Electronic Journal of Statistics
ISSN: 1935-7524
arXiv: 1706.04410

A strong converse bound for multiple
hypothesis testing, with applications to
high-dimensional estimation
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Abstract: In statistical inference problems, we wish to obtain lower bounds
on the minimax risk, that is to bound the performance of any possible esti-
mator. A standard technique to do this involves the use of Fano’s inequality.
However, recent work in an information-theoretic setting has shown that an
argument based on binary hypothesis testing gives tighter converse results
(error lower bounds) than Fano for channel coding problems. We adapt this
technique to the statistical setting, and argue that Fano’s inequality can
always be replaced by this approach to obtain tighter lower bounds that
can be easily computed and are asymptotically sharp. We illustrate our
technique in three applications: density estimation, active learning of a bi-
nary classifier, and compressed sensing, obtaining tighter risk lower bounds
in each case.
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1. Introduction

When solving an inference problem, we would like to know if the algorithm we
use is close to optimal. In statistical language we seek to give a lower bound
on the performance of any estimator over a class of problems (often called the
minimax risk over the class). In the language of information theory, we speak of
converse results, which give performance bounds for all communication schemes
over a noisy channel.

In the statistics literature, one standard approach to proving converse results
is via Fano’s inequality (see [11, Theorem 2.11.1]). However, recent information-
theoretic literature has shown how to obtain sharper converse bounds. The re-
sulting improvements can be significant at finite sample size, and give bounds
that are close to optimal, as illustrated in the work of Polyanskiy, Poor and
Verdu [23]. The present paper shows how the method of [23], although devel-
oped for channel coding problems, gives stronger risk lower bounds for high-
dimensional estimation problems, compared to the standard Fano approach.
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We first describe the general set-up, following the treatment and notation
of [31, Chapter 2|. Consider an inference problem (possibly non-parametric)
where we wish to estimate some 6 € F from samples Y = (Y7,...,Y,,) generated
according to a distribution Py(Y). For example, in Section 3 we consider 6 to
be a probability density chosen from a pre-specified class, and in Section 5 we
consider 6 to be a k-sparse vector in R™. Let 6 := 6(Y) be any estimator of 0

~

and let d(6,0) represent the loss. We assume that d is a distance, although (as
in [31]) our results hold when d is a semi-distance; that is, when d(6,6) = 0
need not imply that § = 6. We obtain lower bounds on the minimax risk

i%f sup E [w(d(@,é\))} , (1)
eF

where w is any monotonically increasing function with w(0) = 0. For example,
we may consider w(u) = uP for any p > 0 or w(u) = I(u > ¢) for some ¢ > 0.

A standard approach for obtaining a lower bound on (1) is as follows. First,
aset {01,...,0p} C F is chosen, with a lower bound on the pairwise distance
between any two of its elements, where the distance is measured using the loss
function d(-,-). Then, any estimator 6 defines an M-ary hypothesis test that
detects one of {61, ...,0p} based on the data Y. Next, the key step is to obtain
a lower bound for the error probability associated with this hypothesis test.
For a well-constructed set, Fano’s inequality often shows that this average error
probability is bounded away from 0 as n — oo. In this paper, we present a
technique that often shows that it approaches 1 as n — oo. In information
theory parlance (see for example [11, P.207]), we prove a “strong converse”
result in contrast to the “weak converse” provided by Fano’s inequality.

We now explain the details, following the framework in [31] (see also [13],
[20]). For any positive constants A and ,,, using Markov’s inequality we have

P (40.9) > Av,) = P (w (z;dw,a)) > A)> _E[v %deﬁ))] |

which implies

sup E {w <1d(9, (3))} > w(A) (sup]P’ (d(e, 9) > A¢n)) . 2)
oeF Un a

When applying (2), we typically choose v, as a decreasing function of n to give
the desired convergence rate, and A as a constant that can be used to optimize
the lower bound. The goal then is to control the bracketed term on the RHS of
(2) to obtain a lower bound on the minimax risk. We use the following definition.

Definition 1.1. A collection Parg,.,, = {61,--.,0m} C F is called a packing
set of size M and minimum distance dpi, if

d(0;,0;) > dmin,  for alli# j.
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In general, the packing set is not explicitly constructed, but its existence is
guaranteed via combinatorial arguments. In Remarks 3.1 and 4.1 below, exis-
tence of packing sets is guaranteed by applying the Gilbert—Varshamov bound.
In Remark 5.1, the existence of a packing set is guaranteed via the probabilistic
method. We emphasize that we use these existing packing set constructions:
our contribution is to provide tighter lower bounds than can be obtained using
Fano’s inequality. It is possible that the resulting risk lower bounds could be
improved by a further constant factor, by varying the packing set construction.

In statistical language, we think of the packing set Pas q,,, as multiple hy-
potheses to be distinguished on the basis of data. An alternative information-
theoretic interpretation is to think of Pas a,,, as a codebook, that is a collection
of M codewords, one of which is transmitted over a noisy communication chan-
nel. Given a packing set Pys q,,,,, any estimator 6 provides a way to distinguish
between multiple hypotheses (act as a channel decoder) as follows: given (9\7 we
choose 7 = arg min; d(a, 6;), i.e. the index of the closest value in the packing set.
In coding theory, this is called the minimum distance decoder.

