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Summary

Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the 
insulin-producing β cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is 
increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people 
with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, 
therapeutic options for T1D are once more at a turning point. Years of effort directed at developing im-
munotherapies are finally starting to pay off, with signs of progress in new onset and even preventative 
settings. Here, we review a selection of immunotherapies that have shown promise in preserving β cell 
function and highlight future considerations for immunotherapy in the T1D setting.
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Introduction

T1D is a complex T  cell-mediated autoimmune dis-
ease, resulting in destruction of the insulin-producing 
β cells and a deficiency in insulin secretion. Prior to the 

discovery of insulin in 1921, individuals with T1D would 
have died within a year or two of diagnosis [1]; how-
ever, since the discovery and mass production of insulin, 
T1D is no longer a death sentence and the condition can 
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be managed by exogenous insulin, either delivered by 
multiple daily injections or a pump. Nevertheless, over 
time many patients develop complications including 
cardiovascular disease, retinopathy, neuropathy, and 
nephropathy.

Clinical diagnosis of T1D occurs relatively late in the 
disease process when a large number of β cells have been 
destroyed by islet autoantigen-specific T cells; however, 
there are several preclinical stages in which the immune 
response has already been triggered and is actively re-
sponding to pancreatic islet antigens (Fig. 1; [2]). This 
presents a window of opportunity to potentially inter-
vene and reset the immune system prior to extensive 
tissue damage. Autoantibodies, secreted by B cells, can be 
detected against a number of islet antigens, with multiple 
autoantibody specificities associated with an increased 
risk of progression to T1D diagnosis [3–7]. These auto-
antibodies, alongside genetic susceptibility, provide a 
crucial biomarker pre-diagnosis to identify those at most 
risk and who may be the best candidates for future im-
munotherapy aimed at delaying or preventing T1D de-
velopment [8].

Based on successful experiments in the Bio-breeding 
rat model of type 1 diabetes [9], early attempts at 
immunomodulation included the use of the calcineurin 
inhibitor cyclosporin [10]. Of 30 patients treated within 

6 weeks of diagnosis, 16 reverted to having normal 
C-peptide levels and became insulin-independent, an un-
precedented result. The use of corticosteroids plus daily 
azathioprine also showed beneficial outcomes in new onset 
T1D, with 50% of the treatment group showing C-peptide 
levels >0.5 nmol/l (three being insulin-independent) com-
pared to 15% of the control group (none being insulin-
independent) [11]. Although these approaches were not 
pursued due to problematic side effects, the trials were 
nevertheless important in demonstrating the potential of 
immunomodulation in T1D. There have since been mul-
tiple immunotherapy studies aimed at curtailing the loss 
of β cells by targeting the key immune cells involved in 
the disease process, as well as cytokines that they pro-
duce (Fig. 2). In addition, therapies which may boost im-
mune regulation have also been studied. Here, we review 
the key successful non-antigen-specific immunotherapies 
that show most promise in preserving β cell function or 
even delaying T1D development. Antigen-specific ap-
proaches are not covered in this article and have been 
recently reviewed elsewhere [12].

T cells in T1D

CD4+ and CD8+ T cells orchestrate the inflammatory 
process that culminates in the destruction of the islet β 

Figure 1  Stages of T1D development and immune interventions. From birth individuals inherit a genetic predisposition to 
developing T1D, as well as a collection of colonising bacteria. In those individuals with a risk of developing T1D, the immune 
interactions with environmental modifiers can lead to inappropriate activation of the immune system driving autoreactive T and 
B cells and the secretion of detectable autoantibodies (stage 1). The immune response impairs the function and survival of the 
insulin-producing islet β cells, resulting in a dysglycemic state (stage 2) and finally the clinical diagnosis of T1D when a sufficient 
number of beta cells have been destroyed (stage 3). Immunotherapy studies have largely been conducted in those with recent-
onset T1D, with the exception of Teplizumab, which has also been conducted in ‘at risk’ individuals. Key trials discussed in this 
article are highlighted in the figure.
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cells, leading to the development of T1D. Many of the 
genes associated with susceptibility to type 1 diabetes are 
active in T cells and the strongest genetic contribution 
to disease maps to the human leukocyte antigen genes, 
which function to present antigens to T cells. T cells infil-
trate the pancreatic islets in people with diabetes [13, 14] 
and in mouse models, diabetes can be transferred from 
one animal to another by the adoptive transfer of T cells 
[15]. Thus, extensive effort has been directed at the devel-
opment of immunotherapies to target T cells.

