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unlikely to exist. Greater consideration of physiology and 
metabolism should help in better understanding observed 
patterns in nitrogen isotopic values.
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Introduction

Ecologists are increasingly using compound-specific amino 
acid nitrogen isotopic values as a method for estimating 
trophic position (Nielsen et al. 2015). The technique relies 
on the premise of comparing at the intra-individual level 
the nitrogen isotopic values from amino acids whose δ15N 
values increase with trophic level, and those where the δ15N 
values remain relatively unchanged, the so-called ‘trophic’ 
and ‘source’ amino acids (Popp et al. 2007; Chikaraishi 
et al. 2014). In contrast to bulk nitrogen isotopic analysis 
(Boecklen et al. 2011), this technique produces an inter-
nally referenced isotopic measure of trophic position that 
is argued to have greater precision and accuracy, since it 
accounts for basal nitrogen isotopic variability in the food 
web and obviates the need to compare consumer isotopic 
values to those of potential prey.

The technique has been used to identify dietary intake 
and trophic position in mammals, birds, insects, reptiles, 
fish and invertebrates (e.g., Popp et al. 2007; Lorrain et al. 
2009; Styring et al. 2010; Chikaraishi et al. 2011; Sem-
inoff et al. 2012; Naito et al. 2013a, b; Steffan et al. 2013; 
McMahon et al. 2015; Nielsen et al. 2015; Schwartz-Nar-
bonne et al. 2015; McMahon and McCarthy 2016). The 
majority of studies have used the difference between two 
amino acids, glutamate and phenylalanine (Glu and Phe), 

Abstract Amino acid nitrogen isotopic analysis is a rela-
tively new method for estimating trophic position. It uses 
the isotopic difference between an individual’s ‘trophic’ 
and ‘source’ amino acids to determine its trophic position. 
So far, there is no accepted explanation for the mechanism 
by which the isotopic signals in ‘trophic’ and ‘source’ 
amino acids arise. Yet without a metabolic understanding, 
the utility of nitrogen isotopic analyses as a method for 
probing trophic relations, at either bulk tissue or amino acid 
level, is limited. I draw on isotopic tracer studies of protein 
metabolism, together with a consideration of amino acid 
metabolic pathways, to suggest that the ‘trophic’/‘source’ 
groupings have a fundamental metabolic origin, to do 
with the cycling of amino-nitrogen between amino acids. 
‘Trophic’ amino acids are those whose amino-nitrogens are 
interchangeable, part of a metabolic amino-nitrogen pool, 
and ‘source’ amino acids are those whose amino-nitrogens 
are not interchangeable with the metabolic pool. Nitrogen 
isotopic values of ‘trophic’ amino acids will reflect an aver-
aged isotopic signal of all such dietary amino acids, offset 
by the integrated effect of isotopic fractionation from nitro-
gen cycling, and modulated by metabolic and physiologi-
cal effects. Isotopic values of ‘source’ amino acids will be 
more closely linked to those of equivalent dietary amino 
acids, but also modulated by metabolism and physiology. 
The complexity of nitrogen cycling suggests that a single 
identifiable value for ‘trophic discrimination factors’ is 
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as the two ‘canonical’ ‘trophic’ and ‘source’ amino acids, 
but some have suggested using a different combination, or 
a multiple amino acid approach (Popp et al. 2007; Nielsen 
et al. 2015; McMahon and McCarthy 2016).

In using new methodologies, it is imperative to ensure that 
the technique is built on firm foundations. Whilst the general 
concept behind amino acid nitrogen isotopic analysis seems 
to be robust, based on the studies published so far, there are 
some hints that nitrogen isotopic patterning in amino acids is 
not as simple or consistent as initially suggested. For instance, 
in early discussions of the method, it was suggested that 
there is minimal difference in the nitrogen isotopic values of 
dietary Phe and Phe in body tissues (Chikaraishi et al. 2009, 
2014), yet controlled studies have shown that Phe in consum-
ers can have significantly lower nitrogen isotopic values than 
dietary Phe, although the Glu–Phe offset can be consistent 
(Steffan et al. 2013). A recent review of published amino acid 
nitrogen isotopic analyses from controlled studies shows that 
nitrogen isotopic difference between amino acids in the diet 
and the consumer can vary considerably, for both ‘trophic’ 
and ‘source’ amino acids, correlated with factors such as 
trophic position, habitat, dietary quality and nitrogen excre-
tion mechanism (Fig. 1; McMahon and McCarthy 2016).

