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ABSTRACT
In principle, the answer to the posed titular question is undoubtedly “yes.” But in practice, requisite reference data for homogeneous
systems have been obtained with a treatment of intermolecular interactions that is different from that typically employed for heterogeneous
systems. In this article, we assess the impact of the choice of truncation scheme when comparing water in homogeneous and inhomogeneous
environments. Specifically, we use explicit free energy calculations and a simple mean field analysis to demonstrate that using the “cut-and-
shift” version of the Lennard-Jones potential (common to most simple point charge models of water) results in a systematic increase in the
melting temperature of ice Ih. In addition, by drawing an analogy between a change in cutoff and a change in pressure, we use existing
literature data for homogeneous ice nucleation at negative pressures to suggest that enhancements due to heterogeneous nucleation may have
been overestimated by several orders of magnitude.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0085750

I. INTRODUCTION

The formation of ice is a process of great importance across
a broad range of fields from climate science1,2 to biology.3 Obtain-
ing a detailed molecular-level understanding of both homogeneous
nucleation (i.e., in the absence of foreign bodies such as mineral par-
ticles) and heterogeneous nucleation (i.e., in the presence of surfaces
due to foreign bodies) has attracted major research efforts from both
experimental and simulation groups.4,5 With regard to the latter,
in a bid to reduce computational cost, most molecular simulations
employ empirical potentials that approximately describe the inter-
actions between water molecules. While many types of empirical
potentials exist,6–8 simple point charge (SPC) models are one of
the most commonly used. Note that we use “SPC model” to refer to
the general class of water models detailed in Sec. I A rather than the
specific water model of Ref. 9. In addition to being relatively simple
and computationally efficient, an appealing feature of SPC models is
that they preserve the donor–acceptor nature of water’s hydrogen-
bond network, which can be especially important for heterogeneous
nucleation, e.g., in the presence of kaolinite.10,11

To ensure short-ranged repulsion between molecules, most
commonly used SPC water models, at least formally, employ the
Lennard-Jones (LJ) potential,12

u(∞)LJ (r) = 4ε[(
σ
r
)

12
− (

σ
r
)

6
], (1)

which is parameterized by an energy scale ε and length scale σ, where
r indicates the distance between two water molecules (usually the
separation between their oxygen atoms). Figure 1(a) shows u(∞)LJ .

In addition to explicit electrostatic interactions between water
molecules, the −(σ/r)6 term contributes to the cohesive energy of
the system. Despite being the basis for most SPC water models, how-
ever, u(∞)LJ is rarely sampled explicitly; due to the infinite range of the

attractive−(σ/r)6 term, it is common to truncate u(∞)LJ in some fash-
ion (see, e.g., Refs. 13 and 14). Two common procedures, which we
detail in Sec. I A, are to use “tail corrections” or to “cut-and-shift,” as
shown in Figs. 1(a) and 1(b), respectively. By comparing these plots,
it can be seen that, while similar, these two truncation procedures
result in different intermolecular potentials and will, in general,
have different properties. For example, thermodynamic properties
such as interfacial tension and the location of phase boundaries are
known to be affected.15–20

Why then would another article that investigates the effects of
truncating the LJ potential be useful? Put simply, the phase behav-
ior of SPC water models has been studied extensively using the
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FIG. 1. The two variations of the LJ potential studied in this article. (a) The solid
blue curve shows u(∞)LJ given by Eq. (1). For homogeneous systems, u(∞)LJ is
well-approximated by truncating interactions at a given cutoff (indicated by the
arrow) and applying “tail corrections” to account for neglected interactions; this
is equivalent to a mean field approximation. Inset: schematic representation of
the tail-correction procedure. The blue shaded region indicates that interactions
between the tagged particle (dark blue) and those beyond the cutoff radius are
accounted for in an average sense. (b) The “cut-and-shift” variant of the LJ poten-
tial [see Eq. (7)] has vanishing interactions beyond the cutoff. It is a different
potential with different properties compared to u(∞)LJ . In both examples, the cutoff
radius is 2σ.

tail-corrected truncation scheme.21–24 And the same can be said
for most calculations of homogeneous ice nucleation rates.25–28 Yet,
as we will discuss in more detail in the following, the use of tail
corrections makes direct comparison to inhomogeneous systems
challenging. While a simple approach to mitigate discrepancies
between homogeneous and inhomogeneous systems would be con-
sistent use of cut-and-shift potentials, it is unreasonable to expect
that each study of heterogeneous nucleation is accompanied by
(i) a full recalculation of the melting temperature or phase dia-
gram and (ii) recomputation of the homogeneous nucleation rate.
[To give a sense of perspective, in Ref. 26, over 21 × 106 central
processing unit (CPU) hours were required to compute the homo-
geneous nucleation rate with forward flux sampling (FFS).] In this
article, we address the first issue directly by outlining a proce-
dure to approximately predict the change in melting temperature
between the tail-corrected and cut-and-shift systems. We then com-
bine our results with those in Ref. 28 to estimate the impact on the
comparison of homogeneous and heterogeneous nucleation rates.

