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Abstract

This paper presents@’ discontinuous Galerkin formulation for the simulation it
shells. The method is based on Koiter’s shell model and alkovite element solutions
to be obtained by using standarl Lagrange basis functions in terms of the displace-
ment only. It invokes a curvature-like term by applying &rify operation which trans-
forms jumps in the normal rotation across element bounslant® a field defined on
element interiors. This procedure enforces weak congimafinormal derivative across
element boundaries and a special term is added to enhambdéystd the formulation.
Benchmark tests using various-order elements are presanteconclusions are drawn
as to the computational efficiency of the method.
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1 Introduction

For the numerical simulation of thin shells, many shell edets have been proposed
and developed over the years. These are copious in quantitygre in general all
built upon one of two shell theory families, namely the Koigead Naghdi families.
While the former ignores transverse shear effects by applyie Kirchhoff-Love kine-
matic assumptions, the latter is based on the Reissnertkikidematic assumptions
and takes transverse shear effects into account [1, 2]. ébwiownally, the Koiter type
model requires the use 6f' basis functions, which are difficult to construct, while the
Naghdi-type model demands the us&8ffunctions. Because of its simple implemen-
tation, the Naghdi-type model is attractive, although isg® some other difficulties,
particularly shear locking when shell thickness becomesallsm

Recently, some discontinuous Galerkin formulations haenlpresented for the sim-
ulating of thin bending problems. In the works of Engel et[@].and Hughes and
Garikipati [4], aC? interior-penalty formulation for Kirchhoff plates that qpeits the
use standard® Lagrange finite element basis functions has been proposét.tWé
formulation, rotation degrees of freedom are not requined eontinuity of normal
slope across element boundaries is enforced weakly. Adffioiine approach is rela-
tively simple, it has drawbacks, such as conditional sitgtaind ambiguities for non-
linear implementations. To address these issues, Wellang [5] recently devel-
oped aC"’ discontinuous Galerkin formulation for Kirchhoff platesieh are inspired
by the works of Bassi and Rebey [6] and Brezzi etlal. [7] forogekcorder problems.
The approach relies on a lifting operation that transforamgs in the normal rota-
tion across element boundaries into a field defined on elemtsrtors. The stability
of the approach can be precisely quantified and the extetdioonlinear problems is
straight-forward. In this paper, we develogd discontinuous Galerkin formulation
from the Koiter shell model based upon this approach.

We organize the remainder of this work as follows: firstlyyatipons for the Koiter shell
model are summarized in Section 2. Then, in Section 3, theidered formulation for
thin shells is presented, after which numerical examplespaesented in Section 4.
Finally, conclusions are drawn in Section 5.

2 Thin shdl formulation

Formulations for thin shell finite-element analysis haverbpresented and developed
by numerous authors, including Koiter and Simmonds [8],n2dou [1] and Chapelle
and Bathel[2]. In this section, equations for Koiter’s simetidel are summarized. We
shall restrict our attention on linear problems, and admggly the notation of Bernadou
[1] and Chapelle and Bathg [2].

2.1 Kinematic equations

Consider a shell with a mid-surface denoted%gnd with thickness. The boundary

is denoted).S, and the shell lies in an orthonormal coordinate systeine?, e*). The
mid-surface of the given shell is defined by an injectivelpmetric mapping from a
parametric spac&? into the Euclidean spacg® (see Figur@ll). Denote the reference
domain in the spac&? by 2 and its boundary by that their images in the spad&
areS andds, respectively. Consider a coordinate systgm &2, £3) that (€1, £%) is a
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Figure 1: Definition of shell geometry.

point onQ andx (£, £2) is the position vector of its image on the mid-surface. The
surface covariant basis vectors are now defined as:

Oz a; X as
= a—gaa as (1)

wherea = 1,2 are indices denotting two directions of the surface tangésme at
the point. The surface contravariant basis vectstsare defined by the relatioda; -

a® = 403, wheredg is the Kronecker delta tensor. Now, covariant componexisand
contravariant-covariant componentsof the metric tensor are defined as

a e
“ a1 x asl|’

(op = Qg - Ag, ag =a®-ag. (2)

They are also called the first fundamental form of the midesi@. Components of the
second fundamental form containing the curvature infolonadf the mid-surface are
defined as

byo = —a34 - &y, bl = —agq,-a’. (3)

Herein, some other geometric definitions of the mid-surtaeeused, that include

Tia = —a’ . a, (4)

