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Abstract

A recurring theme in the study of society is the concentration of influence and power

that is driven through unequal membership of groups and associations. In some instances

these bodies constitute a small world while in others they are fragmented into distinct

cliques. This paper presents a new model of clubs and networks to understand the

sources of individual marginalization and the origins of different club networks.

In our model, individuals seek to become members of clubs while clubs wish to have

members. Club value is increasing in its size and in the strength of ties with other clubs.

We show that a stable membership profile exhibits marginalization of individuals and

that this is generally not welfare maximizing. Our second result shows that if returns

from strength of ties are convex (concave) then stable memberships support fragmented

networks with strong ties (small worlds held together by weak ties).

We illustrate the value of these theoretical results through case studies of inter-locking

directorates and boards of editors of journals.
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1 Introduction

Economists study group formation using the theory of coalitions/clubs and the theory of

network formation. In the coalitions approach individual payoffs are defined on the partition of

players into mutually exclusive groups and in the networks literature individuals can join any

number of groups but each of the groups is of size 2. However, in some important instances –

examples include inter-locking directorates and boards of editors of journals – groups have sizes

larger than 2 and individuals typically join multiple groups. Importantly, the productivity of

a group depends on both its size and how it is connected to other groups through overlapping

memberships. In these contexts, a major concern is that a few individuals take up most

memberships while everyone else is left out thereby giving rise to a very unequal distribution

of payoffs.1 A second and related concern is that groups may be fragmented into cliques when

a few individuals join them and that this may undermine openness and the performance of

the system as a whole. Our paper proposes a new model of clubs and networks to examine

these concerns.2

In our model, individuals seek to become members of clubs while clubs wish to have

members. Clubs have capacity constraints (due to congestion effects) and individuals can

only join up to a certain number of clubs (due to time limitations). Links between two clubs

arise when an individual joins both clubs. The value of joining a club is increasing in the

number of members (until the capacity is reached) and it may be increasing or decreasing

in the strength of ties with other clubs. Individual utility is increasing in the sum of the

productivity of the clubs they join. We define a notion of stable memberships that takes into

account the incentives of individuals and clubs. Our interest is in understanding patterns of

individual memberships and on the network of connections across clubs.

The main body of the analysis focuses on a setting where club value is increasing in

link strength: in this case, a club prefers individuals who are members of more clubs and

an individual prefers a club that links with more clubs. We show that stable outcomes

exhibit a strong marginalization property: when club capacity is the binding constraint, a few

individuals exhaust their membership capacity, while all others join no clubs; when individual

availability is the binding constraint, a few clubs are fully occupied while all others go empty.3

1 Durlauf and Young (2004) present an influential account of the groups based perspective on inequality
and poverty. In Section 6 we present case studies on a number of empirical contexts.

2 There is a small set of papers that allow for membership of multiple groups, e.g. Page and Wooders
(2010) and Fershtman and Persitz (2021); we discuss these papers in detail later in the introduction after
presenting our model and results.

3 For concreteness suppose that the number of individuals is 8, the number of clubs is 4, every individual
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We next show that this marginalization is not always in line with efficiency: when individual

utility is strongly concave, this marginalization is inefficient. Similarly, when club productivity

is a concave function of membership size, the marginalization of clubs is inefficient. Thus,

incentives of individuals and clubs and the collective interest are generally not aligned.

We then study the network of connections among the clubs. When the returns to link

strength are linear, the distribution of link strength across clubs is not important for the

productivity of clubs: as a result, a variety of club networks are stable. In applications,

however, the marginal returns from link strength are likely to be non-linear. For instance, in

case club links are used for information sharing, we would expect marginal returns to decline

with link strength. On the other hand, if links help members coordinate activities of the clubs

then the marginal returns may be increasing in link strength. We show that if the marginal

returns from link strength are increasing, i.e., they are convex, then incentives of clubs and

individuals push towards disconnected cliques of clubs with full strength links. If, on the other

hand, the marginal returns from link strength are decreasing, i.e., they are concave, then the

club network entails larger components that are held together by weak links.4

We also consider a setting where club value is decreasing in link strength with other clubs:

a club prefers individuals who are not members of other clubs. In this setting, when club

capacity is the binding constraint, stable outcomes entail isolated clubs. On the other hand, if

individual availability is the binding constraint then clubs may be obliged to accept individuals

who are also members of other clubs.

We check the robustness of our results with three extensions. We show that a strengthening

of the solution concept from stability to strong stability does not affect our main results on

marginalization. We then allow for heterogeneity across individuals in their productivity

and we show that this may help select individuals for clubs but that it does not alter the

marginalization property of stable outcomes. Finally, we extend the model by letting the

benefits clubs receive from links depend on the sizes of their neighbouring clubs. We show

can join up to 4 clubs and every club has capacity 4. The total club capacity is 16, so in principle every
individual could belong to 2 clubs each. We will say that a membership profile exhibits marginalization
when 4 individuals become members of 4 clubs each while the other four individuals are completely left
out.

4 For concreteness suppose that the number of individuals is 16, the number of clubs is 6, every individual
can join up to 2 clubs and every club has capacity 5. If returns are convex in link strength then the unique
club-efficient and stable outcome is three cliques of two clubs each, and the links have maximal strength
with 5 common members. If returns are concave in link strength then the unique club-efficient and stable
membership profile is a connected network where every club has a link with one common member with
every other club. These networks of clubs are illustrated in Figure 5 in Section 4 below).
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that our main insights concerning marginalization are robust to this generalization.

The theoretical analysis is complemented with case studies on inter-locking directorates and

editorial boards of journals. There is a large and distinguished body of work on inter-locking

directorates, see e.g., Brandeis (1915), Brandeis (2009), Mizruchi (1996), Levine (1977), Useem

(1984), and Davis, Yoo and Baker (2003); for a recent networks perspective on this literature

see Kogut (2012). This literature argues that a major function of boards is to encourage best

practices and that this is facilitated when a board member also has ties with other firms’

boards. If information sharing is important then it is reasonable to suppose that the marginal

returns from the strength of links are declining. In this setting, the theory predicts that the

stable (and efficient) club network will contain weak ties and exhibit high connectivity. This

is in line with the empirical evidence: Baker, Davis and Yoo (2001) and Kogut (2012) show

that inter-locking directorates exhibit a small-world property – weak ties form the basis for a

large connected network.5

Our second case study pertains to editorial boards of journals. We draw on the work of

Ductor and Visser (2021) to study the membership of authors in these boards and the con-

nections between boards defined by common editors. There exists very significant inequality

in editorial memberships: a very small fraction of authors become editors. Moreover, most

editors serve only on one or two boards, but there exists a core group of editors who serve on

4 or more journals. The network of the editorial boards is held together with (mostly) weak

links. These patterns are consistent with our theoretical predictions on marginalization and

on club networks (in the presence of concave returns from link strength).

There is a voluminous literature on coalitions and networks; for surveys of this work see

e.g., Demange and Wooders (2005), Bloch and Dutta (2012), Bramoullé, Galeotti and Rogers

(2016) and Goyal (2022). Our model draws on the theory of clubs and the theory of networks

to explain phenomena such as marginalization, the small world of interlocking directorates,

and power elites. Specifically, we combine the ideas of congestion and capacity constraints

5 The work on inter-locking directorates is also related to a more general study of elites and power structures
in sociology. In the nineteenth century, the Italian school of sociology proposed a theory of elites defined in
terms of the membership of the top echelons of different – government and non-government – organizations
(Pakulski (2018)). Building on this tradition, in his well-known study of mid-twentieth-century American
society, Wright Mills (1956) argued that the power to make major decisions was highly concentrated: a
very small group of individuals moved between the top levels of the Federal government, a few hundred
largest corporations, and the military. He referred to these individuals as the power Elite. Similar claims
have been made about the concentration of power and influence in other societies. For an overview of the
theory of elites, see Bottomore (1993), and for a critique of theories of elite power and control, see Dahl
(1958). Our model and case studies draw attention to economic forces that push toward concentration of
power in modern society.
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from club theory (Buchanan, 1965; Cornes, 1996; Demange and Wooders, 2005) with the ideas

of multiple memberships and returns from links from the theory of networks (Bala and Goyal,

2000; Jackson and Wolinsky, 1996; Bloch and Dutta, 2012). We now discuss two earlier papers

that seek in different ways to combine networks and clubs.

In an early paper, Page and Wooders (2010) study a setting of bipartite networks in which

individuals decide on which clubs to join. Individual utility depends on own choices as well as

the choices of others. Page and Wooders (2010) focus on the conditions under which the game

of club memberships has a potential function (and this allows them to study the existence

of Nash equilibrium). In our approach the clubs have governing bodies or owners who can

choose to admit and expel members; these owners seek to maximize club productivity. The

interaction between players and club owners gives rise to different incentives and strategic

effects and hence to a different solution concept. Moreover, the focus of the paper is on the

characterization of stable membership profiles. In particular, we derive a marginalization

result and a mapping between marginal returns to link strength and club networks. While

we consider more specific functional forms and pay-off structures these results go beyond the

Page and Wooders (2010) paper.

A recent paper by Fershtman and Persitz (2021) also studies a model of clubs and networks.

At a general level, there are similarities – both papers study a memberships model. But the

motivation of the two papers is different and so the models and the main insights are also

different. For Fershtman and Persitz (2021) the principal object of interest is the social

network among individuals; by contrast, our interest is in understanding the membership

profile of individuals in clubs. We explore questions such as who joins which club and what is

the network of clubs that arises. This gives rise to very different types of results. Fershtman

and Persitz (2021) highlight a trade-off between the size of clubs, the depreciation of indirect

connections, and the membership fee. By contrast, we develop a marginalization property of

stable outcomes and show why this is socially inefficient. We also draw attention to how the

marginal returns from link strength – whether they are increasing or decreasing – determine

the architecture of club networks.

To clarify the relation between our approach and the coalitions and networks approaches it

is instructive to lay out the basic notation and then work through an example. In our model,

there are n individuals and m clubs, each individual can join up to D clubs and every club can

admit up to S members. It is assumed that club productivity is increasing in club size and in

the strength of links with other clubs. In our approach we allow D and S to take arbitrary

values. In a coalitions model, the outcome is a partition, so individuals can join only one club,
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so D = 1. Similarly, networks constitute a special case where every club can have exactly 2

members, roughly this means S = 2 and the payoff to the club from a single member is 0.

Example 1. Suppose there are 8 individuals and 4 clubs, with individuals able to join 4 clubs

and a club having a capacity of 4. In our model (so long as utilities are not too concave) the

stable and welfare maximizing membership profile involves 4 clubs that are occupied by the

same 4 members. This means that 4 individuals are marginalized. In the coalition framework,

the efficient and stable partition involves every individual joining one club each (thus two

clubs are occupied by 4 members each), while the remaining 2 clubs remain unoccupied.6 In

contrast to our result there is no marginalization and the network of clubs is empty. In the

networks framework, a relation is bilateral; so clubs consist of exactly 2 members. An efficient

and stable network involves all 4 clubs being occupied by the same 2 members. Thus six

individuals are left out of clubs and marginalization is even greater than in our model and

clubs are smaller (less connected and hence less productive). �

We close the introduction with a few words on the relation with the matching literature.

A key underlying motivation for the matching literature is that individuals (or firms) have

preferences over the individuals that are matched (see Roth and Sotomayor (1992)). This is

the driving force for the original one-to-one matching models and remains a central feature of

many-to-many matching models (see e.g., Hatfield and Kominers (2015), Rostek and Yoder

(2019), Bando and Hirai (2021), Echenique and Oviedo (2006), Klaus and Walzl (2009)). By

contrast, the focus of our paper is on the size of memberships (both for individuals and clubs)

and on the structure of connections between the clubs. The methods of analysis and the results

(on marginalization and on the structure of club networks) are therefore quite different.7

Section 2 presents the model, Section 3 presents an analysis of the marginalization and

Section 4 presents our results on network structure of clubs. Section 6 presents case studies

on inter-locking directorates and boards of editors of journals. Section 7 concludes. All the

proofs are presented in the Online Appendix.

6 For our definitions of stability and efficiency see Section 2 below.
7 We have also extended our model to a setting where individuals have a preference for same-type club

mates. Our methods of analysis can be extended in a straightforward manner to cover this case: indeed
a small inclination for homophily leads to a strong division of individuals into distinct groups, and this
further exacerbates payoffs inequality and undermine overall efficiency.
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(a) Stable and efficient membership profile

(b) Stable and efficient coalition (c) Stable and efficient network

Figure 1: Comparison of our approach with coalitions and networks
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2 The Model

There is a set of individuals I = {i1, . . . , in} and a set of clubs C = {c1, . . . , cm}. We use i

to denote a typical individual and c to denote a typical club. Individuals join clubs to become

members. A membership profile is represented by a matrix a = (aic)i∈I,c∈C where aic ∈ {0, 1}
indicates whether individual i is a member of club c.

We define a few notions based on a membership profile a. The degree of individual i, given

a membership profile a, is the number of clubs joined by i:

di(a) =
∑
c∈C

aic.

The membership size of club c, given a membership profile a, is the number of individuals

who join c:

sc(a) =
∑
i∈I

aic.

There is a link between two clubs if they share common members. The link strength between

clubs c and c′, given a membership profile a, is the number of common members they share:

gcc′(a) =
∑
i∈I

aicaic′ .

Following the large literature in club theory, we shall assume that there are strong con-

gestion effects that set limits to club capacity (see Buchanan (1965) and Page and Wooders

(2010)). Similarly, we assume that individuals can only join a certain number of clubs; this

is because they have a fixed amount of time and participating in a club has a minimum time

commitment. Formally, we assume that di(a) ≤ D, for all i ∈ I, and sc(a) ≤ S, for all

c ∈ C, where D and S are two positive integers. The set of feasible membership profiles

is A = {a ∈ {0, 1}n×m : di(a) ≤ D, sc(a) ≤ S}. We also assume that 2 ≤ S ≤ n and

2 ≤ D ≤ m: this ensures that at least one club can be fully occupied and at least one person

can join the maximum number of clubs.