A. Formulating the problem
We now detail the tail-correction and cut-and-shift truncation

schemes as well as illustrate the inconsistencies that appear between
homogeneous and inhomogeneous systems. We are concerned with
SPC water models that formally have a potential energy function of
the kind

U(∞)(RN
) =

N

∑
i<j

u(∞)LJ (∣r
(O)
ij ∣) +

N

∑
i<j
∑
α,β

q(α)q(β)

∣r(α)j − r(β)i ∣
, (2)

where RN denotes the set of atomic positions for a configuration of
N water molecules, r(O)ij is the separation vector between the oxygen

atoms of molecules i and j, and q(α)i is the charge of site α, located at
r(α)i , of molecule i. (We adopt a unit system in which 4πϵ0 = 1, where
ϵ0 is the permittivity of free space.) The second set of sums in Eq. (2),
which we will denote Uelec hereafter, describes electrostatic inter-
actions between molecules, while the first set of sums involves the
LJ potential. For SPC models of water, the choice of u(∞)LJ is rooted
in grounds of convention and convenience, rather than having any
deep theoretical justification. Nonetheless, SPC models of the kind
formally described by Eq. (2) have been, are, and will likely continue
(at least in the near future) to be the foundation for many molecular
simulations of water’s condensed phases.

So far, we have referred to SPC models of water that are
“formally” described by the potential energy given in Eq. (2). But
as already mentioned, in practice, u(∞)LJ is usually truncated in some
fashion.13,14 For the tail-correction scheme, one employs a simple
truncation,

u(rc→∞)

LJ (r) =
⎧⎪⎪
⎨
⎪⎪⎩

u(∞)LJ (r), r ≤ rc,

0, r > rc,
(3)

and then approximately accounts for the effects of truncation by
adding a mean field (MF) correction,

ΔMFU(rc)

N
=

8πϵρ̄σ3

9
[(

σ
rc
)

9
− 3(

σ
rc
)

3
], (4)

to the total potential energy,

U(∞)(RN
) ≈ U(rc→∞)(RN

)

=
N

∑
i<j

u(rc→∞)

LJ (∣r(O)ij ∣) + ΔMFU(rc) +Uelec(R
N
), (5)

where ρ̄ is the average number density. The superscript “(rc →∞)”
indicates that when used in combination with ΔMFU(rc), a system
that employs u(rc→∞)

LJ satisfies U(rc→∞) ≈ U(∞); this is reasonable
provided that gOO(r ≥ rc) ≈ 1, where gOO is the oxygen–oxygen pair
correlation function. In a similar spirit, the pressure can also be
corrected in a MF fashion,

ΔMFp(rc) =
32πϵρ̄ 2σ3

9
[(

σ
rc
)

9
−

3
2
(

σ
rc
)

3
]. (6)

A comment is in order concerning the functional form of u(rc→∞)

LJ
[Eq. (3)]. The discontinuity at rc suggests the presence of impul-
sive forces. Impulsive forces, however, are challenging to implement
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in molecular dynamics simulations, and it is standard practice to
neglect them entirely. Moreover, as interactions beyond rc are not
neglected in U(rc→∞) but instead accounted for in a mean field fash-
ion, we argue (see the supplementary material) that this neglect of
impulsive forces is, in fact, consistent with the use of ΔMFU and ΔMFp
as it accounts for a pointwise cancellation of impulsive forces.

