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In 2013-2016, #lowcarbon, #construction and #energyefficiency had high centrality 
scores, which were replaced by hashtags like #climatetec, #netzero, #climateaction, 
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1. Introduction 
 
 
The Intergovernmental Panel on Climate Change suggests that restricting climate change to 1.5°C 

requires rapid and extensive changes around energy use, building design and broader planning of 

cities and infrastructure (1). The buildings and construction sector currently accounts for almost 40% 

of global energy and process-related carbon emissions (2,3). The International Energy Agency 

estimates that to achieve a net-zero carbon building stock by 2050, direct building carbon emissions 

must decrease by 50%, and indirect building sector emissions must cut electricity generation 

emissions by 60% by 2030 (4). The building sector emissions would need to fall by around 6% per year 

from 2020 to 2030 to achieve this target (3, p5). At the same time, the built environment must also 

be resilient to climate extremes. For example, globally, by 2050, over 970 cities could be subjected to 

extreme heat, more than 500 cities would suffer from water scarcity, and over 570 cities could be 

impacted by sea-level rise (5).  

The United Nations Framework Convention on Climate Change in their Climate Action 

Pathway 2020 states that ‘action and collaboration are needed immediately from all stakeholders to 

achieve the paradigm shift to a net-zero and resilient built environment. If action is not taken today, 

we risk locking emissions and vulnerability into our buildings and infrastructure that will become 

increasingly costly to mitigate in the future’ (2). A growing body of evidence from the stakeholder 

community emphasises the need to incorporate public voices in global climate action to enable an 

equitable and just transition (6–11). It calls for people-centric transition which focuses on how people 

want to shape climate action and what inspires and motivates them to do the climate action. However, 

enabling democratic participation of people in the decarbonisation process remains a critical 

challenge across the local, national and regional scales (12–14). It also remains a fundamental barrier 

to designing just emission reduction and future-proofing strategies in the built environment (15–17). 

In order to achieve the aggressive goals in emissions reduction, the mass public needs to understand 

these priorities and the need for investment in achieving these goals.  Additionally, to ensure that the 
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costs and benefits of the necessary investments are born equitably and justly across societies, 

policymakers and stakeholders much begin to incorporate the perspectives from all sectors of society 

in the conversation about emission reduction in the built environment. 

In this paper, we evaluate three main questions, i) ‘What are the characteristics of people-

centric transition towards emission reduction in buildings?’ ii) ‘How has this discourse propagated in 

social media platforms over time? and iii) What are the leading indicators?’. To answer these 

questions, we employ a data-driven approach to explore the temporal characteristics this discourse 

from 2009 to November 2021 on Twitter, one of the largest social media platforms. In doing so, we 

evaluate how different global climate action events shaped the discussions around emission reduction 

and low-carbon transition of the built environment using hashtags co-occurrence networks. In the 

current literature, it is increasingly observed that Twitter hashtags are often used as attention 

mobilisers, virality tools, and instruments for publicising social issues (18). The choice of using a 

particular hashtag is influenced by two overlapping processes: attention-seeking behaviour by users, 

and contagion process driven by the virality of specific hashtags (18,19). Moreover, studies have also 

found that Twitter hashtags offer a strategic vantage point on social movements as it offers scalability 

through networked information dissemination (19). These characteristics of hashtags motivated this 

study to investigate how hashtag networks on emissions and buildings are shaped in the current 

people-centric climate action discourse.  

The novelty of this paper lies in the computational social science-led grounded investigation 

of people-centric transition efforts towards a low-carbon building sector using Twitter interaction data 

over 13 years using a multi-method application of natural language processing (NLP) and network 

theory. To the best of our knowledge, this approach has not been employed before in the building 

emission reduction and low-carbon future-proofing strategy design context. The findings from this 

study will be helpful to a wide range of stakeholders who are exploring pathways for people-centric 

transition and the removal of technological, financial, and/or socio-political barriers to the 

implementation of future-proofing strategies in the net-zero planning context.  
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This article is divided into the following sections. Section 2 presents a state-of-the-art 

overview of people-centric emission reduction in the building sector, suggested strategies and policy 

efforts. Section 3 provide a detailed account of the multi-method approach of this study along with 

data collection, network topology extraction and the NLP workflows. The results and discussions are 

presented in section 4 and section 5, respectively. Finally, the conclusion and policy implications are 

drawn in section 6.  

2. Literature review 
 
2.1 People-centric climate action in the built environment  

 
 
The emphasis on people-centric climate action in the built environment gained traction in the current 

call for global net-zero strategies post the United Nations COP-26 in November 2021. For example, a 

collaboration between the UN High-Level Climate Champions, the COP26 Presidency and the UK’s 

Department for Business, Energy and Industrial Strategy (BEIS) and the #BuildingToCOP26 Coalition 

announced 26 built environment climate initiatives at the Cities, Regions and Built Environment Day 

at COP26 (20). It included over USD 1.2 trillion real estate assets under management as a part of net-

zero carbon building commitment by the World Green Building Council (21). Also included were 1049 

cities and local governments that have joined the Race to Zero through C40 Cities Clean Construction 

Action Coalition of cities and construction sector, representing roughly 722 million people and the 

commitment to reduce 1.4 gigatons of carbon dioxide equivalent (GtCO2e) by 2030 (22). Climate 

actions also included building decarbonisation commitments by countries like the UK, Morocco, 

Mexico, France, Germany, Switzerland, Jordan, Chile, Kenya, Turkey, UAE, and Argentina, while 136 

countries have included buildings in their Nationally Determined Contributions (NDCs) (20).   

Similarly, the European Union and the White House have emphasised the need to create a 

democratised space for involving citizens in climate action at various levels of decision-making 

(8,9,11). This discourse dominates in post-COP-26 decarbonisation discussions across the public and 
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private sector stakeholders (20). Nonetheless, a recent review on Global Climate Action by the United 

Nations Framework Convention on Climate Change (UNFCCC) found that in most countries, policies 

that regulate net-zero carbon solutions in the built environment are severely lacking even with NDCs 

(2). It further suggested the importance of the role of local government in engaging people in climate 

and planning policies to ensures that any new development provides high social value, embeds 

resilience and minimises whole-life carbon. At the same time, it prioritises reuse and refurbishment 

of existing assets (2). The UNFCCC also stated that at a civil society-led action scale, the individuals 

must be educated and sensitised on the carbon footprint associated with their operational and 

embodied emissions of buildings and its associated processes (2,23).  

From the consumer’s point of view, there is a need to understand what behaviours they can 

change to reduce operational emissions and what the associated financial and well-being co-benefits 

are if such behaviour changes are adopted at scale (2,24). The International Energy Agency further 

expanded on this message and emphasised that local governments are uniquely positioned to deliver 

on the net-zero emissions agenda through big data and digital technologies (25). 

However, the strategies to enable people-centric transition in the built environment are 

anecdotal and not informed by data. Very little academic research is available on this intersectional 

domain of people and just net-zero transitions in buildings. Researchers have attempted to 

conceptualise a people-centric transition through the lens of climate justice. For example, the journal 

Building & Cities recently released a special issue on ‘Climate justice and the built environment’ (15) 

to explore people-centrism in just transition and how decisions about the built environment in the 

climate context intersect with human life well-being. It emphasised the need for governance and 

advocacy to create equitable pathways for providing healthy, low-carbon, climate-resilient outdoor 

and indoor environments for vulnerable population groups in a changing climate (16).  

Studies also mention the current need for methodically mapping existing strategies for climate 

risk exposures and vulnerabilities by socio-demographic characteristics at local, national and regional 
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levels (11,26–28). Similarly, an increasing consensus towards people-centric transition is on improving 

training and capacity-building across academic and professional programs involved in planning, 

designing and implementing built environment projects (2,15,29–32).  

2.2 Methodological approaches in planning people-centric transition 
 
As mentioned in Section 2.1, the literature on people-centric transition is scarce, and most of the 

current work is in the form of grey literature (like policy reports, white papers, blogs, etc). However, 

existing evidence shows that researchers are exploring the domain of people-centric transition using 

multi-method policy analysis approaches. People-centric policies for decarbonisation are evolving 

around the boundaries of psycho-socio-economic domains. For example, in a computational economic 

study, Bektas et al. (33) have developed an agent-based modelling approach to explore innovation in 

preference, emotional attitudes and innovation swaps in non-technological resource shift for 

decarbonisation of railways in Switzerland (33). Al-Chalabi et al. (34) used a social network approach 

to investigate intentional and unintentional spillover effects of individualistic behavioural change in 

decarbonising the UK’s transportation system.  

In a people-centric decarbonisation context, studies have shown that psycho-social 

determinant like habits and attitudes are strong determinants of individual behaviour (35). It 

mentioned habit-breaking mechanism that could help in reducing emission in the mobility sector (35). 

