
Probing the Mechanochemistry of

Metal-Organic Frameworks with

Low-Frequency Vibrational Spectroscopy

Wei Zhang,†,󰀂 Jefferson Maul,‡,󰀂 Diana Vulpe,¶ Peyman Z. Moghadam,§ David

Fairen-Jimenez,¶ Daniel M. Mittleman,† J. Axel Zeitler,¶ Alessandro Erba,∗,‡ and

Michael T. Ruggiero∗,¶,⊥

†School of Engineering, Brown University, Providence, RI, 02912, United States of America

‡Dipartimento di Chimica, Universitá di Torino, via Giuria 5, 10125, Torino, Italy

¶Department of Chemical Engineering and Biotechnology, University of Cambridge,

Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom

§Department of Chemical and Biological Engineering, University of Sheffield, Mappin

Street, Sheffield, S1 3JD, United Kingdom

󰀂Equal Contribution

⊥Department of Chemistry, University of Vermont, 82 University Place, Burlington, VT

05405, United States of America

E-mail: alessandro.erba@unito.it; michael.ruggiero@uvm.edu

Phone: +1 (802) 656-0276

1



Abstract

The identification and characterization of low-frequency vibrational motions of metal-

organic frameworks (MOFs) allows for a better understanding of their mechanical and

structural response upon perturbation by external stimuli such as temperature, pres-

sure, and adsorption. Here, we describe the combination of an experimental temperature-

and pressure-dependent terahertz spectroscopy system with quantum mechanical sim-

ulations to measure and assign specific low-frequency vibrational modes that directly

drive the mechanochemical properties of this important class of porous materials. More

specifically, those intense spectral features in the terahertz region of the vibrational

spectrum of ZIF-8 are identified, which are directly connected to its mechanochemical

response. In particular, the mechanical compressibility of pristine ZIF-8 is found to fol-

low a peculiar non-linear trend upon pressure: its bulk modulus initially increases up

to 0.1 GPa and decreases at higher pressures, which is simultaneously reflected in the

terahertz vibrational spectra. This work highlights the interplay between structural,

vibrational, and mechanochemical phenomena, all of which are key to the effective

exploitation of MOFs. The importance of terahertz vibrational motions on the func-

tion of MOFs is demonstrated, and a method presented for their measurement and

interpretation, which can be applied widely to any supramolecular material.
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Introduction

The connections between low-frequency large-amplitude terahertz vibrations and material

function are becoming increasingly apparent. These motions have been shown to play a

critical role in enzymatic catalysis and ligand binding, vibrational dampening and relax-

ation, crystallization and amorphization phenomena, phase transitions, structural response

to temperature and pressure (e.g. negative thermal expansion), etc.1–7 Recently, Ryder et

al. have analyzed the low-frequency lattice dynamics of metal-organic frameworks (MOFs)

and suggested that they can play an important role into their proper function and behav-

ior; however no explicit connection between these phenomena has been established beyond

inference (based on spectral assignment).8,9 In this respect, the current challenge is that of

establishing an explicit link between specific terahertz lattice vibrations and specific MOF

functionalities, which would increase their effective design and use.

MOFs are a promising class of porous materials owing to their intrinsic structural and me-

chanical properties and large specific surface areas. They have been proposed for industrial

applications such as energy storage, drug delivery, catalysis and chemical separation.10–15

MOFs can be readily tuned through the modification of either the metal cluster or organic

linkers, leading to a virtually infinite number of materials that are yet to be fully explored.16,17

The diversity found in MOFs brings a unique combination of structural, chemical, and me-

chanical properties that play a critical role in their behavior and performance. So far, little

attention has been paid to the role that the nuclear dynamics, particularly the low-frequency

dynamics, has on these phenomena.