If 6; is the true value, a simple triangle inequality argument shows that

{27& z} = {d(&i, 5) > dmin/2}. Taking dpin = 24, we can bound the brack-
eted term on the RHS of (2) by the average error probability €y; of the optimal
decoder i* = i*(Y), since

sup P (d(e,é) > A%) > max P (d(ai, 9) > A%)

0cF i€{l,....M}

> PO~ £ 0;
_ie{rf?.}fM} ( ﬁé )

ie{rllt}ﬁme} P(0;+ # 6;)

Y%

v

1 M
Y Zp(ai* £6,) =t enr. (3)

This calculation and argument are standard in the literature (see for example
[31, Eq. (2.9)], [20, Corollary 2.19]). By substituting (3) in (2), we deduce

o o (0.9 )| 2 wia) e g

Our main focus is to obtain a sharp and easily computable bound for €p;. A
standard technique, dating back to Ibragimov and Khasminskii [17], is to bound
ey using Fano’s inequality, which gives the bound [31, Lemma 2.10]

| log2+ 4 X%, DR IP) -
log M ’

where P := - Zf\il Py,, and D(P||Q) is the Kullback-Leibler (KL) divergence.
To apply (5), one typically obtains a bound of the form

€M Z

M
1 —
i=1



Venkataramanan € Johnson/A strong converse bound for multiple hypothesis testing 4

for some constant o € (0,1) (see [31, Section 2.7.1]). Then (5) implies that
ey > 1l—a— ll)ogglf[, which converges to (1—a) for large sample sizes n (assuming
log M — 00 as n — 00), meaning that we deduce a weak converse, and (3) gives
a lower bound on the risk (via (2)).

The remainder of the paper is organized as follows. In Section 2, we de-
rive a lower bound on €p; (Theorem 1) that strengthens Fano’s inequality. In
Section 2.1, we discuss related prior work. We then apply Theorem 1 to three
high-dimensional estimation problems, in each case showing the average error
probability ey — 1 as n — oo (strong converse). In each case, our method
replaces the Fano-based part of the argument which gives a weak converse. In
Section 3, we give a strong converse for a density estimation problem studied
by Yu [35]. In Section 4, we obtain strengthened risk lower bounds for active
learning of a binary classifier, following Castro and Nowak [10]. In Section 5, we
use Theorem 1 to improve (by a factor of nearly 8) lower bounds of Candeés and
Davenport [8] for the minimax mean-squared error in compressed sensing.

2. Lower bound on the Average Error Probability

We bound the average error probability €y in (3) using a different binary hy-
pothesis testing problem. Adopting the formalism of [23], we consider a random

variable S representing a message chosen uniformly at random from {1,..., M}.
The message S is acted on by the simple encoder that generates codeword
0 = s, giving an induced distribution 7y uniform over the set {61,...,0}.

We think of Y = (Y7,...,Y,,) as the output of a channel with input 6. Using
arguments from [23,32], we bound the desired average error probability of the
optimal decoder (3) in terms of the Type I error probability of the following
binary hypothesis testing problem:

Ho: (0,Y) ~ Qoy = mQvy (6)
Hy:(0,Y) ~ Pyy := mgPys, (7)

for some probability distribution @)y that does not depend on €. In other words,
we wish to determine whether # and Y are independent, or are generated by
the true underlying channel model. We assume that the measure )y dominates
Py\g, for 1 <i < M, and hence the Radon-Nikodym derivative ddi"fi exists.

The space of Y is denoted by ). Throughout the paper, we use boldface
notation to denote vectors of length n.

Theorem 1. Let €); denote the average error probability of any decoder over
channel Py\g, for a channel code with input distribution we uniform over the M
codewords {01,...,0r}. For any A > 0, and any distribution Qv over ) such
that Pyg, is absolutely continuous with respect to Qy for 1 <i < M,

1
T+X

M
M Z % exp ()\D1+>\(PY|01: HQY)) ’ (8)
i=1

ey > 1— N
(AM) T
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Here D11\ (Pyyq,||Qy) is the Rényi divergence of order (1 + ) defined as

1 dPy o \ T
D1+A(Py|gi|QY):>\log</y(dgj) dQY>. (9)

The proof uses the following lemma, itself proved in Appendix A.
Lemma 2.1. With the assumptions and notation of Theorem 1 we have for any

v>0
11 dP:
M> (1—6M—P@Y[d&'{">yb. (10)

Proof of Theorem 1. Writing I(-) for the indicator function, the probability in
(10) satisfies

Py [ so] - [ ZM 6=0) Gl T | G ) > 2] dax ()

M 1 4P AP
/ZM o H{dc;g() 7} dQx (y)
1 dP 1 dPyv o, A
/ZM dgf (7 dgfl (Y)) dQv (y) for A > 0. (11)

Using this bound (11) in Lemma 2.1, we have

. P 2
% > sup [1 - ST Z M/ ( dgxlfg ) dQY(y)l . -

~>0

Computing the maximum over v > 0 and rearranging, we get (8). O

Remark 2.1. As shown in the active learning example in Sec. 4, one can use
upper bounds for the Rényi divergence in (9) to obtain lower bounds for €.
Such upper bounds can found, for example, in [26, 27].

Remark 2.2. In Appendiz B, we show how Fano’s inequality in (5) can be
obtained from the lower bound on Theorem 1. Furthermore, the examples in the
next three sections show that Theorem 1 yields strictly better lower bounds than
the Fano-based approach.

Remark 2.3. If we assume that each Py\g, has a density py, (y) with respect to
a common reference measure u, then the choice of Qv that mazximizes the lower
bound in (8) has the following density with respect to u [22, 29]:

_1_

« 1 (& 142 "
¢y =5 | D370 ) :

i=1
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1

where the normalizing constant C' = [, (Zi\il +7 (Do, (y))l'*"\)ITA du(y). How-

ever, the bound in (8) is generally not computable with this choice of Qy. As
we will see in the following sections, the structure of the problem often suggests
a natural choice for Qy that yields a computable lower bound.