Kern and Rogge (36) further demonstrated that if political, social and psychological dimensions can 

support economic and technological innovations, the low-carbon transition can be achieved faster 

than expected. These studies approach the decarbonisation question of the built environment 

through the transportation and mobility sector and do not derive direct implications for emission 

reduction in buildings.  

 Researchers have recently demonstrated that contemporary approaches in complex systems, 

when combined with social practices theories can simultaneously capture the socio-techno-economic 

ontologies for people-centric decarbonisation (37). Combined complex system and social practice 
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perspectives were found to offer critical insights on the internal coupling of processes in large service 

infrastructures that are increasingly disrupted by climate change (38). In a similar methodological 

approach, a garnering route of enquiry for public opinion on climate policy is through social media-led 

big data analysis using data from Twitter, Facebook, YouTube, Redditt and other social media 

platforms (39). A recent study explored tweets on the carbon emission trading system for multi-

dimensional policy analysis in the European Union (EU) and demonstrated the importance of the 

public’s cognition of climate policies (40). The study found that enabling public engagement (or 

people-centrism) in climate mitigation measures allows people to express their environmental 

interests, improves the transparency of policy governance and creates a space for the legitimacy of 

climate policies (40,41).  

 Twitter data was used by Kim et al. (42) to examine the public’s emotional attitude towards 

nuclear energy as a low-carbon strategy. Sluban et al. (43) used hashtag networks to explore public 

emotional tendencies towards ‘green energy’, ‘climate change’ and ‘carbon emissions’ and concluded 

the need for more public opinion research to enable people-centric just transition. Tweets related to 

energy-related topics from the EU Sustainability Energy Week were used to map stakeholders' 

significant energy concerns and emotional tendencies towards these issues by (44). Veltri and 

Atanasova (45) explored the network topology of climate change tweets and news media articles for 

automated text classification according to psychological process categories. Recently, Twitter posts 

that mentioned climate change in the context of three high-magnitude extreme weather events – 

Hurricane Irene, Hurricane Sandy and Snowstorm Jonas were used by Roxburgh et al. (46) to derive 

discourses of climate denialism, criticism and polarising political ideologies. An unsolicited public 

opinion poll on climate change sentiments by Cody et al. (47) used Tweets between 2008 and 2014 to 

explore the public emotional response to natural disasters, climate bills and oil drillings. Similarly, 

Debnath et al. (48) have used Facebook posts to explore public perception of climate technology (in 

this case, electric vehicle) adoption across political, economic, social, technological, legal and 

environmental policy dimensions.  
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However, none of the above studies explore the sector dimensions of emission reduction in 

buildings and its association with climate action. This research gap provides a strong motivation for 

this study that contribute to the discussions around people-centric emission reduction in the building 

sector. In doing so, we use Twitter data to explore the network structures and sentiments of climate 

conversations around emission reduction in buildings which can shape the future-proofing strategies 

for a net-zero built environment.  

 

3. Materials and methods 
 
3.1 Data source 
 

Digital social media platforms like Twitter have gained extensive public popularity among the users as 

an effective source of data on public opinion about environmental issues and climate policies as it 

enables a diverse range of user-generated contents (UGCs) (like texts, images, pictures, audio, video 

and live conversation) (39). Tweets offer certain advantages over traditional methods (including online 

and face-to-face surveys) for exploring public perception and attitudes (49). For example, Twitter 

users can independently publish and deliver UGCs of their choice. It adds depth to their opinions. 

Besides, the brief amount of information in a tweet allows users to navigate public interest towards a 

topic easily, determine their attitudes, and understand the broad narrative (50). Moreover, users can 

interact through conversational replies, retweets, and likes, showing the relationships and reflecting 

the social nature of information transmission (50). As a data platform, Twitter can gather real-time 

data on an extraordinary scale and dimension (i.e., time, location, user attributes) and echo public 

awareness and response to social and environmental policies, facilitating discussions and information 

propagation (51). Finally, Twitter slows academic researchers to collect and analyse data from their 

platform. 
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In this study, we use the Twitter Academic Research Product Track v2 Application 

Programming Interface (API) endpoints to collect historical tweets for a 13-years period. The v2 API 

endpoints offer an advantage over the standard v1.1 API endpoints by providing access to the entire 

archive of (as-yet-undeleted) tweets published on Twitter, a monthly cap of 10 million tweets and the 

ability to access data with more precise filters and query functions permitted by the v2 API (52,53). 

We used the R-programming language to build the query parameters for data collection using the 

academictwitteR v0.3.0 package (53). The tweets are downloaded as separate JSON files for a tweet- 

and user-level information separately on each query, as per the requirements of the package (53). 

These data packets are then bound into an R data.frame object or tribble for further analysis in the R 

environment.  

As a search query, we used two specific hashtags (#) ‘#emission’ and ‘#building’ with the 

logical operator ‘AND’ to capture any available tweet in public Twitter domain during this 13-year 

timeframe, collecting only in English-language posts without any geographical restrictions. This 

produced a dataset of 256,717 tweets and retweets containing the above hashtags. We kept the 

search query as broad as possible to capture the largest bandwidth of public interactions with 

hashtags on emissions and building in the current climate change discourse. We specifically use 

hashtags as they are a critical communication device on Twitter and have become an essential part of 

Twitter-led data analysis (54). Users deploy hashtags to annotate the content they produce, allowing 

other users to discover their tweets and enable interaction on the platform (55–58). Also, adding a 

hashtag to a tweet corresponds to joining a network or community of users (Tweeters) discussing the 

same topic. Finally, hashtags are also used by Twitter to calculate trending topics, which encourages 

the users to post and engage in these communities (56). By tweeting a hashtag, users explicitly 

annotate their tweets for a specific network of Tweeters or communities (55,57).  

We acknowledge that our Twitter dataset potentially embeds certain unintentional biases, for 

example, the Twitter user-demographics are typically not representative of many real-world 

demographic (59). For example, Twitter’s user base consists of primarily young users; 38.5% of 211 
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million active users are in the age range of 25 – 34 as of April 2021 (60,61). In addition, we limit our 

search query to English language tweets which also adds a socio-demographic boundary. Similarly, 

another unintentional bias with the data collection is the embedded influence of malicious users 

artificially causing a topic or a hashtag to trend, or they can misrepresent already trending items (62). 

Bots are regularly deployed to make the specific account more prominent and create artificial trending 

topics (63). It also includes activities like crowdturfing and shills that generate fake news and 

misinformation (54). We follow the best practice guidelines in mitigating such biases as per the 

recommendations of (54,64,65). Therefore, basing the generalisability of our study with due 

acknowledgement to such biases.  

In addition, the ethics clearance for this research was obtained through the Ethical Review 

Board at the Cambridge Judge Business School, University of Cambridge, UK, while Twitter was 

informed about this research during the v2 API request. We also followed the ethics protocols as per 

the guidelines of the Menlo Report on handling Twitter datasets (66).   

 

3.2 Natural language processing of the Twitter data  
 

The R data.frame constructed in section 3.1 was processed using a natural language processing (NLP) 

workflow using the tidyverse v1.3.1 (67), and tidytext v0.3.2 (68) packages in R. The workflow 

consisted of text pre-processing, feature extraction for n-grams and sentiment analysis. The pre-

processing stage consisted of tokenisation, stemming and lemmatisation. In NLP, tokenisation refers 

to the process of breaking down the given text into smaller units in a sentence called token (69,70). 

Stemming in NLP is a morphological technique that breaks words into their root form (70,71). 

Lemmatisation is another normalisation technique used to reduce inflectional forms of words to a 

common base form (70). It is different from stemming as it uses lexical knowledge bases to get the 

correct base forms of words (70). At this NLP pre-processing stage, we removed the stopwords in the 

data.frame using the tm v0.7-8 package in R (72). Stopwords are the most common words in any 
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language (like articles, prepositions, pronouns, conjunctions, etc) and do not add much information 

to the text. For example, common stopwords in English are  “the”, “a”, “an”, “so”, “what” (70). This 

workflow extracted the cleaned base form of words from the 256,717 tweets and generated the 

document-term-matrix (dtm) needed for sentiment analysis.  

Parallel to this pre-processing, we isolated individual hashtags from the tweet data corpus. 

The hashtags were extracted from each tweet using a feature extraction like data pipeline using the 

tidygramr v0.1.0 package (67) to prepare n-gram models. We extracted hashtag unigrams from each 

tweet (n = 13,743) and stored it as a separate dtm that included feature vectors of #ngram and the 

number of times it is repeated in an individual tweet (called ‘freq’). Both ‘#ngram’ and ‘freq’ were later 

used to create the hashtag network graphs (explained in detail in section 3.3). During this hashtag 

unigram feature selection process, we also ensured to exclude ‘#emission’ and ‘#building’ to reduce 

overrepresentation biases in the dtm.  

