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Abstract

Over the last ten years, isogenic tagging (IT) has revolutionised the study of bacterial infec-

tion dynamics in laboratory animal models. However, quantitative analysis of IT data has

been hindered by the piecemeal development of relevant statistical models. The most prom-

ising approach relies on stochastic Markovian models of bacterial population dynamics

within and among organs. Here we present an efficient numerical method to fit such sto-

chastic dynamic models to in vivo experimental IT data. A common approach to statistical

inference with stochastic dynamic models relies on producing large numbers of simulations,

but this remains a slow and inefficient method for all but simple problems, especially when

tracking bacteria in multiple locations simultaneously. Instead, we derive and solve the sys-

tems of ordinary differential equations for the two lower-order moments of the stochastic var-

iables (mean, variance and covariance). For any given model structure, and assuming

linear dynamic rates, we demonstrate how the model parameters can be efficiently and

accurately estimated by divergence minimisation. We then apply our method to an experi-

mental dataset and compare the estimates and goodness-of-fit to those obtained by maxi-

mum likelihood estimation. While both sets of parameter estimates had overlapping

confidence regions, the new method produced lower values for the division and death rates

of bacteria: these improved the goodness-of-fit at the second time point at the expense of

that of the first time point. This flexible framework can easily be applied to a range of experi-

mental systems. Its computational efficiency paves the way for model comparison and opti-

mal experimental design.

Author summary

Recent advancements in technology have meant that microbiologists are producing vast

amounts of experimental data. However, statistical methods by which we can analyse that

data, draw informative inference, and test relevant hypotheses, are much needed. Here,

we present a new, efficient inference tool for estimating parameters of stochastic models,

with a particular focus on models of within-host bacterial dynamics. The method relies on
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matching the two lower-order moments of the experimental data (i.e., mean, variance and

covariance), to the moments from the mathematical model. The method is verified, and

particular choices justified, through a number of simulation studies. We then apply this

moment-based inference method to experimental data, and compare the results with pre-

viously published maximum likelihood estimates.

This is a PLOS Computational Biology Methods paper.

Introduction

The elucidation of basic kinetic rates governing bacterial growth during infection (such as

division and death rates) has been recognised as an important challenge for over 60 years [1].

Thanks to recent technological developments in microbiology, and pushed by growing con-

cern over antimicrobial resistance and the need for new vaccines, the last decade has wit-

nessed rapid progress in the quantification of in vivo dynamics of bacterial infection in

animal models. Two experimental approaches in particular have shown great promise across

multiple pathogen species: isogenic tagging, the focus of this report, and fluorescence dilu-

tion, a term encompassing several techniques from which bacterial replication can be

inferred [2]. Isogenic tagging (IT) consists in generating an arbitrary number of sub-clones

of a given bacterial strain, each defined by a unique genetic tag (a predetermined nucleotide

sequence) inserted in a non-coding region of the chromosome. When grown together in
vitro or in vivo, every tagged strain behaves identically to the original strain. Their relative fre-

quencies within a bacterial culture can be measured by quantitative qPCR or sequencing of

the tagged region. Taken together with the absolute number of viable bacteria (e.g., by plating

colonies), changes in the frequencies of the tags within the bacterial population can reveal

underlying variations in the rates at which bacteria divide, die and disperse. For example, a

constant number of viable bacteria accompanied by a loss of some of the tags in a closed pop-

ulation would indicate that a certain proportion of bacteria have died and been replaced by

replication. Likewise, when monitoring tag frequencies in two or more anatomical compart-

ments within animals, a gradual homogenisation among organs can reveal the transfer of

bacteria. While some studies have stopped at qualitative interpretations of such empirical

patterns [3–6], it is possible to quantify underlying processes with the help of mathematical

models. Two different types have been used: stochastic population dynamic models to esti-

mate bacterial division, death and migration rates [7–12], and population genetic models to

estimate bottleneck sizes [13, 14]. Our aim is to develop efficient inference methods to deal

with the former type of models.

Stochastic birth–death–migration models (a canonical class of Markovian processes [15])

are a common choice to analyse IT experiments, and naturally lead to likelihood–based infer-

ence, using either maximum likelihood [9, 11] or Bayesian estimation [12]. In a given experi-

ment, assuming that all of the A animals sampled at a given time and in given conditions are

identical, and that all of the T tagged strains infecting each animal act independently of each

other and are governed by identical rates, we can treat the A × T observed strain abundances

as independent realisations of a stochastic birth–death–migration process, and calculate the

likelihood of any model of interest accordingly. In most published IT studies, bacteria can

Efficient moments-based inference for within-host bacterial infection dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005841 November 20, 2017 2 / 27

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005841


grow at different rates in different locations within an animal, and migrate from one location

to another, generating a network of subpopulations (or metapopulation). This increases the

dimensions of both the state variable space (as the model must keep track of the multivariate

distribution of bacterial abundance) and the parameter space. Calculating the likelihood of

such a model given an experimental dataset requires solving a complex stochastic model,

which will rarely be possible analytically. Even a linear birth–death process with a non–Poisson

immigration process (representing the transfer of a finite inoculum dose) is sufficient to pre-

vent a fully analytical treatment, and results in a computationally intensive estimation process

[12]. Alternatively, approximate–likelihood (e.g., iterative filtering [16]) or likelihood–free

(e.g., approximate Bayesian computation or ABC [17]) methods involve the generation of a

large number of stochastic simulations of the model of interest, which can be equally time–

consuming, even when taking advantage of parallel computation. Although this may not be a

problem when fitting a single model to a single dataset, it limits our ability to compare multiple

models across complex datasets (typically involving multiple experimental treatments) and,

beyond that, use these inference tools for the purpose of optimising experimental design [18].

Hence, there is a need for alternative inference methods using suitable approximations to

achieve greater gains in computational efficiency.