The alternative cut-and-shift truncation scheme is

u(rc)

LJ (r) =
⎧⎪⎪
⎨
⎪⎪⎩

u(∞)LJ (r) − u(∞)LJ (rc), r ≤ rc,

0, r > rc,
(7)

such that the total potential energy is

U(rc)(RN
) =

N

∑
i<j

u(rc)

LJ (∣r
(O)
ij ∣) +Uelec(RN

). (8)

We will use the superscript “(rc)” to indicate that u(rc)

LJ is used. (We
will, on occasion, drop the superscript notation either because it is
clear from context which truncation scheme is relevant or because it
is unimportant to differentiate between truncation schemes. When
a numerical value of rc is specified, it will be given in Ångstrom
although we will omit units from the superscript.) For simulations
of systems in the canonical (NVT) ensemble, dynamics are unaf-
fected by the choice of U(rc) vs U(rc→∞). The pressure, however, is
sensitive to the choice of truncation scheme,

p(rc→∞) ≈ p(rc) + ΔMFp(rc). (9)

The implication of Eq. (9) is that dynamics in the
isothermal–isobaric (NpT) ensemble are affected by the choice of
U(rc) vs U(rc→∞). Furthermore, systems employing U(rc→∞) and
U(rc) will have for the same rc different equations of state.15,16

Implicit in our above discussion of MF corrections is that the
system is homogeneous such that the average equilibrium density
⟨ρ(r)⟩ = ρ̄ does not depend upon the position r in the fluid, as shown
in Fig. 2(a). If the system of interest is inhomogeneous, such as liquid
water in coexistence with its vapor, a typical simulation approach is
to employ the NVT ensemble with a cuboidal cell that has an elon-
gated dimension along the average surface normal; such a scenario
is depicted in Fig. 2(b). As ΔMFU and ΔMFp do not affect dynamics
in the NVT ensemble, effects of using U(rc→∞) for inhomogeneous
systems would perhaps seem benign, resulting simply in a shift of
the energy, i.e., U(rc→∞)(RN

) −U(∞)(RN
) = const.

Potential problems arise, however, concerning thermodynamic
consistency between the homogeneous and inhomogeneous sys-
tems. This is demonstrated in Fig. 3 for TIP4P/ice24—a commonly
used SPC water model for studying ice formation—at 300 K with
rc = 8.5 Å. Figure 3(a) shows the average mass density ρ̄m(p)
obtained from simulations of the homogeneous fluid employing
either TIP4P/ice(8.5→∞) or TIP4P/ice(8.5). Figure 3(b) shows the equi-
librium mass density profile ⟨ρm(z)⟩ for a film of TIP4P/ice(8.5→∞)

water ∼40 Å thick with its liquid/vapor interface spanning the xy
plane.29 Owing to the low vapor pressure of water, p ≈ 0 in the vapor
phase. As the normal component of the pressure tensor is indepen-
dent of z for a planar interface and furthermore isotropic for z in a

FIG. 2. Typical simulation geometries for water. (a) Homogeneous bulk water sim-
ulated under 3D bulk periodic boundary conditions such that the average density
is independent of position, ⟨ρ(r)⟩ = ρ̄(p). (b) The slab geometry employed to
study interfacial systems also employs periodic boundary conditions (often in 3D)
and has a density profile that varies with position z along the surface normal such
that, in general, ⟨ρ(z)⟩ ≠ ρ̄. For thick enough slabs, regions far removed from the
interfaces (as indicated, e.g., by the orange box) have an average density equal
to ρ̄(p = 0) for the homogeneous system. Green lines indicate the boundaries of
the periodically repeated simulation cells.

bulk-like fluid region, it immediately follows that p ≈ 0 deep in the
slab’s interior.30 Thermodynamic consistency then requires that

1
ℓbulk
∫
ℓbulk

dz ⟨ρm(z)⟩ = ρ̄m(p = 0)

for TIP4P/ice(8.5→∞), where ℓbulk is a length over which ⟨ρm(z)⟩ is
bulk-like, as indicated, e.g., by the orange rectangles in Figs. 2(b) and
3(b). The result of such an averaging procedure is indicated by the
orange-filled circle in Fig. 3(a); it is clearly inconsistent with ρ̄m(p
= 0) obtained from the homogeneous TIP4P/ice(8.5→∞) simulation.
As dynamics in the NVT ensemble are unaffected by the choice of
U(rc) vs U(rc→∞), we might expect, and indeed observe, that the
result is instead consistent with ρ̄m(p = 0) for TIP4P/ice(8.5).

