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MODELLING AND DESIGN OF DIAMOND POWER SEMICONDUCTOR 

DEVICES (ABSTRACT) 

Nazareno Donato 

 

With its remarkable electro-thermal properties such as the highest known thermal 

conductivity (~22 W/cm∙ K at room temperature) of any material, high hole mobility 

(>2000 cm2/V∙s), high critical electric field (>10 MV/cm), and large bandgap (5.47 

eV), Diamond has overwhelming advantages over Silicon and wide bandgap 

semiconductors (WBG) for ultra-high voltage and high temperature applications (>3 

kV and >450 K, respectively). However, despite its tremendous potential, fabricated 

devices based on this material have not yet delivered the expected high-performance.  

This is due to three main reasons: (i) the lack of consistent physical models and design 

approaches specific to diamond-based devices that could significantly accelerate their 

development; (ii) the absence of shallow acceptor and donor dopant species which has 

resulted in poor room temperature performance; (iii) the technological issues of the 

manufacturing process.  With the principal aim of modelling the next generation of 

diamond devices, this Ph.D dissertation endeavours to numerically model the main 

electro-thermal properties of diamond devices for power electronic applications. 

Optimized unipolar mode diamond field effect transistors have been designed by 

means of finite element simulations and their performance has been assessed against 

the state-of-the-art diamond FETs. Particular attention is given to the static and 

dynamic properties of deep dopant levels and their effects in WBG semiconductor-

based devices. Moreover, by means of a more global comparison technique and 

through accurate theoretical analysis, diamond FETs and diodes’ performance have 

been projected and compared with that of GaN and SiC devices. This work concludes 

with possible implementations of diamond devices in power converters and provides 

a roadmap of diamond devices for power electronics.  These promising results give a 

new impetus to the rather small, but growing diamond community and enable future 

research in the field with the goal of bringing diamond to the commercial world. 
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1    INTRODUCTION 

 

 

 

1.1 Power devices and circuits: a brief introduction 

 

Power semiconductor devices are electronic switching devices used in electrical power 

conversion, conditioning and control circuits. Since the introduction of solid-state 

devices in the 1950s and their wide spread in industrial and consumer applications, the 

power semiconductor business has been growing steadily with an increasing impact 

on the economy.  

In 2016, the global market of power semiconductors (including discrete components, 

power ICs and modules) increased by 3.5% from 2015, reaching a revenue of $35.1 

billion[1]. The map of power device applications as a function of frequency of 

operation and power capacity is illustrated in figure 1.1. The power devices field is 

currently dominated by silicon-based devices. This is because silicon (Si)-technologies 

are very mature and currently offer the best trade-off between performance and cost. 

The optimization of the design of Silicon based transistors alongside the technological 

progress in the fabrication and quality control have allowed Insulated Gate Bipolar 

Transistors (IGBTs), Metal-Oxide-Semiconductor Field Effect Transistors 

(MOSFETs), Superjunctions and thyristors to dominate applications where there is the 

need for either high power but low frequencies or low to medium power and relatively 

higher frequencies.  
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Nevertheless, there exists a huge variety of applications in the medium- to high- power 

(e.g. automotive sector, satellite communications, high speed trains, mobile terminals) 

where Si-based devices are not able to deliver efficient solutions due to ON state and 

switching losses and poor thermal dissipation management [2]. Besides, Si-devices are 

fast approaching their theoretical limits [3].  

The increasing demand for a low carbon and energy efficient society has raised the 

need for new technologies for power electronics applications. In this context, new 

classes of materials namely wide bandgap (WBG) and ultra-wide bandgap (UWBG) 

semiconductors have been researched to quantify their advantages in terms of 

efficiency, device area, heatsink and passive filter volume reduction, radiation 

hardness and switching frequency compared to Si devices [4-6].  

While GaN and 4H-SiC devices have been successfully commercialized and also 

demonstrated to outperform their Si-based counterparts [7, 8], diamond still faces a 

number of challenges which are hindering the full exploitation of its potential[9].  

 

 

Figure 1.1: Applications for power devices in the power versus frequency domain. Arrows show the possible 

evolution of each material. Dashed regions represent non-commercial materials (to date). 
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1.2 Wide and Ultra-wide Bandgap semiconductors: 
properties, and benefits 

 

In the last three decades wide bandgap and ultra-wide bandgap semiconductors 

materials have been investigated for power applications due to their better physical 

properties among which, higher critical electric field and carrier mobility. A full 

picture of the physical properties of WBG and UWBG is given in table 1.1 where one 

can clearly note the advantages of these materials when compared to silicon. 

Table 1.1. Material properties of silicon, WBG and UWBG semiconductors for power applications.  

  

Material 
 WBG UWBG 

Silicon 4H-SiC GaN Ga2O3 Diamond AlN 

Bandgap (eV) 1.1 3.3 3.4 4.9 5.5 6.1 
Critical Electric 
Field (MV/cm)* 

0.3 2.8 3.5 8 7.7-20 10 

RT 
Mobility  
(cm2/Vs)
* 

electron 1500 1000 2000 
(2DEG) 

>1000 
(bulk) 

300 1060 300 

hole 480 120 <100 
(2DHG) 

<200 
(bulk) 

14 2100 
(bulk) 

<300 
(2DHG) 

14 

Thermal 
Conductivity 
(W/mK) 

150 370 100(on Si) 
165(on Shappire) 

253 (on GaN) 

11-27 2200 - 2400 253-319 

Relative permittivity 
(a.u.) 

11.8 9.8 9 9.9 5.5 8.5 

Substrate 
diameter(inch)** 

8-17.7 8 8 4 <1 2 

Substrate 
Dislocations  
(per cm-2) 

<10 102 104 104 104-106 104 

Saturation 
velocity  
(x107 

cm/s) 

electron 1 1.9 2.5 
 

2 2.5 1.4 

hole 0.8 1.2 ---- ----- 1.4  

Built-in Voltage 
(V)*** 

0.6 2.8 2.9 ---- 4.9 -- 

n-type dopants available available available available moderate moderate 

p-type dopants available available available not 
available 

Available poor 

Commercial devices MOSFETs 
IGBTs 
Diodes 

Thyristors 
BJTs 

Diodes 
BJTs 

MOSFETs 

HEMTs -- --- -- 

* Critical electric field and mobility are assumed to be doping independent. Smaller ionization coefficients are 
specific to the wide-bandgap materials and this results in higher critical electric field. 

** Typical size. 

*** Calculation assumed constant doping for both sides of the junction (1x1015 cm-3), room temperature conditions 
and bandgap values which can be found in the table 1.1. 
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One of the main criteria that can be used to assess materials for power applications is 

the trade-off between breakdown voltage (BV) and specific ON state resistance 

(Ron_spec).  

This has been plotted in figure 1.2, based on the material properties reported in table 

1.1.  One can clearly see that at room temperature 4H-SiC and GaN have the best 

BV/Ron_spec trade-off when compared to silicon technologies including Si-

superjunction and IGBTs.  The smaller Ron_spec for the same BV enables the reduction 

in wafer area which in turn, translates into lower input capacitance and higher 

switching frequency. In particular, GaN devices can benefit from the extremely high 

channel electron mobility (2000 cm2/(Vs)) and input capacitances as low as tens of pF 

that allow them to efficiently switch at high frequencies (>500 kHz) and consequently 

reduce the size of the passive components in the power system [10].  

 

Figure 1.2: Vertical Ron_spec vs BV unipolar limit for semiconductors and comparison with experimental results at 

room temperature (T=300 K) (a) and for high operating temperature (T=450 K) (b). The calculated limit is the 

result of an optimization procedure which assumes PT profile for the electric field, mobility function of temperature 

and doping, temperature dependent breakdown field for 4H-SiC (calculated by means of the ionization integral) 

and the incomplete ionization in the case of p-type diamond. Silicon RT is used as reference considering a constant 

critical electric field (table 1). As it can be noted, boron doped diamond (p-type diamond) shows a better trade-off 

only for high temperature (b). Data taken from[11-21] and references therein. 

Moreover, diamond shows superior performance (compared to GaN and SiC) only at 

higher junction temperature due to the enhanced boron activation. 
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1.2.1. Silicon Carbide (SiC) 

 

Due to the easy doping control and processing, 4H-SiC Schottky diodes devices have 

been already commercialized in 2001 by Infineon [22] which have recently released 

the 5th generation of CoolSiC diodes with a maximum reverse voltage of 1.2 kV and 

an ON state current up to 40 A [23]. 4H-SiC Schottky diodes have been mainly adopted 

in power converters due to their remarkable ‘zero reverse recovery’ losses. In addition, 

the availability of a native oxide for SiC enabled the first mass production of 4H-SiC 

power MOSFETs in the 600 V range by ROHM in 2010 [24], immediately followed 

by the first commercial 1.2 kV 4H-SiC MOSFET from Cree [25] and by several similar 

devices from other semiconductor companies. State-of-the-art commercial 4H-SiC 

power MOSFETs range from 650 V/1.7 kV – 50 A domain to 3.3 kV (expected for the 

next generation [26]). 5 kV and 10 kV 4H-SiC Power MOSFETs are now in research 

with spectacular results. This is however an area where large area IGBTs and even 

larger area thyristors are very well established and difficult to displace. R&D is also 

pushing towards the fabrication of bipolar 4H-SiC devices (such as BJTs, IGBTs and 

Thyristors) which will offer more benefits compared to 4H-SiC unipolar devices for 

high voltage ratings (>10 kV) [27, 28]. Furthermore, recent reliability studies on the 

stability of the threshold voltage in 4H-SiC MOSFET under negative and positive bias 

temperature instability (NBTI and PBTI) tests [29, 30], have illustrated how metal 

oxide semiconductor-based 4H-SiC commercial devices may still not represent the 

best solution for harsh environments and fast switching operations. 

1.2.2. Gallium Nitride (GaN) 

 

A few years after the research in vertical 4H-SiC devices started, lateral power devices 

based on AlGaN/GaN heterostructures have been announced and subsequently 

undergone extensive development. Their main advantage is related to their piezo-

polarization nature  that allows the formation of a high carrier density layer, the so-

called two-dimensional electron gas (2DEG), at the AlGaN/GaN interface without any 

intentional doping in the structure [31].  The main transistors based in GaN are HEMTs 

(high electron mobility transistors) with variations in the gate structure to obtain 

enhancement mode operation that leads to technologies such as the p-GaN gate [32] 
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and GaN-based MISFETs (Metal-insulator-semiconductor FETs) [33]. GaN 

transistors are characterized by high carrier density (~1×1013 cm-2), high mobility 

(>2000 cm2/(Vs)), high critical electric field (3.5 MV/cm) and can reach extremely 

high frequency of operation (>500 kHz), thus enabling compact and lighter power 

systems. GaN power devices have been first made commercially available in 2010, 

about 17 years after their first experimental demonstration [34, 35]. Today, GaN 

enhancement-mode HEMTs are available on the market for 100 V [36], 600 V [37], 

650 V [38] and a 900 V depletion-mode is also available [39]. Although GaN devices 

are very promising candidates for the next generation of power devices in the 650 V 

applications, their lateral configuration limits the maximum handling power capability 

to a few kW. Scaling to higher breakdown voltages without compromising the wafer 

area is not immediate due to their lateral configuration.  

An approach towards the optimization of the lateral voltage blocking capability is the 

multi-level field relief structures proposed in [40-43]. GaN is compatible with several 

substrates: 4H-SiC, sapphire, Si, and most recently GaN-on-diamond is also being 

investigated. However, the most attractive solution from a cost point of view is that 

based on a silicon substrate that allows not only the use of low-cost silicon wafers and 

established semiconductor foundries, but also paves the way to monolithic integration 

of circuit components including gate drivers (as achieved by [44]). Nevertheless, 

reliability  issues associated to trap-states at the surface [45], in the bulk GaN active 

layers and in the AlGaN-based stress-relief-layer grown on Si [46-48], have slowed 

down the adoption of these transistors.  

A few technologies claim no trap-related reliability [49, 50] but significant research 

effort is still on-going to solve the bulk-related issues. In principle, vertical GaN 

devices on GaN substrates would allow for a better current extraction and increase in 

the total power handling capability with the additional benefit of a more linear scaling 

of the ON state resistance (Ron) with the BV. Both transistors and diodes have been 

demonstrated in vertical GaN configuration with a BV up to 5 kV for diodes [51, 52] 

and up to 1.6 kV for MOSFETs [53-55]. However, several issues, such as the material 

cost, quality of the thick GaN layers, and the availability of larger wafers need to be 

addressed prior the commercialization of vertical GaN technology. 
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1.2.3. Gallium Oxide (β-Ga2O3) 

 

On the horizon, new materials named UWBG semiconductors would offer enhanced 

properties in terms of critical electric field, switching speed and low leakage current 

compared to 4H-SiC and GaN. Such UWBG power devices  would result in ON state 

losses similar or lower than those of bipolar Silicon or unipolar WBG devices, while 

and at the same time, drastically reducing the switching losses thanks to the lack of 

stored bipolar charge [56] or smaller capacitances. β-Ga2O3 benefits from some 

interesting properties which could be exploited in unipolar mode devices [57, 58]. Its 

intriguing electrical properties and the affordable cost of the substrates (similar to 

GaN) make this material one of the future candidates for power electronic applications. 

Nevertheless, on one hand, its intrinsic low thermal conductivity has usually resulted 

in heteroepitaxial grown devices in which thermal issues are less severe compared to 

the homoepitaxial solutions. On the other hand, the lack of a controllable and efficient 

p-type doping, has restricted the number of topologies to only n-type doped (In2O3, 

SnO2 and ZnO) unipolar mode devices [59].  Lately, intrinsic majority hole conduction 

has been discovered to exist in nominally undoped β-Ga2O3 [60, 61], when 

compensation by background native donors is reduced. Depletion mode FETs 

(MESFETs and MOSFETs) have been fabricated showing a record breakdown voltage 

of 2.3 kV and 1 A in the forward state [62], while Schottky diodes have  shown to 

exhibit more than 1 kV of breakdown voltage thanks to an accurate field plate design 

[63]. 

1.2.4. Aluminum Nitride (AlN) 

 

AlN is another attractive UWBG material for high power and temperature applications. 

Typically used as a nucleation layer in lateral GaN HEMTs, this material exhibits high 

critical electric field, high thermal conductivity of 319 Wm−1K−1 at room temperature 

and a wide band gap of about 6.1 eV (see table 1.1). AlN allows to overcome some of 

the issues related to the graded buffer layers needed for the fabrication of III-V 

materials on Si substrate (like GaN HEMTs). Moreover, the good thermal conductivity 

of AlN improves the heat dissipation capability of current GaN devices. AlGaN 

HEMTs with high Al composition [64], 1 kV vertical Schottky Si-doped AlN diodes 
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[65] and >2.5 kV n-type AlN MESFET have been successfully manufactured in the 

past few years [66]. To date, some of the main technological concerns are related to 

the difficult conductivity control of AlN layers and the expensive price for bulk AlN 

substrates.  

1.2.5. Diamond  

 

Diamond has distinctive advantages when compared with other UWBG 

semiconductors, due to its high hole-electron mobility, critical electric field, the 

highest known thermal conductivity and the widest bandgap [67, 68]. It has also 

peculiar features such as electron emission and surface transfer doping for hydrogen 

terminated surfaces. Recent breakthroughs have demonstrated efficient chemical 

vapor deposition (CVD) doping techniques for both p-type and n-type dopant species 

and relatively large area high pressure high temperature (HPHT) and CVD substrates 

[69]. Nevertheless, substrates are still limited in terms of cost and availability, and the 

resistivity of diamond layers is affected by the partial ionization of the dopants. In spite 

of this,  several devices with high ON state current (up to 10 A [70]), fast switching 

performance [71] and high breakdown voltage (>2 kV) without any field relief 

structure [21] have been manufactured. Although the future commercialization of such 

devices seems to be limited only to niche applications (mainly high power, frequency 

and temperature), some new key improvements in the substrate growth and device’ 

fabrication route may enable the use of diamond devices in a wider range of 

applications. 

 

1.3 Outline of the thesis 

 

In Chapter 2, the physics and the material properties of semiconducting diamond are 

presented in detail. Particular attention is paid to the properties of diamond in the 

context of power electronics applications. Defects, substrate growth and classification, 

carrier mobility and several other crucial physical mechanisms are also addressed. A 

thorough description of the TCAD modelling of diamond devices is presented. 

Chapter 3 presents a systematic review of the applications and current state-of-the-art 
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of diamond while highlighting the issues that still need to be addressed prior to 

commercialization. This chapter concludes with a review of the state-of-the-art field 

relief design terminations in diamond and a careful analysis of the packaging, 

reliability’ issues and thermal management challenges for diamond electronics. 

The design and modelling of unipolar mode diamond JFETs and deep depletion 

MOSFET is studied in Chapter 4. The effect of several peculiar properties of 

diamond, such as the incomplete ionization effect, is addressed and deeply investigated 

by means of finite element simulations. The static and dynamic effects of the 

incomplete ionization of the dopants in diamond and other WBG semiconductor-based 

devices are examined in Chapter 5. The equations governing this complex physical 

mechanism are reviewed and described in detail. The static effects of the partial 

ionization have been analysed with reference to a classic 1D p-n junction and by 

monitoring the profile of majority carriers in the device. Dynamic effects which lead 

to charge imbalance in superjunction devices and kink in the CV curves of metal-

oxide-capacitor (MOS) device are also investigated. 

Chapter 6 aims to assess the limits of the figure of merits for power electronic devices 

with respect to diamond devices and suggests an alternative approach to compare 

diamond and other WBG semiconductor devices. Additionally, a theoretical 

comparison between diamond Schottky diodes and bipolar PIN diodes is carried out 

for different voltage ratings, temperature and switching frequencies. Finally, a 

suggested roadmap to a market-ready diamond power technology concludes this 

chapter. 

Chapter 7 concludes this thesis and addresses the future research plan. 
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2 PHYSICS AND TCAD 

MODELLING OF 

SEMICONDUCTING 

DIAMOND  

 

 

2.1 Introduction 

 

The remarkable electrical and physical properties of diamond have often led to 

extensive research efforts in developing electronic devices based on it. A scientific 

community has formed which considered diamond as the semiconductor material for 

the future generation of power electronic devices.  

This chapter takes a closer look at the analysis of the material properties of 

semiconducting diamond and their physical modelling for finite element simulations’ 

tools. 

The first part of this chapter focuses on the specific techniques to improve the doping 

efficiency and control, the unique properties arising from surface termination, the 

heterojunction structures and the carrier mobility for diamond. 

The second part concentrates on computer based-simulation tools and discusses in 

detail the most significant physical models and parameters for diamond devices.  
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2.2 Material requirements 

 

Diamond can be defined as “a perfectly ordered disposition of carbon atoms”[72]. 

More specifically, at the microscopic scale, diamond is made of two face centred cubic 

(FCC) cells which are displaced along the body diagonal by a quarter of their diagonal 

length. Additionally, each carbon atom in the structure is covalently bonded with other 

4 neighbours’ atoms. The strong covalent bonds make diamond an almost perfect 

thermal material with a high value of thermal conductivity. Moreover, the elevated 

energy required to separate carbon atoms in a diamond lattice makes diamond the 

hardest material available on Earth. 

Despite the fact that diamond gemstones can be found in nature, synthetic diamond for 

electronic applications is usually fabricated in laboratories. The synthesis of diamond 

requires the accurate control of pressure and temperature to avoid graphitization. As 

can be seen in figure 2.1, different pressure and temperature conditions are needed for 

CVD and HPHT diamond growth. Additionally, the availability of a wafer (usually an 

HPHT one) is required for the CVD growth. 

 

Figure 2.1: Carbon phase diagram. CVD diamond is metastable, and graphitization can occur at ~1700 K and for 

high pressure conditions. Picture reproduced from [73]. 
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The performance of diamond electronic devices depends heavily upon the crystalline 

quality of the HPHT or CVD substrates on top of which the devices are fabricated. The 

dislocations density and the total area of the substrate determine the performance such 

as the maximum available current in the ON state, the BV as well as the level and the 

origin of the leakage current. Therefore, assessing the quality of the substrate upon 

which several other diamond layers are grown is a critical step.  

2.2.1. Substrates and growth 

 

Diamond crystals are usually classified on the basis of the type of impurities 

concentration (nitrogen and boron) and their arrangement in the crystalline structure. 

An accurate classification of diamond crystals can be found in table 2.1 and it applies 

to both natural and synthetic diamonds (HPHT or CVD). The HPHT technique for the 

realization of synthetic diamond substrates allows to achieve high purity with a low 

defect density but the total size is normally restricted due to intrinsic limitations of this 

method. HPHT substrates used for electronic devices are usually type Ib due to their 

relatively low cost and low dislocations density of about 105 cm-2, but type IIa 

substrates can achieve even lower dislocations density (<103 cm-2) with drawbacks in 

terms of complex fabrication process and cost.  

Table 2.1. Classification of Diamond crystals based on the type and amount of impurities. Impurities are usually 

measured with IR techniques. 

Diamond Substrates 

Type I 
It has enough Nitrogen 
concentration (0.3%-0.5%) 
which can be measured with 
Infrared (IR) spectrometry. 
 

Type Ia 
Nitrogen (N) atoms 
replace Carbon (C) 
atoms in the lattice 
(N atoms are in 
substitutional lattice 
sites) and they tend 
to aggregate together. 

Type IaA 
A specific type of Ia with N atoms 
pairs which occupy neighboring lattice 
site. 
Type IaB 
Cluster of 4 substitutional N atoms 
symmetrically surround a vacancy in 
the lattice structure. 

Type Ib 
N atoms replace C atoms in the lattice, but they are isolated 
from each other. A great part of HPHT diamond substrates is 
type Ib. 

Type II 
It is characterized by a low 
Nitrogen concentration which 
cannot be detected with IR. 
(usually <1017 cm-3) 

Type IIa 
Very low Boron and Nitrogen concentration which makes this 
form one of the purest diamond crystals available. Diamond 
gemstone can be included in this category. 
Type IIb 
Boron concentration is higher than nitrogen. It has p-type 
semiconducting properties. 
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Commercially available HPHT substrates can be found in 2x2 mm2 up to a maximum 

value of 10x10 mm2 for IIa HPHT which has been recently commercialized by NDT 

Russia [74]. 

CVD growth has less limitations on the size of the substrate, despite the fact that it 

does not achieve the same crystalline quality of HPHT technique. Currently, 

microwave plasma CVD (MPCVD) and hot filament CVD (HFCVD) are the two main 

techniques for growing diamond layers. However, there exists more than 10 different 

ways to obtain CVD growth. Commercially available CVD substrates are currently 

available from E6, Sumitomo and several other companies and their size can reach up 

to 0.5 inch. Over 2 inches CVD substrates can be found in a mosaic configuration but 

the bonding boundaries between the wafers can restrict the electrical characteristics of 

the devices and increase strain and defects in the structure [75]. An alternative 

technique to homoepitaxial growth is the heteroepitaxial growth of diamond on 

Iridium (Ir) and other similar substrates [76, 77]. This process allows to reach over 3 

inches substrates but the high number of dislocation density (107-109) needs to be 

addressed prior the fabrication of high-performance electronic devices on such 

substrates. 

Conversely, as diamond devices can exhibit better electrical performance (i.e. current 

density, BV, switching speed, etc.) compared with other semiconductor-based devices, 

small area substrates could still represent an attractive solution which will allow to 

simultaneously reduce the overall price per Ampere and avoid the dicing price of large 

area substrates. These key features will be examined in greater detail in chapter 6. 

2.2.2. Doping and defects in diamond 

 

When compared to other semiconductors, diamond is characterized by a much more 

complex doping process. As an example, due to the peculiar lattice structure and 

material strength, only shallow doping profiles (<10 nm) can be obtained by means of 

high energy ion implantation process [78, 79] . Recently, thermal doping diffusion has 

been proven and a diamond p-n diode based on this doping technique has been 

fabricated and characterized [80, 81]. However, this technique requires further 

investigations prior to becoming a reliable method for fabricating diamond devices.  

Therefore, the incorporation of substitutional dopant species during the growth of 
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diamond layers still leaves some open issues and it is mainly realized simultaneously 

with the CVD growth. Low boron concentrations (1015 cm-3) are relatively easy to 

implement but fabrication of thick doped p-type layers remains challenging due to the 

loss of the crystallinity. While boron forms an acceptor level at 0.38 eV from the 

maximum energy level of valence band (Ev), nitrogen and phosphorus n-type dopants 

result in a much deeper energy level with the respect to the minimum energy level of 

the conduction band (1.7 eV and 0.57 eV from Ec, respectively). Nitrogen which can 

be also found in a great variety of diamond substrates has the advantage of having a 

similar radius to Carbon and therefore does not introduce strain and stresses in the 

diamond lattice. However, its high activation energy makes these dopants practically 

unsuitable for electronic applications both for the low dopant efficiency and for the 

slow dynamics of the carriers. Growth of phosphorous doped diamond layer ensures 

the lower resistivity for n-type layers but it requires high and controlled temperature 

during the whole growth process [82]. Though it is possible to obtain a relatively wide 

doping window, heavy n-type (>5x1019 cm-3) doping still remains challenging (table 

2.2) [83].  Several other dopant species such as Li, Na and As have been investigated 

in the literature as potential shallow dopant candidates for diamond. If these dopant 

species occupied substitutional positions in the lattice, they would allow for a lower 

ionization energy (0.1 eV,0.3 eV and 0.4 eV, respectively). Unfortunately, the donor-

like behavior was only confirmed for arsenic (As) which, unfortunately, requires a 

more complex doping process than the classical incorporation during the CVD growth. 

In addition, the crystal orientation also plays a key role in determining the quality of 

the doped and intrinsic layers. <100> orientation is the most common one for growing 

diamond layers, but it is still complicated to grow n-type layers and there are still 

limitations in the efficiency of p-type doping. Conversely, in the <111> directions n-

type phosphorous dopants can be incorporated much easier and it is possible to achieve 

one of the highest concentration of boron [84]. Nevertheless, one of  the significant 

drawbacks of the <111> orientation is the formation of macroscopic defects which 

leads to a poorer quality of the material [85]. On <110> faces boron concentration can 

be improved if compared with <100> but the reduced surface area hampers the benefits 

due to the enhanced doping control. Other orientations like <113> which have not been 

deeply investigated, may result in enhanced control and speed for the doping process 

of diamond layers. Macroscopic and microscopic defects are also playing a key role in 
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determining the properties of diamond electronic devices [86, 87]. Non epitaxial 

crystallites, which are a typical feature of homoepitaxial grown diamond, have already 

been demonstrated to affect the performance of MESFET and Schottky diamond 

diodes [88-90]. Contaminants which propagate during the growth of the drift layer and 

originate from the diamond substrate can indeed modify the Schottky barrier 

uniformity [91, 92] and lead to enhanced leakage current. It has been proven that 

diodes with a larger active area typically characterized by an increased number of 

defects which leads, in turn, to higher leakage currents [93-95]. Improved and 

controlled growth conditions have also shown a reduction of non-epitaxial crystallites 

in SBDs [96].  

Table 2.2. Available doping windows for the doping of diamond electronic devices. 

 Available Under development / required 
min max min max 

N-type doping 
concentration 

~ 3x1015 cm-3[97] 
 

~ 8x1019 cm-3 [98]    ~1x1014 cm-3    >1x1020 cm-3 

N-type layer 
thickness 

<100 nm [97, 99] ~ 5µm[82]   <1nm >50 µm 

P-type doping 
concentration 

~ 1x1015 cm-3 [100] >1x1021cm-3 [101] < 1x1014 cm-3 >1e21 cm-3 

P-type layer 
thickness 

<10  nm ~ 100µm [101] <1nm >200 µm 

 

Shockley type dislocations are known to be responsible for lifetime killing in SiC 

bipolar devices. They limit the scaling of drift layers for power electronics applications 

and similar effects may also be present in diamond. However, the effect of atomic 

scale defects such as dislocations and planer defects on the device’ performance is still 

under investigation and still not well understood for diamond layers. Characterization 

techniques such as cathodoluminescence (CL), Electron beam induced current (EBIC), 

Raman spectroscopy and X-ray topography are typically performed for the estimation 

of diamond defects. For a complete review of diamond defects and their 

characterization techniques, the reader can  refer to [102]. 

2.2.3. Device and surface termination 

 

The surface termination of diamond layers has a crucial impact on the electro-chemical 

properties of the final devices. The termination creates new electronic states which 
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have different properties when compared to the bulk. Among the key aspects, the 

presence of surface electronic states inside the bandgap may give rise to Fermi-level-

Pinning (FLP) effects and to surface dipoles which can vary the electron affinity of the 

diamond semiconductor.  

2.2.3.1. Oxygen termination  

 

Oxygen termination is generally used to improve the adhesion of oxide and diamond 

layers and it induces a positive electron affinity (PEA) of 1.7 eV. One of the main 

drawbacks of such passivation is the high FLP effects generated by the presence of 

high density interface states which can affect the electrical properties of metal oxide 

semiconductor (MOS) structures fabricated on such layers [103], as it will be discussed 

in chapter 3.  Ozone treatment and immersion in hot mixed acid are the most common 

treatments adopted by researchers   to induce O-termination in diamond layers [104].  

Several species (C=O, C-OH, C-O-C, C-O-O-C) can be formed at the surface during 

the oxygen termination depending on the treatment and the method adopted. Oxygen 

terminated (O-terminated)  diamond is also exploited for the removal of the hole-type 

conductive layer which is generated at the hydrogen terminated diamond surface and 

for the passivation of diamond layers [21]. 

2.2.3.2. Hydrogen termination  

 

On hydrogen terminated (H-terminated) diamond surfaces, both a negative electron 

affinity (NEA) of > -1 eV and a strong FLP are induced [105, 106]. Diamond H-

terminated surfaces, which can be obtained by either hot filament or plasma treatment, 

have been widely explored due to their unique property of surface conductivity. Even 

though the origin of surface conductivity is still not well understood, the presence of 

adsorbates on C-H diamond surface and the local exchange of charge with the diamond 

valence band is the most likely explanation for the formation of the 2DHG. Recently, 

2DHG has been demonstrated on C-H surfaces passivated with Al2O3 oxide [107]. As 

the adsorbates are removed with in-situ technique, the origin of the 2DHG on 

passivated C-H surfaces is probably induced by negative charging of the unoccupied 

levels such as Al vacancies or oxygen point defects, as discussed in [108]. One can 
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also note that these properties have been also presented with polycrystalline diamond 

[109] or heteroepitaxial grown diamond [110]. 

 

2.2.3.3. Heterojunctions with Diamond 

 

Among the possibilities which allow to obtain at room temperature (RT) fully activated 

diamond channel, heterojunctions of diamond and group III nitrides (AlN, GaN and 

BN) are among the most promising and attractive configurations. As the growth of 

GaN layers on diamond surfaces is complicated, AlN and BN have been identified as 

the key materials for diamond heterojunctions. Kuech et al. [111] reported an H-

terminated diamond surface with an AlN passivation layer and the first demonstration 

of a AlN/diamond heterojunction np diode was successfully carried out by Miskys et 

al. [112] by using a MBE (Molecular Beam Epitaxy) technique. As the H-terminated 

surface results in a poor attachment to the AlN layer, an O-terminated diamond surface 

was adopted for the first AlN/Diamond heterojunction FET realized by Imura et al. 

[113, 114] with a metal organic vapor phase epitaxy technique. The calculated hole 

density profile reached its peak of about 3.6x1018 cm-3 at about 1.5 nm from the 

heterojunction interface and good carrier confinement was demonstrated. The hole 

sheet density integrated by depth from 0 nm to 7 nm (with the origin at the 

diamond/AlN interface) is evaluated to be 1.2×1011 cm–2. 

2.2.4. Bulk and surface mobility 

 

Carrier mobility is one of the key parameters for semiconductor-based electronic 

devices. It describes the relationship between the carrier velocity and the electric field. 

In diamond, several measurements and studies have been performed in order to 

estimate the value of hole/electron mobility and the principal scattering mechanisms. 

The different techniques implemented for the diamond mobility measurement are 

typically classified in optical excitation measurements (such as time-resolved 

cyclotron resonance (TRCR) and time-of-flight (TOF)), Hall measurements of CVD 

diamond layers and indirect measurements from FETs characteristics. Discrepancies 

between the TRCR,TOF and Hall measurements have generated confusion about the 
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real value of diamond carrier mobility with overestimations for hole and electron 

mobility at RT (7300 cm2/(Vs) for electron and 5300 cm2/(Vs) for holes [115]). 

However, recent measurements tend to agree on the RT values for electron/hole 

mobilities [116, 117]. 

 

Figure 2.2: (a) Hole mobility vs temperature for bulk diamond (experimental and theoretical) for low boron 

concentration <1x1016 cm-3. The gray rectangle corresponds to typical room temperature 2DHG mobility in 

diamond FET, (b) Hole mobility for H-terminated diamond FETs, O-terminated diamond FETs and delta B-doped 

diamond. Data from [118] (references therein) and [119].  

Regarding the electron mobility in n-type layers, intra-valley phonon scattering with a 

T-a(T) (with a(T)>2) dependence is dominating the high temperature range (regardless 

of the doping level of the layer) while the interaction with the intra-valley acoustic 

phonon is the main scattering mechanism in the middle temperature range with a T3/2 

dependence [118, 120]. In the low temperature range, ionized impurity and neutral 

impurity scattering with a T3/2 and no temperature dependence, respectively, are the 

main mechanisms affecting the electron mobility of diamond. In detail, as the high 

activation energy of boron and phosphorous doped diamond layers results in a low 

ionization ratio at RT (especially for medium-highly doped layers), a great part of the 

dopant atoms is electrically neutral and their scattering with electrons cannot be 

neglected like in Silicon or other low bandgap materials. Hall electron mobility values 

calculated at RT oscillate around 1000 cm2/(Vs) whilst TOF performed by Isberg et 

al.[121] shows higher electron mobility, an overestimation which may be caused by 

the approximation of Hall scattering factor, as suggested by Pernot [118]. 

On the other hand, while hole mobility is subjected to the same scattering mechanisms 

in the low temperature range, intra-band and inter-band acoustic phonon scattering are 
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dominating the medium range and the interaction with the optical phonon is the main 

mechanism responsible for the mobility at high temperature (HT). Some discrepancies 

between TOF, TRCR and Hall measurements still persist with values ranging between 

3800 cm2/(Vs) and 2100 cm2/(Vs) at RT with a tendency of measurements to confirm 

the 2100 cm2/(Vs) value [118, 122] (figure 2.2(a)).  