The dynamics of multivariate Markovian processes can be approximated using moment–

closure methods [19]. Mathematically, a system of differential equations for the moments of

the state variables can be derived analytically from the governing equation of any stochastic

model [20]. By effectively ignoring the higher moments, a closed, small-dimension system can

be derived, allowing fast numerical solution of the lower moments at any time point. Parame-

ter estimation can then be achieved by fitting the first and second order moments of the model

to the mean, variance and covariance of the corresponding variables in the data. Apart from a

few proof–of–principle studies using simulated chemical reaction data [21–23] that show great

promise, application to statistical inference from biological data remain scarce. As a rare exam-

ple, Buchholz et al. [24] implemented a moment–based method to solve a multiple T–cell dif-

ferentiation pathway problem, fitting the moments of a large number of alternative stochastic

models to experimental data using a χ2 statistic. This suggests that efficient moment–based

inference methods should be made more readily available to unleash the full potential of sto-

chastic models in experimental biology.

Our objective is to provide a functional and flexible computational framework to estimate

the parameters of stochastic metapopulation models for the within–host dynamics of infection,

and demonstrate its application and value to analyse IT studies. The model tracks the probabil-

ity distribution of the number of copies of a tagged strain of bacteria across a network of ana-

tomical compartments within an animal. The goal is to estimate the bacterial division and

death rates within each organ, and migration rates between each pair of compartments. First,

we present an algorithm that evaluates the first- and second-order moments of the state vari-

ables for arbitrary network structures, and assess its accuracy and speed against a gold standard

for stochastic models: the exact Gillespie algorithm. We then compare the accuracy of several

inference options against simulated data, and finally apply the most promising method to a

likelihood-based method in order to assess the quality of inference and increased computa-

tional efficiency. The massive gain in speed compared to likelihood-based inference allows us

to use parametric bootstrap to quantify parameter uncertainty and goodness-of-fit. Finally, we

provide a re-analysis of a recent dataset on the dynamics of Salmonella enterica serovar Typhi-

murium in the blood, liver and spleen of vaccinated mice [11]. We also demonstrate how

empirically derived noise terms (e.g., caused by imprecise data collection) can be taken into

account.
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Methods

2.1 Biological context

We consider the general case of a bacterial pathogen inoculated into an animal host where it

can potentially reach n anatomical compartments—which can be distinct organs, tissues,

lumens, or predefined sections thereof. All our examples are motivated by IT experiments in

which a set of identical animals receive the same initial inoculum dose in one compartment

(e.g., mouth, nose, blood, peritoneum, etc) at time t = 0. The inoculum is composed of an even

mix of T tagged strains. At given times τ1, τ2 etc, a subset of A1, A2, etc animals are chosen at

random and euthanised. The abundance of each tagged strain in each of the n anatomical com-

partments of interest is measured. Thus, at a given time τi, the data consist of a matrix Di with

n rows by AiT columns, filled with observed bacterial numbers. From this matrix, we can cal-

culate the observed moments, namely the mean and variance of strain abundance within each

compartment, and the covariance between each pair of compartments.

Depending on the experimental procedures, these observations are usually subject to some

degree of uncertainty, due to observational error. In general we assume that this error is ran-

dom with a mean of zero, so that there is no systematic bias; this should be assessed by the

researchers who conducted the experiments. As a result, we assume that the observed means

are unbiased, but the observed (co)variances may be incorrect. In Section 2.7, we describe how

known sources of error can be accounted for as part of the data processing procedure. In addi-

tion, there usually is some uncertainty about the actual inoculum dose received by each animal.

Variations in the abundance of each strain should be assessed experimentally by testing several

inoculum doses: this provides estimates for the initial mean and variance of the number of bac-

teria with each tag that are present in the target compartment at t = 0.

We emphasise a few key assumptions and caveats of the present study, which we review in

further detail in the Discussion. First, the variable of interest from a modelling perspective is

the abundance of a single tagged strain, rather than the total bacterial load per animal (as the

latter can be obtained by adding up individual strains). Indeed, our model framework

assumes that, over the time period considered and for a given set of initial conditions, the

rates of bacterial division, death and migration per capita are independent of the total bacte-

rial load. Second, we assume that all the bacterial cells are governed by identical rates of divi-

sion, death and migration. While this excludes the case of so–called persister cells (i.e., a

subset of bacteria with a much lower division rate than the rest) or similar discrete partition,

it is worth noting that the model we describe below does generate stochastic variations in the

generation time of bacteria, consistent with empirical distributions of bacterial replication

in vivo [25].

2.2 Stochastic model framework

As a function of time t since inoculation, the vector of positive integer state variables N(t) =

{N1(t), . . ., Nn(t)} represents the simultaneous abundance of bacteria in compartments 1 to n.

In the context of IT studies, this represents a single tagged strain. Three types of stochastic

events drive the bacterial dynamics: division (which adds one bacterium to a given compart-

ment), death (which removes one bacterium from a given compartment) and migration

(which moves one bacterium from one compartment to another). Assuming linear transition

rates, we have a total of n division rates riNi and death rates kiNi within organ i, and n(n − 1)

migration rates mi,jNi from compartment i to j. Note that specific models may assume that

some of the parameters are equal to zero, for example if there is no physical connection

between given pairs of compartments.
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In particular, we consider two geometries, illustrated in Fig 1, corresponding to two typical

anatomical topologies of relevance to bacterial infection: a radial network with a central com-

partment (e.g., bloodstream supplying every organ), and a linear network (e.g., digestive

track).

2.3 Computation of the first- and second-order moments

The method we propose for parameter inference relies on the first two moments of the sto-

chastic system. That is, we use only the expected number of bacteria within each compartment,

the variance of the number of bacteria within each compartment, and the pair-wise covari-

ances. A simple approach to generating these moments for a particular stochastic system in

terms of the model parameters, is given by [26]. Letting λ = {r1N1, . . ., rnNn, k1N1, . . ., knNn,

m1,2N1, . . .} be the vector of transition rates, we can write the hth non-central moment of the

state of the ith compartment as:

@

@t
E Nh

i ðtÞ
� �

¼ E
X

j

ljðtÞ �jðNiðtÞÞ
h
� NiðtÞ

h
h i

" #

; ð1Þ

where ϕj is a function describing the change of the state for the jth transition. In Supplemen-

tary Materials (S1.8), we show that this leads to a closed, linear system of differential equations

for the first moments. Letting M1ðtÞ ¼ fE½NiðtÞ�; 1 � i � ng be the vector of first moments as

Fig 1. Diagram illustrating the two types of network structure we consider.

https://doi.org/10.1371/journal.pcbi.1005841.g001
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a function of time, we can express these differential equations in matrix form as:

@

@t
M1ðtÞ ¼ A�M1ðtÞ; ð2Þ

which leads to the solution,

M1ðtÞ ¼ exp ðAtÞ �M1ð0Þ; ð3Þ

where M1(0) are the initial conditions of the system, A is a time-independent matrix contain-

ing the model parameters, and exp is the matrix exponential function.