While schemes for effectively sampling U(∞) do exist for het-
erogeneous systems (e.g., one can treat the attractive −(σ/r)6 term
in a Ewald fashion31–34 or use mean field corrections that take the
heterogeneous nature of the system into account35–40), their use is
relatively limited compared to that of SPC water models. In addi-
tion, as discussed in Sec. I, no discrepancies would be observed with
the consistent use of U(rc) for both the homogeneous and inhomo-
geneous systems, but information concerning phase behavior and
homogeneous nucleation rates relevant to U(rc) systems is scarce.
In Sec. II, we therefore assess the effect of using U(rc) instead of
U(rc→∞) on the melting temperature Tm of ice Ih for SPC models
of water. In particular, we focus on TIP4P/ice24 and TIP4P/200523
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FIG. 3. Evaluating the impact of rc on ρ̄m for liquid TIP4P/ice at 300 K. (a) ρ̄m(p) for
a homogeneous system. White-filled circles show results from constant-p simula-
tions of TIP4P/ice(8.5→∞), and the solid blue line indicates a quadratic fit. Dashed
lines indicate MF predictions [Eq. (9), see also Sec. III] for different rc, as indi-
cated in the legend (the lines are also labeled). Orange squares show results from
constant-p simulations of TIP4P/ice(8.5). The dotted line indicates ρ̄m(p = 0) for
TIP4P/ice(8.5), which intercepts the TIP4P/ice(8.5→∞) results at p ≈ −427 bars. (b)
⟨ρm(z)⟩ for a film of TIP4P/ice(8.5→∞) in contact with its vapor (only part of the
simulation cell is shown). Spatially averaging ⟨ρm(z)⟩ in the slab’s interior, as indi-
cated by the shaded region, gives an estimate for ρ̄m(0), which is plotted with the
orange-filled circle in (a).

as these are most commonly used in simulations of ice nucleation.
We stress, however, that the findings presented in this work readily
extend to any SPC water model of the kind formally described by
Eq. (2). To illustrate our findings, we will focus exclusively on results
for TIP4P/ice in the main article with results for TIP4P/2005 instead
given in the supplementary material. In Sec. IV, we then estimate
the impact of our findings on the comparison of homogeneous and
heterogeneous ice nucleation rates.

As an aside, before proceeding to discuss our main results, we
mention that our initial motivation for this study stemmed from
recent work by Wang et al.,41 who developed a new potential that
gives broadly similar behavior to the LJ potential but does not
suffer, by construction, from ambiguities arising from the choice of
truncation scheme. While our preliminary investigations suggested
that the approach of Wang et al. could be used to develop workable
SPC models of water, we judged their performance insufficiently
strong to warrant introducing another set of SPC water models to the

community. We therefore adopt a more pragmatic approach in this
article by instead providing results and insights relevant to existing
SPC water models that are heavily used by practitioners of molecular
simulations.

II. THE MELTING POINT OF ICE Ih FROM FREE ENERGY
CALCULATIONS

The central quantity under investigation in this study is the
melting point of ice Ih under conditions of vanishing pressure, p = 0
bar. To obtain estimates of Tm for TIP4P/ice(rc) and TIP4P/2005(rc),
we need to establish the chemical potential at p = 0 bar for both the
ice [μice(T)] and liquid [μliq(T)] phases: the point of intersection
is Tm. To compute μice, we will adopt the Frenkel–Ladd approach,42

adapted by Vega and co-workers for rigid SPC water models.43–45

As this approach has been detailed elsewhere, we present a detailed
overview of our workflow in the supplementary material and dis-
cuss only the most salient aspects of the methodology in the main
article.

First, we equilibrate a crystal of ice Ih comprising 768 molecules
at a temperature Ti to obtain the average cell parameters. The cell
parameters are then fixed to their average values, and the structure
is “minimized” by a low temperature simulation at 0.1 K. [We adopt
this approach as the standard minimizers in LAMMPS46 are incom-
patible with the RATTLE algorithm47 used to impose the rigid body
constraints of the water molecules.] Our reference structure is then
this minimized crystal structure with no intermolecular interactions
and with the oxygen and hydrogen atoms of each water molecule
tethered to their positions by a harmonic potential with spring con-
stants kO and kH, respectively. The difference in Helmholtz free
energy (per molecule) Δr2ia between this reference system and the
interacting ice crystal of interest is then calculated by thermody-
namic integration48 at temperature Ti. The rigid body constraints,
however, mean that we do not know the free energy of the reference
system. We therefore define a “sub-reference” system (with free
energy asub that is calculated analytically) in which only the oxygen
atoms of the water molecules are tethered and compute the
Helmholtz free energy between the sub-reference and reference
systems Δs2ra also by thermodynamic integration. The free energy
of the ice crystal is then

aice = akin + asub + Δs2ra + Δr2ia − kBTi ln
3
2
− kBTi ln 2 (10)

