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Abstract

In the classical view, postsynaptic NMDA receptors (NMDARs) trigger Hebbian plasticity 

via Ca2+ influx. However, unconventional presynaptic NMDARs (preNMDARs) which regulate 

both long-term and short-term plasticity at several synapse types have also been found. A lack of 

sufficiently specific experimental manipulations and a poor understanding of how preNMDARs 

signal have contributed to long-standing controversy surrounding these receptors. Although 

several prior studies linked preNMDARs to neocortical timing-dependent long-term depression 

(tLTD), a recent study argues that the NMDARs are actually postsynaptic and signal 

metabotropically, i.e. without Ca2+. Other recent work indicates that, whereas ionotropic 

preNMDARs signaling controls evoked release, spontaneous release is regulated by metabotropic 

NMDAR signaling. We argue that elucidating unconventional NMDAR signaling modes — both 

presynaptically and metabotropically — is key to resolving the preNMDAR debate.
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Highlights (three to five, 85 characters each, with spaces)

• Controversial preNMDARs regulate long and short-term plasticity

• PreNMDARs may signal ionotropically, depending on Ca2+ and Mg2+

• PreNMDARs may signal metabotropically, without Ca2+ or Mg2+ dependence

• Elucidating preNMDAR signaling paths will help settle controversy
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Introduction

In the classical view, NMDARs act as postsynaptic coincidence detectors that trigger 

Hebbian plasticity via Ca2+ influx [1,2]. PreNMDARs have been relatively overlooked compared 

to their postsynaptic counterparts, yet have for decades been found at numerous synapse types, 

where they influence long- as well as short-term plasticity [3-5]. 

PreNMDARs have been the subject of considerable debate [3-5]. One reason for this is a 

lack of sufficiently specific experiments, which has raised several questions about preNMDARs: 

Where precisely at the synapse are they located, and how do they influence synaptic plasticity and 

transmitter release? Here, we discuss recent studies that address these questions. 

PreNMDARs influence long-term plasticity

Like postsynaptic NMDARs [1,2], preNMDARs determine long-term synaptic plasticity 

[3,5,6]. However, typically only a subset of synaptic boutons express preNMDARs [7], and 

expression is determined by the postsynaptic target neuron’s identity [6,8,9]. For example, 

synapses from neocortical layer 5 (L5) pyramidal cells (PyCs) to neighboring L5 PyCs express 

functional preNMDARs, but synapses from PyCs to neighboring basket cells do not [9]. Since 

preNMDARs are a key determinant of neocortical timing-dependent long-term depression (tLTD) 

[10], this expression pattern results in synapse-type-specific plasticity [4,11]. This heterogeneous 

expression may also explain why axonal preNMDAR Ca2+ signals have not always been found 

[12-15].

Another possible explanation for why preNMDARs have been difficult to detect 

experimentally is that preNMDARs may not always conduct Ca2+ like their postsynaptic 

counterparts. At connections between cortical layer 4 (L4) spiny stellate cells and layer 2/3 (L2/3) 

PyCs in somatosensory cortex (Fig. 1) and between CA3 and CA1 neurons in the hippocampus, 
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preNMDARs involved in tLTD contain the GluN2C/GluN2D subunits [16,17], which lower Mg2+ 

sensitivity and Ca2+ permeability [18]. Low preNMDAR Ca2+ conductance has also been 

suggested at visual cortex L4-L2/3 synapses [8,19], where tLTD depends on both GluN3A- and 

GluN2B-containing NMDARs, which confer low and high sensitivity to Mg2+, respectively [18]. 

This form of tLTD may thus involve heterotrimeric preNMDARs that are less sensitive to Mg2+ 

and that flux less Ca2+ [18].