Among the existing MOFs that can be studied, ZIF-8 (ZIF: zeolitic imidazolate frame-

work) is a prototypical example that has been widely investigated, for which two crystalline

phases and an amorphous phase have been reported.18–20 Importantly, these two crystalline

phases are characterized by a critical change in pore size and accessibility. Moggach et al.

described a first-order adsorption-induced phase transition at 1.47 GPa when using methanol

as a pressure-transmitting medium (PTM) under hydrostatic conditions;20 when using a non-
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penetrating fluid as the PTM (i.e. no guest molecules in the cavities) a pressure-induced

amorphization was observed at 0.34 GPa.19 In recent years, a number of studies, both exper-

imental and theoretical, have been performed to study the role of pressure, temperature, and

the nature of the gas molecules on the adsorption capacity of ZIF-8, including the apparently

counterintuitive case of an increased pore window size upon pressure.20–25 More specifically,

using both in situ powder X-ray diffraction and molecular simulation, it has been shown

that a “gate-opening” or “swing-effect” adsorption-induced structural change occurs in ZIF-

8 at much lower pressures, where - similar to the 1.47 GPa phase described above - the

imidazolate linkers rotate so as to increase the size of the accessible pore window.21,26,27

These classes of motions, i.e. large-amplitude displacements of entire molecular sub-units,

occur at terahertz frequencies,28 confirming that terahertz vibrations play a key role in the

mechanochemical properties and phase-transition pathways present in such solids.

Low-frequency vibrational spectroscopies have been used to study ZIFs,9,29 providing

valuable information related to the specific vibrational motions that are present, as well as

for the detection of gas-adsorption in ZIF-8.30 Terahertz time-domain spectroscopy (THz-

TDS) can be used to acquire experimental spectra of infrared active vibrational modes in the

far-infrared. Compared to traditional far-infrared spectroscopy, the method is convenient in

that it can collect high quality spectra within seconds with signal-to-noise characteristics far

exceeding that of Fourier transform instruments.31 THz-TDS is particularly useful for the in-

vestigation of ZIFs because it directly probes large-amplitude collective atomic motions that

are expected in the terahertz frequency range (0.1–10 THz, 3–333 cm−1). These vibrations

are strongly dependent on both the intermolecular and intramolecular potential energy land-

scape, and thus THz-TDS is a sensitive probe of all the interactions present within solids.

While the relationship between lattice dynamics and mechanochemical phenomena has been

clearly long established,32,33 recent work in the MOF community has focused on identify-

ing specific low-frequency vibrational modes that might be relevant to the elastic response

of such materials.8,9 For the MOF community these exploratory studies have very usefully
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directed attention towards considering the well-known relationship between the terahertz

(lattice) vibrations and mechanical properties. However, given the proof-of-concept nature

of those studies, the conclusions drawn were necessarily based on the qualitative inspection

of the vibrational mode types, with emphasis on motions that were considered to involve

pathways corresponding to particular deformations (e.g. shear deformation). A quantitative

analysis of the mechanisms was not possible as the experimental data was largely based on

inelastic neutron scattering (INS) and synchrotron far-infrared measurements, techniques

that, in contrast to THz-TDS, unfortunately exhibit a dramatic reduction in the signal-to-

noise ratio at the low-frequencies (< 100 cm−1), data which is critical to obtain quantitative

insight.

Here, we discuss the interplay between pressure-induced structural, dynamical, and me-

chanical intrinsic features of a relatively flexible MOF: ZIF-8. In particular, we establish

the relationship between specific low-frequency vibrational modes and the mechanochemical

response of the material in the presence of external perturbations.