Such mobility values can be reached in pure or low doped diamond, where the limiting 

mobility mechanism is purely intrinsic due to phonon scattering mechanisms. In some 

power devices, moderately doped and highly doped material will be needed in order 

to perform active layer or contacts. In that case, the impurities will be the limiting 

process of the mobility. Detailed analysis of the mobility dependence versus doping 

level concerning phosphorus doped n-type [120] and boron doped p-type [123-125] 

materials have been reported. In uncompensated and highly doped material, the neutral 

impurity scattering is the dominant scattering mechanism because of the large 

ionization energy of the donor and acceptor dopants. 

Few studies have analyzed the mobility in hydrogen terminated diamond surfaces. In 

general, extraction of the conductivity (carrier sheet density and mobility) is obtained 

during the electrical characterization of the 2DHG FETs. Besides, values of surface 

channel p-type channel FETs rarely exceed 200-300 cm2/(Vs) due to surface 

roughness, ionized impurity scattering, and the high surface electric field generated by 

the presence of the negatively charged acceptors which are causing the confinement 

of the 2D hole gas (figure 2.2(b)). Recently, Li et al.[126] calculated the 2DHG 

mobility as function of the temperature and the hole gas density and then compared 

their theoretical results with a variety of experiments. The extracted data showed that 

the surface impurity scattering mechanism controls the mobility of 2DHG for a 

significant temperature and hole density range while the high temperature mobility is 

affected by the nonpolar optical phonon scattering. 

Mobility extraction has also been performed on delta doped FETs showing that the 

predicted enhanced mobility in such layers cannot be achieved and values rarely 

overcome 20 cm2/(Vs) [127]. On C-OH diamond surfaces, the mobility of the 

inversion layer on lateral MOSFET have been estimated to be 8 cm2/(Vs) due to the 

non-optimal quality of the diamond/Al2O3 oxide interface [128]. Another effect which 

needs to be addressed in order to fully capture diamond device’ properties is the 
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mobility of minority carriers (i.e. electrons in p-type layer and holes in n-type layer) 

which will be crucial in determining the properties of bipolar mode devices. 

2.3 TCAD tools and challenges  

 

This section aims to address the main physical models and parameters used for the 

finite element simulations of oxygen and hydrogen terminated diamond devices based 

on the most recent experimental results. 

2.3.1. Physical models for oxygen terminated diamond 

2.3.1.1. Literature review 

 

Finite element modelling of diamond devices finds its roots in the early work of Shin 

et al. [129]  in which a diamond p-type MESFET was simulated and compared with 

GaAs MESFETs for RF applications. Successively, Kawakami, Aleksov, Tsugawa et 

al. [130-133] used finite element simulations to investigate the current distribution and 

the temperature profile in p-i-p type diamond metal–insulator–semiconductor field 

effect transistors , JFETs and delta doped FETs. In these early works, the finite element 

simulations were only employed to extract trends rather than for confirming 

experimental results or analysis and they mainly included a constant value for 

mobility, activation energy and the other critical parameters. Only in the works of 

Brezeanu et al. and Rashid et al. [72, 134-136] a more systematic and reliable approach 

for technology computer aided design (TCAD) simulations of oxygen terminated 

diamond power devices can be found. A compact model for the doping and 

temperature dependent mobility, which was fitted from TOF measurements of Isberg 

et al. [121, 137], and an advanced model for the partial activation of the dopants were 

both included in the simulation deck. In addition, a set of temperature independent 

impact ionization coefficients and the main values for electron affinity and bandgap 

were included to perform the finite element simulations. This set of parameters was 

able to correctly match a series of diamond Schottky metal-insulator-p-type (MIP) 

diodes with different geometries and Schottky metals and, concurrently, to predict the 

electric field evolution with planar and ramp field plate terminations in diamond 

Schottky MIP diodes. A variable series resistance was added in order to simulate 
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interface effects, imperfections and the 300 µm-thick p+ substrate. Nawawi et al. [138-

140] optimized the matching technique proposed by Rashid et al. and included a more 

complete set of parameters for incomplete ionization, high field effect mobility, a new 

set of breakdown voltage coefficients and also an interface layer (between diamond 

and the Schottky metal) which was able to explain the peculiar temperature behavior 

observed by Rashid et al. for some MIP diodes. Nevertheless, new mobility and impact 

ionization measurements and the discovery of some specific phenomena such as the 

hopping conduction mechanisms (not negligible at low temperatures and for high 

doping concentration (see section 2.3.1.2)) resulted in a modification and an overall 

refinement of the previous set of TCAD parameters. Marechal et al. [141] implemented 

those new models in order to reproduce the behavior of a diamond p-n diode junction. 

The hopping mobility was included in the finite element simulations and correctly 

allowed to estimate the value of the additional parasitic resistance which was required 

for an accurate matching of the I-V characteristics of the diode’ characteristics. Several 

other works attempted to include more accurate physical models also for the 

generation-recombination process, leakage current mechanisms  and for a temperature 

dependent impact ionization set of coefficients [142-145]. Despite the incomplete 

ionization, high and low field mobility, hopping mobility, effective mass and bandgap 

models have been improved during the last decade, the lack of a compact model for 

the generation and recombination process and for the impact ionization still remains a 

major issue for the matching and prediction of oxygen terminated diamond device 

characteristics. Furthermore, as the variations of the process usually impact the 

electrical performance of the final devices with the creation of multiple defects, non-

uniform Schottky barrier, interface and bulk traps, it is impossible to find a unique set 

of parameters and physical models able to exactly match and predict the performance 

of all the oxygen terminated diamond devices. Therefore, while some of the main 

models (i.e low field mobility, bandgap, incomplete ionization, hopping mobility) can 

be considered identical in all the simulations, other coefficients and physical models 

(such as avalanche, recombination, leakage current) need to be adjusted to the specific 

process via a “matching technique” prior the simulation of new and optimized diamond 

power device structures. Such a matching technique mainly involves the fitting of the 

main static and dynamic device electrical characteristics (such as threshold voltage, 

breakdown voltage, saturation current, inductive and resistive switching waveforms 

etc.). 
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2.3.1.2 TCAD modelling  

 

The finite element analysis and simulations of diamond devices require the availability 

of a Technology computer aided design (TCAD) software. This category of software 

allows to predict the behaviour of semiconductor-based devices based on the 

resolution of the Poisson and current equations. To provide numerical solutions, both 

the equations and the semiconductor device are discretized (finite element approach). 

The device structure is usually discretized with a triangular mesh and the “box 

discretization method” is employed for the resolution of the semiconductor equations. 

The commercially available tool used in this study is Sentaurus from Synopsys, which 

also allows to simulate opto-mechanical properties and includes a process simulation 

tool. Despite the fact that diamond is still not defined in the material database of this 

commercially available software, a custom parameter file with the physical models 

defined in this section has been developed. As it has already been mentioned, several 

other models and parameters not defined and addressed in this chapter (i.e. lifetime, 

leakage mechanisms, etc.) are still subject to discussion and are usually adjusted 

depending on the specific device structure. 

Bandgap and DOS 

In semiconductor devices, a significant number of electrical properties are determined 

by the value of the bandgap and the definition of the density of states in the valence 

and conductance band. Diamond is a semiconductor with an indirect bandgap in which 

the bandgap is defined as the energy difference between the minimum conduction band 

energy level at the X-point and the maximum valence band energy at the Γ-point of 

the Brillouin zone. The bandgap (EG) and its temperature (T) dependence have been 

modelled as in equation (1), with the set of parameters from table 2.3. α and β are 

fitting parameters. 

E�(T) = E�(300 K) + α ������� − α �����                  (1) 

Table 2.3. Parameters used for fitting equation (1) with the experimental results in [146](see fig. 2.3) 

Symbol EG(300 K) T0 α β 

Unit eV K eV K-1 K 
Value 5.47 300 0.033 1e5 
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Figure 2.3:  Diamond bandgap vs temperature and its comparison with the results from Clark et al.[146]. 

The formula defined by (1) is in good agreement with the experimental results reported 

by Clark et al. in 1964 [146] (see figure 2.3). Strictly connected to the energy-

momentum band structure is the definition of effective mass for electron and holes. In 

the hypothesis of parabolic approximation, the effective density of states for both the 

conduction and the valence band (NC and NV, respectively) can be defined as a function 

of the electron and hole effective mass, respectively as in formula (2a-b). In (2a-b) me* 

(mh*) is the effective electron (hole) mass, k is the Boltzmann constant and h is the 

Planck constant. 

N� = �(����∗ ��)�/�!�                                (2a) 

N" = �#���$∗ ��%�/�
!�                     (2b) 

The electron (me*) and hole (mh*) effective mass are function of the crystallographic 

orientation and can be defined as in equations 3(a-d) (parameters can be found in table 

2.4). mhh
*, mlh

* and mso
* are the values of the hole effective mass in the heavy hole, 

light hole and spin orbit band under the assumption of the three-valence parabolic band 

structure. These value are averaged along the <100> and <110> directions according 

to [125, 147]. For electrons the spin-orbit is assumed negligible and the effective mass 

can be calculated as in (3d), where &'  and &∥ are the electron transvers and 

longitudinal mass, respectively. 

m!!∗ = *m!!+,--.#m!!+,,-.%�/,/0
                             (3a) 
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m1!∗ = *m1!+,--.#m1!+,,-.%�/,/0
                      (3b) 

m!∗ = 2m!!∗  0/� + m1!∗  0/� + m34∗  0/�5,/0
                   (3c) 

m6∗ = 7m' � ∙ m∥9,/0                   (3d) 

Under this approximation, and by using coefficients from [148], the equations (2a) and 

(2b) can be simplified as in (4a-b), in which NV0 ~ 2e1019 cm-3 and NC0~5x1019 cm-3. 

N" = N"- : �0--;<0/�
                  (4a) 

N� = N�- : �0--;<0/�
                     (4b) 

Table 2.4. Parameters for equation 3(a-d). References included in the table. 

 Electrons Holes 

Reference ='  =∥ mhh
<100> mhh

<110> mlh
<100> mlh

<110> mso
* 

Naka  
[148] 

0.28 1.56 0.54 0.7 0.288 0.255 0.375 

Willatzen 
[149] 

0.34 1.5 0.427 0.69 0.366 0.276 0.394 

With the effective density of states defined as in (4a-b), the intrinsic carrier 

concentration (ni) is uniquely determined defined as shown in (5). Figure 2.4 shows 

the intrinsic carrier concentration for diamond and its comparison with other 

semiconductors. The parameters for Silicon and 4H-SiC have been extracted from 

[150]. 

n? = @N"N�  ∙  exp :− DE���<                   (5) 

 

Figure 2.4: Intrinsic carrier concentration(ni) as function of the temperature for different semiconductors. 
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Mobility 

Recent Hall effect measurements for hole and electron mobility [123] have been 

successfully implemented in Sentaurus TCAD with the Arora Model [150, 151] (see 

figure 2.5). This mobility model (6a-c) takes simultaneously into account the 

temperature, the doping dependence, and different values of compensation doping. 

The values of the parameters for holes and electrons adopted in the set of equations (6) 

are available in [141] and are also reported in table 2.5. In equations 6(a-c), 

Nimp=NA0+ND0 is the total level of impurities. NA0 and ND0 represents the compensation 

level concentration for n-type and p-type layers, respectively. In 6(a-c), βmin,max , Nβ  , 

γβ , γµ , Nµ are fitting parameters. 

μ(T, N?�G) = μ(300, N?�G) ⋅ : �0--<I�#JKLM%
                               (6a) 

μ(300, N?�G) = μ�?N + OLPQIOLKR,�STKLMTU VWU                                           (6b) 

β(N?�G) = β�?N + �LPQI�LKR,�YTKLMTZ [WZ                       (6c) 

Table 2.5. Parameters for equations 6(a-c) ) taken from [141]. 

Symbol βmin βmax Nβ γβ µmin µmax Nµ γµ 
Unit ---- ---- cm-3 --- cm2 /Vs cm2 /Vs cm-3 ---- 

Hole 0 3.11 4.1e18 0.617 0 2016 3.25e17 0.73 

Electron 0 2.17 3.75e17 0.585 0 1030 9.9e16 0.564 

 

 

Figure 2.5: Hole mobility vs doping for boron (a) and phosphorous (b) doped diamond for T=300/500K. 
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Incomplete ionization  

The wide bandgap (and the small dielectric constant) of diamond results in the 

formation of deep levels for donors and acceptors (see section 2.2.2). The equations 

and parameters for the incomplete ionization of the dopants have been extensively 

defined and discussed in chapter 5. The electro-thermal balance equation which can 

be solved in the scenario of the Fermi-statistics[152, 153] has been plotted in figure 

2.6 for boron doped diamond at different operating temperature and for different 

compensation ratios and doping concentration. For nitrogen doped and phosphorous 

doped diamond, similar equations and plots can be derived. 

 

Figure 2.6: (a) Active boron dopants at the thermodynamic equilibrium vs total boron concentration for T=300 

/500/700 K and (b) effect of different compensation levels (ND=ND0) on the boron activation at T=300 K. For the 

formulas used in the calculation, refer to chapter 5. 

High field saturation 

Under the influence of high electric field (E), the mobility degradation can be modelled 

through the high field saturation model based on Canali model and on the Caughey 

Thomas Law (equation 7 and figure 2.7) [39].  

The reduction of the saturation velocity(vsat) at high temperature has been modelled as 

in equation (8). In the literature, the saturation velocity of carriers in CVD diamond 

which has been determined by means of Monte-Carlo simulations and experimental 

measurements, have exhibited a significant variation from 0.96×107 cm/s up to 

2.3×107 cm/s [2], [40]. In this thesis, we assumed vsat,0 = 2×107 cm/s [41] and b = 6, 

where the coefficient b has been adopted as a fitting parameter for the high temperature 
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transfer curve of the normally-on JFETs (chapter 4). In equations 7-8, v is the carrier 

velocity, α and β are fitting parameters. 

v(E) = E ∙ μ(E) = D∙(]�,)O(�,JKLM)
]�^,�S(_`a)∙b∙U(c,TKLM)dePf VZga/Z                             (7) 

v3hi = v3hi,- :0--;� <j
                      (8) 

 

Figure 2.7: (a) Saturation velocity vs temperature for different b exponent (equation 8) and (b) equation (7) plotted 

for different temperatures in case of boron doped diamond with Nimp=NA0=1e16cm-3. 

Hopping mobility 

For high doping level (below the metal-insulator transition) and for low temperature, 

hopping conduction dominates the conduction mechanism in both boron doped and 

phosphorous doped diamond layers. Different types of hopping conduction occur for 

boron and phosphorous doped diamond. More specifically, in nearest neighbor 

hopping (NNH), occurring for phosphorous doped diamond, carriers are transported 

by tunneling among a single dopant level. Conversely, in variable range hopping 

(VRH), occurring for boron diamond, carriers are transported inside a dopant band 

originated by the wave function overlapping of dopant levels (figure 2.8). The 

equations and the parameters for electron hopping mobility have been defined in (9a-

d) and table 2.6. One can note that as the activated phosphorous concentration (ND) is 

needed for such a calculation (and not the total doping level ND0), the computation of 

(9) requires a more complex implementation in the finite element simulator. This could 

be obtained by means of the physical model interface (PMI) with the definition of a 

dedicated C-based language code for the hopping mobility(µhop). The runtime 
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resolution of equations 9(a-d) can usually lead to convergence issues of the TCAD 

simulations, and therefore, it will be neglected unless specified in this manuscript. In 

formulas 9a-d, nhop=ND0-nB, where nB is the electron concentration in the conduction 

band, σN is the conductivity of the n-type layer, µeq is the equivalent mobility of the n-

type layer, µ is the bulk mobility, Rhop is the hopping tunnelling length, vph is the 

phonon scattering probability, α is electronic wavefunction overlap parameter, Whop is 

the hopping activation energy. 

σN = q#µ nn + µ !4G n!4G%                  (9a) 

σN = q µ 6onn                    (9b) 

µ 6o = µ +  N$pMNq µ !4G                   (9c)  

µ !4G = ,r os$pM��� vG! :−2αR!4G − ov$pM�� <                  (9d) 

Table 2.6. Parameters for equations 9(a-d) taken from [141]. 

Symbol Rhop α-1 wxy Whop 

Unit cm nm s-1 10-3 x eV 

Value ~ND0
-1/3 1.8 2e11 51 

 

Figure 2.8: Simulated resistivity vs doping concentration for a diamond n-type layer at different operating junction 

temperature. 
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2.3.2. Physical models for hydrogen terminated diamond 

2.3.2.1 Literature review  

 

Despite the numerous works on the subject, the nature of the 2DHG in H-terminated 

diamond structures is still controversial. TCAD simulations of HFETs have been 

mainly based on two different models for the implementation of the two-dimensional 

hole gas in the structure (figure 2.9). One of the first models proposed by Tsugawa et 

al. [130] called as “surface acceptor model” ”(fig.2.9(a)) consisted in an ultra-thin (0.2 

nm) highly doped p-type layer (1020 cm-3) where full activation of acceptors was 

considered. This model was able to effectively reproduce the exponential 2D 

distribution of holes, typical of H-terminated diamond FETs. In the same work, 

Tsugawa also introduced a “diffused acceptor model”, in which holes were three 

dimensionally distributed from the surface according to a Gaussian profile. The 

diffused acceptor model was able to reproduce the formation of some 2DHG in which 

the hole density peak was located at a certain depth from the surface region (~20nm). 

Successively, Oishi, Fu, Zhou [154-157] included the surface acceptor model to match 

experimental HFETs devices and to explain the unusual double transconductance peak 

occurring in HFETs. Recently, Kawarada et al. [108] successfully reproduced the 

behavior of HFETs by adopting a second model for the 2DHG formation, named 

“charge sheet model”(fig.2.9(b)). This model was already known in the literature and 

it allowed to correctly estimate and reproduce the characteristics of AlGaN/GaN FETs 

by means of a positive sheet of fixed charge. Such charges which were generated by 

interface polarization were able to create a 2DEG at the AlGaN/GaN interface. 

Similarly, the inclusion of negative fixed charges at the diamond/oxide interface (such 

as diamond/Al2O3) is able to accumulate a 2DHG at the interface even at zero bias. 

Nevertheless, despite the fact that the charge sheet model allowed for an easier and 

more physically sounded modelling (2DHG might be formed by the presence of 

negatively charged sites near the interface), some of the HFETs characteristics could 

not be matched. For this reason, Wong et al. [158] introduced a double charge sheet 

model ”(fig.2.9(c)) in order to simultaneously match the transfer characteristics, the 

ON state current and the Hall measurements for such devices. In detail, an additional 

layer of negative charge is sandwiched between the oxide and the interfacial layer, 

which could be formed during a non-ideal hydrogen surface termination. Fu et al. [159] 
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recently presented a new 2DHG model, which consists of a positive and negative fixed 

charge layer spaced of about 0.2 nm in order to correctly reproduce the C-H dipole at 

the interface(fig.2.9(d)). This allowed for an effective matching of the ON state and 

transfer characteristics of HFETs based on both single crystal and polycrystalline 

diamond. It is worth mentioning that the value of the hole mobility for H-FETs 

simulations is usually varied in order to match the device’ characteristics at room 

temperature.  

However, as already discussed in paragraph 2.2.4, hole mobility for 2DHG depends 

upon temperature, the hole gas density concentration and other scattering mechanisms. 

Thus, a more consistent model, not yet available in the literature, is essential to 

correctly estimate the electro-thermal characteristics of the next generation of HFETs.  

Together with that, as hydrogen terminated diamond exhibits the NEA property, a 

precise modelling of this physical parameter is fundamental to predict the correct band 

alignment between diamond and oxide layers, but also to simulate the electron 

emission from vacuum switches devices. 

 

Figure 2.9:  Different charge sheet models for diamond HFETs used in Wong et al. [158, 160], Fu et al. [159] and 

Kawarada et al. [108]. (a) 2D acceptor model, (b) charge sheet model, (c) double charge sheet model, (d) C-H 

dipole effect model. 
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2.3.2.2 TCAD modelling for 2DHG Mobility 

 

Regarding the finite element modelling of the 2DHG-based devices simulated in 

chapter 4, a temperature-doping dependent 2DHG mobility has been implemented 

within the “charge sheet model” of Kawarada et al. The simplified formulas which are 

defined in the set of equations (10a-b) with the parameters of table 2.7 have been 

matched from the theoretical analysis of the scattering models carried out by Li et 

al.[126] and implemented for the finite element simulations (figure 2.10). In (10), 

N2DHG is the charge sheet concentration (cm-2), T the temperature and all the other 

symbols are fitting parameters. 

Table 2.7. Parameters used for fitting equations (10a-b) with the model described in [126]. 

Symbol a2DHG b2DHG c2DHG d2DHG γ2DHG 

Unit cm2 /Vs cm2 /Vs    cm-2    ------- ------- 

Value 33.78 1.442e4 1e10 0.7796 -0.4895 

 

μ�z{�(T, N�z{�) = μ�z{�(300, N�z{�) ⋅ : �0--<γ2DHG
            (10a) 

μ�z{�(300, N�z{�) = a�z{� + j���EIh���E,�ST���E����E V����E                              (10b) 

 

Figure 2.10:  2DHG mobility model with formula (10a-b) and its comparison with the model of Li et al. at T=300 

K for different charge sheet concentration (a) and for different operating temperature for a fixed 2DHG sheet 

concentration of 1.8x1013 cm-2. 
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2.3.3. Physical models for the breakdown voltage of diamond 

 

When comparing different devices, a sound definition and criterion for a correct 

extraction of the breakdown voltage is extremely important. In diamond, the high 

density of defects and the non-optimized growth process can usually lead to premature 

breakdown with a leakage current that reaches a value comparable with the ON state 

current. Only rarely, some diamond devices tend to exhibit a breakdown voltage 

triggered by the impact ionization effect. Therefore, for a correct approximation of the 

OFF state performance of diamond devices, both the leakage current and the impact 

ionization need to be correctly modelled in TCAD. Regarding the impact ionization 

coefficients, several works have attempted to extract a unique set of avalanche 

coefficients for diamond by means of ab-initio simulations, TCAD matching 

simulations, charge multiplication experiments and theoretical studies. The majority 

of those models rely on the Chynoweth model (equation 11-12) and do not account for 

the temperature dependence of the breakdown (except for [144]). Some of these 

models assume a unique value of coefficients for holes and electrons, an assumption 

validated by adopting the geometric average of the values for holes and electrons as 

the common value (table 2.8). In equations 11-12, αn,p is the electron(hole) impact 

ionization rate, K1n,p and K2n,p are the impact ionization coefficients, E is the electric 

field, x is the position with reference to a 1D p-n junction, XBEG identifies the position 

of the metallurgical junction, V the applied voltage, SCR is the space charge region, 

F(V) is the ionization integral. 

�αN(x, V) = K,N ∙ eI ��R|b(Q,�)|
αG(x, V) = K,G ∙ eI ��M|b(Q,�)|                                                     (11) 

F(V) = � eI � 2]R(��,")I]M(��,")5���QQq��(�) ∙ αN(x, V)dx ��s(")                                              (12) 

Table 2.8. Impact ionization coefficient for equation (11) and (12).  

 Unit Silicon Diamond 
(Hiraiwa)[161, 

162] 

Diamond 
(Kamakura)[163] 

Diamond 
(Watanabe)[164] 

��� cm-1 7.03e5 1.46e5 3.7e6 4.62e5 ��� Vcm-1 1.231e6 2.4e7 5.8e7 7.59e6 ��x cm-1 1.582e6 6.1e4 4.2e6 1.93e5 ��x Vcm-1 2.036e6 1.39e7 2.1e7 4.41e6 
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It is worth mentioning that leakage current mechanisms have been included in finite 

element simulations for diamond Schottky diodes [140, 165], for MOS structures [166] 

and for hydrogen terminated devices [158, 160]. In detail, Driche et al. [165] 

implemented a thermionic emission field enhanced model and the Tsu-Esaki model 

for the hole tunnelling in order to reproduce the reverse characteristics of lateral 

diamond Schottky barrier diodes (figure 2.11).  

The simulation results reproduced in figure 2.11(b), clearly point out that different 

avalanche coefficients modifies the electric field distribution and its peak in the device 

(for additional details about doping, thickness, etc. please refer to [165]). This, in turn, 

affects the overall level of leakage current which is dependent upon the value of the 

electric field at the Schottky/diamond interface. 

 

Figure 2.11:  (a) Schematic cross section of lateral SBD and (b) simulated 2D electric field distribution with different 

impact ionization coefficients (table 10) along the red cut shown in (a) at the experimental value of the BV (~296 

V). The peak electric field is located at the edge of the Schottky metal, as schematically illustrated in (a). In figure 

(b), Ri is the ratio of the peak electric field and the constant value under the central part Schottky contact. Figure 

(b) reproduced from [165]. 

Conversely, Nawawi et al. [140] adopted an interfacial layer for the modelling of non-

ideal characteristics of Schottky diodes and a hole tunnelling mechanisms was 

introduced to allow for the current flow from the p-type layer to the Schottky metal. 

Furthermore, Marechal et al. [166] identified a multi-step mechanisms which was 

responsible for the asymmetric leakage current mechanisms in diamond p-type MOS 

capacitor, and implemented a thermionic emission model together with a trap assisted 

and Fowler -Nordheim tunnelling for the TCAD matching of experimental results on 

Al2O3, ZrO2 and HfO2 MOS capacitors. Such a mechanism was then described in more 
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detail by Pham et al. [167]. Regarding hydrogen terminated devices, Wong et al. [158] 

employed a simple direct tunnelling model in order to reproduce the leakage current 

mechanisms of hydrogen terminated diamond MESFET at the Schottky interface. 

2.4  Conclusions 

 

A thorough investigation of the state-of-the-art material properties and TCAD 

modelling has been carried out in this chapter. The accurate analysis of diamond 

properties allows to derive precise and concise electrical models for the finite element 

simulations of diamond-based devices. The physical models defined in this chapter 

will be then used for the optimization of diamond devices, as it will be shown in 

chapter 4. 
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3 REVIEW OF DIAMOND   

DEVICES FOR POWER 

ELECTRONICS 

 

3.1 Introduction 

 

This chapter provides an extensive literature review of the state-of-the-art diamond 

devices for power applications. Particular attention is paid to the classification of 

different diamond devices and their comparison in terms of conduction loss, 

breakdown voltage and associated switching and reliability issues. The chapter 

concludes with a review of the high voltage termination design for diamond devices 

and an assessment of the thermal management and packaging techniques for the next 

generation of diamond electronics.1 

3.2 Overview of diamond device architectures  

      3.2.1. Diodes 

 

Power diodes are key components in power converters, especially in DC /DC 

applications such as buck/boost topologies but also in AC/DC and DC/AC power 

conversion schemes in which they are required to work together with transistors (like 

 

 

1 The material in this chapter has been the object of the following publication: Donato, Nazareno, et al. 

"Diamond power devices: State of the art, modelling and figures of merit." Journal of Physics D: 

Applied Physics (accepted on 17th October 2019). 
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MOSFETs and IGBTs), as rectifiers, free-wheeling diodes or part of the filters. Diodes 

structures can be classified as unipolar or bipolar, based on the type of conduction 

mechanisms occurring in the ON state.  Due to the low incorporation of phosphorous 

and the high activation energies for n-type dopants, diamond Schottky diodes have 

been mainly fabricated on boron doped layers. The superior high temperature 

performance of boron doped diamond (i.e. resistivity, critical electric field, saturation 

velocity, etc.) can indeed allow for a better Ron_spec vs BV trade-off when compared 

with other semiconductors compound (figure 1.2). Less benefits would be obtained 

with bipolar mode devices due the high built-in voltage of the p-n junctions (table 1.1), 

which will result in a significant ON state voltage drop. The bipolar mode could only 

be of use in ultra-high voltage applications  (above 10 kV) and low-medium frequency 

applications, as already reported for 4H-SiC devices [27] and discussed in chapter 6. 

In addition, even if bipolar diodes are not attractive  in most of the applications, a study 

of bipolar diodes is still relevant to investigate breakdown properties of diamond[161, 

162], carrier lifetime engineering and set a reference for the leakage current. 

Manufactured diodes have been reported both featuring unipolar action such as 

Schottky, Metal-Intrinsic-P (MIP), Schottky p-n diode (SPND) and bipolar action such 

as p-n junctions and PIN diodes (figure 3.1 and table 3.1). Diamond Schottky diodes 

have first been disclosed at the beginning of 1990s [168-170], when the first successful 

CVD growths of boron doped diamond layers were obtained. High blocking voltages 

(up to 10 kV [171]) and critical electric field (7.7 MV/cm [20]) have been reported in 

the literature but a significant non uniformity in the material quality has resulted in 

discrepancies for the reported experiments. On top of that, the breakdown voltage was 

found to be limited mainly by the increase of the leakage current due to thermionic 

emission and tunneling mechanisms through the Schottky barrier [91] rather than 

avalanche. There is also a clear lack of efficient Junction Termination Extension (JTE) 

techniques for diamond devices which would reduce edge effects. Nevertheless, field 

plates and floating metal rings have been used (discussed in paragraph 3.3), but their 

effectiveness is less than the state-of-the-art JTE or floating field ring architectures 

commonly used in Silicon and 4H-SiC.  As a result, the breakdown voltage of the 

actual devices in diamond is far from that predicted by the 1D avalanche theory. 

Improvements are still required to reduce leakage currents at high temperatures (>400 

K) and to design out the edge effects due to sharp curvatures. Record currents of 

several Ampere have been measured for a few packaged diodes [70] and high 
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temperature operations (over 525 K) have been experimentally demonstrated  with no 

observed degradation of the Schottky properties [20, 88, 100, 104, 172-177]. Despite 

the fact that vertical structures are more common in power electronics applications 

(higher scalability, smaller area, better electric field management, etc.), the difficulties 

in obtaining large size of self-standing low-resistive single crystal have resulted in the 

development of pseudo vertical diamond structures (figure 3.1), in which the p++ 

layers, on which the ohmic contact is deposited, is grown on top of the HPHT substrate. 

Various metals (W, Zr, Cu, etc.) and surface treatments have been explored in order to 

optimize the rectification behavior [178-180], to improve the uniformity of the 

Schottky metal [88]  and to reduce the leakage currents which result in premature 

breakdown [93, 104, 181]. The best trade-off obtained so far has been achieved with 

Zr [20]. In order to reduce the leakage current, Kubovic et al. [182] have attempted to 

fabricate a JBSD with a 10 nm nitrogen doped layer. However, the presence of a high 

number of defects in the device structure showed no real improvements in terms of 

breakdown voltage. It is also worth noting that the advances achieved in the growth of 

phosphorous doped layers have allowed the fabrication of p-n junctions in 

diamond[85]. However, as the incorporation ratio is relatively high only for some 

specific crystallographic orientations (i.e. <100> and <111>, as discussed in chapter 

2), the choice of the correct substrate is important if one wants to avoid the lateral 

growth of the n-type layer. Iwasaki et al. [183] have fabricated and investigated p-n 

junctions with n-type layers grown on <111> as a building block for JFET devices 

(discussed in paragraph 3.2.5) while vertical PIN diodes have been successfully 

reported in [184-187]. The use of highly doped n-type and p-type exploits the hopping 

conductivity mechanisms  (p-type metallic transition occurs only at 5x1020 cm-3 [188]) 

and for that reason such devices exhibit a very low specific ON state resistance.  

 

Figure 3.1: Different device structures for diamond diodes. PIN diode (a), vertical Schottky (b), pseudo-vertical 

Schottky (c), SPND(d). Best values for different devices are reported in the table 3.1.  
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Table 3.1. State-of-the-art parameters and key features for diamond diodes depicted in figure 3.1. ON state current 

and current density has been extracted and reported for different bias conditions. 

 

Device PIN Diode  Vertical Schottky  Pseudo-vertical 

Schottky  

Schottky PN 

diode  

Conduction 

mode 

Bipolar      Unipolar Unipolar Unipolar 

ON state 

Current 

<100 mA at V=5 V  
with T=300 K [184, 
185, 189] 

20 A at V=1.8 V  
with T=300 K   
 
>20 A at 1.2 V  
with T=500 K [190] 

~100  mA at V=5 V  
with T=300 K [88, 
191]  
 
 

<100 mA at V=7 V  
with T=300K [192] 

Breakdown 

voltage 

>11 kV [193]  >1.8 kV at T=300 K 
[194] 

>1.6 kV at T=300 K 
[94] 

>55 V at T=300 K 
[195] 

Current 

Density  

>100 A/cm2 at V=30 
V 
 <10 A/cm2 at V=10 V  
with T=300 K [185]  
 
>100 A/cm2 at V=10 
V  
with T=500 K [184]) 

 >100 A/cm2 at    V=2 
V  
with T=300 K [196]  
 
 
~100 A/cm2 at V=1.2 
V  
 with T=500 K [190]  

<100 A/cm2 at V=2 V 
4500 A/cm2  at V=7 
V  
with T=300 K  [20, 
88] 
 
>200 A/cm2 at V=2V  
(after Zr annealing at 
T=750 K) 

<10 A/cm2 at   V= 
2V 
>60 kA/cm2 at V= 
6V  
with T=300 K [195]  
 
 

Notes High built-in voltage. 
 
Need long lifetime for 
minority carriers 
(state-of-the-art value 
is estimated to be 6ns 
for holes [197]) and 
highly doped n+ 
region). 
 
Positive temperature 
coefficient of the BV 
[185]. 
 
Employed as slow 
neutrons detector 
[186]. 

When the drift region is 
lowly doped the device 
is known as MIP+ 
diode. 
 
MIP+ diode shows 
Space charge limited 
current behavior. 
 
High scalability and 

fast turn OFF (~ns). 

 
BV limited by defects. 
 

Low scalability of the 
BV and the Ron_spec. 
 
Highest dielectric 
field strength 
reported (7.7 
MV/cm). 
 
Schottky metal stable 
up to 700 K. 
 
Etching of p+ is 
needed to avoid 
common substrate 
issues [198]. 
 
Used as temperature 
sensor [198]. 
 
 

No theoretical 
trade-off between 
BV and Ron_spec. 
 
Positive 
temperature 
coefficient for the 
ON state current. 
 
High switching 
speed ~ 10 ns  for 
low reverse voltage 
(~-5V) [199]. 
 
Thickness and 
doping of the n-type 
layer set a limit for 
the scalability. 
 
Thermionic 
emission current 
dominates below 
flat-band voltage 
[192]. 
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The carriers injected from the highly doped layers reduce the total resistivity of the 

drift region where only residual boron and nitrogen dopants are present. Nevertheless, 

the lack of a controllable minority carrier lifetime poses some serious questions on the 

scalability of the drift layer of the PIN diodes. Together with the lack of carrier lifetime 

control, reproducibility and uniformity, the high built-in voltage of the p-n junction 

(even when operated at high temperature)  represents a limiting factor in the 

development of this device structure [200]. To overcome some of the previously 

mentioned issues, Schottky p-n type diodes have been suggested [192, 195, 199, 201]. 