with akin = 3kBTi ln(T0/Ti), where T0 is a reference temperature
(see the supplementary material). We use T0 = 272 K throughout
this article. The final two terms, respectively, account for the Paul-
ing entropy arising from proton disorder in ice Ih and the fact that
the reference system does not respect the permutational invariance
of the two protons in a water molecule.45 The chemical potential is,
in general, obtained from βμice = βaice + βp/ρ̄; as p = 0 bar, we simply
have βμice = βaice (β = 1/kBT, where kB is Boltzmann’s constant). We
note that there have been extensive studies to understand the effects
of finite system size on the calculation of free energies for solids
(see Ref. 44 for a detailed discussion). Previous simulation studies
suggest that the system size we use (768 molecules) is large enough
to obtain a reliable estimate of Tm for ice Ih.49 Moreover, it is likely
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that any finite size effects will largely cancel when comparing the two
truncation schemes considered in this study.

For the liquid, we equilibrate a system comprising 360
molecules at Ti to obtain an estimate of ρ̄. At this density, we then
calculate the change in free energy ΔLJ2wa between the LJ fluid and
the SPC water model under investigation using thermodynamic
integration. For systems that employ U(rc→∞), we determine the
excess free energy of the LJ fluid a(rc→∞)

LJ,ex ≈ a(∞)LJ,ex from the equa-
tion of state. (For consistency with previous calculations of water’s
phase diagram,44 we use the equation of state by Johnson et al.16) For
systems using U(rc), we must also compute the free energy difference
Δtc2csa between the U(rc→∞) and U(rc) systems. The free energy of
the liquid is then

a(rc)

liq = aid + a(rc→∞)

LJ,ex + Δtc2csa + ΔLJ2wa, (11)

where aid = kBTi ln(ρ̄(T0/Ti)
3
) − kBTi (see the supplementary

material). An analogous expression holds for a(rc→∞)

liq , except that
Δtc2csa is omitted. The chemical potential is simply βμliq = βaliq.

Once the chemical potential has been established at Ti,
we establish its temperature dependence by integrating the
Gibbs–Helmholtz equation,

βμice(T) = βiμice(Ti) − ∫

T

Ti

dt
hice(t)

kBt2 , (12)

where hice is the enthalpy per molecule of ice and βi = 1/kBTi. An
analogous expression holds for βμliq.

In Fig. 4(a), we present βμ(8.5→∞)
ice (T) and βμ(8.5→∞)

liq (T) from

which we determine T(8.5→∞)
m ≈ 273.0 K. This is in good agreement

with T(8.5→∞)
m = 272 ± 6 K at p = 1 bar obtained by Vega and co-

workers.22,24 The results for TIP4P/ice(8.5) are shown in Fig. 4(b).
It is clear that using U(rc) instead of U(rc→∞) results in an appar-
ent increase in the melting temperature with T(8.5)

m ≈ 276.0 K. While
an increase by ∼3 K is modest, it is nonetheless comparable to the
difference in melting temperature between D2O and H2O.49,50

We have not reported an error estimate for either T(8.5→∞)
m or

T(8.5)
m . Yet, the similarity of the slopes for βμliq and βμice seen in Fig. 4

suggests that even small statistical errors in the chemical potential
will result in relatively large changes in the estimate of the melt-
ing temperature. Instead of performing a thorough error analysis,
in Sec. III, we use a combination of a MF approach and Hamiltonian
Gibbs–Duhem integration51,52 to argue that the difference in Tm
reported above reflects a genuine effect of the choice of truncation
scheme.

III. A MEAN FIELD ESTIMATE FOR rc
DEPENDENCE OF Tm

We have already seen in Fig. 3(a) that the density of the homo-
geneous system under isothermal–isobaric conditions is sensitive to
the choice of U(rc) vs U(rc→∞). As indicated by the solid blue line,
ρ̄m(p) is well-described by a quadratic polynomial r2p2

+ r1p + r0
(see the supplementary material). Using this polynomial approxi-
mation in combination with Eqs. (6) and (9), we can predict the

FIG. 4. Locating coexistence: βμα(T) at 0 bar with α = “ice” or “liq” for (a)
TIP4P/ice(8.5→∞) and (b) TIP4P/ice(8.5). Tm is determined from the point of inter-
ception, as indicated by the black dotted lines, with T(8.5→∞)

m = 273.0 K and
T(8.5)

m = 276.0 K.

pressure difference between the U(rc) and U(rc→∞) systems, as
shown by the dashed lines in Fig. 3(a). To validate this MF estimate,
we have performed NpT simulations for TIP4P/ice(8.5) at p = p(8.5)

predicted by Eq. (9). Excellent agreement between the simulation
data and MF estimate is observed. This result is perhaps unsurpris-
ing and simply reflects that rc = 8.5 Å ≈ 2.7σ is sufficiently large to
ensure gOO(rc) ≈ 1. Nonetheless, it serves as an acute reminder of
the effects of the truncation scheme: ρ̄m(p = 0) for TIP4P/ice(8.5)

corresponds to p ≈ −427 bars for TIP4P/ice(8.5→∞); even for a rel-
atively large cutoff rc = 14 Å ≈ 4.4σ, differences of the order 100 bars
persist.