2.1. Related work

In [31, Proposition 2.2], Tsybakov gives a result similar to Lemma 2.1. This
result can then be used to obtain a lower bound on €j; using the average pairwise
x2-distance between q and the elements of the packing set [31, Theorem 2.6].
This bound is similar to the one obtained by using A = 1 in Theorem 1. In this
paper, we show that via two examples (active learning and compressed sensing)
that Theorem 1 can be applied with a general A > 0 to obtain stronger non-
asymptotic bounds. Furthermore, as n — oo, Theorem 1 gives a strong converse
(eapr — 1), unlike Fano’s inequality.

Birgé [5] gives stronger, but less transparent, bounds than Fano’s inequal-
ity using Fano-type arguments; again, €,; is bounded in terms of an average of
Kullback—Leibler divergences, but these are used as the argument for a function,
rather than directly substituted. Sason and Verdd [28, Section 3] recently de-
rived a generalized Fano’s inequality in terms of the Arimoto-Rényi conditional
entropy. They also obtained upper bounds on €j; in terms of the pairwise Rényi
divergences [28, Section 4].

Note that an alternative approach to hypothesis testing bounds, avoiding
the use of Fano’s inequality, is given by Assouad [2]. Indeed, [35] makes a de-
tailed comparison between Fano-based bounds and those coming from Assouad’s
Lemma [2], finding little practical difference. Indeed [35] quotes Birgé [4, p. 279]:
“[Fano] is in a sense more general because it applies in more general situations.
It could also replace Assouad’s Lemma in almost any practical case ...”.

Using Fano’s inequality, Yang and Barron [33] obtained order-optimal min-
imax risk lower bounds that depend only on global metric entropy features of
the underlying function class, without explicitly constructing a packing set. The
required metric entropy features (bounds on the packing number and covering
number) are available from results in approximation theory for many function
classes of interest. Guntuboyina [14] obtained a lower bound on the average
error probability in terms of general f-divergences, and also generalized the
metric entropy results of Yang and Barron [33] to certain f-divergences such as
the y2-divergence. An interesting direction for future work would be to obtain
a non-asymptotic result analogous to Theorem 1 for the case where only the
global metric entropy features are available.

An important historical remark is that Hayashi and Nagaoka [16] first linked
channel coding and binary hypothesis testing, with later work [15] by Hayashi
clarifying this approach and Nagaoka [21] using similar ideas to derive strong
converse results. The recent work by Vazquez-Vilar et al. [32] also provides
results characterizing the average error probability of channel coding in terms
of the Type I error of a binary hypothesis test. This link with channel coding
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has been used in other contexts to prove strong converse results, including [18],
which derived strong converse results for the group testing problem.

3. Application to density estimation

For the remainder of this paper, we show how Theorem 1 can be applied to a
number of high-dimensional estimation problems. In this section we apply The-
orem 1 to the following density estimation problem taken from Yu [35, Example
2, P.431]. Let F be the class of smooth densities on [0,1] such that for any
density 6 € F, we have

1
/ O(x)dx =1, ap < 0(z) < a1 < o, 10" ()] < a2, z€R,
0

for some positive constants ag, a1, as. The goal is to estimate the density 6 from
Y = (V3,...,Y,), where {Y;} are generated IID from 6. We want to bound from
below the risk of any estimator 6, =0, (Y), where the loss is measured using
squared Hellinger distance, i.e.,

d(6.,6,) = /01 (M— \/%de. (13)

The packing set in [35] is constructed via a hypercube class of densities defined
via small perturbations of the uniform density on [0,1]. Fix a smooth, bounded
function g(x) with

' = an 1 ) dr =a
| o@iz =0 ana [ (o) e o (14)

We partition the unit interval [0,1] into m subintervals of length 1/m, and
perturb the uniform density on each subinterval by a small amount, proportional
to a version of g rescaled and translated to lie on that subinterval. That is, for
some sufficiently small fixed constant ¢, we can define the functions

) g
gj(x)ZT;g(mx—j)H<1‘;§x<j:1), forj=0,....,m—1. (15)

Considering perturbations of the uniform density by +{g;}, define the following
hypercube class of joint densities indexed by T = (71,...,7m) € {£1}™:

m—1
My = f() =1+ 79,(y) ¢ - (16)
j=0

The bandwidth parameter m will be chosen later as an increasing function of
n, to optimize the risk lower bound.
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Remark 3.1 (Packing set construction). [35, Lemma 4] There exists a subset
A C {—1,1}™ of size M > exp(com), where ¢y ~ 0.082, whose elements have
minimum pairwise Hamming distance at least m/3. It is then shown in [35] that
this results in a packing set of densities

PM’%Z{fT:TGA}QMm,

where ac®/(3m*) is a lower bound on the squared Hellinger distance (see (13))
between distinct densities in the packing set. Here a is defined in (14), and ¢ is
defined in (15). We use exactly this packing set Pit,ac2 /(3m#) as the set of M
codewords {01,...,0p} in Theorem 1.

We now use Theorem 1 to bound the risk. To do this, we first state an explicit
bound (to be proved in Appendix C) on the bracketed term in (8), for A = 1.

Lemma 3.1. Taking Qv to be the uniform measure on [0,1]" and identifying
each dg‘el with a density f2(y) = [lie; fr(yi) for 7 € A, with A\ = 1, the
bracketed term in (8) becomes:

dPyp, %_ 1 .
l M/ ( T ) dQy (y )1 = [ZM o ff(y)zdy]

TEA

can
< exp omd |

Combining Lemma 3.1 with Theorem 1, we deduce the following lower bound.