Next, let M2ðtÞ ¼ fE½NiðtÞNjðtÞ�; 1 � i � n; 1 � j � ng be the vector of second moments.

By applying Duhamel’s formula to the differential equations obtained from Eq (1), we obtain

the following expression for the second-order moments:

M2ðtÞ ¼ exp ðCtÞ �M2ð0Þ þ exp ðCtÞ �
Z t

0

exp ð� CsÞ � B� expðAsÞds
� �

M1ð0Þ; ð4Þ

where B and C are time-independent matrices containing model parameters, and M1(0) and

M2(0) are vectors containing the initial moments. Using the numerical method for matrix

exponential in [27], we can evaluate the first- and second-order moments at any time point.

Remarkably, no moment-closure approach is required as the expressions for the second-order

moments are independent of higher-order moments. See Supplementary Materials S1.8 for a

full derivation.

2.4 Parameter inference by divergence minimisation

Given a dataset consisting of one or more matrices D of bacterial counts (as per section 2.1),

and a stochastic model (as per section 2.2), we now describe methods to estimate the parame-

ter values of the model that minimise the divergence between the predicted and observed dis-

tributions of bacterial abundance, using only the lower moments of those distributions.

Specifically, we evaluate the means, variances and covariances of the Ni variables at a given

time t. From the corresponding matrix D, we calculate the vector of observed means μ(D) and

the matrix of observed variance-covariance V(D); and from the model’s solution given a set of

parameters θ, we compute the vector of predicted means μ(θ) and the matrix of predicted vari-

ances-covariances V(θ) which can be derived from M2(t). We compared four common diver-

gence measures: a Chi-Squared metric, and normal approximations to the Mahalanobis

distance, the Hellinger distance, and the Kullback-Leibler divergence.

Note that none of the measures below is designed to deal with the particular situation when

any of the organs is reported void of bacteria (i.e., Ni = 0) in all replicates at a given time point,

i.e. if all the observed moments related to that organ are equal to zero. In some experimental

systems, this may occur as an artefact of the observation method, e.g., when only a small sam-

ple is measured: in this case, it is possible to “correct” the data for sampling biases (see Section

2.7). Otherwise, a simple solution would be to remove the moments relative to that organ from

the inference procedure. In some cases, it may make sense to completely remove the empty

organ from the model if no meaningful inference can be expected from its inclusion, as illus-

trated in Section 3.5.

The Chi-Squared metric adds up the squared pairwise-differences between each predicted

moment and its corresponding observed moment, each term being scaled by the magnitude of

the observed moment. As a result, all moments are effectively treated equally. The expression
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for this divergence is:

Dw ¼
X

i

ðμðyÞi � μðDÞi Þ
2

jμðDÞi j
þ
X

i;j

ðVðyÞi;j � VðDÞi;j Þ
2

VðDÞi;j

ð5Þ

The other three divergence expressions we tested make use of the fact that our chosen statis-

tics μ and V are moments of distributions. Since we do not establish complete characterisa-

tions of the distributions, we decided to borrow the expressions of well-known divergences

measures for multivariate normal distributions, as these only require the knowledge of their

first and second-order moments. In other words, we compute the divergence between two

multivariate normal distributions with respective moments (μ(D), V(D)) and (μ(θ), V(θ)).

The Mahalanobis distance is measured between each point in the observed data, and the

distribution described by the predicted moments. That is, by estimating the parameters we are

trying to find the distribution that these data are most likely to have been sampled from. Spe-

cifically, each observation Xj is given by column j of the data matrix D. The divergence is

obtained by summing the distances to the predicted distribution from every observation:

DM ¼
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXj � μðyÞÞT VðyÞ
� 1

ðXj � μðyÞÞ
q

ð6Þ

The squared Hellinger distance is given by:

D
2

H ¼ 1 � exp �
1

8
μT V� 1 μ �

1

2
log

jVj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVðyÞjjVðDÞj

p

 !

; ð7Þ

where μ = μ(θ) − μ(D) and V ¼ VðyÞþVðDÞ
2

.

The Kullback-Leibler divergence from the predicted distribution to the observed one is

given by:

DK ¼
1

2
trðVðDÞ

� 1

VðyÞÞ � nþ μT VðDÞ
� 1

μþ log
jVðDÞj
jVðyÞj

� �

; ð8Þ

where tr(�) is the trace operator. The derivations of the Hellinger and Kullback-Leibler diver-

gences are given in Supplementary Materials S1.2.

Even though these expressions may not provide correct estimates of the actual “Mahalano-

bis distance”, “Hellinger distance” and “Kullback-Leibler divergence” between the data and

the predicted distributions (as these are not normally distributed), they still provide adequate

divergence measures: they all return positive values which are only equal to zero (hence are

minimised) when μ(θ) = μ(D) and V(θ) = V(D), which occurs when the data are drawn from the

predicted distribution. Furthermore, we only require that the calculated divergence here is

ordered in the same way as the true divergence between these distributions, so that the mini-

mum occurs at the same parameter values. We use these properties for the purpose of parame-

ter inference, given a dataset and a model. The set of parameter values θ that minimises the

divergence measure is termed the “minimum divergence estimate” (MDE).

All code was written in R [28]. We used the UObyQA optimisation routine in the powell
package [29].