However, in disagreement with the prior literature [8,19-25], Carter and Jahr [12] recently 

proposed that preNMDARs are not required for tLTD at L4-L2/3 connections in somatosensory 

cortex. This finding resembles previously described results at L2/3-L2/3 synapses where, in 

contrast to L4-L2/3 connections, it is well established that tLTD relies on post- but not presynaptic 

NMDARs [16,21,26,27]. As Carter and Jahr [12] did not show that the Channelrhodopsin-2 

expression was specific to L4, this study may lack specificity for presynaptic cell type, possibly 

explaining why their findings resemble the previously reported postsynaptic tLTD at L2/3-L2/3 

synapses and not preNMDAR-mediated tLTD at L4-L2/3 connections [8,19-25]. Interestingly, 

Carter and Jahr [12] reported that the postsynaptic NMDARs involved in tLTD at this synapse 

signaled metabotropically, i.e. without the need for Ca2+ flux (Fig. 1). Although relatively 

overlooked, metabotropic NMDAR signaling [28,29] — which is mediated by conformational 

changes rather than ionic flux [30,31] — has interestingly been recently linked to classical 

hippocampal LTD [32], spine shrinkage [33], and Alzheimer’s disease [32,34]. At some synapse, 

tLTD may thus involve postsynaptic NMDARs signaling metabotropically [12], but it remains 

unclear precisely which synapses.

Carter and Jahr’s [12] study highlights the acute need for an improved understanding of 

unconventional NMDAR signaling modes [28], because there may be several ways of inducing 
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NMDAR-dependent plasticity. For example, although hippocampal CA1 plasticity has 

traditionally been viewed as postsynaptic [35-37], recent findings by Andrade-Talavera et al. [17] 

indicate a dissociation: Hippocampal CA1 tLTD depends on preNMDARs and timing-dependent 

long-term potentiation (tLTP) on postsynaptic NMDARs. A similar dissociation between tLTD 

and tLTP has previously been found at several neocortical synapses [10,23,24,38], hinting that this 

is a general principle. Additionally, Andrade-Talavera et al. [17] found that CA3-CA1 tLTD 

depended on non-postsynaptic ionotropic NMDAR signaling and on presynaptic calcineurin, 

which could be the target of preNMDAR-mediated Ca2+ (Fig. 1) [17]. Recently, Padamsey et al. 

[39] demonstrated that GluN1 deletion in CA3 abolished presynaptic LTD, strengthening the 

evidence for preNMDARs underpinning CA3-CA1 LTD.

PreNMDARs have also been found at several cerebellar synapse types [6]; we focus here 

on parallel fiber (PF) to Purkinje cell (PuC) synapses. As opposed to neocortical plasticity, PF-

PuC plasticity follows non-Hebbian rules [40]: Pairing PF and PuC stimulation within a ±100 ms 

temporal window elicits LTD. To induce LTP, only PF stimulation is required [41]. Similar to 

neocortical tLTD, PF-PuC LTD depends on preNMDARs. PF-PuC LTD is expressed 

postsynaptically via NMDAR-dependent anterograde diffusion of nitric oxide (NO) (Fig. 2) [6,42-

44]. Recently, using GluN1 deletion in granule cells, Bouvier et al. [43] demonstrated that 

preNMDARs are essential for PF-PuC LTP. Two-photon Ca2+ imaging showed that only high-

frequency activation elicited preNMDAR Ca2+ transients, in keeping with the frequency 

dependency of LTD and LTP [43,45]. PreNMDARs at PFs thus implement a high-pass filter for 

burst detection, a property presumably inherited from the voltage-dependent Mg2+ blockade of 

GluN2A-containing NMDARs [43,45]. Spread of dendritic NMDAR signals in presynaptic cells 

[14,15] cannot account for these results, since boutons were severed from somata [as in 46]. 
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Using 2-photon imaging, Bouvier et al. [43] only found preNMDARs in a subset of PF 

boutons. This heterogeneity of preNMDAR expression is reminiscent of that reported in visual 

cortex [8,9]. In the latter case, however, preNMDAR expression is specific for synapse type. 

Nevertheless, heterogeneity may be a general principle governing preNMDARs [4], which sets 

them apart from postsynaptic NMDARs [9,47].

PreNMDARs also influence short-term plasticity

In addition to LTP and LTD, preNMDARs regulate short-term plasticity (STP) [10,47], 

encompassing both facilitation and depression, with a time course ranging from milliseconds to 

minutes [48]. STP adds diversity of signaling in local circuits, because synapses from the same 

neuron onto different target neuron types can express widely different forms of STP [9]. This 

means STP is synapse type specific [11], just like long-term plasticity [4]. 