Anti-CD3 immunotherapy

In 1979, a mouse hybridoma cell line was developed 
that produced an IgG2a monoclonal antibody, named 
Orthoclone (OKT3), against a T cell surface antigen [16], 
later identified as the ε chain of the CD3 receptor [17]. In 
1981, the first patients were administered OKT3, which 
was shown to successfully reverse allograft rejection [18, 
19]. In 1985, OKT3 became commercially available for 
use in transplantation, making it the first-in-human ap-
proved monoclonal antibody; however, by the late 1980s, 
OKT3 use in the clinic became limited following the se-
vere cytokine release from activated T cells [20–22]. This 
cytokine release was induced by OKT3 crosslinking with 
the T-cell receptor/CD3 complex; however, binding of the 
Fc portion of OKT3 by Fc-receptor-expressing cells fur-
ther enhanced the crosslinking and thus the severity of 

the cytokine release. Activation of the T cell also varied 
with the antibody isotype of the OKT3 antibody, with 
IgG2a having the strongest immunostimulatory effect 
[23, 24]. As OKT3 was a mouse anti-human antibody, 
human anti-mouse antibodies were also raised against 
OKT3, which resulted in clearance of OKT3 and a re-
duction in efficacy [20]. Thus, to improve clinical effi-
cacy and tolerance, OKT3 antibodies were humanised 
and developed with modified Fc portions to prevent Fc 
binding by Fc receptors and thus severe cytokine release, 
while preserving their suppressive effects. Teplizumab is 
a modified OKT3 antibody, with the same binding re-
gion as OKT3 but the amino acids at positions 234 and 
235 of the human IgG1 were substituted with alanine 
(hOKT3 γ1(Ala-Ala)) [25].

Pivotal pre-clinical studies by Lucienne Chatenoud 
and colleagues showed short-term anti-CD3 treatment 
(5-day course) was able to induce disease remission in up 
to 80% of recently diagnosed diabetic non-obese diabetic 
(NOD) mice, and this was associated with a transient 
and partial T cell depletion, with numbers returning to 
normal within 15–20 days [26, 27]. This protection was 
not due to deletion of autoreactive T cells, as insulitis was 
only transiently reduced, and spleen cells from these mice 
could transfer diabetes to irradiated mice [27]. The pro-
tective effect of anti-CD3 treatment in mice may relate to 
the induction of regulatory T cells (Treg) and immuno-
suppressive cytokines (TGFβ) [28–30] and, partial TCR 

Figure 2  Immune intervention targets. Schematic illustrating key immunotherapies that have been tested in the T1D setting 
and their immune cell targets. Many immunotherapies target markers expressed by T cells, others target B cells or cytokines. 
Immunotherapies can also target regulatory T cells (Tregs) e.g. IL-2, which helps to expand and boost Treg suppression, preventing 
the destruction of the islet β cells. Immunotherapies are in red with arrows indicating their targets. While a B cell is shown interacting 
with T cell CD28, this costimulation signal can come from CD80/86 on other immune cells such as macrophages and dendritic cells.
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signalling leading to the clonal anergy or age-dependent 
deletion of specific T cells [31, 32]. Transgenic NOD mice 
were also developed to express human CD3 [33], pro-
viding a useful preclinical model for testing humanised 
anti-CD3 antibodies. Following anti-CD3 treatment, dia-
betes in these mice was reversed and again, in line with 
previous data [29], protection was TGFβ-dependent and 
associated with enhanced Treg function [33].

Given the success of the pre-clinical studies of 
anti-CD3 treatment in NOD mice, Herold and colleagues 
recruited 24 newly diagnosed individuals with T1D 
(within 6 weeks of diagnosis), half of whom received 
an escalating dose of Teplizumab each day for 2 weeks, 
while the placebo group received no antibody [34]. 
Importantly, 12 months after treatment, two thirds of the 
Teplizumab-treated group had C-peptide responses that 
were equivalent or higher than their response at study 
entry, whereas 10 out of the 12 control participants 
exhibited a decline in C-peptide response. Similarly, a 
phase II study of another humanised anti-CD3 antibody 
(Otelixizumab) in 80 individuals with new onset T1D 
also showed a slower deterioration of β cell function in 
those receiving anti-CD3 treatment [35]. Preservation of 
even a small amount of residual insulin secretion, meas-
ured by C-peptide, can provide long-standing health 
benefits [36]. Later anti-CD3 studies confirmed this 
preservation of insulin secretion by the β cells could be 
maintained for many years [37, 38], with the latest data 
indicating up to 7 years post-diagnosis [39]. A phase III 
trial of Teplizumab in 516 individuals however failed to 
meet its primary endpoint, a composite outcome com-
prising insulin dose and haemoglobin A1c (HbA1c) 
which had not been previously validated [40]. However, 
exploratory analyses showed that C-peptide declined less 
in the treated group than in the placebo group and that 
5% of patients were not taking insulin at 1 year com-
pared with no patients in the placebo group.