As illustrated in the “Proxy Confidence Factor Phase 
Chart” proposed by the eminent geochemist Harry Elder-
field, confidence in any proxy moves through a series of 

phases (from optimism to pessimism and then to real-
ism) as the relevant research develops (Elderfield 2002). 
In order to use any new proxy to its full potential, we 
need to move into the ‘realism phase’ as fast as possible, 
and I argue that a greater understanding of the metabolic 
underpinnings of amino acid nitrogen isotopic analysis is 
critical to its development as a useful method.

But understanding the patterning in nitrogen isotopic 
values of amino acids is not just relevant to such com-
pound-specific work but also to that of bulk tissue iso-
topic analyses, since measured bulk protein nitrogen iso-
topic values are weighted averages of individual amino 
acid nitrogen isotopic values in the particular tissue 
analysed. Ecological and ecophysiological studies using 
nitrogen isotopic data have addressed such questions as 
foodweb structure, trophic position, dietary composi-
tion, resource use and allocation, seasonal and ontogenic 
variation in resource utilisation, nutritional adequacy and 
restriction, as well as specialisation (Dalerum and Anger-
bjorn 2005; Newsome et al. 2007; Araujo et al. 2011; 
Boecklen et al. 2011; Hammerschlag-Peyer et al. 2011; 
Layman et al. 2012, 2015; Hertz et al. 2015; Thomas and 
Crowther 2015; Vander Zanden et al. 2015). So beyond 
the question of confidence in a new proxy, elucidating 
the metabolic drivers of isotopic patterning will allow 
greater insight into how observed nitrogen isotopic sig-
nals emerge from the myriad biochemical reactions that 
occur between food consumption and tissue synthesis. 
As Martínez del Rio and Anderson-Sprecher suggested 
almost a decade ago, “Progress in the study of isotopic 
incorporation demands that we understand the process 
of incorporation mechanistically. We find the signifi-
cance of isotopic incorporation information in field eco-
logical studies. We will find its meaning in physiologi-
cal research” (Martínez del Rio and Anderson-Sprecher 
2008). Thus, a better understanding of nitrogen metabo-
lism is highly pertinent for all nitrogen isotopic studies in 
ecology and eco-physiology, whether the work is carried 
out at a bulk tissue or at an amino acid level.

The ‘trophic’ and ‘source’ isotopic groupings 
of amino acids

So far the literature contains suggestions for the reasons 
for the observed nitrogen isotopic patterning in amino 
acids, but no clear consensus as to the underlying metabolic 
mechanism. The ‘trophic’ amino acids are usually taken to 
be glutamic acid, alanine, aspartic acid, proline, leucine 
and valine and the ‘source’ amino acids to be phenylala-
nine, glycine, serine, tyrosine, lysine, methionine and histi-
dine (Popp et al. 2007; Nielsen et al. 2015). Threonine has 
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Fig. 1  The nitrogen isotopic difference between dietary and body 
amino acids in controlled feeding studies and well-constrained 
field collections. Data from McMahon and McCarthy (2016) are 
shown as boxplots for each amino acid, plotted by ecosystem type 
(marine, freshwater, terrestrial), where the shaded box represents the 
inter-quartile range (IQR), the whiskers represent the values within 
1.5× IQR of the upper or lower quartiles, and outlier values beyond 
the end of the whiskers are plotted as points. ‘Trophic’ amino acids 
are marked with a hash, ‘source’ amino acids are marked with a dag-
ger, and the ‘metabolic’ amino acid is marked with a double dagger. 
Glx glutamate, Asp aspartic acid, Ala alanine, Ile isoleucine, Leu leu-
cine, Val valine, Pro proline, Gly glycine, Ser serine, Phe phenylala-
nine, Lys lysine, Met methionine, Thr threonine
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been categorised as a ‘source’ amino acid (Nielsen et al. 
2015) but it has long observed to have anomalous nitrogen 
isotopic values, often extremely low in comparison to other 
amino acids within the same protein (Gaebler et al. 1966; 
Tuross et al. 1988; Hare et al. 1991; O’Connell and Hedges 
2001) and has more recently been described as a ‘meta-
bolic’ amino acid because it shows substantial nitrogen iso-
topic depletion relative to dietary threonine (Germain et al. 
2013; McMahon et al. 2015). Here, I shall use the term 
‘metabolic’ to describe threonine, even though I consider it 
something of a misnomer, since all amino acids are ‘meta-
bolic’ in that they are involved in metabolic processes.