2.5 Bootstrap variance estimate

In order to quantify the uncertainty in our parameter estimates conditional on the dynamic

model considered, we utilise the parametric bootstrap method (e.g., [30]), which can be
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exploited simply here due to the computational efficiency of the inference approach. Having

obtained an MDE, θ� for a given data matrix D and a given model, we simulate B data sets

from the model at these parameters (i.e., xb * f(x j θ�), b = 1, . . ., B). For each simulation, we

estimate the corresponding parameters using the MDE technique (θb, b = 1, . . ., B). These B
estimated parameters are used to estimate the variance-covariance matrix of the parameter

estimates. Subsequently, one can use this matrix to estimate confidence intervals in a number

of ways [31]. For simplicity, the analysis in Section 3.5 uses the ellipse package in R [32] to

obtain approximate 95% confidence intervals of the model parameters (that is, assuming the

bootstrapped parameter estimates follow a multivariate normal distribution).

2.6 Model goodness-of-fit

In order to assess the model goodness-of-fit, we once again utilise the parametric bootstrap.

Concurrent to calculating the uncertainty estimates using the MDE method, the divergences

corresponding to each simulated data set at their estimated parameter values are recorded.

These bootstrapped divergences can thus be used to represent the null distribution of diver-

gences for the model at the estimated parameter values—giving a representation of the diver-

gences we should expect from the model at these values. The divergence estimated for the

observed data is then compared to the null distribution to obtain a p-value for the hypothesis

that the data could have been generated by the model.

2.7 Data analysis with observational noise

A common source of error when fitting a model to experimental data is the observation

process. In the type of microbiology experiments considered here, where the data represent

bacterial loads in infected animals, there are at least two steps that affect the accuracy of the

measurements: sampling (when only part of the bacterial loads are recovered) and and quanti-

tation (the process by which the number of bacterial cells in the samples is measured). For

example, in a recent IT experiment [11], sampling error was modelled as a binomial process

(as known fractions of each homogenised organ were plated) and quantitation error was mod-

elled using a log-normal distribution which was estimated empirically using an independent

control experiment (in which known numbers of bacterial colonies were processed by qPCR

in the same way as bacterial samples extracted from animals in the main experiment).

Although both error distributions were centred on the true bacterial numbers (i.e. the mean

numbers of bacteria were not biased), the variance and covariance in the reported data would

not have been accurate estimates of the variance and covariance within the animals: hence our

MDE could be biased if we did not account for observational errors.

In our present reanalysis of those data, we integrate both error terms before performing

parameter inference, using the following procedure. Our goal is to propose a simple heuristic

which could be applied to any experimental dataset with known (or assumed) observational

error distributions. First, we generate a large number of stochastic simulations of the model

under a biologically reasonable range of parameter values (i.e. using uniform prior distribu-

tions across sensible ranges) to generate “perfect” observations (1. in Fig 2). We then calculate

the corresponding “perfect moments” from every simulated dataset (1M. in Fig 2), which we

cannot observe from our experimental procedure. Next, we apply the observation noise to the

simulated data (2. in Fig 2), as is the case in the experimental procedure, and calculate the cor-

responding “observed moments” (2M. in Fig 2). We then use linear regression models to

establish a relationship between each of the perfect and observed moments (with transforma-

tions where appropriate), with weights given by the simulations proximity to the actual

observed moments from the experiment. This calibrated regression model is then applied to
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the moments of the experimental data of interest, in order to estimate the moments of the

true, unobserved bacterial loads in the animals. We eventually compute MDE using these cor-

rected moments.

We note that for some models of the observation process, it may be possible to establish

analytic relationships between the “perfect” and “observed” moments using conditional expec-

tation and variance theory (e.g., [33]). The choice of suitable correction methods for a given

system will depend on both the model complexity and the level of empirical quantification of

observation noise.

Results

We begin by demonstrating the speed and accuracy of the computation of the first- and sec-

ond-order moments for arbitrary network structures, compared to Gillespie simulations. We

then assess the four previously mentioned divergence measures to validate our minimum

divergence estimation procedure with each model depicted in Fig 3, across a range of parame-

ter values. Finally, we apply our inference method to reanalyse a published experimental data-

set, and compare the results with the previous maximum likelihood estimates.

3.1 Moment computation

As a proof-of-concept, we compare our proposed computation method of the means, vari-

ances and covariances of bacterial loads, with the values derived from large numbers of Gilles-

pie simulations, across a range of model structures and parameter values. Our results illustrate

the computational effort required to obtain the same level of accuracy with each method. For

each model and each parameter set, we simulated 100 experiments, each consisting of 10, 50,

100, 250, 500, or 1000 replicates (representing the product of the number of animals A by the

number of tagged strains T as per section 2.1) at a given time, without observational error. The

initial bacterial loads at t = 0 in each replicate experiment were drawn at random from a Pois-

son distribution, to mimic typical variability in inoculum doses in experiments [11]. We con-

sidered three model structures, illustrated in Fig 3: (a) basic migration-birth-death model, (b)

four-compartment radial network, and (c) four-compartment linear network. For each virtual

Fig 2. Schematic demonstrating the experimental procedure to obtain the observed moments. Ideally, we want to observe the “true”

moments, however this is not possible due to the observation process. In order to understand the effect of the observation noise on the

moments, we simulate the system, add noise consistent with the experimental system, and evaluate the relationship between the “true” and

“observed” moments of these simulations. We can thus infer the “true” moments of the system, given our “observed” moments.

https://doi.org/10.1371/journal.pcbi.1005841.g002
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experiment, we calculated the first- and second-order moments of the bacterial loads in two

ways at a given time point (t = 6 for the basic migration-birth-death model, and t = 4 for the

four-compartment radial and linear network).

We randomly drew the stated number of initial conditions (ranging from 10 to 1000), and

evaluated the moments at the future time point in the following two ways. First, we used Gil-

lespie simulations to progress each initial condition forward to the stated observation time,

and then calculated the moments from the collection of simulations. Second, we took the

stated number of initial conditions to estimate the moments at time zero, and used these to

evaluate the moments at the observation time using Eqs (3) and (4); we refer to this as the

direct moment-calculation method.

Results are included in the Supplementary Materials. Figure S1 in S1 Supplementary Materi-

als shows that there is still a greater amount of variation in the moments from 1000 Gillespie

simulations, compared to the direct approach. Both methods produce more accurate estimates

of the moments as experiment size increases, as a direct result of more accurate estimates of the

initial distribution of bacteria. Furthermore, the computation time of the Gillespie approach

increases exponentially with the number of simulations, while the direct method is consistently

more efficient, independent of the size of the experiment (Figure S2 in S1 Supplementary Mate-

rials). Similar patterns are observed for the four-compartment linear (Figure S3 in S1 Supple-

mentary Materials) and radial (Figure S4 in S1 Supplementary Materials) network models.