We used the NRC Word-Emotion Association Lexicon (73) for the sentiment analysis of the 

tweets through the syuzhet v1.0.6 package (74). It consists of a list of English words and their 

connotations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and 

disgust) and two sentiments (negative and positive); the list of corresponding words/terms to the 

specific sentiment and emotions can be found here: (73). The derived sentiment scores were then 

scaled between 0 and 1 (feature scaled) through a min-max normalisation function (see eq. 1) in R to 

visualise its strengths across the tweet time-series.  In addition, the time-series of sentiments were 

represented through moving average decompositions of 6-months (see eq 2). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑. 𝑣𝑎𝑙𝑢𝑒𝑠 = !"#$%&'()(*$*
'"+(*$*	–	'()(*$*	

	        (1) 

𝑇. =	
/
*
∑ 𝑦. + 𝑗0
12	&0           (2) 
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where, 𝑚 = 2𝑘 + 1. the estimate of the trend-cycle at time t is obtained by averaging values of the 

time series within k periods of t. All of the code necessary to reproduce the pre-processing and analysis 

are available at (75).  

 

3.3 Network topology and feature analysis 
 

The NLP treatment of tweets extracted 13,743 unique Hashtags ngrams from the data corpus (see 

Section 3.2). In the following steps, we constructed hashtag co-occurrence networks across four 

distinct timescales, ‘2009 – 2012’, ‘2013 – 2016’, ‘2017 – 2020’ and ‘2021’, to analyse the use patterns 

of hashtags associated with the discourse about emissions in buildings. Co-occurrence networks are a 

graphical representation of how frequently variables appear together (76). In our hashtag co-

occurrence network construction, we measure how frequently (‘freq’) two specific hashtags (#ngram) 

are presented in a single tweet. A node represents each hashtag in the co-occurrence network, and 

the co-occurrence between two nodes represents an edge, weighted by its frequency. We constructed 

undirected networks using the above nodes and edges description in Gephi 0.9.2 (77). The undirected 

network topologies were evaluated based on the following metrics, commonly used in social network 

analysis research (78), 

Modularity measures the structure of a network or graphs. In network analysis, modularity is 

often used as a network property that measures the degree to which densely connected nodes within 

a network can be decoupled into separate communities, groups or clusters that interact more among 

themselves than other communities (79,80). Higher modularity implies better partitions (81). 

Modularity as a metric Q can be expressed as (see eq. 3) (82),  

𝑄 =	∑ (𝑒(( − 𝑎(3)(           (3) 

 where, 𝑒((  is the fraction of edges in the network that connect vertices in partition i to those 

in partition j, and  𝑎(1 =	∑ 𝑒(1(  (82).  
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 Eigenvector centrality measures the influence of a node in a network, and also evaluates a 

node’s importance while considering the importance of its neighbours (83). It is based on the principle 

that links from important nodes are valued more than links from trivial nodes. All nodes start equal; 

however, nodes with more edges start gaining importance as the computation progresses. Their 

importance propagates out to the nodes to which they are connected. Through iterative computing, 

the values stabilize, resulting in the final values for eigenvector centrality (84).  

The Clustering coefficient is defined in graph theory as a measure of the degree to which nodes 

in a graph tend to cluster together (85). For an undirected graph, the global clustering coefficient C is 

estimated in terms of the adjacency matrix A (see eq. 4), 

𝐶 = 	
∑ 5!"5"#5#!!,",#
∑ 0!(0!&/)!

          (4) 

where, 𝑘( =	∑ 𝐴(11 , is the number of neighbours of a vertex, i and j are vertices of the graph.  

Degree centrality measures the number of edges connected to a node, which is a widely used 

centrality measure. It is expressed as an integer or count and assigns an importance score based simply 

on the number of edges held by each node. The nodes with a higher degree are central (84).  

Mathematically it is represented in eq. 5, 

𝐷(𝑖) = 	∑ 𝑚(𝑖, 𝑗)1           (5) 

where, m(i,j) = 1 if there is a link from node i to node j.  

Graph density measures how many ties between parameters exist compared to how many 

ties between parameters are possible. The density of an undirected graph is presented in eq. 6,  

𝑈𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 	 89."#:;<%=
89."#>9==(?#%:;<%=

	= 	 @"A;()"#(.B
C(D%

=	 *
)()&/)/3

   (6) 

where, n is the number of nodes in the network.  

 The networks were optimised using the ForceAtlas2 (FA2) algorithm based on a force-directed 

layout that simulates a physical system to spatialise a network (86). Nodes repulse each other like 
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charged particles, while edges attract their nodes, like magnets. These forces create a movement that 

converges to a balanced state with higher connected nodes placed centrally while nodes with lower 

connectivity are placed towards the network's periphery (86). This final (optimised) network 

configuration is expected to help interpret the data. The refinement of the network visualisation was 

performed by using the linlog, gravity and overlapping prevention layout settings in Gephi for the FA2 

algorithm [A detailed mathematical background for FA2 is provided by Jacomy et al. (86)]. Additionally, 

further visual refinement of the networks was performed using functions like Noverlap and labeladjust 

layouts (77).  
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4.   Results 
 
4.1 Public sentiments on emission reduction in buildings 
 
 

 

Fig 1. Time-series of twitter reactions with respect to major climate negotiations and policy events (2009 - 2021). (a) 
Twitter interactions (tweets, retweets, comments) with #emission and #building; (b) 6-month moving average estimates of 

tweet sentiments; (c) 6-month moving average estimates of tweet emotions from n = 256,717 tweets. 
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Results from the sentiment analysis of the tweets containing #emission and #building between 2009 

and 2021 (n = 256,717) are shown in Fig 1. The tweets are traced as per major climate negotiations 

and policy events by the UNFCCC. For example, it can be seen from Fig 1a that Twitter volume on the 

above hashtags was significantly higher after the release of the United Nations Intergovernmental 

Panel on Climate Change (IPCC) Special Report titled ‘Global Warming of 1.5 °Celsius’ (87). However, 

the appeal for global standards for reducing building emissions began from the United Nations 

Conference of Parties (COP) – 15 in 2009. The establishment of the Green Climate Fund at the Cancun 

Agreement in 2010 further encouraged the green building sector to spotlight on discourse around 

built environment-centric emission reduction at COP17 in Durban (2011). However, until the COP – 18 

in 2012, the focus was skewed towards the energy efficiency and operational emission reduction 

benefits from green buildings (see Fig 1a, also discussed in detail in the next section).  

 Similarly, in the 2013 – 2016 period, policy discourse on integrated approaches to climate 

change mitigation, adaptation and resilience of the built environment took the central stage with the 

release of the IPCC Fifth Assessment Report on Climate Change (AR5) with a dedicated chapter on 

forecasting and long-range planning of emissions reductions from the building sector (see (23) and Fig 

1a). It led to discussions on the need for sustainable finance for low-carbon cities in COP-20 in 2014 

(see Fig 1a). These shaped the Paris Agreement’s key messages for the building sector: reducing 

operational emissions through energy efficiency and addressing the whole life cycle of the built 

environment sector (also mentioned in (88)). It essentially flagged wide-ranging policy discussions and 

stakeholder discourses on net-zero buildings and the built environment (see COP-22, Fig 1a).  

 COP-23 had a specific agenda called ‘Human Settlement Day’, which generated a relatively 

higher tweet volume on the selected hashtags (#emission and #building) (see Fig 1b). Furthermore, 

tweet volume was further exponentially increased with the launch of the IPCC Special Report on Global 

Warming of 1.5 °Celsius, as mentioned above. It stated the need to enable more profound emission 

reduction in the urban and infrastructure system through the following scenario:  
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“… The urban and infrastructure system transition consistent with limiting global warming to 

1.5°C with no or limited overshoot would imply, for example, changes in land and urban planning 

practices, as well as deeper emissions reductions in transport and buildings compared to pathways 

that limit global warming below 2°C (medium confidence). Technical measures and practices enabling 

deep emissions reductions include various energy efficiency options. In pathways limiting global 

warming to 1.5°C with no or limited overshoot, the electricity share of energy demand in buildings 

would be about 55–75% in 2050 compared to 50–70% in 2050 for 2°C global warming (medium 

confidence). 

… Economic, institutional and socio-cultural barriers may inhibit these urban and infrastructure 

system transitions, depending on national, regional and local circumstances, capabilities and the 

availability of capital (high confidence)…” (as stated in C.2.4. (89)).  

Similarly, the discourse on green/climate finance for residential homes got traction in COP25 

in 2019, also reflected in the ‘circular economy’ and ‘social housing fund’ discourses of the EU Green 

Deal (see Fig 1a and (90)). The garnering importance of emission reduction in buildings in the global 

climate action and policymaking was further illustrated through the flagship ‘Cities, Region and Built 

environment Day’ at the recent COP-26 at Glasglow (2021); and its corresponding high Twitter traffic 

(see Fig 1a).  