Assuming that a(rc→∞)

LJ,ex ≈ a(∞)LJ,ex , the Helmholtz free energy per
particle for a system with potential energy function U(rc) can be
estimated at a MF level,16

a(rc)

liq ≈ a(rc→∞)

liq + ΔMFa(rc) (13)

with

ΔMFa(rc) = −
32πρ̄ϵσ3

9
[(

σ
rc
)

9
−

3
2
(

σ
rc
)

3
]. (14)

While MF corrections of the kind given by Eqs. (4), (6), and (14)
are strictly appropriate for systems with uniform density, such as
homogeneous liquids, they are often employed for crystalline phases
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too with evidence to suggest that the obtained results are reason-
able.53 (Note that ΔMFa approximates the difference in free energy
between systems employing U(rc→∞) ≈ U(∞) and U(rc). In contrast,
ΔMFU approximately accounts for the energy neglected by simply
truncating the LJ potential at rc.) In Figs. 5(a) and 5(b), we show sim-
ilar analyses as Fig. 3(a) for the liquid and ice phases of TIP4P/ice,
respectively, and temperature Ti = 272 K, which allow us to predict
ρ̄m(p = 0) for both phases of TIP4P/ice(rc). Along with Eqs. (13) and
(14), this estimate of the density for a given cutoff provides a MF
estimate of the chemical potential,

βμ(MF,rc) ≈ βμ(rc→∞) + ΔMFa(rc). (15)

Note that for simplicity, we have ignored any variation of the den-
sity with temperature. Results for βμ(MF,8.5) are shown in Fig. 6
from which we deduce a MF estimate for the melting temperature
T(MF,8.5)

m = 275.7 K; this is in fair agreement with T(8.5)
m = 276.0 K

obtained from our free energy calculations.
Without performing further simulations, we can use the above

procedure to calculate T(MF,rc)
m for arbitrary rc, as shown in Fig. 6(b).

It can be clearly seen that T(MF,rc)
m approaches T(MF,rc→∞)

m mono-
tonically and slowly with differences of ∼1 K still observed for
rc = 12 Å ≈ 3.8σ. Also shown in Fig. 6(b) are estimates of T(9.25)

m

= 275.4 K and T(10.0)
m = 275.1 K obtained from Hamiltonian

FIG. 5. ρ̄m(p) at 272 K for (a) liquid water and (b) ice. White-filled circles show
results from constant-p simulations of TIP4P/ice(8.5→∞), and the solid blue line
indicates a quadratic fit. Dashed lines indicate MF predictions [Eq. (9)] for different
rc, as indicated in the legend, which are used to predict ρ̄m(p = 0) for a given rc,
i.e., where the dashed lines intersect the vertical gray dotted line.

FIG. 6. Predicting the effect of rc on the melting temperature of TIP4P/ice with MF
theory. (a) βμ(MF,8.5)

α (T) at p = 0 bar with α = “ice” or “liq,” obtained from Eq. (15).

T(MF,8.5)
m = 275.7 K is determined from the point of interception, as indicated by

the black dotted lines. (b) T(MF,rc)
m is shown by the solid blue line. The orange circle

indicates T(8.5)
m obtained from the free energy calculations described in Sec. II,

and the orange squares indicate T(9.25)
m and T(10.0)

m obtained from Hamiltonian
Gibbs–Duhem integration, starting from T(8.5)

m .

Gibbs–Duhem integration, starting from T(8.5)
m = 276.0 K. The

observed relative decrease in Tm obtained from Hamiltonian
Gibbs–Duhem integration agrees well with that predicted by our MF
procedure and provides compelling evidence that reducing rc results
in a systematic increase in the melting temperature. As already men-
tioned, the increase in Tm with decreasing rc is modest. We argue
that this is a useful observation as obtaining consistent ice nucleation
rates among different studies has proven itself to be challenging.5
Our finding suggests that changes in the degree of supercooling due
to differences in rc are an unlikely source of significant discrepancies
in nucleation rates between studies. In Sec. IV, we suggest a way in
which effects of the truncation scheme can have a material impact
on comparing nucleation rates.