It is clear that the two groups of ‘trophic’ and ‘source’ 
(or even a comparison of ‘trophic’ vs. ‘source’ and ‘meta-
bolic’) do not map neatly onto many other categorizations 
of amino acids, including that of non-essential/essential 
(also known as dispensable/indispensable), or of gluco-
genicity/ketogenicity, hydrophilicity/hydrophobicity, polar-
ity or stereochemistry (e.g. branched chain/aliphatic). For 
any grouping that pertains to nitrogen isotopic values, it 
is unlikely that the underlying mechanism relates to any 
chemical or biochemical categorization based on car-
bon structures, since primary nitrogen isotope effects can 
only occur when bonds involving nitrogen are broken and 
formed.

The most plausible reason for nitrogen isotopic vari-
ation between amino acids is different degrees of iso-
topic fractionation associated with nitrogen transfer, in 
particular transamination or deamination, as has been 
conjectured widely across the literature (Gaebler et al. 
1966; Macko et al. 1986, 1987; Hare et al. 1991; Metges 
and Petzke 1997; Schoeller 1999; O’Connell and Hedges 
2001; McClelland and Montoya 2002; Petzke et al. 2005; 
Chikaraishi et al. 2007; Styring et al. 2010; Braun et al. 
2014; Poupin et al. 2014; McMahon and McCarthy 2016). 
Kinetic isotope effects for nitrogen at natural abundance 
have been demonstrated in vitro for reactions catalysed by 
aspartate transaminase (glutamic oxaloacetic transaminase) 
and glutamine synthetase (Macko et al. 1986; Yoneyama 
et al. 1993).

The ‘trophic’/‘source’ dichotomy has been suggested 
to indicate the split between those amino acids that 
undergo transamination and those that do not (Chikarai-
shi et al. 2007, 2009; Braun et al. 2014). However, the 
‘trophic’/‘source’ groupings also do not map directly onto 
the transaminating and deaminating amino acids, par-
ticularly as regards proline and phenylalanine (see later 
discussion).

Here I argue that it is not just the ability of an amino 
acid to be transaminated that is key to the isotopic pattern-
ing that we see, rather the degree to which the amino-nitro-
gen in each amino acid can be ‘cycled’ through the system. 

As was pointed out over three decades ago, transamination 
reactions for virtually all amino acids have been identified 
in vitro, but it does not follow that such a mechanism is 
functionally significant for each amino acid in vivo (Jack-
son 1983), something that was overlooked in a recent paper 
on the metabolism underlying amino acid nitrogen isotopic 
variability (Braun et al. 2014). Drawing on the concept of 
the metabolic pool of nitrogen, first proposed by Sprin-
son and Rittenberg (1949), I postulate that ‘trophic’ amino 
acids are those whose amino-nitrogen can be considered 
to be interchangeable, part of a metabolic amino-nitrogen 
pool, and that ‘source’ amino acids are those whose amino-
nitrogens are not interchangeable with the metabolic pool.