 Fig 1b and Fig 1c provide the characteristics of sentiments and emotions in the tweets through 

a moving average representation between 2009 – 2021. Sentiment analysis shows that positive 

sentiment has a more significant share than negative sentiment (the word list can be found in the NRC 

lexicon (72)) in the tweets, with few peaking events for negative tweets (see Fig 1b). For example, 

negative sentiment share rose to almost 40% from below 10% post-COP-15. However, this share fell 

to almost 0% on the announcement of the Green Climate Fund (2010) (see Fig 1b). Similarly, tweets 

with more than 50% negative sentiment peaked between COP-17 and COP-18 in June 2012 (see Fig 

1b). In the same period (i.e., 2009 - 12), sentiment analysis revealed tweets showed a more significant 

share of emotions like ‘trust’ and ‘anticipation’, as shown in Fig 1c. 
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 Sentiment trend for 2013 – 2016 also shows a higher share of positive sentiment (cumulative 

share ~70%), with negative peaks during the Paris Agreement (~ 50%, see Fig 1b). Between January 

and April 2013, tweets showed emotions like high ‘trust’, ‘surprise’ and ‘joy’, whose share fell 

significantly with the rise in negative emotions like ‘anger’ and ‘fear’ in August 2013 (see Fig 1c). The 

share for ‘surprise’ increased during COP-19. However, critical key emotion shared during with IPCC 

AR5 release was ‘anticipation’ (~ 90%) and ‘fear’ (~ 60%, see Fig 1c). A similar effect was also observed 

in the tweets during the Paris Agreement, with an additional share in ‘trust’ (see Fig 1c). Interestingly, 

the share of sadness increased after the IPCC Global Warming 1.5°C Report to ~30% (2018-2021, see 

Fig 1c). Peaks in emotions like ‘surprise’ and ‘trust’ are seen post-EU Green Deal negotiations. Thus, 

the sentiment analysis in this section showed that public reactions in the building and emission space 

are susceptible to high-level policy events. The following section presents how these emotions are 

shaped through hashtag co-occurrence networks across time scales.  

 

4.2 Hashtag network topologies  
 
The derived hashtag networks are illustrated in Fig 2, labelled as N1 to N4 with their respective 

dimensions (nodes, edges and data points (n)). These undirected graphs also represent the 13-year 

time frame of the tweets and the hashtags. E.g., N1 is for 2009 – 2012, N2 for 2013 – 2016, N3 for 

2017 – 2020 and N4 for 2021 (see Fig 2). The undirected graph density (estimated using eq. 6) shows 

N1(0.015), N2(0.005), N3(0.002), and N4(0.002) shows that N1 have the greatest density than the 

other three networks. It is due to the lower nodes number for N1 as compared to the other graphs 

(see Fig 2). Table 1 shows network characteristic measures that include average (avg) degree, 

modularity and avg clustering coefficient. It can be seen in Table 1 that N3 and N4 have higher avg 

degree scores than N2 and N1, indicating a more significant number of connections to other nodes for 

N3 and N4, which implicate more spread of interconnected and interdependent hashtags. Modularity 

scores of N1 and N2 are comparable and higher than that of N3 and N4 (see Table 1), inferring N1 and 

N2 have a relatively higher dense connection between the nodes within the modules (or clusters) but 
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sparse connections between nodes in different modules, as compared to the N3 and N4 topologies. 

In terms of hashtags, it implies N1 and N2 represent densely connected hashtags within a specific 

cluster, acting like information ego centres. For N3 and N4, it implies more hashtags have been 

diversifying and diffusing across the networks. Nonetheless, relatively higher avg clustering coefficient 

for N1, N3 and N4 (see Table 1) indicate that nodes here tend to cluster together, therefore, again 

representing the tendencies of hashtags to form ego-centres within the respective networks.  

 
Fig 2. Topologies of hashtag co-occurrence networks (N1 to N4) across the 13-year timeline (2009 - 2021) [Note: The size of 

the node is respective to its frequency in a particular graph] 

(a) N1: 2009 – 2012 
Node = 731, Edges = 1,092, 

(n =  5,339)

(b) N2: 2013 – 2016 
Node = 2,293, Edges = 3,986, 

(n =  19,709)

(c) N3: 2017 – 2020 
Node = 10,489, Edges = 44,660, 

(n =  156,065)

(d) N4: 2021
Node = 5,999, Edges = 23,754, 

(n =  75,604)
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Table 1. Macro-level network characteristics 

Network Year Density Avg. degree Modularity Avg. clustering coefficient 
N1 2009 – 2012 0.015 2.988 0.567 0.825 
N2 2013 – 2016 0.005 3.447 0.574 0.784 
N3 2017 – 2020 0.002 8.516 0.444 0.838 
N4 2021 0.002 7.919 0.479 0.846 

 

 

Fig 3. Eigenvector centrality score (> 0.01) distribution with nodes (hashtags) in the N1 - N4 network. [Note: 1 = high 
influence, 0 = least influence] 
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The distribution of eigenvector centrality scores (>0.01) of hashtag co-occurrences associated 

with the N1 to N4 network is illustrated in Fig 3. As mentioned in section 3.2, this metric measures the 

influence of a node in a network (a score of 1 denotes the highest influence of that node in the graph). 

Here, Fig 3 denotes the hashtags with the greatest influence in that specific period. For N1, apart from 

the #emissions, hashtags with higher eigenvector scores (0.90 – 0.60) are #green, #buildings, #co2, 

#energy and #carbon (see Fig 3a). Between 0.60 – 0.30, the influential hashtags are #ghg, 

#environment, #construction, #renewable and #sustainability (see Fig 3a). These hashtags represent 

the most influential or propagating hashtags between 2009 and 2012, as per the N1 network. 

Contrastingly, in the lower end of the score, the results show hashtags like materials (cement, 

concrete), architect, climate action, insulation, data, etc (see Fig 3a). The interconnections and 

clustering between these hashtags are further represented through an n-degree graph. Fig 4 

represents a 10-degree graph for N1, showing the hashtags with at least ten connections with other 

hashtags.  

 

Fig 4. A 10-degree graph for N1 [Note: Size of the nodes is proportional to its eigenvector scores and the colours denotes 
classification of nodes in the same cluster] 
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 N2 is a significantly bigger network than N1 (see Fig 2). The influential hashtags in N2 can be 

seen in Fig 3b, showing #lowcarbon, #climatechange and #ghg with the highest eigenvector centrality 

scores (0.90 – 0.60) distinct from Fig 3a. In the next range of centrality scores (0.60 – 0.30) leading 

hashtags were #sustainable, #construction and #eu. Compared to N1, these gained higher scores and 

showed the addition of new hashtags in the 0.30 - 0.10 score range like #coal, #solar, #transportation 

and #ev (see Fig 3b). Such shifts in eigenvector scores indicate empirical shifts in the climate policy 

discourse during the 2013 – 2016 period (as shown in Fig 1). Fig 5 further visualises the 

interconnections amongst the hashtags using a 10-degree graph (Fig 5a) and the influence of specific 

hashtags (#climatechange and #construction) with high eigenvector centrality (see Fig 5b and Fig 5c).  

 

Fig 5. A degree-10 network for N2 with sub-plots for hashtags with high eigenvector centrality scores. 
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 Fig 5b shows the more significant association of #climatechange with #energy, 

#carbon and #building (as these hashtags have comparable node sizes) in N2. Furthermore, 

the association of #transportation and #ev in the same nodal linkages can also be seen, 

demonstrating the garnering discourse on the importance of electric vehicles and 

decarbonisation of the built environment through the transportation sector (see Fig 5b). 

Similarly, in the same hashtag network, #solar, #renewable, #efficiency, #actonclimate and 

#greenbuildingsis are featured, emphasising the increasing focus on climate action through 

renewables and solar photovoltaic (PV) integration in the built environment emission 

reduction context. Additionally, #green, #jobs and #economy in the same network (see Fig 

5b) implies the possible policy effect of high-level discussions on green jobs, green and 

transitioning economy in the COPs (see Fig 1a). Finally, parallel inferences can be drawn for 

#construction in Fig 5c, which demonstrates the shifting narrative of the public for the 

construction sector towards emission reduction actions through #green #buildings, focus on 

#cement and #concrete industries and #greenhouse gas removal.  

 N3 has the highest average degree score (8.516, see Table 1) that infers higher 

interconnectivity in the nodes, which can be visually assessed through Fig 2c. The eigenvector 

centrality scores for N3 shows the addition of new influential hashtags like #carbonneutral, 

#climateaction, #energyefficiency, #netzero, #renewableenergy, #climatetech and so on in 

the higher score range (0.90 – 0.60) (see Fig 3c and Fig 6), as compared to N1 and N2. Similarly, 

in the mid-score range (0.30-0.30) new additions include #technology, #innovation, #design, 

#parisagreement, #health, #climatecrisis, #concrete, etcetera (see Fig 3c and Fig 6). It shows 

the change in public narratives towards the need for innovation in technology and design for 

addressing the climate crises, especially action for reducing concrete emissions in the 

construction industry. The addition of #health further emphasised the growing concerns on 
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the built environment and climate change effects on health. These narrative/discourse shifts 

can be attributed to the aftermaths of the Paris Agreement and the launch of IPCC AR5 and 

Global Warming 1.5°C reports (Fig 1a). Attitudinal shifts are also evident from the tweets' 

changes in sentiment and emotion shares, as illustrated in Fig 1b and Fig 1c.  