As mentioned above, the fact that islet autoantibodies 
are produced many years prior to diabetes development 
provides a window of opportunity for therapeutic inter-
vention. Herold and colleagues set out to exploit this 
window by administering Teplizumab to high-risk rela-
tives of patients with T1D who had dysglycemia and the 
presence of 2 or more islet autoantibodies but had not 
yet been diagnosed with T1D [41]. This study success-
fully delayed the development of T1D in these individ-
uals, with 57% of the teplizumab group being diabetes 
free compared to 28% of the placebo group. An extended 
follow-up study (median of 923 days) found that 50% 
of the Teplizumab-treated group were still diabetes free 
compared to 22% of the placebo group [42]. These data 
have changed the landscape for immunotherapy in T1D, 

providing the first evidence that T cell-directed therapies 
administered in at risk individuals can alter the future 
disease course.

This prevention of β cell destruction has been associated 
with a combination of induced regulatory T cell responses 
[43], partially exhausted CD8+ T cells, characterised by 
TIGIT and killer cell lectin-like receptor G1 expression, 
which were associated with improved clinical efficacy 
[42, 44], and reduced proinflammatory cytokines [42]. 
The success of this intervention in delaying T1D develop-
ment is groundbreaking and Teplizumab is likely to be the 
first immunotherapy licensed for delaying, and possibly 
preventing, the development of T1D. There is still work 
to be done: trials in T1D present significant challenges in 
the areas of recruitment and endpoints so accumulating 
sufficient data is problematic and the US Food and Drug 
Administration rejected a request for Teplizumab approval 
in July 2021; however, momentum is clearly building for 
immunotherapies to be approved in the T1D setting and 
Teplizumab looks to be at the forefront. Further longitu-
dinal studies are needed to identify the duration for which 
T1D can be delayed following a single course of additional 
anti-CD3 treatment and whether additional doses, or 
other combination treatments, could be administered later 
to maximise clinical efficacy.

Anti-thymocyte globulin (ATG)

ATG is a polyclonal IgG targeting multiple T cell antigens 
and mediating cellular depletion: in NOD mice, similar 
to anti-CD3 administration, ATG treatment was able to 
reverse diabetes in mice with recent-onset disease [45]. 
Initial small studies in humans with recent-onset T1D 
suggested ATG administration may help preserve β cell 
function [46, 47]; however, in a phase II randomised 
multi-center, placebo-controlled trial involving 58 indi-
viduals within 100 days of T1D diagnosis, ATG (6.5 mg/
kg administered over a 4-day course) did not preserve β 
cell function [48, 49]. This failure was linked to a decrease 
in the Treg to T-effector memory ratio in ATG treated in-
dividuals between baseline and 6 months, since effector 
memory CD4+ T cells were poorly depleted relative to 
the other T  cell subsets examined [48]. A  subsequent 
trial in 25 individuals with established T1D (between 
4 months and 2 years post-diagnosis) used a lower dose 
of ATG (2.5 mg/kg administered as 0.5 mg/kg on day 1 
and 2 mg/kg on day 2) and combined the treatment with 
Granulocyte colony-stimulating factor (GCSF) in line 
with previous preclinical data [45]. This approach ap-
peared to result in protection of the β cells; on average, 
subjects who received placebo experienced a 39% reduc-
tion in C-peptide over 1 year, while those who received 
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ATG/GCSF experienced a 4.3% increase over the same 
time period [50]. The relative resistance of CD4+ effector 
memory T cells to depletion was also evident in this trial, 
but Tregs appeared to be preserved [51, 52]. A further trial 
in 89 individuals within 100 days of T1D diagnosis con-
firmed that low-dose ATG (2.5 mg/kg) resulted in clinical 
benefit, with C-peptide levels 57% higher in recipients of 
low-dose ATG, compared with recipients of placebo, at 
the 1-year timepoint [53]. Side-by-side comparison with 
the ATG/GCSF combination revealed that the low-dose 
ATG monotherapy was favourable [53], and a separate 
study confirmed that GCSF alone did not preserve β cell 
function [54]. Thus, low-dose ATG remains an interesting 
candidate for further development. Notably, attempts to 
compare β cell preserving interventions across multiple 
clinical trials identified low-dose ATG and anti-CD3 im-
munotherapy as the treatments showing the greatest im-
pact on C-peptide preservation [55].