Amino acid nitrogen metabolism

‘Trophic’ amino acids

Those amino acids whose α-nitrogens are interchangeable 
are primarily linked via glutamic acid. Glutamic acid is 
central to nitrogen metabolism, being the route by which 
amino acid nitrogen enters the urea cycle (Brosnan 2000); 
it is key in the transamination of many amino acids (Cam-
marata and Cohen 1950), with the reaction catalysed by 
glutamate dehydrogenase (Hudson and Daniel 1993). Glu-
tamine is rarely mentioned as a ‘trophic’ amino acid, yet 
is formed from the addition of ammonia to glutamic acid 
(Bertolo and Burrin 2008): glutamine’s α-nitrogen (one of 
its two nitrogen atoms) is therefore de facto in the ‘trophic’ 
category, something that is often overlooked given that 
the measured glutamate of any sample analysed after acid 
hydrolysis is derived from both glutamic acid and deami-
dated glutamine (thus strictly speaking is ‘Glx’), Four of 
the ‘trophic’ amino acids, alanine, aspartate, leucine and 
valine (as well as isoleucine), readily transaminate with 
α-keto-glutarate, forming their respective keto-acids and 
glutamic acid (Cammarata and Cohen 1950; Harper and 
Zapalowski 1981). Proline cannot transaminate because 
its secondary amino group is part of a ring structure, but 
its amino-nitrogen (and that of its post-translationally 
modified variant hydroxyproline: Gorres and Raines 2010; 
O’Connell and Collins 2017) is derived from the same pool 
as that of glutamic acid α-nitrogen, since proline is synthe-
sised via ring closure from glutamic acid, and the reaction 
is reversible (Bertolo and Burrin 2008).

‘Source’ and ‘metabolic’ amino acids

The ‘source’ amino acids, as well as the ‘metabolic’ thre-
onine, do not typically participate in α-amino transami-
nation in vivo, and thus the only mechanism by which 



 Oecologia

1 3

amino-nitrogen can be removed is through catabolism. Gly-
cine readily interconverts with serine via the enzyme serine 
hydroxymethyl transferase and may be derived from threo-
nine via the action of the enzyme threonine dehydrogenase 
(Neuberger 1961). These three amino acids are normally 
catabolized by irreversible deamination through several 
possible routes, the glycine-cleavage system, or via serine 
dehydratase, serine-pyruvate aminotransferase or threo-
nine dehydratase (Walsh and Sallach 1966; Kikuchi 1973; 
Bird and Nunn 1983; Snell 1986). Histidine is catabolized 
by deamination by histidine ammonia lyase to produce 
ammonia and urocanate, which subsequently forms gluta-
mate, such that histidine’s imidazole-nitrogen becomes the 
α-amino-nitrogen of glutamate (Mehler and Tabor 1953; 
Revel and Magasanik 1958; Coote and Hassall 1973). 
Although methionine transamination of unknown mecha-
nism has been detected in vivo (Blom et al. 1989; Brosnan 
and Brosnan 2006), methionine is predominantly catabo-
lized via the transmethylation-transsulfuration pathway. In 
this, methionine is converted to homocysteine, which con-
denses with serine to produce cystathionine which is enzy-
matically cleaved to yield cysteine: methionine’s sulphur 
atom is thus transferred into cysteine, whilst the carbon 
skeleton becomes α-ketobutyrate and the amino group is 
released as ammonia (Cooper 1983; Stipanuk 1986, 2004). 
Thus, for the five amino acids glycine, serine, threonine, 
histidine and methionine, the amino-nitrogen is converted 
to ammonia. This ammonia is not necessarily ‘lost’ from 
the metabolic amino-nitrogen pool, as free ammonia can be 
recycled via incorporation into glutamine or glutamic acid 
(Hudson and Daniel 1993; Bertolo and Burrin 2008).

For lysine, which has two amino groups, degradation 
occurs by irreversible transamination of the ε-amino group 
with α-keto-glutarate via the intermediate of saccharopine 
to produce glutamate and α-aminoadipate 6-semialdehyde 
(allysine), which is then dehydrated to α-amino-adipate, 
which transaminates with α-keto-glutarate to produce glu-
tamate and α-keto-adipate (Fellows and Lewis 1973; Car-
son 1974). Thus both nitrogens of lysine transfer to the 
metabolic nitrogen pool via incorporation in glutamate.