The Schottky metal on top of the n-type layer is able to deplete the n-type (nitrogen or 

phosphorous) doped layer in both the ON state and OFF state, allowing for holes to be 

injected from the p+ layer in the ON state and at the same time support the reverse 

voltage. Record current densities higher than 104 A/cm2 at 6 V and a BV not scaling 

with the Ron_spec have been demonstrated for this device structure. However, the 

breakdown voltage is still limited by the maximum depletion layer width which would 

allow for correct operation in the ON state (i.e. a fully depleted n-type layer) [202]. 

 3.2.2. Metal-Oxide-Semiconductor devices  

 

The successful fabrication of any MOSFETs, such as those based on deep depletion, 

inversion and accumulation, requires a reliable and high-quality metal oxide 

semiconductor interface. Compared to Silicon where the high quality native SiO2 oxide 

has played a major role in the success of this material, the use of SiO2 on SiC still 

results in low performance interface properties due to the presence of a high number 

of interface states which negatively impact on the carrier mobility at the oxide-

semiconductor interface. Multi stack oxides and other technological techniques are 

now under investigation in order to improve the mobility of 4H-SiC MOSFET which 

still remains a major issue in the field[203]. The situation is even more complicated in 

Diamond and other WBG material such as GaN, which have no native oxides 

available. Numerous diamond oxide interfaces have been studied in the last few years: 

WO3 ,Ta2O5,  Al2O3, Al2O3/LaAlO3 ,ReO3 ,  NO2/Al2O3, HfO2,MO3, Nb2O5,V2O5 and 

ZrO2 [204, 205]. The choice of the best oxide depends upon the surface termination 
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(hydrogen or oxygen) and on the deposited gate metal and it is in general linked to the 

behavior of the gate leakage current. 

3.2.2.1. Comparative study of MOS stack on oxygen and hydrogen terminated 
diamond  

 

The Ideal MOS structure requires an electrostatic potential barrier which hinders the 

carrier transport from the semiconductor to the gate metal. Depending on the carrier 

transport and on the specific characteristics of the device, it could also be possible to 

provide a single potential barrier with respect to the conduction or the valence band.  

This is the case of H-terminated diamond FETs where due to the low electron carrier 

concentration in the bulk, only  a single barrier for 2D hole gas is required[206]. 

Several oxides and transition oxides have been suggested for H-terminated diamond 

interfaces with the multiple roles of increasing the carrier density, improving the time-

temperature stability of the interface and ensuring a good offset with the diamond 

valence band [207-209]. Double and triple oxide stacks have also been investigated on 

H-terminated diamond surfaces and their electrical properties (i.e. hysteresis, band 

offset, leakage) accurately reviewed in [204].  
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Figure 3.2: Band alignment of H-terminated (a) and O-terminated (b) diamond with several oxides. Calculation is 

based on the parameters and the procedure adopted by Robertson and Monch [210, 211]. The NEA for H-terminated 

diamond results in a negative conduction band offset (i.e. no barrier for electrons). Experimental Al2O3/O-

Terminated diamond alignment reported in [212] has been included in figure 3.2(b). The experimental bandgap of 

Al2O3 on diamond is smaller compared to the experimental value reported by Robertson in [210]. The band offsets 

shown in (a) and (b) only refer to the material highlighted in orange (i.e. H-diamond(a) and O-diamond(b)) and 

cannot be used for band offset comparison between materials highlighted in blue. This is due to the difference in 

terms of Schottky barrier pinning factor used in the calculation. For additional details please refer to [210]  

It is worth mentioning that different types of charges in the oxide may lead to different 

interface properties of the H-terminated diamond layer which could exhibit normally-

OFF behavior when a specific oxide stack is deposited [213, 214], as it will be 

discussed in paragraph 3.2.6.   

A schematic band alignment computed with the procedure and the parameters defined 

in [210, 211], has been plotted in figure 3.2 for both H-terminated(a) and O-

terminated(b) diamond. As it can be noted, only few oxides (like SiO2, Al2O3) would 

allow for a dual barrier with the conduction and valence band of O-terminated diamond 

whereas, for H-terminated diamond, none of the listed materials assures a positive 

conduction band offset (Ec,oxide-Ec,DIAMOND).  
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3.2.2.2. Oxygen terminated diamond MOS regimes and reliability 

 

Experimental results have shown that Al2O3 exhibits the best performance in 

controlling O-terminated diamond interfaces for both accumulation and inversion 

regime. This is due to two main factors: (i) the high value of the band offset (with both 

conduction and valence band) and (ii) the low level of interface states. The electrical 

properties and the band alignment of this stack have been reported in [212]. Leakage 

current mechanism occurring in Diamond/Al2O3/Al has also been investigated by 

Pham et al. [167]. Authors suggested a 4-step mechanism responsible for the negative 

bias leakage current which originates from the hole carriers accumulated at the 

interface and it involves trap-to-trap tunneling in the oxide and charge transfer with 

the interface states. In fact, evidences from C-V-f (capacitance-voltage-frequency) 

analysis have also shown the presence of high density of interface states (Dit) of ~1012 

cm-2 located at around 0.6 eV from the valence band maximum which are mainly 

responsible for FLP at very high negative bias (-8V). This effect prevents the 

accumulation of majority carriers at the interface during normal operation of MOS 

based devices.  Observations of post-process high temperature (> 770 K) annealing 

have shown an improvement in the C-V characteristics and a significant reduction of 

the FLP. Only recently, a few reliability studies have been reported for diamond MOS 

stacks. In [215],  Loto et al. have observed a strong impact of the interface defects in 

the flat band voltage shift by means of time dependent bias stress. In addition, it has 

been demonstrated that the post process annealing improves the electrical performance 

of the MOS capacitor, with a clear accumulation regime observed even at relatively 

low negative bias and with a negligible gate leakage current value. 

3.2.3. Deep depletion MOSFETs 

 

Among the properties correlated with the wide value of the diamond’ bandgap (5.47 

eV at RT), the small value of the intrinsic carrier concentration at room and high 

temperature (10-27 cm-3 at RT) is for sure one of the most interesting features.  On one 

hand, this has a positive effect on reducing the theoretical value of the leakage current 

in reverse conduction regime; on the other hand, the small amount of minority carriers 
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availability clearly hinders the creation of inversion regime formed by thermal 

generation in the MOSFET device [216].  The time constant for the thermal generation 

of minority carriers from a mid-gap states can be easily calculated with the formula 

described by Pham et al. [167, 216, 217] and has been plotted in figure 3.3. Therefore, 

if minority carriers are not provided by source and drain regions or by UV light 

exposure, a deep depletion regime can be obtained for a long and stable duration. The 

concept of temperature-time stable deep depletion effect observed and demonstrated 

for diamond devices is different from the dynamic effect described in other 

semiconductors like Silicon [218-221]. 

 

Figure 3.3: Minority carrier generation time from a mid-bandgap state for different semiconductors. Picture 

reproduced from the formula described by Pham et al. [216] with the inclusion of the temperature dependence for 

the density of states.  

In that case, the inversion layer is much more sensitive to time and temperature effects, 

making deep depletion only a transient effect able to improve the dynamic BV. In β-

Ga2O3, a similar effect has been exploited for the realization of depletion mode FETs 

[57, 222]. Experimental deep depletion diamond MOSFETs rely on the 

Al2O3/(Ti/Pt/Au) stack. High breakdown fields of 4 MV/cm have been measured for a 

lateral normally-ON device schematically depicted in figure 3.4. Good modulation of 

the drain current has been achieved and a threshold voltage (Vth) of ~7 V demonstrated 

for a 230 nm thick boron doped layer of 1.75x1017 cm-3 grown on Ib HPHT substrate. 

The main benefit of these devices is the volume conduction, taking the full benefits of 
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high hole mobility in bulk diamond and the possibility to have a thick channel.  

However, the maximum current density observed in [223] is several orders of 

magnitude lower than the one reached for H-terminated FETs due to the un-optimized 

process which will require, as an example, selective growth of p++ regions prior the 

deposition of the source and drain ohmic contacts in order to reduce the parasitic series 

resistance [224]. In addition, high temperature operations which will result in an 

enhanced boron activation, may be beneficial for the current density’ improvement of 

deep depletion FETs, as illustrated in  [224], where authors demonstrated drain current 

density of 10mA/mm at VDS=-5 V for VGS=0 V  and an operating temperature of 

~523 K (Ron_spec=50 Ωcm) with a 175 V BV (measured at RT). Recent reports have 

demonstrated the possibility of realizing deep depletion diamond Fin-FET with CVD 

boron doping on a <100> 3x3 mm2 HPHT undoped substrate.   

Table 3.2. State-of-the-art parameters and key features for diamond depletion mode MOSFETs depicted in figure 

3.4. 

Device Vertical Fin-FET Lateral Deep depletion 

MOSFET 

Breakdown voltage >16 V at T=300 K [225]  > 200 V at T=300 K [217, 226]  

Current Density* < 1 mA/mm at T=300 K 
<10 mA/mm at T=450 K  
with VDS=-15 V and VGS=-16 V  
[225] 
 
<0.05 mA/mm T=300 K   
< 2 mA/mm  at T=450 K  
with VGS=-10 V VDS=-1 V   

~0.1 mA/um at T=300 K  
with VDS=-15 V and VGS=-16 V 
[226] 
 
<10-3 mA/um at T=300 K 
~5x10-3  mA/um at T=450 K 
with VGS=-10 V VDS=-1 V 
 
With selective growth of P+: 
~3 mA/um at T=523 K 
with VGS=0 V VDS=-1 V 

Notes Fin channel allows for normally-
OFF operation. 
 
Breakdown voltage measurements 
are not reported. However, Gate and 
drain overlap limits the max BV. 
 
 
Max observed drain current is 
limited to 838 nA for VGS=VDS=-
16 V at T=300 K and 29 uA at 450 
K [225]. 
 
 

Normally-ON. 
 
High temperature operation 
increases the current and reduce 
the threshold voltage. 
 
Scaling of the Ron_spec and BV is an 
issue. 
 
Field Plates are needed to improve 
the BV. 
 
Current density is limited by the 
incomplete ionization at RT. 

*Values reported for the Fin-FET are assuming the true width of the current transport path. 
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E-beam lithography and O2 dry etching have been used to fabricate the Fin-FET 

structure depicted in figure 3.4. The device exhibits an ON/OFF ratio of above 3000 

and a maximum current density of 30 mA/mm at 425 K (with VDS=-15 V and VGS=-

16 V), a value 35 times higher than the one at RT (table 3.2). The low value of the 

boron concentration in the channel (5x1016 cm-3) together with the 45nm of SiO2 oxide 

and the small metal workfunction of Al (~4.08 eV) result in a depletion width of about 

55 nm. As the depletion region width is more than half the Fin channel width, the 

device exhibits normally-OFF behavior with a threshold voltage at -2.74 V which also 

shows a dependence upon the drain bias. 

 

Figure 3.4:  3D Schematic of the diamond depletion mode MOSFET in vertical FinFet configuration(a) and cross 

section of a lateral deep depletion MOSFET(b). The gate dielectric and metal surrounds the whole FIN channel 

(not shown in the picture). 

3.2.4. Inversion MOSFETs  

 

High quality Phosphorous doped n-type diamond body/Al2O3 interface obtained by 

wet annealing has resulted in the first diamond Inversion type lateral MOSFET on a 

<111> HPHT substrate (figure 3.5), as reported by Matsumoto et al. [128]. A 

maximum drain current density of 1.6 mA/mm and channel field effect mobility of 8 

cm2/Vs have been extracted from the experimental data at VGS=-12 V and VD=-5 V 

(table 3.3). This proof of concept for an inversion mode MOSFET resulted in a 
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normally-OFF behavior, with a negative threshold voltage (Vth) of about -6.3 V.  This 

high Vth value for the inversion regime is a clear signature of high level of interface 

traps (with a density estimated to be above 6e12 cm-2eV-1).  

This first proof of concept focused solely on the experimental achievement of the 

inversion regime, but future developments will eventually lead to the addition of a 

lateral p-type drift region. This modification would allow high voltage blocking 

capability. In addition, the effect of the parasitic p-n-p bipolar transistor on the 

breakdown voltage, leakage current and safe operating area would need to be 

determined.  

 

Figure 3.5: Schematic cross section of a diamond inversion mode MOSFET in lateral configuration. 

Table 3.3. State-of-the-art parameters and key features for diamond inversion mode MOSFET illustrated in figure 

3.5. 

Device Lateral inversion mode MOSFET 

Breakdown voltage <50 V at T=300 K [128] 

Current Density <1 mA/mm at T=300 K 
With VGS=-5 V VDS=-1 V  [128] 

Notes Normally-OFF. 
 
Low interface mobility. 
 
High density of traps. 
 
Low breakdown voltage. 
 
First proof of concept. 
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3.2.5. JFETs, MESFETs and Bipolar Transistors 

 

FETs based on metal semiconductor junction (MESFET) or p-n junction (JFET) are 

highly reliable for power electronics applications due to the absence of the gate oxide 

layer which tends to generate high density interface states and trapping/de-trapping 

mechanisms (figure 3.6). Umezawa et al. [227] have fabricated several diamond 

MESFETs, exploring different Schottky gate metals (Mo, Pt, Al) and observed a 

maximum current density of 1.2 mA/mm at high temperature (T=600 K) with VGS=0 

V and VDS=-20 V due to the enhanced boron activation in the conduction region. High 

breakdown voltages above 2 kV with a gate to drain distance of 50 µm [228]) have 

been shown for diamond MESFETs which usually exhibit normally-ON 

characteristics with a high threshold voltage (Vth). Good scalability of the breakdown 

voltage with the gate drain distance has been proven for diamond MESFETs as 

illustrated in [227]. Diamond MESFETs have been also realized in reverse blocking 

(RB) configurations with a Schottky metal for the gate and the drain contacts and 

exhibited a maximum BV of 3 kV and a maximum ON state current of 1 µA [229]. 

Due to the Schottky gate, diamond MESFETs must have a lightly doped region in the 

channel to limit the gate leakage which occurs especially at high temperature. One 

should note that the ON state resistance is reduced at elevated temperatures due to 

increased ionization of boron. Consequently, these structures rely currently on drift 

and channel regions with a low boron concentration (<1016 cm-3), which is more 

suitable for breakdown voltages above 5 kV [103]. As a consequence of their low 

doping in the drift region, the Vth is around 20-30 V and the theoretical ON state 

resistance of such MESFETs below 5 kV is higher than that of MOSFETs with 

insulated gate and higher doping levels.  On the other hand, improvements in the lateral 

growth of n-type diamond layer in the <111> direction have enabled the fabrication of 

high quality diamond p-n+ junction with high rectification ratio and breakdown 

voltages close to 1 kV [83, 85, 98, 183, 230]. These p-n+ junctions have been used as 

the building block of diamond Junction FET fabricated by Hosino et al. [85]. The p-

type conductive channel which has been obtained by means of Inductively Coupled 

Plasma (ICP) etching and electron beam (EB) lithography is sandwiched between two 

highly doped n-type layers grown on the <111> direction, as schematically illustrated 
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in figure 3.6. Different channel width and doping levels have resulted in both 

normally-ON and normally-OFF devices demonstrated in unipolar and bipolar 

conduction mode. Regarding the unipolar normally-ON devices, steep subthreshold 

swings of 120 mV/decade have been obtained with current densities exceeding 10 

A/cm2 at RT and close to 450 A/cm2 at 673 K for a VDS=-1 V and VGS=-3 V [98]. 

Threshold voltages for such normally-ON JFETs range from 30 V to 5 V depending 

on the channel width and doping which in turns influence also the Ron_spec of the device 

(table 3.4). The BV measured at different junction temperatures shows a positive 

coefficient, according to the increase of the phonon scattering and consequent 

reduction of the avalanche multiplication coefficient [230]. In addition, a critical 

electric field of 6.2 MV/cm has been calculated for the case of an abrupt and ideal p-

n+ junction. Normally-OFF JFETs (with a Vth around -1.2 V) have been manufactured 

by implementing a parallel reduction of the doping concentration and the channel 

width (0.2 µm) in order to pinch-off the channel at zero bias. Devices show a good 

rectification ratio but a much smaller current density due to the higher resistivity of 

the channel region[231]. Despite the current density increases at HT, a positive shift 

of the threshold voltage with the temperature, which has been also confirmed by 

TCAD simulations and experimental results[144, 232], may however result in 

normally-ON operations at elevated temperature.  Improvements in terms of current 

densities (table 3.4) have been achieved with both normally-ON and normally-OFF 

JFET operating in bipolar mode, with the injection of minority carriers (electrons) in 

the p-type region. However, the bipolar conduction also increases the number of 

carriers in the channel and this would result in a slower turn OFF of the device. 

Furthermore, a more complex gate driving technique is required for bipolar mode 

JFETs. The recent progress in the n-type doping technology has also allowed the 

fabrication of bipolar junction transistors (BJTs) [233-235]. Preferential growth of 

phosphorous doped layers on the <111> direction as the base region was adopted in 

order to fabricate the heavily doped n+ layer which is fundamental for the correct 

operation of the BJT. Indeed, early fabrication processes have failed to demonstrate 

the bipolar mode operation due to the high resistivity of the n-type base layer (around 

1018 cm-3) and the low diffusion length of minority carriers (holes) in the base region. 

The introduction of the n+ layer has enabled both the hopping conductivity and the 

reduction of the series resistance due to the ohmic contact of the base.  
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Figure 3.6: Schematic cross sections of a diamond BJT(a), MESFET(b) and JFET(c). 

Table 3.4. State-of-the-art parameters and key features for diamond BJTs, MESFETs and JFETs shown in figure 

3.6. 

Device BJT MESFET JFET 

Breakdown 

voltage 

>100 V at T=300 K[234] >2 kV at T=300 K[228] 
~3 kV at T=300 K for RB 
MESFET [229] 

>600 V at T=300 K [230] 

Current 

Density * 

Not reported. 
 
Max current ~uA at 
VEB>6 V [233]. 

~2 mA/mm at T=500 K  
with VDS=-20 V VGS=0 V 
[236] 
 
~0.14 mA/mm at T=300 K  
with VDS=-20 V VGS=0 V 
[236] 
 
Max current ~30 mA at 
T>550 K [67] 
 
~ 0.1 mA/mm at VDS=-1 V 
VGS=0 V  at T=600 K [227, 
236] 

max current (~2 uA) at T=573 K 
with VDS<-10 V [232, 237] 
 
600 A/cm2 at T=500 K 
40 A/cm2   at T=300 K  
with VDS=-1 V and Ig=2 nA 
(bipolar mode)  [232, 237] 
 
~3.5 kA/cm2 at T=500 K 
with VDS=-20 V and Ig=1 uA 
(bipolar mode)   [237] 
 

Notes Need good doping control 
of both n-type and p-type 
layer. 
 
Lifetime control is needed 
for high current gain. 
 
Low BV. 

Radiation hardness even at 
high junction temperature. 
 
Easy fabrication process 
(only requires p-type 
doping). 
 
Good scaling of the BV with 
the drift layer length. 

Bipolar mode operations and 
normally-OFF demonstrated. 
 
Positive temperature coefficient of 
the breakdown voltage. 
 
Requires n+ doping. 
 
 

*The reported current density for diamond lateral JFET is usually normalized with the cross-sectional area. 

Furthermore, the reduction of the base width together with the improvements in the 

growth’ conditions have enabled a more efficient injection of holes from the p+ 

emitter. Maximum collector currents of few µA have been demonstrated and the 

current gain hfe (defined as the ratio of the collector and base currents) of ~10 has been 

reported for high VEB voltage (~6.2 V) by Kato et al. [233]. However, scalability of 

these devices is highly limited due to the low diffusion length, which was estimated to 
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be around 400 nm for a diamond BJT with a phosphorous doping concentration for the 

base region of ~1018 cm-3 [234]. 

3.2.6. 2DHG FETs  

 

Two-dimensional hole gas (2DHG) formation near the hydrogen terminated diamond 

surfaces provides an innovative way to obtain an almost zero activation energy for a 

hole channel. This effect, which was revealed in the early 1990s in the studies of Grot, 

Landstrass, Albin and Shiomi [169, 238-241], has been discovered to be useful for the 

fabrication of surface channel FETs [105]. On top of that, the maximum measured 

channel mobility typically around 100 cm2/Vs and the sheet hole density which 

oscillates between 1012 cm-2 up to 1014 cm-2 (with NO2 adsorption [107, 242]) are 

promising electrical properties for the next generation of diamond power devices 

[243]. Record current densities > 1.3 A/mm  with a specific ON state resistance of 4 

Ωmm have been reported at VGS=-5 V and VDS=-12 V [244], even at room 

temperature where competitive bulk FETs suffer from incomplete ionization and 

therefore reduced carrier concentration (table 3.5). Despite the high ON state 

performance and the high breakdown voltage (~500 V) have been demonstrated for C-

H terminated diamond FETs by Kawarada et al. [245], time and temperature stability 

have been a great concern in the diamond community for over 20 years.  Atomic layer 

deposition (ALD) of Al2O3 have been proven to be a new way to uniformly induce the 

hole accumulation layer and improve the overall reliability and stability of the HFETs 

[107, 246]. Compared to the surface adsorbates, the insulating layer possess some 

unoccupied orbitals or fixed negative charges which are responsible for the formation 

of the 2DHG at the interface [108]. In the case of Al2O3, these unoccupied levels have 

been reported to be present in the bandgap below the valence band maximum of 

diamond and they can give rise to a valence band offset which oscillates between 2.9 

eV and 3.9 eV. Lateral normally-ON HFET with a high breakdown voltage (over 1.5 

kV) and high temperature (>725 K) stability have been reported in the literature [109, 

213, 247-251]. A good scalability has been demonstrated for increasing gate-drain 

distance (Lgd) and a maximum breakdown field of 3 MV/cm was estimated [108, 243]. 

Lateral triple-gate HFETs which allow carrier to flow in both lateral and planar 

directions have illustrated higher current density and more promising downscaling 
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scenarios compared to classic lateral HFETs [252]. Despite the fact that the majority 

of diamond HFETs reported in the literature exhibits a relatively high threshold voltage 

(~10-20 V) with a normally-ON behavior, normally-OFF HFETs have also been 

fabricated by some research groups. Several solutions have been implemented to avoid 

the formation of the 2DHG under the gate region and achieve the enhancement mode 

behavior. For example, Liu et al. [213, 214] deposited a double high-k layer oxide to 

avoid the formation of unoccupied levels and remove the 2DHG from the gate region, 

while Kitayabashi et al. [21] obtained the normally-OFF operations with the partial 

oxidation of channel region with C-O bounds. While for the double high-k oxide 

solution Vth has been found to be highly dependent on the oxide deposition and on the 

overall fabrication process, its stability dramatically improved with the device concept 

adopted by Kitayabashi et al. (were the Vth oscillated between -2/-4 V).  In such 

device, the breakdown voltage has been experimentally found to be >2000 V (an 

existing record for diamond HFETs) and in general driven by several mechanisms 

depending on the gate and drain current leakage behavior [21].  

Because the hole sheet created at the diamond interface is not based on piezo-

polarization effects as in AlGaN/GaN interfaces, it can be formed in non-planar 

structure (i.e. vertical trenches), as it has already been reported by Inaba et al. and Oi 

et al. [253, 254] (figure 3.7).  

 

Figure 3.7: Schematic cross sections of diamond lateral (a) and vertical HFET (b). 
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Table 3.5. State-of-the-art parameters and key features for diamond lateral and vertical HFET depicted in figure 

3.7. 

Device      Lateral HFET Vertical HFET 

Breakdown 

voltage 

>2 kV at T=300 K [21] ~ 350 V  at T=300 K [253, 254] 

Current 

Density 

1.3 A/mm at T=300 K  with VGS=-5 V and 
VDS=-12V   [244] 
0.2 A/mm at T=300 K  with VGS=-5 V and 
VDS=-1 V     [244] 

>0.2 A/mm at T=300 K and T=600 K 
with VDS=-50 V and VGS=-20 V 
[253] 
 
<10 mA/mm for VDS=-1 V and 
VGS=-5 V  [253] 
 

Notes Lateral current flow limits the scalability of the 
ON state resistance. 
 
BV scalability is limited. 
 
Beneficial for RF applications [249, 255]. 
 
Normally-OFF has been demonstrated. 
 
Fabricated with both poly and mono crystalline 
diamond. 

The beneficial vertical current 
spreading only starts from the p+ layer.  
 
BV is limited. 
 
Complex fabrication process which 
requires deep etching. 
 
N-type layer specifications are crucial 
to reduce vertical leakage current. 

 

The trench side wall was regrown after the etching of the MESA structure, showing a 

high mobility 2DHG with performance almost similar to the reported lateral HFETs. 

However, temperature dependence of the leakage current still remains a fundamental 

issue with HFETs due to the residual doping concentration in the bulk region and the 

lack of proper isolation. In-situ annealing performed prior the oxide deposition of the 

hydrogenated diamond surface at ~775 K was found to be crucial to enhance long-

term doping stability of HFETs fabricated on MoO3 and V2O5, as reported by Crawford 

et al. [207]. This evidence opens a promising route for the high temperature 

applications and for the possible future commercialization of diamond HFETs. 

3.2.7. Vacuum Switches 

 

Hydrogen terminated diamond interfaces are well known to exhibit a unique property 

renowned in the literature as NEA (Negative Electron Affinity), already discussed in 

chapter 2. More specifically, in NEA interfaces, the vacuum energy level (EO) lies 

below the minimum energy level of the conduction band (Ec). This feature is very 
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attractive for the realization of electron emitters as , from a theoretical point of view, 

electrons excited from the valence band or injected from contacts into the conduction 

band could be efficiently emitted in vacuum from the surface without any increase of 

the device temperature [256-260]. Experiments have confirmed electron emission 

from diamond p-n and PIN diodes with an efficiency oscillating around 2%. Such 

devices are known as “vacuum switches” as they rely on the same principle of classical 

vacuum tubes.  

A schematic representation of the diamond vacuum switch fabricated in [257, 260] is 

illustrated in the figure 3.8. When the voltage is higher than the built-in voltage of the 

pin junction , the PIN diode is switched ON and the anode voltage dramatically drops 

from the OFF state value (10 kV in [260]) to around 160 V, which is the Vth of the 

vacuum switch. The voltage difference 10 kV-160 V is therefore applied to the load 

through which current flows. Nevertheless, the current is very limited at the state of 

the art (µA) due to the lack of large size diamond substrates. Only further improvement 

in the efficiency to values up to 10% and the increase in the current may allow the 

future commercialization of this power device (table 3.6). 

 

Figure 3.8: Schematic cross sections of diamond Vacuum switch and its control circuitry. 
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            Table 3.6. State-of-the-art parameters and key features for diamond vacuum switch illustrated in figure 3.8. 

Device Vacuum Switch 

Breakdown voltage 10 kV at T=300 K [257] 

Current Density  4 A/cm2 at VG<-20 V at T=300 K [259] 

 

Notes Unique device concept. 

Efficiency and output capacitance (Coss) need to 

be improved. 

Gate drivers may result in non-conventional 

designs for power electronics. 

 

3.3 Diamond devices with field relief designs  

 

Edges and finite dimensions of electrodes are well known to generate crowding of the 

electrostatic potential lines which then results in a spatially localized increase of the 

electric field. The use of field relief structures is therefore required in order to improve 

the breakdown voltage capability and also to suppress the detrimental effects of the 

device termination on the field-enhanced leakage current mechanisms. Several 

termination techniques and structures have been suggested, simulated and 

implemented for diamond diodes and transistors, as illustrated in figure 3.9.   

Without field relief designs, the typical vertical peak electric field at breakdown in 

diamond devices is limited to 1 to 2.5 MV/cm as presented in [67, 94, 102, 176]. These 

values suggest that large improvements are possible towards values above 10 MV/cm 

with suitable and efficient protections. 

For unipolar mode diamond devices like SBDs, field plate structures (figure 3.9(a)) 

have been more often adopted in the literature [135, 174, 175, 177, 261]. With this 

technique, the field enhancement at the Schottky contact can be relaxed with the 

deposition of an oxide layer between the Schottky contact and the diamond surface. 

Several oxides such as Al2O3 and SiO2 have been deposited for single layer field plate 

termination in diamond devices.  
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Figure 3.9:  Different topologies for diamond terminations applied to the case of diodes. (a) Planar field plate, (b) 

Ramp field plate, (c) Floating metal rings, (d) Dual metal, (e) JTEs, (f) SIPOS, (g) MESA. Al2O3 has been used as 

oxide only as an example. 

Theoretical optimization for a single layer FP structure has been carried out by Ikeda 

et al. [176], showing that for a BV reached at a maximum leakage current density of 

10-4 A/cm2, an optimum oxide thickness can be obtained for Al2O3 and SiO2 (figure 

10(a)). TCAD simulations on vertical boron doped (doped at 1.5x1015 cm-3 and 5 µm 

thick) revealed that the Al2O3 thickness has to be almost 1.7 times bigger than the 
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optimum value for SiO2 (0.9 µm), but it allows to reach higher breakdown voltages, 

as depicted in figure 3.10.   

Experimental results on vertical diamond SBDs have illustrated both a reduction of the 

leakage current and an improvement of the BV by using 0.2 µm Al2O3 on top of a 10 

µm p-type boron doped layer [102]. The degradation of the blocking capability and 

leakage current for large area electrodes is usually explained by the increase of surface 

and bulk defects with the active area of the device.  Low dependence of the leakage 

current upon the contact size after the FP deposition may be explained with the surface 

passivation effect of Al2O3. Ramp field plate oxides have been suggested to be one of 

the most effective ways to reduce the peak electric field in SBDs (figure 3.9(b)). 

Calibration of the FP termination by means of TCAD simulation has been performed 

by Brezeanu et al. [135] and shown an almost ideal BV (92% of efficiency) with  5.7° 

tilt angle and with a length and thickness of 25 µm and 3 µm, respectively (figure 3.10). 

Multi-step field plate terminations have also been investigated by Isoird et al. [261, 

262] for a pseudo vertical diamond Schottky diodes.  

Despite the optimization leads to a reduction of the field in the diamond, the high 

electric field observed in Al2O3 gradual FP termination (over 20 MV/cm) may 

seriously lead to time dependent dielectric breakdown (TDDB), an issue which has 

usually been neglected in state-of-the-art diamond power device terminations. 

 

Figure 3.10: (a) BV vs field plate thickness(TD) for a planar field plate (reproduced from Ikeda et al.[263]).  (b) 

simulation’ results of oxide ramp termination simulations’ efficiency reproduced from Brezeanu et al. [135]. The 

results obtained in figure (b) assume a W=18 µm, α<10° and TD>3 µm while figure (a) assumes W=10 µm (doping 

equal to 5x1015 cm-3) and LD=15 µm. Termination efficiency in (b) is defined as the ratio of the 2D BV and the 

ideal 1D BV which is equal to 3171 V (calculated for a critical electric field of 10 MV/cm). In both pictures, the 

time dependent breakdown of the oxide layer was not considered. 
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Diamond Schottky diodes with floating metal rings (figure 3.9(c)) have also been 

manufactured by Driche et al. [264]  and their efficient reduction of the electrostatic 

potential crowding has been confirmed by EBIC measurement. The spacing between 

the different rings (Ws in figure 3.11) and the number of rings influence the peak 

electric field and the shape of the lateral depletion. Due to the high field gradients in 

diamond, the reduced spacing of such rings induces a high stress on fabrication and 

lithography. Conversely to other semiconductors, floating rings in diamond are mainly 

realized on Schottky contacts due to the previous mentioned issues connected to the n-

type doping. The high conductivity of the Schottky metal is able to uniformly distribute 

the electric field profile under the rings if compared to a classic p-n ring termination 

and is therefore a promising method for terminating diamond FETs and diodes. 

However, as presented in figure 3.11, the spacing between the first metal ring and the 

Schottky contact must ≤150 nm to create an attenuation of the peak electric field and 

to reach about 93% of efficiency.  In diamond SBDs, the reverse leakage current, 

which is mainly due to the thermionic field emission effect [91, 265], can be reduced 

by means of a double metal termination, as shown in figure 3.9(d). Such design can be 

obtained with two different Schottky metals, one deposited in the active area and the 

other one in the termination region (metals such Au or Pt can be used). The high 

metal/semiconductor barrier (HB) in the termination region allows to suppress the 

value of the OFF state current; conversely, the low barrier (LB) region in the active 

area avoids any increase of the threshold voltage and does not affect the ON state 

performance. 

 

Figure 3.11: (a) Simulated 2D breakdown voltage vs 1D breakdown voltage (BV/BV1D) ratio plotted against the 

spacing of the first Floating field ring (FFR) and(b) schematic cross section of the SBD with a floating metal ring 

termination used for the TCAD simulations. Picture reproduced from [266]. Best fit curve has been included in (a). 



Chapter 3: Review of diamond   devices for power electronics 

58 

 

Junction termination extensions (JTEs) have been widely used for both improving the 

electric field profile and the ON state current in JBS diodes for other power 

semiconductor devices. However, the lack of an efficient n-type doping and the issues 

arising from the ion implantation have made this technique less effective in diamond 

(figure 3.9(e)). Kubovic et al. [182] did not observe any improvement after the 10 nm 

of n+ type nitrogen doped layer while Huang et al. [267] tried to obtain the same effect 

through H+ ion implantation to increase the resistivity, reporting a breakdown voltage 

of about 3.7 kV. 

Semi-insulating polycrystalline silicon (SIPOS) terminations provide a more uniform 

distribution of the field at the expense of an increased surface ohmic leakage (figure 

3.9(f)). This kind of termination technique has been experimentally demonstrated for 

diamond SBDs and MESFETs [268]. After X-ray irradiation, in which the increasing 

irradiation doses generated a rise of the leakage current due to enhanced conduction 

through point defects or to the increase in the adsorbates in Al2O3, improvement in the 

BV was observed with no evidence of damage in the device. This clearly illustrates 

the potential of diamond for space and harsh environment applications.  