Abatacept

A further example of a T cell-directed immunotherapy is 
the cytotoxic T lymphocyte-associated antigen 4 (CTLA-
4)-Ig fusion protein, Abatacept. CTLA-4 is naturally 
expressed at high levels in regulatory T cells; it inter-
acts with the same ligands as the T  cell costimulatory 
receptor CD28 but binds to them with higher affinity. 
CTLA-4-Ig fusion proteins such as Abatacept therefore 
bind to the costimulatory ligands CD80 and CD86 on 
antigen-presenting cells and inhibit their interaction with 
T cell CD28 ([56]; Fig. 2). Since CD28 costimulation 
provides an important ‘second signal’ to promote full 
T  cell activation, inhibiting this with CTLA4-Ig would 
be expected to be immunosuppressive. When CTLA-4-Ig 
was administered to NOD mice early, around the time 
insulitis first develops, only 11% of the mice went on 
to become diabetic compared with 87% in the control-
treated group, while later administration had little effect 
[57]. Surprisingly, however, mice expressing CTLA-4-Ig 
transgenically from birth showed exacerbated diabetes 
development, with 100% of mice diabetic by 24 weeks 
compared with only 8.3% of the non-transgenic NOD 
mice [58]. This is now thought to reflect the role of CD28 
in the development of Tregs which have immunosup-
pressive function [59]. In the context of Treg deficiency, 
and an absence of CD28 signalling since birth, it was 
proposed that alternative costimulatory pathways had 
compensated for the lack of CD28 in these mice [58]. 
Therapeutic targeting of the CD28 pathway therefore 
requires careful consideration regarding impacts on the 
Treg population, and timing of administration is likely 
to be important.

The CTLA-4-Ig molecule Abatacept was trialled in 
112 patients (6–45  years of age) diagnosed with T1D 
within the last 100 days. Infusions were given intraven-
ously on days 1, 14, and 28 and then monthly for 2 years. 
Abatacept was able to slow the decline in β cell destruc-
tion and function for an estimated 9.6  months [60], 
with higher C-peptide levels still observed in the treated 
group, compared to placebo, 1 year after therapy cessa-
tion [61]. This protective effect was associated with a re-
duced CD4+ central memory T cell population and B cell 
population, as well as increased Tregs and naive CD4+ T 
cells [62]. Recent data suggest that analysis of circulating 
follicular helper T cells (Tfh) prior to Abatacept treat-
ment may prove useful in predicting the subsequent clin-
ical response [63]. Following on from the study in new 
onset T1D, Abatacept is currently being trialled in people 
at risk of T1D development (NCT01773707).

Alefacept

Alefacept is another Ig fusion protein comprising two 
LFA-3 molecules bound to the Fc portion of human 
IgG1. It binds to CD2 and mediates depletion of antigen 
experienced effector/memory T cells. Memory T cells 
are an attractive target in autoimmune disease and are 
believed to be less sensitive to costimulation blockade 
drugs such as Abatacept. Alefacept inhibits the prolif-
eration of T cells in mixed lymphocyte reactions in a 
manner that depends on Fc-receptor binding [64]. In the 
T1DAL study, Alefacept was delivered by intramuscular 
injection in two 12-week courses to 33 individuals within 
100 days of T1D diagnosis, while 16 individuals received 
placebo treatment [65]. The primary endpoint was not 
met, since the difference between C-peptide measure-
ments in a 2h mixed-meal tolerance test (MMTT) at 
12 months was not significant (P = 0.065); however, the 
secondary endpoint, involving C-peptide measurement in 
a 4-h MMTT at the same timepoint was met (P = 0.019). 
It was suggested that the curtailed recruitment following 
voluntary withdrawal of Alefacept by the manufacturer 
may have reduced the power to detect the impact of 
treatment. Follow-up analysis suggested beneficial effects 
were maintained 15 months after therapy cessation, with 
Alefacept-treated individuals exhibiting higher C-peptide 
levels than placebo-treated individuals, a significantly 
lower insulin requirement, and substantially lower rates 
of hypoglycaemia [66].