The two remaining ‘source’ amino acids, phenylalanine 
and tyrosine, are both indispensable and aromatic and are 
metabolically interlinked. Phenylalanine has two poten-
tial catabolic routes, a minor one involving transamination 
with pyruvate to form phenylpyruvate and alanine, and a 
dominant one involving hydroxylation to tyrosine, which 
is irreversible (Krempf et al. 1990; Matthews 2007). Tyros-
ine aminotransferase catalyses the reaction between tyros-
ine and α-keto-glutarate to form p-hydroxyphenylpyruvate 
and glutamate (Matthews 2007) and thus via this route, the 
α-nitrogens of both phenylalanine and tyrosine are donated 
to the metabolic nitrogen pool by incorporation in glutamic 
acid during irreversible catabolism.

Evidence for in vivo nitrogen exchange 
between amino acids

The overall metabolic picture of amino acid nitrogen is 
therefore one of exchange or lack of it, a dichotomy that 
has been proposed before (Jackson and Golden 1980). The 
transaminating amino acids (alanine, aspartate, leucine, 
valine and isoleucine), together with proline, exchange 
nitrogen with glutamic acid, and thus also with glutamine. 
These amino acids, together with free ammonia, form the 
metabolic nitrogen pool (Fig. 2). The ‘source’ and ‘meta-
bolic’ amino acids do not freely exchange nitrogen with the 
other (transaminating) amino acids, but can donate nitrogen 
in some form to the metabolic pool, either by irreversible 
transamination with α-keto-glutarate (directly in the case 
of histidine, lysine and tyrosine, or via an intermediate for 
phenylalanine) or with pyruvate (for serine), or by the pro-
duction of ammonia (glycine, serine, threonine, histidine, 
methionine) (Fig. 2). Serine and glycine can also derive 
nitrogen from the metabolic pool, as the biosynthesis of 
serine derives the amino group from glutamate in an irre-
versible transamination catalysed by phosphoserine amino 
transferase (Snell 1986).

Evidence for the degree of in vivo nitrogen exchange 
between amino acids comes from the wealth of 
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Fig. 2  Schematic representation of the metabolic fate of nitrogen 
in ‘trophic’ and ‘source’ amino acids in mammals. Routes of nitro-
gen movement between ‘trophic’ and ‘source’ amino acids and other 
key nitrogen species are shown, with exchange represented by ⇌, 
and unidirectional movement (e.g. irreversible transamination or 
deamination) by →. Those amino acids whose nitrogen can be read-
ily exchanged in a single chemical step, the ‘trophic’ amino acids 
(marked with a hash), are connected to other ‘trophic’ amino acids by 
⇌, and together with free ammonia, they form the metabolic amino-
nitrogen pool, outlined in the shaded box. ‘Source’ amino acids 
(marked with a dagger), and the ‘metabolic’ amino acid (marked with 
a double dagger) can also donate nitrogen to other amino acids and 
to the metabolic pool, but cannot readily exchange nitrogen (except 
between glycine and serine): all such amino acids are outside the 
metabolic amino-nitrogen pool. Glu glutamic acid, Gln glutamine, 
Asp aspartic acid, Ala alanine, Ile isoleucine, Leu leucine, Val valine, 
Pro proline, Gly glycine, Ser serine, Phe phenylalanine, Tyr tyrosine, 
Lys lysine, Met methionine, Thr threonine, His histidine
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information available from isotopic tracer studies of pro-
tein metabolism and physiology over the past 80 years 
(Schoenheimer 1942; Waterlow 2006); such work is no 
doubt key to understanding the observed natural abun-
dance isotopic signals in ecology, especially at the 
molecular level. Studies using 15N-labelled amino acids 
allow us to go beyond the identification of which path-
ways are metabolically possible, and to assess the extent 
to which nitrogen exchange occurs between amino acids 
in vivo—the concept of ‘flux’ is critical here, since met-
abolic maps “tell us ‘what goes’ but not ‘how much’” 
(Kacser and Burns 1973; Kacser et al. 1995).