3.2 Divergence measures: Simulation study

Next, we compare the accuracy of MDE among the four candidate divergence measures, using

data simulated from the same three model structures as in the previous section and across a

Fig 3. Illustrations of three representative model structures.

https://doi.org/10.1371/journal.pcbi.1005841.g003
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range of parameter values. For each model structure and each parameter combination, we ran

100 series of 100 Gillespie simulations from t = 0 to each of 8 observation times, representing

800 experiments (each of size 100) with “perfect” observations of the system (i.e., without

experimental noise). This process was repeated for a set of different parameter values for each

model to represent different scenarios—three representative values for each parameter in the

basic model (33 = 27 scenarios), and five randomly generated sets of parameters for the four

compartment linear and radial networks with parameters. The initial conditions for each sim-

ulation, in every scenario, were randomly generated from a Poisson distribution with mean

parameter 200. The optimisation routine was initiated at randomly generated conditions each

time, with each parameter values drawn independently from a Uniform(0,1) distribution.

From the results of each simulated experiment, we computed the MDE using each of the

Chi-Squared, Mahalanobis, Hellinger, and Kullback-Leibler divergences. The performance

of each divergence was measured by the mean absolute relative error (MARE). That is,

under scenario s, with p target parameters θs = (θ1s, θ2s, . . ., θps), and estimated parameters

θ̂ sj ¼ ðŷ1sj; ŷ2sj; . . . ; ŷpsjÞ for the jth simulation, the MARE is given by:

MAREs;j ¼
1

p

Xp

i¼1

jyis � ŷ isjj

yis

Fig 4 displays the average error across each scenario for the four divergence measures, at a

range of observation times, for each of the three models under consideration. We can see that

both the Hellinger and Kullback-Leibler divergence measures perform considerably better

than the Chi-Squared and Mahalanobis divergences for the Basic, Linear and Radial networks.

The similar performance of the Hellinger and Kullback-Leibler divergences is not unexpected,

Fig 4. The average mean absolute relative error (MARE) across a number of observation times, for the

two-compartment network (top panel), the linear four-compartment network (middle panel) and the

radial four-compartment network (bottom panel). Each point is the average for that measure, at that

observation time, with error bars representing the standard error.

https://doi.org/10.1371/journal.pcbi.1005841.g004
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due to their relationship. We observe a marginal advantage in favour of the Kullback-Leibler

divergence for the basic and radial network, and thus we use the Kullback-Leibler divergence

in analysing experimental data in Section 3.5. The results aggregated by scenario for each

model are shown in Supplementary Materials S1.4.

Fig 5 further illustrates the distribution of parameter estimates for a few selected scenarios

(i.e. combinations of parameter values) and time points. For each time point, the variation was

generated by the stochastic birth-death-migration process, demonstrating the level of uncer-

tainty in parameter estimates due to the biological process itself. In this case, each simulated

experiment was made up of 100 simulations; fewer replicates would increase the parameter

uncertainty. At each time point, the estimates of the migration rate m12 are much less variable

than those of the killing rate k2 and replication rate r2, reflecting properties of the particular

model structure rather than the inference method itself. Indeed, in the absence of division and

death in compartment 1, the number of bacteria observed in compartment 1 contains com-

plete information on the migration rate m12. Meanwhile, the net growth rate in compartment

2 is given by r2 − k2, producing a strong positive correlation between the estimates of these two

parameters (Fig 6).

We also remark that the earlier observation time typically contains more information about

the migration rate, whereas the later observation time better captures the replication and kill-

ing rates. This is a result of the particular dynamic we are considering, whereby bacteria begin

in the first compartment, and steadily move out to the other compartment(s). For a relatively

large migration rate, the first compartment is typically close to depleted at later observation

times, and thus we obtain a poorer estimate (e.g., Scenario 12, Fig 5). For a smaller migration

rate, there will be an optimal observation time that has allowed sufficient numbers of bacteria

Fig 5. Box plots of MDE corresponding to simulated data for two different choices of parameter

values (Scenario 4 and 12), at a number of different observation times (1, 4 and 8) of the simple,

migration-birth-death model. The box plots represent 100 parameter estimates corresponding to the 100

simulations, and the red crosses denote the true parameter value.

https://doi.org/10.1371/journal.pcbi.1005841.g005
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to have moved out of the first compartment, improving the parameter estimate (e.g., Scenario

4, Fig 5). Results of all scenarios are shown in Supplementary Materials S1.7. Figs 7 and 8 show

similar results to Fig 5, for the linear and radial examples, respectively.

3.3 Migration in two directions

Many biological systems allow for migration in both directions between any two compart-

ments in the system (e.g., later observations of the Salmonella system in [11] have shown that

bacteria migrate back to the blood from the liver and spleen). Here, we consider a three com-

partment model where there is migration in both directions between two of the compartments,

and we are trying to estimate the parameters, m12, m13, m21, k2, k3, r2, r3. Note that this example

can be represented as either a radial or linear network. Similar to the migration birth-death

model in previous examples, we consider all combinations of two representative parameter

values (0.25, 0.50), and observing the process at times t = 1, 2, . . ., 8. Initial conditions are

drawn from a Poisson distribution with mean parameter 200, and each experiment consists of

100 replicates (i.e., A × T). For each scenario (i.e., parameter combination and observation

Fig 6. Bivariate plot of MDE corresponding to simulated data for two different choices of parameter values (Scenario 4 and 12), at a number of

different observation times (1, 4 and 8) of the simple, migration birth-death model. The points represent 100 parameter estimates of r2 and k2

corresponding to the 100 simulations, and the red crosses denote the true parameter value.

https://doi.org/10.1371/journal.pcbi.1005841.g006
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time), 100 experiments were simulated. As we established above that the Kullback-Leibler

divergence was best, we only consider parameter estimation with respect to this divergence

measure. The performance of the parameter inference is evaluated using the MARE, as before.