Since preNMDARs are typically sensitive to Mg2+ [3,5], at least two action potentials 

(APs) in rapid succession should be required to activate preNMDARs, at least if they operate as 

autoreceptors [although see 49,50]. This is because the AP is so brief that when glutamate binds 

preNMDARs, they remain Mg2+ blocked unless depolarized by subsequent APs. In agreement, 

such frequency-dependent activation of preNMDARs has been reported in visual cortex [8,10,47], 

hippocampus [51] and cerebellum [43,45]. Mg2+-sensitive preNMDARs can thus be thought of as 

detectors of high-frequency presynaptic firing. In neocortex, the critical frequency for preNMDAR 

activation is ~8 Hz [47] (although hippocampal preNMDARs bandpass filter around ~5 Hz [51]).

One apparent caveat with this interpretation is that preNMDARs apparently modify release 

probability (pr) at the first AP in a high-frequency train [8-10,21,47], when preNMDARs should 

presumably still be Mg2+ blocked. Recently, Abrahamsson et al. [47] proposed a solution to this 
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conundrum: PreNMDARs may regulate pr indirectly, by modifying the replenishment rate of the 

readily releasable pool (RRP) (Fig. 3), which would affect pr at all APs in a high-frequency train, 

including the first. This interpretation may hold true for preNMDARs with frequency-dependent 

regulation of STP, such as those at L4-L2/3 synapses [8,21] or at hippocampal CA3-CA1 synapses 

[51]. As a general principle, preNMDARs may thus serve to upregulate RRP replenishment rates 

during periods of elevated activity, to sustain pr.

Regulation of spontaneous release by preNMDARs

Neocortical preNMDARs generally modulate both evoked and spontaneous release [8-

10,19,47]. This may seem peculiar, since preNMDAR regulation of evoked release requires 

presynaptic spiking above ~8 Hz [47], but spontaneous release rates are typically considerably 

lower [9,10]. Yet, the preNMDARs that regulate evoked and spontaneous release both contain the 

GluN2B subunit [10], implying that preNMDAR regulation of spontaneous release should also be 

Mg2+ sensitive [18] [but see 19]. This apparent discrepancy has been a long-standing issue in the 

field [3,5,10,21].

Although evoked and spontaneous release were initially thought to rely on the same 

molecular machinery, the emerging consensus is that the two forms of release employ distinct 

pathways [52]. In agreement, Abrahamsson et al. [47] found that preNMDARs at excitatory 

synapses onto visual cortex L5 PyCs regulate evoked and spontaneous release via non-overlapping 

pathways (Fig. 3). PreNMDARs rely on the active-zone protein RIM1αβ [53] to regulate evoked 

but not spontaneous release. Conversely, preNMDARs require JNK2 [54] to control spontaneous 

release — as previously shown in entorhinal cortex [55] — but not evoked release. These findings 

thus revealed a double dissociation of preNMDAR signaling in controlling transmitter release.
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Still, the absence of frequency dependence in preNMDAR regulation of spontaneous 

release was enigmatic. An explanation might be found in metabotropic NMDAR signaling, since 

it is not Mg2+ dependent [32]. Consistent with metabotropic signaling, Abrahamsson et al. [47] 

found that spontaneous release in L5 PyCs was not sensitive to Mg2+ wash-out or MK-801 wash-

in. This was furthermore in agreement with earlier findings that preNMDAR control of 

spontaneous release does not rely on Ca2+ [56]. Taken together, these findings suggest that 

preNMDARs depend on RIM1αβ and relief of Mg2+ blockade to control evoked release, but on 

JNK2 and metabotropic signaling to regulate spontaneous release [47] (Fig. 3). This interpretation 

helps to explain the long-standing issue of how preNMDAR-dependent regulation of evoked by 

not spontaneous release requires a critical frequency [3,5,10,21].

