conservation, and not by any
imposed external boundary condition on φ. By contrast, in the case of a dissolving mushy
layer, it is appropriate to impose φ at the lower heat exchanger.

6. Discussion

The thermodynamic marginal equilibrium condition determines the position of the
interface between a solidifying mushy layer and a purely liquid region when there is a
fluid flow from the mush to the liquid. A potential difficulty with this condition arises
in cases where a slip in the tangential velocity occurs at the interface. We have shown
that extending Stokes equations into the mushy layer in a transition region whose width
scales with D1/2 is a viable way to resolve this difficulty. This avoids relying on a single-
domain approach with a fluid dynamical equation (such as Darcy-Brinkman) applying
in both the liquid and the mushy layer, and shows that marginal equilibrium is a robust
boundary condition.

By considering the simple ‘toy’ problem of solidification with a corner flow, we have
understood several important features of flow in a mushy layer using simple physical
and geometrical arguments, as well as asymptotic analysis. For our external boundary
conditions on the flow, the transition region is strictly necessary for the existence of steady
solutions. The need for a transition region is physically associated with the need for a
rapid change in the component of the velocity tangential to the mush–liquid interface.
Similarly, the vertical velocity increases rapidly in what we call the active region near a
vertical chimney in a mushy layer with convection due to baroclinic torque (Rees Jones
& Worster 2013). This is another way to explain why a finite active region near the
chimney is needed to sustain mushy-layer convection. In our particular pressure-driven
flow configuration, the width of the liquid region and the transition region both scale
with D1/2 (which dimensionally is a few pore lengths), which is somewhat problematic
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within the formal continuum limit. Nevertheless, the physical mechanisms that give rise
to the regime diagram (figure 3) still apply at moderate values of D, and the diagram
itself is independent of the prefactor c in the width of the transition region.

Furthermore, there are other configurations in which the liquid region is asymptotically
large compared to the transition region. By way of example, we briefly consider a shear-
driven flow. If we reverse the overall temperature gradient and impose a viscous shear
at the top of the liquid region that increases linearly with x, the flow circulation that
ensures positive solid fraction has the opposite configuration to the main pressure-driven
flow part of this paper, as shown in figure 5. Note that the equation of salt conservation
cannot formally be treated in the similarity framework because far along the channel the
local temperature would be above the liquidus. Using similar asymptotic techniques to
section 5.1, we find that the liquid region width

1− η ∼ (6D)1/3 −
(
c

2
+

1

c

k1
k2

)
D1/2. (6.1)

Again, there are no solutions without a transition region (c = 0), because the overall
temperature gradient and marginal equilibrium require that u > 0 at the interface, but
u is a constant negative number in the mush. The shear in the liquid region drives the
increase in u. In this case, the width of the liquid region is set by marginal equilibrium,
and the thermal properties only appear at higher order. The first and second order terms
are both independent of the Péclet number, which should be defined in terms of the
imposed shear. Finally, we note that the D1/3 scaling applies to chimneys in convecting
mushy layers where shear is important (e.g. Rees Jones & Worster 2013).

This research began as a project between Devin Conroy and MGW at the Geophysical
Fluid Dynamics Program: Woods Hole Oceanographic Institution (2006). We gratefully
acknowledge helpful discussions with Tim Schulze.
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