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Abstract

Biological microorganisms swim in different types of fluids using a range of diverse motions
and are often found in complex geometries. Their study is a rich field full of outstanding
problems. One aspect that has attracted a lot of attention is the role played by hydrodynamic
interactions, including those between a cell and its fluid environment (fluid-cell), or between
neighbouring cells (cell-cell). These interactions can affect dramatically the dynamics of
these swimmers.

This dissertation investigates the dynamics of filaments interacting hydrodynamically
with a fluid through slip boundary conditions or with other filaments and is composed of two
separate parts. The first part of the thesis focuses on a single filament characterised by a slip
boundary condition, which is a property displayed by many non-Newtonian fluids. I propose
a waving sheet and a waving cylinder model to demonstrate a possible enhancement of
swimming by such slip effect. The results are in good agreement with previous experimental
and numerical studies. In subsequent work, I extend the classical slender-body theory to
replace the no-slip boundary condition by a finite slip length.

The second part of the thesis addresses the nature of hydrodynamic interactions between
filaments - a phenomenon that occurs widely in the biological world. By developing a new
method for integrating hydrodynamic singularities between interacting filaments, I show how
the force on the filament can be evaluated analytically. Using this result, I study the specific
problem of bacterial flagellar bundling. This complex process is studied in two steps. Firstly,
using a simpler geometry, I propose a model with elastic filaments to reveal the dynamics of
bundling and unbundling. I then expand upon this to consider the full helical geometry of a
bacterial flagellum, and develop a theoretical model for the pathway to synchronization. In
each case, either by considering simple geometries or through the use of asymptotic methods,
I capture in the model the main physical features and compare these to previous experimental
and numerical results, thereby making important progress toward our understanding of the
physics of flagellar bundling.
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Chapter 1

Introduction

Over the past few decades, problems on swimming at low Reynolds number, which is
dominated by Stokes equation, have received significant attention, from both the physics
and biological communities [127, 88, 108, 19, 17, 80]. As is now well known, the physics
of swimming in Stokes flows is quite different from that of swimming on a human length
scale. The oft-cited distinguishing property is the scallop theorem [108] which states that
locomotion by a sequence of shape which is reciprocal (i.e., identical under a time-reversal
symmetry) leads to zero net propulsion. So, for example, the flapping of the fins of a scuba
diver does not work on small length scales. Biological organisms are able to circumvent the
constraints of the theorem by deforming their bodies or appendages (flagella) in a wave-like
fashion breaking the time-reversibility requirement [82, 78].

Theoretical studies on low Reynolds number swimming dates back to 1950’s. Using
a small-amplitude transverse planar wave immersed in viscous fluid, Taylor asymptoticly
expanded the no-slip boundary condition and calculated the leading order flow propelled by
this idealized model swimmer [127]. Later, he used the same approach and extended the
model to a more realistic three-dimensional waving cylinder with small amplitude [128].
Following this pioneering work, Hancock comes up with the idea of slender-body theory
that the flow induced by a slender-body, which mathematically characterized by that the
length L is much larger the breadth a, is asymptoticly same as that due to an appropriate line
distribution of hydrodynamic singularities [59]. The singularities ’stokeslet’ and ’doublet’ are
also named in that paper. Slender-body theory has been vigorously developed during 1970’s
using matched asymptotics and uniform expansion [8, 31, 131, 70, 47, 65, 89]. The results
allows us to more accurately quantify how the forces from the fluid affect the kinematics
of organism with a wide range of geometries characterized by slenderness. In particular,
Chwang and Wu studied the flow propelled by a helix, which quantitatively described how
bacteria actuate their helical flagella [28].
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Building on these classical works, recent study has addressed how to improve these
classical models [91, 90], how to predict and measure the flow induced by microswimmers
[136, 123, 36], and the crucial role that hydrodynamics has played in the evolution of
the bacterial flagella [123]. Particularly, there are two questions in swimming that have
been under much debate. One question is how complex fluids that present non-Newtonian
rheology affect swimming. This is crucial because in reality microorganisms usually does
not live in Newtonian fluids where most classical results have been derived. Extensive
discussions emphasized on the interplay between different geometries of the swimmers
and a variety of fluids such as viscoelastic fluids [114, 33, 37, 35], polymer solutions
[99, 97, 87, 46], granular media [49, 105], etc. Another question which has received a lot
of attention is the role played by hydrodynamic interactions, including interactions with
surfaces [81, 14, 86, 48, 34, 36, 124, 94], external flows [120, 100, 115], complex fluids
[143] and between cells [63, 74, 121]. One specific example is that many works have proved
that hydrodynamic interactions can be an important cause leading to synchronization and
coordination behavior between flagella or cilia [63, 71, 110, 57, 21].

In this thesis, I focus on the effects of complex fluids and hydrodynamic interactions
and study two specific topics. In the first topic of complex fluids (Chapter. 2-3), I ask the
question how slip boundary condition, which is widely shown in complex fluids such as
polymer solutions, affects swimming. And in the second topic of hydrodynamic interactions
(Chapter. 4-6), I derive a long-wavelength integration for interacting filaments and propose
analytical models for flagellar bundling, which have been studied mainly by experiments and
numerics before.

1.1 Swimming in complex fluids: Slip boundaries

Studies on cell motility in fluids typically focus on one of four types of cells – bacteria [11],
spermatozoa [45], ciliates [15], and single-celled planktonic cells [54] – while recent effort
considered larger, multi-cellular organisms [50]. In all cases, the biological environments
that the microorganism encounter may be rheologically complex. For example, Helicobacter
pylori, a bacterium that causes inflammation in the stomach, swims through gastric mucus to
protect itself from the acidic environment [24]. Mammalian spermatozoa have to progress
through highly-elastic cervical mucus, an important phase in reproductive process [68].

Extending our understanding of cell locomotion in Newtonian fluids to complex, gel-like
or viscoelastic environments is a nontrivial task. One quintessential question, whether non-
Newtonian stresses in a complex fluid help increase or decrease the swimming speed of the
cell, remains in many ways an open problem.
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For example, bacteria such as Leptospira and Escherichia coli, swim more rapidly in
gel-like unbranched polymer solutions than in Newtonian fluids [13]. In contrast, for the
nematode Caenorhabditis elegans undergoing undulatory swimming, the speed was observed
to decrease in a slightly shear-thinning polymeric fluid with strong elastic stresses [116].
Similar disparities are observed experimentally for bio-inspired synthetic swimmers. Force-
free rotating helices show a transition from hindered to enhanced swimming in constant-
viscosity Boger fluids [93] while a cylindrical version of Taylor’s swimming sheet displays
both increase and decrease as a function of the rheology of the fluid [32]. In contrast,
externally-actuated flexible-tail swimmers show a systematic increase of locomotion speeds
in viscoelastic fluids [39].

Various numerical and theoretical studies have also addressed this problem, focusing on
viscoelastic fluids following Oldroyd-B rheology. Small-amplitude asymptotic studies for
waving swimmers with fixed shapes predicted a systematic decrease of swimming velocity
[77, 44, 43]. Subsequent numerical work for finite waving sheets with large tail amplitude
showed that an increase was possible for order one Deborah numbers [129]. Numerical
simulations following the helical experiments in Ref. [93] confirmed the transition from slow
small-amplitude swimming to fast large-amplitude locomotion [125]. Integral theorems for
small-amplitude motion showed that the superposition of multiple waves could also lead to a
enhancement transition for a range of Deborah numbers [79]. We thus see that theoretical,
computational, and experimental studies showing both increases and decreases have been put
forward, and the challenge is now to rigorously untangle the various physical (and sometimes,
biological) effects. In particular, while we now understand how viscoelastic stresses are able
to decrease swimming speeds, physical mechanisms leading to locomotion enhancement
are less clear. Recently, the flexibility of the swimmer in response to complex stresses was
shown to allow for an increase in the swimming speed [130, 114].

Instead of focusing on the non-Newtonian stresses in the fluid, I address effects of having
a slip boundary condition on the surface. The slip effect is widely observed in complex fluids
including polymer solution [7], capillary flow and porous medium [30] and particle immersed
in electrolyte solution [76]. The slip can be caused by different reasons depending on various
situations. For example the mechanism in polymer solution is due to a phase-separation
near the boundary, which generates a thin layer of low concentration solution that leads to
apparent slip, more details will be included in Chapter 2. While for the particle immersed in
electrolyte solutions, the flow-induced streaming electric field can create an apparent slip
velocity, which is called electroosmotic flow [76].