Furthermore, in the lower end of the score (0.10-0.30), additions like #carboncapture 

and #masstimber were new and provide a critical clue towards the changing focus on the 

whole life cycle of emissions and sequestration through carbon capture and storage (CCS), 

natural materials, nature-based solution and mass timber housing (see Fig 6). N3 has a 

complex network topology due to the high density of nodes and edges (see Fig 2c). Therefore, 

we labelled the broad themes according to their clusters that approximately represented the 

zones of influential hashtags, see Fig 6.  

 

Fig 6. N3 network with cluster maps of influential hashtags 
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 While there are significant overlaps between N3 and N4 in terms of hashtags with high 

eigenvector centrality values as they are part of recent climate policy events (see Fig 1a), new 

hashtags in N4 can be tracked from Fig 3d. It includes #ccs and #climatetechnology in the 

higher score range (0.6 – 0.3), a shift from N3. This shift can be attributed to its association 

with #cop26, which increased its network influence. Additions also include 

#businessinnovation, #geoengineering, #concreteeconomy in the same range. Moreover, it 

can be seen from Fig 3d that greater emphasis on #homes, #retrofit, #supplychain in the lower 

score range (0.1 - 0.3) indicates a shift in the residential sector and its emission reduction 

efforts, with added pressure from #covid19 (see Fig 3d). Like N3, N4 is a complex network 

with many edges and is visualised in Fig 7 as clusters of such influential hashtags. 

 Fig 7 also shows the associated hashtags with #cop26 in the N4 network. Some of the 

associated hashtags are #buildingtocop26, #woodforgood, #healthyclimate, #housingcrisis, 

#scaleupnow, #climatejusticenow and so on. It indicates a paradigm shift in the emission and 

building policy narratives towards broader social and environmental justice contexts. For 

example, N3 and N4 #masstimber and #woodforgood featured with high eigenvector 

centrality values showing that people-centric transition is thinking of alternate low-carbon 

materials to concrete construction. Similarly, the housing crisis, healthy climate, scale-up, and 

climate justice are all related to the social justice movement associated with global affordable 

and healthy social housing narratives.    
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Fig 7. N4 network with the influential hashtags 
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5.   Discussion 
 

This study investigated the hashtag progressions in Twitter using network analysis concerning 

emission reduction in the buildings in the current policy discourse of people-centric low-carbon 

transition. Four hashtag co-occurrence networks are constructed through a big data approach analysis 

approach of n = 256,717 tweets between 2009 – 2021 (N1 – N4, see Fig 2). The tweets' public attitudes 

and sentiments were attributed to high-level climate negotiations and policy events like the UN COPs 

and IPCC Assessment Report release (see Fig 1a). The general trend in the sentiment analysis over the 

13 years demonstrate a more significant share of positive sentiments. However, 6-month moving 

average estimations further showed that post-2014, there has been a steady rise in the share of 

negative sentiments (~ 30-40 %, see Fig 1b). It can be attributed to greater sensitivity and increasing 

public awareness and opinions to climate change, and the addition of Twitter users in the period.  

Moreover, there have been critical policy events like the IPCC AR5 release with a dedicated 

chapter on buildings in 2014, the Paris Agreement in 2015, several COPs, the release of the IPCC 1.5°C 

Global Warming Report (2018), EU Green Deal (2019) and the latest COP-26 with a flagship-built 

environment and cities day (see Fig 1a). While evaluating the exact policy effect of such events on the 

public was beyond the scope of this study, our results showed how Twitter users reacted to such 

events with the #emission and #building. We used it as a proxy for studying people-centric transition. 

For example, Fig 1c further disintegrates the two sentiments into eight emotions. Between 2009 – 

2012, the share of trust and anticipations was relatively high, especially during significant policy events 

like the COP-15 and Cancun Agreement. This trend followed until the first half of 2013, with a sharp 

increase in negative emotions like anger and fear (see Fig 2c).  

There is a general rise in emotions like surprise, anticipation and fear during global policy 

events (see Fig 1c). For example, with the launch of IPCC AR5, the share of anticipation and fear in the 

tweets rose by ~90% and ~60%, respectively, in late 2015 and early 2015. A similar effect was observed 

as reactions to the Paris Agreement, with a further rise in the 'trust' (~ 30%) in October 2015 (see Fig 
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1c). The share of negative emotions like sadness rose to ~30% post-IPCC Global Warming report. 

However, peaks in 'surprise' and 'trust' were seen post-EU Green Deal. A greater share of positive 

sentiments and emotions were also observed in the COP-26 period (see Fig 1c). Such trends provide 

generalised insights on people-centric transition and reactiveness towards global climate policy 

events. It shows that such policy actions matter to the public, and with more sensitisation towards 

decarbonisation and push for low-carbon solutions, emotions are getting more grounded. It is a critical 

insight for policymakers that people are open to change and care about the climate action towards 

emission reduction.  

In the next step, we explored the influence of hashtags using eigenvector centrality measure 

on the people-centric transition through four co-occurrence network topologies. The first evidence of 

greater public engagement was the expansion of networks across the three years (see Fig 2). The 

centrality score also aided in tracking hashtags that were new additions to that network (see Fig 3). 

For example, in N1 (2009 - 2012), the most influential hashtags were associated with green buildings 

and their emission reduction potential in the built environment (#green, #buildings, #co2, #energy 

and #carbon, see Fig 3a). Finally, the degree measure reported its spatial relationship with other high 

influence hashtags. For example, Fig 4 showed a 10-degree network of N1 that demonstrated high 

interconnectivity across #greentech, #efficient, #design and so on, indicating the increasing public 

interest in the technology and design-led solutions.  

N2 (2013 - 2016) was a significantly more extensive network that introduced new high 

influencing hashtags like #climatechange and #construction along with #lowcarbon, #sustainability, 

#ghg, #transportation that demonstrated the shifting focus towards sustainable and low-carbon 

construction, sustainability and decarbonisation of the transportation system (see Fig 3b). 

Furthermore, Fig 5 quantified the interconnection between such influential hashtags as 10-degree 

network topology. For example, in Fig 5b, the expanding hashtag network for climate change now 

includes #business, #energyefficiency, #ipcc, #renewables, #netzero, and so on that emphasised the 

transcending climate discourse towards net-zero action, energy efficiency in buildings and booming 
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renewable business. A high eigenvector centrality score of #ipcc further demonstrated the public 

impact of the IPCC AR5 report. 

N3 (2017 - 2020) and N4 (2021) networks consisted of recent policy events that created 

complex network topologies (see Fig 2). Eigenvector centrality scores for N3 revealed garnering public 

interest in #climateaction (see Fig 6), including #carboncapture, #cleantech and #circular economy. 

These hashtags appeared with high centrality scores for the first time in N3 that inferred people were 

interested in circular economy and climate tech-based solutions like Carbon Capture and Storage 

(CCS). Similarly, a distinct cluster in the network demonstrated influential hashtags on #wood, 

#masstimber, #embodied emissions, #carbonfootprint, #housingmarket, #affordablehousing, 

etcetera (see Fig 6) that implied the garnering public interest towards embodied emission reduction 

through nature-based solutions like timber and wood and reflected its potential application in the 

affordable housing market. New additions in N3 also included #innovation, #design, #health, 

#climatecrisis, etcetera (see Fig 3c) that indicated a greater focus on innovation in building design for 

addressing the climate crisis and health outcomes in the built environment.  

As mentioned in section 4.3, #ccs, #carboncapture and #climatetechnology (see Fig 3d) further 

moved to a higher range of eigenvector centrality, demonstrating the garnering influence of these 

terms in the N4 network. It can be attributed to more significant discussion and sensitisation of these 

terms in the COP-26. Moreover, #netzero became significantly influence in N4 as compared to N3 (see 

Fig 3, Fig 6 and Fig 7) that included hashtags like #municipalties, #netzerohomes, 

#climateaction4cities, #cleanbuildings and so on, demonstrating the rapidly increasing acceptance of 

net-zero action in the public domain. It further emphasises that people-centric transition and net-zero 

action can complement short-term policy discourses.  

Similarly, in the N4, #supplychain and its high degree interlinks with #economy, #government, 

business, #research, #industry (see Fig 7) showed changing narratives on the reiteration of the supply 

chain, industry and business for net-zero action and emission reduction in buildings. Interestingly, a 
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significant emphasis on #concrete, #software and #digitaltwin was also seen, indicating discourse on 

newer methods of intelligent decarbonisation in the concrete industry (see Fig 7). Similarly, 

#greenbuilding in N4 was primarily associated with residential homes and retrofitting that 

demonstrated garnering interest for decarbonisation of the residential sector, which is generally 

overlooked in the people-centric transition context. As COP-26 was a significant event in 2021, #cop26 

in N4 showed high interconnectivity with new hashtags like #woodforgood, #climatejusticenow, 

#naturebasedsolutions, etcetera, (see Fig 7) that demonstrated paradigm shifts in building emission 

reduction efforts by connecting it with global climate justice efforts. It critically emphasises the need 

to align future-proofing strategies of the built environment with social and environmental justice goals 

to make it a genuinely people-centric transition.  