We propose a combination of experimental pressure- and temperature-dependent THz-

TDS and quantum-mechanical simulations to provide a consistent description of ZIF-8 upon

compression. A peculiar non-linear pressure-dependence of the bulk modulus of ZIF-8 be-

fore amorphization is reported. We also describe the use of an innovative way to probe the

effects of pressure and adsorption on the structure and dynamics of MOF systems, specifi-

cally when using gases that will adsorb, by combining in situ THz-TDS with a pressurized

sample cell. Although we focus on ZIF-8, this approach can be extended to other MOFs and

supramolecular materials in general.
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Materials and Methods

Quantum-Mechanical Simulations

Solid-State Density Functional Theory

The Crystal17 software package was used for all solid-state density-functional-theory cal-

culations.34 All simulations utilized the M06-2X density functional35 coupled with the all-

electron double-ζ 6-31G(d,p) basis set due to previous success.29 Atomic positions were

initialized from the experimentally determined single-crystal X-ray diffraction structure36

and were optimized at several pressures without any symmetry constraints by adding a di-

agonal hydrostatic pre-stress to the analytical stress tensor.37 It is important to note that

due to ZIF-8 undergoing a phase-transition within the same space group (I43m → I43m)

when using a penetrating PTM, identical results were obtained when performing simula-

tions within the constraint of space group symmetry, as well as without any symmetry.

Vibrational simulations were performed within the harmonic approximation via numerical

differentiation (with atomic displacements of 0.003 Å),38 and IR intensities were determined

using the Berry Phase method. Energy convergence criteria were set to ∆E ≤ 10−10 Hartree

for both optimizations and frequency calculations. A shrinking factor of 4 is used for all

calculations, corresponding to a 4×4×4 mesh of k points and to 36 or 8 k points in the

symmetry-irreducible Brillouin zone without or with exploitation of the space group symme-

try, respectively, and convergence was checked by performing single-point energy calculations

at various k point samplings.

Ab initio Molecular Dynamics

The open-source CP2K software package was used for all AIMD simulations.39 Initially, 48

nitrogen molecules were randomly placed within the pore of the ZIF-8 crystal based on a

minimum van der Waals radii method. Subsequently, both the loaded and unloaded crystals

were simulated within the canonical (NVT) ensemble and the temperature was maintained
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at 100 K using a Nosé-Hoover chain thermostat.40 Unfortunately, CP2K does not have the

meta-GGA functionals available, therefore the Perdew-Burke-Ernzerhof (PBE) density func-

tional41 was coupled with the double-ζ DZVP basis set42 and Goedecker-Teter-Hutter (GTH)

pseudopotentials,43 with the D3-dispersion correction (with the Becke-Johnson damping

functional) applied to all models.44 The energy convergence criterion was set to be ∆E <

10−9 hartree. The systems were equilibrated for 10ps prior to performing the simulations for

vibrational analysis. IR spectra were generated by taking the Fourier transform of the dipole

moment autocorrelation function, and all post-processing was performed using the TRAVIS

software package.45 A 0.5 fs time step was used, and the molecular dipole moments were

determined every 2.5 fs via determination of the Wannier centers.46 The spectra presented

are obtained from a 30 ps trajectory, which has previously been shown to be sufficient for

the vibrational analyses of molecular crystals.46

Terahertz Time-Domain Spectroscopy

30-35 mg of ZIF-8 sample were mixed with 360 mg of high density polyethylene (PE) and

compressed into tablets with diameters of 6 mm and thicknesses of 2.5 mm, and then placed

into a custom-made pressure cell. No apparent amorphization occurred during the sample

preparation due to the observation of a clear crystalline THz-TDS spectrum, as opposed to

the featureless absorption expected of an amorphous solid. High pressure compressed gases

(methane and nitrogen) were guided into the pressure cell to pressurize the sample tablet,

and a liquid nitrogen cold finger and an electric heater were used to accurately control the

sample temperature. The details regarding the operation of the pressure cell were previously

reported.47 For each scan, we fixed the pressure and down-scanned the temperature from

300 K with a rate of 0.47 K/min.

A custom THz time-domain spectrometer was used to record the time-domain waveforms

of the THz radiation that transmitted through the sample.47 The time-domain waveforms

were truncated with an asymmetric tapered cosine window with a length of approximately
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16 ps to keep only the main THz pulse, and then zero-padded and Fourier transformed to

obtain the spectra. The spectrum of a pure PE tablet was also measured, as the reference.