Inspired by the classical works decades ago, Taylor’s swimming waves [127, 128] and
slender-body theory [31, 88], I derive the flow and mobility relation with slip boundary
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condition. The derivation with geometry of waving sheet and cylinder will be illustrated
in Chapter. 2, which proposes the apparent slip due to a phase-separation particularly in
polymer solutions as a new mechanism for enhanced swimming. In Chapter. 3, I consider the
general slender body geometry and extend the classical results including local drag theory
and slender-body theory in 1970’s to slip cases.

1.2 Hydrodynamically interacting filaments: Flagellar bundling

Biological world is in rich with filamentous structures. Inside cells, polymeric filaments of
microtubules, actin, and intermediate filaments fill the eukaryotic cytoplasm [4] and provide
it with its mechanical structure [16]. Outside cells, the motion of flagella and cilia allow cells
to generate propulsive forces [12, 18, 82] and induce flows critical to human health [118, 40].
In all cases, these biological filaments are immersed in a viscous fluid in which they move at
low Reynolds number, be it due to their polymerisation, to fluctuations and thermal forces, or
to the action of molecular motors [17].

Since at low Reynolds number, the flows induced locally by the motion of filaments
relative to a background fluid have a slow spatial decay as ∼ 1/r [88, 2], we thus expect
nonlocal hydrodynamic interactions to be important [51]. For example, hydrodynamic
coupling has been proved by a few models that plays an crucial role in emergence of
metachronal waves generated by cilia array [56, 135, 134, 103]. While for algal flagella,
experiment showed that hydrodynamic interactions can lead to synchronisation of nearby
filaments [21].

One particularly interesting phenomenon involving hydrodynamic interactions at the
scale of a single cell is the bundling and unbundling of bacterial flagella [95]. While many
bacteria have only one flagellum, most well-studied pathogenic bacteria possess multiple
flagella, and are refereed to as “peritrichous” bacteria (Fig. 1.1). Such bacteria are propelled
from behind by a bundle of helical flagella, for example the well-studied Escherichia coli
(E. coli) [12], Salmonella typhimurium [95], or Halobacterium Salinarium [75].

Comparing to significant experimental and computational advances [71, 72, 109, 110],
theoretical studies have not been able yet to derive simplified models allowing it capture,
from first principle, the essence of the dynamics of the bundling and unbundling process.
The reason is that integrating long-ranged hydrodynamic interactions between filaments has
long been recognised as a challenging problem, and one where the theoretical approach
has consisted of either full numerical simulations or very simplified analysis. For example
numerical methods has been developed to tackle the integration including slender-body theory
[65, 57, 132], boundary elements to implement boundary integral formulations [67], the
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Fig. 1.1 (a) two Bacilllus subtilis cells [29] (courtesy of C. Dombrowski and R.E. Goldstein,
University of Cambridge) (b) illustration of bundling and unbundling dynamics of bacterial
flagellar filaments of E. coli [133]. Panel (b) reproduced from Turner et al. (2000) Real-time
imaging of fluorescent flagellar filaments, J. Bacteriol, 10, 2793-2801, Copyright 2000
Society of Microbiology.

immersed boundary method [92, 139], regularized flow singularities [41] and particle-based
methods [140, 111].

While these computational approaches allow to address complex geometries and dy-
namics, the difficulty of integrating long-range hydrodynamic interactions have prevented
analytical approaches to provide insight beyond simplified setups. The two most popular
approaches consist in replacing the dynamics in three dimensions by a two-dimensional prob-
lem for which the analysis may be easier to carry out [127, 38], or by focusing on far-field
hydrodynamic interactions and ignoring the geometrical details of near-field hydrodynamics,
a popular approach to study synchronisation of flagella and cilia [135, 58, 103, 134, 52, 42, 9].

In realistic biological situations, three-dimensional filaments are not far from each other,
but in fact are often found in the opposite, near-field, limit where their separation distance is
much smaller than their length. This is illustrated in Fig. 1a with three examples relevant to
cell motility: synchronizing flagella of spermatozoa; bundle of bacterial flagellar filaments;
epithelium cilia. In order to capture the dynamics of these interacting filaments, new
analytical tools are thus required.

In order to give a full analytical description of the problem, I first focus on the central
issue, the long-ranged hydrodynamic interactions between two filaments, in Chapter. 4.
Arising from the real biological geometries, I consider three chracterised length scales, radius
of single filament a, separation between two filaments h and total length of each filament L.
Considering the experimental measurements of these lengths, in theory a length separation
can be reasonably assumed as a ≪ h ≪ L. Taking advantage of this length separation, I
asymptoticly derive the leading order force exerted by the interacting flow. This result is very
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general and is capable to be applied to a wide range of problems in biological physics. Using
this analytical tool, I move on to the specific problem of flagellar bundling and build an
elastic-filaments model in Chapter. 5. This initial model is well-studied due to its simplicity
and extends to rich observations in dynamics. Building on this, I continue to consider
more realistic synchronisation model with helical geometry, which is an important feature
neglected in my initial model. The asymptotic measurement of forces and torques and a
recovery-torque model for synchronisation are illustrated in Chapter. 6.



Chapter 2

Phase-separation models for swimming
enhancement in complex fluids

For a variety of complex fluids with a microstructure dispersed in a solvent, in particular
polymeric fluids and suspensions, the presence of a boundary leads to static phase separation
at equilibrium: the concentration of the solute drops near the wall which is covered instead by
a thin solvent layer [7]. In the case of rigid suspensions, purely excluded-volume interactions
lead to solvent-rich regions near the surface, and the effect is larger for Brownian particles
for which the presence of a wall breaks the geometrical isotropy [7]. In the case of polymers,
random coils would be distorted if too close to the wall, and thus they are driven by entropy
away from the boundary.

In all cases, the solvent-rich fluid near the surface has a viscosity much smaller than that
of the bulk fluid. As seen in many situations, in particular flows in capillary tubes and in
porous media [30], this difference in viscosity leads to apparent slip when a flow is set up,
which is best illustrated in the case of a shear flow (Fig. 2.1b): If shear is imposed in a fluid
with a thin-viscosity layer, the difference in viscosities will lead to a difference in shear rates,
and as a result the flow in the high-viscosity bulk will not extrapolate to zero on the solid
surface, but below it, indicating an overall decrease of stresses acting on the surface. The
fictitious distance below the surface where the fluid velocity in the top fluid goes to zero is
the (positive) apparent slip length. Microscopically, the no-slip condition is of course not
violated, but given that the typical thickness of the solvent layer is much smaller than the
other, macroscopic length scales in the problem of interest, the no-slip boundary condition
appears not to hold for the bulk fluid.

There are two classical ways to theoretically model apparent slip in complex fluids.
The first model is to simply replace the no-slip boundary condition on the surface by one
which the tangential velocity is allowed to slip. Experimentally-measured slip length has
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h

��

(a) (b)
µ1

µ2

Fig. 2.1 The two models of apparent slip due to phase separation considered in this paper; (a):
a single-phase continuum fluid with a finite apparent slip length Λ; (b): a two-fluid domain
with viscosity µ1 in the bulk and a thin low-viscosity layer of thickness h and viscosity
µ2 < µ1.

been shown to depend, sometimes in a complex manner, on the shear stress at the wall
[122, 141, 5, 30]. The assumption usually done is to adopt Navier’s slip length model [102]
and assume that the slip velocity at the wall is linearly proportional to the wall shear rate,
with a proportionality constant with unit of length, called the slip length, and which we will
denote Λ in this work [119]. As noted above, the slip length measures the (fictitious) distance
below the boundary where the velocity would extrapolate to zero, and it is zero in the case of
a no-slip boundary (Fig. 2.1a). A second procedure to model phase separation is to explicitly
assume the presence of two fluid layers. The top layer, semi-infinite, has bulk viscosity µ1,
while the bottom layer near the surface has a finite thickness h and lower viscosity µ2 < µ1

(Fig. 2.1b). For a shear flow in this unidirectional setup, the velocity in the thin layer satisfies
the no-slip boundary condition while that the flow in the bulk fluid extrapolates to zero at the
equivalent apparent slip length Λ = (µ1/µ2 −1)h.

In this chapter I consider these two different physical models of phase separation and
investigate their consequences on waving locomotion. In §2.1 I first examine the model
with a finite apparent slip length, and apply it to two canonical setups for low-Reynolds
number locomotion, namely the small-amplitude swimming of a flexible sheet [127] and
that of a flexible filament [128]. In §2.2 I then consider the same two setups in the situation
where the phase-separated fluid is modeled as a two-fluid layer. In all cases I am able to
derive the swimming speed for each swimmer analytically and compare it to the case for
the homogenous Newtonian fluid with a no-slip boundary condition. I demonstrate that the
phase separation leads to a systematic enhancement of the swimming speed, and suggest that
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this might play a role in the recently-measured swimming enhancement at low-Reynolds
numbers.