,Q

namely the surface Christoffel symbols, and
a = det (aqp) (5)

appearing in the relatiodS = /a d). The position vector? of a material point in
the shell media relates to the position vectasn the mid-surface as the following:

x? (&,6%,6%) =z (£,6°) +&as (¢1,67). (6)
Under the external loads, the structure deforms. Denoteidmacement vectors at

a material point and at a mid-surface point ayand u?, respectively. The relation
between them reads:

u’ (1,6%,6) = u (€,6°) + %0, (¢,€%) a” (¢, €7) (7)
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whered,, are rotations around the two directions on the tangent pidiree material
line which is normal to the mid-surface in the undeformedestén the equatior({7),
the Kirchhoff-Love kinematic assumptions mentioning al&itaight and un-stretched
material lines have been adopted. Furthermore, the assamaatiso state that material
lines are always orthogonal to the mid-surface, that resuit

On = —Usq — b us. (8)

«

Applying the above relations, the strain tensor at a mdteaimt is expressed as

€af = VaB — §3K“ozﬁ- (9)
The membrane patt,s in the above equation reads

1
YaB = 5 (ua|ﬁ + uﬁ|o¢) - baﬁ us, (10)

whereu, s is called the covariant derivative of the displacement conemtu,,, which
is expressed as

Ualp = Ua,p — 15Uy (11)
The curvature:, s in the equation[{9) is given by
Kag = Uslag T b5 Uy + DUy s + Djtlyja — D3Dys, (12)

where the covariant derivatives).; andb,, ; are defined as

Usjap = Uzap — Lo Uz, (13)
_ 4 )
bZé\ﬁ - bZé,ﬁ + ngS ba - Faﬁ bg' (14)

The above equations permit the strain tensors at a mateiralip the shell medium to
be expressed in terms of the displacement field defined owihveliimensional refer-
ence domain).

2.2 Variational form

The boundary)) of the domair? is partitioned such thdt» UTH =T9 UT'M = 90
andl'™*NT'7 =T NT'M = (). The distributed force vector dn is denoted byF", the
displacement, rotation, force, and moment vectors on thmdaries are denoted by
g*, g°, H, and M, respectively. Note thaF, g%, g’, H, and M have been evaluated
by an inverse map from the physical space into the refergraees The spaces of trial
and test functions on the mid-surface are defined as follows:

U={u=(ua,u3) € [H (> x H*(Q) : u|r« = g", O (u)|ro =g"}, (15)
W ={w = (wa,ws) € [H'(]* x H*(Q) : w|r« =0, 6 (w) |0 =0}.  (16)

In order to provide a two-dimensional presentation of agkdgnensional shell medium,
integrals with respect to the thickness direction in theateomal form derived from the
kinetic equation are evaluated in advance. This procestiseke following variational
form: findw € U such that

B(w,u)=L(w) YweW, (17)
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where

B (w,0) = [ {00 (005 1)+ i (0) 0 )} Va9 (29
L(w):/w-FdQ+ 'w~HdF+/ 0 (w)- M dr, (19)
Q TH ™

and C*?7 js the fourth-order constitutive tensor on the shell midaze. In the
isotropic case, it is defined as

CoPYs — T (1E+ ) (a‘”aﬁ‘; + a®a’ + T— 2V aaﬁa’ﬂg) ) (20)
1% — UV

where £/ denotes Young’s modulus anddenotes Poisson’s ratio. The variational
form (I14) is expressed in terms of the displacement field &mdierivatives in the
reference coordinat systefg', £2). For a conventional finite element approach, the
requirement of7° continuity for the membrane deformation is straightforydout for
bending part, a comforming* continuity is difficult to construct. In the next section,
a (" discontinuous Galerkin formulation will be presented tdrags this issue.