The frequencies and linewidths of the modes were obtained by fitting the spectra to the sum

of two Gaussian lineshapes e−(f−fi)/2σ
2
i on top of a quadratic background af 2 + b, where f is

the frequency, fi is the central frequency of the i-th mode,
√
2ln2σi is the half width at half

maximum of the i-th mode, and a and b are coefficients for the quadratic background.

Results and Discussion

Origin of Anomalous Low-Pressure Mechanical Properties

The relationship between pressure-dependent properties and performance of porous materials

is of critical importance in applications such as in gas-storage and sequestration materials.

Taking ZIF-8 - with a cubic lattice (I43m) - as an example of a flexible MOF, several

seemingly anomalous pressure-dependent features have been reported in the last few years.

This is including the observation of (i) increasing pore accessibility with pressure,20 (ii)

a negative value for the pressure derivative of the bulk modulus K (i.e. K ′) in the low

pressure regime - suggesting the softening of the mechanical response of the system upon

pressure,19 and (iii) an intrinsic amorphization above pressures of 0.34 GPa when using a

non-penetrating fluid as a PTM.19 Although ZIF-8 has been widely studied in the past,

most experimental studies upon pressure involve adsorption of guest molecules inside its

channels when penetrating PTM are used, making it very challenging to decouple intrinsic

pressure-dependent features of the pristine framework from adsorption-induced ones.

In order to elucidate the atomistic origins of these anomalous structural and mechan-

ical features, we performed solid-state quantum-mechanical simulations within the density

functional theory (DFT) with the Crystal17 program.34 We first found the optimized lat-

tice parameter of ZIF-8, 17.04 Å, in excellent agreement with the experimental value of

17.0 Å.19 Additionally, the computed bulk modulus K at zero pressure, 8.9 GPa, is also
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in excellent agreement with the experimental value of 7.7 GPa, as measured by Brillouin

scattering.48 We then performed pressure-constrained structural relaxations at 13 pressures

in the range 0-0.8 GPa. Figure 1 shows the structure of ZIF-8, with the major structural

features involved in the large-amplitude terahertz motions explicitly labeled, as well as the

predicted evolution of volume (V ) and bulk modulus (K), the latter of which was obtained

from the volume-pressure relationship according to K(P ) = −V (P )(∂P/∂V ). As pressure

increases, two main structural changes occur. First, a rotation of the imidazolate linking

bridges (the “swing-effect” motion), described by the angle ϕ. Secondly, the ZnN4 tetrahedra

twist, described by the angle θ.

Considering the volume-pressure relationship, Chapman et al. reported the intrinsic

structural and mechanical features of pristine ZIF-8 at low-pressures using in situ X-ray

diffraction and a non-penetrating fluid as PTM.19 The fitting of the experimentally measured

data in the 0 - 0.34 GPa pressure range using a third-order Birch-Murnaghan equation-of-

state provided the anomalous negative value for K ′ of -4.6. From a theoretical point of view,

classical molecular dynamics simulations were unable to confirm this peculiar feature as they

described a bulk modulus almost linearly increasing as a function of pressure in the whole

0-0.4 GPa pressure range and thus a positive value of K ′.24 By fitting our simulated volume-

pressure data, reported in Figure 1 (b), in the same pressure range (since experimentally

pressures above 0.34GPa resulted in amorphization, which is not accounted for in our model)

and to the same equation-of-state, we get a negative value of K ′ = −3.8, in good agreement

with the experimental value. A quantum-mechanical description over a classical one is needed

in order to catch such a subtle, and yet fundamental, feature of the mechanical response of

ZIF-8, despite such simulations being performed at an effective 0K temperature.