2.1 Swimming in a fluid with finite apparent slip length

In the first section I assume that the phase separation in the fluid can be adequately captured
by an effective slip length Λ acting on a Newtonian fluid satisfying the Stokes equations

∇p = µ∇
2u, ∇ ·u = 0. (2.1)

On a fluid-solid boundary S, the jump in normal velocity is zero by mass conservation while
the jump in tangential velocity is proportional to the local shear rate. If the velocity in the
fluid is denoted u, these boundary conditions can be mathematically expressed as

[
n ·u

]∣∣
S = 0, (2.2a)

[
n×u

]∣∣
S = 2Λ(n× (E ·n))

∣∣
S, (2.2b)

where
[
...
]

is used to denote a jump, n is the normal to the boundary, E is the symmetric
rate-of-strain tensor (i.e. the symmetric part of the velocity gradient tensor), and Λ the slip
length.

2.1.1 Two dimensional waving sheet

First I consider a two-dimensional swimmer in the form of flexible sheet self-propelling
in the fluid by passing waves of normal deformation. This is the classical setup originally
proposed by Taylor [127], and the material points of the sheet, (xs,ys), are assumed to vary
in space and time as a simple traveling wave of deformation

ys = bsink(x− ct), xs = x, (2.3)

where b is the wave amplitude, k the wave number and c the wave speed along the x
direction (see notation in Fig. 2.2). I solve the problem assuming that the amplitude is small
compared to the wavelength, and thus consider the asymptotic limit where ε = bk is a small
dimensionless number. Nondimentionalizing the equations using k−1 as relevant length and
ω−1 ≡ (kc)−1 as intrinsic time scale, the wave deformation becomes

ȳs = ε sin(x̄− t̄)≡ ε sinξ , (2.4)
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Fig. 2.2 Geometry of the two-dimensional waving sheet setup in a fluid with finite slip length.
Here b denotes the small waving amplitude, λ the wavelength, and c the wave speed along
the x direction. The sheet is assumed to swim with speed U in the negative x direction. The
small circle zooms in on a portion of the swimmer surface and illustrates the presence of a
finite slip length Λ.

and for convenience we drop the “bars” in what follows.
The velocity of material points on the sheet is thus given by

us = (0,−ε cosξ ). (2.5)

Applying Eq. (2.2), on the surface of the swimmer we have

(n ·u)
∣∣
(xs,ys)

= n ·us, (2.6a)

(n×u)
∣∣
(xs,ys)

= 2Λ̄(n× (E ·n))
∣∣
(xs,ys)

+n×us, (2.6b)

with a normal vector n explicitly given as (1+ ε2 cos2 ξ )−
1
2 [−ε cosξ ,1], and where Λ̄ ≡ kΛ

is the nondimensionalized slip length. Here let us keep the “bar” notation for the slip length
to ensure that the final result is formally dimensionless.

In order to solve for the Stokes equations in the fluid, Eq. (2.1), I employ a streamfunction

ψ such that the velocity components of u = [u,v] are defined as u =
∂ψ

∂y
and v =−∂ψ

∂x
. The
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boundary condition, Eq. (2.6), then becomes

ε cosξ
∂ψ

∂y
(x,ε sinξ )+

∂ψ

∂x
(x,ε sinξ ) = ε cosξ , (2.7a)

ε cosξ
∂ψ

∂x
(x,ε sinξ )− ∂ψ

∂y
(x,ε sinξ ) = Λ̄(1+ ε

2 cos2
ξ )−

1
2

{
(1− ε

2 cos2
ξ ) (2.7b)

[
∂ 2ψ

∂x2 (ξ ,ε sinξ )− ∂ 2ψ

∂y2 (ξ ,ε sinξ )

]

+4ε cosξ
∂ 2ψ

∂x∂y
(ξ ,ε sinξ )

}
+ ε

2 cos2
ξ .

The Stokes equation, Eq. (2.1), transforms into the biharmonic equation for ψ [84]

∇
4
ψ = 0. (2.8)

In order to obtain the asymptotic solution for the swimming velocity, I expand the stream-
function in powers of ε by

ψ = εψ
(1)+ ε

2
ψ

(2)+ ε
3
ψ

(3)+ ... (2.9)

Denoting the velocity of the swimming sheet as −Uex in a quiescent fluid, we move in the
swimming frame and thus the velocity at infinity is given by u(y → ∞) =Uex.

Since ψ satisfies the biharmonic equation, and is equal to Uy at infinity, I construct the
general solution as [27]

ψ
(1) = V (1)

1 +U (1)y, (2.10a)

ψ
(2) = V (2)

1 +V (2)
2 +U (2)y, (2.10b)

where
Vn = (An +Bny)e−ny sinnξ +(Cn +Dny)e−ny cosnξ . (2.11)

At first order in ε , Eq. (2.7) becomes

∂ψ(1)

∂x
(x,0) = cosξ , (2.12a)

−∂ψ(1)

∂y
(x,0) = Λ̄

(
∂ 2ψ(1)

∂x2 − ∂ 2ψ(1)

∂y2

)∣∣∣∣
(x,0)

. (2.12b)
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Substituting Eq. (2.10) into the equation above, we obtain A(1)
1 = B(1)

1 = 1, C(1)
1 = D(1)

1 = 0
and U (1) = 0. The streamfunction at first order is

ψ
(1) = (1+ y)e−y sinξ , (2.13)

which is the same as the no-slip case. This can be rationalized by notating that the first-order
shear rate is given by

(
∂ 2ψ(1)

∂x2 − ∂ 2ψ(1)

∂y2

)∣∣∣∣
(x,0)

=
(
−2ye−y sinξ

)∣∣∣∣
(x,0)

= 0, (2.14)

which makes the problem equivalent to the no-slip case.
As no propulsion occurs at order ε , one needs to carry the calculation to order two in

order to obtain the leading-order swimming speed. At order ε2, the boundary conditions are

(
cosξ

∂ψ(1)

∂y
+

∂ψ(2)

∂x
+ sinξ

∂ 2ψ(1)

∂x∂y

)∣∣∣∣
(x,0)

= 0, (2.15a)

(
cosξ

∂ψ(1)

∂x
− ∂ψ(2)

∂y
− sinξ

∂ 2ψ(1)

∂y2

)∣∣∣∣
(x,0)

= Λ̄

{(
∂ 2ψ(2)

∂x2 − ∂ 2ψ(2)

∂y2

)
+ (2.15b)

sinξ

(
∂ 3ψ(1)

∂x2∂y
− ∂ 3ψ(1)

∂y3

)

+4cosξ
∂ 2ψ(1)

∂x∂y

}∣∣∣∣
(x,0)

+
1
2
+

1
2

cos2ξ .

Substituting the expansions for the streamfunction into this condition, we obtain

U (2) =
1
2
+ Λ̄. (2.16)

Comparing this result with the no-slip case, and coming back to the dimensional variables
we finally have

U (2)

U (2)
no−slip

= 1+2kΛ. (2.17)

Since the slip length is always positive, we obtain in this first situation that the swimming
speed is always enhanced by apparent slip.
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Fig. 2.3 Deformation with amplitude δ in the circular cross-section of a three-dimensional
waving filament of radius ρ . The blue solid line represents the current position of the filament
and the gray dashed line the average location of the cross section.

2.1.2 Three-dimensional waving filament

Now I apply the same apparent-slip model to the case of a three-dimensional waving filament,
the geometry of which is shown in Fig. 2.3 [128]. I consider a cylindrical filament of radius
ρ deforming as a traveling wave in the (x,z) plane where z is along the filament axis and x is
perpendicular to it. I denote by δ the amplitude of the filament deformation in the x direction.

The location of the material points on the surface of the filament, using cartesian coordi-
nate centered on the average location of the cylinder (see Fig. 2.3), is given by

rs = (δ +ρ cosθ)x+ρ sinθ y+ z z, δ = bsink(z+ ct), (2.18)

where δ is the distribution of waving amplitudes along z direction, ρ the filament radius, k
the wave number, and c the wave speed. Here again we assume that the amplitude is small
compared to the wavelength, and compute the result in the limit where ε = bk is small.