1
2

Proposition 3.2. For any positive constant v < (co/(c?a))'/®, the risk of any
estimator 0, satisfies

R 2.4
sup Ed(0,,0) > 0~/ ey, (17)
oeF 6
where
nl/5
e >1—2exp ( 5 (co— 1/502a)) . (18)
v

Therefore, for large n we have

N 4/5 1/5
sup Ed(0,,,0) > Mn_‘lﬁ(l —o(1)). (19)
0eF 6

Proof. We apply Theorem 1 by setting the minimum distance ac?/(3m?) of the
packing set in Remark 3.1 to 2A44,,. Taking A = 1, we obtain 1, = c?a/(6m?).
Taking w to be the identity in (4), we deduce

. a
Injax Ed(9,6;) > Ynenm = -~ EM-
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Taking A = 1 in Theorem 1 and using Lemma 3.1, we bound €, as

- 2 can (;) 1—9 ( Com> can
- e — —2exp|(———)e
M= VM Aot ) = P 2 P ot )

where (a) is obtained using the fact that the packing set of densities Pas qc2 /(3m4)
has size M > exp(com), as described in Remark 3.1 above. We therefore have

. c2a m can
max Ed(6,6;) > Y {1 —2exp (—2 <co T ))} . (20)

J

The result (17) follows by taking m = n'/®/v.
To obtain the asymptotic bound in (19), we take v to approach (co/(c?a))'/®
as n — 0o, but slowly enough that ensure that the exponent on the RHS of (18)

is negative so that ej; tends to 1. For example, we can take v = (C%—Ua)l/s (1-

n~%) for k > 25. O

Remark 3.2. The paper [35] derives Fano-type bounds in this setting: combin-
ing Lemmas 3 and 5 of [35] and taking taking m = n'/% /v gives the same bound
s (17), but with a looser lower bound on €y given by

1 [ 2c2av® log 2
>(1l—-——+—==]]. 21
oz (-5 (G ) e
) o 1—c 1/5
For the bound (21) to be meaningful, we need v < (ﬁ 5 g) , where ¢qg =

csup, |g(z)|. The scaling factor ¢ has to be chosen so that cg < 1.

Thus Proposition 3.2 provides a strong converse (error probability tending
to 1), whereas the result (21) extracted from [35] gives a weak converse (error
probability bounded away from 0). Our bound also offers greater flexibility in
choosing v and removes the need to control cg.

Remark 3.3. Theorem 1 can similarly be applied to obtain strong converses for
estimating densities belonging to either Hélder or Sobolev classes, strengthening
the risk lower bounds described in [31, Sec. 2.6.1]

4. Application to active learning of a classifier

In this section, we use Theorem 1 to derive strengthened minimax lower bounds
for active learning algorithms for a family of classification problems introduced
by Castro and Nowak [10] (see also [30]). We use the explicit packing set con-
struction of [10], but modify their notation for consistency.

Consider data of the form Y = (U, V) = (U1, V1), ..., (Us, Vi)). Each pair
(U, V;) consists of a feature vector U, € R? (where we assume d > 2) and a
binary label V,. € {0,1}, and is drawn independently from an underlying joint
distribution Pyy = Py Py . The goal of classification is to predict the value of
label V', given a future U observation. This is done via G, a measurable subset of
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R?. Given a U € R?, the classifier estimates its label as V := V(U) := I(U € G).
The risk of a classifier is the probability of classification error, given by

R(G)=P(V#V)=PIU € G) #V),

where (U, V) ~ Pyy. It is well-known (see [30]) that, given knowledge of Pyy,
the Bayes-optimal classifier is

G = {ue R yu) > 1/2},

where the feature conditional probability 7(u) = Py (1|u). As Pyy is unknown,

our goal is to estimate G* from data Y. The performance of classifier én is
measured by excess risk (or regret) [10, Eq. (1)]

RG)~RE) = [ o) =1]dPyta)

where A represents the symmetric difference between sets. For the remainder
of this section, as in [10], we will assume that Py is supported on [0, 1]¢. Tt
is clear that the difficulty of a classification problem will depend on both the
shape of the boundary of G* and the behaviour of (2n(u) — 1) for u close to this
boundary. We consider the class of joint distribution functions BF(«, &, L, ¢),
defined formally in [10, Section IV]. For our purposes it suffices to understand
this class as a set of distributions Py such that:

1. The boundary of G* can be expressed as an a-Hoélder smooth function
with constant L.

2. The value of [n(u) —1/2| is at least cD*~! for points u at distance D from
the boundary, where k > 1.

Algorithms that attempt to learn the Bayes-optimal classifier G* from data
are categorized as passive or active. Passive learning algorithms aim to learn
G* from a pre-specified, possibly random, choice of (Us,...,U,) and the cor-
responding labels (V1,...,V;,). In contrast, active learning algorithms choose
each U, based on previous values (U, V), := (Uy,...,U,—1,V1,...,Vi_1). This
allows us to adaptively probe the boundary of G*. A (randomized) active learn-
ing algorithm is defined by a sequence of conditional distributions PUT|(U7V); =
Py ... U1 i,....V._1), Which defines the joint distribution as follows:

n
Pov = H Po,jw vz Py, (22)
r=1
where Py, |y, = Pyy; in particular, conditioned on U, label V. is indepen-

dent of (Uy,...,U,—1). We assume that for each r, the conditional distribu-
tion PUT| AU has a density P, UV ; with respect to Lebesgue measure on

[0,1]¢. Note that active learning algorithms correspond to channel coding with
feedback, and to adaptive group testing algorithms [18]. Passive learning corre-
sponds to channel coding without feedback, and to non-adaptive group testing
algorithms.
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We provide lower bounds on the excess risk of active learning algorithms
that strengthen those in [10, Theorem 3], but our techniques can also be ap-
plied to [10, Theorem 4], which applies in the passive case. We use the packing
set constructed in [10], which is defined via a hypercube class of joint distribu-
tions on (U, V). Fix an integer m (to be chosen later as a function of n). For
cach vector 7 € {0,1}™""", Castro and Nowak [10, Appendix C] construct a
unique distribution of (U, V') whose feature conditional probability is denoted
by 7-(u), and the corresponding Bayes classifier is denoted by Gi%. We denote
this hypercube class of 2m“"" distributions by F... Each distribution in F,, has
the same U-marginal Py. Thus the joint distribution is determined by the con-
ditional distribution Py ;. The conditional distributions in 7, (equivalently,

the feature conditional probabilities 7, (u) for each 7 € {0, l}mdfl) are not
explicitly defined here, but the definition can be found in the displayed equa-
tion at the foot of [10, p.2350]. The definition ensures that the hypercube class
Fm C BF(a, ks, L, c).