However, reflecting on current Twitter userbase (~211 million users globally), that we found 

approximately a quarter million or so tweets on emissions in the building sector during our analysis 

period indicates that these issues are low salience. So, one important task for policymakers is to raise 

the salience of these issues immediately, and to develop communications strategies to emphasise the 

importance of build sector emissions. 

 

6.   Conclusion 
 
Enabling justice and equity in low-carbon transition is a global challenge. The buildings and 

construction sector needs immediate attention from policymakers to reduce its overall carbon 

footprint. Just transition in this context would mean addressing the emission reduction goals and 

fulfilling global sustainable development needs. This complexity calls for enabling contextualised 

climate policy design that embeds collective wisdom of people to improve resilience, adaptation and 

mitigation strategies to climate change. Thereby allowing the process for people-centric transition.  

This study demonstrated the changing perception of climate action for the built environment 

sector in the people-centric transition context by using a multi-method approach to evaluate Twitter 
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sentiments and hashtag co-occurrences over 13 years. This study showed that people are reactive to 

high-level climate policies and events that concern emission reduction in buildings. Exploratory 

sentiment analysis of 256,717 tweets between 2009 – 2021 revealed public attitudes varied as moving 

averages following the announcement of significant policy actions. For example, the share of emotions 

like surprise, anticipation and trust peaks at the onset of the Paris Agreement and IPCC report release. 

However, the emotional share for anger, fear, and sadness in the tweets increased as moving averages 

in the next few months. It indicated the public reactivity cycle of climate policy events with a critical 

inference that as sensitisation towards climate change increases, public emotions diversify over time 

(due to increase in public awareness).  

The findings from network topology analysis showed that hashtags influence public attitudes 

towards climate action and emission reduction efforts in the built environment. For example, between 

2009 – 2012, hashtags associated with green buildings were highly influential and dominated the 

discourse across the construction industry, renewable energy and greenhouse gas removal efforts. 

However, it was preceded by #energyefficiency, #climatechange, #transportation, #construction and 

#sustainability in the 2013-2016 period indicating a shifting paradigm from exploration to 

identification of policy action areas. Furthermore, this transition in focus happened through IPCC AR5 

reports, Green Climate Funds and the Paris Agreement. The findings from this study further showed 

the more significant influence of #climatech, #carboncapture, #masstimber, #wood, #netzero, 

#climatejustice, etcetera in the 2017-2021 timeline, which infers shifting public narratives towards 

climate solutionism through net-zero actions, CCS technologies and stress on the inclusion of natural 

materials (like timber and wood) in the built environment.  

Key conclusions that can be drawn for future-proofing the built environment and people-

centric transition perspective are that emission reduction in buildings is no longer a top-down policy 

objective but a social and environmental justice phenomenon. The evidence showed that COP-26 

hashtags associated with emission reduction in buildings had been firmly attributed to the intersection 

of public health, affordable housing, and decarbonisation of the built environment. This study also 
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concluded that for enabling people-centric transition, there is a need to understand the dynamics of 

public sentiment and attitudes following high-level policy actions. These sentiments drive the 

conversation on social media platforms like Twitter, providing the required collective intelligence for 

just and holistic climate policy design. Another important conclusion that this study provides is that 

people-centric emission reduction policies must not overlook the importance of social dimensions of 

low-carbon transitions as it determines their effectiveness over the long run.  

While this study assumes that the Twitter dataset reflects the current public discourse, it must 

be noted that the generalisability may be limited by the socio-demographics associated with Twitter 

users. Moreover, the scope for sentiment analysis was limited to the subjective judgement of the NRC 

lexicon database and did not represent the causation of policy events. Similarly, the interpretation of 

hashtag networks was limited to the authors' knowledge that could have introduced interpretivist 

biases. However, these limitations can be addressed through field-based surveys and participatory 

workshops for capturing rich narratives of just transition from the public, which remains future work. 

Nonetheless, this study paves pathways towards advanced discourses on the people-centric theory of 

change and behavioural transitions of global climate policies.   

    

References 

1.  IPCC. Global Warming of 1.5 oC: An IPCC Special Report [Internet]. Intergovernmental 
Panel on Climate Change; 2018. Available from: https://www.ipcc.ch/sr15/ 

2.  UNFCCC. Climate Action Pathway: Human Settlement [Internet]. 2020 [cited 2021 Dec 
12]. Available from: 
https://unfccc.int/sites/default/files/resource/ExecSumm_HS_0.pdf 

3.  UNEP. 2020 Global Status Report for Builsings and Construction: Towards a 
Zero-emission, Efficient and Resilient Buildings and Construction Sector [Internet]. 
United Nations Environment Programme; 2020 [cited 2021 Dec 20]. Available from: 
https://globalabc.org/sites/default/files/inline-
files/2020%20Buildings%20GSR_FULL%20REPORT.pdf 

4.  IEA. Energy Technology Perspectives 2020 [Internet]. International Energy Agency; 
2020 [cited 2021 Dec 20]. Available from: https://www.iea.org/reports/energy-
technology-perspectives-2020 



 
32 

5.  UCCRN. The Future We Don’t Want: How climate change could impact the world’s 
greatest cities [Internet]. Urban Climate Change Research Network; 2018 [cited 2021 
Dec 20]. Available from: https://c40-production-
images.s3.amazonaws.com/other_uploads/images/1789_Future_We_Don't_Want_Re
port_1.4_hi-res_120618.original.pdf 

6.  Wang X, Lo K. Just transition: A conceptual review. Energy Res Soc Sci. 2021 
Dec;82:102291.  

7.  Sarah Burch. Accelerating a Just Transition to Smart, Sustainable Cities. Cent Int Gov 
Innov [Internet]. 2021; Available from: 
https://www.jstor.org/stable/pdf/resrep30264.pdf 

8.  SAPEA. A Systemic Approach to the Energy Transition. Sci Advice Policy Eur Acad. 2021;  

9.  USGov. Executive Order on Tackling the Climate Crisis at Home and Abroad [Internet]. 
The White House; 2021 [cited 2021 Dec 20]. Available from: 
https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-
abroad/ 

10.  WEForum. The Global Risk Report 2020 [Internet]. The World Economic Forum; 2020 
[cited 2021 Dec 20]. Available from: 
https://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf 

11.  UCS. A Transformative Climate Action Framework: Putting People at the Center of Our 
Nation’s Clean Energy Transition. [Internet]. Union of Concerned Scientists; 2021 [cited 
2021 Dec 20]. Available from: https://www.ucsusa.org/resources/clean-energy-
transformation#ucs-report-downloads 

12.  Christina Demski. Net zero public engagement and participation: A research note 
[Internet]. Department for Business, Energy & Industrial Strategy; 2021 [cited 2021 Dec 
20]. Available from: 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach
ment_data/file/969428/net-zero-public-engagement-participation-research-note.pdf 

13.  Sovacool BK, Martiskainen M, Hook A, Baker L. Decarbonization and its discontents: a 
critical energy justice perspective on four low-carbon transitions. Clim Change. 2019 
Aug;155(4):581–619.  

14.  Plank C, Haas W, Schreuer A, Irshaid J, Barben D, Görg C. Climate policy integration 
viewed through the stakeholders’ eyes: A co-production of knowledge in social-
ecological transformation research. Environ Policy Gov. 2021 Jul;31(4):387–99.  

15.  Klinsky S, Mavrogianni A. Climate justice and the built environment. Build Cities. 2020 
Jul 14;1(1):412–28.  

16.  Axon S, Morrissey J. Just energy transitions? Social inequities, vulnerabilities and 
unintended consequences. Build Cities. 2020 Jul 14;1(1):393–411.  



 
33 

17.  Rizzoli V, Norton LS, Sarrica M. Mapping the meanings of decarbonisation: A systematic 
review of studies in the social sciences using lexicometric analysis. Clean Environ Syst. 
2021 Dec;3:100065.  

18.  A. Bruns, J.E. Burgess. The use of Twitter hashtags in the formation of ad hoc publics. 
In: Proceedings of 6th European Consortium for Political Research General Conference. 
Reykjavik, Iceland; 2011.  

19.  Wang R, Liu W, Gao S. Hashtags and information virality in networked social 
movement: Examining hashtag co-occurrence patterns. Online Inf Rev. 2016 Nov 
14;40(7):850–66.  