3 Discontinuous Galerkin formulation based on a lifting operator

Consider a partitiorP” of the domainf2 containingn elementst;, i = 1 — n, such
that !, B; = Q and{J_, E; = Q. The union of all element edges is denoted by
I' = J_, OF;, and the union of all internal element edges is denoted byT \ 09,
The trial and test function spaces on the mid-surface araateas follows

U'={u" € [H'(Q)] v e PNE), j=1-3, VE € P" u[rn =g"}, (21)
W' ={w" e [H'(Q)*:wh € PXE),j=1—3, VE € P"; w'|r. =0}, (22)
where P*(E;) are standard finite element shape functions of polynomiglests:. We
adopt the jump and average definitions for a scalar function an edge as follows:
for an interior edge € I’

lan] = alfnd +ang, (a) == (a* +a7), (23)

and for an exterior edgee 02
la,] = aana, (a) = a. (24)

In the above equationg, denote values of the function enof elementsty and £+,
respectively, wher&* ¢ P" denote two elements sharing the interior edge,, and
nE denote the outward normal vector of elemehtand £+, respectively.

anda™®
Consider a lifting function spacg” as follows

R" = {ras € L*(Q) 1 1o5(E;) € PUE;)V E; € P, rop(E:) = r5a(E))} . (25)

In addition, it is required that the spa@" must contain at least all the second deriva-
tives of the function:” on element interiors. For each element edgel’ UT®, lifting
operations are defined by: givere H'(Q), find g (a), 7§ (a) € R" such that

/Qvgﬁ 1 (a) dQ = — /<vgn> [a.] dO  eeTUT? Vol e R", (26)
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and
/szﬁ TZ’ﬁg (@) dQ = — /e<vzn> [a,] dT eel, vaﬂ e R, (27)
/Qvgﬁ rog (@) dQ = — /ev’,fn (an — ge) dar eecT?, VUZB e R", (28)
whereu)!, = v!;n.ns. The integrals on the left-hand side of the above equations a

performed over the elements sharing edgeéhe lifting functionsr¢,; andfrg’g are equal
to zero fore € T'™. Now, two functionsi,s (a) andRY ; (a) are defined as follows:

Rag(a) = > rig(a), (29)
eclur?

Rig(a)= > 159(a). (30)
eclur?

The proposed variational form for the thin shell problenvines: findw" € W such
that

B(w" u") =L (w") vw'"eWwh (31)

where
B (wh, o) = [ 05 (") N7 (u) Va0
[ e () + R () M2 () v a0
+ 2 /Q Z—t;rzﬁ (wh) €371y (ug) Va dQ, (32)
echur?

and
L(wh):/wh~FdQ+/ wh~HdF+/ 6 (w")-Mdr.  (33)
Q TH ™

In the above equations/*” and M° denote the membrane stress and moment tensors
on the mid-surface, which are written as

NP (u) = 105 (u") | (34)
t3
M () = 5077 (s (") + R () (35)

andn is a positive number to provide stability of the formulatiorhe method allows

to use standard® Lagrange basis functions in terms of the displacement oAly.

weak continuity of normal derivative across element bourdahas been enforced by
using the lifting operation to transforms jumps in the nornegation across element
boundaries into a field defined on element interiors. Thidbksathe finite element

solutions to be obtained in a straightforward implemeaotati



4 Numerical examples

The proposed formulation is subjected to some benchmaikitethis section, consist-
ing of Scordelis-Lo roof, Pinched cylinder, and Hemisphereich are popular in shell
literatures. Shell elements with various orders of basigtions are used. Notably,
the conditionl > k — 2, wherel andk respectively are the order of the lifting function
PY(E;) and of the element shape functi®¥i( E;), is required. Here, the ordée= k —2
will be adopted in all benchmark tests. Two types of triared@ments will be touched
upon that are flat shell elements and curved shell elements.

Flat shell elements are constructed by combining membiangeats and plate bending
elements together. Curved surfaces are now representeakapptely by a surface of
flat elements. Within an element, there exists no geomairiature and no membrane-
bending coupling effects. When curved elements are used)ejeies of the considered
shell problems are represented exactly by using proper mgpfrom two dimensional
reference domains to the shell mid-surfaces and membrangify coupling effects
are taken into account.

4.1 Scordelis-Lo roof

This model is very useful to check the correctly represgnéhility of elements in a
complex states when both the membrane and bending stramyecentributions to the
total energy are considerable. Geometry parameters obtifés shown in Figurél2a
with a rigid-support on two curved boundaries, free on tweeotstraight boundaries,
side lengthL = 50 m, radiusr = 25m, thickness = 0.25m, open angle) = 40°,
Young's modulusE = 4.32 x 103N/m?, and Poisson’s ratio = 0. A uniform gravity
load F' = 90N/m? is applied.