MESA etching termination technique (figure 3.9(g)) has been widely used for Silicon 

based and 4H-SiC power bipolar devices due to the low complexity of the fabrication 

process. Almost ideal breakdown voltage has been obtained in 4H-SiC as the MESA 

structure limits the lateral expansion of the depletion layer in the p- region due to the 

etching process. Such a termination technique could be adopted for diamond p-n 

junctions, as already suggested in [139, 193]  However, one has to note that the optimal 

drift region thickness in diamond is larger than 10 µm for breakdown voltages above 

3 kV [269] (theoretical) and etching thick diamond is a difficult process as the whole 

drift region must be etched. There is also the possibility of sidewall leakage induced 

by defects during etch, usually performed by Deep reactive-ion etching (DRIE). These 

considerations currently limit the possibility of MESA termination in the context of 

high voltage diamond devices. In conclusion, due to the current process limitations 

(especially the lack of controllable n-type doping), planar field plates and floating 

metal rings seems the most promising termination techniques for diamond devices. 
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3.4 Packaging, thermal management and reliability  

 

Switching and conduction losses are less prone to generate thermal runaway effects in 

diamond power devices due to its exceptional thermal conductivity, the small intrinsic 

carrier concentration and the negative temperature coefficient of the Ron_spec. 

Nevertheless, some factors may limit the power-current handling capability of 

diamond at high junction temperatures. These factors can be identified in the Schottky 

contact temperature’ limit and, most of all, in the packaging and passivation material. 

Due to the novel nature of diamond devices, no dedicated packaging technique has 

been developed yet. A suggested package solution for efficient thermal dissipation and 

its equivalent Spice-type DC thermal network for a diamond power semiconductor has 

been illustrated in figure 3.12.  

Cu is usually adopted as standard baseplate material for high power package topology, 

such as the SOT-227 [270]. However, the thermal expansion coefficient (TEC) of 

diamond need to be matched with the one of the baseplates. In the case of Cu, the mis-

match between the TEC values could result in the lift-off of the die from the baseplate 

after several thermal cycles. Moreover, the ceramic substrate, which provides the 

electrical isolation for the device and the rest of the package, needs to be able to 

withstand high operating temperatures. 

 

Figure 3.12:  Schematic example of a package for a diamond device (a) and its Spice-type DC thermal equivalent 

circuit (b). 

The choice of the solder alloy also plays a key role together with the protecting 

encapsulant which performance needs to be reliable for harsh environment 
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applications (i.e. high temperature but also high pressure). In the literature, few 

diamond devices have been packaged and tested in power circuits. MESFETs in [174] 

have been packaged on a typical metal-ceramic package where the device was bonded 

with Au and molded with a resin. In [70], vertical type Schottky diodes have been 

packaged with a silicone-based resin which has been then hermetically sealed by the 

stainless-steel cover. Similarly to lateral devices in GaN, lateral or pseudo-vertical 

diamond devices on insulating diamond substrates introduce a back side contact only 

for thermal interface and not as an electrical electrode. 

As mentioned in chapter 2, diamond devices based on doped layers suffer from 

incomplete ionization of the dopants at room temperature. As a consequence, the 

Ron_spec has a negative temperature coefficient (NTC) when the total Ron_spec is 

governed by the “lightly doped” drift region. As demonstrated experimentally in [71], 

the switching losses are not affected much by increased temperatures. As a 

consequence, the total losses of diamond devices as Schottky diodes, MESFETs, 

depletion mode MOSFET and JFET have a NTC up to a high temperature where the 

losses are minimized (see chapter 6 for additional details). This important NTC 

modifies the design of the heatsink with diamond devices, where self-heating can be 

used to increase the temperature junction and to reduce losses at the same time. 

Consequently, the RthCA, equal to RthCH + RthHA (figure 3.12), can be largely increased 

with diamond devices, leading at the same time to lower power losses and smaller and 

lighter heatsink, which is unprecedented at this scale in other materials. Nevertheless, 

as with other power devices with NTC coefficients, the thermal runaway and current 

focusing possibility are potential (and serious) issues. As an example, the 

parallelization of such devices can be challenging, especially when the diamond dies 

are poorly thermally coupled. Spice simulations carried out in [271] for diamond SBDs 

show that a small 10% dispersion in terms of Ron (due to process dispersion) for two 

diamond diodes can lead to current focusing effect due to the separate thermal 

heatsink. Moreover, the different current focusing on the two diamond diode results in 

different self-heating effects for the two diamond diodes with a sever imbalance in 

terms of temperature (>200 K) and power loss dissipation. Improved current sharing 

and temperature distribution could be obtained with a higher RthCA. However, this 

solution is not recommended to mitigate the characteristics dispersions between 

diodes, as it would lead to higher junction temperatures and limited surge current 
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capabilities. The consequences of this simple example are that diamond devices must 

be thermally coupled in the best possible way and that specific thermal simulations 

must be investigated to optimize the paralleling of diamond devices and for diamond 

power modules. On the same diamond die, one can expect that active cells paralleling 

will not be an issue due to the highest thermal conductivity of diamond, albeit with 

further investigations still required. 

Reliability is one of the main concerns in diamond devices. Indeed, as the future 

generation of diamond power circuits is supposed to be working in extreme 

temperature conditions and for high frequency and voltage at the same time, the 

requirements on the overall system stability are even more strict than those for Silicon. 

Spin coated polyimide materials and other gels have been investigated for packaging 

high voltage SiC devices with a junction temperature exceeding 600 K and appear to 

be suitable also for packaging diamond devices [272]. Nevertheless, some gels exhibit 

quick degradation after a few thermal cycles at high temperatures, leading to cracks 

and a dramatic decrease on dielectric properties [273, 274]. Time dependent dielectric 

breakdown needs to be properly addressed as the increase of the electric field in the 

structure due to the high voltage ratings may lead to a time dependent failure of the 

protective layers. TDDB is a well-known effect in GaN devices where specific tests 

have been developed in order to assess the long-term reliability of oxide layers. 

Solutions adopted for HEMTs’ lateral geometries have usually resulted in over 

engineering of the device with an increase of the lateral size of the unit cell in order to 

better redistribute the electric field in the structure. High frequency performance with 

fast dV/dt and dI/dt could be limited by stray inductances and capacitances with 

possible enhanced oscillations which may result in malfunctions or delay in the turn 

ON/OFF of the devices. Additionally, dynamic effects due to the non-zero activation 

energy of dopant species can seriously affect the switching performance of diamond 

devices and lead to charge imbalance effects with delayed turn OFF  and local junction 

temperature’ increase [153]. 

For these reasons, appropriate Gate driving techniques and the reduction of parasitics 

also need to be considered in the design of diamond devices. A more accurate 

evaluation of these effects will be provided in chapter 6.  
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3.5 Conclusions 

 

This chapter has clearly highlighted that diamond vertical diodes are slowly 

approaching the competitors SiC and Si diodes in terms of ON state current density 

and breakdown voltage capability. Conversely, the majority of diamond FETs do not 

currently deliver useful performance at any temperature due to their poor current rating 

and their lateral structure. Vertical HFETs could be a valid solution to overcome such 

a limitation but issues related with the ON state resistance scalability, the relatively 

low BV and the complexity of the fabrication process could still represent an obstacle 

for the further development of this device. Several device termination techniques have 

been analysed in the second part of this chapter with FFRs and ramp field plate 

structures predicting >90% of efficiency.  

Reliability and thermal issues of diamond have been examined. For bulk devices, in 

which the partial ionization of the dopants occurs also at RT, the effects and the 

drawbacks of operating at high temperature have been addressed. While a high 

operating temperature is advantageous in terms of conduction loss’ reduction, this 

could possibly lead to enhanced leakage current and dielectric layer degradation. 
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4 DESIGN AND MODELLING 

OF UNIPOLAR MODE 

DIAMOND DEVICES 

 

 

4.1 Introduction 

 

Predicting the electrical characteristics and developing new device architectures is 

fundamental for advancing research in diamond power devices.  In this chapter, three 

different categories of diamond unipolar mode FETs have been numerically analysed 

and modelled by means of finite element simulations.  

Firstly, an improved normally-OFF design has been identified through an extensive 

design of experiments (DOEs) based on two dimensional TCAD simulations (section 

4.2). The superior performance of the designed enhancement mode p-type JFET has 

been assessed at different operating temperatures and compared with that of the state-

of-the-art diamond JFETs.2 Secondly, a thorough investigation of deep depletion 

diamond MOSFETs’ limits and capabilities has been carried out (paragraph 4.3). The 

impact of the Ib semi-insulating substrate and of the incomplete ionization on the 

electrical performance has been evaluated. Moreover, a novel dual gate device that 

allows a normally-OFF diamond deep depletion MOSFET is presented.  

 

 

2 The material in this chapter has been the object of the following publication: " Design of a normally-

off diamond JFET for high power integrated applications," Diamond and Related Materials, 78, pp.73-

82, 2017. 
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In conclusion, a novel hybrid normally-OFF diamond MOSFET which merges 

together the deep depletion MOSFET concept and the surface channel conduction has 

been numerically analysed (section 4.4). 

4.2 Junction Field effect transistors (JFETs) 

 

A complete review of state-of-the-art diamond JFETs can be found in chapter 3.  Here, 

we briefly recall the schematic working principle of a JFET working in the unipolar 

mode. For a more complete analysis of this device, the reader can refer to [152]. Figure 

4.1(a) shows a typical 2D view of a normally-ON JFET with a conductive p-type 

channel region.  

The two n-type gates control the depletion region width in the channel. In the unipolar 

mode, the gate-source and gate-drain junction are always reverse biased or shorted. 

The source potential (VS) is typically grounded while the drain terminal has to be 

driven with a negative voltage (VD). More specifically, the application of a positive 

voltage on the drain terminal would switch on the gate-drain junction and no current 

will flow between the drain and the source contacts. If a positive bias (VG) is applied 

to the gate terminals (unipolar mode), the increased depletion region width allows to 

reduce the conductivity of the device.  

Eventually, the pinch-OFF of the channel occurs when the depletion region width 

reaches half the channel thickness (W/2). This simplified assumption allows to derive 

a simple expression for the threshold voltage but is only valid for long channel JFETs 

(L>>W).  

Different considerations need to be done in case of short channel JFETs in which the 

drain induced barrier lowering (DIBL) effect significantly modifies the band diagram 

in the channel region. Figure 4.1(b) shows the generic I-V characteristics of the JFET.  

The drain I-V characteristics can be divided into three main regions: (a) The “linear” 

region observed at small drain bias where the drain current (ID) can be considered 

proportional to the drain bias (VD); (b) the “nonlinear” region, which encloses the 

pinch-OFF of the channel; (c) the “saturation” region where the current remains 

constant independently of VD. In the last region, the drift velocity is not anymore 
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proportional to the longitudinal electric field and saturation occurs. This effect is more 

pronounced for short channel devices due to the higher internal electric field.  

 

Figure 4.1: (a) Schematic 2D top view of a JFET driven in unipolar mode conditions and (b) general I-V 

characteristics[152]. 

4.2.1. Optimization of unipolar mode diamond JFET 

 

In this section, normally-ON (depletion mode) and normally-OFF (enhancement 

mode) diamond Junction Field Effect Transistors (JFETs) have been analysed by 

means of a commercially available TCAD software[144]. Firstly, the ON- and OFF-

state electrical characteristics have been simulated and matched with a set of available 

experimental data. The physical models and parameters used for the matching have 

been widely described in chapter 2 (mobility, high field dependence, impact ionization, 

etc.) and in chapter 5 (incomplete ionization). 

4.2.1.1. Matching 

 

In this section, experimental data for unipolar normally-on JFET [230] were compared 

with two-dimensional TCAD simulations. To reduce the computational time and 

optimize the TCAD simulations, a simplified 2D unit cell has been defined, shown in 

figure 4.2.  

The choice of the  simplified unit cell in figure 2 (left) is based on the fact that the 

device in [230] is symmetrical to a cut along the p-channel and the two lateral n+ gates 

are driven simultaneously (for power electronic applications). However, such 
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simplified 2D structure does not take into consideration some aspects of the real device 

structure.  

 

Figure 4.2: (a) Cross sectional view of the real JFET structure fabricated in [230].(b)Schematic 2D unit cell (top 

view) used for the TCAD simulations of the normally-on p-type diamond JFET. N region doping (phosphorous) is 

8×1019 cm-3, p-channel doping (boron) 1×1017 cm-3, the channel length (Lch) is 7 µm and the channel width (Wch) 

is 0.5 µm. The drain, source and gate contacts have been defined with an ohmic boundary condition. Additional 

details about the structure can be found in [144, 230]. 

The buffer layer region is in fact not modelled in the 2D unit cell and the n-regions 

(phosphorus doped) are defined as rectangles whilst in the reality they have a 

trapezoidal shape due to the selective growth of n-diamond on the sidewalls of the p-

channel(see fig. 4.2(a)). The simulations using the impact ionization (II) coefficients 

in the literature [162, 163] (and listed in paragraph 2.3.3) do not fit the reported JFET 

results.  

Therefore, the values listed in Table 4.1 are adopted in this study. They, however, do 

not rule out other choices of ap and bp that result in the same breakdown voltage (BV), 

as projected by the scaling law [161, 162]. For this study, the impact ionization rates 

are assumed equals for both holes and electrons, as widely discussed also in [162]. 

This assumption is validated as an approximation by adopting the geometric average 

of the values for holes and electrons as the common value.   

Additionally, a temperature dependence of the ionization coefficients has been 

included, as shown in the equation (13a) through the parameter γ (see equation 13b). 
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This parameter expresses the temperature dependence of the phonon gas against with 

holes and electrons are accelerated [150, 275]. 

 

Table 4.1. Diamond impact ionization coefficients for the Chynoweth model (1a) used for the matching of 

experimental JFET data. 

Impact 
ionization 
Coefficients 

ap (/cm) an (/cm) bp (V/cm) bn (V/cm) 

 5.48× 106 5.48 × 106 6.5 × 107 6.5 × 107 

 

αN,G = γaN,G exp :−γ jR,MD <                                                                                      (13a) 

γ = ihN!S$�pM��c� V
ihN!S$�pM��c V                                                                                                         (13b)                           

 

In (13b), T0 is the room temperature (300 K) and hωop is the optical phonon energy 

assumed equal to 0,063 eV [150, 275], which is the default value for Silicon. Figure 

4.3 shows the breakdown voltage obtained from the numerical simulation of the 2D 

cell at different temperatures and its comparison with the measurement data, showing 

a good agreement at T=300 K and a slight overestimation at higher temperatures 

(T=473 K).  

For the OFF-state simulations, a constant background carrier generation rate of 1×1012  

/cm3s1 has been added to improve the convergence.  

Additionally, an external specific contact resistance of 1×1011  Ωµm has been attached 

to the drain metal to facilitate the convergence at the onset of the impact ionization 

phenomenon. The simulated breakdown current shows a steeper variation compared 

to the measured one [230] in correspondence of the voltages at which the leakage 

current increases with the reverse drain voltage. Indeed, the constant value of the 

simulated leakage current is fixed by the previous mentioned background carrier 

concentration and it is much lower than the experimental value of the leakage current 

which could be mainly caused by defects and impurities. 
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Figure 4.3:  Breakdown voltage simulations for the normally-on JFET with the set of avalanche coefficients of 

table 4.1 at two different operational temperatures (300 K and 473 K). In these simulations, the gate voltage (VG) 

has been fixed at 20 V. The breakdown voltage has been extracted by visual inspection of the drain current (when 

this value increases of more than 3 orders of magnitude compared to the simulated leakage current) and compared 

with the experimental results [230]. The point where the highest electric field is reached is located near the p-n 

junction in correspondence of the red circle. 

Moreover, the breakdown simulation stops converging after the current density 

increases of 4 to 5 orders of magnitude, before reaching the experimental value of 

~1×103 A/cm2. One can note from figure 4.3 a positive temperature coefficient of the 

breakdown voltage. This is a clear signal that the breakdown occurs as a consequence 

of the impact ionization phenomenon (see equations 13a-b) as opposed to the punch-

through, which is expected to give a negative temperature coefficient. Additionally, a 

plot of the electric field in the structure (figure 4.4) displays the maximum electric 

field at the breakdown voltage which is located at the Drain-Gate junction in 

agreement with the  experimental results reported in [230]. ON-state simulations at 

room and high temperature were carried out (figures 4.5 and 4.6) to verify the 

reliability of the proposed physical models. The small mismatch between the 

experimental results and the simulations in figures 4.5-4.6 can be mainly attributed to 

the non-uniform doping concentration in the p-channel of the real device and to the 

not uniform width of the channel [98, 183, 230] which has not been considered in this 

2D design. For VG lower than -5 V the bipolar action of the JFET occurs and minority 
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carriers (electrons) are injected in the channel from the n+ regions, so increasing the 

total conductivity of the JFET, as reported in [232].  

 
Figure 4.4: Electric field distribution at the gate-drain corner (a) at the RT breakdown voltage (VDS=-570 V, VG=20 

V and T=300 K). The electric field distribution along an x cut (at x=0.7 µm) shows that the peak electric field value 

is located at the Drain-Gate corner (b), where a maximum value >20 MV/cm is reached. 

 
Figure 4.5:   Measured [230] and simulated output characteristics for the structure in figure 2 for VG= 0 and -2 V, 

and at T=300 K. 
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Figure 4.6: Experimental [230] and simulated transfer curves for the structure in figure 2 at T=300 K and 473 K 

(VDS=-0.1 V).  

To fully understand the potentials and the limits of the bipolar action in diamond JFET, 

a better insight into the recombination process and carrier lifetime is needed. However, 

this goes beyond the purpose of this work.   

4.2.1.2.  Design technique for a Normally-OFF JFET 

 

Normally-OFF JFETs [152, 276, 277] are preferable over the normally-ON 

technologies as they are easier to drive due to the fact that they are less prone to 

unexpected behaviour during the switching. A possible way to convert a normally-on 

technology into a normally-OFF is via the cascode configuration where the high 

voltage normally-ON FET is connected in series  with a low voltage FET [278]. 

However, this configuration has several drawbacks such as a higher specific ON-state 

resistance (Ron_spec), larger form factor due to unmatched voltage rating, and higher 

losses. Normally-OFF devices are therefore preferable to any normally-on based 

technology.   On the other hand, in order to ensure a normally-OFF operation in 

diamond-based FETs, the channel width together with the channel doping have to be 

reduced.  This is detrimental in terms of Ron_spec [279]. A recent publication 

demonstrates the first attempt to realize a normally-OFF diamond JFET device [231].  

In the proposed device, the submicron channel allows the depletion regions to touch 
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each other when the gate is at zero bias and provides the normally-OFF behavior. This 

device is the first experimental demonstration of a normally-OFF FET in diamond and 

some improvements in the design are still possible. The ON-state current density 

(Ron_spec~20 Ωcm2 at VG=-4 V) is more than two orders of magnitude lower than those 

of the normally-on JFET devices proposed in literature and the small channel width 

(0.2 µm) makes it difficult to control the uniformity of the channel in terms of 

geometry and doping profile. The work illustrated in this chapter proposes an 

improved design of this first normally-OFF JFET, taking into considerations the 

physical and technological limitations of diamond. It is worth noting that contrary to 

the conventional definition [280], the Ron_spec for diamond JFETs proposed in [230-

232] has been calculated adopting the cross sectional area and not the planar one. Such 

approach can be validated only after the vertical operation is realized. For the design 

technique, we have used an extensive set of TCAD simulations based on the models 

discussed in chapters 2 and 5. Firstly, we defined a simplified 2D unit cell as already 

done for the normally-ON JFET, neglecting in this way some of the 3D effects which 

occur in the real device (see figure 4.2). 

The main targets of the procedure are listed below: 

- Normally-OFF operation at high temperatures. 

- Minimum Ron specific (Ron_spec) per unit cell. 

- Avoid Punch-Through breakdown.  

- Breakdown target: 2 kV. 

The breakdown voltage target has been chosen to be 2 kV. This value is comparable 

with the state-of-the-art breakdown voltage of other diamond FETs [21, 227, 281]. 

Then, we defined the input parameters (table 4.2) which are the gate doping (n-

doping), the gate-to-source distance (L’(s-g)) and the gate width (WN). The n-gate 

doping has been fixed at the value adopted for all the manufactured diamond JFETs 

(both in normally-on and in normally-OFF configurations) and it is equal to 8×1019 

cm-3; L’(s-g) is fixed at 1 µm.  

This value guarantees a safe margin for the source contact deposition without an 

unnecessary increase in the drift resistance and it is of the same order of magnitude 

(µm) of the values reported for other JFETs in the literature [98, 183, 230]; the gate 

width WN, is fixed at 0.7 µm. 
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Table 4.2. Fixed parameters for the design technique. 

n-doping WN L’(s-g) 

8×1019 cm-3 0.7 µm 1 µm 

 

From these assumptions, we propose a technique to define an optimum value for the 

channel width (Wch), the drain-to-gate distance (L’(d-g)), the doping of the channel (p-

doping), the channel length (Lch) and the optimal operational temperature (Topt). The 

steps involved are described below: 

Range definition 

Step 1: identification of the optimal junction temperature. The choice is based on the 

minimum value of the resistivity. The optimal temperature has been chosen to be lower 

or equal to the maximum one (Topt ≤ Tmax). 

Step 2: analysis of the channel doping due to the technological limitations and the 

requirements of the design (P1 ≤ p-doping ≤ P2). 

Step 3: evaluation of the limits imposed for the channel width in order to ensure the 

normally-OFF operation until the optimal temperature (W1 ≤ Wch ≤ W2). 

Step 4: TCAD simulations varying the channel length (L1≤ Lch ≤ L2), the channel width 

and the doping of the channel are carried out based on the technological and physical 

limitations discussed in the previous steps. The influence of the channel length on the 

performances of the device is here discussed. 

Optimization 

Step 5: selection of the best design based on the principal targets. First, designs were 

selected for their capability to avoid Punch-through breakdown (>2kV) between RT 

and Topt. Then, designs with normally-ON operation before Topt have been discarded, 

and the best performing design in terms of minimum Ron_spec in the range RT ≤ T ≤ 

Topt, has been selected.  Successively, the gate-to-drain distance (L’(d-g)) has been 

varied, to fulfil the target on the breakdown voltage (2kV). If the selected design does 

not allow to reach the required breakdown voltage specification, the “second best 

performing design” is considered and so on, until all the targets of the procedure have 

been satisfied.  
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STEP 1 

Ensuring normally-OFF operation for a diamond JFET is not an easy task at high 

temperatures. This is because the doping activation increases with temperature, hence 

decreasing the depletion region extent in the channel. The risk is therefore that the 

device can become normally-on at high temperatures. This risk is enhanced also by the 

reduction of the built-in potential. In addition to this effect, higher temperature 

operations can lead to an increased p-n junction leakage current [98] which could 

reduce the breakdown voltage of the JFET. For these reasons, the design of a diamond 

normally-OFF JFET should be done keeping in mind the temperature effect. 

Moreover, the combined effect of the incomplete ionization and the hole mobility leads 

to an optimum resistivity (ρ) window. The resistivity (ρ) has been calculated as 

(NA(T)·q ·µ(T)) -1, where q is the electron charge. As illustrated in figure 4.7, where 

the resistivity of p-type diamond has been sketched as a function of the temperature 

for different acceptor doping levels (NA0) and a negligible value of the donor 

compensation doping (less than 1×1010 cm-3), an optimum resistivity window can be 

identified between 450 K and 600 K. Since it is difficult to ensure normally-OFF 

operation up to 600 K without sacrificing too much the ON-state resistance (reducing 

the channel width and the p-doping) and without significantly increasing the gate 

leakage current, T=450 K has been selected as the optimum temperature (Topt) for this 

design.  

 

Figure 4.7: Resistivity of p-diamond vs temperature for different acceptor concentration (NA0).  
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During the choice of the best performing design (step 5), we will guarantee that the 

optimal temperature is lower or equal to the maximum junction temperature (Tmax) 

at which the designed normally-OFF JFET becomes normally-ON (Topt ≤ Tmax). 

STEP 2 

Regarding the channel doping, which in this design is equal to the drift region doping, 

two main limitations can be identified. The first limitation is technological: it is not 

possible to accurately control the p-doping in diamond layers for values below 1×1015 

cm-3. This evidence sets a lower limit for the channel doping (P1). On the other hand, 

when the doping is increased the electric field distribution in the drift region can easily 

become NPT (Non-Punch Through) and it could be not possible to fulfil the 

specification on the breakdown. Additionally, by increasing the drift region doping, 

the design of a normally-OFF JFET becomes more difficult since the channel width 

(Wch in figure 4.2) has to be dramatically reduced in order to ensure normally-OFF 

operation. For all these reasons, the upper limit (P2) for the channel doping has been 

fixed at 1×1017 cm-3. The suggested channel doping window is therefore between 

1×1015 cm-3 and 1×1017 cm-3.  

STEP 3  

The lower and higher possible channel width values are here discussed. It is in fact 

necessary that the channel width is sufficiently small to be fully depleted at zero gate 

bias but at the same time it has to be wide enough to ensure current flow through the 

channel before the p-n+ junction switches on. This imposes two limitations: (i) the half 

channel width cannot exceed the depletion region at zero bias in order to be normally-

OFF (limit W1); (ii) the channel width cannot be lower than the depletion region 

calculated before the onset of the p-n junction in order to prevent the bipolar mode 

regime and ensure a safe voltage control of the gate (limit W2). In this technique, the 

margin W2 has been evaluated in order to provide at least 0.5 V before the onset of the 

bipolar mode (since we are dealing with a unipolar mode JFET). When the drain 

voltage is at zero bias, the depletion region can be calculated according to equations 

(14a-b), where the dependence of the built-in potential on the temperature and of the 

activated doping on the electric field and temperature have been included. For a 

uniform doping of the p-type channel and when the potential difference between 

source and drain is zero (VDS=0 V), the depletion region width (WD) in the channel, 

can be considered as independent on the position [152] and evaluated as in (14a-b). In 
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the formula εs is the dielectric constant of diamond, Ѱbi is the built-in voltage, NV and 

NC are the density of states for the valence and conduction band and E is the electric 

field. 

Wz = ����7��K(�)�"E9oJ�(�,D)                (14a) 

ψj?(T) = ��o ln :J�J�J�J�< + DEo                                                (14b) 

In the space charge region (SCR) where the electric field (E) is significant, the number 

of activated dopants is higher compared to the one in the neutral region. Simulation 

results revealed that the effective width of the depletion region in the channel for the 

JFET cannot be theoretically evaluated taking into account a total activation in the 

SCR (NA=NA0) and TCAD simulations are so necessary for a correct design.  Indeed, 

it is worth noting that the incomplete ionization phenomenon and the reduction of the 

built-in voltage slightly reduce the effective channel width at high temperatures, 

complicating the normally-OFF operations of diamond JFETs at high temperatures. 

Further analysis and details of this effect will be provided in chapter 5. Furthermore, 

the limits illustrated in figure 4.8 do not take into account the potential barrier lowering 

induced by the drain voltage. This phenomenon leads to the reduction of the 

electrostatic potential barrier in the channel region for increasing drain voltage. The 

reduced potential barrier can then allow for a significant hole current in the channel 

area even when the device should be in the OFF state.  

 
Figure 4.8: Channel width limitations for a p-type JFET calculated with formula (14a-b) for a channel doping of 

5×1016 cm-3 and comparison with TCAD simulations (green points). W1 (blue line) and W2 (red line) have been 

calculated considering full activation and substituting VG=0 V and Ѱbi(T)+VG=0.5 V in equation (14a) respectively. 
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The effect of the drain induced barrier lowering (DIBL) is more pronounced for short 

channel devices. The DIBL effect can switch on a device which should be “never on” 

and make it conduct a significant amount of current at high drain voltages. 

 

STEP 4 

TCAD simulations were performed based on the previous considerations in order to 

fulfil the primary targets (min Ron_spec, punch-through breakdown avoided and high 

temperature normally-OFF operation). In this set of simulations (table 4.3), a value of 

L’(d-g) is fixed at 2 µm and the avalanche generation has been disabled.  As it will be 

explained later on, the L’(d-g) distance slightly influences only the on-state 

performances of the device and does not affect at all the PT (punch-through) 

breakdown which is mainly regulated by the channel length Lch. 

 

Table 4.3. JFET’s parameters varied in the TCAD simulations. 

Lch 0.5 µm to 5 µm. 

Wch/2 0.1 µm to 0.5 µm. 

p-doping 1×1015 cm-3 to 1×1017 cm-3. 

 

The channel length has a key role in the design of the normally-OFF JFET. This is 

because a high value of this parameter ensures a high blocking voltage avoiding the 

PT breakdown as shown in figure 4.9. 

 
Figure 4.9: Punch-through (PT) breakdown vs channel length for different doping concentrations and for a fixed 

Wch/2 of 0.2 µm. Punch through breakdown occurs when the potential energy barrier in the channel region lowers 

at high drain voltage and allows the flow of carriers (holes) from the source to the drain contact. This effect must 

not be confused with the PT design of the gate-drain region[152]. 
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On the other hand, from TCAD simulations it has been found that the main 

contribution of the Ron_spec [280] is given by the specific channel resistance, Rch_spec 

(more than 90% of the total Ron_spec).  As shown in the equation (15a), Rch_spec is 

proportional to the channel length (Lch), the channel mobility (µch) and the number of 

activated dopants in the channel (function of the gate voltage) Nch(VG). Additionally, 

the specific drift resistance Rdrift_spec (15b), which is the sum of the gate-source and 

drain-source specific resistance (RGS_spec   and RGD_spec , respectively), is proportional 

to the total drift length (Ldrift) which is the sum of L’(s-g) and L’(d-g),  the drift mobility 

(µdrift) and the number of activated dopants in the drift region (Ndrift). The total Ron_spec 

(15c) is the sum of the specific resistance of the drift region (Rdrift_spec), the channel 

region (Rch_spec) and the contacts (Rcont_spec). Nevertheless, the resistance of the gate, 

drain and source contacts (Rcont_spec) has been neglected in this study. 

 R ! _ 3G6  = ¢£$oO£$J£$("E)                                                                                (15a)    R�¤?¥i _ 3G6  = ¢�¦K§foO�¦K§fJ�¦K§f = R�� _ 3G6  + R�z _ 3G6                        (15b)                     

R4N _ 3G6  = R ! _ 3G6  + R�¤?¥i _ 3G6  + R 4Ni _ 3G6            (15c)  
 
Since the Ron_spec is mainly due to the channel resistance, increasing L’(d-g) in PT can 

push upwards the BV (primary target) until PT ends up NPT, without lowering the 

ON-state performance.  It is worth noting that the set of equations (15a-c) for the 

specific on-state resistance applies to vertical JFETs and it has been calculated 

adopting the cross sectional area instead of the planar one[280]. 

 

STEP 5 

Designs which did not guarantee normally-OFF characteristics until Topt and were 

subjected to the PT breakdown have been discarded in this step of the optimization. 

Then, the selection of the best performing device has been based on the minimum 

Ron_spec at RT and at Topt. In the end, the L’(d-g) distance has been increased to fulfil 

the specification on the minimum breakdown voltage. At the end of the procedure, the 

final design has the following features (table 4.4): 

 

Table 4.4. Final specifications for the optimized normally-OFF JFET. 

Wch p-doping Lch L’(d-g) Topt 

0.4 µm 5×1016cm-3 1 µm 5 µm 450 K 
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Table 4.5. Avalanche breakdown as a function of the temperature and the gate-drain length. The 1D minimum 

length of the drift region (2 µm) does not allow to reach a BV=2 kV because of the 2D effects occurring at the D-

G junction. 

L’(d-g) 2 µm 5 µm 10 µm 

T=300 K BV=1.4 kV BV=2.1 kV BV=2.1 kV 

T=450 K BV=1.6 kV BV=2.7 kV BV=2.7 kV 

 

An optimum value of 5 µm for this dimension has been found for a p-doping 

concentration of 5×1016 cm-3. Increasing L’(d-g) over 5 µm has only detrimental 

effects in terms of Ron_spec (primary target) and does not improve the breakdown 

capability of the JFET (table 4.5).   Further simulations with small variations of the 

parameters around the optimum configuration set have been conducted. However, a 

small reduction of the channel length, which is the main component of the Ron_spec, is 

detrimental for the PT breakdown as much as an increase of the channel width or of 

the channel doping.  

4.2.1.3. TCAD results and discussion 

 

Once the optimum design has been identified, TCAD simulations have been carried 

out in order to analyse the on-state and OFF-state performance of the final device. In 

figure 4.10, the RT on-state characteristics confirm that the device effectively behaves 

as a normally-OFF JFET. 

 
Figure 4.10: RT JD-VDS ON state characteristics of the optimum normally-OFF JFET for different gate bias. 
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The transfer characteristic in figure 4.11 illustrates that the optimum design is 

normally-OFF until the maximum temperature of 600 K (which allows to be inside the 

optimal resistivity window) and the threshold voltage ensures a good control in the 

unipolar mode (before the p-n junction turns on).  For the same design specifications, 

the Ron_spec of a normally-OFF JFET with Lch=2Lch (optimum) is almost doubled, 

confirming the predominance of the channel resistance on the total Ron_spec.  

 
Figure 4.11: Transfer characteristics JD-VGS of the JFET at different temperatures for a fixed VDS=-10 V. As it can 

be observed from the curves, the device becomes normally-on at 600 K (maximum temperature) since the threshold 

voltage becomes negative. The threshold voltage (Vth) is ~1V at RT and it reduces until ~0.4 V at the Topt , so 

guaranteeing a margin similar to the device reported in [232]. The threshold voltage has been defined as the gate 

voltage at which the drain current reaches the value of 1x10-9 A/cm2 (constant current method [282]). 

 

Breakdown voltage simulations showed that the avalanche phenomenon was 

responsible for the high increase in the current density (figure 4.12) and that the PT 

breakdown was effectively avoided by a correct design of the device (in terms of 

channel length and channel doping) also at high temperature.   

 

The positive coefficient of the breakdown voltage (table 4.5) is indeed a clear signal 

of the avalanche phenomenon. In fact, the acceleration of minority carriers in the N+P 

(gate-channel) junction is reduced at high operational temperature because of the 

decreased impact ionization rate (equations 13). In the bar charts of figures 4.13,4.14 
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and 4.15 the performances of the normally-OFF device were compared with other 

diamond JFETs (in both unipolar/bipolar mode and normally-ON/OFF 

configurations).  

At RT(fig.4.13), the Ron_spec of the optimized enhancement mode JFET shows only a 

small reduction if compared with the bipolar mode JFET [237] and a reduction if 

compared with the state-of-the-art unipolar mode normally-ON diamond JFET [98, 

230].  

At a high temperature of T=450 K (fig.4.14), the optimized JFET shows similar 

performances if compared with the bipolar mode JFET and it outperforms the other 

normally-on configurations. 