Fig 9 shows the MARE across each observation time for the Kullback-Leibler divergence, and

Fig 10 demonstrates the parameter estimates for three randomly selected scenarios. The

MARE here is consistent with the Kullback-Leibler divergence estimates in the previous exam-

ple (Fig 4), noting the different number of parameters being estimated. The accuracy of infer-

ence on the two reciprocal migration rates (m12 and m21) depends on the choice of

observation time, as illustrated on Fig 10 and S8: in particular, at t = 1, very few bacteria have

yet migrated both ways (since they all started in compartment 1 at t = 0), and the estimation of

m21 is very sensitive to the model’s stochasticity.

3.4 Comparison with maximum likelihood estimation

In order to assess the overall quality of the inference achieved from this minimum divergence

estimation technique, we compare the parameter inferences to those obtained via a Maximum

Likelihood approach. The full details of the maximum likelihood estimation can be found in

[11]. Briefly, a numerical procedure is used to solve the master equation for a given set of

parameter values up to the required observation time. The probability of each observed value

is then used to evaluate the likelihood of the observed data. The huge size of the state space in

models with two or more compartments poses computational challenges, creating a critical

trade-off between computational speed and accuracy. This was addressed by implementing a

Fig 7. Box plots of MDE corresponding to simulated data for a random set of parameter values (Scenario 4),

at a number of different observation times (1, 4 and 8) of the linear model. The box plots represent 100

parameter estimates corresponding to the 100 simulations, and the red crosses denote the true parameter value.

https://doi.org/10.1371/journal.pcbi.1005841.g007
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Runge-Kutta integration algorithm capable of solving large systems (over a million) of simulta-

neous differential equations. The same optimisation routine as above (UObyQA optimisation

routine in the powell package [29]) was then applied to search across the parameter space

for the maximum likelihood estimates (MLE). In this section, we compare the speed and accu-

racy of the two estimation methods (MDE v. MLE) when applied to simulated data from the

simple migration-birth-death model (Fig 3a), before turning to experimental data in the next

section.

We generated multiple series of simulations corresponding to different numbers of experi-

mental replicates (A × T = 24, 40, 80) observation times (t = 0.5, 2, 4), with various combina-

tions of three numerical values (0.25, 0.50, 0.75), for parameters m12, k2, r2. For each scenario

(i.e., parameter values, experiment size, observation time), 30 series of simulations were pro-

duced, and initial conditions were randomly sampled from a Poisson distribution with mean

parameter 50. We computed MDE and MLE separately from each simulated dataset, hence

producing 30 estimates for each combination of parameters (see Supplementary Materials for

complete set of results). We did not consider more complex models, due to the computational

burden of the likelihood-based method.

Fig 11 shows the difference in computation time between the moments-based method, and

the likelihood-based method, across the different observation times. In particular, solving the

moment equations by matrix exponentiation results in computation times independent of the

duration of the simulated experiments. In contrast, the likelihood-based method requires solv-

ing a very large system of differential equation forward through time, and so the later the

observation time, the longer it takes to compute the parameter estimate. Although this could

Fig 8. Box plots of MDE corresponding to simulated data for a random set of parameter values (Scenario 4),

at a number of different observation times (1, 4 and 8) of the radial model. The box plots represent 100

parameter estimates corresponding to the 100 simulations, and the red crosses denote the true parameter value.

https://doi.org/10.1371/journal.pcbi.1005841.g008
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be avoided in the case of the single-compartment migration-birth-death model by deriving the

likelihood at the observation time through inversion of the probability generating functions

[12], such semi-analytical solutions are not available for more complex models. As a result,

likelihood-based methods become impractical for data collected several days after inoculation

[11].

Fig 12 shows that, across the sets of simulated data, MDE achieves similar or greater accu-

racy than MLE. Unexpectedly, while the mean absolute relative error (MARE) of MDE

decreases as the size of the dataset (number of simulations) increases, the improvement is

much less pronounced with MLE. As is visible in Fig 12, there are large subsets of simulations

which lead to much better accuracy by MDE than MLE, especially as the number of simula-

tions and their duration increase. Importantly, both methods used the same optimisation rou-

tine, either to minimise the divergence or to maximise the likelihood. We should reiterate the

algorithm used to compute the likelihood was designed to trade off accuracy for speed: while it

should be possible to reduce the MARE discrepancy between the two methods, this could only

be achieved by increasing the running time of MLE, which is already far greater than that of

the MDE. It is also worth keeping in mind that, no matter how accurate each estimation

method is, our aim is to apply them to experimental datasets that typically comprise of under

100 replicate observations per time point [7, 11, 12]. As illustrated above in Fig 5, multiple sets

of 100 simulations vary sufficiently from each other to generate wide variance in the parameter

estimates. In other words, the system’s natural stochasticity hampers the benefits of seeking

greater accuracy.

Fig 9. The average mean absolute relative error (MARE) across a number of observation times, for the three-

compartment network with migration in both directions between two compartments. Each point is the

average for that measure, at that observation time, with error bars representing the standard error.

https://doi.org/10.1371/journal.pcbi.1005841.g009
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3.5 Analysis of experimental data

Description of the system. Finally, we performed a re-analysis of experimental data from

[11], in which groups of mice received an intravenous dose of Salmonella enterica Typhimur-

ium, composed of an even mixture of 8 wildtype isogenic tagged strains (WITS). Bacterial

loads and WITS composition were measured in the blood, liver and spleen of 10 mice at each

observation time. During the first phase of the WITS experiments (represented by the first two

time points at 0.5 and 6 hours post inoculation), the only biologically relevant processes con-

sidered are: migration of bacteria from blood to liver or spleen, replication and death inside

the liver and the spleen. That is, on state space S ¼ fðnB; nL; nSÞ j nB; nL; nS � 0g, we have the

following transition rates:

qðnB;nL;nSÞ;ðnB � 1;nL þ 1;nSÞ ¼ cLnL; qðnB;nL;nSÞ;ðnB � 1;nL;nS þ 1Þ ¼ cSnS;

qðnB;nL;nSÞ;ðnB;nL þ 1;nSÞ ¼ rLnL; qðnB;nL;nSÞ;ðnB;nL;nS þ 1Þ ¼ rSnS;

qðnB;nL;nSÞ;ðnB;nL � 1;nSÞ ¼ kLnL; qðnB;nL;nSÞ;ðnB;nL;nS � 1Þ ¼ kSnS;

where cL, cS are the clearance (= migration) rates from the blood into the liver and spleen

respectively, rL, rS are the replication rates in the liver and spleen respectively, and kL, kS are

the killing rates in the liver and spleen, respectively.