IL-2 therapy

An additional immunotherapeutic approach directed at T 
cells centres on the selective expansion of Tregs using the 
cytokine IL-2. Although IL-2 was originally described as 
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a growth factor for conventional T cells, it subsequently 
became clear that a major biological function for IL-2 is 
to regulate immune responses by supporting the homeo-
stasis of Tregs. A role for IL-2 in immune regulation indi-
cated why defects in IL-2, or in genes that contribute to 
IL-2 signalling, are associated with autoimmune diseases, 
including T1D [67, 68]. Since Tregs express high levels 
of CD25, a component of the high-affinity IL-2 receptor, 
this sparked the idea that they might be selectively tar-
geted by low doses of IL-2. The use of IL-2 to suppress 
immune responses is an extraordinary example of the 
same agent being used at different doses for opposing 
purposes, since high-dose IL-2 is used to promote anti-
tumour responses in cancer patients.

In preclinical models, low-dose IL-2 was able to ex-
pand Tregs and reverse established type 1 diabetes [69]. 
However, a human phase I study in which IL-2 was com-
bined with rapamycin gave disappointing results: nine in-
dividuals within 4 years of T1D diagnosis were included 
and although Treg frequencies increased, C-peptide tran-
siently decreased and this coincided with an increase in 
NK cells and eosinophils [70]. In the light of this, the 
field has moved in two directions: one involving careful 
dosing to identify regimens that activate Tregs without 
activating effector cells [71], and the other involving the 
generation of mutant IL-2 therapeutics aimed at avoiding 
the detrimental activation of NK cells, eosinophils, and 
effector T cells. Encouragingly, doses of IL-2 that can 
be safely administered have now been identified and 
can be further explored in larger patient groups [72]. 
At the same time, numerous IL-2 mutant approaches 
are in development [73–75]. Boosting Treg numbers by 
cell therapy in combination with IL-2 administration is 
also being explored, however, the data again reinforce 
the need for IL-2 mutant approaches since NK cells, 
mucosal-associated invariant T cells and CD8+ T cells 
were also affected by IL-2 administration [76]. While we 
do not cover cell therapy in this review, it should be noted 
that Treg cell therapy is an area of emerging interest as 
has been discussed elsewhere [77, 78].

B cells in T1D

B cells are also implicated in the development of T1D. 
In animal models, B  cell deficiency [79] or B  cell de-
pletion [80] inhibits the onset of diabetes and to our 
knowledge, only one individual lacking B cells, caused 
by X-linked agammaglobulinemia, has developed T1D 
[81]. Autoantibodies, secreted by B cells, can be detected 
against a number of islet antigens including insulin, glu-
tamic acid decarboxylase, tyrosine phosphatase-related 
islet antigen 2 (IA-2) and zinc transporter 8 (ZnT8) [3–
6]; however, autoantibodies themselves are not believed 

to be pathogenic. Importantly, there is a substantially 
increased risk in those individuals who have 2 or more 
islet antigen-specific autoantibodies, with an 84% risk of 
developing T1D by 18 years of age [7]. Thus, the pres-
ence of autoantibodies provides an important biomarker 
pre-diagnosis, when individuals are still normoglycemic, 
that correlates with disease progression risk. B cells are 
also potent antigen-presenting cells, capable of activating 
autoantigen-specific T cells to cause diabetes [79]. B cells 
have been shown to infiltrate the islets, with increased 
islet CD20+ B cell presence associated with enhanced β 
cell destruction, and diagnosis of T1D at an earlier age, 
compared to those with fewer CD20+ islet B cells [13, 
50, 82]. Thus, B cells have also been targeted in immuno-
therapy trials in T1D.