The packing set defined in [10, Appendix C] is a subset of distributions in
Fon-

Remark 4.1 (Packing set construction). [10, Lemma 2] There exists a subset
A C {0, 1}7"11_1 of size M +1 with M > 2md_1/8, whose elements have minimum
pairwise Hamming distance at least m®=1/8. It is then shown in [10] that this
results in a packing set of functions Pyri1.8,,/8 = {nr : T € A}, where B, =
LHm™, and n-(1lu) = Pyy(u). (Hence 1 — n.(u) = Pyy(0u).) Here 3,,/8
is a lower bound on the set distance between distinct elements of Prri1,,, /8,

defined as
1a(G3.Gy) = [T (G3AG3)) du, (23)

and H = ||h||, is the norm of a suitable smooth function h.

Furthermore, Prri1,5,,/8 contains the function no, corresponding to the point
7 =1(0,0,...,0) in the hypercube. We use the other M functions in the packing
set Pary1,8,,/8 to act as the M codewords {01, . ..,0x} in Theorem 1. The Bayes
classifiers corresponding to these codewords are denoted by G7,...,G}y;.

As in Section 3, we prove an explicit bound on the bracketed term (8) in
Theorem 1, with (u, v) corresponding to y in (8).
Lemma 4.1. For an active learning algorithm described by []'_, P(U.|(U,V);"),
we take Qu,v (U, V) := H?:1 PU[(U,V);) H?:1 Po(V;|Uy), where Po(V;|U;)
is the conditional probability mass function determined by ng which corresponds
to the point T = (0,0,...,0) in the hypercube.

Further, for each T € A and T # 0, we can take

n

Pr(U, V)= HP(UT‘(U7 V):) H Pr(V:|U,),

r=1 r=1

where Pr(V,.|U,.) is the conditional probability mass function determined by 1.
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Then, for any A > 0, the bracketed term in (8) satisfies

> ik,

TEA ‘r;éO <

16¢ 262(5 1) ’I’L)

14+

(u,v
dQU v
(24)
where for brevity we write an integral to represent integration and summation
over the product space Y,, = [0,1]*" @ {0,1}", and B,, = LHm™® as defined
in Remark 4.1.

Proof. See Appendix D. O
Combining Lemma 4.1 with Theorem 1, we deduce the following lower bound.

Proposition 4.2. Let p = (d—1)/«. For any positive constant v, the risk of a
classifier G, learnt via any active learning algorithm satisfies

) n" T ey,  (25)

s {BIRG.) - RGN | 2 »

Pyv eBF(a,k,L,c)

4ev™® (LH
K

where
1+A —AnT= (log2  16¢2(LH)2r2yd-1+2a(s—1)
ey > 1————=exp — .
PRVACE Y (14 X)pd-1 8 1 —2cLHn~Y/(2s=2+4p) /i
(26)
Therefore, for large n we have
s {EIRG,)] - RG}
Pyv EeBF(a,k,L,c)
o (27)
4c log2 \ 2=-2%¢ ) =
— LH)z==2+ 2x=277 (1 — 0(1)).
K 32" (128c2> (L) 91 " (1=o(1))

Proof. Consider the M codewords chosen from the packing set Pari1 3, /8, as
described in Remark 4.1, with corresponding Bayes classifiers G7,...,G}; - The
minimum pairwise set distance between these Bayes classifiers is at least 3,,/8.
Equating the minimum distance of the packing set given by 2A41,, (in Theorem
1) to Bm/8, taking A =1 we obtain 1, = 8, /16 = LHm~*/16.

Using Lemma 4.1 in Theorem 1, for any A > 0 the average error probability
ep can be bounded from below as

T+XA 16262 U
>1— ————MNOFD 28
M= 2T NN CP\ T 2080 1 ) (28)

(@) 1+ A [16e2675 Y 4-1]og 2
i P b n_mT7log2)) g
AN (1+X) T+A\ (1—2¢6m) 8
where inequality (a) is obtained using the fact that packing set of distributions
Prit1,8,,/8 has M > 2md71/8, as described in Remark 4.1 above.
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Now, consider any distribution Pyy € BF(q, &, L, ¢) with Bayes classifier G*.
It is shown in [10, p.2351] that the event

{486 G") 2 0} = {R(@n) ~ R(G*) > min (jc g,wn) } .

Defining f (1) := min (;‘;N %), we therefore obtain the following chain of
inequalities:

) ~
e < sup P (dA(Gn,G*) > z/Jn)
PUVeBF(a,H,L,C)

< swp o P(R(@G) - RG) 2 f(wn)

Pyv €BF(a,k,L,c)

E[R(Gy)] — R(G*)
= PUVEBSIF(E,R,L,C) f(wn) ’

where inequality (b) follows from (3). Hence, using ¢, = LHm /16, we have!
sup E[R(Gn)] - R(G")
Pyv eBF(a,k,L,c)

_dc (LHm *\"
w3 )N

S de (LHm™" " 1 1+ A o A 160271&271('{_1) - m~1log?2

=% U 32 WA P TN T 2680) 8 ’
where the last inequality is obtained using (28). The result follows by taking
m = nm/u.