It is not clear, however, that the preNMDARs controlling evoked and spontaneous release 

are the same. In hippocampal cultures, for example, spontaneous and evoked release sites do not 

necessarily overlap [57]. A simple interpretation is that the same population of preNMDARs 

regulates both spontaneous and evoked release via two different paths (Fig. 3). Another possibility 

is that two preNMDAR populations are physically separated, e.g. by RIM nanocolumns [58]. A 

third possibility is that NMDARs modulate different bouton populations, one responsible for 

evoked release and the other for spontaneous release [57,59]. In any of these scenarios, the 

preNMDARs modulating evoked release would presumably be GluN1-GluN2B heterodimers, but 

the preNMDARs modulating spontaneous release could also be GluN1-N2B/N2C/N2D or GluN3-

containing heterotrimers. These heterotrimers would explain the GluN2B pharmacological profile 

in combination with low Mg2+ sensitivity [18]. Finally, another possibility is that these vesicle 

pools are the same, but that the Ca2+ sensor for evoked and spontaneous release are distinct [60]. 
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The schematic in Fig. 3 is thus merely a parsimonious working model to illustrate the findings of 

Abrahamsson et al. [47].

Conclusions and future directions

For a long time, the preNMDAR field suffered from a lack of cell-type specific tools and 

powerful imaging techniques. However, it is currently well established that preNMDARs play key 

roles in different brain regions during both long-term and short-term plasticity [3-6]. Until recently, 

one outstanding question was how preNMDARs can modulate both evoked and spontaneous 

release when the former but not the latter is frequency dependent [3,5,10,21]. Abrahamsson et al. 

[47] addressed this question and found that preNMDARs employ specific and distinct pathways 

regulating evoked and spontaneous release separately. 

This discovery, however, raises several other issues. Are these preNMDARs involved in 

evoked and spontaneous release the same? Do classical properties of postsynaptic NMDARs apply 

to preNMDARs? For example, preNMDARs have mixed pharmacological profiles, with reduced 

Ca2+ conductance, which may make them distinct from postsynaptic NMDARs [8,16,17,19]. 

PreNMDARs can apparently also signal metabotropically or ionotropically to control different 

aspects of synaptic release [47].

It is tempting to compare the preNMDAR debate with the controversy surrounding the pre- 

versus postsynaptic location of long-term synaptic plasticity, which was once quite heated [35-

37]. Over the past two decades, however, this controversy has gradually given way to the 

realization that plasticity is determined by many different factors, such as animal age, induction 

protocol, and synapse type [35-37]. The controversy surrounding preNMDARs has echoed this 

debate. We believe the preNMDAR debate is going to be resolved in a similar manner: with 
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preNMDARs, like with LTP and LTD [61] , there is an embarrassment of riches. This diversity 

has ensured long-standing disagreement among neuroscientists. For this reason, we argue that 

elucidating unconventional NMDAR signaling — presynaptically as well as metabotropically — 

will help resolve the preNMDAR debate [28].
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Figure legends

Figure 1 – Differing models of tLTD at L4 to L2/3 connections

In tLTD induction, presynaptic NMDARs and cannabinoid receptors (CB1Rs) are typically 

required for tLTD [although see 22]. CB1Rs are expressed both on L4 boutons and astrocytic 

processes, where they modulate the presynaptic release or elicit release of glutamate and D-serine, 

respectively. PreNMDAR-mediated Ca2+ activates calcineurin (CaN), which triggers a reduction 

in pr. This model is based on many studies over two decades [8,10,19-25]. In contrast to these 

studies, Carter and Jahr [12] proposed that postsynaptic NMDARs (postNMDAR) but not 

preNMDARs trigger tLTD via metabotropic signaling (asterisk). They did not explore the 

expression mechanism [12].
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Figure 2 – Cerebellar long-term plasticity relies on preNMDARs and transsynaptic NO signaling

At PF-PuCs synapses, preNMDARs implement a bidirectional high-pass filter synaptic 

plasticity rule that is expressed postsynaptically [43,45]. High-frequency PF bursts activate 

preNMDARs, resulting in Ca2+ influx that activates neuronal nitric oxide synthase (nNOS), which 

is typically tightly coupled to NMDARs [62]. Nitric oxide (NO, black shadow) diffuses 

anterogradely to the postsynaptic side (black arrow). PF bursting produces NO in an NMDAR-

dependent manner [44], while NO-mediated activation of guanylate cyclase is necessary for LTD 

induction [63,64]. In contrast, the targets of NO in LTP induction are unknown (black square: NO 