Anti-CD20 immunotherapy

Rituximab binds to CD20 expressed on the surface of B 
cells, leading to their destruction mediated via antibody-
dependent cell-mediated cytotoxicity, apoptosis, and 
complement-dependent cytotoxicity [83, 84]. It is im-
portant to note that Rituximab does not deplete all B 
cells, as plasma cells, which secrete antibodies, do not ex-
press CD20 and other B cell subsets such as B1 cells, ger-
minal centre B cells and tissue-resident B cells may be less 
sensitive to depletion. Rituximab has shown efficacy in a 
number of different autoimmune diseases including sys-
temic lupus erythematosus and rheumatoid arthritis. To 
explore the benefit of B cell depletion in T1D, pre-clinical 
studies were conducted by studying transgenic hCD20 
NOD mice, expressing human CD20 on B cells [80]. In 
these hCD20 NOD mice, a single cycle of anti-CD20 
antibody administration (9-day treatment cycle: 0.5 mg/
ml at day 0, followed by three injections of 0.25 mg/ml 
at 3-day intervals), was able to both delay and reduce the 
development of T1D. Importantly, similar to anti-CD3 
immunotherapy [26], anti-CD20 administration was 
able to reverse diabetes, with over one third of mice in 
remission. Studies evaluating the repopulation of cells in 
NOD mice found that the protection of anti-CD20 mice 
was associated with increased regulatory immune cells 
[80, 85–87] and reduced proinflammatory cytokines se-
cretion by, and activation of, islet T cells [88].

Following the positive outcomes in pre-clinical 
models, Rituximab was trialled in individuals with 
recent-onset T1D. The therapy was administered by 
intravenous infusion in 4 doses over a period of 22 days, 
with 49 individuals receiving Rituximab and 29 receiving 
placebo [89]. The primary outcome measure was stimu-
lated C-peptide levels in a MMTT 1 year after the ini-
tial infusion. Results from this clinical trial suggested 
clear benefit of B  cell depletion: mean C-peptide levels 
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were 20% higher in the Rituximab-treated group (0.56 
pmol/ml in the Rituximab group vs. 0.47 pmol/ml in 
the placebo group) and treatment also significantly re-
duced glycated haemoglobin levels (6.76% vs. 7.00%) 
and decreased the required insulin dose (0.39U ± 0.22/kg 
of body weight vs. 0.48 U ± 0.23/kg). In common with 
other clinical trials, the initial improvements were short-
lived and C-peptide continued to decline thereafter. Of 
note, CD19+ B cell counts had substantially recovered by 
6  months post-treatment initiation suggesting the pos-
sibility that benefits might be increased if the depletion 
could be sustained. In addition, the participants recruited 
to this study were aged 8–40 years of age [89]; however, 
given the prevalence of B cells in the pancreas of individ-
uals diagnosed with T1D before 7 years of age [50], it is 
possible that Rituximab may show enhanced clinical ef-
ficacy in younger individuals and possibly in the ‘at risk’ 
population.

Targeting inflammatory cytokines in T1D

IL-1β secretion increases with progression to diabetes 
and islet β cell destruction [90, 91]; however, two ran-
domised, double-blind, placebo-controlled trials ad-
ministering either Canakinumab (a human anti-IL-1 
monoclonal antibody) or Anakinra (a human IL-1 re-
ceptor antagonist) were conducted, which failed to show 
any protective effects. This is in line with data from NOD 
mouse studies of IL-1 receptor- or IL-1β-deficient NOD 
mice, where no protection from diabetes development 
was observed [92, 93]. Likewise, blocking IL-6Ra in a re-
cent trial in individuals with newly diagnosed T1D does 
not appear to provide benefit [94].

TNFα has been a target of interest in T1D for some 
time. Studies in NOD mice have yielded complex results, 
suggesting that TNFα plays site-specific, cell type-specific 
and age-dependent roles [95]. Administering anti-TNFα 
antibody to neonatal mice robustly inhibited the devel-
opment of diabetes and this was associated with de-
creased T cell responses to islet antigens [96]; however, 
protection was weaker if treatment was initiated in adult 
mice, and administering TNFα itself exacerbated dis-
ease in neonates but paradoxically delayed it in adults. 
TNFR1-deficient NOD mice are however protected from 
the development of T1D [97].

Serum TNF is increased in individuals with recent-
onset T1D [98] and TNFα is known to be toxic to the 
islet β cells [99]. Thus, TNFα-targeting therapies were 
administered to newly diagnosed T1D patients to test 
whether they could preserve β cell function. Etanercept, 
a recombinant soluble TNF-receptor fusion protein that 
binds to TNFα was trialled in 18 subjects with newly 

diagnosed T1D. In this randomised, double-blind, 
placebo-controlled feasibility study over 24 weeks, 
Etanercept was shown to increase mean C-peptide levels 
by 39% from baseline whereas a mean decrease of 20% 
was observed in the placebo group [100]. More recently, 
Golimumab, an anti-TNFα monoclonal antibody previ-
ously approved for the treatment of rheumatoid arthritis 
and ulcerative colitis, has also been tested in newly diag-
nosed individuals with T1D [101]. This phase II random-
ised, double-blind, placebo-controlled study involved 56 
participants receiving Golimumab and 28 participants 
receiving placebo, and resulted in significantly higher 
C-peptide and lower insulin use in the treatment group 
after 52 weeks. Since reagents that block the TNFα 
pathway are widely used in rheumatology settings and 
approved for use in patients as young as 2 years of age, 
this requires further investigation in T1D.