Labelling studies show that nitrogen freely exchanges 
between glutamic acid, proline, alanine, aspartic acid 
and the branched chain amino acids (leucine, isoleu-
cine, valine) with the patterning of the nitrogen label 
across amino acids, ammonia and urea suggesting that 
the exchange is direct, i.e. via transamination (Aqvist 
1951b; Matthews et al. 1981a; Darmaun et al. 1986; 
Cooper et al. 1987, 1988). Studies show that histidine 
and lysine do not acquire nitrogen from other amino 
acids or ammonia (Elliott and Neuberger 1950; Aqvist 
1951b; Fern et al. 1985), nor does their amino-nitrogen 
freely pass to other amino acids, rather that any nitrogen 
that does pass from them to other amino acids is likely to 
be via free ammonia and subsequent incorporation into 
the metabolic pool (Meltzer and Sprinson 1952). Similar 
results are obtained for glycine, serine, threonine, phe-
nylalanine and tyrosine, although with some differences 
due to catabolic pathways: glycine and serine readily 
interchange nitrogen, and both can receive nitrogen from 
threonine as a result of the glycine-cleavage system; 
tyrosine nitrogen can originate in phenylalanine (Elli-
ott and Neuberger 1950; 1951a, b; Meltzer and Sprinson 
1952; Jackson and Golden 1980; Matthews et al. 1981b; 
Lehmann and Heinrich 1985; Matthews 2007).

Critically, exchange of nitrogen between transaminat-
ing amino acids is fast, as are the turnover rates of amino 
acids in free pools and tissues, of the order of minutes 
or hours depending on the amino acid and the pool, as 
well as the species (see Chapters 3 and 4 in Waterlow 
2006). Studies using short-lived isotopes suggest that 
the turnover and equilibration can be even more rapid, 
of the order of seconds (Cooper et al. 1987, 1988). When 
labelled  [13N]glutamate was injected into the portal vein 
of rats, after 60 s the tracer was already widely distrib-
uted across amino acids in the liver: 21% of the tracer 
was in aspartate, 14% in glutamine and 10% in alanine 
(Cooper et al. 1988). Thus, nitrogen cycling through the 
metabolic nitrogen pool is a constant and high-frequency 
process.

Heterotrophic nitrogen metabolism

The isotopic evidence I describe here is primarily derived 
from studies of mammalian protein metabolism, and one 
has to ask how relevant these are to other heterotrophs. 
Yet metabolic pathways are highly conserved in nature 
(Peregrin-Alvarez et al. 2009).

Glutamate, key to trophic position estimates from 
isotopic data, is a core molecule in metabolic function-
ing throughout all living organisms, linking protein and 
energy metabolism (Brosnan 2000): it is central to the 
transamination of many amino acids, and its keto-acid, 
α-keto-glutarate, is a key intermediate in the Krebs (citric 
acid) cycle (Young and Ajami 2000). In studies of meta-
bolic network function based on genomic structural data, 
glutamate is the most connected metabolite in Escheri-
chia coli (Wagner and Fell 2001) and is in the top ten 
most connected substrates for 41 of 43 organisms studied 
across the three domains (archaea, bacteria and eukary-
otes) (Jeong et al. 2000). This, together with the near uni-
versal distribution of glutamate dehydrogenases across 
the three domains (Hudson and Daniel 1993), indicates 
glutamate’s centrality as a metabolic intermediate over a 
long evolutionary timescale (Young and Ajami 2000).