To obtain (27), we choose the supremum of v such that ey — 1 as n — oo
in order to obtain the largest possible prefactor in (4). O

Remark 4.2. The paper [10] derives Fano-type bounds in this setting: in par-
ticular, taking m = nm/u, the computation in p.2351 of [10] together
with Theorem 6 of that paper gives the same bound as (25), but with a looser
lower bound on €p; given by

325Vd_1 _ Pl
> (126 — |22 ates 30
€M > 13 log 2 n ) (30)

where £ = %CQ(LH)Q’“QV. For the bound (30) to be meaningful, we need

& < %, which implies v < log 2

B2 (LH)Z"=2 - Again, Proposition 4.2 provides a
strong converse, while (30) provides a weak one (epr bounded away from zero).

TAs m > 1 and k > 1, we assume for brevity that f(iyn) = :QCN . This is always true
for sufficiently large m when k > 1. However, if Kk = 1 and ¢ > %, then f(¥n) = ¥n; however,
the definition of ¢ in [10, Eq. (9)] implies that ¢ can be restricted to (0, %} without loss of

generality.
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5. Application to compressed sensing

We now describe how Theorem 1 can give improved risk lower bounds in com-
pressed sensing. The goal in compressed sensing is to estimate a sparse vector
x € R™ from a measurement y € R™ of the form

y=Ax+w. (31)

Here A € R™*" is the (known) measurement matrix, and w ~ N(0,0%1,,) is
the noise vector. Throughout this section ||x| denotes the Ly Euclidean norm
of a vector x, and ||A|p denotes the Frobenius norm of a matrix A, defined
by ||A||? =Tr (ATA). We assume that the signal x is k-sparse, by considering
X € X, where

Ypi={xeR":||x]jo <k, |x]| =1}.

In the pioneering works [6,9, 12] of Candes, Donoho, Romberg, and Tao,
among others, it was shown that under suitable assumptions on A and the
sparsity level k, the signal could be efficiently estimated to a high degree of
accuracy, even when m < n. For example, when A satisfies the Restricted
Isometry Property [7], reconstruction techniques based on minimizing the L,
norm produce an estimate X which satisfies

1 ko?
= Jlx — &]|* < o™ logn
n m

with high probability, provided that m is of order at least klog(n/k) [3]. (Cy is
a universal positive constant.)

To complement these achievability results, several authors, e.g., [1,8,25,34]
have derived lower bounds on the minimax risk under various assumptions on
A and x. The minimax risk is defined as

X erk

M*(A) := inf sup E E I%(y) — xﬂ , (32)

We show how Theorem 1 can be used to obtain a strong converse, improving by
a constant factor the lower bound on M*(A) obtained using Fano’s inequality
by Candes and Davenport in [8]. Using the probabilistic method, [8] shows the
existence of a packing set of well-separated vectors in ¥j. To be specific:

Remark 5.1 (Packing set construction). /8, Lemma 2] There exists a subset
X C Xy, of size M := |X| = (n/k)*/* whose elements u; satisfy

2
1. ||l =1.
2. Jju; — uj||2 > 1 forall1 <i,j <M such that i # j.
3. Hﬁzlﬂil wul — %IH < B/n. Here § is a constant that can be made
op

arbitrarily small with growing n.
The set X gives a packing set PM_C/\@ :={01,...,0m} of codewords with min-
imum distance ||60; — 0;| > %, simply by taking 0; = Cu;, where the value of
C will be specified later.
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In fact, we consider a subset of the packing set PM7C Nt defined as follows:
Lemma 5.1. Let 6y € [17,1 — 3], where M = (n/k)*/*. Then there exists a
subset Pypr o5 © Parcyya such that M':= [y M and

All7c?(1
97;67:'1»1/10/\/5 n(l — 5]W)

Proof. We first bound the average over the packing set PM,C /73 given by
= Zf\il | A6;|%. Using steps similar to those in [8, p.320], we have

— ) AP = =) Tr(Ag:0]AT)
M i=1 M =1

| M
_ T T
=Tr ((A A) ZE=1 0,0; >

(@)

A [ €7 S
< — u;
< Tr (A A) 7 ;uluZ
() 148
< a2t (33)

In the above chain, step (a) holds because both (ATA) and Zf\il uwul’ /M are
positive semi-definite. Step (b) is obtained using Property 3 of the packing set
as defined in Remark 5.1.

We use the fact that if the average of M non-negative numbers ¢; < cg... <
cym is ¢, then ¢; < w, for 1 < j < M (because otherwise the sum of
the (M — j + 1) largest numbers will exceed Mc¢). The result then follows by
picking M’ elements of Py, -, /5 in increasing order of |A6]]?, and calling this

set Pyp o N2 O
As we restrict attention to the subset P,,, ) in the rest of this section,
with mild abuse of notation, let us denote its elements by {61,...,60x}. Also,

let ¢(y;m,3) denote the normal density in R™ with mean vector m and co-
variance matrix 3. Then, with u denoting the Lebesgue measure on ), from
the measurement model (31), for any 6; we have

dPY‘ei . 2 s AT 2
) = 85 Ab 0L = 11 ¢w:; AT, 0%, (34)

r=1

where the rth row of A is denoted by A € R™. Further, we choose

%(y) = 6(y;0,0°Ln) = [ ] 6(4:50.0%), (35)

r=1

and prove the following bound for the integral in (8).
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Lemma 5.2. Let Pyjg, and Qvy given by (34) and (35), respectively. Then for

any A >0,
dPy/y, 1A A1+ A
[ (Gakm)  aox) e (M 1a0r). o)

Hence, the bracketed term in (8) can be bounded by

L[ (AP N AL+ ) AR C2(1+ 8)
iz:; J\J’/y ( dQvy (Y)> dQx(y) < exp ( 202 nl(ml — ) '

(37)

Proof. See Appendix E. O
Combining Lemma 5.2 with Theorem 1, we deduce the following lower bound.