For this problem, a single chart is used to map a flat rectangldmain to the curve
shell domain, see Figufé 2b. The vertical displacement coedpat the mid-point of
the free edges is normalized using the reference solGtitiR4 m given in [9]. As
shown in Figurd13 are the results using quadratic flat-shell @irve-shell elements
(k = 2) with different values of the penalty parameterAs observed results, they all
convert very well to exact solution. It is clear that flat-$leéements are ‘softer’. The
reason for this may be the lack of membrane-bending couglifegts in the flat-shell
model. The convergence behaviour for cubic triangle eles@n= 3) is presented in
Figure[4. Compared to the previous case, a faster convegamta less sensitivity to
the penalty parameterare obtained. Observed results shown that presented efemen
are able to represent correctly the membrane and bendaigstn a complex states.

4.2 Pinched cylinder

This problem tests the ability of the formulation to deal wihextentional bending
states. The free-boundary cylinder shown in Fidure 5a hmpdnameters: circumfer-
ence length. = 600 mm, radiusk = 300 mm, thicknesg = 3 mm, Young’s modulus
E = 3 x 105N/mm?, and Poisson’s ratio = 0.3. Two opposing forces o = 1 N
are applied at the midway of the cylinder circumference.

A multi-mapping is used to generate the mid-surface of tHmdgr, see Figurél5b.
The reference solution.520 x 104 mm given by Cirak et al.l[10] has been used to



Figure 2: Scordelis-Lo roof: (a) geometry; (b) referencemdn (the flat grids), undeformed mid-surface
(the curved grid), and deformed mid-surface.
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Figure 3: Scordelis-Lo roof: normalized displacement far tasé = 2 and! = 0 with various penalty
values.
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Figure 4: Scordelis-Lo roof: normalized displacement Far tasé: = 3 and! = 1 with various penalty
values.

normalize the displacement at the loading points. Notethiwateference solution is de-
rived for an inextention cylinder with an assumption statinat all strain components
in the mid-surface vanish. Again, flat shell and curved stlelnents are used. Here we
do not employ simmetric property and discretize the enttender. Obtained results
using quadratic shape functions are performed in Figurestsh®wn, implementation
of quadratic flat elements reproduces a softer behaviouradmetter convergence. In
FigurelT are the results for the case of cubic elements. Becabtained results are
compared to an inextention reference solution, they arshalving a "softer” perfor-
mance.

4.3 Hemisphere

Together the pinched cylinder, the hemisphere test is atacblsenchmark problem
that is used to test inextentional bending in complex stsstes. Parameters of the
Hemisphere are: radiuB = 10m, thicknesst = 0.04m, Young’'s modulustl =
6.825 x 10"N/m?, and Poisson’s ratio = 0.3. The applied forces have a magnitude
F =2 N (see Figurgl8a).

The deformed mid-surface of the hemisphere is shown in E[§br The displacement
at the loading points is normalized using the referencetiso(d.0924 m given in [9] .
The results are shown in Figurke 9 for the case of quadratineriés and in Figure-10
for the case of cubic elements. It is very clear that for treeaafk = 3, curved-shell
elements reproduce a much faster convergence comparedt toytfat-shell elements.
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Figure 5: Pinched cylinder: (a) geometry; (b) reference dion(the flat grid), undeformed mid-surface

(the curved grid), and deformed mid-surface.
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Figure 6: Pinched cylinder: normalized displacement ferdase: = 2 and! = 0 with various penalty

values.
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Figure 7: Pinched cylinder: normalized displacement ferdase: = 3 and! = 1 with various penalty
values.
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Figure 8: Hemisphere: (a) geometry; (b) deformed mid-serfa
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Figure 9: Hemisphere: normalized displacement for the ¢ase 2 and/ = 0 with various penalty
values.
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Figure 10: Hemisphere: normalized displacement for the gas 3 and/ = 1 with various penalty
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5 Conclusion

The discontinuous Galerkin formulation presented hemnalito simulate Koiter’s thin
shell models by using standaftd Lagrange basis functions with displacement degrees
of freedom only. To weakly enforce @' continuity, jumps in the normal rotation
across element boundaries have been lifted to a definedintieid. Together with the
unconditionally stability condition, the absence of raiatdegrees of freedom make
the approach particularly attractive for simulating ofitehells.

Flat shells: there exists no geometric curvature and no mamekbending coupling ef-
fects. This this a major disadvantage of the model. Howekerfinite element imple-

mentation using this approach is simple because difficutgtating to the curved shell
geometry are delivered. Curved shells: exact geometricesgptation, membrane-
bending coupling effects.
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