A club provides goods and services to its members. The productivity of a club depends

on its size and on the links it has with other clubs. We assume that until the capacity is

reached, club productivity increases in the number of its members. And we assume that the

productivity of a club is increasing in the strength of the ties it maintains with other clubs.8

8 In some contexts, club productivity may be falling in links with other clubs. This happens for instance if
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In different contexts, we can interpret clubs as different institutions. For example, a club can

be a board of a firm: links between boards, created by overlapping directors, may help the

transmission of best practices and the coordination of corporate strategies. A club can also be

an editorial board: links between boards, generated by shared editors, can facilitate knowledge

spillovers. Depending on the roles links serve, the marginal returns from link strength vary.

If the link helps to convey factual information then the marginal returns from link strength

may be declining. On the other hand, if the information concerns complex issues such as new

technologies or standards then marginal returns to link strength may be increasing. Similarly,

if we are in a context of developing common standards (technological or social) then there

may be value in significant overlap of membership.

With these ideas in mind, let us define the productivity of club c ∈ C in profile a as

πc(a) = f(sc(a)) +
∑
c′ 6=c

h (gcc′(a)) , (1)

where returns from membership size, f , are strictly increasing with f(0) = 0, and the exter-

nality from links, h, is increasing with h(0) = 0. The next section studies the benchmark case

of linear increasing returns case: h(x) = αx, with α ≥ 0. We take up the case of convex and

concave returns in Section 4.

Turning to individual utility, we assume that an individual enjoys benefits from the pro-

ductivity of clubs she joins. Given a profile a, the utility of individual i ∈ I is

ui(a) = v

(∑
c∈C

aicπc(a)

)
, (2)

where v is strictly increasing with v(0) = 0. In situations where individuals are directors

of boards, it is natural to assume that their utility increases at a decreasing rate with the

aggregate productivity of clubs they are in, so v′′(·) ≤ 0.

We study efficient and stable memberships. We consider two standards for a membership

profile to be efficient: maximizing the utilitarian welfare of individuals and maximizing the

aggregate productivity of clubs.

the clubs are in a competitive setting and when individuals belong to many clubs, they allocate limited
time to each of their clubs and that lowers their productivity. The analysis of clubs and networks with
negative spillovers can be carried out using the same methods as we develop for the case of positive
spillovers across clubs. We comment on the implications of negative spillovers after presenting the results
for positive spillovers.
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Definition 1. A membership profile a ∈ A is the utilitarian optimum if for all a′ ∈ A,∑
i∈I

ui(a) ≥
∑
i∈I

ui(a
′).

A membership profile a ∈ A is clubs-efficient if for all a′ ∈ A,∑
c∈C

πc(a) ≥
∑
c∈C

πc(a
′).

Turning to strategic stability, it seems reasonable to require that individuals should be

able to quit clubs if that increases their utility and clubs should be able to expel members if

that raises their productivity. In addition, it seems reasonable to require that an individual

and a club cannot coordinate on a deviation that makes them both strictly better off. i.e., no

pair of individual i and club c can both benefit from a joint deviation where i is allowed to

quit any clubs she is in, c is allowed to exile any members it has, and i joins c. We propose a

notion of stability that reflects these ideas.

Formally, let ai = (aic)c∈C and ac = (aic)i∈I be the vectors recording the clubs i joins and

the members c has, and let a−i = (ai′c)i′ 6=i,c∈C and a−c = (aic′)i∈I,c′ 6=c denote the club joining

of individuals other than i and member admission of clubs other than c. Moreover, we use

a−i,c = (ai′c′)i′ 6=i,c′ 6=c to represent the membership profile excluding individual i and club c,

and we use a−ic = (ai′c′)i′c′ 6=ic to represent the membership profile excluding the relationship

between individual i and club c. We write a ≥ a′ if a is element-wise greater than or equal to a′.

Definition 2. A membership profile a ∈ A is stable if

1. ∀i ∈ I, c ∈ C: there is no a′ ∈ A with a′i ≤ ai and a′−i = a−i such that ui(a
′) > ui(a),

or a′c ≤ ac and a′−c = a−c such that πc(a
′) > πc(a), and

2. ∀i ∈ I, c ∈ C: there is no a′ ∈ A with a′ic = 1, a′−ic ≤ a−ic, and a′−i,c = a−i,c such that

ui(a
′) > ui(a) and πc(a

′) > πc(a).

The definition of stability assumes that clubs have objectives that may be independent

of the utility of individuals members. Such an assumption seems appropriate in applications

where the clubs have some “governing body” or an owner who makes decision on behalf of

the club. In Section 6 we present three case studies where such an assumption is justified.
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3 Marginalization

This section presents an analysis of a benchmark model in which returns from links take a

linear form, h(x) = αx, where α ≥ 0. So, there is a positive externality from links with other

clubs when α > 0. We take up non-linear functions h(.) in section 3.1 below.

We first investigate stable membership profiles. Substituting the linear functional form

for h(·) in the club productivity function in (1), we see that the productivity of a club c ∈ C
under a membership profile a is

Πc(a) = f(sc(a)) + α
∑
i∈C

aic(di(a)− 1).

Observe that a club prefers an individual who is also a member of other clubs. Similarly, given

their utility in (2), individuals prefer clubs with higher productivity. These two incentives

press in the same direction: clubs like well-connected individuals and individuals prefer well-

connected clubs. Thus, in this model, the incentives of clubs and individuals press toward

marginalizing poorly connected clubs and poorly connected individuals.

To make this precise, let us define a partition of individuals and clubs. Let π∗ be the

highest productivity a club can achieve and u∗ be the highest utility an individual can enjoy.

Observe that in our benchmark model,

π∗ = f(S) + αS(D − 1) and u∗ = v(Dπ∗).

Next note that for a membership profile a, the set of individuals I can be partitioned into

four parts: a first group I1(a) that consists of individuals who join D clubs and obtain utility

u∗; a second group I2(a) that consists of individuals who join D clubs but do not obtain

utility u∗; a third group, I3(a), who join some but not D clubs; and a fourth group, I4(a),

that consists of individuals who join no clubs.

I1(a) = {i ∈ I : di(a) = D, ui(a) = u∗}

I2(a) = {i ∈ I : di(a) = D, ui(a) < u∗}

I3(a) = {i ∈ I : 0 < di(a) < D}

I4(a) = {i ∈ I : di(a) = 0}

Similarly, the set of clubs can be partitioned into three parts. The first group, C1(a), consists
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of clubs with productivity π∗; the second group, C2(a), consists of clubs with positive pro-

ductivity less than π∗; and a third group, C3(a), that consists of clubs with zero productivity.

C1(a) = {c ∈ C : πc(a) = π∗}

C2(a) = {c ∈ C : 0 < πc(a) < π∗}

C3(a) = {c ∈ C : πc(a) = 0}

Notice that if total club capacity is less than the number of individuals, mS < n, then

n−mS individuals are necessarily left out of clubs. We are interested in marginalization that

results from an unfair assignment of club memberships to agents, that is in the number of

individuals who are unnecessarily left out of clubs. This is the number of individuals that

could be assigned to some clubs if clubs membership was distributed more fairly. These are

individuals who are unfairly left out of clubs. Let us say that a membership profile a exhibits

marginalization of individuals if some individuals become members of clubs, some individuals

are not members of any club, and it is possible to reassign club memberships increasing the

number of agents in clubs and keeping the total number of club memberships unchanged. The

total number of club memberships under a is equal to
∑

i∈I di(a) and if there exist agents

joining clubs then
∑

i∈I di(a) > 0. If the total number of individuals n ≤
∑

i∈I di(a) then each

individual could be assigned a club membership keeping the total number of club memberships

unchanged. Hence there are |I4(a)| agents who are unfairly left out of clubs and so in this

case a exhibits marginalization of individuals if |I4(a)| > 0. If the total number of individuals

n >
∑

i∈I di(a) > 0 then, keeping the total club membership unchanged, n −
∑

i∈I di(a)

individuals must be left out of clubs and only |I4(a)| − n +
∑

i∈I di(a) individuals who are

out of clubs could be assigned a club membership. Thus in this case the latter is the number

of individuals who are left out of clubs unfairly and a exhibits marginalization of individuals

if |I4(a)| − n +
∑

i∈I di(a) > 0 (notice that the left hand side of this inequality is always

non-negative).

Notice that the minimal number of individuals needed to take
∑

i∈I di(a) club memberships

is equal to d
∑

i∈I di(a)/De. Therefore, in the case of
∑

i∈I di(a) ≥ n > 0, the maximum

number of individuals who are left out of clubs unfairly is equal to n− d
∑

i∈I di(a)/De and,

in the case of n >
∑

i∈I di(a) > 0, the maximum number of individuals who are left out of

clubs unfairly is equal to
∑

i∈I di(a)−d
∑

i∈I di(a)/De. Based on these observations we define
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a measure of marginalization for individuals as

MI(a) =


|I4(a)|−n+min(n,

∑
i∈I di(a))

min(n,
∑

i∈I di(a))−
⌈∑

i∈I di(a)

D

⌉ , if
∑

i∈I di(a) > 0 and I4(a) 6= ∅

0, otherwise.

(3)

Notice that for any membership profile a, MI(a) ∈ [0, 1]. The maximal value of MI(a) is

attained when club memberships are assigned to the minimal number of agents needed to

exhaust the total number of club memberships. In this case we would say that a exhibits

extreme marginalization. In addition, if membership profiles a and a′ have the same number

of club memberships,
∑

i∈I di(a) =
∑

i∈I di(a
′), and there are more individuals unfairly left

out of clubs under a than under a′ then MI(a) >MI(a
′).

Let us work through some examples to illustrate how the measure of marginalization

works and to develop a feel for the different issues at work in our model. Consider the

following example. Suppose that n ≥ 7, m = 4, D = 3 and S = 4. A membership profile

a in which five individuals exhaust their membership availability while a sixth individual

joins one club is stable. The total number of club memberships under a is equal to 16.

Notice that d16/3e = 6 so the 16 club memberships are taken by the minimal number of

individuals needed to take all of them. There are |I4(a)| = n − 6 ≥ 1 individuals left out

of clubs and min(|I4|, |I4| − n + 16) = min(n − 6, 10) ≥ 1 of them are left out of clubs

unfairly. Since the maximal number of individuals that can be left out of clubs unfairly is

equal to min(n,
∑

i∈I di(a)) − d
∑

i∈I di(a)/De = min(n, 16) − 6 = min(n − 6, 10) so we have

MI(a) = min(n− 6, 10)/min(n− 6, 10) = 1 and so a exhibits an extreme marginalization.

The example above might suggest that any stable club membership exhibits extreme

marginalization. This, however, is not the case as the following example illustrates.

Example 2. Suppose that m = 10, n ≥ m + 2, and D = S = 6. Consider the following

membership profile, a. Let ix, iy and iz be three individuals who join 4 clubs. For other

individuals, let 8 of them, whom we denote by i1, . . . , i8, join D = 6 clubs and the rest of

them join no club. Allocate ix, iy, iz, i1, i2, i3 and i4 to four clubs c1, c2, c3 and c4 in the

way depicted in Figure 2. Also, let individuals i1 to i4 join any three other clubs and let

individuals i5 to i8 join clubs c5, . . . , c10. This membership profile is stable. To see how, under

this membership profile, all clubs are full and clubs other than c1 to c4 reach the highest

productivity possible and would not want any deviations. For clubs c1 to c4, they wish to

make deviations. For example, c1 wants to admit i4 instead of ix, iy or iz. If i4 joins c1, the
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productivity of c1 would raise by 2α and be higher than that of c2, c3 and c4 she is currently

in. With this logic, it seems that i4 would want to quit c2, c3 or c4 and join c1. However, note

that with the deviation, the degree of ix, iy or iz drops by 1, making the productivity of c2,

c3 and c4 drop by α. Although i4 leaves one of c2, c3 and c4, she is still in two of them. The

aggregate productivity i4 enjoys from clubs drops by 2α, which cancels out the productivity

gain from c1. Hence, i4 has no incentive to make the deviation. Using the same logic, we can

show that c2, c3 and c4 cannot attract a higher-degree individual to replace ix, iy or iz as well

and the membership profile is stable. �

Figure 2: The coordination problem.

There are 60 total club memberships and |I4(a)| = n− 11 > 0 individuals left out of clubs

under a. The number of individuals left out of clubs unfairly under a is |I4|−n+min(n, 60) =

min(n, 60) − 11 > 0 and the maximal number of individuals who could be left out of clubs

when there are 60 club memberships is min(n, 60)−d60/6e = min(n, 60)−10. Thus the value

of the measure of marginalization for membership profile a is MI(a) = 1 − 1
min(n,60)−10 < 1.

Hence a does not exhibit an extreme marginalization of individuals.

This example draws attention to a coordination problem among individuals and clubs: note
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that the 10 clubs and individuals i1 to i8, ix and iy would be better off in the membership

profile where the clubs are exactly filled by those individuals so that all those individuals have

degree D, that is a membership profile featuring extreme marginalization. The combination

of integer constraints and coordination problems gives rise to a number of complications that

inform the characterization of stable membership profiles that is presented below.

Proposition 1. Assume that h(x) = αx, where α ≥ 0. There exists a stable membership

profile. A membership profile a ∈ A is stable if and only if

(i) for every individual i ∈ I and club c ∈ C, if i is not a member of c, then either di(a) = D

or sc(a) = S,

(ii) for every club c with fewer than S members, every individual i, and every club c′ that i

joins, if i is not a member of c, then

πc(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1) ≤ πc′(a),

In addition, if α > 0, then

(iii) for every individual i who joins fewer than D clubs, every club c that i does not join,

every individual i′ in club c must have with di′(a) > di(a), and

(iv) for every individual i who joins D clubs, every club c that i does not join and every

individual i′ that is a member of c, if d′i < D, then

πc(a) + α(D − di′(a))− α
∑
c′′ 6=c′

aic′′ai′c′′ ≤ πc′(a), for all c′ that i joins.

The proof is presented in the Online Appendix. Let us briefly elaborate on the content of

the conditions so that we can appreciate some of the arguments that are involved. The four

conditions ensure that there is no profitable deviation for a pair of individual i and a club c

in four different cases that together exhaust all possible situations.