Proposition 5.3. For any A >0, A € (0,1), and M = (n/k)*/*, we have

() = inf sup E [ L x(y) — x|

X ey

38
- o? <k:10 n 1) (1—-A) (38)
——(=log—-—1) —————e€u,
SaaE \a e aena s
where AR
log M)M~4
e >1— (142 (“’g;) . (39)
Therefore, for large n we have
o? k n
MH(A) > 7 (log) (1-o(1)). (40)
A AlE \ 4T
Proof. To apply Theorem 1, we equate the minimum distance C/v/2 of the
packing subset P;W c/v3 to 2A41),,. Taking A = 1 gives ¢,, = % Then, taking

w(t) = t?, we deduce that

C 2
inf sup E ||x(y) —x|*| > ( —= .
inf sup {HX(Y) x| } > (2\/§> €M

We can bound €p; by using (37) of Lemma 5.2 in Theorem 1:
1+ AJAEC?(1+ B)
>1-
M= ()\M/))\/(l"")\) o 2no2(1 — dar)

(1+X) [A[ZC?(1+B) log M
>1- Y _
= (Adar) N exp | A mo2(1—0y) 1+ A
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Hence for any fixed A we obtain (38) and (39) by choosing
o2 2no2(1 — §pr) log M
1A (1+B)(1+X)

with dpr = 1/log M and A € (0,1). To obtain (40), we recall from Remark 5.1
that 8 can be chosen arbitrarily small as n — oco. Furthermore, A\, A can also
be arranged to go 0 (at suitably slow rates) as n — oo. O

(1 - A)a

Remark 5.2. The paper [8] uses Fano’s inequality to derive the following bound:

0.2

n
> log—2).
32| All: (1+5) <4 k

Comparing with Proposition 5.3, we see that our result improves the bound by a
factor close to 8 for large n.

M*(A)

Appendix A: Proof of Lemma 2.1

For (X,Y) € X x) consider hypotheses Hy : (X,Y)~ Qand H, : (X,Y) ~ P,
where we assume that P < @ so that the Radon-Nikodym derivative % exists.

The following lemma can be found in [24, Lemma 12.2] (also [23, eq. (102)]).

Lemma A.1. For any randomized test T to distinguish between the above hy-
potheses, and v > 0, we have

ar } . (41)

P[Tzl]—vQ[T:1}<P[dQ>w

We note that the maximum of the left hand side of (41) (over all all tests T')
is the E., divergence [19,27]. We use (41) to complete the proof of Lemma 2.1:

Proof of Lemma 2.1. As in [23, Theorem 26], let e5; and €}, denote the average
error probabilities over channels Py|g and Qy|s = Qv, respectively, for a chan-
nel code with M equiprobable codewords. Given (6,Y), the result [23, Theorem
26] describes a (sub-optimal) hypothesis test based on the channel decoder to
distinguish between Hy : (0,Y) ~ Qpy = m9Qvy and Hy : (0,Y) ~ Ppy =
mgPy 9. Let T' € {0,1} denote the output of this test. It is shown in the proof
of that theorem that the probability of Type I error, i.e., Q[T = 1] is 1 — €},
and the probability of type II error, i.e., P[T = 0] = €)s. Applying Lemma A.1
to this hypothesis test yields that for any v > 0,

1 dP

We observe that when Qy|p = Qvy, any channel decoder has average error

probability €}, = % The result in (10) follows by substituting this value for

€y in (42). O



Venkataramanan € Johnson/A strong converse bound for multiple hypothesis testing 18
Appendix B: Recovering Fano’s Inequality from Theorem 1

Here we show how to obtain Fano’s inequality from Theorem 1. We first establish
a general converse result involving mutual information (equation (48)), and then
obtain Fano’s inequality from it.

From the variational representation in (12), for any A, > 0 we have

1 1—¢ dP 1+
v 1+AZM/(d5lfY> )

- _;M) - 71“ (AHia(Poy||Qov) + 1), (43)

Y

A
where H1 42 (P||Q) := 1 [ ( ( ) 1) d@ is the Hellinger divergence of order

(1+X) from distribution P to distribution Q. We note from (9) that the Rényi
and Hellinger divergences of order (14 \) are invertible functions of one another.
We use the following bound [27, Theorem 8] for the Hellinger divergence:

Hia(PIQ) < 5(\8D(P]Q), (44)
where

A+t — (14 )t
Atlogt+1—1t)
(45)

dpP
t := esssup @(I,y), for (z,y) ~Q and k(A t) =

We choose
M

— 1
Qv=Py=)_ VAR LR (46)
j=1

With this Qy, we have that ¢ < M since Py(A) > M~'Pyg,(A) for all mea-
surable sets A. We also have

M
1 _
D(Pyy||Qov) = 1(6;Y) Z —D(Pyyg, || Py). (47)
=1
Substituting in (44) and then in (43), we obtain

1 (1—€M) 1
MZ v _,),1+,\(

A BI(0;Y) +1).