Interleukin 21 (IL-21) has also gained some trac-
tion as a target for T1D immunotherapy. IL-21 is the 
characteristic cytokine made by follicular helper T cells 
(Tfh cells), that provide help for B cell antibody produc-
tion, and therefore plays an important role in humoral 
immunity [102]. NOD mice lacking IL-21 or IL-21 re-
ceptor were protected from diabetes development, while 
transgenic expression of IL-21 in pancreatic islets was 
sufficient to induce diabetes in non-autoimmune prone 
(C57BL/6) mice [103, 104]. In a TCR transgenic mouse 
model of diabetes, T cells responding to islet antigen 
showed a Tfh phenotype with high IL-21 expression, and 
the pancreas-infiltrating T cells were shown to express 
IL-21, IFNγ, and TNFα [105]. In humans, a genetic re-
gion encompassing the IL-2 and IL-21 genes is associated 
with T1D [106] and an increased proportion of effector 
memory CD4+ T cells secreting IL-21 and elevated Tfh 
cells have been reported in people with T1D compared 
to healthy controls [105, 107]. Interestingly, the gene 
expression of cells responding to pro-insulin in genetic-
ally at risk children showed elements of a Tfh signature 
(including IL-21), with a transition to a Th1-like signa-
ture (with decreased IL-21 and increased IFNG and TNF) 
after the appearance of autoantibodies [108]. A  phase 
II randomised double-blind, double-dummy, placebo-
controlled study was conducted in recent-onset indi-
viduals with T1D, where they received either anti-IL21, 
anti-IL-21 with liraglutide, liraglutide alone or placebo 
(77 individuals per treatment arm) [109]. Liraglutide is 
a glucagon-like peptide 1 receptor agonist, which works 
by increasing insulin secretion from the pancreas and 
decreasing glucagon release. Thus, liraglutide improves 
β cell function. Von Herrath and colleagues found that 
in all treated groups, HbA1C was lowered compared to 
placebos; however, in the combination of anti-IL-21 with 
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liraglutide, a smaller reduction in C-peptide following a 
MMTT was observed, suggesting enhanced β cell func-
tion in the combination group, compared to single treat-
ment groups. It will be important to enlarge the study 
and determine how long the effects may last following 
cessation of treatment.

Microbial-derived therapeutics

Environmental factors such as the intestinal bacterial 
composition are important for shaping the immune re-
sponse and modulating susceptibility to T1D. Altered 
bacterial composition has been reported in both individ-
uals with T1D, and those ‘at risk’ of T1D development 
[110–118]. These changes in bacterial composition have 
also been linked to the development of early β cell auto-
antibody responses [114]. Studies in NOD mice have 
also suggested that antibiotic administration, through 
depleting components of the bacterial composition, can 
alter immune responses and susceptibility to T1D devel-
opment [119–126]. In humans, while antibiotic use al-
ters the gut bacterial composition, particularly in the first 
few months of life [118], it does not seem to strongly 
associate with the development of islet autoimmunity 
or T1D [117, 127], although it can reduce beneficial 
Bifidobacteria (a probiotic) members [118]. Probiotics, 
bacteria with potential health benefits, have also been 
studied for their role in modulating susceptibility to T1D. 
L.  casei, VSL#3 (a mixture of B.  longum, B.  infantis, 
B.  breve, L.  acidophilus, L.casei, L.  delbrueckii subsp. 
L. bulgaricus, L. plantarum, and Streptococcus salivarius 
subsp. Thermophilus) and IRT5 (a mixture of L.  acid-
ophilus, L.  casei, L.  reuteri, Bifidobacterium bifidum, 
and Streptococcus thermophiles) have all been shown 
to protect NOD mice from developing T1D by pro-
moting tolerogenic immune responses and reducing in-
flammatory Th1 cells [128–131]. Lactobacillus johnsonii 
N6.2, another probiotic, has also been shown to protect 
bio-breeding diabetes-prone rats from developing T1D 
[132, 133]. This probiotic has also been used in human 
studies whereby in a double-blind randomised trial in 
healthy adults, L. johnsonii N6.2 was safe and induced 
tolerogenic immune responses [134]. Studies are currently 
ongoing in children, adolescents and adults with T1D to 
identify safety and tolerance to L. johnsonii N6.2, as well 
as the immunological responses (NCT03961854 and 
NCT03961347). Bifidobacterium longum subsp. infantis 
is also being evaluated as a probiotic (NCT04769037), 
due to its ability to metabolise human milk oligosac-
charides, which have significant impacts on inducing 
tolerogenic immune properties [135]. To date, only one 
human study has shown success in limiting β cell de-
struction. A  faecal microbiota transplant (FMT) study 