Point (i) considers deviation where di < D and sc < S. We require that there does not

exist such a pair as otherwise i can join c and both are better off. Point (ii) considers deviation

where di = D and sc < S. We require that i does not want to quit an existing club to join

c. The condition states that the productivity of c, taking into account the change resulting

from i’s joining, must not be greater than that of any club c’ that i is currently a member of.
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In points (i) and (ii) we assume sc < S. So, they are not about c replacing a low-degree

individual with a higher-degree one, but concern i joining a higher-productivity club. Hence,

the two conditions are needed both when α = 0 and when α > 0. For the next two situations

we look at, sc = S. They are only needed when α > 0.

Point (iii) considers deviation where di < D and sc = S. We require that c does not want

to replace an existing member with i. The requirements leads to the characterization that for

i, i’ with degree less than D, if di ≥ di′ , then the set of clubs i joins is a superset of clubs i’

joins.

Point (iv) considers deviation where di = D and sc = S. Now, for i to join c, i needs

to quit a club c’ and c needs to expel a member i’. A profitable deviation does not exist if

either (1) di ≤ di′ , so that the club has no replacement incentive, or (2) the individual has no

wish to switch clubs. Note, however, the condition for i to not want to change does not only

require that the productivity of c, taking into account the change resulting from i’s joining,

is not greater than that of c’, as in the case of (ii). There is an additional consideration that

i hopes c’s exiling of i’ does not hurt her utility (this is key to the stability of non-marginal

membership profile in Example 2). This is captured by the term α
∑

c′′ 6=c′ aic′′ai′c′′ .

Equipped with this characterization, we can provide a fairly complete description of the

partition of individuals and clubs in a stable membership profile. This will allow us to an-

swer the question of whether or not stability implies high marginalization of individuals and

clubs. Analogous to the measure of marginalization of individuals we define a measure of

marginalization of clubs for a given membership profile a:

MC(a) =


|C3(a)|−m+min(m,

∑
c∈C sc(a))

min(m,
∑

c∈C sc(a))−
⌈∑

c∈C sc(a)

S

⌉ , if
∑

c∈C sc(a) > 0 and C3(a) 6= ∅

0, otherwise.

We call a membership profile a egalitarian if there is minimal difference in the degrees between

individuals, maxi,j∈I |di(a)− dj(a)| ≤ 1.

Proposition 2. Assume that h(x) = αx, where α ≥ 0. When α = 0, an egalitarian member-

ship profile is stable. When α > 0, for a stable a,
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� if nD ≥ mS, then

mS

D
− S(D + 3)

2
≤ |I1(a)| ≤ |I1(a) ∪ I2(a)| ≤ mS

D
and

n− mS

D
− S ≤ |I4(a)| ≤ n− mS

D
.

Therefore, MI(a) ≥ 1− D

min(nD−mS
S

,(D−1)m)
.

� if nD < mS, then

nD

S
−D ≤ |C1(a)| ≤ nD

S
and

m− nD

S
−D ≤ |C3(a)| ≤ m− nD

S
.

Therefore, MC(a) ≥ 1− S

min(mS−nD
D

,(S−1)n)
.

The proof is presented in the Online Appendix.

In the absence of network externalities, it is fairly straightforward to see that an egalitarian

club profile is stable. Given nD > mS, assign the mS club slots to distinct individuals, this is

clearly stable as there is no advantage of having common membership in clubs (the difference

in degree between the maximally connected and minimally connected individuals is 1). Given

nD < mS, assign the nD membership capacity across the nD/S clubs. Everyone has an equal

number of memberships equal to D.9

Turning to the setting with positive externalities, let us comment on the expressions for

the bounds. Clearly, mS/D is the maximal number of individuals who can be a member of

D clubs each. So the upper bound on |I1(a) ∪ I2(a)| is fairly immediate. Let us comment on

the lower bound for |I1(a)|. To do this we derive an upper bound on |I2(a)| and |I3(a)|. To

derive a bound on the number of individuals in |I2(a)|, note that all of them must join a club

in C2(a). The number of clubs in C2(a) is limited by D because the member who has the

highest degree in the least productive club of C2(a) must join all clubs in C2(a), otherwise,

she would deviate to join another C2(a) club and the club is willing to take her. Therefore,

the number of available slots for I2(a) individuals from C2(a) clubs is (weakly) smaller than

(S − 1)D. In the proof we show that the number of I2(a) individuals who only join one

9 Matters are slightly more complicated when nD/S is not an integer: in that case, let bnD/Sc clubs have
S members and one club have (nD) mod S members. The structure is stable and every individual has
degree D.
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C2(a) club is limited by S − 1: putting together these numbers we arrive at the bound of

S − 1 + [(S − 1)D − (S − 1)]/2 = (S − 1)(D + 1)/2 for the number of individuals in I2(a).

Turning to |I3(a)|, observe that for individuals in I3(a), if an individual i’s degree is greater

than or equal to the degree of another individual i’, then the set of clubs i joins must be a

superset of the set of clubs i’ joins. Otherwise, i can crowd out i’ and join one more club.

Thus, for a club that hosts the individual with the lowest degree in I3(a), it must be the case

that it hosts all individuals in I3(a). Since a club can host at most S members, |I3(a)| ≤ S.

The expression in the Proposition follow by noting that S(D + 3)/2 > S + (S − 1)(D + 1)/2.

We now turn to the marginalization results. When nD > mS then we can derive a lower

bound on the number of individuals that are left out of clubs in any stable membership profile,

|I4(a)| ≥ n−mS/D− S. This means that there are at most mS/D+ S individuals who join

at least one club in any such profile. This is mS/D + S − dmS/De ≤ (D − 1)/D + S greater

than the minimal number of individuals needed to take all mS club memberships. Thus the

number of individuals who are left out of clubs unfairly under any stable profile differs from

the maximal such number by a constant and because of that any stable membership profile

features high marginalization. To see this more precisely, if n > mS, so that the number

of individuals exceeds total clubs capacity, then MI(a) = 1 − D/((D − 1)m). Thus if m is

large and n is sufficiently large so that n > mS, then every stable membership profile exhibits

marginalization of individuals which is close to 1. Similarly, if nD < mS, and m > nD,

MC(a) = 1− S/((S − 1)n). Thus if n is large and m > nD, every stable membership profile

marginalizes clubs. The argument above relies on the fact that the capacity constraints D

and S are constant and independent of the number of clubs and the number of individuals.

This assumption makes sense when such constraints can be interpreted as time limitations (in

the case of individuals) or some physical space restrictions (in the case of clubs).

We next turn to the welfare properties of membership profiles. We have shown that in the

presence of a connection externality, a stable membership profile marginalizes individuals or

clubs. Are such membership profiles desirable? We show that the answer depends on whether

we look at clubs-efficiency or at the utilitarian optimum. In our study of utilitarian optimum,

we will make use of the following condition on the concavity of the utility function.

v (f(S))− v(0) > (n− 1)

(
v

(
f(S) +

2αS(D − 1)

n− 1

)
− v (f(S))

)
. (4)

Proposition 3. Suppose α > 0. Assume nD ≥ mS and that mS/D is an integer.10

10 In the Online Appendix, we provide characterizations of clubs-efficient and utilitarian optimal membership
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� A membership profile is clubs-efficient if and only if mS/D individuals join D clubs and

the remaining individuals join no clubs (MI(a) = 1).

� If v′′(·) ≥ 0, then a membership profile is an utilitarian optimum if and only if it is clubs-

efficient (MI(a) = 1). If v′′(·) < 0 and satisfies condition (4), then in any utilitarian

optimum membership profile, either di(a) ≤ 1 for all i ∈ I or di(a) ≥ 1 for all i ∈ I
(MI(a) = 0).

Assume nD < mS and that nD/S is an integer.

� If f ′′(·) > 0, then a membership profile is clubs-efficient if and only if nD/S clubs admit

S members and the remaining clubs admit no members (MC(a) = 1). If f ′′(·) < 0,

then a membership profile is clubs-efficient if and only if (nD) mod m clubs admit dnD
m
e

members and the remaining clubs admit bnD
m
c members (MC(a) = 0).

� A membership profile is an utilitarian optimum if and only if nD/S clubs admit S

members and the remaining clubs admit no members (MC(a) = 1).11

The proof is presented in the Online Appendix.

Consider first the case where nD > mS. Proposition 3 tells us that a membership profile

that maximizes the aggregate output of the clubs exhibits extreme marginalization: a club-

efficient profile allocates exactly mS/D individuals into memberships, all other individuals join

no clubs. This is because this marginalization ensures maximal overlap of members between

clubs.

Turning to the utilitarian optimum, if the utility of individuals rises at an increasing or

constant rate with the productivity of clubs they join, i.e., if v′′(·) ≥ 0, then the profile that is

utility-maximizing is the same as the profile that is productivity-maximizing. This is because

when v′′(·) = 0, the aggregate utility of individuals is simply the number of individuals a

club can admit, S, times the aggregate productivity of clubs, and when v′′(·) > 0, utilitarian

optimality pushes toward marginalization of individuals, which coincides with the outcome

generated by clubs-efficiency. If, on the other hand, the marginal utility is decreasing, i.e.,

v′′(·) < 0, then that opens up a potential trade-off: although a concentration of memberships

profiles without the integer condition.
11 If the integer condition (S divides nD) does not hold, then the utilitarian optimum characterization for

when v′′(·) ≥ 0 and when v′′(·) < 0 could be different. When v′′(·) ≥ 0, there is one club that hosts
some but less than S members. When v′′(·) < 0, the number of clubs that admit some but less than S
members ranges from 1 to S − 1.
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maximizes the total output of clubs, it comes at the expense of entirely excluding n−mS/D
individuals from memberships. If the utility function is sufficiently concave – the marginal

utility is declining sufficiently rapidly (a condition that is formalized in inequality condition

(4), then the welfare benefit from picking more members outweighs the loss to aggregate

productivity. We present an example that brings out the difference between clubs-efficiency

and utilitarian optimum when we move from a convex/linear to a concave utility function.

Example 3. Suppose n = 16, D = 4, m = 8 and S = 4. Figure 3a depicts a membership

profile that is clubs-efficient and utilitarian optimum when v(·) is linear. Notice that in this

membership profile, 8 individuals (i1 to i8) exhaust their membership availability while the

other 8 individuals (i9 to i16) join no clubs. To appreciate the role of concave v(·) is concave,

set

v(x) =

10x when x ≤ 2f(4) + 8α,

10 (2f(4) + 8α) + 0.1 (x− 2f(4)− 8α) when x > 2f(4) + 8α.

In this case, the clubs-efficient outcomes remains unchanged and is as in Figure 3a, while

the utilitarian optimal profile, which features all 16 individuals joining 2 clubs, is given in

Figure 3b. �

Let us next take up the case where nD < mS. On club efficiency, note that there is

enough club capacity to cover the individuals, so every person will join D clubs: keeping

anyone out of clubs is clearly dominated for clubs. Moreover, as spillovers are linear, there

is a constant spillover irrespective of how the individuals are allocated across clubs. So the

issue of how to allocate individuals turns on the f function. If f is convex, then it is better to

allocate individuals to fewer clubs, i.e., nD/S clubs; if on the other hand, f is concave then

you allocate as evenly as possible across clubs, subject to integer constraints.

Regarding utilitarian optimum profiles, no matter what the f function, the optimal profile

entails marginalization of clubs. This is because to maximize the aggregate utility of indi-

viduals, it is clearly better to allocate more individuals to high-productivity clubs and fewer

individuals to low-productivity clubs. This taken in tandem with the assumption that the

productivity of a club rises with its size implies the marginalization of clubs.

When we compare Propositions 2 with 3, we see that there exists a tension between the

incentives toward marginalization (created by the increasing club productivity from member-

ship and from the strength of links with other clubs) and the demands of inclusiveness (created

by the concave utility function and concave club production function).

19



(a) clubs-efficient and utilitarian optimal profile: convex or linear v(·)

(b) utilitarian optimal profile: highly concave v(·)

Figure 3: Efficient membership profiles.
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We conclude our study of the benchmark model with a brief remark on stable and efficient

membership profiles when spillovers across clubs are negative. This happens when α < 0

in the benchmark model. Observe that when spillovers are negative, a club would like to

only admit members who have no other memberships. So in a world with many individuals

relative to club capacity, i.e., n > mS, any stable membership profile must involve exactly mS

individuals filling the aggregate club capacity, i.e., every person joins at most one club and the

resulting club network is an empty network. However, when the number of individuals is small

the clubs face a trade-off: on the one hand, their productivity grows with membership (up to

their capacity size). On the other hand, expanding membership may necessitate bringing in

individuals who are already members of other clubs, and this lowers their productivity. We

can apply the methods developed above to show that whatever the outcome of the tradeoff is,

a stable profile and an aggregate productivity maximizing profile both feature an egalitarian

membership profile, i.e., there does not exist two individuals i and i′ with |di(a)−di′(a)| > 1.

The argument goes as follows: suppose there exist two individuals i and i′ where di′(a) ≥
di(a) + 2. If so, then there exists a club c which i′ joins but not i. Clearly, this club c

would want to expel i′ and recruit i. We show that i is also willing to join c. Since i′ is

willing to join c, it must be that (di′(a) − 1)|α| ≤ πc(a), as otherwise i′ would be better off

leaving c, which makes the productivity of other clubs i′ joins raise by |α. It follows that

(di(a
′)− 1)|α| ≤ πc(a

′), where a′ is the profile where c admits i instead of i′ but is otherwise

the same as a. This implies i is willing to join c. There is therefore a profitable deviation for

the club-individual pair i and c. Turning to maximizing the aggregate productivity of clubs,

note that the same deviation also improves the situation: it reduces the productivity of clubs

i joins by α and raises the productivity of clubs i′ joins by at least α. The result then follows

given that i′ is in more clubs than i does.

3.1 Non-linear returns from links and marginalization

We have so far considered the case where returns are linearly increasing in link strength.