Maximizing over v > 0 yields

1+1/2
M < (I+X)

= A1 —ex) /A (N I(0;Y) + 1)V

Taking logs, for any A > 0 we have

log M < (142 ) 1og 22 “log A+ Llog(1 + (A BI0:Y)),  (48)
A 1—6M A
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where

A4+t — (14 )t - tA

c(A\t) = Au(A 1) = tlogt+1—t ~ logt—1

if t > e, (49)

where the final inequality follows by direct comparison.
Hence, for a fixed A > 0 and M > 3, using (49) and ¢ < M in (48) gives

14+ A A 1(0;Y)
<1+ M1 — Al +1 M~ ———|.
0<( A) og1 p Alog A og( vy —
Or,
)\)\(1 6M)1+)\ N 1
<14 1(6; -~ = M~ )
logM <1 I(@,Y)( L+ NI M > (50)

Finally, noting that A can be chosen arbitrarily small, choose A = 1/(log M)*
for some « € (0,1) in (50). We therefore have

1(0;Y)

— €M

logM <1+ (14 0(1)).

Using the expression for I(0;Y) in (47) and rearranging, we get

1 M
LS M pp, ||P
eMZl—M%;gM(_i )(1 o(1)),

where o(1) denotes a term that goes to zero with growing M. We have thus
recovered Fano’s inequality in (5) to within o(1) terms.

Appendix C: Proof of Lemma 3.1

. . . dPy o,
Proof of Lemma 3.1. Since Qv is the uniform measure and each % corre-

sponds to an f7, for each value of i, we can express the relevant integral as

_/y (djgf (Y)>2dQY(Y) = /[071]n fﬁ(y)2dy _ (/01 fT(y)2dy>n, (51)

For any 7 we can express the bracketed term on the RHS of (51) as

2

1 1 m—1
/ ff(y)zdy:/ 1+ 795(w) | dy
0 0 =0
m—1 1 m—1m—1 1
=142 Tj/ gy + Y > Tka/ 95 (W) gk (y)dy
=0 Jo j=0 k=0 0
(a) c2a

(52)
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Here equality (a) is obtained from (14) and (15) since g;(y)gx(y) = 0 for j # k,

and
1 G+1/ c ! du
/0 m/ g(my — j)dy mQ/o g(u)— =0,

(G+1)/m P du  c*a
)2dy = — )3dy = — 207 )
/Ogg y= / g(my — j) dy m4/0 gl = —

The result follows on substituting (52) into (51) and using (1 4 z)" < exp(an)
for any = € R. O

Appendix D: Proof of Lemma 4.1

Proof of Lemma 4.1. We can express the key ratio on the LHS of (24) as

P, dP; Pr(V,|U,)
U, v
dQU7V( V)= dP (V2[Tr) H Po(V,|U,)

We note that dPy(V,|U,) = PO(VT|UT)d1/(VT), where v represents the counting
measure on {0,1}. Then, using (53) we write the integral in (24) as

1+
“ dP,
/yn (r_ldpo(vru,,)> HdP | (u, u); HdPg (vp|uy)

r=1

— 1+
— /y H (dPO ’Ur|ur)> |: :| HdP ur| u u HdPO Ur|ur

r=1

(53)

where the inner integral I,, can be written as

- e ()]0 e )] o
I = /[0,1]d( [Uo(un)}’\ + [1,7’0(,&”)})\ )dPUnl(U,V)n( n|( ) )n)

:/[0 y exp (AD1gx (Pr(un)|[Po(-1un))) APy |7 vyz (Unl(u,v),),  (54)

where we use the fact that the Rényi divergence of order (1 + A) between two
Bernoulli random variables with parameters 7, (u,) and 1o (u,,), respectively, is

Y N m(w)]”*)
[0 () [1 =m0 (un)]*

Recalling that 3,, = LHm ™% and u,, € [0,1]%, let us denote the dth coordinate
of up, by up, 4. The construction of the hypercube class of functions F,, in [10,

mﬂwwwnmﬂm=im(

p-2350] ensures that for any 7,7’ € {0, 1}7"(1717 the following properties hold.
Nr(Un) = N (Un), B < Unag <1, (55)

1
5 —cfm < nr(un) < 5 +cBm, 0<Z Un,d < Bm, (56)

1 (tn) = 1 (un)| < 206;_1= Yuy, € [0, 1]d~ (57)
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We now use the following bound on the Rényi divergence due to Verdud and
Sason [26, Theorem 3] for uy g < B

242
D P‘r | Un P |Un S 1 ]- . ’

where § := |n-(un) — no(uy,)| is the total variation distance between Pr(-|uy,)
and Py(-|uy). Using (57) for an upper bound on 4, and (56) for a lower bound
on the minimum of Py(+|u,), we have from (58),

2(k—1)
Dy (Pr(un) | Po(-lun)) < log (1 < B ) .
2 Cﬁm

Substituting this bound in (54) to bound I,,, we obtain using 1 + z < e* that

2(k—1) 2 n2(k—1)
1 m
< (12 808m = 5 < oxp [ 106 Bm_AY
— cBm 1—2c6,,
The result follows by induction on n. O

Appendix E: Proof of Lemma 5.2

Recall from (34) and (35) that we take dPp,(y|0;) = [T~ #(y,; AL6;,0%) and
dQy (v) = [I;L; ¢(yr; 0, 0%).

Proof of Lemma 5.2. For any A > 0, we have
dPyjp, )1 / (yr; ALO;, 0%)]
27 X0 d dy,
/y < d0y ) Qv (y H o000 W
(a) A14+A) 2
= H exp (%2 (A70:)

M1+ A
— o (2G5 1a01?).

The equality in step (a) is obtained by completing the square inside an expo-
nential, and recognizing the remaining term as a multiple of a normal density.

To obtain (37), we use Lemma 5.1 to bound [|A6,]|> on the RHS of (36) for
cach 0; € PM’,C/\/E' O
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