Nondimentionalizing the equations similarly to the previous section, then the surface of
cylindrical filament described as

rs = (δ + ρ̄ cosθ)x+ ρ̄ sinθ y+ z z, δ = ε sin(z+ t) = ε sins, (2.19)
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and here again we keep the “bar” notation for the dimensionless radius, ρ̄ = kρ . Similarly to
the two-dimensional case, the velocity on the boundary satisfies the conditions

(n ·u)
∣∣
(δ+ρ̄ cosθ ,ρ̄ sinθ ,z) = ε cosscosθ , (2.20a)

(n×u)
∣∣
(δ+ρ̄ cosθ ,ρ̄ sinθ ,z) = 2Λ̄{n× (E ·n)}

∣∣
(δ+ρ̄ cosθ ,ρ̄ sinθ ,z)− ε sinθ coss z.(2.20b)

Since the inextensibility condition contributes to the dynamics at orders higher than two
[128], the vector normal to the surface is er at the order relevant for this calculation. Then
the velocity can be expanded around the average position as

u(δ + ρ̄ cosθ , ρ̄ sinθ ,z)≈ [u+x · (∇u)ε sins]
∣∣
r=ρ̄

=

{
u+ ε sins

[
∂u
∂ r

cosθ −
(

1
r

∂u
∂θ

− v
r

)
sinθ

]}∣∣∣∣
r=ρ̄

er

+

{
v+ ε sins

[
∂v
∂ r

cosθ −
(

u
r
+

1
r

∂v
∂θ

)
sinθ

]}∣∣∣∣
r=ρ̄

eθ

+

{
w+ ε sins

[
∂w
∂ r

cosθ − 1
r

∂w
∂θ

sinθ

]}∣∣∣∣
r=ρ̄

ez.

(2.21)

Expanding the velocity in the fluid, u, asymptotically in powers of ε ,

u = εu(1)+ ε
2u(2)+ . . . , (2.22)

and substituting the expansion and Eq. (2.21) into the boundary condition, that at first order,

u(1)(ρ̄,θ ,z) = cosscosθ , (2.23a)

v(1)(ρ̄,θ ,z) = Λ̄

(
∂v(1)

∂ r
− v(1)

r
+

1
r

∂u(1)

∂θ

)∣∣∣∣
(r=ρ̄)

− sinθ coss, (2.23b)

w(1)(ρ̄,θ ,z) = Λ̄

(
∂w(1)

∂ r
+

∂u(1)

∂ z

)∣∣∣∣
(r=ρ̄)

. (2.23c)

Solving for the fluid velocity using separation of variables we get

u(1) = uq(r)cosθ coss, v(1) = vq(r)sinθ coss, w(1) = wq(r)cosθ sins, (2.24)
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while the first-order boundary conditions are simplified to

uq(ρ̄) = 1, (2.25a)

vq(ρ̄) = Λ̄

[
v′q(ρ̄)−

vq(ρ̄)

ρ̄
− 1

ρ̄

]
−1, (2.25b)

wq(ρ̄) = Λ̄
[
w′

q(ρ̄)−1
]
. (2.25c)

Similarly to the original problem treated by Taylor in the case of a no-slip filament [128],
the radial dependence of the velocity is given by a combination of modified Bessel functions
as

uq(r) = BK2(r)+CK0(r)+ArK1(r)+EI2(r)+FI0(r)+DrI1(r), (2.26a)

vq(r) = BK2(r)−CK0(r)+EI2(r)−FI0(r), (2.26b)

wq(r) = BK1(r)+CK1(r)+A[rK0(r)−K1(r)]−EI1(r)−FI1(r)

−D[rI0(r)− I1(r)], (2.26c)

with a minus sign in Eq. 2.26c coming from different properties between solution of the first
and second kind. For the boundary conditions at infinity, we have D = E = F = 0 and the
other three unknown constants A,B,C can be obtained by plugging Eq. (2.26) into Eq. (2.25).
Writing C as C =Cnu/Cde, I obtain the following lengthy (but analytical) expressions

Cnu = ρ̄K1(ρ̄)
2 −2ρ̄K0(ρ̄)K2(ρ̄)+2K1(ρ̄)K2(ρ̄)+ Λ̄

[
− ρ̄

2
K0(ρ̄)K1(ρ̄) (2.27a)

−K0(ρ̄)K2(ρ̄)+2K1(ρ̄)
2 +

(
4
ρ̄
− 5

2
ρ̄

)
K1(ρ̄)K2(ρ̄)+K2(ρ̄)

2
]

+Λ̄
2
[

2K0(ρ̄)K1(ρ̄)−2ρ̄K1(ρ̄)
2 +

6
ρ̄

K0(ρ̄)K2(ρ̄)

−6K1(ρ̄)K2(ρ̄)+
2
ρ̄

K2(ρ̄)
2
]
,

Cde = −2ρ̄K0(ρ̄)
2K2(ρ̄)+2K0(ρ̄)K1(ρ̄)K2(ρ̄)+ ρ̄K0(ρ̄)K1(ρ̄)

2 + ρ̄K1(ρ̄)
2K2(ρ̄)(2.27b)

+Λ̄

[
− ρ̄

2
K0(ρ̄)

2K1(ρ̄ +2ρ̄K1(ρ̄)
3 +2K0(ρ̄)K1(ρ̄)

2 +K0(ρ̄)K2(ρ̄)
2

−K0(ρ̄)
2K2(ρ̄) +4K1(ρ̄)

2K2(ρ̄)+
ρ̄

2
K1(ρ̄)K2(ρ̄)

2

+

(
4
ρ̄
−2ρ̄

)
K0(ρ̄)K1(ρ̄)K2(ρ̄)

]
+ Λ̄

2
[

2K0(ρ̄)
2K1(ρ̄)+

6
ρ̄

K0(ρ̄)
2K2(ρ̄)

+
2
ρ̄

K0(ρ̄)K2(ρ̄)
2 +2K1(ρ̄)K2(ρ̄)

2
]
,
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B =
1

Cde

{
−ρ̄K1(ρ̄)

2 + Λ̄

[
−5

2
ρ̄K0(ρ̄)K1(ρ̄)−

ρ̄

2
K1(ρ̄)K2(ρ̄)

]
−2Λ̄

2
ρ̄K1(ρ̄)

2
}
, (2.28)

and

A =
1

Cde

{
2K1(ρ̄)K2(ρ̄)+ Λ̄

[
2K1(ρ̄)

2 +3K0(ρ̄)K2(ρ̄)+
4
ρ̄

K1(ρ̄)K2(ρ̄)+K2(ρ̄)
2
]

+Λ̄
2
[

2K0(ρ̄)K1(ρ̄)+
6
ρ̄

K0(ρ̄)K2(ρ̄)+2K1(ρ̄)K2(ρ̄)+
2
ρ̄

K2(ρ̄)
2
]}

.

(2.29)

According to Eq. (2.24), the time-averaged swimming speed w(1) is zero, and as expected I
thus need to consider the problem at order ε2.

Following the slip boundary conditions, the z-component of the flow at order two, w(2),
satisfies on the boundary

(
w(2)+w′

q cos2
θ sin2 s+

1
r

wq sin2
θ sin2 s

)∣∣∣∣
r=ρ̄

=Λ̄

{
∂w(2)

∂ r
+

∂u(2)

∂ z

+ sin2 s
[
(w′′

q −u′q)cos2
θ

− 1
r

(wq

r
−w′

q +uq + vq

)
sin2

θ

]

+ cos2 s
[

u′q cos2
θ +

uq + vq

r
sin2

θ

]}∣∣∣∣
r=ρ̄

.

(2.30)

Averaging this equation in time and along the azimuthal direction, explicitly the swimming
velocity, U (2), is written as

4U (2) = w′
q(ρ̄)+

wq(ρ̄)

ρ̄
− Λ̄

[
w′′

q −
1
ρ̄

(
wq

ρ̄
−w′

q

)]∣∣∣∣
r=ρ̄

=

[
2
ρ̄

K1(ρ̄)−K2(ρ̄)− Λ̄K1(ρ̄)

]
B+

[
2
ρ̄

K1(ρ̄)−K2(ρ̄)− Λ̄K1(ρ̄)

]
C

+

{
2K0(ρ̄)− ρ̄K1(ρ̄)−

2
ρ̄

K1(ρ̄)+K2(ρ̄)+ Λ̄[5K1(ρ̄)− ρ̄K2(ρ̄)]

}
A.

(2.31)



2.1 Swimming in a fluid with finite apparent slip length 17

10−2 10010−1 101

100

101

102

 

 
kρ = 0.01
kρ = 0.1
kρ = 0.5

10−3 10−2 10−1 100 101

100

101

102

 

 
kΛ = 0.01
kΛ = 0.1
kΛ = 0.5

k�

(a) (b)

U
(2

)
/U

(2
)

n
o
�

sl
ip

k�

Fig. 2.4 Ratio of the swimming velocity in the case of slip to the no-slip value, U (2)/U (2)
no−slip.

(a): Dependence on the dimensionless filament radius, kρ , for three wave numbers (kΛ =
0.01, 0.1 and 0.5); (b): Dependence on the dimensionless wave number (with kρ = 0.01, 0.1
and 0.5).