IV. ESTIMATING THE IMPACT ON ICE NUCLEATION
RATES

Our results so far indicate that a finite cutoff results in an
increase, albeit small, in the melting temperature of SPC models
of water. Despite this relatively modest effect on Tm, we nonethe-
less anticipate that the resulting inconsistencies observed between

J. Chem. Phys. 156, 164501 (2022); doi: 10.1063/5.0085750 156, 164501-6

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

homogeneous and inhomogeneous systems may have a significant
impact when comparing nucleation rates. In particular, Figs. 3 and
5 suggest that a decrease in rc is analogous to an increase in pres-
sure (for fixed ρ̄). Conversely, for inhomogeneous systems such as
those shown in Fig. 2(b), where U(rc→∞) and U(rc) generate the
same dynamics, it is more appropriate to compare to homogeneous
nucleation rates computed with U(rc→∞) at p < 0 bar rather than at
p = 0 bar.54

To estimate the impact of this effective change in pressure aris-
ing from a finite cutoff, we appeal to the recent study by Bianco
et al.,28 where homogeneous nucleation across a broad range of pres-
sures and temperatures for TIP4P/ice(9.0→∞) was investigated and
data for ρ̄(p), diffusion coefficient D(p), and size of critical clus-
ter nc(p) were given. The homogeneous nucleation rate can then be
estimated by

J(p) = ρ̄ f +Z exp(−βΔGc), (16)

where Z =
√

β∣Δμ∣/(6πnc) and f + = 24Dn2/3
c /(3.8 Å)2. For sim-

plicity, we have assumed ∣Δμ∣ = 0.62 kJ/mol [see Fig. 3(a) of Ref. 28],
independent of pressure; this is justified based on previous studies
that find changes in ice/water interfacial tension dominate varia-
tions in J with p and is supported by our finding that Tm is only
weakly affected by rc.27,28 [To gauge the sensitivity of our results
to this approximation, the blue shaded region in Fig. 7(b) encom-
passes predictions obtained with 0.60 kJ/mol ≤ ∣Δμ∣ ≤ 0.64 kJ/mol.]
In Fig. 7(a), we show ρ̄(p) at T = 230 K for TIP4P/ice(rc→∞)

from Ref. 28 along with MF estimates for TIP4P/ice(8.5) and
TIP4P/ice(11.0). From Fig. 7(a), it can clearly be seen that ρ̄(p = 0) for
TIP4P/ice(8.5) and TIP4P/ice(11.0) correspond to p ≈ −400 bars and
p ≈ −200 bars, respectively. In Fig. 7(b), we plot log10[J(p)/J(0)]
according to Eq. (16) from which we estimate that homoge-
neous nucleation is faster in TIP4P/ice(8.5) and TIP4P/ice(11.0) by
approximately four and two orders of magnitude, respectively.

The implication of the preceding analysis is that enhancement
due to heterogeneous nucleation may, in fact, be lower than pre-
viously thought. For example, Sosso et al.55 used a variation of the
cut-and-shift potential56 with rc ≈ 11 Å to investigate ice nucleation
at 230 K in the presence of kaolinite using FFS and TIP4P/ice.
By comparing to the homogeneous nucleation rate obtained by
Haji-Akbari and Debenedetti for TIP4P/ice(8.5→∞) with FFS, an
enhancement of 20 orders of magnitude was reported; we estimate
this result is too high by approximately two orders of magnitude.
Similarly, Haji-Akbari and Debenedetti also investigated nucleation
in free standing thin films of TIP4P/ice(8.5) water57 and found an
increase of approximately seven orders of magnitude, despite nucle-
ation occurring in bulk-like regions; Fig. 7(b) suggests the nucleation
rate of the reference homogeneous system at p = −400 bars would
also be faster by approximately four orders of magnitude.