One purpose of the study in [11] was to compare the effects of two vaccines on the dynam-

ics of infection. Here, we re-analyse two of the experimental groups: an untreated group

(naive) who received no vaccine, and a group who received a live-attenuated vaccine (LV). In

Fig 10. Box plots of MDE corresponding to simulated data for a random set of parameter values, at a

number of different observation times of the three compartment model with migration in both directions

between two compartments. The box plots represent 100 parameter estimates corresponding to the 100

simulations, and the red crosses denote the true parameter value.

https://doi.org/10.1371/journal.pcbi.1005841.g010
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the naive group, in addition to the clearance, replication and killing rates, we estimated the

effective inoculum size i0 = NB(0) to account for the possibility that some of the inoculated bac-

teria failed to initiate an infection process [11]. In the vaccinated group, no bacteria were

recovered from the blood at either of the two observation times, hence we were unable to esti-

mate the corresponding migration rates. Instead we assumed that the transfer of bacteria to

the organs was effectively instantaneous, and sought to estimate the effective initial loads in

the liver and spleen (i.e., iL = NL(0) and iS = NS(0)), as well as the replication and killing rates.

In each case, the inoculum size is assumed to be Poisson distributed.

Parameter estimation with observation noise. We applied the MDE method to estimate

the parameters corresponding to these systems, and compared the results to the estimates

obtained via the MLE approach, presented in [11]. Since data were recorded from independent

samples at two time points (0.5 and 6h post inoculation), parameter estimation was performed

by minimising the sum of the divergences between observed and predicted moments at both

time points (see Supplementary Materials section S1.6 for a comparison of alternative meth-

ods). Having obtained the MDE parameter estimates, we used the bootstrap approach to calcu-

late uncertainty intervals on the estimates, and assess the model goodness-of-fit.

As described in [11], the recorded data were subject to observation noise. In particular,

only a fraction of some organs were sampled (e.g., as we are not able to fully recover the total

amount of blood from an individual mouse), and there was noise introduced via the qPCR.

The observed moments were adjusted using the simulation-based, pre-processing procedure

described in Section 2.7: we assumed that the form of the sampling was binomial, and the

Fig 11. Comparison of computation times to obtain MDE and MLE from simulated data. Each box plot

comprises of 2430 runs of each estimation procedure: 30 simulated datasets (of size either 24, 40 or 80) were

generated from each of 27 combinations of parameter values (see main text for complete list of combinations). The

size of the experiment does not impact the computation time for either method.

https://doi.org/10.1371/journal.pcbi.1005841.g011
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qPCR noise has been previously modelled using a log-Normal distribution [11]. For example,

for the naive group, we sampled 10,000 parameters (cL, cS, kL, kS, rL, rS) each independently

from U[0, 3], and initial inoculum i0 * Poisson(30) (the mean WITS population calculated

from plating experiments [11]). “Perfect moments” were calculated from simulations of the

same size as the experimental data. The corresponding observed moments were then calcu-

lated by applying the observation noise model—binomial sampling to represent the fractional

sampling of organs within each mouse, and log-Normal noise to represent the qPCR noise—to

each simulation, and calculating the moments. The variances were log-transformed for the

purpose of the regression models to predict the corresponding perfect moments from those

observed from the experiment.

Fig 13 provides a comparison of the MLE and MDE estimation procedures for the naive

and LV experimental groups. The box plots represent the bootstrapped parameter estimates,

with the MDE parameter estimate (blue dots), and MLE parameter estimates (red crosses).

Fig 12. Pairwise comparison of the mean absolute relative error (MARE) achieved by MLE (x axis) or MDE (y axis). Each dot shows the MARE

values for one simulated dataset, grouped by parameter values (colour scale), observation time and sample size (panels). Note that the axes are square-

root transformed to improve clarity.

https://doi.org/10.1371/journal.pcbi.1005841.g012
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Fig 14 shows the estimated replication and killing rates in both the liver and spleen, for both

groups. The cross and dashed ellipse (red) represent the MLE, and the dot and solid ellipse

(blue), represent the MDE (where the ellipse is calculated from 1000 bootstrap samples, repre-

sented as grey dots). As explained in the previous section, the strong positive correlation

between the replication and killing rates within each organ, clearly visible on Fig 14, is charac-

teristic of this system.

Model goodness-of-fit. In calculating the MDE parameter estimates for the bootstrap

samples, we evaluated divergence measures for datasets simulated from the model. Thus, the

collection of these divergences provide a suitable representation of the null distribution of

Fig 13. Left: Diagram of each model illustrating the relevant compartments, initial conditions, and rates of interest. Right:

MDE parameter estimate (blue dot) with box plots of the bootstrapped parameter estimates, and MLE parameter estimate (red

cross) with 95% confidence interval (red bars).

https://doi.org/10.1371/journal.pcbi.1005841.g013
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divergences under this model. We compared the divergence for our observed data set to this

null distribution in order to assess the model goodness-of-fit. Fig 15 demonstrates the good-

ness-of-fit measure for the models fit to the two experimental groups.

The approximate p-values associated with the goodness-of-fit tests for the naive and LV

experimental groups are 0.002 and 0.882, respectively. This suggests that the model provides a

suitable fit to the vaccinated experimental group; however, there is a non-negligible discrep-

ancy between the model output for the naive group fit, and the observed data. This suggests

that some of the assumptions in the original dynamic model may be erroneous; however, revis-

iting them goes beyond the scope of the present study.