The result in Eq. (2.31) can also be evaluated in the no-slip case by simply setting Λ̄ = 0,
and let us recover Taylor’s result, namely

U (2)
no−slip =

ρ̄K1(ρ̄)
2K2(ρ̄)− ρ̄K0(ρ̄)K2(ρ̄)

2

−2ρ̄K0(ρ̄)K1(ρ̄)2 +4ρ̄K0(ρ̄)2K2(ρ̄)−4K0(ρ̄)K1(ρ̄)K2(ρ̄)−2ρ̄K1(ρ̄)2K2(ρ̄)
·

(2.32)
The ratio between the swimming speed in the slip case to that in the no-slip situation,

U (2)/U (2)
no−slip, is plotted in Fig. 2.4 as a function of the dimensionless filament radius

(Fig. 2.4a) and the dimensionless wave number (Fig. 2.4b). As in the two-dimensional
situation, the presence of slip is seen to always lead to faster swimming than in the no-slip
case, and here the effect can be potentially very large (the applicability of these results
to recent experiments is discussed in §2.3). In Fig. 2.4 we see that the swimming speed
increases monotonically when either the length scale of the swimmer cross section (ρ) or the
typical length scale of the waving motion, k−1 becomes smaller than the slip length. In the
opposite limit, the no-slip result, Eq. (2.32), is recovered when all length scales are much
larger than Λ.

We further note that it is possible to compute the swimming speed for small slip length
as a power expansion in kΛ (i.e. Λ̄), U (2) = U (2)

0 + (kΛ)U (2)
1 + . . . , with U (2)

0 being the
no-slip swimming speed. When kρ (i.e. ρ̄) increases to infinity, the radius of the cylinder
becomes much larger than any other length scale, and we recover U (2)

1 /U (2)
0 = 2, leading to

U (2)/U (2)
no−slip = 1+2kΛ, which as expected agrees with the results for the two-dimensional

sheet.
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Fig. 2.5 Geometry of two-dimensional waving sheet swimming in a two-fluid domain. The
bulk fluid has viscosity µ1 and the thin layer near the swimmer, of mean thickness h, has
viscosity µ2 < µ1. The two streamfunctions in the fluids are denoted ψ1 and ψ2. The interface
between the two fluids is assumed to remain flat.

I conclude by pointing out that although the calculation above was carried out in the
case of planar waving deformation, similar algebra would govern swimming by propagating
helical waves [? ], and in that case ρ would be the radius of the helical flagellum, or that of
the bundle of flagella in the case of bacteria with multiple flagellar filaments such as E. coli.

2.2 Swimming in a two-fluid domain

In the previous section, I modelled the influence of phase separation as due to a finite apparent
slip length, and showed that it leads to a systematic enhancement of the swimming speeds.
In order to provide an alternative microscopic physical picture, instead I consider in this
section a second model where ncludes explicitly the presence of a low-viscosity layer near
the surface of the swimmer, and I apply it to the two canonical swimmers (waving sheet and
filament) considered in the previous section.

2.2.1 Two dimensional waving sheet

I first consider the swimming sheet setup shown in Fig. 2.5. The fluid is composed of two
domains: the bulk fluid has viscosity µ1 while the thin layer near the swimmer has a smaller
viscosity µ2 (µ1 > µ2). The average distance between the sheet and the fluid-fluid interface,
which is the thickness of the low-viscosity layer, is denoted h and assumed to remain constant
(this assumption is discussed in §2.3). All other notation are similar to the ones in §2.1.1.
Following the same nondimentionalization, we now have the no-slip boundary conditions on
the sheet

∂ψ2

∂y
(x,ε sinξ ) = 0,

∂ψ2

∂x
(x,ε sinξ ) =−ε cosξ , (2.33)
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while at infinity we have the unknown swimming speed

∂ψ1

∂y
(x,∞) =−U,

∂ψ1

∂x
(x,∞) = 0. (2.34)

At the flat interface between the two fluids, continuity of velocities is

∂ψ1

∂y
(x, h̄) =

∂ψ2

∂y
(x, h̄),

∂ψ1

∂x
(x, h̄) =

∂ψ2

∂x
(x, h̄) = 0, (2.35)

and here again, keep the “bar” notation for the thickness h̄ ≡ kh. Together with continuity of
tangential stresses, which is written as

(
∂ 2ψ1

∂y2 − ∂ 2ψ1

∂x2

)∣∣∣∣
(x,h̄)

= β

(
∂ 2ψ2

∂y2 − ∂ 2ψ2

∂x2

)∣∣∣∣
(x,h̄)

, (2.36)

where β denotes the ratio of viscosities, β = µ2/µ1 < 1.
As in §2.1.1 I solve the problem as a perturbation expansion in ε . The general periodic

solution for to the biharmonic equation which vanishes at infinity is obtained by separation
of variables as

Vn = (any+bn)sinnξ e−ny +(cny+dn)cosnξ e−ny, (2.37)

which we use to expand ψ1 as

ψ1 = εψ
(1)
1 + ε

2
ψ

(2)
2 + . . . (2.38)

with

ψ
(m)
1 =−U (m)y+V (m)

1 + · · ·+V (m)
m . (2.39)

Similarly, in the second domain expand ψ2 as

ψ2 = εψ
(1)
2 + ε

2
ψ

(2)
2 + . . . (2.40)

ψ
(m)
2 =W (m)

1 + · · ·+W (m)
m +χ

(m)y2 +η
(m)y, (2.41)

where Wn is the general periodic solution for to the biharmonic equation in a finite domain
obtained by separation of variables

Wn = [(Any+Bn)sinnξ +(Cny+Dn)cosnξ ]sinhny

+[(Eny+Fn)sinnξ +(Gny+Hn)cosnξ ]coshny.
(2.42)



20 Phase-separation models for swimming enhancement in complex fluids

Expanding the boundary conditions around y = 0, I obtain at first order

(on sheet)
∂ψ

(1)
2

∂y
(x,0) = 0,

∂ψ
(1)
2

∂x
(x,0) =−cosξ (2.43a)

(on interface)
∂ψ

(1)
1

∂y
(x, h̄) =

∂ψ
(1)
2

∂y
(x, h̄),

∂ψ
(1)
1

∂x
(x, h̄) =

∂ψ
(1)
2

∂x
(x, h̄) = 0 (2.43b)

(
∂ 2ψ

(1)
1

∂y2 − ∂ 2ψ
(1)
1

∂x2

)∣∣∣∣
(x,h̄)

= β

(
∂ 2ψ

(1)
2

∂y2 − ∂ 2ψ
(1)
2

∂x2

)∣∣∣∣
(x,h̄)

(2.43c)

(at infinity)
∂ψ

(1)
1

∂y
(x,∞) =−U (1),

∂ψ
(1)
1

∂x
(x,∞) = 0. (2.43d)

Substituting these boundary conditions into the general solution the coefficients at first order
are

U (1) = χ
(1) = η

(1) = c(1)1 = d(1)
1 =C(1)

1 = D(1)
1 = 0, (2.44a)

a(1)1 =
β h̄eh̄ sinh h̄

sinh2 h̄− h̄2 +β (sinh h̄cosh h̄− h̄)
, (2.44b)

b(1)1 =
−β h̄2eh̄ sinh h̄

sinh2 h̄− h̄2 +β (sinh h̄cosh h̄− h̄)
, (2.44c)

A(1)
1 =

sinh2 h̄+β (sinh h̄cosh h̄)
sinh2 h̄− h̄2 +β (sinh h̄cosh h̄− h̄)

, (2.44d)

B(1)
1 =

sinh h̄cosh h̄+ h̄+β cosh2 h̄
sinh2 h̄− h̄2 +β (sinh h̄cosh h̄− h̄)

· (2.44e)

At second order, the boundary conditions become

(on sheet)
∂ψ

(2)
2

∂y
(x,0)+ sinξ

∂ 2ψ
(1)
2

∂y2 (x,0) = 0, (2.45a)

(on interface)
∂ψ

(2)
1

∂y
(x, h̄) =

∂ψ
(2)
2

∂y
(x, h̄), (2.45b)

(
∂ 2ψ

(2)
1

∂y2 − ∂ 2ψ
(2)
1

∂x2

)∣∣∣∣
(x,h̄)

= β

(
∂ 2ψ

(2)
2

∂y2 − ∂ 2ψ
(2)
2

∂x2

)∣∣∣∣
(x,h̄)

, (2.45c)

leading to the second-order swimming speed as

U (2) =−η
(2) = A(1)

1 − 1
2
, (2.46)



2.2 Swimming in a two-fluid domain 21

10−1 100 101

100

101

102

103

 

 
`=0
`=0.1
`=0.5

kh

U
(2

)
/U

(2
)

�

10−4 10−2 100 102100

102

104

106

108

 

 
β = 0.01
β = 0.1
β = 0.5

Fig. 2.6 Ratio between the swimming velocity in the two-fluid domain, U (2), and the velocity
in the presence of a single fluid, U (2)

∞ , as a function of the dimensionless distance between
the swimmer and the interface, kh, for three values of the viscosity ratio: β = 0, 0.1 and 0.5.

and therefore

U (2) =
1
2
+

h̄2 +β h̄
sinh2 h̄− h̄2 +β (sinh h̄cosh h̄− h̄)

· (2.47)

In Eq. (2.47), the first term is the one-fluid classical result of Taylor (U (2)
∞ = 1/2, recovered

when h̄ → ∞) and the second fraction is always positive since h̄ > 0. As a consequence
the swimming speed for a waving sheet in a two-fluid domain is always faster than in a
homogeneous Newtonian fluid.