conducted in individuals with recent-onset (<6 weeks) 
T1D, showed participants receiving autologous FMTs, 
compared to allogenic (healthy control) FMTs, had im-
proved preservation of β cell function for the 12 months 
individuals were followed post-FMT [136]. Thus, the 
area of microbial-derived therapeutics for T1D is still in 
an early stage of development and more work is required 
to determine whether it can be harnessed to modulate the 
immune response and deliver long-term clinical benefits.

Future directions

In the 100 years since the discovery of insulin, there 
is still no cure for T1D; however, the promise of im-
munotherapy is gradually starting to be realised, with 
early signs of progress in both prevention and new 
onset settings. Key challenges moving forward lie 
in discerning which interventions are best suited to 
which disease stage; intervening after the emergence 
of symptomatic disease (stage 3; Fig. 1) will likely 
require memory cell targeting, while preventative 
interventions (stage 1/2) in children will need to have 
excellent safety profiles. A better appreciation of dis-
ease endotypes, for example, related to age of diag-
nosis [137], will ultimately inform the stratification of 
individuals to different treatment options. Using bio-
markers, such as Tfh [63], or Treg and soluble IL-2R 
[72] to unpick the heterogeneity in clinical response 
will also be key.

Capitalising on the window to prevent T1D devel-
opment will require extensive screening initiatives to 
identify at-risk individuals. Studies suggest that 95% of 
children who progress to clinical diabetes in puberty have 
autoantibodies by the age of 5; however, the time from 
seroconversion to clinical disease can vary enormously, 
taking over a decade in some cases [138]. The timing and 
risk/benefit profile of candidate interventions therefore 
need to be carefully considered. Intervening at stage 2, 
where dysglycemia is evident, permits focus on those at 
highest risk and decreases the duration of clinical trials; 
however, it is possible that some treatments may be less 
effective at this later stage of disease.

There are many other immunotherapy approaches 
in T1D that are not discussed here due to space con-
siderations. Examples include the non-depleting 
anti-CD40 antibody Iscalimab (NCT04129528) and 
the JAK1/JAK2 inhibitor Baricitinib (NCT04774224). 
There is also interest in repurposing therapies with 
proven utility in other autoimmune conditions, such as 
Hydroxychloroquine (NCT03428945) which is used 
in systemic lupus erythematosus and rheumatoid arth-
ritis, and the IL-12/IL-23 targeting drug Ustekinumab 
(NCT03941132) which is used in psoriasis.
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Antigen-specific immunotherapies are likely to be im-
portant contributors to the future therapeutic landscape, 
and their specificity may prove beneficial from a safety 
perspective. Early data suggest administering antigen-
specific therapies following IL-2-mediated Treg expansion 
may be a useful strategy [139]. Indeed, there is increasing 
interest in combination approaches, perhaps leveraging 
two immunotherapies such as the Rituximab/Abatacept 
combination currently being tested (NCT03929601), or 
perhaps combining an immunotherapy with strategies to 
augment β cell function. The latter goal will be boosted 
by recent advances in the generation of stem cell-derived 
β cells [140] and human islet-like organoids [141].

With effective immunotherapies gradually starting 
to emerge, it will be important to establish mechanisms 
that allow more individuals to be offered the option of 
participating in clinical trials at T1D diagnosis so that can-
didate interventions can be compared. Combined with 
large-scale initiatives to identify at-risk individuals, such as 
the trailblazing public health screening approach taken by 
Ziegler and colleagues [142], it seems that the new landscape 
for T1D treatment and prevention is beginning to take shape.
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