This discussion on the impact of the truncation scheme on the
nucleation rate is admittedly crude and relies on the analogy that a
change in rc simply amounts to a change in pressure. In practice,
it is likely that relevant quantities, e.g., ice–liquid interfacial tension,
will differ between TIP4P/ice(rc→∞) at p < 0 bar and TIP4P/ice(rc) at
p = 0 bar. While the estimates presented above may provide a useful
first-order approximation, they await full validation by explicit cal-
culation of nucleation rates using consistent truncation schemes for

FIG. 7. Estimating the impact on ice nucleation rates. (a) ρ̄(p) for homogeneous
liquid water at 230 K. The solid blue line is the result for TIP4P/ice(9.0→∞).28

Dashed lines indicate MF predictions [Eq. (9)] for TIP4P/ice(8.5) (orange) and
TIP4P/ice(11.0) (green); the dotted lines indicate ρ̄(p = 0) for these two cut-
and-shift variants. For TIP4P/ice(8.5) and TIP4P/ice(11.0), ρ̄(p = 0), respectively,
corresponds to p ≈ −400 bars and p ≈ −200 bars for TIP4P/ice(9.0→∞). (b)
log10[J(p)/J(0)] extracted from Ref. 28 with ∣Δμ∣ = 0.62 kJ/mol. At p ≈ −400
bars (orange circle) and p ≈ −200 bars (green square), homogeneous nucleation
is approximately four and two orders of magnitude faster, respectively, than at
p = 0 bar.

homogeneous and inhomogeneous systems. Such calculations are,
however, beyond the scope of the present article.

V. SUMMARY AND OUTLOOK
In this article, we have investigated the effect of truncating the

Lennard-Jones potential on the melting properties at p = 0 bar of
two common water models—TIP4P/ice and TIP4P/2005—that are
frequently used to study ice nucleation with molecular simulations.
Specifically, we have compared results from two truncation schemes:
simple truncation at rc with “tail corrections” and “cut-and-shift” at
rc. We have combined explicit free energy calculations, Hamiltonian
Gibbs–Duhem integration, and a simple mean field analysis to show
that a finite cutoff results in an increase in the melting temperature.
While we have focused on TIP4P/ice and TIP4P/2005, the effects
described in this article should be applicable to any reasonable SPC
model of water. Moreover, while not an SPC model, we note that the
coarse grained mW model6—another water model commonly used
to investigate ice nucleation—is inherently short-ranged with inter-
molecular interactions that vanish beyond 4.32 Å. As such, we can
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conclude that the mW model will not suffer from the inconsisten-
cies between homogeneous and inhomogeneous systems discussed
in this article.

Based on recent work that has investigated homogeneous ice
nucleation at negative pressures,28 we suggest that enhancements
due to heterogeneous nucleation calculated by molecular simula-
tions have likely been overestimated by several orders of magni-
tude. Going forward, those simulating heterogeneous nucleation
either need to employ a truncation scheme that effectively sam-
ples U(rc→∞),31–40 or reference data for homogeneous nucleation
rates for U(rc)-based SPC models need to be computed explicitly.
As a stop-gap solution, one can use the crude but cost-effective esti-
mate for the impact on comparing homogeneous and heterogeneous
nucleation rates outlined in this article.

Inconsistencies arising from the choice of truncation scheme
are not the only challenges faced when comparing homogeneous
and heterogeneous ice nucleation. In particular, we note that Haji-
Akbari has shown that conventional FFS approaches can underesti-
mate nucleation rates by failing to account for the “jumpiness” of the
order parameter, the severity of which is system dependent.58 While
such subtleties in rate calculations further complicate quantitative
comparison of homogeneous and heterogeneous nucleation rates,
our work, nonetheless, provides an important contribution toward
resolving inconsistencies between homogeneous and inhomoge-
neous systems. Our results will also facilitate consistent comparison
of different studies of heterogeneous ice nucleation.

VI. METHODS
Full details of the methods used are given in the supplementary

material. In brief, molecular dynamics simulations were performed
with the LAMMPS simulations package.46 The particle–particle
particle-mesh Ewald method was used to account for long-ranged
interactions59 with parameters chosen such that the root mean
square error in the forces was a factor 105 smaller than the force
between two unit charges separated by a distance of 0.1 nm.60 For
simulations of a liquid water slab in contact with its vapor, the elec-
tric displacement field along z was set to zero using the implementa-
tion given in Refs. 61 and 62; this is formally equivalent to the com-
monly used slab correction by Yeh and Berkowitz.63 The geometry of
the water molecules was constrained using the RATTLE algorithm.47

Where appropriate, temperature was maintained with either a
Nosé–Hoover chain thermostat64,65 or Langevin dynamics,66,67 and
pressure was maintained with a Parrinello–Rahman barostat68 with
a damping constant 2 ps. A time step of 2 fs was used throughout.
Ice structures were generated using the GenIce software package.69

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed overview of the
simulation methods used. The results for the TIP4P/2005 water
model are also given.
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