The ratio U (2)/U (2)
∞ is displayed in Fig. 2.6 as a function of the dimensionless distance

to the interface, kh (i.e. h̄). I observe that the increase of the swimming speed can become
very large when the thickness of the low-shear layer is smaller than the wavelength of the
swimmer. Also we see that the overall conclusions and speed ratios are rather insensitive to
the exact value of the viscosity ratio, β .

2.2.2 Three dimensional waving filament

In this final section, I extend the two-fluid scenario to the case of three-dimensional waving
filaments. In this case, the geometry of the cross-section, shown in Fig. 2.7, is analogous
to the one addressed in §2.1.2 with the added ingredient that we now have two fluids. The
thin, low-viscosity layer, has mean thickness h and dynamic viscosity µ2 while the bulk has
viscosity µ1 > µ2. All other notation are similar to the ones used in §2.1.2.

On the surface of the filament (dimensionless form), rs = (δ + ρ̄ cosθ)x+ ρ̄ sinθy+ zz,
the distribution of surface velocities is u2(δ + ρ̄ cosθ ,θ ,z) = ε cossx, which can be written
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Fig. 2.7 Waving motion of amplitude δ in the circular cross-section of a three-dimensional
waving filament of radius ρ in a two-fluid domain. The solid blue line (inside) indicates the
instantaneous position of the filament, the dashed gray line the average location of the cross
section, while the solid red line (outside) shows the interface between the thin low-viscosity
layer (mean thickness h; dynamic viscosity µ2) and the bulk fluid (viscosity µ1 > µ2).

in polar coordinates as

u2(δ + ρ̄ cosθ ,θ ,z) = ε cosθ coss, v2(δ + ρ̄ cosθ ,θ ,z) =−ε sinθ coss. (2.48)

Expanding the velocity components around the averaged position of the surface Eq. (2.21),
at first order

u(1)2 (ρ̄,θ ,z) = cosθ coss, v(1)2 (ρ̄,θ ,z) =−sinθ coss, w(1)
2 (ρ̄,θ ,z) = 0. (2.49)

I assume that the interface r = h̄+ ρ̄ ≡ l undergoes no radial motion and apply continuity
of the tangential components of velocities and traction leading to the conditions

u(1)1 (l,θ ,z) = u(1)2 (l,θ ,z) = 0, (2.50a)

v(1)1 (l,θ ,z) = v(1)2 (l,θ ,z), w(1)
1 (l,θ ,z) = w(1)

2 (l,θ ,z), (2.50b)(
∂w(1)

1
∂ r

+
∂u(1)1

∂ z

)∣∣∣∣
r=l

= β

(
∂w(1)

2
∂ r

+
∂u(1)2

∂ z

)∣∣∣∣
r=l

, (2.50c)

[
r

∂ (v(1)1 /r)
∂ r

+
1
r

∂u(1)1
∂θ

]∣∣∣∣
r=l

= β

[
r

∂ (v(1)2 /r)
∂ r

+
1
r

∂u(1)2
∂θ

]∣∣∣∣
r=l

, (2.50d)

where, as in §2.2.1, β denotes the ratio of viscosity, β = µ2/µ1 < 1.
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Using separation of variables,

u(1)1 = u1q(r)cosθ coss, v(1)1 = v1q(r)sinθ coss, w(1)
1 = w1q(r)cosθ sins, (2.51a)

u(1)2 = u2q(r)cosθ coss, v(1)2 = v2q(r)sinθ coss, w(1)
2 = w2q(r)cosθ sins, (2.51b)

and substituting Eq. (2.51) into the Eq. (2.50), the boundary conditions become

u2q(ρ̄) = 1, v2q(ρ̄) =−1, w2q(ρ̄) = 0, (2.52a)

u1q(l) = u2q(l) = 0, v1q(l) = v2q(l), w1q(l) = w2q(l), (2.52b)

w′
1q(l)−u1q(l) = β [w′

2q(l)−u2q(l)], (2.52c)

v′1q(l)−
v1q(l)

l
− u1q(l)

l
= β

[
v′2q(l)−

v2q(l)
l

− u2q(l)
l

]
. (2.52d)

Then using the general solution in Eq. (2.26), with coefficients A1, B1, C1 for fluid #1,
ensuring the correct decay in the far field, and coefficients A2, B2, C2, D, E, F for fluid #2.

Substituting this general solution into the boundary conditions in Eq. (2.52), a linear
system with 9 coefficients is,

ρ̄K1(ρ̄)A2 +K2(ρ̄)B2 +K0(ρ̄)C2 + ρ̄I1(ρ̄)D+ I2(ρ̄)E + I0(ρ̄)F = 1,(2.53a)

K2(ρ̄)B2 −K0(ρ̄)C2 + I2(ρ̄)E − I0(ρ̄)F =−1,(2.53b)

[ρ̄K0(ρ̄)−K1(ρ̄)]A2 +K1(ρ̄)B2 +K1(ρ̄)C2 − [ρ̄I0(ρ̄)+ I1(ρ̄)]D

−I1(ρ̄)E − I1(ρ̄)F = 0,(2.53c)

lK1(l)A1 +K2(l)B1 +K0(l)C1 = 0,(2.53d)

lK1(l)A2 +K2(l)B2 +K0(l)C2 + lI1(l)D+ I2(l)E + I0(l)F = 0,(2.53e)

K2(l)B1 −K0(l)C1 −K2(l)B2 +K0(l)C2 − I2(l)E + I0(l)F = 0,(2.53f)

[lK0(l)−K1(l)]A1 +K1(l)B1 +K1(l)C1 − [lK0(l)−K1(l)]A2 −K1(l)B2 −K1(l)C2

+[lI0(l)+ I1(l)]D+ I1(l)E + I1(l)F = 0,(2.53g)[
2K0(l)−2lK1(l)+

K1(l)
l

]
A1 +

[
K1(l)

l
−2K2(l)

]
B1 −

[
2K0(l)−

K1(l)
l

]
C1

−β

[
2K2(l)−2lK1(l)+

K1(l)
l

]
A2 −β

[
K1(l)

l
−2K2(l)

]
+β

[
2K0(l)+

K1(l)
l

]
C2

+β

[
2I0(l)+2lI1(l)−

I1(l)
l

]
D+β

[
I1(l)

l
+2I2(l)

]
E +β

[
2I0(l)−

I1(l)
l

]
F = 0,(2.53h)

−K1(l)A1 −K3(l)B1 +K1(l)C1 +β [K1(l)A2 +K3(l)B2 −K1(l)C2

+I1(l)D− I3(l)E + I1(l)F ] = 0,(2.53i)
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Fig. 2.8 Ratio between the swimming velocity in the two-fluid domain, U (2), and that obtained
in the case of a single Newtonian fluid, U (2)

∞ , as a function of the mean dimensionless distance
between the cylindrical filament and the fluid interface, kh; (a): the dimensionless radius
is fixed, kρ = 0.1, and three values of viscosity ratios are considered (β = 0.01, 0.1 and
0.5); (b): fixed viscosity ratio (β = 0.1), and three different values of dimensionless radius
(kρ = 0.01, 0.1 and 0.5).

which can be easily inverted numerically.
The last step consists in moving to next order and computing the swimming speed. This

is done similarly to the case with a finite slip length, and we apply Eq. (2.30) with Λ = 0.
The average of w(2)

2 on the filament is the swimming speed, U (2), is

U (2) =
1
4

[
w′

2q(ρ̄)+
w2q(ρ̄)

ρ̄

]
, (2.54)

which can be evaluated as

U (2) =
1
4
{−B2K0(ρ̄)−C2K0(ρ̄)+A2[3K0(ρ̄)− ρ̄K1(ρ̄)]

−EI0(ρ̄)−FI0(ρ̄)−D[3I0(ρ̄)+ ρ̄I1(ρ̄)]} .
(2.55)

In Fig. 2.8 I plot the ratio between the swimming speed of the filament in the two-fluid
domain, U (2), and that obtained in the case of a simple fluid, U (2)

∞ , for a range of values of
the dimensionless radius (kρ , i.e. ρ̄) and viscosity ratio (β ). The results are reminiscent of
the ones shown in Fig. 2.6 for the two-dimensional case. The swimming speed is always
increased by the presence of a second fluid, potentially by order of magnitude when the
wavelength of the swimmer and its radius are large compared to the thickness of the low-
viscosity layer.
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2.3 Discussion

In this chapter, I presented a physical mechanism for the locomotion enhancement of mi-
croscopic swimmers in a complex fluid. The physical idea is that phase-separation near the
surface of the swimmer leads to the presence of a low viscosity layer which promotes slip
and decreases viscous friction. As a way to intuitively rationalize the results in our paper, we
note – as is well known – that the locomotion in a fluid is governed by the ratio between the
drag coefficients for the motion relative to the fluid perpendicular to and along the surface
of the swimmer [83]. The presence of a fluidic interface, or of a finite slip length, affects
normal hydrodynamic forces only weakly but leads to a systematic decrease of tangential
viscous forces, and hence should always lead to faster swimming, as observed here. In a
different context, but with some physical similarities, swimmers also always enhance their
swimming speed in a network of polymer molecules [97] and in a porous medium [87].