 

 
Figure 4.12: (a) 2D electric field distribution and impact ionization at the RT breakdown voltage (2.1 kV) for the 

normally-OFF optimum JFET. The peak of the electric field is located near the gate-drain junction, where the 

avalanche generation occurs. (b) The electric field reaches 0 V/cm before the drain contact, confirming the NPT 

design of the gate drain region, as it can be also deduced from the results of table 4.6. 
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Figure 4.13: Ron_spec comparison between experimental results of diamond JFETs[98, 230, 237] and the optimised 

theoretical value for normally-OFF JFET at RT. Ron_spec has been calculated with the reference to the cross section 

and it applies to future vertical JFETs. 

 
Figure 4.14: Ron_spec comparison between experimental results of diamond JFETs [98, 230, 237] and the optimised 

theoretical value for normally-OFF JFET at a high temperature of T=450 K.  
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Figure 4.15: Breakdown voltage comparison of our theoretical optimized device and the diamond normally-ON 

JFET reported in [230].  

 

4.3 Deep depletion MOSFETs 

4.3.1. Introduction 

 

The conventional surface inversion does not represent the only way to control the 

channel conductivity of MOS-based devices. An efficient solution for ultra-wide 

bandgap semiconductors (such as β-Ga2O3, Diamond, etc.) is the deep depletion 

MOSFET’ concept, previously discussed in chapter 2. The physical operation of the 

deep depletion MOSFET resembles the Silicon based-buried channel MOSFET, a 

device analysed and experimentally demonstrated in the 1980-90s [152].  

 

One of the intrinsic benefits of deep depletion FETs is the possibility of fabricating the 

device by employing a single doping type (either p or n). This can only be possible if 

the device is grown on a semi-insulating substrate (as the type Ib substrate for 

diamond) which permits to safely switch-OFF the device.  

 



Chapter 4: Design and modelling of unipolar mode diamond devices 

83 

 

In this context, the lack of an efficient n-type doping in diamond and p-type doping in 

β-Ga2O3, perfectly matches with the configuration of the deep depletion MOSFET. 

However, some intrinsic limitations can hamper the development of this structure for 

power electronic applications and cause several reliability issues: the typical normally-

ON (depletion mode) operation mode and the influence of the deep levels in the semi-

insulating substrate. These issues will be discussed in the following paragraphs. 

4.3.2. Diamond normally ON deep depletion MOSFET: analysis 

 

A schematic cross section of a diamond lateral deep depletion MOSFET is shown in 

figure 4.16. To reduce the contact resistance, selective p+ growth could be performed 

prior the source and drain contact deposition as already demonstrated in [224].  The 

selected gate oxide is Al2O3, due to the good band alignment already mentioned in 

chapter 2. The gate metal is made of a single layer of Ti (WF=4.3eV) defined with a 

Schottky boundary condition in the simulations. To assess the limits of deep depletion 

diamond MOSFET technology, 2D TCAD simulations have been carried out. The 

experimental device structure fabricated in [226], has been defined in the TCAD 

device simulator (LG=4 μm, tox=20 nm, Wp=0.23 μm, p-doping= 1.75x1017 cm-3, 

LGS=5 μm, LGD=5 μm, for additional details on the structure the reader can refer to 

[216, 226]). 

 

Figure 4.16: Schematic cross section of a deep depletion diamond MOSFET. Al2O3 properties have been modelled 

following [210], assuming a bandgap (EG) of 8.8 eV, a low-frequency dielectric constant(ε) of 9 and an electron 

affinity (χ) of 1. These properties correspond to the α-Al2O3 phase. In diamond, the synthesis of Alumina usually 

leads to the formation of γ-Al2O3, which properties differ from the α-Al2O3 phase (for γ-Al2O3, EG =6.3 eV-7.4 eV, 

χ~3 eV, ε~9). This can often lead to a different band alignment with both the conduction and valence band. Such a 

modification can have a high influence on gate-leakage current, as already addressed in [283]. For the purposes of 

this study, gate leakage mechanisms have been neglected. 
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The p+ regions have a thickness of ~10 nm and are doped with a boron concentration 

of 1x1020 cm-3. The physical models defined in chapter 2 and 5 have been used for the 

finite element simulations illustrated in this section. If the Ib semi-insulating substrate 

is not modelled, ON state transfer characteristics (ID-VGS) have been shown in figure 

4.17. As can be observed, the incomplete ionization effect reduces the effective carrier 

concentration and, therefore, the total current density.  

Furthermore, the partial ionization also affects the behaviour of the device at higher 

operating temperature. More specifically, at high operating temperature, the threshold 

voltage (Vth) becomes more positive and the current density increases due to the 

enhanced ionization of the boron dopants.  When the semi-insulating substrate is 

included in the simulations, an additional depletion region is generated at the 

substrate/channel region. The depletion region at the substrate/channel interface 

modifies the available conduction path for holes and affects the threshold voltage 

(Vth). These effects are clearly shown in the ID-VGS (figure 4.18).  

 

 

Figure 4.17: ID-VGS (VDS=-10 V, VS=0 V) characteristics for a diamond deep depletion MOSFET (figure 4.16) 

without the Ib semi-insulating substrate with the incomplete ionization (I.I.) and with the complete ionization (C.I.) 

model. The high field saturation model with the parameters described in chapter 2 has also been included. Thermal 

effects are neglected, and the drain current (y-axis) is normalized to the gate width. 
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Figure 4.18: ID-VGS (VDS=-10 V, VS=0 V) at T=300 K for the device in figure 4.16 with and without the semi-

insulating substrate region. The HPHT Ib substrate has a typical thickness of hundreds of μm (usually ~300 μm). 

In the TCAD simulations, the simulated thickness has been reduced to 2 µm to optimize the computational time. 

The substrate is nitrogen doped (activation energy of 1.7 eV and with doping concentration of 3x1019 cm-3) which 

leads to a very small percentage of free electrons. It is here worth mentioning that without any electrical contact 

deposited, the substrate only acts as a thermal interface. At T=300 K a negative threshold voltage of ~ 1.2 V has 

been extracted (normally ON device). Vth has been defined at a constant current density level of 1x10-6 A/mm here 

and in the following part of this chapter. 

Hence, the sub-micrometer nature of the p-type conductive region does not allow to 

neglect this additional effect of the substrate. This could be understood from the 

equations (16a-c) which define the depletion regions at the MOS interface (WDS) and 

at the channel/substrate interface (WDN) (in case of floating substrate). | ©̈ª| + Ψ¬­ in 

equation (16a) is the modified “flatband voltage”.  The flatband condition is here 

identified with reference to the n-type substrate). As it can be understood from (16a), 

the substrate represents a virtual gate which can further control the width of the 

depletion region. In the eventuality that the substrate is electrically contacted, the 

expression Ψbi+VB (where VB is the substrate bias) replaces Ψbi in equation (16b). 

Wz� = ���pQoJ� (V®n + Ψj? + V�) + �e��pQ� − �e�pQ                     (16a) 

WzJ = ���e¯�KoJ� ( J�J��J�)                                                              (16b) 

x3 = WzJ + Wz�                            (16c) 
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In equations 16(a-c), εs is the semiconductor (low) frequency dielectric constant, εox is 

the low frequency dielectric constant of the insulating layer (Al2O3), Cox is the oxide 

capacitance, VFB is the flatband voltage, xs is the total depletion region width, NA the 

doping of the p-type channel area and ND the doping of the semi-insulating substrate. 

In case of long channel device LG>>Wp, a simple expression can be obtained for the 

Vth, which corresponds to the gate voltage (VG) at which Wp=xs(VG). Like for the 

inversion MOSFET theory [152], the equations for total current in the ON state can be 

derived with the channel charge approach. However, when the gate length (LG) is 

reduced the drain induced barrier lowering (DIBL) effect occurs. This mechanism 

modifies the value of the Vth and it becomes much more difficult to derive an 

analytical solution. A few considerations can be done at this stage: 

A) In principle, it is possible to control the ON/OFF performance of the deep 

depletion MOSFET with the substrate bias (VB). This approach is well known 

for Si-based buried devices in which this specific substrate effect is employed 

for pinching-OFF thick channel devices (with large Wp). The substrate 

polarization is sometimes used as an alternative or in conjunction to the 

workfunction control to achieve normally-OFF behaviour for buried channel 

MOSFET. For this class of Si-based devices, there exists a maximum depletion 

width (and a maximum allowed gate voltage) before the inversion layer is 

generated.  Nonetheless, it is not advisable to control the deep depletion FET 

with a back contact deposited on a semi-insulating substrate, even when a good 

ohmic contact can be formed. Indeed, due to the high activation energy (1.7eV) 

of Nitrogen, the dynamic ionization of the donor impurities will result in 

several reliability’ issues such as gate and drain lag, extensively studied for 

GaAs MESFETs [284, 285]. A possible alternative to alleviate such issues 

consists in the deposition of a highly doped phosphorous layer before the 

channel growth. The lower activation energy of Phosphorus species allows for 

reduced dynamic issues due to the reduced ionization/de-ionization time 

constant (as it will be discussed in chapter 5). However, this solution requires 

the availability of an accurate n-type doping control. 

B) The maximum current density in figure 4.18 is several orders of magnitude 

lower than the maximum value reported for diamond H-FETs (~1 A/mm for 

the same bias conditions). High temperature and thicker channel region could 
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increase the total current density value but at the expense of an increased gate 

leakage and change in the threshold voltage. In particular, this last effect does 

not allow to easily design normally-OFF deep depletion MOSFETs. 

C) The bulk conduction of deep depletion FET, which is one of the principal 

benefits of such a configuration, only occurs for low gate voltages. At higher 

gate voltages (the typical operation regime for a power MOSFET), surface 

conduction can dominate the transport mechanism, as already demonstrated for 

Si buried devices. 

All these considerations push the research towards new device architectures which are 

able to alleviate the previous mentioned issues. 

4.3.3. Diamond normally-OFF deep depletion MOSFET: the dual 
gate structure  

 

A simple approach to obtain a deep depletion normally-OFF device consists in 

uniformly reducing the p-type layer width (Wp in figure 4.16) until the device is 

pinched OFF at VG=0 V. One can note that, this configuration does not represent the 

optimal solution in terms of Ron_spec.  A novel dual gate configuration, as the one 

depicted in figure 4.19, could alleviate this intrinsic trade-OFF between Vth and 

Ron_spec (figure 4.20). The recessed channel allows to obtain a normally-OFF 

configuration without using any substrate bias, while the thick p-region allows for a 

reduced Ron_spec if compared with a fully-recessed structure. Additionally, the thick p-

region withstands the reverse voltage. 

 

Figure 4.19: (a) Schematic cross section of the dual gate deep depletion diamond FET and (b) its equivalent 

schematic. The device in (a) can be seen as the series of a normally OFF FET and a normally ON FET (hence the 

definition of “dual gate”).  
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Figure 4.20: ID-VGS transfer curve (VDS=-10 V, VS=0 V) in log (a) and linear (b) scale for the device illustrated in 

figure 4.19(a). tox=20 nm, tox2=0.2 μm, LGS=1 μm, LG2=0.5 μm, LG1=0.25 μm, LGD=5 μm. The p-region is 

uniformly doped at 2.5x1017 cm-3, Wp=Wrec=0.1 μm for the dual gate fully recessed structure whilst Wrec=0.1 μm 

and Wp=2 μm for the Dual gate (with partial recess). The partial recess does not alter the Vth and has a positive 

effect on the total drain current density due to the current spreading effect. Vth is ~-1.55 V at T=300 K and it 

reduces to ~-0.55 V at T=500 K (extracted at a constant current density of 1x10-6 A/mm). 

Regarding the fabrication process of the double gate deep depletion MOSFET depicted 

in figure 4.19(a), an additional etching step for the p-type region (in the channel area) 

is required. Alternatively, it is also possible to perform a localized etch followed by 

the regrowth of the channel area. One of the potential drawbacks of the device in fig. 

4.19(a) is the increased electric field in the corners at the bottom of the trench. 

The latter fabrication step, which is well-known for other semiconductors’ 

technologies [286] and also in diamond [253], generally improves the 

semiconductor/oxide interface’ quality. With the re-growth of the channel area, an 

additional degree of freedom is introduced in the design of the dual gate MOSFET. In 

particular, it is possible to decouple the channel doping and the drift region one.   

More specifically, the doping of the p-channel (typically one of the most resistive 

regions in the device) can be increased whilst the doping of the drift region area, which 

needs to withstand the reverse voltage, can be reduced. The superior ON-state 

performance of the dual gate structure has been compared with a fully-recessed 

solution in figure 4.20. The inclusion of a mobility degradation model at the interface 

(default set of Lombardi degradation model and parameters for Silicon [150]) provides 

a more realistic value of the channel mobility at the Al2O3/diamond interface. The 

results with the mobility degradation model have been plotted in figure 4.21.  
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Figure 4.21: ID-VGS (VDS=-10V) with and without the degradation mobility model at the interface (Lombardi 

model). tox=20 nm, tox2=0.2 μm, LGS=1 μm, LG2=0.5 μm, LG1=0.25 μm, LGD=5 μm, Wrec=0.1 μm, Wp=2 μm and 

the p-region is uniformly doped at 5x1016 cm-3.With this choice for the p-doping, Vth is ~-3.85 V at T=300 K and 

it reduces (in absolute value) to ~-3.3 V at T=500 K (extracted at a constant current density of 1x10-6 A/mm). This 

improvement for the Vth is paid in terms of maximum current density (reduced of about 50% if compared with the 

device simulated in figure 4.20). 

Regarding the OFF-state performance, it has been found that quasi-stationary 

simulations fail to predict the real punch-through capability of the device shown in 

figure 4.19(a). Indeed, due to the presence of deep levels (i.e. nitrogen), the dynamic 

activation of donors in Ib semi-insulating substrates cannot be neglected even when 

small dV/dt are applied to the device.  

“Slow” transient simulations (see additional details in the caption of figure 4.22) show 

that the presence of the Ib substrate leads to a premature breakdown due to the punch-

through of the device. According to the usual punch-through breakdown mechanism 

(i.e. in the absence of deep levels), a negative temperature coefficient of the breakdown 

voltage (BV) can be observed. 

 The transient BV due to punch-through effect is caused by the reduced number of 

activated nitrogen ions in the substrate. This decrease leads to a weaker potential 

barrier at the channel/substrate interface (figure 4.23). 
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Figure 4.22: Transient ID-VDS (VG=0 V) simulations for the device depicted in fig. 4.19(a) (details of the structure 

in the caption of figure 4.21).  The slow dV/dt applied at the drain contact is 1 V/100 s. Avalanche is deactivated 

in these simulations. A longer gate length improves the PT BV resistance of the device. Due to the extremely high 

activation energy of Nitrogen, temperature has only a minor effect on the ionization/deionization time constant. 

 

Figure 4.23: PT mechanisms for LG1=0.25 μm at RT (details of the structure in fig. 4.21). As it can be seen from 

the plot, holes overcome the electrostatic potential barrier in the channel and are injected in the substrate before 

reaching the drain terminal. The parasitic p-n-p BJT (with floating base) has been schematically depicted. 
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The occurrence of the premature breakdown voltage due to punch-through in the 

device, can be efficiently tackled with the growth of a highly doped phosphorous 

doped layer on top of the semi insulating substrate (upto T=500 K). The comparison 

in terms of punch-through BV has been plotted in the figure 4.24. As it can be seen, 

the presence of a phosphorous layer counteracts the occurrence of the premature 

breakdown due to the PT effect.  

Nevertheless, two main drawbacks of this approach can be recognized: the difficulty 

in growing high-quality diamond phosphorous doped layer and the increase in terms 

of Ron_spec. In particular, due to the increased electrostatic potential barrier in the sub-

micrometer channel area, the Ron_spec (and the total current density for the same bias 

conditions) is higher if compared to the structure illustrated in figure 4.16(a) (see figure 

4.25(b)). 

 

Figure 4.24: Reverse ID-VDS at T=500 K with and without the n-layer. The presence of an n-layer with shallow 

donors on top of the semi insulating substrate improves the PT resistance at high temperature. This is also 

demonstrated by means of the schematic cross section of the device, where the hole current density has been 

efficiently suppressed by the n-layer with a shallow donor level. 
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Figure 4.25: (a) Cross section of the dual gate deep depletion MOSFET with a phosphorous doped (n-type) layer 

and (b) comparison with the device illustrated in figure 4.16(a). The details of the structures can be found in caption 

of figure 4.21. The phosphorous doped layer is assumed to be 2 μm and doped at the same level of the nitrogen one 

(3x1019 cm-3). Vth=-6 V at T=300 K and Vth=-5.2 V at T=500 K with the additional n-layer. 

 

 

Figure 4.26: (a) ID-VDS at T=300/500 K and (b) hole impact ionization at T=300K at the BV for the structure 

defined in figure 4.25. The BV is ~600 V at RT and it increases to a value >1 kV at T=500 K. According to the 

simulations in the previous section, a constant carrier generation value has been defined in the simulations to 

improve the convergence. The reduced current density at T=500 K (which could be unphysical due to the presence 

of other leakage mechanisms [21, 108]) in figure (a) is due to the improved channel/substrate barrier due to 

enhanced ionization of phosphorus dopants.  
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Figure 4.27: (a) Absolute electric field at VDS~600 V (BV) at RT and (b) electric field cuts at the diamond/oxide 

interface (cut 1) and at the top oxide layer (cut 2). 

To assess the avalanche capability of the proposed structure (in figure 4.25(a)), reverse 

bias simulations were performed with the avalanche coefficients defined in table 4.1. 

The reverse ID-VDS curves shows a positive temperature coefficient of the BV (figure 

4.26) and the onset of the impact ionization near the drain contact (figure 4.26(b)). 

The electric field at the BV (~600 V at T=300 K) has been plotted in figure 4.27, shows 

that the peak electric field reaches a value of ~1x107 V/cm in the oxide layer. This 

value is close to the maximum electric field in Al2O3 (1x107 V/cm) and should be kept 

as small as possible in order to avoid TDDB breakdown or oxide failure which may 

happen before the onset of the impact ionization. Nevertheless, it is worth mentioning 

that a more advanced device structure with a thicker passivation layer, longer gate-

drain distance and a field plate structure could improve the avalanche capability of the 

device and, at the same time, reduce the stress in the oxide. 

4.3.4. A hybrid normally-OFF configuration  

 

The analysis carried out in the previous section has pointed out that the lack of shallow 

p-type and n-type dopant species is the main cause of the poor (simulated) performance 

of the diamond normally-ON and of the normally-OFF dual gate deep depletion 

MOSFET.  As mentioned in chapters 2 and 3, one of the current issues of diamond 

HFETs is the scarce reproducibility of the device due to the high variation in terms of 

surface charge sheet concentration. This issue does not only cause dissimilarities in 

terms of current density, but, most of all, a huge reproducibility’ problem for the 
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threshold voltage. Figure 4.28 shows the impact of the charge sheet concentration on 

the current density and on the Vth (see details in the picture). As it can be observed, 

doubling the charge sheet concentration leads to a huge variation >3.5V in terms of 

Vth. 

 

Figure 4.28: (a) Schematic cross section of the normally-ON HFET and its transfer curve (b). Vth=1.5V and 

Vth=5.45V for Ndens=-5x1012 cm-2 and Ndens=-1x1013 cm-2, respectively. Vth has been extracted with the constant 

current method (J=1x10-6 A/mm). The specifications of the structure in (a) are Wp=0.2μm, p-dop=1x1015 cm-3 

(unintentionally doped layer), Ib semi-insulating substrate is nitrogen doped with a thickness Wn of 2 μm and a 

doping concentration of 3x1019 cm-3, tox=0.2 μm, LGS=1 μm, LG1=0.5 μm, LGD=5 μm. The p+ layer is modelling 

the low-resistivity TiC usually forming at the hydrogen diamond/metal interfaces. In (b) VDS=-10 V and the Ndens 

represents the amount of interface fixed charge used to reproduce the effect of the 2DHG. 

In [21], Kitayabashi et al. suggested a partial O-termination to control the performance 

of diamond HFETs, which are usually normally ON devices (see chapter 3 for 

additional details). The device fabricated by Kitayabashi et al. is a normally-OFF 

device and shows ON/OFF state performance similar to normally ON HFETs realized 

by the same research’ group[243]. Nevertheless, it is not clear if the device works in 

inversion or depletion mode. The “unintentionally” doped substrate, on which the h-

termination and the partial o-termination have been performed, contains a level of 

nitrogen impurities <1x1016 cm-3 and boron doping <1x1014 cm-3. This probably 

suggests that an inversion layer is formed at this diamond/Al2O3 interface. The 

presence of a dominant deep level (nitrogen) in the channel/drift region of the device 

can however give rise to several undesirable effects during transient conditions, as 

widely discussed in chapter 5. It is also important to note another crucial aspect, more 

specifically, that diamond “unintentionally undoped” layers can have a significant 

doping level. Keeping in mind that hydrogen termination induces a surface channel 

also in vertical trenches, a similar idea could be applied to the device shown in figure 



Chapter 4: Design and modelling of unipolar mode diamond devices 

95 

 

4.16(a). Figure 4.29(a) shows the schematic cross section of a dual gate deep depletion 

with hydrogen termination.  A possible fabrication route of this structure would only 

require an extra fabrication step (compared to the device depicted in figure 4.25) in 

order to ensure the hydrogen termination of the areas depicted in figure 4.29. The 

inclusion of hydrogen terminated regions increases the ON state performance but with 

a possible drawback on the increased electric field profile in the OFF state. TCAD 

simulations have been carried out to further investigate the electrical performance of 

this structure. To reproduce the surface channel effect at the diamond/Al2O3 interface 

the charge sheet model of Kawarada et al. [108] has been used. The h-diamond 

mobility model, matched from experimental results (see chapter 2), has been included 

to correctly estimate the doping-temperature dependent mobility of the 2DHG. In 

figure 4.27(b) the superior ON state performance of the device have been illustrated.  

The reduction of the maximum drain current density at high temperatures due to the 

mobility reduction of the 2DHG. The threshold voltage follows the same trend of the 

deep depletion MOSFET, confirming that the Vth is regulated by the oxygen 

terminated interface. 

 

Figure 4.29: (a) Schematic cross section of the hybrid FET idea and (b) its ID-VGS((VDS=-10 V)). The extraction 

of Vth for different 2DHG concentrations in figure (b) leads to an identical Vth ~ -3.25 V at T=300 K and a Vth ~ 

-2.75 V at T=500 K (with the constant current method). This confirms the stability of the threshold if compared 

with the device in figure 4.28. tox=20 nm, tox2=0.2 μm, LGS=1 μm, LG2=0.5 μm, LG1=0.25 μm, LGD=5 μm, 

Wrec=0.1 μm, Wp=2 μm. The drift p-region (unintentionally doped) is uniformly doped at 1x1015 cm-3 whilst the 

p-channel area is doped at 5x1016 cm-3.  

According to what demonstrated in the previous section, PT breakdown occurs for this 

structure in the absence of an n-type layer with a donor impurity level shallower than 

nitrogen (i.e. phosphorous). Nevertheless, the inclusion of a phosphorous layer only 
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leads to small reduction in terms of current density for this structure, as it can be 

observed in figure 4.28(a).  

Figure 4.30: (a) ID-VGS with different 2DHG concentration at different temperatures and (b) the effect of Wrec on 

the ID-VGS (Ndens=-1x1013 cm-2) of the Hybrid FET in figure 4.27(a) with Ib substrate and a phosphorous doped 

layer (2μm doped at 3x1019 cm-3). In (a) the constant current method leads to Vth ~ -3.45 V at T=300 K and a Vth 

~ -3.1 V at T=500 K with the n-layer. This value is higher than the one extracted without the n-layer, according to 

what demonstrated in the previous section. 

One could note that in figure 4.30(b), the maximum current density of the hybrid 

solution is almost 2 orders of magnitude higher than the one in figure 4.25 (b) and it is 

also comparable with the state-of-the-art diamond normally-ON HFET. This confirms 

the great potential of this structure. 

BV simulations have been carried out to assess the avalanche capability of the device. 

The reverse ID-VDS of the device in figure 4.29(a) (Ndens=1x1013 cm-2 and with the 

additional phosphorous layer) shows a positive onset due to the impact ionization 

effect with a BV=800 V at RT and >1.3 kV at T=500 K.  The increase in terms of BV 

(compared to the device in figure 4.27) is due to the reduction of the drift region doping 

which is now made of an unintentionally doped region (boron concentration ~1x1015 

cm-3). Nevertheless, due to the presence of a fixed charge layer, which is required to 

model the 2DHG at the diamond interface, the electric field peak reaches a value 

>1x107 V/cm. This could cause premature breakdown and can be tackled by increasing 

the oxide thickness (tox2= 400 nm), as shown in figure 4.31(b). This increase in terms 

of oxide thickness only leads to negligible discrepancies in terms of BV due to the 

impact ionization phenomenon. 
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Figure 4.31: (a) Electric field distribution at the BV (T=300 K, VDS~800 V) for tox2=200 nm and (b) electric field 

cut at the diamond/air interface (cut 1) and diamond/ Al2O3 interface (cut 2). Ndens=-1x1013 cm-2 for the simulated 

device. Thicker Al2O3 helps the reduction of the maximum electric field in the oxide layer (<1x107 V/cm). A more 

realistic shape has been defined for the gate, source and drain metallization (with rounded corners). As the drain 

and source contact touch both the oxide and the semiconductor, the metal has been defined with a Schottky 

boundary condition and the hole-tunnelling has been activated at the source and drain interfaces. This is a common 

approach also for lateral GaN HEMT devices. 

Nevertheless, it is worth noting that the breakdown and the reliability issues of the 

insulating layers become a major problem with diamond lateral FETs. More 

specifically, due to the high dielectric strength of diamond, the onset of the 

semiconductor breakdown (due to the impact ionization) usually occurs at very high 

voltage. At these extreme drain voltages, the peak electric field in the oxide has usually 

exceeded its critical value. This is also the case for high voltage diamond Schottky 

diodes[261]. 

Further modifications such as a longer gate-drain distance, the inclusion of a source 

field plate and a second passivation layer allow to improve the BV of the device while 

keeping the maximum electric field in the oxide lower than its critical value. This is 

shown in figure 4.32, in which a source field plate structure with a second passivation 

layer (made of Al2O3) helps to reduce the peak electric field in the oxide. However, 

this improvement is paid in terms of Ron_spec (figure 4.33) and turn on/OFF behaviour 

of the HFET (due to the additional field plate capacitance). An accurate analysis of all 

these issues goes beyond the purpose of this work.  
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Figure 4.32: (a) Electric field distribution at the room temperature BV (~2.1 kV) with the dual field plate (FP) 

structure. The electric field profile along the vertical and horizontal cuts shown in figure (a) has been plotted in 

figure (b) and (c). Figure (d) shows the onset of the impact ionization (at RT) for the dual FP structure and its 

comparison with an unoptimized structure. The dual FP has a longer gate-drain distance (LGD)=12 μm and a second 

passivation layer made of Al2O3 (tox3=1.5 μm). The electric field peak is observed inside diamond and the peak 

field in the oxide is ≤1x107 V/cm. The structure has a dual field plate: one on the source and one on the gate. 

 

Figure 4.33: Dual FP ON state and its comparison with the unoptimized structure. Longer LGD is the main cause 

for the reduction in the ON-state current. 
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In table 4.6 the performance of the simulated hybrid FET has been compared with the 

state-of-the-art diamond HFETs and GaN FETs. As it can be seen, the proposed device 

structure has the main drawback of increasing the Ron_spec if compared to GaN HEMTs, 

but shows an improved BV and threshold voltage (even at high temperature). 

Table 4.6. Comparison of different lateral FETs made with diamond and GaN with the designed hybrid FET 

discussed in this section. Ron_spec has been calculated or extracted in the linear region (|VDS|=1 V and high overdrive 

voltage >5 V). 

 Ron_spec x 10-3 (Ω ∙ 

mm) 

BV (V)  LGD 

(μm) 

Vth (V) 

Dual FP Hybrid HFET 

(This work) 

0.083 at T=300 K 

0.1 at T=500 K 

  >2 kV at T=300 K 

~2.35 kV at T=500 
K  

12 -3.5V V at T=300K 

-3.15 V at T=500K 

Unoptimized Hybrid 

HFET (This work) 

0.04  at T=300 K 

0.055 at  T=500 K 

>800 V at T=300 K 

~1.3 kV at T=500 K 

5 -3.45  V at T=300K 

-3.1V at T=500  K 

Diamond HFET Normally 

ON [108] 

0.4   at     T=300 K 1700 V at T=300 K 16 >20 V at T=300 K 

Diamond HFET Normally 

OFF [21] 

2.85     at     T=300 K 2000 V at T=300 K 24 Between -2.5 V and 
-4 V at T=300 K 

GaN HEMT normally 

ON[287] 

0.025    at      T=300 K 1700 V at T=300 K 10 ~ -4 V at T=300 K 

GaN HEMT normally 

OFF[288] 

0.0123    at    T=300 K 1200 V at T=300 K 15 ~1 V T=300 K 

 

 

4.4 Conclusions 

 

In this chapter, the advantages and drawbacks of employing semiconducting diamond 

for lateral FETs configurations have been widely studied and assessed by means of 

finite element simulations. The main concepts and the findings of this study could be 

also extended to vertical configuration of diamond power FETs, the fabrication of 

which is currently limited by technological issues. 
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The temperature effect on the incomplete ionization of the dopants has proven to be 

the main limiting factor in designing diamond JFETs with normally-OFF behavior.  A 

TCAD model was calibrated against existing data and an optimized structure was 

proposed which shows substantial improvement over the reported state of the art 

JFETs. 

Similar considerations can be drawn for the deep-depletion MOSFET, which has been 

studied in the second part of this chapter. The reduced carrier activation due to the 

incomplete ionization effect limits the maximum achievable current density. 

Additionally, the lack of a shallow donor level in the semi-insulating substrate 

represents a serious risk for the punch-through breakdown of normally-OFF deep 

depletion MOSFET devices.  

However, the hybrid operation of hydrogen and oxygen terminated diamond FET with 

the inclusion of a phosphorous doped layer, has demonstrated superior simulated 

performance compared to a standard deep-depletion MOSFET. Nevertheless, the 

improvements in terms of current density are paid in terms of an increase in the electric 

field in the oxide layer due to the presence of the 2DHG. These issues could be tackled 

with more advanced field plate terminations and the inclusion of a second passivation 

layer. In conclusion, the performance of the proposed FET has been assessed against 

the state of the art WBG-lateral FETs. 
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5 STATIC AND DYNAMIC 

EFFECTS OF INCOMPLETE 

IONIZATION IN DIAMOND 

AND WBG 

SEMICONDUCTORS 

 

 

5.1 Introduction  

 

The presence of deep dopant levels seriously affects the electro-thermal properties and 

the performance of wide bandgap (WBG) semiconductors-based devices. The 

outstanding research progress in this class of materials have been often hampered by 

the lack of shallow dopant impurities of one (as in GaN) or both types (as in Diamond), 

with an inherent difficulty in obtaining high carrier concentration levels. Contrary to 

Silicon, in which the shallow ionization energies of the dopant species allow to neglect 

this physical effect within a wide temperature-doping window, a more accurate 

modelling is mandatory for WBG semiconductors based electronic devices.  

In this chapter, the impact of deep dopant levels modelled by means of the incomplete 

ionization equations is accurately studied. Firstly, the physical models and the static 

effects of the partial ionization of the dopants which lead to temperature-electric field 

activated impurities are systematically investigated with the reference to a 1D p-n 

junction. Secondly, the consequences of the dynamic ionization are considered for a 

2D Superjunction (SJ) device structure, and a detailed examination of the time-

dependent charge balance and of the temperature profile distribution within the unit 
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cell is presented.3 Thirdly, the impact of the incomplete ionization on the C-V 

characteristics of MOS capacitors is reviewed.   

Lastly, the dynamic ionization effects are commented for the device’ termination 

regions and for the case of structures suffering of dynamic punch-through. 

5.2 Physics of the incomplete ionization 
 

The modelling of the incomplete ionization phenomenon can be done by conceiving 

the dopant species as acceptors and donors’ impurities coupled with the valence and 

conductance band, respectively, within the framework of the electrothermal drift-

diffusion model [152].  In case of 4H-SiC, it is worth noting that different activation 

energies may arise from different positions in the lattice crystal, i.e. hexagonal (Hex) 

or cubic (K) sites (table 5.1). The presence of deep level impurities can be treated with 

the Fermi-Dirac distribution, also known as steady-state Gibbs distribution, as 

illustrated in (17a-e). 

Table 5.1. Activation energies for different dopant atoms in WBG Semiconductors.  

Material Dopant species Activation energy 

4H-SiC B  (p-type) 

Al (p-type)  

N  (n-type) 

P   (n-type)   

0.293 eV [289, 290] 

0.265 eV[291] 

0.07 eV(Hex)   0.12 eV (K) [292]  

0.055 eV(Hex)      0.102 eV (K)  [293] 

GaN Mg (p-type) 

C    (p-type) 

0.16 eV[294] 

0.9 eV[295] 

Diamond B (p-type) 

P (n-type)           

N (n-type) 

0.37 eV[296] 

0.57 eV[297] 

1.7 eV[298] 

 

 

3 Some of the material in this chapter has been the object of the following publication: Static and 
dynamic effects of the incomplete ionization in SuperJunction devices," IEEE Transactions on 

Electron Devices, vol. 65, pp. 4469-4475, 2018. 
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Nz = J��,�°�∙6�G:b±T²b�� c <                   (17a) 

N³ = J��,�°�∙6�G:b�²b±´� c <                (17b) 

Nµ = Nµ-        if  N�- > N� ¤?i?                          (17c) 

E� = E�- − ξ�N�,/0                                                                                                (17d) 

g� = g�- + k� ⋅ exp :Iº�Q�� <                                                                           (17e) 

 

Where EFN (EFP) is the quasi-Fermi energy level for electrons (holes), gD (gA) is the 

degeneracy factor for donors (acceptors), ND (NA) is the activated number of donors 

(acceptors), ND0 (NA0) is the total number of donors (acceptors), ED(EA) is the energy 

level for donors (acceptors), ξA (ξD) is the Pearson-Bardeen coefficient of acceptors 

(donors) which takes into account of the activation energy’ reduction for high doping 

levels, kA (kD) and ΔgA (ΔgD) are constants that determine the variation of the 

degeneracy factor with the temperature, T is the absolute temperature in Kelvin and k 

the Boltzmann constant. In table 5.1, the activation energy is defined as EC-ED for 

donors and EA-EV for acceptors, where EC and EV are the minimum and the maximum 

energy level of the conductance and valance band, respectively.  