Let us stress that K ′ is just an average parameter, which does not reflect the punctual

mechanical response of the system at the various pressures. Here, we want to determine

the explicit K(P ) relation. We perform a more accurate fitting of the pressure-volume data

using a higher-than-third-order function (sixth-order polynomial). This fitting allowed us to
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Figure 1: (a) Structure of ZIF-8; two angles ϕ and θ are graphically defined,
which represent the rotation of the imidazolate linkers and the twisting of the
ZnN4 tetrahedra, respectively. (b) DFT-predicted volume V and bulk modulus
K as a function of pressure in the low-pressure regime. Red dashed lines are
eye-guides to identify three different structural trends, while the solid blue and
green lines represent linear fits to the low and high-pressure regions, with dashed
lines representing the extrapolated curves.
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investigate for the first time the explicit pressure dependence of the bulk modulus of ZIF-8 in

that pressure range, which we report in Figure 1 (b). Three distinct regions are identified

in the volume and bulk modulus: for P < 0.2 GPa the V (P ) is almost linear, for P > 0.5

GPa V (P ) is also almost linear, while for pressures 0.2 < P < 0.5 GPa, the V (P ) relation

has a sigmoid-shape centered at P = 0.35 GPa (i.e. a point where the K(P ) relation changes

the sign of the slope). Regarding the mechanical properties of ZIF-8, we find that the bulk

modulus initially increases up to about 0.1 GPa, then decreases above 0.2 GPa, eventually

showing a clear discontinuity at 0.35 GPa. This matches the experimental evidence according

to which pressurization beyond 0.34 GPa produces irreversible structural changes leading to

the pressure-induced amorphization of the sample possibly due to the disruption of long-

range translational symmetry while retaining the short-range order (e.g. local structure

and framework connectivity).19 Again, it is important to make clear that the amorphization

observed experimentally is not captured by our model due to the imposition of translational

symmetry that prohibits long-range structural disorder, however the data obtained allows

for some insight into the properties of ZIF-8 when amorphization is restricted.

Spectroscopic Fingerprint of Mechanical Softening on Compression

Terahertz spectroscopy has been demonstrated to be an effective technique for probing rele-

vant atomic motions in MOFs.8,9,29 However, the assignment of the low-frequency spectrum

for the “swing-effect” dynamics in ZIF-8, with peaks at about 1.0THz (Raman active) and

2.0THz (infrared active), has been controversial.9,29 While a later study has claimed the spec-

tral assignment by Tan et al.29 to be the correct one,30 the results of the present study clearly

show that both previously identified peaks indeed correspond to the “swing-effect” motion of

the imidazolate linkers (the peak at about 1 THz being the symmetric “gate-opening” motion

while the peak at about 2.0THz being the asymmetric “gate-opening” motion). Crucially,

this study allows for an explicit correlation of these spectral features with structural and

mechanical changes occurring upon external perturbation, in particular upon compression.
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Note that structural compression in ZIF-8 can be achieved by either increasing the pressure

or decreasing the temperature (given that ZIF-8 shows a positive thermal expansion).49

We therefore decided to initially investigate the far-IR spectrum of ZIF-8 computationally

in the terahertz region at low-pressures, corresponding to the pre-amorphization regime (0.0−

0.3GPa). Figure 2 shows the predicted evolution of the infrared spectrum in the terahertz

region with increasing pressure. The results highlight that the most peculiar behavior on

pressure in this frequency domain is indeed shown by the peak at about 2.0THz, whose

intensity increases and whose position exhibits a remarkable non-linear shift. This peak is

initially blue-shifted with increasing pressure up to about 0.1 GPa, and then subsequently

red-shifts when pressure is further increased. Thus, this behavior is strictly correlated to

the evolution on pressure of the mechanical response of the system discussed above. It

also confirms the strong link between the corresponding terahertz lattice dynamics and the

structural transformations that ZIF-8 undergoes on pressure. Furthermore, the Raman-

active peak at about 1.0THz also exhibits the same shifting pattern (see ESI Figure S1).