Some key metabolic differences in amino acids no 
doubt occur (e.g. the occurrence of alanine dehydro-
genases in insects and bacteria but not mammals, and 
lysine metabolism in fungi), but nitrogen isotope stud-
ies on amino acids from diverse species including bac-
teria, fungi, fish and birds echo the patterns seen in the 
larger mammalian literature using labelled 15N com-
pounds (Bent 1964; Richter and Gruhn 1977; Gruhn 
1987; Macko et al. 1987; Chalot et al. 1995; Iwata and 
Deguchi 1995; Rodicio et al. 2003). Thus, although there 
are metabolic variations across heterotrophs, the evidence 
suggests that the mechanism outlined here for the pat-
terning in ‘trophic’ and ‘source’ amino acids is probably 
pertinent across most organisms.

There has been a suggestion that amino acids could 
be categorised into four groups in terms of their essen-
tiality, following a two-way grouping structure, one that 
relates to synthesis of the carbon skeleton, and one that 
relates to amination of the skeleton (Jackson 1983). This 
fits plausibly with the basis of ‘trophic’ and ‘source’ 
amino acids proposed here. It also fits with observations 
that the categorisation of amino acids into ‘trophic’ and 
‘source’ is not always clear cut (McMahon and McCarthy 
2016), since the essentiality of any given amino acid var-
ies between species and can change with age and illness 
within a species (National Research Council 1994, 1995; 
Young and Borgonha 2000).
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What do the isotopic signals represent?

The exchange of nitrogen across transaminating amino 
acids and proline (and post-translationally modified vari-
ants such as hydroxyproline) means that the nitrogen iso-
topic values of the ‘trophic’ amino acids in a consumer do 
not simply represent the nitrogen isotopic value of those 
same amino acids in the diet plus an isotopic offset due 
to metabolism of that amino acid, as is usually assumed 
(McClelland and Montoya 2002; Chikaraishi et al. 2007, 
2009, 2014; Popp et al. 2007; Steffan et al. 2013, 2015; 
Vander Zanden et al. 2013; Hoen et al. 2014; Nielsen 
et al. 2015). Rather, because of the degree of nitrogen 
cycling through the metabolic nitrogen pool, there is an 
averaging effect: the nitrogen isotopic values of amino 
acids that can exchange nitrogen reflect an averaged iso-
topic signal of all such amino acids in the diet, offset by 
the integrated effect of isotopic fractionation from mul-
tiple transaminations during constant nitrogen cycling. 
This isotopic signal of any particular amino acid in any 
particular body tissue or pool will also be modulated by 
subtle isotopic shifts associated with a number of other 
factors depending on the individual: physical and meta-
bolic compartmentation within and between tissues (Fern 
and Garlick 1976; Fern et al. 1985; Hoskin et al. 2001; 
Poupin et al. 2014); the balance of protein synthesis and 
oxidative loss of amino acids (Felig 1975; Millward and 
Rivers 1989; Poupin et al. 2014); potential input of nitro-
gen from other amino acids via irreversible transamina-
tion or incorporation of free ammonia (either directly 
into glutamine or glutamic acid (Aqvist 1951b), or via 
microbial synthesis (Torrallardonna et al. 1996; Fuller and 
Reeds 1998; Metges et al. 1999; Cantalapiedra-Hijar et al. 
2016)); the ‘scavenging’ of urea from the gut (Fuller and 
Reeds 1998); and the mechanisms and route(s) of nitro-
gen excretion (Schoeller 1999; Vanderklift and Ponsard 
2003; Germain et al. 2013; McMahon et al. 2015; McMa-
hon and McCarthy 2016). The centrality of glutamate to 
heterotrophic nitrogen metabolism is strong evidence as 
to why it is the key canonical ‘trophic’ amino acid across 
all organisms analysed so far.