When a certain critical acceptor dopant concentration NAcritic (or NDcritic for donors) is 

reached, full activation can be considered (i.e. NA=NA0 for NA0≥ NAcritic and ND=ND0 

when ND0≥ NDcritic). In formulas (17a-b), the variation of the activation energy due to 

the Poole-Frenkel effect has been neglected whilst the Pearson and Bardeen formula 

which accounts for a reduction of the activation energy at high doping concentration 

has been considered, as shown in (17d). The equilibrium concentrations in a 

semiconductor bulk region can be evaluated by finding the Fermi energy level EF 

(EFN=EFP=EF at the equilibrium) which simultaneously satisfies the charge neutrality 

condition (n+NA=p+ND) for electrons (n) and holes (p) and the equations (17a) and 

(17b). This merging, together with the law of mass action (p-n=ni
2), leads to the 

formula (18a) and (18b), for n-type and p-type bulk regions respectively. Formula 

(18b) has been plotted in figure 5.1 for the case of boron doped diamond (see 

parameters in Table 5.2) 
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N(N�J��)INK�J��IJ��IN�RK�R
= J�°� ∙ exp :− D�ID��� <               (18a) 

G(G�J��)INK�J��IJ��IG�RK�M
= J�°� ∙ exp :− D�ID��� <                                                                             (18b) 

In (18a-b) ni is the intrinsic carrier concentration (in cm-3), NV(NC) the density of states 

in the valence (conductance) band and NA0 (ND0) in formula 18a (18b) indicates the 

amount of compensation doping which has been considered as fully activated (i.e. 

NA=NA0 for 18(a) and ND=ND0 for 18(b)). It is worth noting that the parameters 

ni,NV,NC are all assumed to be temperature dependent.  

Table 5.2. Parameters for the incomplete ionization model for acceptors (boron) and donors (phosphorous) dopants 

in CVD Diamond.  

x Ex0     (eV) Nxcritic (cm
-3

) ξx       (eV cm) gx0 kx Δgx        

(meV) 

A (Acceptors) 0.37 [296, 

299] 

4.5×1020 

[188] 

4.7×10-8 

[296] 

4 [296] 2 [300] 6 [300] 

D (Donors) 0.57 [297] 1×1020 0 [301] 2 [302] 0 0 

 

Figure 5.1: Hole activation rate (NA/NA0) in p-type Diamond as function of the boron concentration (NA0) at three 

different operating temperatures with a compensation level of ND0=0 cm-3. For NA0>4.5×1020 cm-3 the activation 

ratio becomes 100% (see equation 17(c) and table 5.2). 
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In the non-neutral regions (such as depletion regions), where the electrostatic potential 

Ψ is not negligible and in general given by the Poisson equation, the charge neutrality 

condition does not hold anymore, and the concentration can be evaluated as in (19a) 

and (19b). 

Nz = J��,�°�∙6�G:b±T²b�� c <∙6�G:»¼� c<                                        (19a)               

 NA = NA01+gA∙expSEA−EFPk T V∙exp:−qΨk T<                            (19b) 

Where EFN, EFP, EA and ED are the energy levels in the neutral region, which coincide 

with the ones calculated at zero bias and under the charge neutrality condition. With 

reference to a classic p-n junction, in the depletion region the electrostatic potential Ψ 

is positive in the p-side (negative in the n-side) with respect to the p-type (n-type) 

bulk[152]. When a reverse voltage is applied to the junction, both the potential barrier 

and the width of the depletion regions increase. For this reason, the denominator of 

(19a) and (19b) approaches the unity and ND~ND0 such as NA~NA0 in the n-side and 

p-side, respectively, so causing a full activation of the dopant species. Whereas the 

electrostatic of the incomplete ionization is mainly governed by the set of equations 

(17)-(19), the dynamic time response is highly dependent on the capture and emission 

rates, as shown in equations (20a-d)[303]. In these equations, t is the time, vth_e (vth_h) 

are the electron (hole) thermal velocity, σD (σA) is the cross section for donors 

(acceptors) species. 

ÀJ�Ài = vi!_6 ∙ σz *Na°� Nz- − :n + Na°�< Nz/                                       (20a)     

 n, = N� ∙ exp :− D�ID�� � <                                                         (20b) 

ÀJ�Ài = vi!_! ∙ σ³ *Ga°� N³- − :p + Ga°�< N³/                        (20c)     

p, = N" ∙ exp :− D�ID�� � <                                                                 (20d) 

The main idea behind the dynamic model of the incomplete ionization is that acceptor 

and donor dopants can be viewed as donor and acceptor traps respectively. In reality, 

the carriers’ dynamic shown in equations (20a-d) is a generalization of the Shockley-

Read-Hall (SRH) model in case of transient conditions[304]. This means that 

depending on their position in the bandgap, these states can capture/emit carriers 
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(hole/electrons), a process which could be also seen as ionization/deionization of the 

dopants. With reference to the finite element simulation tool adopted for this 

manuscript (Sentaurus TCAD[150]), in the case of donor traps (defined as uncharged 

when unoccupied and positive when occupied), the emission of an electron to the 

conduction band corresponds to the ionization of the dopant atom while the capture of 

an electron from the same band corresponds to the deionization process. On the other 

hand, the capture of an electron from the valence band (i.e. a hole is created in the 

valence band), corresponds to the ionization of an acceptor state (defined as uncharged 

when unoccupied and negative when occupied) whilst the emission process is related 

to the deionization of this state. However, despite the carrier equations for the dynamic 

of the incomplete ionization model are identical to the trap model included in 

Sentaurus TCAD[150], no generation-recombination process with the 

conduction/valence band or between two energy trap levels is associated to the 

acceptor/donor level in the incomplete ionization model. Therefore, the two models 

can provide the same results only when the generation-recombination processes 

associated to that specific energy level can be neglected.  It is possible to rewrite the 

equation (20c) and then define a time constant for the incomplete ionization model, as 

illustrated in (21a-b) in case of acceptor dopants. This time constant (τp) is highly 

dependent on the capture and emission rates defined in (22a-b) and for this reason, it 

depends on the activation energy, temperature, cross section, etc. The same derivations 

can be done for donor impurities. 

ÀJ�Ài = −#eG + cGp%N³ + eGN³-               (21a)        

τG = ,6M� MG                   (21b) 

If the device under test (DUT) is subjected to a dynamic process (i.e. dV/dt or dI/dt) 

with a time constant smaller than the ionization/deionization, the static equations in 

(17a-e) do not hold anymore and equations (20a-d) have to be solved.  

cG = vi!_! ∙ σ³                                                                                                             (22a)              

eG = vi!_! ∙ σ³  ∙  N"  ∙  g³I, ∙ exp :− D�ID�� � <                                              (22b) 
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The evolution of the carrier activation with time is then governed by the incomplete 

ionization time constant. Inside the space charge region (SCR), the time constant 

defined in (21b) modifies into (23) as no free carriers are present in the structure. 

τG = ,6M                                                                                                   (23) 

Under this specific condition, the time constant does not depend upon the capture rate 

and it can be easily evaluated as shown in figure 5.2 for boron doped diamond layer 

(a) and 4H-SiC(b). It is worth noting that the cross section (assumed constant in figure 

5.2 and hereafter in this chapter) can be electric field and temperature dependent.  

While the temperature dependence has been typically parametrized in the literature by 

means of the cascade capture model (σ = TI�σ- )[305], the more complex electric 

field dependence has been modelled with the Hurkx model[306], the Poole-Frenkel 

model [307] and other physical models[150].  

Nonetheless, experimental measurements have often failed to obtain a precise 

derivation of the capture cross section (and its temperature-electric field dependence) 

due to presence of multiple traps levels which are interacting with each other. 

Consequently, this extrapolation has been typically performed analytically by means 

of calibrated Monte-Carlo simulations which offer a better insight into the 

capture/emission process at the microscopic level[308]. 

 

Figure 5.2: Ionization time constant (23) vs temperature for three different values of the cross section for a diamond 

boron doped layer (a) and a 4H-SiC boron doped layer (b). In equation (22b), NV and vth_h are both assumed 

temperature dependent. 

Besides, the incomplete ionization models presented in equations (17a-e) predicts an 

abrupt increase of the activated number of donors and acceptors when the critical 
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dopant concentration is reached. Several alternative and more advanced models [309, 

310] have been presented in the literature for Silicon and related materials in order to 

take into account a smoother variation of the activation rate (figure 5.1) at the metal-

semiconductor transition.  

As an example, for increasing doping concentration close to the metal-semiconductor 

transition region, two different effects due to the enlarged coulombic interaction need 

to be considered: the widening of the acceptor (donor) energy level which tends to 

generate a continuous acceptor (donor) band and the Fermi energy levels EFP (EFN) 

which are approaching the valence (conduction) band faster than the energy levels 

ED(EA). 

 As discussed in [311], the second effect causes localized activation of acceptor 

(donor) states with a consequent reduction in the activation ratio. In diamond, the 

metal-semiconductor transition region is usually dominated by hopping conduction 

mechanisms, as already mentioned in chapter 2.  

The unusual effects of the hopping conduction mechanisms are usually modelled with 

an increase in the hopping mobility [141] rather than with a raise in the number of 

ionized species[136].  

5.3 Static effects of the incomplete ionization 

 

While the equations which allow to compute the electro-thermal equilibrium solution 

have been addressed in the previous section, we now focus on understanding the 

incomplete ionization’ effects on the space charge regions and on the carrier density 

for different doping concentration and operational temperature. 

5.3.1. Carrier profiles: the case of a p-n junction 

 

To capture the main physical effects derived by the incomplete ionization under quasi-

stationary assumptions (i.e. whenever equations 20-22 can be neglected), a simple 1D 

model of a p-n junction has been considered in this paragraph (figure 5.3(a)). 
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Figure 5.3: (a) Schematic picture of a 1D p-n junction and (b) its equivalent band diagram in reverse bias condition 

(V=VR). The acceptor level EA represents the main dopant level for the p-side while it only acts as a compensation 

level for the n-side. In the figure, IR and SCR represent the intrinsic and the space charge region, respectively.  

In figure 5.3(b) a schematic band diagram of the reverse p-n junction with an acceptor 

level (EA) graphically demonstrates the meaning of equations 5.3(a-b) which predict 

an abrupt change for the ionization rate in proximity of the space charge regions (where 

the Fermi levels change). However, it is not trivial to derive easy formulas which help 

to understand the discrepancies observed in terms of depletion region and space charge 

between the incomplete and complete ionization mechanisms (see figure 5.4(a) and 

(b)), an effect already mentioned in the JFET modelling described in chapter 4.  When 

shallow/ultra-shallow dopant impurities are employed, the depletion layer width and 

the space-charge region modulation can be easily obtained by monitoring the absence 

of the majority mobile carriers at each side of the junction. Conversely, the presence 

of deep level impurities needs a much more thorough analysis. An accurate study 

which allows to predict the band bending effects in the case of the incomplete 

ionization, has been described in[294, 312]. The first important phenomenon described 

in [312], concerns the existence of a transition region which separates the ionized 

impurities and the profile of majority free carrier in the bulk (see figure 5.4(c)). With 

the reference to a 1D p-n+ junction (figure 5.4) and by approximating the ionized 

acceptor concentration and employing a Taylor expansion to approximate the exact 

solution of the Poisson equation, it is possible to derive an expression of the potential 

Ψ in the transition region (24a). 
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Ψ ∝ exp(−x/Lz)                                                                                                       (24a)     

Lz =  � �;�o�(�G��J�)                                                                                                      (24b)    

The electrostatic potential Ψ is found to be dependent upon a “modified” Debye length 

LD (24b) which is function of the temperature(T), the equilibrium bulk concentration 

(p0) and the carrier compensation level (ND). Then, calculating the two margins of the 

transition region (see figure 5.4(c-d)) as the point of complete absence of mobile holes 

(xNA) and the point in which the hole concentration reaches half of the bulk value (xp), 

an approximated value for the transition region’ width (λp) can be derived (25). A 

similar expression holds for the case of an n-side region of a more generic p-n junction 

in which both sides are affected by the incomplete ionization [312]. 

λp = Lz ∗  ln Æ1N(J��/(G��J�)1N(�) Ç                                                                                        (25) 

 

Figure 5.4: 1D model of a semiconducting diamond p-n+ junction in which the n-side (phosphoruous doped) is 

considered to be fully activated  (ND0=1x1020 cm-3) and the p-side (boron doped) NA0=1x1015 cm-3 is modelled with 

the incomplete (a) and complete (b) ionization. Doping concentration at RT with and without the incomplete 

ionization (c) and hole density and first order derivative of the activated acceptors as function of the position in the 

p-side of the junction which identify the boundaries of λp (d). 
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The importance of (25) is soon revealed: if one defines the width of the depletion 

region at each side of the junction as the position at which the majority carrier 

concentration reaches the half of the bulk concentration [294, 312], the enlarged 

depletion region for the case of the incomplete ionization is simply the sum of (25) 

and of the depletion region’ width calculated for the complete ionization case (which 

coincides with the position xNA).This powerful (but approximated) expression allows 

for a thorough investigation of this effect for different operational temperature and 

doping concentration (figure 5.5 and 5.6). As an example, in the case of a p-n+ 

diamond junction, the variation of λp has been plotted as function of the temperature 

and doping levels (figure 5.5). Some discrepancies between TCAD simulations and 

the formula (25) can be observed for high temperature and high doping concentration. 

Such an incongruity is due to simplified assumption which have led to formula (25), 

and, especially, to the simplified expression which has been implemented for the field 

dependent ionized concentration in [294].  

Besides, the simplified assumption, which is useful to derive a closed form solution 

for equations (24-25), leads to higher discrepancies for increased activation energies, 

as in the case of phosphorous doping in a diamond p-n junction (figure 5.6). 

 

Figure 5.5: λp for 1d p-n+ junction for different temperatures and boron doping concentration (phosphorous 

concentration is fixed at 1x1020 cm-3). Comparison of TCAD simulations and the analytical formula (25). 
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Figure 5.6: λn for 1d p-n junction for different temperatures and phosphorous doping concentration (boron doping 

is fixed at 1x1015 cm-3). Comparison of TCAD simulations and the analytical formula.  

 

 

Figure 5.7:  λp for 1d p-n+ junction for different temperatures and phosphorous doping concentration (boron doping 

is fixed at 1x1015 cm-3).  
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Figure 5.8: ��, � (analytical) vs doping concentration for boron doped diamond (B-diamond) and Phosphorous 

doped diamond (P-diamond) for T=300 K and T=500 K. Compensation has been neglected. 

 

In a more general situation in which the incomplete ionization of the impurity atoms 

affects both side of the junction, some additional considerations can be done.  For 

example, considering the case of a diamond p-n junction in which the doping of the p-

type region is fixed, it is interesting to observe that the effect of an increase/reduction 

of the n-type dopant concentration does not play any significant role in modulating the 

transition region length λp (figure 5.7). This effect confirms the evidence that in the 

case of a unipolar mode diamond JFET, the doping and the activation energy of the n-

type region do not significantly modify the depletion region in the channel region in 

quasi-stationary conditions (i.e., if the junction remains of the p-n+ type).  Formula 

(25) has also been plotted for a wide range of doping concentration (figure 5.8), clearly 

pointing out that incomplete ionization has a big impact on the depletion region for 

high activation energies and in the low doping-temperature range. 

5.4 Dynamic effects of the incomplete ionization 

 

Whereas the electro-thermal equilibrium conditions do not hold anymore, equations 

20-22 correctly allow to evaluate the dynamic activation of acceptor/donor species. 

This dynamic evolution of the activated species has several important consequences 
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on the semiconductor device’ modelling[153]. These issues will be detailed illustrated 

in this section. 

5.4.1. Charge imbalance in SJ devices 

 

Figure 5.9: Cross section of 4H-SiC SJ diode structure (a) and unit cell adopted for the TCAD simulations(b). The 

dopant concentration of the p-type and n-type pillar (NA0,ND0 respectively) has been fixed at 5x1016 cm-3 for both 

pillars, whilst the concentration of the n+ and p+ regions is set at 6x1020 cm-3. The aspect ratio (L/W) of the structure 

is 10 (L=10 µm and W=Wp=Wn=1 µm). 

In structures in which the charge balance plays a key role (i.e. SJ based devices), the 

dynamic ionization may lead to charge imbalance effects which may cause a premature 

breakdown if the device is not able to restore the balance condition in time. This 

particular effect of the incomplete ionization will be discussed in this paragraph with 

reference to a 2D model of a 4H-SiC SJ diode. In this investigation, we assume a 

constant value of σ (1x10-15cm2) for boron doped 4H-SiC, a mean value according to 

several DLTS measurements reported in [313, 314].  The cross-sectional view for the 

unit cell of the 4H-SiC SJ diode is shown in figure 5.9. The critical value of the dopant 

concentration after which the total activation occurs has been fixed at 1x1022 cm-3. The 

values for the other parameters adopted for the TCAD simulations (mobility, impact 

ionization, bandgap etc.) can be found in default 4H-SiC parameter file [150].  The 

dopant species are nitrogen (N) for the n-type layers (Hex site) and boron (B) for the 

p-type layers. B has been chosen as p-type dopant instead of Al for the TCAD 

simulations, but all the considerations done for this dopant species may be applied also 

for the case of Al dopant or for other WBG semiconductors SJ devices, in which the 

incomplete ionization’ effect cannot be neglected (i.e. Diamond, GaN, βGa2O3, etc). 
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If one assumes that Wp=Wn=W and NA0=ND0 (as in figure 5.9(b)), and then solves 

(18a) and (18b) to evaluate the activated number of acceptor (NA) and donor dopants 

(ND), the theoretical imbalance ratio between the n-type pillar and the p-type pillar at 

different temperature can be easily calculated, as shown in figure 5.10(a). An 

imbalance ratio between the SJ pillars, would lead to a drastic reduction of the 

breakdown capability of the device, a well-known effect in  the classic SJ theory[315], 

as also illustrated in figure 5.10(b). However, if the SJ diode is properly designed, a 

full lateral and vertical depletion of the device’ structure occurs before the BV (which 

is due to the avalanche generation under our assumptions). In particular, if the electric 

field is high enough in all the structure (i.e. the device is all depleted), it may be able 

to activate all the dopants (i.e. NA~NA0 and ND~ND0), as already discussed in the 

paragraph 5.2. Indeed, if one balances the SJ structure assuming total ionization in 

both pillars while satisfying the charge balance condition (as in device shown in figure 

5.9(b)), the breakdown voltage is identical with and without the incomplete ionization 

model, meaning that the electric field is actually able to activate virtually all of the 

dopants during the off-state. This means that the static BV for the device depicted in 

figure 5.9(b) corresponds to the value shown in figure 5.10(b) for an imbalance ratio 

of 0%. Regarding the on-state (figure 5.11), if the conductive pillar is the one affected 

by the incomplete ionization, the current density is highly reduced, and the risk may 

be a total depletion of the p-type pillar with consequential no current flowing in the 

device. 

 

Figure 5.10: (a) (Theoretical) Imbalance ratio vs dopant concentration (NA0, which is assumed equal to ND0) for 

three different operating temperatures of the device depicted in figure 5.9(b). The imbalance ratio for the device 

structure in figure 5.9(b) has been defined as 100*abs(NA-ND)/max(NA,ND). (b)Simulated BV vs Imbalance ratio 

for the device structure shown in figure 5.9(b) with two different impact ionization models (Van Overstraeten-de 
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Man and Okuto[150, 316, 317]). Okuto model, which takes into account a positive temperature coefficient of the 

breakdown voltage, has been selected as the avalanche model for this study. 

 

Figure 5.11: Cross section of the device structure #1B adopted for the on-state simulation (a) and on-state current 

density simulations (b).  

The device adopted for the on-state simulation is shown in figure 5.11(a) where a top 

p+ layer has been introduced for structure #1B in order to emulate the flow of the 

majority carriers which occurs in a real MOSFET structure. It is also evident that the 

high field dependence model[318] which accounts for a reduction of the mobility for 

high electric field` values, also plays a key role in the on-state, emphasizing the JFET 

effect[319]. 

 5.4.1.2 The dynamic imbalance 

 

As already discussed in the theory section (5.2), the ionization/deionization process is 

not only temperature but also time dependent. So, if a reverse bias pulse is applied to 

the structure and the rise time of this pulse is around one order of magnitude lower 

than the ionization time constant, not all the dopants are activated by the high electric 

field [303, 320]. In the specific case of a the 4H-SiC SJ diode, this dynamic ionization 

effect may lead to a charge imbalance situation (such as the one predicted in figure 

5.10(a)) and reduce the real breakdown capability of the SJ. In order to investigate the 

possible consequences of the dynamic ionization, a reverse pulse of 1 kV amplitude 

and rise time of 10ns (1 kV/10 ns) has been applied to the structure (figure 5.12). The 
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rise time has been chosen taking into account the ionization time constant plotted in 

figure 5.1 in order to trigger the dynamic of the incomplete ionization.  

 

Figure 5.12: Current density vs time with and without the incomplete ionization model. The rise time and the fall 

time of the reverse pulse are fixed at 10ns (tr=tf=10 ns) and the duration of the pulse is set at 100ns (ton=100ns). 

In practice, in devices such as MOSFETs, such high dV/dt are unacceptable due to 

other effects such as system oscillations or retriggering of on-state conduction via  the 

Miller capacitance and gate resistance [321]. However, this value is comparable with 

the maximum dV/dt ruggedness reported in several datasheets of commercially 

available SiC devices[322, 323]. It is worth mentioning that the voltage applied to the 

SJ diode in this simulation is much lower than the static breakdown voltage (figure 

5.10(b)) obtained in case of perfect balance (around 1.5 kV at RT). The simulation 

results of the current density vs time clearly show that if the incomplete ionization is 

included in the simulation set, the SJ diode operates in avalanche condition for the 

whole duration of the pulse. The simulated current density is comparable with the on-

state current density (figure 5.11). When the voltage pulse is removed, the SJ slightly 

recovers to its initial balanced condition and the current is mainly capacitive. To 

confirm the avalanche operation and the loss of the charge balance in reverse 

condition, the electric field has been plotted at the end of the rise time of the pulse 

(V=1 kV and t=2.1x10- 7s) in figure 5.13.  
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As the time passes the boron dopant activation increases and therefore the imbalance 

is dynamically lowered. This is also confirmed by the current density decrease over 

the time (constant slope of the blue curve in figure 5.12). 

 

 

Figure 5.13: Electric field and electrostatic potential contour at the end of the rise time of the pulse with (a) and 

without (b) incomplete ionization. With the incomplete ionization model, a clear imbalance can be deduced from 

both the non-uniform electrostatic potential contour and the higher electric field.  

 

5.4.1.3. Temperature effects: single and multiple pulse 

 

In the previous set of simulations, the Poisson and the current` equations have been 

computed without simultaneously solving the temperature equations at runtime. This 

assumption does not allow for investigating self-heating effects in the device which is 

operating under avalanche condition for the whole duration of the reverse pulse and is 

therefore subjected to high current density and applied voltage. In order to explore the 

possible electro-thermal effects, two thermal resistances of a fixed value have been 

connected at the anode and cathode of the DUT, as schematically shown in figure 5.14. 

Sentaurus TCAD, the commercially-available software adopted for this simulations’ 

work, provides several physical models to compute the lattice temperature in a device 

structure. The easiest one is the self-heating model [324] which evaluates the overall 

temperature of a device based on the power dissipated (P=IV) at each time step. 
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However, despite this model being the fastest with the lowest less convergence issues, 

it does not allow to calculate the temperature in each mesh points. Moreover, the self-

heating model does not couple the equations for the temperature with the Poisson and 

current equations. 

  

Figure 5.14: (a)Schematic unit cell structure adopted for the TCAD electro-thermal simulations.  A fixed value of 

the thermal resistance has been chosen for the top and bottom contact (0.1 K/W). (b) current density vs time with 

and without the thermodynamic model. The specifications of the pulse are identical to figure 5.12. 

The thermodynamic model [150, 325] which allows to compute the temperature 

equations in each mesh point, has been adopted for the simulations shown in this work. 

The equations which govern this model are shown in (26a-c). 

ÈÈi (c¢T) − ∇ ∙ (κ∇T) = −∇ ∙ 2(ФN + PNT) JNÍÍÍ⃗ +  #ФG + PGT% JGÍÍÍ⃗ 5 − ,o :E� +
0�  k T< #∇ ∙ JNÍÍÍ⃗ − qRN6i,N% −  ,o :−E" + 0�  k T< #−∇ ∙ JGÍÍÍ⃗ − qRN6i,G% +  ћωG4Gi      (26a)                                    

JNÍÍÍ⃗ = −nqμN(∇ФN + PN∇T)                   (26b) 

JGÍÍÍ⃗ = −pqμG#∇ФG + PG∇T%                                                                                     (26c)               

 

Where cL is the lattice heat capacity, κ is the thermal conductivity, P-n(Pp) is the 

absolute thermoelectric power, Фn(Фp) the electron(hole) quasi-Fermi potential, Jn 

(Jp) the current density for electron (holes) computed as in (26b-c), Rnet,n(Rnet,p) the 
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electron (hole) net recombination rate, ћ is the reduced Plank constant, Gopt is the 

optical generation rate of photons of frequency ω. The current densities in equations 

(26b-c) are a generalization of the standard drift-diffusion model[152] with the 

inclusion of the temperature gradient as a driving term. The RHS of (26a) is the total 

heat and in the stationary case its second and third term disappear from the equation. 

In figure 5.14(b), the simulation results of the fast reverse pulse applied to the SJ have 

been compared with and without the thermodynamic model, whilst the lattice 

temperature has been plotted in figure 5.15. 

 

  

Figure 5.15: Temperature evolution in the structure as function of the time(a). The maximum temperature (Tmax) 

is observed at t~2.24x10-7 s close to the maximum electric field point (b). Tmax slowly converges to the minimum 

(Tmin) and the average temperature (Tavg) for t≥1 us. The device reaches RT only after 0.1 ms. 

 

The current density observed with the thermodynamic model dynamically reduces 

much faster than the one computed with the simple Poisson equation and the standard 

drift-diffusion model. Regarding the temperature, the maximum temperature is 

obtained at t~2.24x10-7 s and it is equal to 482 K. This maximum temperature is 

observed, as expected, near the electric field peak point (figure 5.15).  

While the temperature rises due to the high power density (P=IV), the carrier activation 

increases much faster as it can be deduced from equations (17-20), the ionization time 

constant reduces exponentially as it can be observed from equation (23) and figure 

5.2(b), and the avalanche generation is also reduced (avalanche is an electro-thermal 

stable phenomenon in the Okuto model). All these 3 effects combined, lead to an 

overall decrease of the transient current density as the balance is restored much faster. 
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In figure 5.16, the carrier activation is compared with and without the thermodynamic 

model. The evolution of the temperature is observed also in case of a double pulse 

applied to the structure. As it can be observed from figure 5.17, the imbalance effects 

observed during the second pulse are much smaller than the one during the first pulse. 

Indeed, during the second dV/dt, the ionization time constant is smaller than during 

the first pulse because of the increased average temperature which also improves the 

breakdown voltage and the carrier activation in the structure, as previously discussed. 

  

Figure 5.16: Activated acceptors as function of time in two different points of the device structure with and without 

the thermodynamic model. The slope of the carrier activation vs time loses its linearity with the thermodynamic 

model. 

  

Figure 5.17: (a) Transient evolution of the current density during the second pulse. The specifications of each pulse 

are the same of the single pulse (tr,tf,ton) and the dead time (tdead) between the two pulses has been chosen to be 

10 µs. (b) Temperature observed in the case of a double pulse applied to the SJ diode. The application of a second 

pulse does not play a significant role in increasing the maximum temperature of the device which has a smaller 

peak (380 K) compared to the one observed during the first transient (482 K).  
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If multiple pulses are applied to the structure the same conclusions can be drawn. To 

sum up, the main dynamic effects of the incomplete ionization are the delay of the 

device turn-off as the charge balance condition has to be restored in the device and the 

increase of the junction temperature. To tackle all these issues, the SJ diode unit cell 

could be redesigned. 

 5.4.1.4 Redesign the superjunction for improved dynamic charge balance 

 

 

Figure 5.18: Cross sections of the redesigned balanced SJ. The doping and the width of the n-type pillar have been 

fixed for all the different designs (as for the S-SJ in figure 2) in order to perform a proper comparison of the 

performance. (a) #2A has NA0=1 x1017 cm-3 and Wp=0.5 µm and (b) #2B has NA0=2.5 x1016 cm-3 and Wp=2 µm. 

 

In the SJ theory the optimum breakdown voltage condition is met in the case of perfect 

balanced condition.  This means that if the width and the doping of one of the two 

pillars are not fixed, it is possible to obtain a balanced SJ with an asymmetric device 

structure. Figure 5.18 shows two different ways to redesign the SJ balance in order to 

tackle the dynamic imbalance. The charge balance condition is thus met for both 

structures and the static breakdown voltage is identical to the Symmetric SJ (S-SJ). 

The aspect ratio for all the different structures has been kept quite similar in order to 

maintain an identical breakdown voltage [326]. Figure 5.20 shows that the maximum, 

minimum and average temperature reached during the dynamic pulse is much higher 

for structure #2A which has also a higher dynamic current density peak compared to 

the S-SJ and #2B, as illustrated in figure 5.19. This happens because for higher doping 
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concentration the imbalance ratio is much more significant, as it can be clearly 

deducted from figure 5.10(a). For this reason, the device operates in avalanche 

condition with a much higher imbalance ratio compared to the standard design and it 

heats up much faster as the avalanche current is also much higher.  

 
Figure 5.19: Current density vs time for the 3 different SJ design. The turn-off time(toff), defined as the time where 

the current density reaches the value of 102 A/cm2 (horizontal black line in the figure), of #2A is much smaller than 

the other structures(toff(#2A)=135 ns, toff(#2B)=310 ns, toff(S-SJ)=195 ns). However, the dynamic current density 

peak obtained with #2A is much higher. 
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Figure 5.20: Temperature vs time for the 3 different SJ design. The maximum temperature is observed for #2A and 

it is ~550 K. The average temperatures for #2A, #2B and S-SJ are 375 K,325 K, 360 K, respectively. These 

discrepancies arise from the different self-heating effect which is related to the current density behavior shown in 

fig 5.19. 

 

On the other hand, the enhanced self-heating is able to restore balance condition much 

faster than in the S-SJ and #2B. Therefore, if the instantaneous junction temperature 

and current density increment can be considered as non-destructive mechanisms, it is 

possible to state that #2A reacts better to the dynamic imbalance with a reduction of 

the turn-off time defined as in figure 5.19. A fair performance comparison needs to 

include also the on-state current density.  

The cross-sectional structures adopted for the on-state simulations are similar to figure 

5.18, but an n+ top layer (of 1 µm) has been inserted. The total current of structure 

#2B will be much higher than the others as the depletion region mainly extends in the 

non-conductive pillar.  

However, the comparison needs to be performed by inspecting the Ron_spec. The Ron_spec 

has been calculated in the linear region at room temperature (RT), as illustrated in the 

figure 5.21(a). #2A has the lowest Ron_spec (0.34 mΩ·cm2) compared to #1 (0.44 

mΩ·cm2) and #2B (0.62 mΩ·cm2) at RT. In addition, also if Ron_spec is calculated at 

the average junction temperature reached by the device under transient condition 

(figure 5.13), #2A outperforms the other device structures (figure 5.21(a)).   

Distinct considerations need be done in case the incomplete ionization cannot be 

neglected in both pillars (as in diamond devices). In that specific circumstance, a more 

complex dynamic recovery takes place and the ionization time constants for both 

dopant species contribute to the rebalancing and the temperature distribution in the 

device.  
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Figure 5.21: RT on-state current density for the 3 SJ design (a) and specific on-state resistance vs Temperature (b). 

5.4.2. Kink effect in MOS capacitors  

 

The advent of wide bandgap semiconductors has led to the discovery of unique power 

device structures such as HEMT for lateral GaN devices and junction barrier Schottky 

field effect transistors (JBSFETs) for SiC. At the same time, previous Si-based device 

architectures have been fabricated with this new class of materials (i.e. 

inversion/depletion MOSFETs, IGBTs,etc.) showing exceptional performance when 

compared with the previous class of Si-based devices. In both cases, a good percentage 

of these structures relies on a fundamental physical component which role is crucial in 

determining the electro-thermal performance of the final device: the metal-oxide-

semiconductor (MOS) stack. Among the properties that more influence the electrical 

behaviour of WBG MOS stacks, the incomplete ionization is undoubtedly one of the 

most interesting one. Only few studies have been dedicated to the analysis of the 

incomplete ionization in WBG MOS-based devices. Arnold [327], extended the well-

known charge sheet model, based on the analytical solution of the Poisson equation, 

to SiC devices. The main findings of that study revealed that the relationship between 

the inversion charge concentration and the Fermi level potential in the case of deep 

level impurities had the main effect of a threshold voltage (Vth) shift which was more 

pronounced for low temperatures and higher activation energies. On another hand, 

Raynaud et al. [328] focused their attention on the effects of deep level impurities on 

the C-V curve of SiO2/SiC based MOS capacitors which were responsible of an 

abnormal “kink” effect near the flatband voltage (VFB). Nevertheless, the non-ideal 
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semiconductor-insulator interface with the presence of multiple energy trap levels has 

usually screened the effects of the incomplete ionization on the Vth and especially on 

the Kink effect in the CV curve. In this section, a systematic study of the kink effects 

due to the incomplete ionization on the C-V measurements/simulations with reference 

to diamond MOS capacitors is carried out. The frequency-temperature dependence of 

this effect is accurately analysed by means of TCAD simulations providing new 

insights in the nature, effects and usefulness of this phenomenon.  

 

 

5.4.2.1.  The MOS capacitor physics and CV modelling 

 

 

Figure 5.22: (a) Schematic of a p-type diamond MOS capacitor with the driving schematic for the small signal ac 

analysis and (b) typical regimes observed in the CV curves for Si and diamond p-type MOS capacitor. Even a low 

frequency ac signal is not able to generate an inversion layer in diamond (due to its wide bandgap). 

Experimental CV measurements for MOS structures are typically obtained by 

applying a DC signal overlapped with an AC signal (typically a sinusoid) between the 

gate-bulk contacts (figure 5.22(a)). The resulting signal applied to the structure, VG(t)= 

VGdc+ vg(t), is therefore able to bias the device at a specific voltage (with the DC 

component) and evaluate the response of the charge (in the semiconductor and in the 

oxide) by means of the AC signal. The amplitude and the frequency of the AC signal 

are crucial parameter for the CV analysis: on one hand, the amplitude of the signal 

needs to be “small” with the respect to the DC bias and voltage step; on another hand, 

the chosen ac frequency of the signal has a tremendous impact on the traps’ response 

and on the ability of the carriers in the semiconductor to follow the applied ac signal. 