This confirms the clear relationship between these spectral features due to symmetric and

asymmetric “swing-effect” motions of the imidazolate linkers in the four-membered rings and

the mechanochemical properties of ZIF-8. A link to dynamic videos all of the vibrational

modes (IR and Raman) of ZIF-8 is provided in the ESI.

We wanted to experimentally confirm the extent to which these spectral features probe the

structural changes occurring in ZIF-8 upon perturbation by temperature and pressure. To do

this, we have performed a novel pressure- and temperature-dependent THz-TDS experiment,

using two different gases as PTM (methane and nitrogen). Figure 3 shows the results for

nitrogen; Figure S2 in the ESI shows the results for methane, which are qualitatively

similar. First we observe a significant absorption peak initially near 2.0THz in the empty

ZIF-8, which we refer to as ω∗. This peak is consistent with the previously reported standard

THz-TDS result,29 indicating that the sample is crystalline. In that study, this feature was

observed to significantly broaden at low temperatures and exhibit an anomalous temperature-
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Figure 2: DFT-predicted infrared spectrum of ZIF-8 as a function of pressure
(0.0− 0.30GPa) in the terahertz region (left) and the evolution of the IR-active
vibrational modes as a function of pressure (right).
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Figure 3: (a) Experimental and (b) ab initio molecular dynamics (AIMD) tem-
perature dependent terahertz absorption spectra at 97K for ZIF-8 unloaded
(black) and loaded with N2 at 80bar. The vertical black dotted lines represent
the transitions predicted by Crystal17 using static-DFT simulations on a pris-
tine crystal. (c) THz-TDS spectra under varying temperature and pressure, with
red and blue colors representing the maximum and minimum of the absorption
intensity, respectively; the sharp transitions in (c1) and (c2) at 95K and 115K,
respectively, are caused by the change of the refractive index of the sample due
to the gas-to-liquid phase transition of nitrogen. (d) Black squares are fitted
peak positions while pink and blue shadows are the corresponding line-widths
at half-maximum for the peaks at about 2.0 THz and 2.3 THz, respectively.
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induced shifting. In the present study, we clearly observed that as temperature is lowered,

and structural compression is induced, the frequency of ω∗ increased. This was followed

by a sudden decrease at about 290 K and 5 bar (Figure 3 (d)), followed by a plateau

extending to about 190 K. This feature exhibits the exact same behavior upon compression

as predicted by the quantum-mechanical simulations discussed above (Figure 2), however it

is important to note the range of pressures explored in Figure 2 (0.1GPa = 1000 bar) and

those in Figure 3 (5–80 bar), with the former performed at 0K and the latter incorporating

thermal effects. The discontinuity of ω∗ on evolution of temperature, reflected in the change

in sign of ∂ω∗/∂T , shifts to higher temperatures with increasing N2 pressure, from 288K

at 5 bar to 297K at 80 bar. Clearly, as the external pressure is increased, a lower degree

of thermally-induced compression is required to achieve the same overall compression of the

structure. These results highlight that the THz-TDS experiments provide a valuable probe of

relevant collective structural changes in ZIF-8, in a non-invasive and non-destructive manner.

In addition to the 2.0THz mode, we further noted that a new spectral peak appears

at about 2.3THz at the exact same temperature at which the structural and mechanical

features described above exhibit the discontinuity (Figure 3 a and c); Figure 3 (d))

shows this through the blue shaded regions. The origins of this spectral feature are under-

stood in terms of an intrinsic vibrational mode of the framework that is activated by the

presence of adsorbed gas molecules in the pores of the solid. Through the use of ab initio

molecular dynamics simulations (AIMD) we evaluated the vibrational response of a pristine

and loaded (48 nitrogen molecules per cell) ZIF-8 crystal by taking the dipole-moment au-

tocorrelation function of a 30 ps NVT trajectory, and the results are shown in Figure 3(b).