In some prominent instances the returns from link strength are likely to be non-linear. For

example, in case club links are used for information sharing then we would expect marginal

returns to decline with link strength. On the other hand, if links help members coordinate

activities of the clubs, then the marginal returns may be increasing in link strength. With these

observations in mind, we examine the implications of non-linear returns from link strength. In

this section, we study how robust is the marginalization result when we depart from the linear
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returns setting. We first show that when the marginal returns from links do not vary too

much as links strengthen, then a stable membership profile always features marginalization

that is asymptotically close to 1 (like in the case of linear h). We then turn to the case

when h is very convex or concave. When h is very convex, we show that there exist stable

membership profiles that feature the same level of marginalization as in the case when h is

linear. However, there also exist stable profiles in which marginalization is bounded from

above by a value smaller than 1 as long as each individual can join at least 3 clubs. When h

is very concave, we show that a stable profile always features marginalization. Nonetheless,

MI converges to 1 at a slower rate than when h is linear.

Proposition 4. Assume that h is strictly increasing.

(i) If nD > mS and

min
x∈[0,S−1]

(h(x+ 1)− h(x)) >
D − 1

D
max

x∈[0,S−1]
(h(x+ 1)− h(x)),

then in any stable membership profile MI(a) ≥ 1− D

min(nD−mS
S

,(D−1)m)
.

(ii) Suppose h is convex, if nD > mS then there exists a stable membership profile a with

MI(a) ≥ 1− D

min(nD−mS
S

,(D−1)m)
. Suppose h is very convex in the sense that h(S)−h(S−

1) > 2(h(1) − h(0)), if n > mS and m is even then there exists a stable membership

profile a with MI(a) ≤ D
2(D−1) .

(iii) Suppose h is concave, if n > mS then for any stable membership profile a, MI(a) >

1− D2S
(D−1)m .

We briefly explain why structures that do not feature marginalization can be stable when

h is very convex but not when h is very concave. When h is sufficiently convex, a club wants

to form links with certain other clubs that it currently has strong links with, and it is thus

willing to keep an individual with a low degree as a member if the individual happens to be

in the right clubs. A non-marginalized profile emerges when each individual who joins some

clubs has a low degree and happens to be in clubs that are strongly linked to each other.

Figure 4 provides an example of such a profile.

The same reasoning does not apply when h is concave and the number of clubs m is large.

In this case, suppose there are many individuals of low-degree individuals, for a club c that

admits a low-degree individual i, even if i is in clubs that c has weak links with, there exists
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another individual i′ who is in clubs that c does not have links with, which makes c want to

exile i and admit i′. Therefore marginalization is robust when h is concave.

Figure 4: No marginalization when h(·) is very convex.

4 Small worlds, fragmented cliques, and strength of ties

In this section, we examine the network of clubs and the strength of ties that support this

network.12 We start by showing that if returns from link strength are linear then a variety of

club networks are stable. We then turn to nonlinear returns and show that if the marginal

return from link strength is increasing, then incentives of clubs and individuals push toward

disconnected cliques of clubs with full strength links. If, on the other hand, the marginal

12 A membership profile can be projected both into a network of clubs and a network of individuals. In
this section, we focus on the club network. Nevertheless, the individual network, since originated from
the same membership profiles as the club network, shares some important properties with the latter. For
example, there exists a strong link (link with strength greater than 1) in the club network if and only if
there exists a strong link in the individual network, and the club network is connected iff the individual
network is connected. Therefore, we can infer the properties of the individual network with an analysis
of the club network.
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return from link strength is decreasing then the club network entails larger components that

are connected through weak links.

Example 4. Suppose that n > 15, m = 6, D = 2 and S = 5. Figure 5 depicts two clubs-

efficiency and stable membership profiles when returns from links rise linearly. Note that the

two profiles lead to the same degree distribution of individuals (the first 15 individuals all

join two clubs while the others join no clubs) and the same aggregate link strength clubs have

(each club shares five membership overlaps with other clubs). However, the resulting club

networks take very different forms: one consists of three separate cliques where all links are

of strength 5 while the other is a complete network where all links are of strength 1. This

indicates that linear spillovers from links always lead to marginalization of individuals/clubs

but the resulting club networks can be very different.

If h(·) is convex, there is a unique clubs-efficient membership profile which is depicted in

Figure 5a. When h(·) is convex, the productivity of a club is maximized if the number of

membership overlaps it has with other clubs is maximized and concentrated in as few clubs

as possible. This can only be achieved when the club network takes the form depicted in

Figure 5a.

On the other hand, when h(·) is concave, Figure 5b depicts the unique club-efficient net-

work. When h(·) is concave, clubs want to maximize their membership overlaps with other

clubs and spread them as evenly as possible. In this example, for this to be the case, the club

network has to be complete with all links being weak.

Turning to stability, the structure depicted in Figure 5a is stable when h(·) is convex, since

all clubs have reached the highest productivity possible and have no incentives to deviate. It

is not stable when h(·) is concave: there is a profitable deviation for individual i6 and club c1

where c1 exiles i1 to admit i6 and i6 leaves c3 to join c1.

Similarly, the structure depicted in Figure 5b is stable when h(·) is concave but not so

when h(·) is convex. Stability under a concave h(·) is obvious since all clubs have reached

the highest productivity possible; instability under a convex h(·) can be verified by again

considering the deviation by individual i6 and club c1 where c1 exiles i2 to admit i6 and i6

leaves c3 to join c1. �

The above example shows that the curvature of the returns from links has a significant

influence on the structure of club networks. To get an intuition about the origin of that

influence, notice that when h(·) is 0 at 0, strictly increasing and convex/concave then it is
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(a) Convex returns from link strength: h′′(·) > 0

(b) Concave returns from link strength: h′′(·) < 0

Figure 5: Clubs-efficient and stable membership profiles.
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superadditive/subadditive.13 If h is superadditive then a solution to the optimisation problem

max
g∈ZC×C

≥0

∑
c′ 6=c

h (gcc′(a)) (5)

s.t.
∑
c′ 6=c

gcc′(a) ≤ T, (6)

gcc′ ≤ S, (7)

where T ∈ Z≥0 is a constant, is any g such that gcc′ = S for bT/Sc pairs (c, c′) ∈ C ×C with

c 6= c′, gcc′ = T mod S for one (c, c′) ∈ C × C with c 6= c′, and gcc′ = 0 for all the remaining

pairs (c, c′) ∈ C ×C with c 6= c′. On the other hand, if h is subadditive then a solution to the

optimisation problem (5) is any g such that gcc′ = 1 for T pairs (c, c′) ∈ C × C with c 6= c′

and gcc′ = 0 for all the remaining pairs (c, c′) ∈ C × C with c 6= c′. Suppose that nD > mS

and consider clubs-efficient structures. Clearly any clubs-efficient membership structure must

have S members in this case and the strength of a link between an two clubs is at most S.

Each agent can contribute at most D(D− 1)/2 to the total weight of links between clubs and

so the total weight of links between clubs is at most mSD(D − 1)/2. Hence finding a clubs-

efficient structure amounts to solving the optimisation problem (5) with T = mSD(D− 1)/2

and subject to an additional constraint:

g is a membership structure. (8)

Constraint (8) makes the problem of characterising club-efficient membership structures diffi-

cult, especially in the case of subadditive (or even concave) h. For some values of parameters S,

D, m and n the constraint is not binding and there exist membership structures attaining the

maximum of problem (5) without constraint (5). In the case of superadditive h the constraint

is not binding when D divides m and n > mS/D. In this case an optimal club-membership can

be constructed by partitioning clubs in m/D groups (ci1, . . . , c
i
D)

m/D
i=1 , choosing m/D groups

(ai1, . . . , a
i
S)

m/D
i=1 of size S of individuals, and then assigning all the individuals in group i to all

clubs in group i, for each i ∈ {1, . . . ,m/D}. In the case of subadditive h establishing the con-

ditions for which the constraint is not binding is an open combinatorial problem (Chee et al.,

2013). In such cases an optimal membership structure is related to a so called (2, 1)-packing

13 Recall that a function h : R → R is supperadditive if for all x, y ∈ R, h(x + y) ≥ h(x) + h(y) and it is
subadditive if for all x, y ∈ R, h(x + y) ≤ h(x) + h(y).
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of the clique over the set of all clubs. In the cases when constraint (8) is binding the problem

of finding optimal membership structures is not easier. Given the difficulties with obtaining

characterization of optimal membership structures, we restrict attention to the cases of D = 2

and m even and provide a characterization of optimal structures then. Even these cases allow

for contrasting the optimal structures under super- and subadditive functions h.

Formally, we say a club network g = g(a) is clubs-efficient/utilitarian optimum/stable if it

is created with a clubs-efficient/utilitarian optimum/stable membership profile a. Addition-

ally, we define a k-clique as a subnetwork that has k mutually linked clubs and a k-regular

network as a network where all clubs have k links. The complete network is a special kind of

regular network where all clubs are linked to each other (k = m− 1).

Proposition 5. Assume nD ≥ mS, D = 2, m is even, and 2 ≤ S ≤ m− 1.

� When h(·) is superadditive, the clubs-efficient club network consists of m/D separate 2-

cliques where all links are of strength S. This network is stable when h(·) is superadditive

and unstable when h(·) is subadditive.

� When h(·) is subadditive, the clubs-efficient club network is an S-regular network (a

complete network when S = m − 1) where all links are of strength 1. This network is

stable when h(·) is subadditive and unstable when h(·) is superadditive.

Assume nD < mS, D = 2, S divides n, and 2 ≤ S ≤ 2n/S − 1.

� When h(·) is superadditive, the utilitarian optimum club network consists of n/S sep-

arate 2-cliques where all links are of strength S. This network is stable when h(·) is

superadditive and unstable when h(·) is subadditive.

� When h(·) is subadditive, the utilitarian optimum club network is an S-regular network

(a complete network when S = 2n/S−1) where all links are of strength 1. This network

is stable when h(·) is subadditive and unstable when h(·) is superadditive.

The proof is presented in the Online Appendix.

As mentioned earlier, the club network and the individual network generated by a mem-

bership profile share some important properties. The club network mentioned in Proposition 5

can be mapped into individual networks. When h(·) is convex, our characterization involves

2-cliques with strength S links for the club network; the corresponding individual network
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consists of S-cliques with strength 2 links. When h(·) is concave, our characterization fea-

tures a S-regular club network with strength 1 links; the corresponding individual network is

a D(S − 1)-regular network with strength 1 links.

5 Extensions

5.1 Strong Stability

In the previous sections, our stability notion checks whether a membership profile is robust

to deviations by a single agent (an individual or a club) and a pair of agents (an individual and

a club). We can strengthen the stability notion by allowing deviations by subsets of agents of

any size.

Definition 3. A membership profile a ∈ A is strongly stable if ∀I ′ ⊆ I and C ′ ⊆ C: there is

no a′ ∈ A with a′ic ≤ aic for all (i, c) ∈ I ×C where i ∈ I ′, c /∈ C ′ or i /∈ I ′, c ∈ C and a′ic = aic

for all i /∈ I ′, c /∈ C ′ such that ui(a
′) > ui(a) for all i ∈ I ′ and πc(a

′) > πc(a) for all c ∈ C ′.

In words, strong stability tests deviation by any group of individuals and clubs where

agents within the group can freely add or terminate memberships with each other subject to

capacity constraints and terminate memberships with agents outside the group.

We limit our analysis to the case where the aggregate individual availability is non-trivially

greater than the aggregate club capacity (nD > mD + DS) and show that strong stability

does not lead to stronger results than the stability notion we use in previous sections which

only considers unilateral and pairwise deviations.14

Proposition 6. Assume that h(x) = αx where α ≥ 0 and nD > mS + DS. A membership

profile a ∈ A is strongly stable if and only if it is stable.

Proposition 6 shows that our stability characterization cannot be refined by allowing more

deviations from agents. Note that both our stability notion and strong stability notion concern

deviations that make all deviating agents strictly better off. We define stability in this way

to ensure the existence of stable membership profiles. The following example shows why an

alternative stability notion that requires no deviations that make all deviating agents weakly

better off and some deviating agents strictly better off can lead to the non-existence of stable

14 The restriction of nD > mS + DS ensures that all clubs are full in a stable membership profile which
simplifies our analysis.
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profiles. Suppose there are one club that can admit one member and two individuals i1 and i2.

There are three possible membership profiles here: the club admits no one; the club admits

i1; and the club admits i2. The first profile is clearly not stable. The second and third profiles

are not stable if we adopt the alternative stability concept: suppose the club admits ix, the

deviation by the club and iy where the club exiles ix to admit iy makes iy strictly better off

and the productivity of the club unchanged.

5.2 Heterogeneous Individuals

Our model assumes homogeneous individuals so that the preference of clubs over individ-

uals is completely based on the memberships of the individuals. In reality, individuals differ

in other aspects that clubs could care about. To account for ths consideration, let θi ∈ R>0

be the type of individual i. We assume the productivity of club c in profile a to be

πc(a) = f

(∑
i∈I

aicθi

)
+
∑
c′ 6=c

h(gcc′(a)). (9)

Note that the production function of clubs under the specification of homogeneous individuals

is a special case of function (9) when θi = 1 for all i ∈ I. We do not change our assumption

about individual utility, that is, individuals have the same utility function.

With the introduction of individual heterogeneity, our partition of clubs into C1(a), C2(a)

and C3(a) is not sensible anymore since clubs most likely have different productivities. As

a result, the partition of individuals who join D clubs into I1(a) and I2(a) based on what

kind of clubs they join is also not sensible. To study whether a stable profile is egalitarian

or features marginalization, we use a simpler partition that categorizes individuals solely on

their degrees:

Î1(a) = {i ∈ I : di(a) = D}

Î2(a) = {i ∈ I : 0 < di(a) < D}

Î3(a) = {i ∈ I : di(a) = 0}

To measure marginalization of individuals, we simple replace |I4(a)| in equation (3) with

|Î3(a)|. We focus on the more natural situation where nD ≥ mS and obtain the following

results for stable membership profiles.
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Proposition 7. Suppose all individuals are different from each other: θi 6= θj ∀i 6= j, and the

productivity of clubs follows (9). Assume that h(x) = αx where α ≥ 0 and nD ≥ mS. Then

for any stable profile a,

mS

D
− (D − 1)S ≤|Î1(a)| ≤ mS

D
,

|Î2(a)| ≤ (D − 1)S, and

n− mS

D
− (D − 1)S ≤|Î3(a)| ≤ n− mS

D
.