In an ideal case (no interface/oxide traps, fixed charge, etc.) the total impedance is the 
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series of the oxide capacitance (Cox) and the semiconductor resistance (Rs) and 

capacitance (Cs), which is function of the surface potential (Ψs) and, hence, of the 

specific operation regime (accumulation, depletion, inversion, deep depletion). An 

extensive analysis of the MOS stack can be found in [152, 220] and it is beyond the 

purpose of this work. It is however worth mentioning that in the case of WBG 

semiconductors, due to the low intrinsic carrier concentration and the high minority 

carrier generation time from a mid-gap state at RT, the inversion regime is not visible 

in MOS capacitors (without an oxide overlapping the source and drain regions and in 

the absence of UV light excitation) even when a low ac signal frequency is employed 

(figure 5.22(b)). Additionally, the presence of interface states and of oxide tunnelling 

leakage current radically modifies the equivalent circuit and influences the impedance 

measurement [167], as schematically illustrated in the figure 5.23. Consequently, the 

interpretation of the CV measurements for MOS stacks necessarily passes through the 

complete understanding of the gate leakage current and in general the dynamic and the 

nature of traps at the interface. 

 

Figure 5.23: (a) Equivalent small signal circuit of a MOS capacitor depicted in figure without interface states and 

leakage current; (b) equivalent circuit in the case of interface states modelled with a complex impedance 

Zit=Rit+1/jωCit; (c) equivalent circuit in the case of a gate oxide leakage mechanisms similar to the one described 

in [167] where the injected carriers from the gate metal then interact with the valence band ; (d) schematic 

representation of the measured impedance. As illustrated in (b) and (c), the measured Cp could be much more 

complex that the simple series of Cox and Csc (a). 

TCAD small signal analysis simulations adopt a different approach if compared with 

the experimental setup. The assumption at the basis of the ac analysis in Sentaurus 

TCAD is similar to the case of Spice-like simulators. In general, the input voltage 

signal amplitude is assumed to be so small that its application results in the absence of 
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harmonic content at the output. Consequently, after the DC operating point solution is 

computed, the nonlinear circuit equations are expanded in a Taylor series about the 

DC operating point and only the first order terms are kept. 

In detail, when an ac analysis is performed, the simulator computes the admittance 

matrix (Y-matrix) which describes how the currents (δi) in a circuit would react if the 

applied voltages at different contact nodes of the circuit receive a small perturbation 

δv (27).  

δi= Y·δv= (A+j·ω·C) · δv                                                                                             (27) 

The Y-matrix is composed of two parts, the real part (A) which is called the 

conductance matrix and the imaginary part (C) called the capacitance matrix. The 

matrix Y has been shown in (28a-b) for the case of 2 and 4 terminals, respectively. In 

other words, A measures the in-phase response of the current with the respect to the 

voltage whilst C measures the out of phase response. 

Ñi(g)i(d)i(s)i(b)Õ=Ö⎣⎢⎢
⎡a(g, g)a(d, g)a(s, g)a(b, g)

  a(g, d)  a(d, d)a(s, d)a(b, d)
a(g, s)a(d, s)a(s, s)a(b, s)

a(g, b)a(d, b)a(s, b)  a(b, b)  ⎦⎥⎥
⎤ +

 jω ⎣⎢⎢
⎡c(g, g)c(d, g)c(s, g)c(b, g)

   c(g, d)c(d, d)c(s, d)c(b, d)
   c(g, s)  c(d, s)c(s, s)c(b, s)

c(g, b)c(d, b)c(s, b)c(b, b) ⎦⎥⎥
⎤ Þ Ñv(g)v(d)v(s)v(b)Õ                                                                    (28a) 

ßi(g)i(b)à=Sß a(g, g) a(g, b)a(b, g) a(b, b)à +  jω ß c(g, g) c(g, b)c(b, g) c(b, b) à V ßv(g)v(b)à                 (28b) 

One of the intrinsic properties of the Y-matrix is its internal symmetry (i.e. xjy=xyj). In 

the case of a 2 terminals circuit such as the one under investigation, the diagonal terms 

are also equal and opposite to the antidiagonal terms. 

5.4.2.2.  TCAD analysis of the Kink effect  

 

A simple 1D TCAD model of the MOS stack has been defined in order to capture the 

peculiar effects of the incomplete ionization on the CV characteristics of MOS-based 

devices. A metal workfunction of 4.2 eV (corresponding to the theoretical value of Al) 

has been used for the gate metal contact while the oxide region consists of 40nm (tox) 

of Al2O3. Interface states, fixed charges and other non-idealities which may affect the 
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simulations and the measurements have been neglected at this stage. Under these 

simplified assumptions, the gate voltage (VG) is related to the surface potential (Ψs) 

by the expression VG = VFB+ Ψs -Qsc/Cox, where Cox= A* εox/tox is the oxide 

capacitance and Qsc is the semiconductor charge. If one assumes a p-type diamond 

boron doped layer (modelled with the incomplete ionization equations shown in 5.2. 

and with a temperature-electric field independent cross section σ=1x10-12 cm2) of 

thickness=0.5 µm and doping=1x1017 cm-3, and then performs an ac small signal 

analysis at f=1 kHz, a clear kink effect due to the presence of deep dopant levels is 

observable close to the VFB (figure 5.24(a)).  Such an effect is highly dependent on 

many parameters, such as the dopant concentration, the operational temperature, etc. 

As illustrated in 5.24(b) higher dopant concentration broaden the capacitance peak due 

to the incomplete ionization. This is a clear consequence of the results depicted in 

figure 5.1, which shows a reduced activation ratio for increased dopant concentration 

(at a fixed operational temperature). 

 

Figure 5.24: (a) RT CV characteristics showing the comparison between full and partial ionization (b)effects of 

different dopant concentration on the kink effects at RT. Cross section has been fixed at σ=1x10-12 cm2. 

The occurrence of the kink effect can be understood by looking at the equation (19a) 

and (19b) (for donor and acceptor impurities, respectively). When the device goes from 

accumulation to depletion the electric field at the interface abruptly changes and so 

does the total level of ionized impurities. In detail, for VG slightly smaller than the VFB 

the electric field at the interface is significantly reduced if compared to the 

accumulation regime and the CV behaves like the CV corresponding to a MOS stack 

with a semiconductor doping close to the one calculated at the thermodynamic 

equilibrium condition.  
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After the VFB the band banding changes and so does the electric field which becomes 

negative and allows full ionization of acceptor at the interface. Therefore, the kink 

effect connects two different MOS regions, namely the accumulation and the depletion 

regime in which the change in the band bending allows, within a small voltage range, 

a significant variation in the total level of ionized impurities. This can also be clearly 

understood from figure 5.25(b) in which the variation of the electric field around the 

kink (refer to the 1D model in figure 5.24(a)) has been plotted. As it can be observed 

a smaller electric field at VG= -2.75 V due to the proximity to the VFB is responsible 

for a reduced acceptor activation. 

 

Figure 5.25: (a) Schematic cross section of the simulated p-type diamond MOS stack and (b) RT electric field 

distribution in the device for different gate voltages. 

Temperature is another aspect which must be accurately discussed. A rise in the 

device’ temperature has as a main consequence the increase of the activation ratio 

calculated at the thermodynamic equilibrium, which hence reduces the kink in the CV. 

On the other hand, the enhanced carrier freeze-out at lower temperature shows an 

amplified kink effect which eventually vanishes for very low temperatures (~100 K). 

The low temperature behaviour illustrated in figure 5.26 is however highly dependent 

on the dynamic of the incomplete ionization.  
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Figure 5.26: Temperature effects on the CV characteristics for a MOS capacitor with a doping level of 5x1018 cm-

3 at f=1 kHz.  

With the exponentially reduced time constants at cryogenic device temperatures (see 

figure 5.27), if the reciprocal of the ac small signal frequency is smaller than the 

ionization/deionization time constant (equation 23), the carrier dynamic is not able to 

instantaneously follow the ac signal modulation and the total acceptor concentration 

remains close the thermodynamic value (calculated at that specific temperature).  

Such a frequency dependence has been usually neglected in the previous analysis of 

the kink effect in Si and Si based MOS capacitors[328].  

In figure 5.27, the impact of the cross section on the kink effect is clearly demonstrated. 

Smaller cross sections increase the time constant of the dopant species which will 

eventually not follow the ac signal and fails to modulate the semiconductor capacitance 

in the depletion/deep depletion regime. In real devices, interface traps and fixed 

charges, which usually lead to an equivalent small signal circuits similar to the one 

depicted in figure 5.23(c), have often screened this peculiar effect of the incomplete 

ionization. Additionally, the presence of a gate leakage path complicates the overall 

impedance analysis and can sometimes lead to measured capacitance which do not 

reflect the real value of the semiconductor capacitance [167]. 
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Figure 5.27: CV characteristics for a MOS capacitor for different frequencies and cross sections. 

 

Figure 5.28: CV characteristics for a n-type MOS capacitor at RT for different activation energies. 

In low temperature-frequency CV of indium-based Si MOS capacitor [329], the kink 

effect has sometimes been recognised and correctly attributed to the presence of deep 

dopant impurities rather than interface traps. In SiC and other WBG, the poor interface 

quality with interface state density (Dit) > 1x1013 cm-2 has usually resulted in CV peaks 

which cannot be attributed to the incomplete ionization.  

Consequently, a clear distinction between interface (deep) traps and incomplete 

ionization’ effects on the kink in the CV curves is therefore difficult to obtain due to 
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the complexity and non-uniformity of the traps distribution and their temperature-field 

dependent cross section. Improvements in the interface quality may allow to correctly 

recognize the incomplete ionization kink effect which will be more evident for low 

frequency, low temperature, high activation energies (figure 5.28) and high doping 

concentration (figure 5.24(b)) with such domain limited by the specific time constant 

of the deep dopant species. In particular, when the quality of the semiconductor/oxide 

interface will be improved, the kink effect could be adopted as a powerful instrument 

to measure several important features of WBG MOS-based devices, such as the 

effective equilibrium hole/electron concentration, the activation energy of the dopant 

species and the time constant of the deep impurities[330].  

 

 

5.4.3. Device terminations and dynamic punch through 

 

Other physical mechanisms due to the dynamic activation of the deep level dopants 

can have serious consequences on the transient behaviour of semiconductor devices. 

For example, if a reverse voltage pulse is applied to an asymmetrical p-n junction in 

which the incomplete ionization effect takes place in the lowly doped region, and the 

rise time of the pulse is smaller or comparable with the ionization time constant, the 

width of the depletion layer becomes function of the time. 

 

Figure 5.29: (a) Schematic cross section of p-np stack in which dynamic Punch-through mechanisms could be 

triggered by the dynamic of the incomplete ionization which affects the n-type layer.  (b) Fast dV/dt effects of 

termination region in which the depletion region boundary’ extension is limited the fast voltage pulse. 
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In detail, as already discussed in [320], the maximum depletion region width (Wd) is 

observed at the end of the rise time of the reverse pulse since the number of activated 

dopants is at its smallest dynamic value (Wd ∝ √â, where N is the doping of the lowly 

doped region) and it recovers to the static (and minimum) value with a time constant 

which is proportional to the ionization time constant , like the one defined in (23) for 

acceptors. This dynamic extension of the depletion region could generate a “dynamic 

Punch-Through (PT)” effect in p-n-p (figure 5.29(a)) regions which are present in 

devices like MOSFETs, BJTs,etc.  

In Thyristors, this dynamic PT could trigger latch up phenomenon which can be 

prevented with a redesign of the device structure (i.e. anode shorts, etc.) [313, 320, 

331]. Lades et al.[320] have demonstrated that prolonged switching from ON to OFF 

state can be generated in cryogenic operation of 4H-SiC double implanted MOSFET 

in which boron doping is used for a deep implanted base profiles. The slight increase 

in the device’ temperature and the occurrence of a highly localized current flow can 

however be compensated with a double base implant. While the threshold voltage is 

regulated by the channel implant, the increase of the base-width and doping through 

the second implant (body implant) counteract the dynamic punch-through effect while, 

at the same time, avoids the triggering of the bipolar BJT. 

On the other hand, Van Brunt et al.[332] have demonstrated the detrimental effects of 

fast dV/dt ramps on the catastrophic failure of 4H-SiC SBDs. The destruction point 

was identified in the edge termination area in contrast with the typical active area 

breakdown occurring in avalanche tests. In this scenario, a limited expansion rate of 

the depletion region due to the dynamics of Al could be responsible for the premature 

destruction of the device.  

These effects will be even more detrimental in case of junction termination of diamond 

devices made with n-type dopants (figure 5.29(b)), so suggesting that floating metal 

rings could be more resistant to fast dV/dt and avoid the issues related to the time 

dependent depletion region expansion. In addition, the optimization of Junction 

termination extension (JTE), which is highly sensitive to the implanted dose, could be 

radically transformed by the additional considerations deriving from the application of 

fast dV/dt. In this context, TCAD simulations could represent a useful tool for the 

prediction of the electro-thermal behaviour of the devices affected by the dynamic of 

deep impurity levels.  
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However, only a correct choice of the thermal model and the inclusion of the energy-

temperature dependent carrier relaxation time for that specific material would allow 

for a correct estimation of the device’ characteristics under avalanche conditions. 

5.5 Conclusions 

 

The physics and the main consequences of deep dopant levels have been addressed in 

this chapter. Extended depletion region widths due to the incomplete ionization have 

been studied for the case of a simple 1D p-n junction and a theoretical model has been 

assessed and compared with TCAD simulations. 

The charge imbalance effects of the partial ionization have been analysed with 

reference to the design of 4H-SiC SJ diode. The static breakdown voltage is not 

influenced by the incomplete ionization effect as the high reverse electric field is able 

to activate all the dopants in the structure. However, when a very fast reverse pulse is 

applied to the SJ structure the dynamic ionization leads to an imbalance charge 

condition which has the effect of increasing the total current density and the local 

device temperature (up to 500K in the example considered). It has been shown that it 

is possible to redesign the SJ diode, while maintaining the ideal charge balance, in 

order to simultaneously improve the specific on-state resistance and the dynamic 

resistance to the charge imbalance due to incomplete ionization. 

A peculiar kink effect due to the incomplete ionization model in CV curves of MOS 

capacitors has been presented and its effects distinguished by the kinks generated by 

interface traps and levels. Finally, the detrimental effects of dynamic punch-through 

and fast dV/dt applied to device termination have been described and reviewed.  

Due to their reliability’ issues, it is therefore possible to conclude that the transient 

effects of the incomplete ionization should be avoided whenever possible. There may 

however exist situations in which due to the lack of other dopant atoms (as in diamond) 

or due to the lack of better dopant species to perform deep implanted profiles (as in 

SiC), the use of deep dopants cannot be avoided.  

In such cases, the incomplete ionization effects cannot be neglected, and they should 

be both considered and in the finite element modelling and in the analysis of the 

experimental results. 
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6 FIGURES OF MERIT, 
COMPARISON AND 

BENCHMARK OF DIAMOND 

DEVICES 

 

 

 

6.1 Introduction 

 

Benchmarking diamond devices against other WBG semiconductor-based devices is 

of the utmost importance to identify the power-frequency-temperature domain in 

which diamond is capable to outperform the existing class of semiconductor power 

devices. In this chapter, limits and usefulness of figures of merits (FOMs) applied to 

diamond and other semiconductors are discussed in detail. Key parameters such as the 

breakdown voltage, the switching loss and the device surface have been defined and a 

more global approach for comparing power devices has been introduced. Based on this 

approach, a comparison between vertical diamond FETs, 4H-SiC and GaN FETs for a 

breakdown voltage of 6.5 kV is provided. Successively, a thorough theoretical 

comparison between optimized diamond Schottky barrier diodes and bipolar diodes is 

carried out. This analysis points out the effects of different operating temperature and 

switching frequency on the performance of different diamond diodes and allows to 

identify the optimal device structure depending on the specific application.  In the 

second part of the chapter, the system level benefits of diamond FETs and diodes are 
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accurately analysed. The chapter concludes with the future perspective of diamond and 

a roadmap with the future challenges for this material.4 

6.2 Limits of existing figures of merits and their application 
to diamond power devices  

 

Power semiconductor devices are assessed against each other by conduction, switching 

and OFF state losses. A perfect figure of merit would take each contribution into 

account, with specific interactions at the system level (i.e. thermal, driving, 

electromagnetic compatibility, reliability, sourcing and cost). Unfortunately, it is 

almost impossible to compare different devices based on different technologies and/or 

materials based on a simple figure of merit. As an example, switching losses are not 

only dependent on the power device itself but also on the driving circuit, the topology 

employed (e.g. based on soft or hard switching) and parasitic associated with 

packaging. The existing figures of merit have failed to predict this system-level impact 

from the physical parameters of the power devices [9], mainly due to the complex 

requirements and peculiarities of each application whereas figures of merit target a 

global comparison. In this context, paragraph 6.2.4. will introduce a system-level 

benchmark for diamond power devices. 

One of the most used figure of merit in power semiconductor devices is Baliga’s Figure 

of Merit (BFOM) defined in [3] and equation (29). This BFOM has been derived from 

the specific ON state resistance (equation 30), which can be expressed by equation 29 

in the case of several assumptions. Consequently, equation 31 introduces the BFOM 

in the typical trade-off between the specific ON state resistance Ron_spec and the 

breakdown voltage BV. However, the assumptions required to directly relate the 

BFOM with the Ron_spec cannot apply in the context of diamond power devices; in 

diamond bulk devices, the incomplete ionization of dopants, and in 2DHG devices, the 

sheet carrier concentration and specific 2DHG mobility must be considered. 

 

 

4 The material in this chapter has been the object of the following publication: Donato, N., Rouger, N., 

Pernot, J., Longobardi, G., & Udrea, F. (2019). Diamond power devices: State of the art, modelling and 

figures of merit. Journal of Physics D: Applied Physics, (accepted on 17th October 2019). 
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Consequently, equation (31) is no longer valid and the specific Ron_spec is no longer 

derived by the BFOM. As a summary of this discussion, the list of assumptions used 

to define the BFOM is as follows: 

1. Unipolar type devices (i.e., no minority carrier injection mechanisms); 

2. Complete ionization of dopants (i.e., ND=ND0 or NA=NA0); 

3. Non-Punch-through (NPT) design of the drift region; 

4. 1D BV due to a constant critical electric field (Ec); 

5. Fixed value of mobility and critical electric field; 

6. Uniform doping distribution in the drift region; 

7. RON is only due to the resistance of the drift region (e.g., the series and contact 

resistances are neglected); 

8. 1D current spreading in ON state (e.g., no cell effect or no 2D/3D current spreading); 

9. Bulk drift region (i.e., no superjunction or floating islands). 

In equations (29-31), µn is the mobility for electrons (µp for holes), ε is the dielectric 

permittivity of the semiconductor, Ec is the critical electric field, ρ is the resistivity, S 

is the active area, L is the length of the drift region, n(p) the activated electrons(holes) 

concentration and q is the electron charge.  

BFOM = µN,G ∙ ε ∙ Ec0                  (29) 

RçJ_3G6  = RçJS = ρ ∙ L = ¢o∙(µR,M∙N,G)                 (30) 

R4N_3G6  = ê∙n"�µR,M∙�∙D �                  (31) 

Consequently, the specific ON state resistance (Ron_spec) is used as a figure of merit to 

compare different devices or materials, for a given range of breakdown voltages. The 

ON state resistance is typically measured by pulsed I-V or calculated based on 

analytical formula or numerical analyses. The device area is extracted from the active 

area or device area, including or not the termination region. The breakdown voltage is 

measured or calculated based on specific hypotheses. These points and the related 

assumptions will be briefly described in the following subsections. There are mainly 

four issues with the direct comparison of the Ron_spec value among different devices or 
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materials at the same breakdown voltage and the use of Ron_spec as a figure of merit: the 

lack of direct switching loss estimation, the different assumptions related to Ron, S 

and BV between devices or materials, the lack of link with the thermal conductivity 

and the scalability of Ron with the surface. The junction temperature at which the 

comparison is carried out must also be discussed. Other related figures of merit have 

been used, such as A or mA per gate width or A/cm² as (i.e. the maximum current or 

current density values), which are similar to Ron_spec and the forward bias must be 

given. In the case of MOS devices, a fair comparison must also include the 

transconductance, the threshold voltage and gate voltage range. In order to relate the 

figure of merit to the switching losses, other figures of merit such as Ron∙Qg, Ron∙Qgd 

or Ron∙Qoss have been introduced [4, 333, 334]. These figures of merit are clearly 

more complex than the Ron_spec FOM alone, albeit harder to predict for diamond power 

devices. Indeed, actual diamond power devices still have small active areas which 

makes difficult a precise measurement of the capacitors related to the active area. 

These figures of merits are best suited for unipolar devices but cannot be used in the 

context of bipolar devices due to recovery charges and their impact on switching 

losses.  Specific studies are required on diamond power devices optimization and 

measurements, to further demonstrate low Qg (gate charge), Qgd (gate-drain charge) 

and Qoss (output charge), whereas most of the recent achievements concentrated on 

reductions in Ron_spec. Accordingly, the control of the Miller ratio between Qgd and 

Qgs is also an important criterion to consider. Immunity to dV/dt and dI/dt and the 

maximum turn ON and turn OFF switching speeds are equally relevant. Besides these 

parameters, the gate leakage must also be considered. 

6.2.1. Breakdown voltage 

 

To compare and benchmark different devices and materials, the breakdown voltage 

must be similar. Unfortunately, the breakdown voltage might not be limited by 

avalanche as in the case of Silicon or Silicon-Carbide devices but by the maximum 

level of leakage current (mA ou µA per cm², nA per gate width). This is especially the 

case if the device is used in harsh environments at elevated ambient temperatures [93, 

181]. The main issues with high leakage currents are related to the losses in the OFF 

state and possible thermal runaway. A fair limitation for the leakage current is that the 
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OFF state losses at high temperature represent only a few percent of the total 

conduction and switching losses. Typically, the OFF state leakage current at the 

highest junction temperature should not exceed 10 µA/cm² to 1 mA/cm² for breakdown 

voltage above 1 kV. For the theoretical analysis of diamond power devices, this limit 

of leakage current must be considered, at the same time as the critical electric field 

computation in OFF state. Simplified figures of merit consider a maximum peak of the 

electric field.  

This is not ideal when comparing power devices at different breakdown voltages. 

Indeed, the maximum critical electric field is a function of the drift region doping level, 

as presented in figure 6.1, when considering the avalanche breakdown for an 

asymmetric 1D p-n junction. As mentioned by Chicot et al., the 3D electric field could 

reduce the peak electric field in the drift region, and more assumptions are required to 

take the junction termination efficiency into account  [269]. In the case of Silicon and 

Silicon Carbide, such a junction termination efficiency can be typically above 90% for 

vertical devices [335, 336], whereas optimizations for diamond are still required. As a 

summary, precautions must be observed for the breakdown voltage definition both in 

experiments and in theory with Diamond power devices. 

 

Figure 6.1: Calculated 1D critical electric field (Ec) as the function of breakdown voltage, for Si, SiC and Diamond 

in NPT condition. The avalanche breakdown with state of the art impact ionization coefficients is assumed [337] 

 



Chapter 6: Figures of merit, Comparison and benchmark of diamond devices 

141 

 

6.2.2. Current rating and device surface 

 

The surface used for the current per area or the specific ON state resistance figures of 

merit is debatable. In the case of pseudo vertical devices such as diamond Schottky 

diodes, the surface of the Schottky contact is considered most of the time, albeit a 

larger surface is required to have the actual device. In the best case, the termination 

and contact areas are mentioned, additionally to the active area which allows a proper 

scaling of the performance and defining appropriate figures of merit.  Similarly to other 

power devices, the current rating of diamond power devices is typically governed by 

thermal considerations. A maximum power density must be fixed to calculate the ON 

state current and current density. This power loss density is typically fixed between 50 

and 300 W/cm², taking into account conduction losses with or without switching 

losses. However, in the case of diamond devices, the diamond substrate can be used as 

an efficient thermal spreader. In this context, the limit of 300 W/cm² can be increased 

and must be further investigated in a close relationship with the dicing capability of 

diamond devices. Once the operating point of the power device is fixed by this thermal 

limit, the ON state current and ON state voltage drop could be determined. In the case 

of FET devices, the relationship between the Ron and the ON state current is straight 

forward, and the Ron can be scaled easily with the active area (while neglecting 

additional contact pad areas and junction termination area).  However, for the devices 

with a barrier or subject to resistivity modulation, an equivalent “unipolar Ron” 

(defined as the voltage/current ratio at a specific operating point, i.e. Ron=Von/I(Von)) 

must be extracted, which does not scale linearly with the active area [9]. As an 

example, figure 6.3 shows the ON state current density of diamond vertical power 

devices at the limit of 500 W/cm² for different breakdown voltages and junction 

temperatures. It is assumed that only the drift region accounts for the total ON state 

resistance. The models used for figure 6.2 and 6.3 (defined in chapter 2 and 5) are 

incomplete ionization, doping and temperature dependent mobility, avalanche 

breakdown under NPT condition, only conduction loss (i.e. duty cycle equal to 1 and 

no switching losses). These values are the highest possible with diamond, based on the 

1D breakdown voltage calculation described hereinbefore. The conclusion is that a 

unipolar diamond device operating at a high temperature of 570 K and with a 

breakdown voltage capability of 3.3 kV can have a current density ~400 A/cm². 
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Consequently, a 3 mm x 3 mm 3.3 kV diamond vertical device can have a current 

rating of 20+ A at 57 0K, which is unprecedented with other materials.  

 

Figure 6.2: Optimal temperature vs BV in NPT conditions for p-type diamond drift region. The optimization 

procedure calculates the critical electric field (Ec) in NPT conditions and then determine the thickness and doping 

level of the drift region. Successively, the optimal temperature at which the Ron_spec is minimum, is extracted. The 

incomplete ionization includes additional temperature dependent parameters such as degeneracy factor, density of 

states and bandgap. Leakage current mechanisms and dielectric degradation are not considered in this procedure. 

 

Figure 6.3: ON state current density (JF) for vertical unipolar p-type diamond devices, as a function of breakdown 

voltage and for a maximum conduction loss density (P= JF
 2 ∙Ron_spec) of 500 W/cm². Red squares are at room 

temperature and blue circles at the optimal temperature for each breakdown voltage (see figure 6.2), where the 

incomplete ionization of Boron and the hole mobility minimize the ON state resistance. 
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At 10kV, the maximum current density is ~90 A/cm² at the optimal temperature (~500 

K). This means that a 9 mm² diamond device could have 8+ A current rating. The 

advantages of diamond power devices are clearly highlighted in the context of high 

power, high temperature and higher switching speeds. 

6.2.3. Switching and total losses 

 

For a fair comparison between different power devices, it is also important to consider 

the switching losses. While estimating the conduction loss is straightforward with 

appropriate conduction models, the prediction of switching losses highly depends on 

multiple parameters such as the parasitic capacitors, the gate driver associated to the 

power transistors parameters (e.g. transconductance, min and max gate voltage) and 

circuit elements (e.g. parasitic inductances and capacitances). A fair comparison for 

switching losses must include similar electromagnetic compatibility 

(EMC)/electromagnetic interference (EMI) constraints, as large gate currents in 

MOSFET will lead to reduced switching losses but very high dV/dt and dI/dt values. 

Such high transient values can have negative impacts on motors, cables, common 

mode filters [338], and can cause false switching through the Miller capacitor [339].  

Consequently, the high frequency harmonics must be either filtered or damped down 

thanks to the gate driver. The optimization of the loss versus EMI trade-off is therefore 

dependent on the application, with constraints on volume, mass, efficiency, packaging 

technologies and EMC standards. Moreover, there is no report yet on the power 

switching loss measurements using diamond FETs, mainly due to the limited 

availability and small size of the previously reported diamond FETs. Such a complete 

comparison between materials will be specific to each application and it is almost 

impossible to provide a fair and realistic case study. There are however several 

characterizations of diamond diodes in power commutation cells [340-342], mainly on 

SBD diamond diodes showing small recovery-like currents due to the diode intrinsic 

transition capacitor. The main difficulties in the experiments are to associate small size 

diamond diodes with power FETs having similar voltage capability and parasitic 

capacitors. The small signal and large signal characterization of diamond FETs are 

then highly desired to be able to benchmark accurately the performances of diamond 

power devices.  
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The expected realistic benefits for power electronics with unipolar diamond or ultra-

wide band gap devices are to be able to match the conduction loss level of Silicon 

bipolar devices. Given the unipolar conduction and the absence of excess charge in the 

ON-state, the switching losses could be dramatically reduced. As it will be presented 

in paragraph 6.3, the benefits of bipolar diamond devices with an efficient resistivity 

modulation will be limited to ultra-high voltage and low switching frequency, due to 

the large built-in potential in diamond and short carrier lifetimes. Consequently, 

unipolar diamond devices are expected to have the highest impact at system level in 

the short- to mid-term. Despite the issues related to switching loss predictions with 

diamond power devices discussed hereinbefore, one can assume several hypotheses to 

predict the switching performances of diamond unipolar (and vertical) power FETs; 

the turn OFF losses with diamond FETs will be neglected as the channel current is 

turned OFF very quickly thanks to the smaller input capacitor (smaller active area) and 

the high transconductance, the turn ON losses are not limited by EMI issues and the 

drift region is considered in NPT configuration.  Additionally, any other parasitic 

capacitance, contact resistance and device region (except the drift region) are 

neglected. As a result, the lowest possible switching losses in a power FET are 

governed by the stored electric charge in the output capacitor (Coss) during the 

switching transition, where the Coss as a function of VDS can be expressed by eq (32) 

and (33). In equation (32), Cç��(")is the output capacitor as a function of the bias, 

which is typically the transition capacitor C�(")exhibiting a square root dependence 

with bias when the drift region is in NPT condition. At the breakdown voltage, the 

transition capacitor C�(n") is calculated by equation (33), with ϵ- × ϵ¤ the permittivity 

of diamond, S the active area, d the thickness of the drift region.  Whereas two FETs 

or one FET and one diode will be associated in a power commutation cell, the active 

area of each power device can be different as a function of the duty cycle. As a 

consequence, only the Coss of one power FET can be considered for the estimation of 

the minimum power losses P3î.4N, as proposed for example in [343] and equation (34), 

where V is the switched voltage and f3î the switching frequency. 

Cç��(")  =  C�(") = C�(n")� n""��                  (32) 

C�(n") = ϵ- × ϵ¤ × �� = C�(n")∗ × S                (33)  
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P3î.4N(V) = �0 × C�(n") × √BV × V0/� × f3î               (34) 

In an actual application the best power device is the one minimizing total losses (35) 

while respecting key constraints (e.g. maximum junction temperature and power 

density). Therefore, the optimal device area minimizing the sum of switching losses 

(PSW,on) and conduction losses (Pon)  can be determined for a fixed set of specifications 

thanks to the models and discussions presented in this section and in other articles such 

as [343]. In equation (35) δ is the duty cycle and Ion is the total ON state current. 

Equation (35) could be optimized in terms of “optimal active area” S (when all the 

other parameters have been fixed). 

P = P3î.4N + P4N = �0 × C�(n") × √BV × V0/� × f3î + È× s4NeM�£×ñ4N��                       (35) 

In figure 6.4, the total power losses (35) has been plotted versus the active area for a 

diamond p-type FET (considering the losses only for the NPT drift region) switching 

5 kV (with a BV=6.5 kV),10A at 20 kHz and at a duty cycle of 0.5 for a fixed operating 

temperature (T=300 K). The doping and drift region thickness are extracted in NPT 

conditions by solving the ionization integral with the coefficients from[161] (see also 

table 6.2). 

 

Figure 6.4: Conduction(red), switching(blue) and total (grey) power loss for a NPT diamond drift region switching 

5 kV (with a BV=6.5 kV),10 A at 20 kHz and at a duty cycle of 0.5 at T=300 K. At the intersection point conduction 

and switching loss have an identical value. 
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Figure 6.5: Total power loss for a NPT diamond drift region switching 5kV (with a BV=6.5 kV),10 A at 20 kHz 

and at a duty cycle of 0.5 at T=300 K ,T=450 K and T_opt(~540 K see figure 6.2). 

 

Figure 6.6: Total power loss for a NPT diamond drift region switching 5 kV (with a BV=6.5 kV),10 A at f=20 kHz 

and f=100 kHz and at a duty cycle of 0.5 at T=300 K. 

As it can be noted from figure 6.4, an optimal active area, which arises from the 

different trends for switching losses and ON state losses, can be identified (at the 
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intersection between the two curves). At the optimal active area, both the conduction, 

switching and total loss can be extracted.  

Moreover, the current and power loss density can be obtained by dividing the total 

current and loss with the optimized active area. These results have been reported in 

table 6.1. Figure 6.5-6.6 report the optimization of the total loss for different operating 

temperature and for high switching frequency (100 kHz). Higher temperature is 

beneficial in terms of reduction of the optimal area and total power loss. This peculiar 

trend is due to the decrease of the Ron_spec due to the incomplete ionization effect.  

Conversely, as it can be seen in figure 6.6 (and table 6.1), high switching frequency 

(100 kHz) will increase the total power density and total loss values. These values can 

possibly overcome the limits imposed by the maximum system specifications and, 

more in general, will put a higher constraint on the thermal management. Increasing 

the diamond active area above the optimal area will increase the total loss (especially 

the switching loss), while slightly decreasing the power density (see table 1 the “not 

optimized” design). As reported in table 6.1, switching 5 kV (with a BV=6.5 kV),10 

A at 100 kHz and at a duty cycle of 0.5 is extremely challenging in terms of power 

density loss (even at high operating temperature). The results shown in table 1 can be 

also visualized in a spider chart (see figure 6.7). Figure 6.7 shows a more global 

approach with a figure of comparison which allows to compare the performance of 

different diamond FETs designed for switching 5 kV (with a BV=6.5 kV),10 A and a 

duty cycle of 0.5. This spider graph also allows to compare different semiconductor-

based FETs (see next paragraph and also [9]) for a specific application. The main 

parameter of this more global comparison is the total loss at the optimal active area, 

for a fixed set of specifications. The current rating or switching frequency can be de-

rated as a function of the maximum allowed thermal power density, or a larger active 

area with larger total losses must be chosen to reduce the power density, if needed (as 

in the case of high switching frequency) and possible. For the heatsink volume (V) , 

natural convection is considered with a  volumetric resistance (VR) of 500 cm3 

°C/W[344] (equation 36). This value typically overestimates the heatsink volume, 

whereas forced air solutions can reduce the heatsink volume by a factor of 5 to 10.  