The nitrogen isotopic value of the ‘source’ amino 
acids should be more closely linked to that of the same 
amino acid in the diet, without the isotopic effects due to 
nitrogen cycling, but also subtly modulated by the same 
shifts affecting the ‘trophic’ amino acids (physical and 
metabolic compartmentation, protein synthesis vs. oxi-
dation, microbial synthesis), as well as specific effects 
due to their catabolic pathways, as well as de novo syn-
thesis rates for serine and glycine. The variability in the 
metabolic processing of amino acids between individu-
als, classes, species, is a likely explanation for the high 
degree of variability in ‘source’ amino acids (e.g. Gly 

nitrogen isotopic values relative to ‘trophic’ amino acids 
in both terrestrial and aquatic systems, see Fig. 1, also 
Styring et al. 2010; Nielsen et al. 2015; Steffan et al. 
2015; McMahon and McCarthy 2016). Some ‘source’ 
amino acids appear to have a more faithful isotopic 
relationship to that of the dietary amino acid (e.g. Phe) 
than others, which may well relate to the limited num-
ber of metabolic pathways in which they are involved 
(see Fig. 2), but it is possible that there is no one sin-
gle ‘source’ amino acid that can be considered as the best 
‘source’ amino acid for every organism type.

The isotopic signal of threonine, the sole ‘metabolic’ 
amino acid as currently defined, is highly variable, and as 
yet, the reason is unknown. Recent work indicates that it 
is not due to an inverse enzymatic isotope effect, but may 
result from organismal, rather than cellular, metabolism of 
threonine, possibly including microbial synthesis (Wallace 
and Hedges 2016).

The importance of nitrogen cycling in amino acid nitro-
gen isotopic variation has been suggested before (Schwarcz 
and Schoeninger 1991; Fogel et al. 1997; McMahon and 
McCarthy 2016). That the similarity between the nitrogen 
isotopic values of transaminating amino acids and proline 
likely reflects the common origin of their amino groups 
in glutamate has also previously been postulated (Styring 
et al. 2010; Braun et al. 2014).

The idea of ‘averaging’ of the nitrogen isotopic signal 
within the metabolic nitrogen pool chimes with studies 
examining whether trophic position can be better estimated 
using nitrogen isotopic data from multiple amino acids 
(Nielsen et al. 2015; McMahon and McCarthy 2016): the 
use of multiple amino acids will average out some of the 
biological noise, but it may also better reflect the reality of 
the nitrogen cycling between amino acids. However, this 
again emphasises the complexity of the underlying metabo-
lism and thus the complexity of the origin of the isotopic 
signal that we observe. As Poupin et al.’s work on compart-
mental modelling of inter-tissue nitrogen fluxes shows, 15N 
accumulation in tissues cannot be sufficiently explained by 
isotopic fractionation associated with amino acid catabo-
lism and nitrogen elimination within simple whole-body 
one-compartment models (Poupin et al. 2014). This is as 
true at the individual amino acid level as at the bulk tissue 
level.

Conclusion

Evidence from both natural abundance and labelled iso-
topic work shows that the ‘trophic’ and ‘source’ amino acid 
groupings have a fundamental metabolic origin, to do with 
the metabolic pathways of amino acids, and the cycling of 
amino-nitrogen through the metabolic nitrogen pool.
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Currently, a strong focus within the isotopic ecology 
community appears to be a drive to better ‘pin down’ the 
diet-consumer isotopic difference in amino acids across 
many species, and, therefore, to quantify more precisely 
the so-called ‘trophic discrimination factors’ for amino 
acids, possibly even to identify a single value. Multi-
ple studies show clear patterns in intra-individual amino 
acid nitrogen isotopic values across a wide range of spe-
cies (Nielsen et al. 2015), often generating a narrow range 
of values for trophic discrimination factors (Chikarai-
shi et al. 2014) which are sometimes very consistent and 
reproducible (Steffan et al. 2013, 2015). However, I argue 
that, given the complexity of nitrogen cycling through the 
metabolic network, it is doubtful that a single fixed value 
for these trophic discrimination factors exists, especially 
when attempting to extrapolate across all species, families, 
classes, even phyla. Such discrimination factors are likely 
to correlate with a variety of potential causes (Nielsen et al. 
2015; McMahon and McCarthy 2016), and a quest for 
a single value may be chasing after a chimera. A greater 
degree of insight will probably be achieved by exploring 
the variability in amino acid nitrogen isotopic patterns in 
conjunction with physiological and metabolic studies.
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