20.  BuildingtoCOP26. Accelerating deep collaboration: 26 built environment climate action 
initiatives announced at COP26 [Internet]. 2021. Available from: 
https://buildingtocop.org/2021/11/11/accelerating-deep-collaboration-26-built-
environment-climate-action-initiatives-announced-at-cop26/ 

21.  WGBC. The Net Zero Carbon Buildings Commitment [Internet]. World Green Building 
Council. 2021 [cited 2021 Dec 21]. Available from: 
https://worldgbc.org/thecommitment 

22.  C40Cities. C40 Cities launch Clean Construction Coalition to halve emissions from 
global built environment sector by 2030 [Internet]. C40 Cities; 2021 [cited 2021 Dec 
21]. Available from: https://www.c40.org/news/clean-construction-coalition-halve-
emissions-2030/ 

23.  IPCC. Buildings. In: Climate Change 2014: Mitigation of Climate Change Contribution of 
Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change [Internet]. Cambridge: Intergovernmental Panel on Climate Change 
and Cambridge University Press; 2014. Available from: 
https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter9.pdf 

24.  Fankhauser S, Smith SM, Allen M, Axelsson K, Hale T, Hepburn C, et al. The meaning of 
net zero and how to get it right. Nat Clim Change [Internet]. 2021 Dec 20 [cited 2021 
Dec 22]; Available from: https://www.nature.com/articles/s41558-021-01245-w 

25.  IEA. Empowering Cities for a Net Zero Future [Internet]. International Energy Agency; 
2021 [cited 2021 Dec 21]. Available from: https://www.iea.org/reports/empowering-
cities-for-a-net-zero-future 

26.  Turner K, Katris A, Race J. The need for a Net Zero Principles Framework to support 
public policy at local, regional and national levels. Local Econ J Local Econ Policy Unit. 
2020 Nov;35(7):627–34.  

27.  de Sherbinin A, Bukvic A, Rohat G, Gall M, McCusker B, Preston B, et al. Climate 
vulnerability mapping: A systematic review and future prospects. WIREs Clim Change 
[Internet]. 2019 Sep [cited 2021 Dec 22];10(5). Available from: 
https://onlinelibrary.wiley.com/doi/10.1002/wcc.600 



 
34 

28.  S. Nazrul Islam, John Winkel. Climate Change and Social Inequality. UN Dep Econ Soc 
Aff [Internet]. 2017; Available from: 
https://www.un.org/esa/desa/papers/2017/wp152_2017.pdf 

29.  Mataya DC, Vincent K, Dougill AJ. How can we effectively build capacity to adapt to 
climate change? Insights from Malawi. Clim Dev. 2020 Oct 20;12(9):781–90.  

30.  UNESCO. Skills development and climate change adaptation plans [Internet]. United 
Nations Educational, Scientific and Cultural Organization; 2021 [cited 2021 Dec 21]. 
Available from: 
https://unevoc.unesco.org/pub/skills_development_and_climate_change_action_plan
s.pdf 

31.  RTPI. Place-Based Approaches to Climate Change: Opportunities for collaboration in 
Local Authorities [Internet]. Royal Town Planning Institute; 2021 [cited 2021 Dec 21]. 
Available from: https://www.rtpi.org.uk/research/2021/march/place-based-
approaches-to-climate-change/ 

32.  Carter JG, Cavan G, Connelly A, Guy S, Handley J, Kazmierczak A. Climate change and 
the city: Building capacity for urban adaptation. Prog Plan. 2015 Jan;95:1–66.  

33.  Alperen Bektas, Khoa Nguyen, Valentino Piana, Rene Schumann. People-centric policies 
for decarbonization: Testing psycho-socio-economic approaches by an agent-based 
model of heterogeneous mobility demand. In: CEF 2018 24th Annual Conference on 
Computing in Economics and Finance [Internet]. Milan; 2018. Available from: 
http://publications.hevs.ch/index.php/publications/show/2641 

34.  Al-Chalabi M, Banister D, Brand C. On target? Examining the effects of information 
displays on household energy and travel behaviour in Oxford, United Kingdom. Energy 
Res Soc Sci. 2018 Oct;44:278–90.  

35.  Schwanen T, Banister D, Anable J. Rethinking habits and their role in behaviour change: 
the case of low-carbon mobility. J Transp Geogr. 2012 Sep;24:522–32.  

36.  Kern F, Rogge KS. The pace of governed energy transitions: Agency, international 
dynamics and the global Paris agreement accelerating decarbonisation processes? 
Energy Res Soc Sci. 2016 Dec;22:13–7.  

37.  Labanca N, Pereira ÂG, Watson M, Krieger K, Padovan D, Watts L, et al. Transforming 
innovation for decarbonisation? Insights from combining complex systems and social 
practice perspectives. Energy Res Soc Sci. 2020 Jul;65:101452.  

38.  Helbing D. Globally networked risks and how to respond. Nature. 2013 
May;497(7447):51–9.  

39.  Pearce W, Niederer S, Özkula SM, Sánchez Querubín N. The social media life of climate 
change: Platforms, publics, and future imaginaries. WIREs Clim Change [Internet]. 2019 
Mar [cited 2021 Nov 28];10(2). Available from: 
https://onlinelibrary.wiley.com/doi/10.1002/wcc.569 



 
35 

40.  Wei Y, Gong P, Zhang J, Wang L. Exploring public opinions on climate change policy in 
‘Big Data Era’—A case study of the European Union Emission Trading System (EU-ETS) 
based on Twitter. Energy Policy. 2021 Nov;158:112559.  

41.  Bernauer T, Gampfer R. Effects of civil society involvement on popular legitimacy of 
global environmental governance. Glob Environ Change. 2013 Apr;23(2):439–49.  

42.  Kim J, Brossard D, Scheufele DA, Xenos M. “Shared” Information in the Age of Big Data: 
Exploring Sentiment Expression Related to Nuclear Energy on Twitter. Journal Mass 
Commun Q. 2016 Jun;93(2):430–45.  

43.  Sluban B, Smailović J, Battiston S, Mozetič I. Sentiment leaning of influential 
communities in social networks. Comput Soc Netw. 2015 Dec;2(1):9.  

44.  Bain J, Chaban N. An emerging EU strategic narrative? Twitter communication during 
the EU’s sustainable energy week. Comp Eur Polit. 2017 Jan;15(1):135–55.  

45.  Veltri GA, Atanasova D. Climate change on Twitter: Content, media ecology and 
information sharing behaviour. Public Underst Sci. 2017 Aug;26(6):721–37.  

46.  Roxburgh N, Guan D, Shin KJ, Rand W, Managi S, Lovelace R, et al. Characterising 
climate change discourse on social media during extreme weather events. Glob 
Environ Change. 2019 Jan;54:50–60.  

47.  Cody EM, Reagan AJ, Mitchell L, Dodds PS, Danforth CM. Climate Change Sentiment on 
Twitter: An Unsolicited Public Opinion Poll. Lehmann S, editor. PLOS ONE. 2015 Aug 
20;10(8):e0136092.  

48.  Debnath R, Bardhan R, Reiner DM, Miller JR. Political, economic, social, technological, 
legal and environmental dimensions of electric vehicle adoption in the United States: A 
social-media interaction analysis. Renew Sustain Energy Rev. 2021 Dec;152:111707.  

49.  Klašnja M, Barberá P, Beauchamp N, Nagler J, Tucker JA. Measuring Public Opinion with 
Social Media Data [Internet]. Atkeson LR, Alvarez RM, editors. Vol. 1. Oxford University 
Press; 2017 [cited 2021 Dec 30]. Available from: 
http://oxfordhandbooks.com/view/10.1093/oxfordhb/9780190213299.001.0001/oxfo
rdhb-9780190213299-e-3 

50.  Olofinlua T. Twitter: social communication in the twitter age. Inf Commun Soc. 2019 
Nov 10;22(13):2037–8.  

51.  Jang SM, Hart PS. Polarized frames on “climate change” and “global warming” across 
countries and states: Evidence from Twitter big data. Glob Environ Change. 2015 
May;32:11–7.  

52.  Twitter. Getting started: About the Twitter API [Internet]. 2021 [cited 2021 Dec 22]. 
Available from: https://developer.twitter.com/en/docs/twitter-api/getting-
started/about-twitter-api 



 
36 

53.  Barrie C, Ho J. academictwitteR: an R package to access the Twitter Academic Research 
Product Track v2 API endpoint. J Open Source Softw. 2021 Jun 7;6(62):3272.  

54.  Morstatter F, Liu H. Discovering, assessing, and mitigating data bias in social media. 
Online Soc Netw Media. 2017 Jun;1:1–13.  