Beyond the traditional geometrical assumptions made in this work which are similar to a
number of classical studies (namely solving the swimming problems for small amplitude
motion and perfectly sinusoidal waveforms), one severe restriction of our two-fluid approach
is the assumption that the interface between the two fluids remains flat. This is akin to saying
that the time scale of the waving motion is much faster than the time scale for the readjustment
of the interface, which is a reasonable assumption only for large fluid viscosities. That flat
interface then provides an effective confinement to the swimmer, which is known to enhance
locomotion [113]. A more sophisticated physicochemical model including molecular details
of the phase separation would be required to solve for the dynamics of the thin film and to
untangle the relative importance of viscosity difference vs. confinement in the increase of the
swimming speed.

What are the quantitative predictions of our models? In two dimensions, the speed of a
two-dimensional infinite swimming sheet is increased by 1+2kΛ for the swimming with
wave number k. Slip lengths of polymer solutions, Λ, have been measured in the range
0.1− 10 µm [101]. For a microswimmer with wavelength λ = 2π/k ≈ 10 µm [83], the
swimming speed can then be increased by O(10%) up to by one order of magnitude. In
the three-dimensional case, I also obtained the increased speed shown in Fig. 2.4, which is
consistent with the two-dimensional situation. Considering the same wavelength, and for
a filament with radius ρ = 150 nm (so with dimensionless radius kρ ≈ 0.1), the predicted
enhancement ranges from O(30%) up to by forty times of the speed in the Newtonian fluid.

In the second model, I used a two-fluids domain to describe wall depletion. In both two-
and three-dimensions, when the wall depletion layer is very thin, the enhancement can be
very large. A recent experiment by Gagnon, Shen and Arratia [46] considered the locomotion
of the nematode C. elegans in concentrated polymer solutions and showed that the swimming
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speed can be increased significantly, by up to 65%. Is my model consistent with this result?
The thickness of the low-viscosity layer in concentrated polymer solutions is a complex
function of mean diameter of the particles and the concentration but can be estimated using
the empirical formula [66]

h
Dp

= 1− φ

φm
, (2.56)

where Dp is the mean diameter of the particles, φ the particle volume fraction, and φm the
maximum packing fraction. The diameter of the particle (Xanthan gum in the experiment
of Ref. [46]) is about 200 µm. For semi-concentrated solution, φ/φm is 0.4, while for a
concentrated solution the value is 0.8, so the slip layer thickness is around 120 µm and 40 µm
respectively. The wavelength of the swimming worm is 2π/k ≈ 1 mm, and the dimensionless
diameter kρ is about 0.1. When the ratio of the viscosities β changes from 0.01 to 0.5, the
enhancement predicted by our model is about 90−98%, which is less than a factor of two
away from the experimental results, and indicates that our simplified approach captures the
essential physics of the swimming enhancement.



Chapter 3

Slip slender-body theory

Although the swimming sheet model is simple enough, it is still not very realistic for its
limitation of small deformation. People thus think about the geometry that can more generally
represent biological structures including the flagellar filaments, cilia, microtubules, etc. By
observing all these shapes, it is natural to consider a slender geometry that the character
length L is much larger than the breadth a. Solving the flow disturbed by an arbitrary slender
body would not be trivia. We know that the analytical solution of Stokes equation can
be derived only in a few situations. For example Stokes calculated the problem that an
isolated sphere translating in a viscous fluid [126], and Oberbeck extended the problem to
the spheroid case [104], which can give the solution for a special case of slender body with
straight centerline.

However, the idea of slender-body theory (SBT) allowed us calculate the flow asymp-
toticly. The idea is came up with by Hancock [59] stating that taking advantage of slenderness
(a ≪ L), the flow induced by the translating motion is asymptoticly the same as that due to
an appropriate line distribution of Stokelets. Stokeslet represents the flow induced by a single
point force [59, 73, 55]. Using this idea, Hancock and Gray introduced resistive force theory
(RFT) which states that the local force is proportional with the local velocity [59, 53]. If
considering directions tangential and perpendicular with the body, mathematically RFT is
described as

f∥ =−ξ∥u∥, f⊥ =−ξ⊥u⊥, (3.1)

where ξ∥,⊥ are local drag coefficients asymptoticly satisfies

ξ⊥ ≈ 2ξ∥. (3.2)

This relation illustrates the physical origin that triggers swimming at low Reynolds number.
The anisotropy in drag allows the body to create force not align with the direction of
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movement, which leads to the possibility to generate non-zero time-averaged propulsion [82].
Flowing this idea, more systematical methods of SBT were vigorously developed during
1970’s [8, 31, 131, 70, 47, 65, 88]. Here we review two important methods illustrated by
Cox and Lighthill.

Cox solved the flow by matching the inner solution that is close to the filament and the
outer solution far away from it. Inner solution is locally the two dimensional flow induced by
a cylinder, which diverges logarithmically according to Stokes’ paradox [85], while outer
solution is the flow induced by a line distribution of Stokeslets and Dipoles which diverges
as 1/r. Comparing the forms of inner and outer solution, the full solution is expanded
logarithmically as the order of ln(L/a) and can be systematically derived order by order.

Since Cox’s SBT gives the series solution that converges logarithmically, which is slow,
more terms are necessary to be included for accurate result. Another method which is less
rigorous but easier to implement is provided by Lighthill. He measured the flow at each
point by separating the filament into a local region around that point with length scale of 2q
satisfying a ≪ q ≪ L and a non-local region outside. In the local region, the flow is induced
by both stokeslets and dipoles, while in the non-local region, it is stokeslets only. This set-up
is intuitively correct since dipoles decay as r−2 which is much faster than stokeslets. By
adding up the local and non-local results, the velocity of the centerline is independent with
the choices of this intermediate length q, which is described as

U(s) =
f⊥

4πµ
+

1
8πµ

∫

|∆|>a
√

e/2
f ·
(

I
R
+

RR
R3

)
d∆. (3.3)

f is the local strength of stokeslets and f⊥ is its normal component. Comparing to the
expansion of logarithmic terms, his formulation is easier to implement to numerics, though it
is only valid to order of

√
a/L [82].

All of these classical results illustrated above are valid for no-slip boundary condition.
To study the locomotion in some complex environments with slip effect, discussions of
the situations with slip boundary condition are thus required. Using Navier slip boundary
condition as explained in the previous chapter, the study of slip was initiated from a sphere,
with which the drag coefficient was calculated theoretically by Basset [1]. When it comes
to spheroid or ellipsoid, the derivation becomes less straightforward than those for no-slip
cases, leading to numerical measurements of resistant coefficients for rotation [62, 142, 26]
and translation motion [69, 25]. Recently, Sherwood theoretically studied the geometry of a
disk with zero thickness [117].

In this chapter I analytically derive the classical results of resistant coefficients and SBT
with Navier slip boundary condition. In §3.1 I first calculate the flow through asymptotic
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Fig. 3.1 Geometry of slender body, with total length L, and radius b(s) changing along the
centerline rc. The centerline moves with velocity U(s). Two frames are defined in this set-up;
e j is the cartesian coordinate and i j is the local cartesian coordinate. The small number ε is
defined as the ratio of the breadth to length b/L, λ is the local radius rescaled by ε .

expansion in logarithms, and therefore extend Cox’s SBT to slip case. Then in §3.2, I move
back to a simpler geometry of a straight rod and calculate the tangential and normal resistant
coefficients of translating motions. Next in §3.3 I follow Lighthill’s method and derive an
easily implemented form of SBT. At last in §3.4, I compare my results with the numerical
evaluations [69, 25] and demonstrate a good agreement in between.