Compared to the pristine (empty) ZIF-8 crystal, an additional feature is clearly predicted

in the loaded variant at about 2.3THz. The “swing-effect” mode at ∼ 2THz is present in

both regimes, with the loaded ZIF-8 presenting a lower intensity for that feature, as ob-

served experimentally (see again Figure 3 (a)). We then deconvolved the spectra into

contributions from the host (ZIF-8) and guest (N2) molecules. We found that the nitrogen
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molecules did not directly contribute to the low-frequency spectrum of ZIF-8 on their own,

but rather dramatically enhance the intensity of an intrinsic spectral feature by breaking

a symmetric structural configuration. Indeed, there is a normal mode predicted from the

solid-state DFT simulations at about 2.5THz, which involves a symmetric bending of two

imidazolate linkers around a central imidazolate, in a pincer-type motion, which is similar

in frequency to both the experimental and AIMD peaks at about 2.3THz. This mode has a

low intensity for the pristine solid because crystallographic symmetry results in the net can-

cellation of dipole moments for the entire unit cell. However, when the system is loaded, the

nitrogen molecules affect this vibration by enabling anisotropic motion through the removal

of stringent crystalline symmetry, i.e. each imidazolate linker rotates with differing degrees

of motion depending on the nitrogen environment, yielding a much larger net change in the

dipole moment for the unit cell and thus a greater IR intensity.

Elucidating the Intrinsic-Framework Nature of the High-Pressure

Phase Transition with DFT Simulations

The successful modeling of the structural, dynamical, and mechanical phenomena in the low-

pressure regime lends valuable confidence to the theoretical methodology used, and enables

deeper investigation into the pressure-dependent properties of ZIF-8 to be explored. The

observed first-order phase transition at high pressure20 is well-accepted to be assisted by the

presence of adsorbed molecules50 that are known to play a key role in preventing the amor-

phization of the framework, however the role that the ZIF framework alone plays remains

unclear. Here, we wanted to understand whether or not the observed phase transition is an

intrinsic feature of the pristine ZIF-8 framework or if the transition requires the presence

of adsorbed gas molecules, all when amorphization is hindered. Experimentally, amorphiza-

tion can be hindered at high-pressure by the adsorption of guest molecules in the pores,

however performing experiments at high-pressure without a PTM is not possible due to the

pristine framework undergoing amorphization at pressures above 0.34GPa,19 as previously
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Figure 4: Pressure-induced structural changes through the first-order phase
transition and up to 5 GPa in pristine ZIF-8.

mentioned. Thus, the inherent pressure-dependent properties of the pristine framework at

high-pressures cannot be captured experimentally. With our theoretical simulations, the

crystalline lattice can be preserved also at high-pressures by imposing periodic-boundary

conditions, which prohibits long-range structural deviations and therefore prohibits amor-

phization. While this method cannot be confirmed experimentally and without question the

results are purely theoretical, understanding how the application of high-pressures affects

the pristine ZIF-8 framework provides valuable insight into the mechanical response of the

solid in the absence of adsorbed gas molecules, an important aspect for understanding MOFs

in general. In this sense, the accurate modeling of the low-pressure behavior of ZIF-8 pro-

vides some confidence that the forces within the solid are well-reproduced, and thus the data

presented here can be considered accurate within the short-range limit.

We therefore wrapped up our study by investigating the pressure-induced structural

changes of the pristine ZIF-8 up to 5GPa using quantum-mechanical simulations with Crys-

tal17. Figure 4 shows the pressure-induced structural changes through the first-order

phase transition while the evolution of unit cell volume, ϕ, and θ as a function of pressure is

reported in Figure 5. We first predicted a first-order phase transition (indicated by dashed

vertical red lines in Figure 5), which is clearly identified by a sharp discontinuity in all

structural features, namely a 1.4% drop in unit cell volume. This is the first evidence of the
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intrinsic pressure-induced, rather than extrinsic adsorption-induced, nature of the observed

first-order phase transition in ZIF-8, although experimentally probing this proves difficult

due to the limitation of keeping the solid in its pristine state and avoiding amorphization.