Therefore, MI(a) ≥ 1− (D−1)D
min(nD−mS

S
,(D−1)m)

. Additionally,

� when α = 0, di(a) ≥ dj(a) for all i, j with θi > θj in a stable membership profile a.

� when α > 0, the difference between individuals is relatively less compared to the benefit

from connections: θi − θj < α ∀i, j ∈ I, and D does not divide m + 1, there exists a

stable membership profile a where di(a) ≤ dj(a) for all i, j with θi > θj.

The proposition shows that in the presence of individual heterogeneity, the connection

benefit is not needed to arrive at marginalization. Nonetheless, connection externality in-

fluences who gets marginalized. Without it, a stable profile always sorts better types into

(weakly) more clubs, so those marginalized must be the low types. When there is connection

externality and the difference between individuals is small, a stable profile could reverse the

sorting completely and marginalize high types. This is because, with connection externality,

club memberships are self-fulfilling: low types are admitted by clubs because of their mem-

berships in other clubs. The condition of D not dividing m + 1 is imposed to ensure there

does not exist a high type individual who joins only one club less than a lower type individual

and thus will be wanted by a club the lower type is in for substitution.

5.3 Richer interdependence between clubs

In some applications, it may be reasonable to suppose that there is a greater value to a club

to connecting to large clubs as compared to small clubs. In the basic model, we abstract away

from this consideration. Here we discuss how introducing size of neighbouring club shapes

stable networks. Let the productivity of a club be

πc(a) = f(sc(a)) +
∑
c′ 6=c

h(gcc′(a))q(sc(a)), (10)
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where q′(·) ≥ 0. Note that when q(x) = 1 for x = 1, ..., S, so that q′(·) = 0, we are back to

the case where clubs only care about the aggregate strength of their connections.

We again investigate the case of nD ≥ mS and study whether a stable profile features

marginalization.

Proposition 8. Suppose the productivity of clubs follows (10). Assume that h(x) = αx, where

α ≥ 0 and nD ≥ mS. When α = 0, an egalitarian membership profile is stable. When α > 0,

for a stable a,

mS

D
− S ≤|Î1(a)| ≤ mS

D
,

|Î2(a)| ≤ S, and

n− mS

D
− S ≤|Î3(a)| ≤ n− mS

D
.

Therefore, MI(a) ≥ 1− D

min(nD−mS
S

,(D−1)m)
.

Proposition 8 shows that even in this richer model of cross club benefits stable networks

will exhibit marginalization. Intuitively, when mS ≥ nD, in a stable profile most clubs, if not

all, will be of the same size (full). Hence, it is obvious that adding the size of neighbouring

clubs into the production function does not affect our characterization of marginalization. For

strictness, we note that some clubs may not be full in a stable profile when nD is close to mS

and prove Proposition 8 using an argument different from the very straightforward one above.

6 Case Studies

In this section, we present two case studies that map our theory onto empirical context of

inter-locking directorates and editorial boards of directors.

Interlocking Directorates: It is widely recognized that the board-to-board ties serve as

a mechanism for the diffusion of corporate practices, strategies, and structures (Mizruchi

(1996)). We may consider boards as clubs and directors as individuals; links between clubs

raise productivity. In what follows, we discuss empirical studies on interlocking directorates

and explain how our model sheds light on the understanding of the empirical findings.

Consider first the degree distribution of board directors. Conyon and Muldoon (2006)

study the affiliations of board directors who hold positions in 1,733 firms in the United States
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in 2003. They find that 80.37% of the directors sit only on one board, 13.02% of them sit on

two boards, and the remaining 6.61% of the directors sit on 8.6 boards on average. Thus most

directors hold only one or two positions, but there is a small fraction of directors who occupy

many positions. The authors show that similar patterns hold in Germany and the UK. This

inequality in degrees of directors is in line with the marginalization result (Proposition 2)

Consider next the structure of board networks. Mizruchi (1982) provides a historical anal-

ysis of the US board network among 167 firms at seven points from 1904 to 1974, finding that

almost all nodes were within distance 4. More recently, with the increased availability in data

and advancement in analyzing techniques, Davis et al. (2003) study the largest manufacturing

and service firms in the US over the period 1982 to 1999. They show that despite the major

changes in the nature of economic activities, the structure of the board network remained

relatively unchanged: the average geodesic distance between boards was 3.38, 3.46, and 3.46

in 1982, 1991 and 2001.

Turning finally to the strength of ties among boards: Battiston and Catanzaro (2004)

investigate the board networks of the Fortune 1000 firms in 1999 and show that they consist

mostly of weak links (the number of strength 1 links is about 10 times that the number of

stronger links) and that they have a small world feature (the largest connected component

includes 87% of all firms). Given that links between boards serve as information diffusion

channels, the marginal returns from board-to-board ties are likely to be decreasing. Proposi-

tion 5 shows that in this case, the club network is likely to be held together by weak links.

The empirical patterns are consistent with our theoretical analysis.

Interlocking directorates among Health Care Organizations: Willems and Jegers

(2011) study the interlocking boards of 92 Belgian healthcare organizations. One of their

main findings is that the board network is fragmented with strong links: the 92 organizations

are divided into 23 components; 24 pairs of organizations share exactly the same set of board

members and the heaviest link in the network is of strength 10.

Woo (2017) and Hansson et al. (2018) suggest that health care organizations often need to

collaborate with each other to treat multi-diseased and vulnerable patients. To achieve smooth

coordination, it is more efficient for organizations to have multiple shared directors with their

partners. In the language of our model, this suggests that marginal returns from links are

increasing in overlaps. In this case, the theory predicts that the resulting board network is

fragmented with strong links. This is consistent with the empirical finding of Willems and

Jegers (2011).
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Boards of Journal Editors: The editorial board of a journal along with its set of referees

shapes the research papers that are published in it. The collection of prestigious journals

in a discipline taken together therefore can have a profound influence on the directions of

research in that discipline. In economics, there has existed a concern for some time now that

the leading journals are dominated by members from a few economics departments based in

the United States. This concentration of editors has some to suggest that the discipline may

be a risk of becoming too conformist and losing its innovativeness. This question has become

more pressing over the last few decades as the profession has grown greatly and there has

been a massive increase in the number of journals: this has resulted in a massive increase in

the relative prestige of publishing in a few core journals. A leading economist has termed this

phenomenon ‘Top5ites’ (see Serrano (2018) and Ductor and Visser (2021)) and in a recent

paper, the emphasis on the top few journals in the career prospects of economists has been

referred to as the ‘Curse of the top-5’ (Heckman and Moktan (2020)). We may view authors

as individuals and boards of journals as clubs. In this case study, we draw on a recent paper

by Ductor and Visser (2021) to document some facts about editorships and the relationship

between the boards of leading journals and then relate them to our theoretical predictions.

Ductor and Visser (2021) study a set of 106 leading economics and finance journals over

the period 1990-2011. They find that there were 79533 authors publishing in these journals

but that only 6069 became editors, i.e. only 7.63%. Moreover, within the set of editors, over

75% were editors of just one journal but over 1.6% of these editors were editors at 4 or more

journals. We recognize that the model assumes individuals are ex-ante homogenous while

economics authors clearly differ in their abilities and productivity and their suitability for

editorial roles. But, at a high level, these two facts are broadly consistent with the model’s

prediction on the marginalization of individuals (that can arise even if all individuals are

similar).

Turning next to the links between the boards of different journals, for concreteness let us

discuss the empirical situation in 2010. The network contains the 106 journals as nodes; a

link between two journals reflects common editors. An inspection of this network reveals a

number of interesting facts. The largest component contains 101 nodes, suggesting that it is

more or less connected. The network is sparse with roughly 11% of all possible links being

present. These links have uneven strength but the vast majority of the links are weak – over

82% have only one or two common editors. These facts suggest that the network is a small

world that is held together with mostly weakly ties.

To illustrate these patterns, we present the network of editorial boards of leading eco-

33



nomics journals from the year 2010 in Figure 6. The network covers 28 leading economics

journals.15 We see that the network is connected and that most of the links are relatively

weak. Interestingly the network is held together through a hierarchical structure – the general

interest journals share common editors with field journals; there are relatively few ties among

the general interest journals and the field journals, respectively.

7 Conclusions

Empirical research has documented a tendency for decision making power to be concen-

trated in a few persons at the head of large organizations. This phenomenon is termed the

‘power elite’ or the ‘interlocking directorates’, depending on the type of positions concerned.

This paper proposed a simple model of club membership to study the circumstances that

would lead to power elites and interlocking directorates and their welfare properties. The

model has two types of active agents: individuals seeking to join clubs and club owners. The

analysis shows that if club productivity is increasing in links with other clubs, then the stable

network tends to be exclusive: a small subset of individuals are members of several clubs, while

the vast majority are excluded from all membership. Whether such a structure is efficient de-

pends on the utility specification of individuals. When the returns to common membership

are convex, stability dictates strong ties and a fragmented club network. By contrast, when

returns are concave, stability presses toward weak ties and more extensive connectivity of the

club network.
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8 Appendix: For Online Publication

Proofs

Proof of Proposition 1

We first take up the characterization – the sufficient and necessary conditions – for stability.

We then prove existence.

From the production function of clubs and the utility function of individuals, we know

that there cannot be any i ∈ I, c ∈ C and a′ ∈ A with a′i ≤ ai and a′−i = a−i such that

ui(a
′) > ui(a), or a′c ≤ ac and a′−c = a−c such that πc(a

′) > πc(a). Hence, the deviations

we need to consider are joint deviation by i and c such that both of them are better off.

Such deviation can be divided into four types: individual i joins club c and nothing else is

changed; individual i quits some clubs and joins club c; club c dismisses some members and

admits individual i; and individual i quits some clubs, club c dismisses some members, and i

joins c. Notice that for the last three kinds of deviations, if quitting two or more clubs and

dropping two or more members is profitable, then quitting only one club and dropping only

one member is also profitable given our utility and productivity specification. So, we only

consider deviations with one quitting and (or) one dropping. We show that conditions (i)–(iii)

are necessary and sufficient for the four kinds of deviations not to be jointly profitable.

For the necessity of condition (i), suppose it does not hold and there exists an individual

i ∈ I with di(a) < D and a club c ∈ C with sc(a) < S, such that i is not a member of c. But

then i joining c is strictly improving for both parties, which contradicts stability of a.

We also show that if condition (i) holds, then there is no jointly profitable deviation for i

and c where i joins c and nothing else changes since such deviation is not feasible.

For the necessity of condition (ii), suppose, to the contrary, that there exists a club c with

sc(a) < S, an individual i ∈ I who is not a member of c, and a club c′ ∈ C that i joins, such

that

πc(a) > πc′(a)− f(sc(a) + 1) + f(sc(a))− α(D − 1). (11)

Notice that, by condition (i), di(a) = D. Let a′ be a membership profile obtained from a

by i leaving c′ and joining c and c accepting i. First, it is obvious that πc(a
′) > πc(a). The

difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = f(sc(a) + 1)− f(sc(a)) + α(D − 1), (12)
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so the difference in utility of i between a′ and a is equal to

ui(a
′)− ui(a) =v(πc(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1) +

∑
c′′ 6=c,c′

aic′′πc′′(a))

−v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a)), (13)

which has the same sign as

πc(a)− πc′(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1), (14)

which is positive since v is increasing. The deviation by individual i and club c from a to a′

makes them both better off. A contradiction with stability of a.

We also show that if conditions (i) and (ii) hold, then there is no jointly profitable deviation

for i and c where i quits a club to join c and nothing else changes. If there is such a deviation,

it must be that sc(a) < S. Since i is not a member of c so, by condition (i), di(a) = D. Let

c′ be the club that i leaves when joining c. Then, by (13) and (14) and condition (ii), utility

of i does not increase and so the deviation is not profitable to i.

For the necessity of condition (iii), suppose, to the contrary, that there exist individuals

i ∈ I and i′ ∈ I such D > di(a) ≥ di′(a) and a club c ∈ C such that i′ is a member of and i

is not. Let a′ be a membership profile obtained from a by i joining c and c accepting i and

dropping i′. The difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = α(di(a)− di′(a) + 1), (15)

which is positive if and only if α > 0. Also, since v is increasing, both individual i and club c

and strictly benefit deviating from a to a′ when α > 0. A contradiction with stability of a.

We also show that if conditions (i) and (iii) hold, then there is no jointly profitable deviation

for i and c where c drops a member to admit i and nothing else changes. If there is such a

deviation, it must be that di(a) < D. Then from condition (i), it mush be sc(a) = S. Let i′

be the individual that club c drops. Then, by (15) and condition (iii), productivity of club c

does not increase and so the deviation is not profitable to c.

For the necessity of condition (iv), suppose that α > 0 and suppose, to the contrary, that

there exists two individuals i, i′ ∈ I with di(a) = D and di′(a) < D, a club c ∈ C that has
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member i′ but not i, and a club c′ that i joins, such that

πc(a) > πc′(a)− α

(
D − di′(a)−

∑
c′′ 6=c′

aic′′ai′c′′

)
. (16)

Let a′ be a membership profile obtained from a by i joining c and leaving c′, and c accepting

i and dropping i′. The difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = α(D − di′(a)), (17)

which is positive if and only if α > 0. The difference in utility of i between a′ and a is equal

to

ui(a
′)− ui(a) =v(πc(a

′) +
∑

c′′ 6=c,c′

aic′′πc′′(a))− v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a))

=v(πc(a) + α (D − di′(a))− α
∑
c′′ 6=c′

aic′′ai′c′′ +
∑

c′′ 6=c,c′

aic′′πc′′(a))

− v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a)), (18)

which has the same sign as

πc(a)− πc′(a) + α

(
D − di′(a)−

∑
c′′ 6=c′

aic′′ai′c′′

)
, (19)

which is positive since v is increasing. The deviation by individual i and club c from a to a′

makes them both better off. A contradiction with stability of a.