As a further demonstration of the model goodness-of-fit, we compare the model output at

each of the estimated parameter sets, to the observed data. Fig 16 shows these simulations

from each of the MDE and MLE approaches, at each of the 0.5h and 6h observation times, for

both the naive and vaccinated experimental groups. Observational noise consistent with that

in the experimental data was added to the simulated data (i.e., binomial sampling for observed

counts, and log-normal noise consistent with qPCR). The plots indicate that the main source

of discrepancy between data and model in the naive-mice group is the distribution of bacterial

loads in the blood after 6 hours.

Fig 14. Bivariate distributions of replication and killing rates in liver and spleen, for both naive and live-vaccinated groups. Blue

circles are the MDE values, with the blue (solid) ellipses representing the 95% confidence ellipses calculated using the 1000 bootstrap

samples (grey points). The red crosses are the MLE values, with red (dashed) ellipse calculated using the hessian evaluated at the MLE.

https://doi.org/10.1371/journal.pcbi.1005841.g014
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Discussion

We have described a functional and flexible moments-based method to estimate parameters of

stochastic metapopulation models, and applied it to experimental data on within-host bacterial

infection dynamics. Compared to simulation-based methods, our technique delivers accurate

estimation orders of magnitude faster. Although simulation-based inference has grown in pop-

ularity in computational biology—either within likelihood-free [17] or approximate-likelihood

[16] approaches— even with the increasing availability of fast, multi-core computers, algo-

rithms can still take days to converge in multi-parameter and multi-variable problems. While

this is not a major issue when fitting a single model to a single dataset, it is a hindrance for

more ambitious applications: indeed there is a growing demand in biology for model selection

and model-based optimal experimental design, which are much more computationally inten-

sive tasks (e.g., [34–37]).

In its current form, our method can incorporate any linear, multivariate, continuous-time

Markovian model, and fit it to experimental data that include multiple replicates and an

Fig 15. Figures demonstrating the goodness-of-fit of the two models to the respective data sets. The histogram bars are the bootstrapped estimate

of the null distribution of divergences under the model at the estimated parameter values for the respective model. The (blue) vertical dashed-line is the

divergence corresponding to the observed data set.

https://doi.org/10.1371/journal.pcbi.1005841.g015
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arbitrary number of independent time points. These last two characteristics are typical of

experimental biology, yet little attention has been given to systems of this form in recent statis-

tical developments. Indeed, many inference methods for stochastic models (for example,

driven by applications to epidemiology), target inference from a single time-series [16, 38].

In addition, we have provided a worked example for how to correct for observation noise,

applicable to any given experimental system. While sampling error is typically taken into

account in likelihood-based inference, many inference studies either ignore experimental

noise (e.g. [24]) or choose arbitrary distributions (e.g. [39]). Even if experimental error has

limited impact on the mean of the observations, it will affect the variance, with implications

for the precision and reliability of statistical inference. The method we demonstrated here is

based on pre-processing experimental data to effect an empirical correction of the observation

noise. Crucially, it is not limited by mathematical tractability when combining multiple error

sources, and it does not slow down the inference computation (i.e., it only needs to be

Fig 16. Observed experimental data for both naive and vaccinated groups, at both observation times, compared to simulations from the model

at parameters estimated by both the MLE and MDE methods, in each of the blood (B), liver (L) and spleen (S). Numbers of bacteria are the sums of

eight identical WITS.

https://doi.org/10.1371/journal.pcbi.1005841.g016
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performed once before fitting the model, and the same simulations are also used to adjust the

moments of the noisy-simulated data).

The choice of a metric to minimise for likelihood-free inference is a common issue in

computational statistics, especially in the context of increasingly popular ABC methods [40].

When the data and the model output are summarised by multiple statistics, the default

option is to use either euclidian distance or a chi-squared type variant. The latter was chosen,

for example, in a recent study using moment-based inference to solve a systems-biology

problem [24]. However, because the summary statistics of interest are the moments of statis-

tical distributions, we hypothesised it would be more informative to use a divergence metric

instead. While many divergence measures exist for the purpose of comparing mathemati-

cally defined distributions [41], we are not aware of standard methods to compute diver-

gence between multivariate distributions generated by complex stochastic processes.

Instead, we took a pragmatic approach and used mathematical expressions for the Hellinger

distance or the Kullback-Liebler divergence between multivariate normal distributions,

because these expressions depend on the first- and second-order moments of the distribu-

tions only. Even though the resulting divergence measures are not the actual Hellinger dis-

tance or Kullback-Liebler divergence between our observed and predicted distributions,

they still outperform the chi-squared metric based on parameter inference accuracy. It is

worth noting that, across the three model structures we tested, there was not a single metric

that was consistently better than any other, and the differences in accuracy were often rela-

tively small (Fig 4). Depending on the degree of accuracy sought, it may be worth testing

these and other metrics against simulations before applying this method to a different exper-

imental system. It is our intention to provide a flexible blueprint that can be tailored to other

problems, rather than a one-size-fits-all black box which may prove unreliable as soon as the

circumstances change.

The particular molecular technology (isogenic tagging) that motivated the development of

this inference method, has become pervasive in the study of within-host dynamics of bacterial

infection in the last 10 years (see reviews by [2, 42, 43]). Yet, to our knowledge, this is the first

attempt to provide a general modelling and inference framework that could be applied to any

of these experimental systems. Indeed, previous efforts have been tailored to specific case stud-

ies [7–9, 13, 43, 44] despite asking fundamentally similar questions: how fast are bacteria repli-

cating and dying? How much migration is taking place among organs or tissues? As soon as

any two of these dynamic processes are co-occurring, it is not possible to evaluate them based

solely on average bacterial loads: it is necessary to obtain reliable estimates of the variance,

preferably within a single animal, by quantifying a set of independent and isogenic tags. The

first known example goes back 60 years, using two naturally occurring mutants of S. enterica
that could be distinguished by selective growth medium to investigate colonisation dynamics

in mice. Although a wide range of bacterial tagging methods (including antibiotic markers and

fluorophores) have been used since, non-coding DNA barcodes have opened new prospects as

arbitrarily large numbers of truly isogenic tags can be generated and quantified by sequencing

[14]. It is our hope that the inference framework presented here will contribute to the field’s

extension by providing much needed analytical support to analyse and design microbiology

experiments.
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