55.  Yang L, Sun T, Zhang M, Mei Q. We know what @you #tag: does the dual role affect 
hashtag adoption? In: Proceedings of the 21st international conference on World Wide 
Web  - WWW ’12 [Internet]. Lyon, France: ACM Press; 2012 [cited 2021 Dec 23]. p. 
261–70. Available from: http://dl.acm.org/citation.cfm?doid=2187836.2187872 

56.  Efron M. Hashtag retrieval in a microblogging environment. In: Proceeding of the 33rd 
international ACM SIGIR conference on Research and development in information 
retrieval - SIGIR ’10 [Internet]. Geneva, Switzerland: ACM Press; 2010 [cited 2021 Dec 
23]. p. 787. Available from: http://portal.acm.org/citation.cfm?doid=1835449.1835616 

57.  Tsur O, Rappoport A. What’s in a hashtag?: content based prediction of the spread of 
ideas in microblogging communities. In: Proceedings of the fifth ACM international 
conference on Web search and data mining - WSDM ’12 [Internet]. Seattle, 
Washington, USA: ACM Press; 2012 [cited 2021 Dec 23]. p. 643. Available from: 
http://dl.acm.org/citation.cfm?doid=2124295.2124320 

58.  Recuero R, Araujo R. On the rise of artificial trending topics in twitter. In: Proceedings 
of the 23rd ACM conference on Hypertext and social media - HT ’12 [Internet]. 
Milwaukee, Wisconsin, USA: ACM Press; 2012 [cited 2021 Dec 23]. p. 305. Available 
from: http://dl.acm.org/citation.cfm?doid=2309996.2310046 

59.  A. Mislove, S. Lehman, Y.-Y. Ahn, J.-P. Onnela, J.N. Rosenquist. Understanding the 
demographics of Twitter users. In: Proceedings of the International Conference on 
Web and Social Medi [Internet]. Barcelona, Spain: Association for the Advancement of 
Artificial Intelligence; 2011. p. 554–7. (1; vol. 5). Available from: 
https://ojs.aaai.org/index.php/ICWSM/article/view/14168 

60.  Statista.com. Distribution of Twitter users worldwide as of April 2021 [Internet]. 2021 
[cited 2021 Dec 22]. Available from: https://www.statista.com/statistics/283119/age-
distribution-of-global-twitter-users/ 

61.  Statista.com. Number of monetizable daily active Twitter users (mDAU) worldwide 
from 1st quarter 2017 to 3rd quarter 2021 [Internet]. 2021 [cited 2021 Dec 22]. 
Available from: https://www.statista.com/statistics/970920/monetizable-daily-active-
twitter-users-worldwide/ 

62.  DM Cook, B Waug, M Abdipanah, O Hashemi, SA Rahman. Twitter Deception and 
Influence: Issues of Identity, Slacktivism, and Puppetry. J Inf Warf. 2014;13(1):58–71.  

63.  Shen Y, Yu J, Dong K, Nan K. Automatic Fake Followers Detection in Chinese Micro-
blogging System. In: Tseng VS, Ho TB, Zhou Z-H, Chen ALP, Kao H-Y, editors. Advances 
in Knowledge Discovery and Data Mining [Internet]. Cham: Springer International 
Publishing; 2014 [cited 2021 Dec 24]. p. 596–607. (Hutchison D, Kanade T, Kittler J, 



 
37 

Kleinberg JM, Kobsa A, Mattern F, et al., editors. Lecture Notes in Computer Science; 
vol. 8444). Available from: http://link.springer.com/10.1007/978-3-319-06605-9_49 

64.  Al Baghal T, Wenz A, Sloan L, Jessop C. Linking Twitter and survey data: asymmetry in 
quantity and its impact. EPJ Data Sci. 2021 Dec;10(1):32.  

65.  Bazzaz Abkenar S, Haghi Kashani M, Mahdipour E, Jameii SM. Big data analytics meets 
social media: A systematic review of techniques, open issues, and future directions. 
Telemat Inform. 2021 Mar;57:101517.  

66.  Dittrich D, Kenneally E. The Menlo Report: Ethical Principles Guiding Information and 
Communication Technology Research [Internet]. U.S. Department of Homeland 
Security: Science and Technology; 2012 [cited 2021 Dec 22]. Available from: 
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-
20120803_1.pdf 

67.  Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to 
the Tidyverse. J Open Source Softw. 2019 Nov 21;4(43):1686.  

68.  Silge J, Robinson D. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. J 
Open Source Softw. 2016 Jul 11;1(3):37.  

69.  Grefenstette G. Tokenization. In: van Halteren H, editor. Syntactic Wordclass Tagging 
[Internet]. Dordrecht: Springer Netherlands; 1999 [cited 2021 Dec 24]. p. 117–33. (Ide 
N, Véronis J, editors. Text, Speech and Language Technology; vol. 9). Available from: 
http://link.springer.com/10.1007/978-94-015-9273-4_9 

70.  Manning CD, Raghavan P, Schutze H. Introduction to Information Retrieval [Internet]. 
Cambridge: Cambridge University Press; 2008 [cited 2021 Dec 24]. Available from: 
http://ebooks.cambridge.org/ref/id/CBO9780511809071 

71.  Krovetz R. Viewing morphology as an inference process. In: Proceedings of the 16th 
annual international ACM SIGIR conference on Research and development in 
information retrieval  - SIGIR ’93 [Internet]. Pittsburgh, Pennsylvania, United States: 
ACM Press; 1993 [cited 2021 Dec 24]. p. 191–202. Available from: 
http://portal.acm.org/citation.cfm?doid=160688.160718 

72.  Feinerer I, Hornik K, Meyer D. Text Mining Infrastructure in R. J Stat Softw [Internet]. 
2008 [cited 2021 Dec 24];25(5). Available from: http://www.jstatsoft.org/v25/i05/ 

73.  Mohammad SM, Turney PD. Crowdsourcing a Word-Emotion Association Lexicon. 
Comput Intell. 2013 Aug;29(3):436–65.  

74.  Jockers ML. Syuzhet: Extract Sentiment and Plot Arcs from Text. [Internet]. 2015. 
Available from: https://github.com/mjockers/syuzhet 

75.  Ramit Debnath. Github repository [Internet]. 2021 [cited 2021 Dec 29]. Available from: 
https://github.com/Ramit1201 



 
38 

76.  Fudolig MI, Alshaabi T, Arnold MV, Danforth CM, Dodds PS. Sentiment and structure in 
word co-occurrence networks on Twitter. ArXiv211000587 Phys [Internet]. 2021 Oct 1 
[cited 2021 Dec 24]; Available from: http://arxiv.org/abs/2110.00587 

77.  M. Bastian, S. Heymann, M. Jacomy. Gephi: an open source software for exploring and 
manipulating networks. In: International AAAI conference on web and social media 
[Internet]. 2009. Available from: 
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154 

78.  Hansen DL, Shneiderman B, Smith MA. Calculating and Visualizing Network Metrics. In: 
Analyzing Social Media Networks with NodeXL [Internet]. Elsevier; 2011 [cited 2021 
Dec 24]. p. 69–78. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/B9780123822291000059 

79.  Kharrazi A. Resilience. In: Encyclopedia of Ecology [Internet]. Elsevier; 2019 [cited 2021 
Dec 24]. p. 414–8. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/B9780124095489107511 

80.  Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 
2006 Jun 6;103(23):8577–82.  

81.  Albert-Laszlo Barabasi. Network Science. Cambridge, United Kingdom: Cambridge 
University Press; 2016.  

82.  Newman MEJ, Girvan M. Finding and evaluating community structure in networks. 
Phys Rev E. 2004 Feb 26;69(2):026113.  

83.  Zaki MJ, Meira W. Data mining and machine learning: fundamental concepts and 
algorithms. Cambridge, United Kingdom ; New York, NY: Cambridge University Press; 
2020.  

84.  Golbeck J. Network Structure and Measures. In: Analyzing the Social Web [Internet]. 
Elsevier; 2013 [cited 2021 Dec 24]. p. 25–44. Available from: 
https://linkinghub.elsevier.com/retrieve/pii/B9780124055315000031 

85.  Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998 
Jun;393(6684):440–2.  

86.  Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a Continuous Graph Layout 
Algorithm for Handy Network Visualization Designed for the Gephi Software. Muldoon 
MR, editor. PLoS ONE. 2014 Jun 10;9(6):e98679.  

87.  IPCC. IPCC Special Report: Global Warming 1.5C [Internet]. Intergovernmental Panel on 
Climate Change; 2019 [cited 2021 Dec 26]. Available from: https://www.ipcc.ch/sr15/ 

88.  WBGC. Delivering the Paris Agreement – The Role of the Built Environment [Internet]. 
World Green Building Council; 2015 [cited 2021 Dec 26]. Available from: 
https://www.worldgbc.org/sites/default/files/2050%20Letter%20Final_0.pdf 



 
39 

89.  IPCC. Special Report: Global Warming of 1.5 oC - Summary for policymakers [Internet]. 
Intergovernmental Panel on Climate Change; 2018 [cited 2021 Dec 26]. Available from: 
https://www.ipcc.ch/sr15/chapter/spm/ 

90.  Eugenio Quintieri. The European Green Deal: What impact on the built environment? 
[Internet]. 2020 [cited 2021 Dec 26]. Available from: 
https://www.pbctoday.co.uk/news/energy-news/european-green-deal/70844/ 

 


	JIcover2201
	RD_211230