We also show that if conditions (i)–(iv) hold, then there is no jointly profitable deviation

for i and c where i leaves a club, c drops a member, and i joins c. Suppose there is such a

deviation, if di(a) < D or sc(a) < S, since the deviation is profitable with i quitting a club

and c dismissing a member, it is also profitable if i does not quit the club and c does not

dismiss the member. We know conditions (i)–(iii) guarantee that there is no such mutually

beneficial deviation. So, here we consider the deviations of i and c when di(a) = D and

sc(a) = S. In this case, by (18) and (19) and condition (iv), utility of i does not increase and

so the deviation is not profitable to i.

We finally turn to the existence of stable membership profile. We provide a proof by
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construction.

Suppose nD ≥ mS. Let m′ ≤ m and n′ ≤ n be the largest integers such that m′S = n′D.

Notice that since m ≥ D and n ≥ S so m′ ≥ D and n′ ≥ S. Construct a membership profile

a as follows. First, select n′ individuals and m′ clubs, let all selected individuals join D clubs

we select so that all m′ clubs have S members. This profile can be obtained by letting clubs

admit individuals in sequence: make each club admit S individuals that have the smallest

degree in its turn before moving to the next club. If n−n′ ≥ S, take S out of n−n′ remaining

individuals and put each of them in each of m−m′ remaining clubs. Otherwise, put each of

n − n′ remaining individuals in each of m −m′ clubs. It is easy to verify that this profile is

stable.

Suppose mS > nD: consider a membership profile a where all individuals join D clubs,

and bnD
S
c clubs have S members, one club has (nD) mod S members, and the remaining

clubs have 0 members. This profile can be obtained by letting clubs admit individuals in

sequence. Make each club admit S individuals that has the smallest degree in its turn before

moving to the next club. Stop when all individuals have degree D. This profile is always

stable as it satisfies all four conditions in Proposition 1. Condition (i) is satisfied obviously.

Conditions (iv) and (iii) are automatically satisfied as no individual joins less than D clubs.

For condition (ii), if a club c has less than S members, then either it is the one club with

(nD) mod S members or it has 0 members. In both cases, for an individual i that is not in c

and for any club that i is in, c′ must have more members than c does and all members of c′

join D clubs, making condition (ii) satisfied. �

Proof of Proposition 2

We first take up the egalitarian outcome result in the absence of network effects. When

α = 0, the membership profile generated with the following algorithm is stable. Let clubs

admit individuals sequentially. Fill a club with S individuals that currently have the lowest

degrees and then move to the next club. Stop until all clubs are full or all individuals have

joined D clubs. Since n ≥ S, this algorithm is feasible. If the algorithm terminates when all

clubs have S members, then all clubs have productivity f(S) which is the highest productivity

a club can get. Hence the membership profile is stable. If the algorithm terminates when all

individuals are in D clubs, then there are bmS
D
c clubs that have productivity f(S), one club

that has productivity f((mS) mod D), and the rest clubs have productivity 0. The only

possible profitable deviation from one individual is to quit the club with productivity f((mS)

mod D) and join a club with productivity f(S), but no club with productivity f(S) want to
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deviate. Hence the membership profile is stable. Given the way we construct the membership

profile, we have |di(a)− di′(a)| ≤ 1 for all i, i′ ∈ I.

When α > 0, we develop the conditions for the sizes of the different groups. For the

cardinality of I3(a), take any individual i ∈ I3(a) with minimal di(a) and let c ∈ C be any

club that i members. By condition (iii) of Proposition 1, all individuals in I3(a) are members

of c and, by condition (i) of Proposition 1, sc(a) ≤ S. Hence |I3(a)| ≤ S.

For cardinality of C2(a), suppose that C2(a) 6= ∅, we will show that there exists an

individual i that is a member of all clubs in C2(a). We consider the cases of I3(a) = ∅ and

I3(a) 6= ∅ separately. If I3(a) = ∅, then members of the clubs in C2(a) are of degree D and,

for any c ∈ C2(a), sc(a) < S (as c does not achieve maximal productivity). Take any c′ ∈
C2(a) with minimal productivity, πc′(a), and any member i of c′. Take any c ∈ C2(a) \ {c′}.
Since sc(a) < S and since πc(a) ≥ πc′(a) so, by condition (ii) of Proposition 1, i is a member

of c. Hence i is a member of all clubs in C2(a). If I3(a) 6= ∅ then take any i ∈ I3(a) with

maximal degree. Take any club c ∈ C2(a). Since c does not achieve the highest productivity

so either sc(a) < S or c has a member in I3(a). In the first case, i is a member of c by

condition (i) of Proposition 1. In the second case, i is a member of c by condition (iii) of

Proposition 1. Hence i is a member of all clubs in C2(a). By condition (i) of Proposition 1,

di(a) ≤ D. Hence |C2(a)| ≤ D.

For cardinality of I2(a), notice first that, by definition, every individual in I2(a) members

at least one club in C2(a). Thus the aggregate membership of individuals in I2(a) in the

clubs in C2(a) is at least x+ 2(|I2(a)| − x), where x is the number of individuals from I2(a)

who member exactly one club from C2(a). On the other hand, since |C2(a)| ≤ D and, for all

c ∈ C2(a), either sc(a) ≤ S − 1 or c has a member in I3(a), so aggregate club capacity of the

clubs in C2(a) for individuals in I2(a) is at most (S − 1)D. Hence

x+ 2(|I2(a)| − x) = 2|I2(a)| − x ≤ (S − 1)D. (20)

The number of individuals in I2(a) who member exactly one club in C2(a) is at most S − 1.

To see that, suppose that an individual i ∈ I2(a) members exactly one club c′ ∈ C2(a). Let

c ∈ C2(a) \ {c′} be another club in C2(a). Since i is not a member of c so, by condition (ii)

of Proposition 1, πc(a) < πc′(a). Hence c′ must achieve the highest productivity of all clubs

in C2(a) and must be unique such. Since all individuals in C2(a) who member exactly one

club in C2(a) must be members of the same club from C2(a) and since, as we observed above,

this club can host at most S − 1 members from I2(a), so there can be at most S − 1 such
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individuals. This shows that x ≤ S−1 and from (20) it follows that |I2(a)| ≤ (S−1)(D+1)/2.

We now use these derivations on the size of the different groups to derive bounds on the

size of I1(a) and I2(a) and I4(a).

We begin with the case nD ≥ mS: Suppose that in a stable membership profile a, all clubs

are full, then we have |I1(a) ∪ I2(a)|D +
∑

i∈I3(a) di(a) = mS, and hence |I1(a) ∪ I2(a)|D +

|I3(a)|D > mS. Since |I3(a)| ≤ S,

|I1(a) ∪ I2(a)| > mS

D
− S.

Suppose that in a stable membership profile a, not all clubs are full, then we know |I4(a)| = 0

as otherwise there is a jointly profitable deviation for an individual in I4(a) and a club that

is not full where the individual joins the club. Therefore,

|I1(a) ∪ I2(a)|+ |I3(a)| = n ≥ mS

D
,

and so |I1(a) ∪ I2(a)| ≥ mS
D
− S given |I3(a)| ≤ S.

Now, since |I1(a)∪I2(a)| ≥ mS
D
−S and |I2(a)| ≤ (S−1)(D+1)

2
, we have |I1(a)| ≥ mS

D
− S(D+3)

2
.

For the upper bound of |I1(a)|, since aggregate club capacity is mS, we must have |I1(a)|D ≤
mS, and so |I1(a)| ≤ mS

D
.

Regarding the bounds for |I4(a)|. Since |I1(a) ∪ I2(a)| + |I3(a)| + |I4(a)| = n, |I1(a) ∪
I2(a)| ≤ mS

D
, and |I3(a)| ≤ S, so |I4(a)| ≥ n − mS

D
− S. Moreover, if |I4(a)| > n − mS

D
, then

|I1(a)∪ I2(a)|+ |I3(a)| < mS
D

. The club capacity is not exhausted and there must exist a club

c that is not full. There is a jointly profitable deviation for an individual i in I4(a) and club

c where i joins c. A contradiction.

Next consider the case when nD < mS: We first show the lower bound for |C1(a)| is

nD/S − D. Suppose that in a stable membership profile a, all individuals exhaust their

membership availability, then we have |C1(a)|S+
∑

c∈C2(a)
sc(a) = nD, and hence |C1(a)|S+

|CW (a)|S ≥ nD. Since |C2(a)| ≤ D, |C1(a)| ≥ nD
S
−D. Suppose that in a a stable membership

profile a, not all individuals exhaust their membership availability, then we know |C3(a)| = 0

as otherwise there is a jointly profitable deviation for the individual who joins less than D

clubs and a club in C3(a) where the individual joins the club. Therefore,

|C1(a)|+ |C2(a)| = m ≥ nD

S
,
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and so |C1(a)| ≥ nD
S
−D given |C2(a)| ≤ D.

For the upper bound of |C1(a)|, since aggregate membership availability is nD, we must

have |C1(a)|S ≤ nD, and so |C1(a)| ≤ nD
S

.

Regarding the bounds for |C3(a)|. Since |C1(a)| + |C2(a)| + |C3(a)| = m, |C1(a)| ≤
nD
S

, and |c2(a)| ≤ D, so |C3(a)| ≥ m − nD
S
− D. Moreover, if |C3(a)| > m − nD

S
, then

|C1(a)| + |C2(a)| < nD
S

. The aggregate membership availability is not exhausted and there

must exist an individual i that joins less than D clubs. There is a jointly profitable deviation

for i and a club c in C3(a) and club c where i joins c. A contradiction.

Finally, we turn to the statements on MI(a) and MC(a). Consider the case of nD > mS

and let a be a stable membership profile. Suppose first that nD > mS + DS. By the lower

bound on I4(a), |I4(a)| ≥ (nD−mS−SD)/D > 0. Hence there exists at least one individual

without a club under a. It follows that
∑

i∈I di(a) = mS. For if
∑

i∈I di(a) < mS then

there exists a club c with sc(a) < S and, by |I4(a)| > 0, there exists an individual i with

di(a) = 0. They would both benefit from i joining c, contradicting the stability of a. Using∑
i∈I di(a) = mS and |I4(a)| ≥ n− mS

D
− S we get

MI(a) =
|I4(a)| − n+ min (n,mS)

min (n,mS)−
⌈
mS
D

⌉ ≥ |I4(a)| − n+ min (n,mS)

min (n,mS)− mS
D

≥
min (n,mS)− mS

D
− S

min (n,mS)− mS
D

= 1− S

min (n,mS)− mS
D

= 1− D

min
(
nD−mS

S
, (D − 1)m

)
Second, suppose that nD ≤ mS +DS. Then

1− D

min
(
nD−mS

S
, (D − 1)m

) ≤ 1− D

min
(
DS
S
, (D − 1)m

) ≤ 0 ≤MI(a).

The upper bound on MC(a) can be obtained by analogous arguments.

�

Proof of Proposition 3

We prove a more general characterization of efficient membership profiles, without the

parity conditions in Proposition 3.

Lemma 1. Suppose α > 0. Assume nD ≥ mS.
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� A membership profile is clubs-efficient if and only if there are bmS
D
c individuals that join

D clubs, one individual that joins (mS) mod D clubs, and the remaining individuals join

no clubs.

� If v′′(·) ≥ 0, then a membership profile is utilitarian optimum if and only if it is clubs-

efficient. If v′′(·) < 0 and satisfies condition (4), then in any utilitarian optimum mem-

bership profile, either di(a) ≤ 1 for all i ∈ I or di(a) ≥ 1 for all i ∈ I.

Assume nD < mS.

� If f ′′(·) > 0, then a membership profile is clubs-efficient if and only if bnD
S
c clubs admit

S members, one club that admits (nD) mod S members, and the remaining clubs admit

no members. If f ′′(·) = 0, then a membership profile is clubs-efficient if and only if each

individual join D clubs. If f ′′(·) < 0, then a membership profile is clubs-efficient if and

only if (nD) mod m admit dnD
m
e members and the remaining clubs admit bnD

m
c members.

� If v′′(·) ≥ 0, then a membership profile is utilitarian optimum if and only if bnD
S
c clubs

admit S members, one club that admits (nD) mod S members, and the remaining clubs

admit no members. If v′′(·) < 0 and (nD) mod S = 0, then membership profile is

utilitarian optimum if and only if nD/S clubs admit S members and the remaining clubs

admit no members. If v′′(·) < 0 and (nD) mod S > 0, then in any utilitarian optimum

membership profile, the number of clubs that admit some but less than S members is not

more than S − 1.

For the case when nD ≥ mD. First, given a membership profile a, the aggregate produc-

tivity of clubs is ∑
c∈C

πc(a) =
∑
c∈C

f(sc(a)) + α
∑
c∈C

∑
i∈I

aic(di(a)− 1)

≤ mf(S) + α
∑
i∈I

di(a)(di(a)− 1),

where the equality is obtained only when sc(a) = S for all c ∈ C. Now we solve the following

maximization problem:

max
∑
i∈I

di(a)(di(a)− 1) s.t. di(a) ∈ {0, 1, ..., D} for all i ∈ I and
∑
i∈I

di(a) ≤ mS.
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Since g(x) = x(x − 1) is superadditive on the set of non-negative integers and this is strict

on positive integers, the solution to the maximization problem is a vector (d∗i (a))i∈I such

that d∗i (a) = D for all i ∈ I ′ where I ′ ⊂ I and |I ′| = bmS
D
c, d∗i (a) = (mS) mod D for some

i = k ∈ I\I ′ (in the case of (mS) mod D ≥ 1) and d∗i (a) = 0 for all i ∈ I\(I ′ ∪ {k}).
We now show that when nD ≥ mS, there always exists a membership structure where

there are bmS
D
c individuals that join D clubs, one individual that joins (mS) mod D clubs,

and the remaining individuals join no clubs (which makes sc(a) = S for all c ∈ C), so that a

structure a ∈ A is clubs-efficient if and only if it satisfies such a club joining pattern. Construct

a membership structure as follows. Consider bmS/Dc individuals first, in a sequence. Make

each such i join D clubs that have the smallest membership size at her turn before moving to

the next individual. If (mS) mod D ≥ 1 so that there are clubs that do not have S members

at the end of the process, take one more individual and make him join those (mS) mod D

clubs. Since bmS/DcD + (mS) mod D = mS, the construction is valid and results in the

desired membership structure.