target), although guanylate cyclase is not required [42].
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Figure 3 – At L5 excitatory connections, preNMDARs differentially control evoked and 

spontaneous release

Neocortical L5 PyC PreNMDARs rely on RIM1αβ and Ca2+ to upregulate the RRP 

replenishment rate, which sustains evoked release during periods of high-frequency firing. The 

upregulation of spontaneous release is separately controlled via JNK2 without Ca2+ or Mg2+ 

dependence [47,56]. This working model explains the different frequency dependencies of 

preNMDAR control of spontaneous and evoked release, and furthermore supports the view that 

spontaneous and evoked release are distinct processes [52].
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Recommended reading articles

• of special interest

•• of outstanding interest

•• Abrahamsson et al., 2017 [47]

The authors find that neocortical preNMDAR regulation of evoked and spontaneous 

release is doubly dissociated: preNMDAR regulation of evoked relies on RIM1αβ, whereas that 

of spontaneous depends on JNK2. To sustain rapid evoked release, preNMDARs boost pr 

indirectly by upregulating RRP replenishment rate. Finally, spontaneous release regulation was 

not Mg2+ sensitive, suggesting metabotropic signaling.

•• Andrade-Talavera et al., 2016 [17]

The authors investigated the requirements for induction of tLTP and tLTD at CA3-CA1 

synapses in P12–18 mouse hippocampus. They found that tLTP requires postsynaptic NMDARs 

containing GluN2A and GluN2B subunits, while tLTD depends on non-postsynaptic NMDARs 

containing GluN2C or GluN2D subunits.

• Aow et al., 2015 [31]

Using FRET between fluorescently tagged GluN1 subunit cytoplasmic domains and 

Protein Phosphatase 1 (PP1), Aow et al. obtain findings in hippocampal cultures consistent with a 

transient movement of PP1 by NMDAR ligand binding in the absence of Ca2+ flux. As PP1 drives 

AMPA receptor removal, this suggests metabotropic NMDAR signaling in LTD [also see 30].

•• Bouvier et al., 2016 [43]

Using 2-photon Ca2+ imaging, cell-type specific deletion of preNMDARs, and computer 

modelling, the authors show that cerebellar PF-PuC preNMDARs underlie LTP. They show direct 
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evidence for Ca2+ entry via preNMDARs in a subpopulation of PF varicosities during high-

frequency bursts.

• Carter and Jahr, 2016 [12]

Using 2-photon Ca2+ imaging, optogenetics, and slice electrophysiology at barrel cortex 

L4-L2/3 synapses, the authors found evidence that post- rather than presynaptic NMDARs underlie 

tLTD induction. They propose that postsynaptic NMDARs signal metabotropically, independent 

of Ca2+.

• Dore et al., 2015 [30]

Using FRET between fluorescently tagged GluN1 subunit cytoplasmic domains, Dore and 

colleagues show in hippocampal culture that glutamate binding can transmit conformational 

information into the cell in the absence of ion flow, consistent with metabotropic NMDAR 

signaling [also see 31].

•• Nistico et al., 2015 [55]

Using biochemical, morphological, and functional approaches, Nisticò et al. find in 

entorhinal cortex that JNK and its scaffold protein JIP1 are expressed presynaptically. They also 

show that putative preNMDARs rely on JNK2 to modulate NMDA-evoked as well as spontaneous 

glutamate release, thus identifying a key preNMDAR signaling path.

• Padamsey et al., 2017 [39]

The authors found that presynaptic CA3-CA1 LTD relied on preNMDARs activated by 

glutamate release. In contrast, presynaptic CA3-CA1 LTP did not require glutamate signaling. 

Presynaptic LTP depended on activation of postsynaptic L-type Ca2+ channels that trigger 

retrograde nitric-oxide signaling.
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• Stein et al., 2015 [33]

Spine elimination is widely thought to depend on NMDAR-mediated Ca2+ influx in 

conjunction with LTD. Combining 2-photon uncaging and time-lapse imaging with slice 

electrophysiology, Stein et al. suggest that in rat hippocampus, metabotropic NMDAR signaling 

drive spine shrinkage and LTD independent of Ca2+.
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