The low-pressure and high-pressure phases of ZIF-8 exhibit the same I43m space group

symmetry (i.e. I43m → I43m), as experimentally reported when using a penetrating PTM.

However, the atomistic structural changes characterizing the phase transition in the pristine

ZIF-8 show peculiar features, which differ significantly from those observed experimentally

in the loaded system. First, the imidazolate linkers almost linearly rotate as a function of

pressure. At zero pressure they are in a “gate closed” configuration with ϕ ≃ 20◦, then, they

reach the “gate fully open” configuration with ϕ = 0◦ at 3.8GPa and, as pressure further

increases they continue rotating towards another “gate closed” configuration with ϕ ≃ −20◦.

This is quite different with respect to what happens in the relative high-pressure adsorption

regime where a high concentration of guest molecules in the pores constrains the linkers to

stay “fully open”. Secondly, in our simulations, the ZnN4 tetrahedra also tilt almost linearly

as a function of pressure, which is not observed experimentally. At zero pressure θ ≃ 50◦, and

interestingly in our simulations the θ angle goes to zero precisely at the predicted transition

pressure of 3.8GPa. The first-order phase transition in pristine ZIF-8 thus occurs when the

ZnN4 tetrahedra are fully eclipsed and the angle θ (rather than the “gate-opening” angle ϕ)

is to be considered the “order parameter” describing the phase transition.

When penetrating PTM are used to convey pressure in the experiments, it is to be

expected that the local pressure of the guest molecules acting on the imidazolate linkers

would lead to a faster opening of the gate towards a “fully open” configuration, thus allowing

more molecules in the pores through the creation of new adsorption sites. In turn, the new

adsorption sites help to stabilize the “gate-open” phase. This explains the lower transition

pressure observed experimentally for loaded samples with respect to the pristine system. This

is further confirmed by the results of the AIMD simulations (vide supra), which indicate that

larger displacements of the linkers occur upon loading.
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Figure 5: Volume V , imidazolate linkers “gate-opening” rotation angle ϕ, and
ZnN4 tetrahedra tilting angle θ as a function of pressure.

19



The results reported in Figure 5 aid in suggesting that the first-order phase transition

experimentally observed at 1.47 GPa is due to intrinsic short-ranged structural features

of ZIF-8. Because the theoretical application of a hydrostatic pressure alone, with the

concomitant imposition of translation symmetry, is able to capture a first order transition

that resembles what is observed experimentally, this suggests that long-range effects are

not as critical for the phase transition as short-range forces. However, without question

the experimentally observed phenomena are different from what is observed here, with the

main difference being the adsorbed gas molecules significantly influencing the short-range

interactions and thus altering the observed pressure and nature of the phase transition.

Regardless, the results presented here, by working within periodic boundary conditions on

the pristine system, have demonstrated that the short range intrinsic structural changes are

significant factors in the pressure-induced phase transition in ZIF-8.

Conclusions

A peculiar non-linear trend of the mechanochemical response of ZIF-8 as a function of pres-

sure is reported. The bulk modulus of the pristine system increases up to 0.1 GPa of

pressure while the system becomes mechanically softer as pressure is further increased up

to 0.34 GPa, before undergoing amorphization. The combination of experimental pressure-

and temperature-dependent THz time-domain spectroscopy (TDS) and quantum mechani-

cal simulations allows for an atomistic characterization of the static structural changes and

dynamic collective lattice vibrations responsible for this behavior. The explicit connection

between symmetric and asymmetric “gate-opening” motions of the imidazolate linkers in the

four-membered rings of the ZIF-8 framework and its mechanical response is reported. These

low-frequency collective vibrations are probed experimentally with THz-TDS as a function of

structural compression, and a clear correlation is reported with the corresponding mechanical

response on pressure. The methodology presented here can be applied to any supramolecular
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material. The short-ranged intrinsic nature of the high-pressure first-order phase transition

of ZIF-8 is unveiled.
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