For utilitarian optimal structures, given a membership profile a, the aggregate utility of

individuals is ∑
i∈I

ui(a) =
∑
i∈I

v(
∑
c∈C

aicπc(a)).

We know that
∑

c∈C aicπc(a) ≤ D(f(S) + S(D − 1)) for all i ∈ I and
∑

i∈I
∑

c∈C aicπc(a) =∑
c∈C sc(a)πc(a) ≤ S

∑
c∈C πc(a), where the equality is obtained only when sc(a) = S for all

c ∈ C. Given that a clubs-efficient structure that maximizes
∑

c∈C πc(a) features sc(a) = S

for all c ∈ C,
∑

i∈I
∑

c∈C aicπc(a) is maximized if and only if a is clubs-efficient. We also know

that a clubs-efficient structure makes bmS
D
c individuals have utility v(D(f(S) + S(D − 1))),

at most one individual have positive but less than v(D(f(S) +S(D− 1))) utility, and the rest

individuals have zero utility. Hence, when v′′(·) ≥ 0, the clubs-efficient membership profile is

the solution to the maximization profile of maxa∈A ui(a). We have shown that when v′′(·) ≥ 0,

a membership profile is utilitarian optimum if and only if it is clubs-efficient.

Turning to when v′′(·) < 0 and satisfies

v(f(S))− v(0) > (n− 1)

(
v

(
f(S) +

2αS(D − 1)

n− 1

)
− v (f(S))

)
,

we show that suppose in a membership structure a ∈ A, there exists two individuals i, i′ ∈ I
such that di(a) > 1 and di′(a) = 0, then a cannot be utilitarian optimum. Suppose such a

structure a is utilitarian optimum. Note first that it must be sc(a) = S for all c ∈ C, as
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otherwise making individual i′ join a club that is not full strictly raises aggregate welfare. Let

c ∈ C be a club where aic = 1. Consider another membership structure a′ where c drops i

and admits i′. The difference of aggregate utility between the two structures is∑
i∈I

(ui(a
′)− ui(a)) ≥ v(f(S))− v(0) +

∑
i 6=i′

(ui(a
′)− ui(a)),

since ui′(a
′) ≥ v(f(S)) and ui′(a) = v(0). Given that i′ replaces i in club c, the productivity

of club c and clubs that i members decreases:

πc(a)− πc(a′) = α(di(a)− 1), and

πc′(a)− πc′(a′) = α for all c′ 6= c with aic′ = 1.

So, the aggregate productivity drop is at most 2α(D− 1), which is obtained when di(a) = D.

Since v′′(·) < 0 and the minimal utility an individual obtains when he is in a club is v(f(S)),

∑
i 6=i′

(ui(a)− ui(a′)) ≤
∑
i 6=i′

[
v

(
f(S) +

∑
c∈C

aic(πc(a)− πc(a′))

)
− v(f(S))

]

≤ (n− 1)

[
v

(
f(S) +

2α(D − 1)S

n− 1

)
− v(f(S))

]
.

Hence,

∑
i∈I

(ui(a
′)− ui(a)) ≥ v(f(S))− v(0)− (n− 1)

[
v

(
f(S) +

2α(D − 1)S

n− 1

)
− v(f(S))

]
> 0,

contradicting structure a being utilitarian optimum. This completes the proof.

For the case when nD < mS, given a membership profile a, the aggregate productivity of

clubs is ∑
c∈C

πc(a) =
∑
c∈C

f(sc(a)) + α
∑
c∈C

∑
i∈I

aic(di(a)− 1)

≤
∑
c∈C

f(sc(a)) + αnD(D − 1),

where the equality is obtained only when di(a) = D for all i ∈ I. Now we look at the problem

of max
∑

c∈C f(sc(a)), s.t. sc(a) ∈ {0, 1, ..., S} for all c ∈ C and
∑

c∈C sc(a) ≤ nD. When f(·)
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is convex, the solution to the maximization problem is a vector (s∗c(a))c∈C such that s∗c(a) = S

for all c ∈ C ′ where C ′ ⊂ C and |C ′| = bnD
S
c, s∗c(a) = (nD) mod S for some c = k ∈ C\C ′

(in the case of (nD) mod S ≥ 1) and s∗c(a) = 0 for all c ∈ C\(C ′ ∪ {k}). When f(·) is linear,

the solution to the maximization problem is any (s∗c(a))c∈C where sc(a) ∈ {0, 1, ..., S} for

all c ∈ C and
∑

c∈C sc(a) = nD. When f(·) is concave, the solution to the maximization

problem is a vector (s∗c(a))c∈C such that s∗c(a) = dnD
m
e for all c ∈ C ′ where C ′ ⊂ C and

|C ′| = (nD) mod m, and s∗c(a) = bnD
m
c for all c ∈ C\C ′. This proves the characterization for

clubs-efficient membership profiles.

For utilitarian optimum membership profiles, given a membership profile a, we know the

aggregate utility of individuals is
∑

i∈I ui(a) =
∑

i∈I v(
∑

c∈C aicπc(a)) where
∑

c∈C aicπc(a) ≤
D(f(S) + S(D − 1)) for all i ∈ I and∑

i∈I

∑
c∈C

aicπc(a) =
∑
c∈C

sc(a)f(sc(a)) + α
∑
c∈C

sc(a)
∑
i∈I

aic(di(a)− 1)

≤
∑
c∈C

sc(a)f(sc(a)) + α(D − 1)sc(a)2,

where the equality is obtained only when di(a) = D for all i ∈ I. Since g(x) = xf(x) +

α(D − 1)x2 is superadditive on non-negative integers and strictly superadditive on positive

integers, for any α ≥ 0, D ≥ 1, and strictly increasing f with f(0) = 0,
∑

i∈I
∑

c∈C aicπc(a)

is maximized if and only if bnD
S
c clubs admit S members, one club that admits (nD) mod S

members, and the remaining clubs admit no members. When v′′(·) ≥ 0, it is easy to see that

this membership profile is also the solution to the maximization problem of maxa∈A ui(a). We

have shown that when v′′(·) ≥ 0, a membership profile is utilitarian optimum if and only if

bnD
S
c clubs admit S members, one club that admits (nD) mod S members, and the remaining

clubs admit no members.

Turning to when v′′(·) < 0, consider the utilitarian optimum structure where v′′(·) ≥ 0.

Under this structure, the utility of (nD) mod S individuals is

v[(D − 1)(f(S) + αS(D − 1)) + f ((nD) mod S) + α ((nD) mod S) (D − 1)], (21)

while the utility of all other individuals is v[(D)(f(S) + αS(D − 1))]. If this structure is

utilitarian optimum, we have finished the proof. If the structure is not utilitarian optimum,

then (nD) mod S 6= 0 and in a utilitarian optimum membership profile, the lowest utility

of an individual is greater than (21), implying that the smallest size of a club is greater
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than (nD) mod S. Suppose the smallest club size is sc(a) = (nD) mod S + k where k ∈
{1, ..., S− (nD) mod S− 1}. For the structure to be utilitarian optimal, the number of unfull

clubs is at most k, where the bound k is reached when we reduce the club size of k clubs by

1 to increase the size of the smallest club. So, the number of clubs with size greater than 0

and lower than S is at most 1 + k ≤ S − (nD) mod S ≤ S − 1.

�

Proof of Proposition 5

First, we consider when nD ≥ mS.

When h(·) is convex, for any membership profile a ∈ A, the productivity of a club πc(a)

satisfies

πc(a) ≤ f(S) + h(S(D − 1)) = f(S) + h(S),

where the equality is obtained only when the club has one strength-S link with another club.

For every club to reach this highest level of productivity, the club network consists of m/D

separate 2-cliques where all links are of strength S. We now show such a structure exists by

construction: Allocate the first S individuals to clubs c1 and c2, the next S individuals to

clubs c3 and c4,..., and the m
2
th group of S individuals (individuals imS/2−S+1 to imS/2) to clubs

cm−1 and cm.

Since all clubs have reached the highest productivity with the membership profile when

h(·) is convex, it is also stable when h(·) is convex. To show the profile is not stable when

h(·) is concave, consider a deviation by club c1 and individual iS+1 where c1 exiles i1 to admit

iS+1 and iS+1 leaves c3 to join c1. It is straight-forward to verify that the deviation benefits

both c1 and iS+1.

When h(·) is concave, for any membership profile a ∈ A, the productivity of a club πc(a)

satisfies

πc(a) ≤ f(S) + S(D − 1)h(1) = f(S) + S · h(1),

where the equality is obtained only when the club has S strength-1 links with other clubs. For

every club to reach this highest level of productivity, the club network is an S-regular network

where all links are of strength 1. We now show such a structure exists by construction with

the following algorithm: At each step, pick the club with the maximum number of empty

slots, fill the slots with different individuals, and then allocate each of those individuals to a

different club with the maximum number of empty slots. Stop when all clubs are full.

Since all clubs have reached the highest productivity with the membership profile when
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h(·) is concave, it is also stable when h(·) is concave. Now we show the profile is not stable

when h(·) is convex. In this profile, for each club c, it must has at least 2 strength-1 links

with c′ and c′′. Let i1 be the common member of c and c′ and i′′ be the common member of c

and c′′. There must also exist an indiviual, call him i3, who is in c′ and c′′′ 6= c. Consider the

deviation by club c and individual i3 where c exiles i2 to admit i3 and i3 leaves c′′′ to join c.

This deviation benefits both c and i3.

Turning to when nD < mS, let π∗ be the highest productivity a club can obtain, note

that for any membership profile a ∈ A, the utility of an individual ui(a) satisfies

ui(a) ≤ v(D · π∗),

where the equality is obtained only when all clubs i joins has productivity π∗. For any

individual to reach this highest level of utility, the subnetwork of clubs that contains all non-

empty clubs must consist of n/S separate 2-cliques where all links are of strength S when

h(·) is convex and be an S-regular network (a complete network when S = 2n/S − 1) where

all links are of strength 1 when h(·) is concave. Such subnetworks can be constructed in the

same way we construct we construct the clubs-efficieny networks when nD ≥ mS.

For the statements on stability, since all individuals have reached the highest level of utility,

they have no incentives to deviate. We consider the same deviations examined for the case

when nD ≥ mS to show that the utilitarian optimum club network under a convex (concave)

h(·) is unstable when h(·) is concave (convex).

�

Proof of Proposition 4

For point (i) we will show that if

min
x∈[0,S−1]

(h(x+ 1)− h(x)) >
D − 1

D
max

x∈[0,S−1]
(h(x+ 1)− h(x)),

then the number of agents who join no clubs under a stable membership structure is bounded

from above by |I4(a)| ≥ n − mS
D
− S, like in the case of linear returns from links. Then the

derivation of the value of marginalization measure follows by the same steps as in proof of

Proposition 2. We first show that the cardinality of |I3(a)| is not greater than S in any stable

membership structure. Take any indvidual i ∈ I3(a) with minimal degree and let c ∈ C be

any clubs that i members. We show that all individuals in I3(a) are members of c, and since

sc(a) ≤ S, |I3(a)| ≤ S. Suppose that there exists an i′ ∈ I3(a) where di′(a) ≥ di(a) and
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ai′c = 0. There is a jointly profitable deviation for i′ and c where c drops i and admits i′. The

deviation obviously improves the utility of i′ since none of the clubs she is already in suffers

from a loss of productivity and she is in a new club. The productivity change of club c is

positive since

πc(a
′) = πc(a) = f(sc(a

′))− f(sc(a)) +
∑
c′ 6=c

h(gcc′(a
′))−

∑
c′ 6=c

h(gcc′(a))

=
∑

c 6=c,aic=1,ai′c=0

[h(gcc′(a)− 1)− h(gcc′(a))] +
∑

c 6=c,aic=0,ai′c=1

[h(gcc′(a) + 1)− h(gcc′(a))]

≥ −(di(a)− 1) max
x∈[0,S−1]

(h(x+ 1)− h(x)) + di′(a) min
x∈[0,S−1]

(h(x+ 1)− h(x))

> 0

given minx∈[0,S−1](h(x+1)−h(x)) > D−1
D

maxx∈[0,S−1](h(x+1)−h(x)) and di(a) ≤ di′(a) ≤ D.

Given that |I3(a)| ≤ S, we can prove the lower bound for |I1(a) ∪ I2(a)|. Suppose

that in a stable membership structure a, all clubs are full, then we have |I1(a) ∪ I2(a)|D +∑
i∈I3(a) di(a) = mS, and hence |I1(a) ∪ I2(a)|D + |I3(a)|D > mS. Since |I3(a)| ≤ S,

|I1(a) ∪ I2(a)| > mS

D
− S.

Suppose that in a stable membership structure a, not all clubs are full, then we know |I4(a)| =
0 as otherwise there is a jointly profitable deviation for an individual in I4(a) and a club that

is not full where the individual joins the club. Therefore,

|I1(a) ∪ I2(a)|+ |I3(a)| = n ≥ mS

D
,

and so |I1(a) ∪ I2(a)| ≥ mS
D
− S given |I3(a)| ≤ S.

For the upper bound of |I1(a)∪ I2(a)|, since aggregate club capacity is mS, we must have

|I1(a) ∪ I2(a)|D ≤ mS and so |I1(a) ∪ I2(a)| ≤ mS
D

.

Turning to the bounds for |I4(a)|. Since |I1(a) ∪ I2(a)| + |I3(a)| + |I4(a)| = n, |I1(a) ∪
I2(a)| ≤ mS

D
, and |I3(a)| ≤ S, so |I4(a)| ≥ n − mS

D
− S. Moreover, if |I4(a)| > n − mS

D
, then

|I1(a) ∪ I2(a)|+ |I3(a)| < mS
D

. The club capacity is not exhasted and there must exist a club

c that is not full. There is a jointly profitable deviation for an individual i in I4(a) and club

c where i joins c. A contradiction.