V = Vs × P/(T − T³òn)                            (36) 

Table 6.1. Comparative study between different diamond designs for switching 10 A,5 kV with a duty cycle of 0.5. 
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5000V (BV 6500V) 10A 

0.5 duty cycle 

Diamond 

20kHz 

T=300K 

Diamond 

20kHz 

T=450K 

Diamond 

100kHz 

T=300K 

Diamond 

100kHz 

T=450K 

Diamond 

100kHz 

T=450K 

(Not 

optimized) 

Optimal Area cm² 0.29 0.13 0.13 0.06 0.30 

Conduction Loss W 18.72 8.70 41.36 19.45 3.84 

Switching loss W 18.72 8.70 41.36 19.45 98.4 

Total loss W 37.45 17.4 83.73 38.90 102.24 

Junction 

Temperature 

K 300 450 300 450 450 

Current density A/cm² 34.48 76.92 76.92 166.67 33.33 

Power loss 

density 

W/cm² 129.14 133.84 644.07 648.33 340 

Heatsink Volume cm3 --------- 58 ------------- 130 340 

 

 

Figure 6.7: Spider chart highlighting the approach to compare the performance of different diamond designs (in 

terms of active area, switching frequency, junction temperature) for switching 5 kV,10 A with a duty cycle of 0.5. 

In the spider chart, for a fixed junction temperature, the optimal area, the total loss and the power loss density 

should be kept as small as possible while the current density should be as high as possible. Heatsink volume could 

be added in the spider chart (as shown in fig. 6.11) 
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However, this assumption will allow a quantitative benchmark on diamond devices 

versus other materials such as GaN and SiC power devices. The ambient temperature 

(TAMB) will be set to 300K.  

6.2.4. Benchmarking of Diamond devices against 4H-SiC and GaN: 
the 6.5 kV case 

 

In this paragraph, we will compare the specific ON state resistance, total 

semiconductor losses, junction temperature, heatsink volume, semiconductor active 

area, current density and power loss density of bulk Diamond devices against vertical 

GaN on GaN and 4H-SiC power devices. A single case study will be considered for 

6.5 kV rated breakdown and the method illustrated in the previous section will be 

employed. The same procedure can be applied for a different voltage rating. In this 

comparative analysis, only unipolar devices will be considered. For this study, the 

switching loss model has been set as the energy loss in the non-linear drift region 

parasitic capacitor, as introduced in previous paragraph. For the 6.5 kV devices, the 

switched voltage and current are 5 kV and 10 A, respectively. Duty cycle and switched 

frequency are fixed at 0.5 and 20 kHz and the study is conducted at both room 

temperature and at high temperature (T=450 K). 

The models and basic assumptions for diamond devices are based on those used in the 

previous paragraphs, including incomplete Boron ionization, simplified switching loss 

model, NPT drift region, doping and temperature dependent mobility, impact 

ionization coefficients for breakdown voltage.  

Regarding 4H-SiC and vertical GaN the same assumptions have been considered with 

the exclusion of the incomplete ionization (i.e. n-type drift region GaN region and 4H-

SiC doped region have been assumed). The parameters for the non-punch-through drift 

region design of GaN and SiC have been summarized in the table 6.2. The state-of-

the-art impact ionization coefficients [316, 345] has been assumed for the calculation 

of the ionization integral and the temperature-doping dependent mobility models [150, 

346, 347] are assumed for the calculation of the Ron_spec.  

The parasitic output capacitor (Coss) and the ON state resistance are assumed to be 

due only to the drift region.  
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Table 6.2. Device parameters used for the 6.5kV comparison. The parameters for bulk diamond are the same 

assumed in the previous paragraph. 

6.5kV (NPT 

design) 

Drift 

region 

Thickne

ss 

Drift region 

doping 

Max. 

Electric 

Field 

Ron_spec 

(300K) 

Ron_spec (450K) 

Bulk Diamond 

P-type 

28.2µm 4.95x1015cm-3 4.6MV/cm 107mOhm.cm² 23.1mOhm.cm² 

Bulk GaN on 

GaN 

N-type 

59.5µm 1.83 x1015cm-

3 

2.18MV/cm 10.2mOhm.cm

² 

44.8mOhm.cm² 

4H SiC 

N-type 

57µm 2.18 x1015cm-

3 

2.28MV/cm 14.7mOhm.cm

² 

37.5mOhm.cm² 

 

The comparison is presented in table 6.3 and figure 6.8-6.11. Key elements can be 

highlighted: 

- At room temperature both vertical GaN and 4H-SiC outperform diamond devices in 

terms of total loss (reduction of ~73% and ~65% respectively).   

Furthermore, the achievable current density at T=300K is much higher for GaN and 

4H-SiC if compared with diamond and the required (optimal) active area is reduced 

by ~35% with GaN and ~59% with 4H-SiC. As it can be noted, GaN outperforms SiC 

at room temperature. 

- At T=450K, the boron activation allows to reduce the conduction loss and diamond 

becomes advantageous.   

Compared to 4H-SiC a reduction of ~28% for the active area and ~17% of saving in 

terms of power loss can be achieved. Moreover, the heatsink volume of a diamond 

FET can be reduced by ~17%. At this operating temperature, 4H-SiC outperforms 

vertical GaN FET. This is due to the significant mobility reduction of GaN at high 

temperature. 
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The results highlighted in this section clearly point out that the lack of a shallow dopant 

(both p-type and n-type) is the main reason behind the poor performance of diamond 

FET at RT.  High operating temperature can reduce the switching loss but results in 

lower carrier mobility.   

This effect does not allow the HT diamond p-type FET’ performance (for the 6.5 kV 

target) to beat the RT performance of competitors semiconductors FETs (GaN and 

SiC). 

Table 6.3. Comparative case study between GaN on GaN and 4H-SiC for the same specifications. The relative 

parameters for diamond can be found in table 1. The calculated heatsink volume for diamond at T=450K is 57.99cm-

3. 

5000V (BV 6500V) 10A 

0.5 duty cycle 

GaN 

vertical 

20kHz 

T=300K 

GaN 

vertical 

20kHz 

T=450K 

4H-SiC 

vertical 

20kHz 

T=300K 

4H-SiC 

vertical 

20kHz 

T=450K 

Optimal Area cm² 0.10 0.21 0.12 0.18 

Conduction Loss W 5.10 10.68 6.54 10.42 

Switching loss W 5.10 10.68 6.54 10.42 

Total loss W 10.21 21.36 13.07 20.85 

Junction Temperature K 300 450 300 450 

Current density A/cm² 101 47.61 83.3 55.5 

Power loss density W/cm² 103.1 101.71 108.92 115.83 

Heatsink Volume cm3 --------- 71.21 ------------- 69.5 
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Figure 6.8: Semiconductor loss as function of the active area for diamond and vertical GaN FETs for switching 10 

A at 5 kV (BV=6.5 kV) with a duty cycle of 0.5 at f=20 kHz for T=300 K/450 K. 

 

Figure 6.9: Semiconductor loss as function of the active area for diamond and vertical 4H-SiC FETs for switching 

10 A at 5 kV (BV=6.5 kV) with a duty cycle of 0.5 at f=20 kHz for T=300 K/450 K. 
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Figure 6.10: RT comparison of diamond, GaN and 4H-SiC vertical FETs switching 5 kV,10 A with a duty cycle of 

0.5 at f=20 kHz. 

 

Figure 6.11: Comparison of diamond, GaN and 4H-SiC vertical FETs switching 5 kV,10 A with a duty cycle of 

0.5 at f=20 kHz at T=450 K. 

6.3 Unipolar vs Bipolar diamond diodes  

 

Although the selection of the most appropriate p-type diamond FET is still a subject 

of discussions and would typically depend upon the converter class, the system 

specifications, etc., some simplified assumptions can be made for a useful benchmark 

of diamond diodes. 
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With many factors impacting on the electro-thermal performance (i.e. package, cost of 

the chip, power efficiency, switching frequency, etc.) and different physical 

mechanisms involved in the electron-hole current transport, the optimal choice 

between unipolar and bipolar devices for power electronics’ applications needs be 

carefully carried out [27, 348]. One of the most accurate approaches to follow is the 

one described by Morisette et al. [27] for SiC diodes. This optimization is principally 

based on maximizing the available current density at a fixed breakdown voltage and 

switching frequency for a bipolar PIN diode and Schottky barrier diode. If one assumes 

that the package and the cooling system cost between the two devices can be assumed 

identical, the only significant cost’ difference is linked to the die. Therefore, higher 

current densities will allow for a reduced die area (for a fixed ON state current) and 

lower cost for that specific device. 

Applying a similar procedure to the specific case of diamond, it is possible to compare 

PIN diodes and Schottky (figure 6.12) for different switching frequencies, BV rating 

and temperature. 

 

Figure 6.12: (a) Schottky diode and (b) PIN diode considered in the analysis. The resistance of the contact (Rcont), 

N+ and P+ type layers is neglected in this study (RN+,RP+). The doping of the N+ and P+ region is assumed to be 

1020 cm-3 (i.e. the incomplete ionization of these layers can be neglected). A p-type (boron doped) drift layer has 

been considered for this study. Regarding the Schottky diodes, the p-type layer exhibits a lower resistivity if 

compared with an n-type diamond layer. It should be noted that while n-type drift regions could still be theoretically 

used in PIN diodes, the state-of-the-art n-type diamond layers have higher defects densities and, possibly, shorter 

minority carrier lifetime which leads to lower bipolar carrier injection. 



Chapter 6: Figures of merit, Comparison and benchmark of diamond devices 

155 

 

In the analysis presented in this paragraph, a simple inductive load switching circuit is 

considered and the energy dissipated by the main switch (a FET like a MOSFET or an 

IGBT) is assumed to be directly based on the charge stored in the diode. 

Under these assumptions, the static (Pstatic)  and dynamic (Pdynamic)  power density 

components for a power diode can be written as shown in equation (37) and (38)[3]: 

P3ihi?  = J®V®δ + JsVs(1 − δ)                    (37) 

P�ôNh�?  = f(E4N + E4¥¥)                           (38) 

Where JF is the current density in the ON state, VF is the forward voltage drop, õ is the 

duty cycle (assumed equal to 0.5 in this study), JR is the reverse current density, VR is 

the reverse voltage (assumed equal to the BV in this simplified analysis), f is the 

switching frequency,  and Eon and Eoff are the energies loss densities by the diode 

during the turn ON and turn OFF transient of the diode. In addition, VF can be 

expressed as the sum of the built-in voltage (Vbi) and the specific ON state resistance 

of the diode (RP) multiplied by the forward current density for the PIN diode. In the 

equation (39), the built-in voltage (Vbi) is function of the bandgap(EG), the impurity 

concentration of the P, P+ and N+ type layers, the density of states in the valence and 

conduction band (Nv and Nc) and the operating temperature(T)[152]. A different (but 

similar) expression holds for SBDs, as shown in (40)[93, 152]. In (40), n is the ideality 

factor of the diode (here assumed equal to 1), Vbn is the barrier height between the p-

type semiconductor and the Schottky metal, k is the Boltzmann constant, q the electron 

charge, A* the Richardson constant (assumed equal to 88 A/cm2K2 [93, 181]). 

V®(öñJ) = J®Rö(PIN) + Vj?(T, N)                               (39) 

V®(�nz) = J®Rö(SBD) + nVjN(T, N)  + 
N��o ln : ø±³∗��< =J®Rö(SBD) + Vj?(SBD)       (40) 

Regarding the specific ON state resistance of the p region for the Schottky Barrier 

diode (SBD), the absence of minority carriers results in the expression (41) - where p 

is the active carrier concentration calculated by means of the incomplete ionization 

formula at different P-doping(NP) and junction temperatures(T), μp is the mobility for 

p-type diamond which is assumed to be both doping and temperature dependent and 

d(SBD) is the optimal punch-through thickness calculated for a specific reverse 

voltage target by means of the procedure described in [269].  
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RG(SBD) = �(�nz)oGOM                     (41) 

Regarding the bipolar PIN diode, the specific ON state resistance can be expressed as 

in (42): 

RG(PIN) = �(öñJ)oGùM�(UM`UR)ú±û�(´üT)                    (42) 

where d(PIN) is the optimum drift layer thickness, q is the electron charge, μn is the 

electron mobility in the p-type layer and ý is the ambipolar lifetime.  

Unlike in the SBD, the best set of coefficients (d(PIN), NP) cannot be obtained with a 

closed form optimization and an iterative technique by means of TCAD simulations is 

therefore needed. For the purpose of this study, d(PIN) has been calculated by solving 

the ionization integral with the coefficients from [161, 162] and extracting the 

minimum thickness which gives a specific BV for a fixed NP concentration of 

5x1014cm-3. This choice of the doping concentration has been carried out to allow a 

good level of conductivity modulation in the p-type layer. Besides, the chosen doping 

is not far from the minimum achievable with the current technique.  

With the previous assumptions in mind, the charge density stored in the PIN diode 

(Qs) can be expressed as the product JF* ý and the energy density associated with the 

reverse recovery of the PIN diode during the turn OFF can be expressed by (43): 

E4¥¥(PIN) = τJ®Vs                      (43) 

For the purpose of this study, Eon, which is the energy dissipated by the diode during 

its turn ON, has been neglected for both the Schottky and the PIN diode. Furthermore, 

the Eoff component of the diamond SBD has been neglected as no significant stored 

charge needs to be removed from the p-type layer, which is only composed of majority 

carriers (holes in this specific example). Nonetheless, high switching frequencies 

(>100 kHz) could have an impact on the dynamic power dissipations with the flow of 

the displacement current in the diode. This component (Pdisp) has been taken into 

account for both devices, as shown in equation (44) where ε is the dielectric 

permittivity of diamond which has been assumed frequency independent. 

P�?3G = ¥0 ��oJ´� (V® + Vs)��                                   (44) 
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Bearing in mind all the previous assumptions, the total power dissipation (static and 

dynamic) for both devices can be expressed as in (45) and (46): 

P(�nz) = (J®Vj?(SBD) + J®�RG(SBD) ) δ +  JsVs(1 − δ) + P�?3G(SBD)                   (45) 

P(öñJ) = (J®Vj?(PIN) + J®�RG(PIN) ) δ +  JsVs(1 − δ) + fτJ®Vs + P�?3G(PIN)      (46) 

For the purpose of this study, the component JR has been neglected in both formulas. 

In detail, for the PIN diode, JR is mainly due to thermal generation-recombination 

process and can be ignored if one assumes a good quality of the material (low leakage 

current due to dislocations and defects). Regarding the SBD, such a component of the 

leakage current needs to be carefully considered as it can be significant for high electric 

field due to the thermionic field emission process. For the purpose of this study, the 

maximum level of the leakage current for SBD has been fixed at 1 µA/cm2 and the 

optimal ¬̈þ has been extracted using the procedure illustrated in [93] at different 

operating temperatures. The optimal ̈ ¬þ allows to minimize the ON state voltage drop 

and at the same time to maintain the desired leakage current density value for a specific 

reverse voltage (VR). Moreover, the ambipolar lifetime value ý has been optimized in 

order to minimize the power density expressed in (46) by setting the first derivative of 

P(PIN) equal to zero (figures 6.13, 6.14, 6.15).  

 

Figure 6.13: Power density vs ambipolar lifetime for PIN diode plotted with formula (46). For the plot it has been 

assumed a BV=10 kV, f=20 kHz and constant JF of 500 A/cm2. 
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Figure 6.14: Power density vs ambipolar lifetime for PIN diode plotted with formula (46). For the plot it has been 

assumed a BV=10 kV, f=100 kHz and constant JF of 500 A/cm2.  

 

Figure 6.15: Optimal ambipolar lifetime(τ) as function of two different junction temperatures (300 K and 450 K) 

at f=20/100 kHz. For increased temperature and with the Rp(PIN) calculated by means of formula (42), τ increases. 

This is caused by the low acceptor concentration adopted for the drift layer (5x1014 cm-3) in which the increase of 

the carrier activation with the temperature does not counterbalance the reduction of the electron/hole mobility (in 

contrast with the SBD behaviour, formula (41)).It is worth mentioning that high temperature may result in increased 

injection levels from the n+ and p+ region. Such a component has been neglected in a first order approximation. 

The optimal value of the lifetime (ý_opt) emerges from the trade-off between the static 

power dissipation which is reduced for high values of lifetime thanks to the 
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conductivity modulation effect and the increased dynamic power dissipation which 

increases for larger stored charge (Qs). 

Once the set of optimal parameters has been extracted, the procedure can be concluded 

by fixing a value for the maximum power density and by maximizing the JF for each 

device by using formulas (45) and (46). The value of the maximum allowable power 

density typically depends upon the package capability (especially on the thermal 

spreader design) and it oscillates between 50-300 W/cm2 for commercial devices. In 

this paragraph, this value has been chosen to be 500 W/cm2, a value which is justified 

by the increased thermal capability of diamond devices. 

 

Figure 6.16: 3D plot of the frequency vs voltage vs current domain for a fixed junction temperature for the SBD 

and the PIN diode obtained with equations (45) and (46).  

As one can note from the 3D plot in figure 6.16, with the inclusion of the displacement 

current, that both the PIN and the SBD exhibit a reduction in the maximum current 

density at higher switching frequencies. At RT and for low breakdown voltage (<4 

kV), the current density for SBDs is higher than PIN diode and the SBD is the preferred 

device for the whole range of frequencies (figure 6.17).  

As the BV increases, the trend changes and the “optimized” conductivity modulation 

occurring in the PIN diode allows for reduced power losses compared to the Schottky 
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diodes for a wide range of operating frequencies. For ultra-high BV (>20 kV) and for 

switching frequencies >10 kHz, the SBD becomes again superior to the PIN diode. 

 

Figure 6.17: 2D top view of figure 38 of the frequency vs reverse voltage domain for two different operating 

junction temperatures (T=300/450K). The areas in green are the ones where the SBD is a better choice that the PIN 

diode due to the higher current density which will allow for a reduced die area. 

At higher junction temperature (T=450 K) the trade-off between the two devices is 

modified due to the dependence of the leakage current upon the temperature, the carrier 

activation, the carrier mobility, density of states etc. which modify the set of optimal 

parameters for the analysis. The voltage vs frequency area in which the SBD displays 

higher current density compared to the SBD is widened and the PIN diode becomes a 

better choice only for reverse voltage >7 kV and f<10 kHz. At ultra-high voltages (>10 

kV) and high frequency (>20 kHz), the lower SBD dynamic power dissipations makes 

this device again a better solution compared to the PIN. 

 

6.4 System level benefits and challenges 

 

P-type transistors and diodes are the most promising diamond devices for future 

commercialization. Precisely, the absence of high-performance p-type FETs in the 

existing power electronics market could open a specific opportunity for diamond. As 

an example, the smart integration of diamond FETs with other FETs based on GaN, β-

Ga2O3, AlN and 4H-SiC could represent an innovative solution to simultaneously  
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simplify the complexity of the gate driving circuit and reduce the parasitics due to the 

interconnections [9, 108].   

However, there exists some challenges for diamond before this material can meet 

commercial expectations.  

Despite the fact that diamond devices would have lower total losses than other 

semiconductors, the power density losses are increased. Consequently, there is a higher 

stress on thermal spreader, accentuated by the higher junction temperatures of diamond 

devices. The system level benefits and challenges of diamond devices can be 

summarized as follow: 

Benefits 

 Reduced total semiconductor losses thanks to lower ON-state losses. 

 Increased switching frequency thanks to smaller active areas and very fast 

switching. Therefore, the volume and weight of passive elements used in filters 

can be reduced. 

 Higher junction temperatures, leading to smaller and lighter heatsinks or 

moving from liquid cooling to forced air or even natural convection. 

Challenges 

 Higher power loss density, requiring efficient thermal spreaders and thermal 

interfaces (i.e. complex thermal management). 

 Reduced maximum diamond device area. 

 Efficient device parallelization. 

 Reliability and reproducible performance. 

 

6.5 Power converters with diamond devices 

 

Diamond devices are usually small in size and therefore can conduct only low currents. 

From this perspective, parallelization becomes an essential technique for increasing 

the current flowing through diamond devices.  

Examples of diamond diode parallelization in a buck dc/dc converter have already 

been studied in the literature. In [71], the diamond pseudo-vertical Schottky diodes 
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were connected to a common anode and had isolated cathodes. A high side 

commercially available Si MOSFET was implemented in the experimental setup for 

the double pulse test in order to match the requirement of current/voltage of the diodes 

under test. The presence of the Si MOSFET limited the maximum switching speed of 

the system together with the parasitics (i.e. capacitances and stray inductances). 

However, it is critical to have similar output capacitors between the high side device 

(Silicon transistor) and the low side device (diamond Schottky diodes in parallel).  

Coupling parallel diamond devices with high breakdown voltage (>100 V or >1 kV) 

and a very low current capability (<1 mA) on the high side with other power devices 

made of silicon, SiC or GaN on the low side while maintaining similar output 

capacitors is very challenging. In [60], a high switching speed was observed (tens of 

V/ns) with reduced oscillations mainly due to the low value of the switching current 

and significantly high on-state resistances. Such a parallelization of diamond devices 

was also analysed for an interleaved configuration which eased the increase of 

switching frequency with benefits related to the output filter design and control 

bandwidth (figure 6.18). The interference between the diamond diodes integrated on 

the same chip highlighted the importance of device isolation. 

The interleaved setup may represent a promising configuration for the next generation 

of diamond converters with the on-chip integration of parallel p-type FETs on the same 

substrate. Besides, asynchronous DC/DC buck converter could benefit with the 

addition of a diamond p-channel FET due to the simplified gate driving technique (for 

the high side switch). However, imbalances between the different devices may impact 

negatively on the overall speed and current of the final converter, as already pointed 

out for diamond SBDs [337]. 

Bridge converters with an integrated diamond solution would ideally require n-type 

FETs to simplify the gate driving technique.  Nonetheless, a smart on-chip integration 

of a gate driver for the low side p-type diamond FETs could partially solve the issue 

arising from the absence of n-type diamond FETs. Finally, isolated p-type diamond 

converters made with only p-type FETs and diodes could offer a different solution to 

tackle the gate driving’ issues of bridge configurations and other converters’ 

typologies.   
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Figure 6.18: Schematic of (a) DC/DC buck converter and(b) interleaved converted with diamond p-type FETs and 

Schottky diodes. Depending on the switch, Vss can be positive and Vdd can be negative. 3 separate gate drivers 

have been represented for the interleaved converter in figure (b). Alternatively, a single gate driver with separate 

inputs and outputs and one GND driver can be implemented. 

6.6 Future perspectives and roadmap of diamond power 
devices 
 

This section aims at summarising the main challenges for the success of diamond in 

the power device field. These challenges can be organised in five categories: (i) 

material, (ii) devices, (iii) packaging, (iv) reliability, and (v) integration, as shown in 

table 6.4. 
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Table 6.4. Current status and challenges for diamond devices in power electronics. 

 Challenge Current Status Breakthroughs and 

future prospective 

Material Wafer size < 1 inch > 2 inches 

Cost  > 400$ per <1inch wafer  Dependent on the BV (see 
discussion below (i)). 

Defects High dislocation density  Lower dislocation density for 
increasing wafer size 

Interface quality Medium-High interface states 
and defects density compared 
to Si devices. 

Optimized annealing techniques for 
improving the quality. 

Doping p-type with Boron (deep 
acceptor level), lack of reliable 
n-type. 

Lower activation energy dopant 
species, new conduction 
mechanisms. 

Devices High BV and 
current FETs 

~2kV for lateral technologies. >10kV, >10A for vertical 
technologies, high transconductance, 
low threshold voltage, low Ron_spec 
transistors. 

High Power p-type 
SBDs 

>1kV, >5A  Improve the BV (field terminations, 
thick and high-quality drift region, 
etc.) without affecting the ON state 
current (target >10kV, >10A). 

N-type FET Not available. Development of techniques for low 
resistive n-type layers. 

Leakage current - Dominated by defects. 
- Limiting factor for high BV.  

Improve material quality.  

Lifetime  <10ns >100ns  

Termination Not optimized and may lead to 
TDDB 

New solution for high voltage 
passivation. 

Fast switching Limited to diodes >100V/ns 

Novel device 
structures 

N/A SuperJunctions, floating islands, 
new techniques.  

Packaging High temperature 
packaging 

N/A Unique packaging technique for high 
temperature operation (i.e. 175°C for 
10kV, >200°C for 3kV). 

Ultra-high voltage 
packaging 

N/A New passivation methods, secondary 
passivation techniques, etc. 

Reliability 
 
 

Ageing  No ageing test have been 
conducted so far 

Lifetime of diamond devices is still 
an open issue. 

Yield N/A Improve the repeatability and 
reproducibility of devices 

Harsh environment  Only few tests have been 
performed 

Show suitability to harsh 
environments with more standard 
tests 

High switching N/A Resistance to high dI/dt and dV/dt.  
New switching model.  
EMI/EMC would need specific 
filters design. 

Integration Passive 
components 

N/A On-chip Integrated capacitors 
,resistances, inductances to reduce 
parasitics. 

Active devices Limited to logic devices Isolated transistors and/or diodes 

Integrated gate 
driver 

N/A Smart gate driving for p-type FETs 
would improve the switching 
frequency. 
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(i) Material: the size of the diamond substrate is currently limited to <1 inch diameter 

due to the quality of the material. Only improvements in the HPHT and CVD 

techniques and the development of novel growth and doping methods would allow 

fabrication of large area wafers with higher current levels. The decrease in the defects 

and dislocation density together with the enhancement of the interface quality would 

also enable the reduction of leakage currents and achieve breakdown voltage levels 

closer to their theoretical predictions. The high-cost of the substrate is another crucial 

aspect to take into account for the commercialisation of diamond power devices. In 

this context, the reduction of the specific ON state resistance more than the decrease 

of the total cost and the increase of the total area of each diamond wafer, appears to be 

the best strategy to enable the commercialization of diamond.  

(ii) Devices: Technological progress in the wafer and processing quality will also have 

to focus on four key aspects related to device technology and performance: (a) the 

development of vertical devices and novel structures, (b) carrier lifetime control, (c) 

device termination optimisation which could benefit from the fabrication of multi-

layer passivation based on high-k materials, and (d) enhanced slew rate. Switching 

speeds above 200 V/ns, (not possible in silicon), have already been demonstrated for 

GaN devices. By efficiently tackling the carrier dynamics due to the incomplete 

ionization of the dopant species, diamond promises to deliver even faster slew rates at 

the device level. In addition, the demonstration of a high-performance diamond n-type 

FET would also lead to smart integration of a key components, such as protection, 

drive and possibly R,L,C passives within the same chip. Further developments will be 

required especially for diamond FETs, which do not deliver the same performance of 

diamond diodes. 

(iii) Packaging: Packaging of diamond devices is an area where significant 

development will be required in particular to accommodate the very high slew rates or 

the operation in harsh environment applications. It is therefore apparent that unique 

packaging technique, not compatible with those available for other WBG materials, 

need to be put forward. Research on this topic is still at an early stage. 

(iv) Reliability: As a further step towards the commercialization, diamond devices will 

need to pass reliability tests which can guarantee the guarantee the device performance 

over a specified time period and give an estimation of device lifetime in standard and 

harsh environment conditions. It is very likely that as the development of diamond-
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based devices progresses, dedicated standards and reliability tests will be defined for 

diamond, following the same approach adopted for 4H-SiC and GaN for which 

dedicated JEDEC subcommittee have just been formed. 

(v) Integration: Wafer integration of parasitic and smart gate driving circuits will 

enable low-volume diamond converters and improve dV/dt and the di/dt for the 

packaged devices. The smart integration of diamond and other WBG/UWBG 

semiconductors (figure 6.19) could represent one of the possible applications of 

diamond p-type FETs in a monolithic high-speed converter.  

 

Figure 6.19: Schematic of a possible monolithic implementation of diamond and other WBG/UWBG 

semiconductors. The integration of diamond p-type FET and other n-type FET grown on the same diamond 

substrate allows for the reduction of parasitics and better thermal performance. (through the common diamond 

substrate).  Kelvin sources have been added to both FETs in view of the fast switching speed achievable by using 

such a configuration.  

6.7 Conclusions 

 

A thorough comparison of boron doped diamond diodes and FETs against the state-

of-the-art GaN and SiC devices has been carried out in this chapter. This analysis has 

clearly shown that p-type diamond FETs are able to outperform current WBG 

semiconductor FETs only for high operating temperature. Such a limitation is due to a 

fundamental limit of the incomplete ionization of the dopants. Alternative 

technologies, such as 2DHG based FETs, addressed in the last paragraph and in 
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previous chapters, may enable the full potential of diamond even at room temperature. 

Nevertheless, this improvement could only lead to commercial devices if reliability, 

reproducibility and also scalability of the devices are properly addressed. These issues 

will be further commented in the conclusions of this thesis. 
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7 CONCLUSIONS AND FUTURE 

WORK 

 

 

 

7.1 Conclusions 

 

Remarkable advantages of diamond for power electronics have always been 

accompanied by many drawbacks and limiting factors. While some of the challenges 

which have hampered for years the development of this material have been recently 

addressed, other questions still remain unanswered. The main goal of the research 

carried out in this thesis has been to contribute to the understanding and the design of 

diamond devices for power electronic applications. State-of-the-art diamond power 

devices have been carefully reviewed and the power-frequency domain where the 

future generation diamond devices could compete against the current power device 

technologies has been identified. By means of finite element simulations carried out 

with Sentaurus TCAD (from Synopsys) and accurate theoretical analysis, optimized 

and novel device structures have been presented and studied in detail. 

To sum up, the work presented in this manuscript can be summarized as follows: 

- The unique material properties of diamond, the details of the state-of-the-art 

fabrication process and its related issues have been carefully examined. To be able to 

give a deep insight into the complex phenomena behind the behaviour of the diamond 

devices, an advanced TCAD model has been built based on experimental data found 

in literature. A complete description of the modelling of the main physical and 

electrical properties such as the electron-hole mobility, the surface termination, the 

impact ionization effect, etc. has also been provided. 



Chapter 7: Conclusions and future work 

169 

 

- A systematic review of the state-of-the-art diamond power electronic devices with an 

accurate description of their main electrical performance has been carried out. The 

peculiar properties of vacuum switches and hydrogen terminated diamond FETs have 

been reviewed and their performance assessed against several other bulk diamond 

devices such as deep depletion MOSFETs, JFETs etc. The current state of diamond 

field relief termination has been analysed and the different techniques which help to 

avoid the premature breakdown voltage compared with each other.  

- An optimization procedure for a normally-OFF diamond unipolar mode JFET has 

been presented. The limits and the issues arising from the incomplete ionization of the 

dopants have been carefully taken into account. It has been found that the parallel 

reduction of the built-in voltage and the effect of the partial ionization are the main 

limiting factors to achieve normally-OFF operation with diamond JFET at high 

junction temperature. An improved device structure which allows to reach low specific 

ON state resistance and, at the same time, high breakdown voltage has been designed 

by means of a design of experiments.  

- The potential and the limitations of deep depletion diamond FETs have been carefully 

examined. A novel lateral normally-OFF diamond FET has been proposed and its 

performance simulated. By merging the diamond hydrogen FET concept and the deep 

depletion control of the channel, the proposed structure is capable to outperform the 

state-of-the-art WBG and diamond lateral FET for high temperature application with 

a significant enhancement in the threshold voltage control. 

- Moreover, the physics and the equations governing the incomplete ionization effect 

of the dopants have been reviewed in detail. Static and dynamic consequences of the 

partial ionization have been carefully examined for superjunction based devices, MOS 

capacitors and p-n junctions. For the specific case of superjunction devices, charge 

imbalance effects due to the fast reverse dV/dt applied to the device have been 

extensively studied. Electro-thermal simulations have revealed that the local increase 

of the junction temperature can help the device to recover from the imbalance 

condition and that an accurate designed asymmetric SJ can favour such rebalancing 

mechanism. 

- Diamond unipolar and bipolar mode diodes have been compared for a wide 

frequency-voltage range, showing that diamond bipolar PIN diodes are advantageous 
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for low-medium frequency and high voltage applications.  A more global approach 

which allows to compare different diamond FET has been introduced. The results, 

which have been shown for a 6.5kV application, have clearly pointed out that bulk 

diamond FETs cannot overperform GaN and SiC devices at room temperature. This is 

a fundamental limit caused by the low free majority carrier concentration due to the 

partial ionization of the dopant species. Nevertheless, high temperature operation, 

which is beneficial for the carrier activation from deep dopant levels, shows enhanced 

performance for diamond bulk devices. This result emphasizes one of the peculiar 

findings of this study: diamond bulk FETs can only be competitive with other WBG 

semiconductor-technologies for harsh environment applications. 

- In conclusion, a roadmap of diamond devices with the future perspective of this 

material has been presented. The possible implementation of p-type diamond FETs as 

high side switches in power converters would allow to simplify the driving scheme of 

for half and full bridge circuits. Furthermore, the necessity of improving 

reproducibility and reliability of diamond devices has been identified as the main 

challenge for the successful commercialization of diamond devices.  

7.2 Future work 

 

The work carried out in this thesis could be extended in several directions: 

- The first direction is concerned with the dynamic ionization of the dopants. On 

one hand, experimental demonstrations of the imbalance effects occurring in 

WBG SJ devices would help to assess the real dV/dt and dI/dt resistance of this 

emerging class of power semiconductor devices. Such an experimental 

verification would only be possible when optimized SiC, GaN or diamond SJ 

based devices would be available. On the other hand, predicting the dynamic 

charge imbalance consequences on the device termination regions (i.e. with 

floating islands or junction termination techniques) could provide useful 

guidelines which will help to mitigate the drawback of the dynamic imbalance. 

This peculiar mechanism will need to be further investigated with more 

advanced electro-thermal simulations based on the hydrodynamic model.  

- The second direction concerns the further development of lateral and vertical 

diamond FETs. The fabrication of the suggested hybrid configuration which 
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merges h-terminated and o-terminated diamond, vertical deep depletion or 

inversion MOSFETs,etc. could open a whole new scenario for diamond 

electronics showing the real potential of semiconducting-diamond for high-

temperature and frequency applications. In addition, more advanced harsh 

environment experiments of diamond devices could provide useful information 

on the actual performance of diamond diodes and MOSFETs in environments 

where GaN and SiC devices still fail to deliver useful performance. 

- Finally, with the increasing success of GaN on diamond technologies, the smart 

integration of diamond p-type FETs with GaN HEMT could represent a valid 

integrated alternative for half and full bridge configurations. Such a solution 

which should be firstly investigated and optimized with finite element analysis 

could lead to simplification of gate driving techniques, the reduction of 

parasitics and better thermal performance also for the GaN HEMT.
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