For the first part of point (ii), we show that there exists a stable membership profile a with
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MI(a) ≥ 1− D

min(nD−mS
S

,(D−1)m)
. Let a be a membership structure constructed as follows. If

D divides m then equally divide clubs into m/D groups. Let all D clubs in the same group

admit the same S individuals. If D does not divide m then divide the clubs into dm/De groups

where the first bm/Dc groups have D clubs and the last group has m mod D clubs. Let all

D clubs in the first bm/Dc groups admit the same S individuals; individuals who join these

clubs have degree D. Let the m mod D clubs also admit the same S individuals; individuals

who join these clubs have degree m mod D. It is easy to see that the structure is stable. The

sum of degrees of individuals under a is
∑

i∈I di(a) = mS. There are dm/DeS individuals in

clubs and |I4(a)| = n− dm/DeS individuals who join no club. Therefore

MI(a) =
min(n,mS)− dm

D
eS

min(n,mS)− dmS
D
e
≥

min(n,mS)− mS
D
− S

min(n,mS)− mS
D

= 1− D

min(nD−mS
S

, (D − 1)m)
.

For the first part of point (ii), assume that h(S) − h(S − 1) > 2(h(1) − h(0)), n > mS

and m is even. Consider a membership structure a constructed as follows. Group clubs into

m/2 pairs and select m/2 groups of individuals containing S individuals each. Match each

pair of clubs with a unique group of individuals and make all the individuals assigned to each

pair members of both clubs in the pair (an example of this constructed membership structure

with m = 8 clubs having capacity S = 4 each is illustrated in Figure 4). The structure is

stable because any deviation by a club weakens its existing link with another club from S to

S − 1 and creates at most two new links. Notice that the sum of degrees of individuals under

a is
∑

i∈I di(a) = 2 ·mS/2 = mS and there are |I4(a)| = n−mS/2 individuals who are not

members of any club. Hence the value of marginalisation measure for a is

MI(a) =
mS
2

mS − dmS
D
e
≤

mS
2

mS − mS+D−1
D

=
D

2(D − 1)
.

For point (iii), first note that if n > mS then all clubs are full in a stable profile a, as

otherwise there exists an individual i ∈ I4(a) and a club c that is not full, which implies that

there is a profitable deviation by i and c where i joins c. We then provide the point by showing
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that in a stable profile a, |I3(a)| < S2D, which leads to

MI(a) =
mS − (|I1(a)|+ |I2(a)|+ |I3(a)|)

mS − dmS
D
e

≥
mS − mS

D
− S2D

mS − mS
D

> 1− S2D2

mS(D − 1)
= 1− D2S

(D − 1)m
.

To derive the upper bound on |I3(a)|, suppose I3(a) 6= ∅, let i ∈ I3(a) be the individual with

the lowest degree in I3(a) and let c be a club that hosts i. The number of clubs c has links

with is at most (D−1)S, since each member creates at most D−1 links for c and there are at

most S members in c. The number of club memberships provided by c and its neighbouring

clubs is thus at most ((D − 1)S + 1)S < S2D. Suppose |I3(a)| ≥ S2D. Then there exists an

individual i′ ∈ I3(a) who is neither in club c nor in its neighbours clubs. Consider a deviation

by c and i′ where c exiles i and admits i′. This deviation is feasible for i′ because being in

I3(a), i′ is in less than D clubs under a. It is also strictly profitable to i′. The deviation is

also weakly profitable to c. This is because exiling i reduces di(a) links which have strength at

least 1 under a. Admitting i′ creates di′(a) ≥ di(a) links between c and new clubs. Because

h is 0 at 0, strictly increasing, and concave, the benefits from creating a new link are weakly

higher than the losses from reducing a weight of a link. Hence replacing i with i′ is weakly

profitable to c, a contradiction with a being stable. �

Proof of Proposition 6

By definition, a strongly stable profile is stable. We prove that when nD > mS + SD, a

stable profile is strongly stable.

First, note that when nD > mS+SD, all clubs are full in a stable profile. This is because

when nD > mS+SD, |I4(a)| > 0, which means there exists an individual i ∈ I with di(a) = 0

by Proposition 2. If there exists a club c that is not full, there is a blocking pair (i, c) where

i joins c. A controdiction. This observation indicates that for all stable profiles, C3(a) = ∅
and a club in C2(a) must admit an individual with degree less than D.

Before we proceed to complete proving Proposition 6, we give a lemma about the mem-

bership structure for clubs in C2(a).

Lemma 2. When nD > mS +DS, consider a stable profile a. Suppose there are k different

levels of degrees for individuals in I3(a). Let d1, ..., dk, where d1 > ... > dk be the levels of

the degrees and let I l3(a) = {i ∈ I3(a) : di(a) = dl} for l = 1, ..., k; let C l
2(a) = {c ∈ C2(a) :

πc(a) has the lth highest level of productivity in C2(a)}. For any club c ∈ C l
2(a), the set of
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members of c includes all individuals in I13 (a) ∪ ... ∪ I l3(a). If c is not full with individuals

in I3(a), then the rest of its members are elements of I2(a). Moreover, for an individual

i ∈ I2(a) who is in C l
2(a), i must also be in any club in C1

2(a) ∪ ... ∪ C l
2(a).

Proof. The statement that ‘if c is not full with individuals in I3(a), then the rest of its members

come from I2(a)’ follows directly from the fact that all clubs are full in a stable profile when

nD > mS +DS and the definition of sets I1(a), I2(a), and I4(a).

To prove the statement that for an individual i ∈ I2(a) who is in C l
2(a), i must also be

in any club in C1
2(a) ∪ ... ∪ C l

2(a). Suppose the statement does not hold and there exists an

individual i ∈ I2(a) who is in club c ∈ C2(a) but not c′ ∈ C2(a) where πc′(a)(a) ≥ πc(a).

Since c′ ∈ C2(a) and all clubs are full, c′ must have a member i′ ∈ I3(a). There is a blocking

pair of (i, c′) where c′ replaces i with i′ and i′ quits club c to join c′.

To prove the claim about the club members from set I3(a), recall that by point (iii) of

Proposition 1, if individual i ∈ I3(a) is in a club c, then all individuals with degree d where

di(a) ≤ d < D must be in c. This combined with the fact that all clubs are full indicates that

the productivity of a club is defined by its member with the lowest degree. The argument then

follows from the definition of C l
2(a), and we also know additionally that there are k different

productivity levels for clubs in C2(a).

By Lemma 2, we can see that | ∪kx=l C
x
2 (a)| = dl, where k is the number of degree levels of

individuals in I3(a).

Now, suppose profile a is stable but there exists I ′ ⊆ I and C ′ ⊆ C such that there is

a′ ∈ A with a′ic ≤ aic for all (i, c) ∈ I × C, where i ∈ I ′, c /∈ C ′ or i /∈ I ′, c ∈ C and a′ic = aic

for all i /∈ I ′, c /∈ C ′ , and ui(a
′) > ui(a) for all i ∈ I ′ and πc(a

′) > πc(a) for all c ∈ C ′. Since

πc(a
′) > πc(a) for all c ∈ C ′, C ′ ⊆ C2(a). Similarily, I ′ ⊆ I2(a) ∪ I3(a) ∪ I4(a). We show, by

induction, that C l
2 6⊆ C ′ for l = 1, 2, . . . , k, hence completing the proof.

First, we show that if c ∈ C1
2(a) then c /∈ C ′. This is because if c ∈ C1

2(a), then c has

all individuals in I2(a) ∪ I13 (a) by Lemma 2. Those in I2(a) already have the highest degree

possible and those in I13 (a) cannot attain higher degree with a deviation that only involves

clubs in C2(a) as those in I13 (a) are members of all clubs in C2(a). This means that there is

no way for c to improve its productivity by deviating from a to a′.

Now, we show that if C1
2(a)∪ . . .∪C l

2(a) 6⊆ C ′, then C l+1
2 6⊆ C ′. With a deviation that only

invokes clubs in C l+1
2 ∪. . .∪Ck

2 (a), individuals in I13 (a)∪. . .∪I l+1
3 cannot raise their degree, sine

they are already in all clubs in C l+1
2 ∪. . .∪Ck

2 (a), and individuals in I l+2
3 (a)∪. . .∪Ik3 (a) cannot

raise their degree to a level greater than dl+1. This means that a club in C l+1
2 ∪ . . . ∪ Ck

2 (a)
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must have raised its productivity by deviating from a to a′ by replacing a member in I3(a)

with a member in I2(a). Let x be the number of individuals in I2(a) that deviates and join

c, there must exists an y ∈ {2, 3, . . . , l + 2} such that

|Iy3 (a) ∪ Iy+1
3 (a) ∪ . . . ∪ I l+1

3 (a)| < x ≤ |Iy−13 (a) ∪ Iy3 (a) ∪ . . . ∪ I l+1
3 (a),

where we set |Iy3 (a) ∪ Iy+1
3 (a) ∪ . . . ∪ I l+1

3 (a)| = 0 when y = l + 2.

Since x > |Iy3 (a) ∪ Iy+1
3 (a) ∪ . . . ∪ I l+1

3 (a)|, one of the individual from I2(a), say i, who

joins c can only have memberships in clubs that have productivity not less than those in

Cy−1
2 (a). Since < x ≤ |Iy−13 (a) ∪ Iy3 (a) ∪ . . . ∪ I l+1

3 (a)|, the productivity of c does not exceed

the productivity of a club in Cy−1
2 (a) under a′, contradicting the requirement that i improves

her utility by deviating from a to a′. �

Proof of Proposition 7

We start by deriving the upperbound on |Î2(a)|. Suppose there exist individuals with

degree 0 < d < D, let i be an individual with the lowest type whose degree is d. It can be

shown that for any club c that i joins, c hosts all individuals with degree d. Suppose not

so that there exists i′ with di′(a) = di(a), θi′ > θi and ai′c = 0. Then c would benefit by

replacing i with i′ and i′ would want to join c. A blocking pair is formed. Since sc(a) ≤ S,

so |{i ∈ I : 0 < di(a) < D}| ≤ S. Given that there are at most D − 1 degrees greater than 0

and less than D, |Î2(a)| ≤ (D − 1)S.

For the cardinality of Î1(a). |Î1(a)| ≤ mS
D

follows directly from |Î1(a)|D ≤ mS. For

the lower bound, first suppose that in a stable profile a, all clubs are full. Then we have

|Î1(a)|D +
∑

i∈Î2(a) di(a) = mS, which implies (|Î1(a)| + |Î2(a)|)D > mS. Since |Î2(a)| ≤
(D−1)S, so |Î1(a)| > mS

D
−(D−1)S. Now consider the cases where not all clubs are full. Then

|Î3(a)| = 0, as otherwise there is a jointly profitable deviation for an individual in Î3(a) and a

club that is not full where the individual joins the club. Therefore, |Î1(a)∪ Î2(a)| = n ≥ mS
D

.

Since |Î2(a)| ≤ (D − 1)S, |Î1(a)| ≥ mS
D
− (D − 1)S.

Finally, for |Î3(a)|, since |Î1(a)|+ |Î2(a)|+ |Î3(a)| = n, |Î1(a)| ≤ mS
D

, and |Î2(a)| ≤ (D −
1)S, so |Î3(a)| ≥ n− mS

D
− (D−1)S. Moreover, if |Î3(a)| > n− mS

D
, then |Î1(a)∪ Î2(a)| < mS

D
.

The club capacity is not exhausted and there must exist club c that is not full. There is a jointly

profitable deviation for an individual i in I4(a) and club c where i joins c. A contradiction.

The bound on MI(a) is derived following the same steps as in the proof for Proposition

2.
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Turning to the relationship between an individual’s type and memberships. When α = 0,

suppose there exists individual i and j where di(a) < dj(a) and θi > θj. Then there exists

club c that admits j but not i. There is a jointly profitable deviation for i and c where c

replaces j with i and i quits no club to join c-a contradiction.

When α > 0 and θi − θj < α, ∀i 6= j, consider a membership profile constructed in the

following way. W.L.O.G., let θ1 < θ2 < ... < θn. Assign individuals i1 to iS to clubs c1 to

cD, iS+1 to i2S to clubs cD+1 to c2D,..., and ibm/Dc(S−1)+1 to ibm/DcS to clubs cbm/Dc(D−1)+1

to cbm/DcD. If bm/Dc = m/D, the construction is completed. If bm/Dc 6= m/D and n −
bm/DcS ≥ S, let the rest m mod D clubs admit individuals ibm/DcS+1 to i(bm/Dc+1)S. If

bm/Dc 6= m/D and n − bm/DcS < S, let the rest m mod D clubs admit individuals admit

individuals ibm/DcS+1 to in. In this constructed profile, di(a) ≥ dj(a), ∀i, j ∈ I, where θi < θj.

It is easy to verify that this profile is stable when θi− θj < α, ∀i 6= j, and m mod D 6= D− 1.

�

Proof of Proposition 8 We start by deriving the upperbound on |Î2(a)|. If there does

not exist two 2 individuals in Î2(a), the proof is done. Suppose there exist at least 2 such

individuals, let i and j be two individuals such that 0 < dj(a) ≤ di(a) < D.

We show that the set of clubs i joins is a superset of that j joins. Suppose not and there

exists clubs c that admits j but not i. Since di(a) ≥ dj(a), there also exists club c′ that

admits i but not j. This structure is not stable because there is either a blocking pair (i, c)

where c replaces j with i or a blocking pair (j, c′) where c′ replaces i with j. To prove this

statement, note that the production function of firms can be represented by

πc(a) = f(sc(a)) +
∑

i∈I:aic=1,c′ 6=c

aic′q(sc′(a)).

Hence, the productivity change of c if it replaces j with i is
∑

c′′ 6=c,c′ aic′′q(sc′′(a))+ q(sc′(a))−∑
c′′ 6=c,c′ ajc′′q(sc′′(a)) and the productivity change of c′ if it replaces i with j is

∑
c′′ 6=c,c′ ajc′′q(sc′′(a))+

q(sc(a)) −
∑

c′′ 6=c,c′ aic′′q(sc′′(a)). It is easy to see that one of the two expressions must be

greater than 0, so that one of the clubs has an incentive to change. Individuals i and i′ both

want to accept invitations from clubs.

With this result, take any individual i ∈ Î2(a) with minimal degree and let c be any club

that i members, all individuals in Î2(a) must be in c. Since sc(a) ≤ S, so |Î2(a)| ≤ S.

The bounds for Î1(a) and Î3(a) can then be derived with similar arguments as in the proof

for Proposition 7. The bound on MI(a) is derived following the same steps as in the proof
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for Proposition 2. �
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