3.1 Asymptotic expansion in logarithms

3.1.1 Set-up

I consider a slender body with centerline rc(s), s is the arc length. Let us assume the cross
section of the body is circular, with radius b(s) changing with arc length. The total length is
L, which is much larger than the radius L ≪ b. The geometry is shown in FIG. 3.1. If the
radial direction is er, the surface of the body is described as
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rc(s)+b(s)er(s). (3.4)

The centerline translates with velocity U(s), which induces the flow field u that satisfies
Stokes equation

µ∇
2u = ∇p, ∇ ·u = 0. (3.5)

On the filament surface, Navier’s slip boundary condition [102] is applied, with which the
normal velocity is continuous with that of the surface, while the tangential velocity has a
jump proportional to stress. The proportional coefficient is slip length Λ depending on the
flow environment and the surface material. For example, in polymer solutions, slip length has
been measured in the range 0.1−10 µm, which is also affected by the concentration [101].
Here I assume Λ is constant and the mathematical description of the boundary condition is

u(r = rc +ber) = U+2Λ(I− erer) ·E · er, (3.6)

where E is the strain rate evaluated near the surface. According to the slenderness assumption
b ≪ L, I define a small number ε which is the aspect ratio of the body

ε = b0/L, (3.7)

where b0 is the characteristic radius (for example we can choose the maximum radius along
the centerline).

Next let us nondimensionalise variables with length scale L and characteristic velocity
U0 (magnitude of the disturbance velocity).

s = Ls̄, b = Lελ , U =U0Ū, p =
µU0

L
p̄,Λ = LΛ̄, (3.8)

where λ (s) is the rescaled radius of unit order. Substitute dimensionless variables into Eq. 3.5
and 3.6, equations becomes

∇̄
2ū = ∇̄p̄, ∇̄ · ū = 0. (3.9)

with boundary condition

ū(r̄ = r̄c + ελer) = Ū+2Λ̄(I− erer) · Ē · er (3.10a)

ū(r̄ = ∞) = 0. (3.10b)
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For convenience, we drop off all the ’bars’, following calculations will be all in dimensionless
form.

3.1.2 Inner solution

First I consider the flow close the filament at point s, which is locally two dimensional flow
induced by a cylinder. As shown in FIG. 3.1, I first build a local Cartesian frame [i1, i2, i3],
where i1 is the direction alone the axis and i2 is chosen in the plane expanded by i1 and U.
This assumption is only for the purpose of simplifying the calculation, with which U only
has two components which can be written as

U(s) =U1i1 +U2i2. (3.11)

Another local frame needed is the cylindrical coordinates [er,eθ ,ez], where ez = i1. Along
the center, the radius changes as the order of ε , so first we expand the flow in orders of ε ,

u = u(0)+ εu(1)+ ... (3.12a)

p = p(0)+ ε p(1)+ ... (3.12b)

Substitute into Eq. 3.9, the leading order equation is

∇
2u(0) = ∇p(0), ∇ ·u(0) = 0. (3.13)

Then I introduce a position vector relative to the centerline r̂,

r̂ = r− rc(s′), (3.14)

substitute it into Eq. 3.10, the surface is represented by r̂ = ελer and the boundary condition
becomes

u(r̂ = ελ (s′)er) = U(s′)+2Λ
[
I− er(s′)er(s′)

]
·E(s′) · er(s′) (3.15)

Note that I use s′ to denote an arbitrary point at centerline while s is the fixed point at which
I need to derive the flow. Since the body is long and slender, it is not surprising to assume
that the variables change slowly along the centerline, with the variation same order of the
length. With this assumption, the variables including the radius λ , velocity U, strain rate E
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and the radial direction er can be Taylor-expanded around point s,

λ (s′) = λ (s)+O(ε), (3.16a)

U(s′) = U(s)+O(ε), (3.16b)

E(s′) = E(s)+O(ε), (3.16c)

er(s′) = er(s)+O(ε). (3.16d)

Substitute into Eq. 3.15, the leading order of the boundary condition is

u(0)(ελ (s),θ ,s′) = U(s)+2Λ[I− er(s)er(s)] ·E(0)(s) · er(s), (3.17)

writing it in cylindrical coordinates

u(0)r (ελ (s),θ ,s′) = U2 cosθ , (3.18a)

u(0)
θ
(ελ (s),θ ,s′) = −U2 sinθ +Λ

[
r

∂

∂ r

(
u(0)

θ

r

)
+

1
r

∂u(0)r

∂θ

]
, (3.18b)

u(0)z (ελ (s),θ ,s′) = U1 +Λ

[
∂u(0)z

∂ r
+

∂u(0)r

∂ z

]
. (3.18c)

Since u(0)i are assumed as the same order while r is order of ε , so that we claim the strain
rate along the radial direction should be much larger than that in axial direction, which is

∂u(0)r

∂ z
≪ ∂u(0)z

∂ r
. (3.19)

Using this relation the boundary condition can be further simplified to

u(0)r (ελ (s),θ ,s′) = U2 cosθ , (3.20a)

u(0)
θ
(ελ (s),θ ,s′) = −U2 sinθ +Λ

[
r

∂

∂ r

(
u(0)

θ

r

)
+

1
r

∂u(0)r

∂θ

]
, (3.20b)

u(0)z (ελ (s),θ ,s′) = U1 +Λ
∂u(0)z

∂ r
. (3.20c)
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Next let us consider the conservation equation that ∇u(0) = 0. Since
∂u(0)z

∂ z
≪ ∂u(0)r

∂ r
, the

term related to z can be neglected so that the stream function ψ is introduced as

u(0)r =
1
r

∂ψ

∂θ
, u(0)

θ
=−∂ψ

∂ r
. (3.21)

Substitute into ∇u(0) = 0, ψ satisfies a biharmonic equation that

∇
4
ψ = 0. (3.22)

Considering the boundary condition at infinity in Eq. 3.10(b) the solution is assumed
with form [31]

ψ(r,θ) = (Ar lnr+Br+Cr−1)sinθ +(αr lnr+β r+ γr−1)cosθ , (3.23)

where A, B, C, α , β and γ are constant coefficients. Substitute into Eq. 3.21, the flow field is

u(0)r = (A lnr+B+Cr−2)cosθ − (α lnr+β + γr−2)sinθ , (3.24a)

u(0)
θ

= −[A(lnr+1)+B−Cr−2]sinθ − [α(lnr+1)+β − γr−2]cosθ . (3.24b)

And we calculate the strain rate E(0) with components

r
∂

∂ r

(
u(0)

θ

r

)
= (Ar−1 lnr+Br−1 −3Cr−3)sinθ , (3.25a)

+(αr−1 lnr+β r−1 −3γr−3)cosθ , (3.25b)

1
r

∂u(0)r

∂θ
= −(Ar−1 lnr+Br−1 +Cr−3)sinθ (3.25c)

−(αr−1 lnr+β r−1 + γr−3)cosθ . (3.25d)

Substitute Eq. 3.24 and 3.25 into Eq. 3.20(a)(b), we obtain a linear system of coefficients A,
B, C, α , β and γ ,

A lnελ +B+C(ελ )−2 = U2, (3.26a)

α lnελ +β + γ(ελ )−2 = 0, (3.26b)

A(lnελ +1)+B−C(ελ )−2 = U2 +4ΛC(ελ )−3, (3.26c)

α(lnελ +1)+β − γ(ελ )−2 = 4Λγ(ελ )−3. (3.26d)
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Define a ratio
χ =

ελ

2(ελ +2Λ)
, (3.27)

and solve the system by canceling A and α , other coefficients are

B = U2 − (lnελ +χ)A, (3.28a)

C = (ελ )2
χA, (3.28b)

β = −(lnελ +χ)α, (3.28c)

γ = (ελ )2
χα. (3.28d)

Substitute Eq. 3.28 into Eq. 3.24, the inner flow is

u(0)r = A
[
ln

r
ελ

−χ +χ(ελ )2r−2
]

cosθ

−α

[
ln

r
ελ

−χ +χ(ελ )2r−2
]

sinθ +U2 cosθ , (3.29a)

u(0)
θ

= −A
[
ln

r
ελ

+1−χ −χ(ελ )2r−2
]

sinθ

−α

[
ln

r
ελ

+1−χ −χ(ελ )2r−2
]

cosθ −U2 sinθ . (3.29b)

We still need to calculate the axial velocity uz which satisfies

∇
2uz =

1
µ

∂ p
∂ z

. (3.30)

Since
∂ p
∂ z

≪ ∂ p
∂ r

, the right hand side can be treated as zero and u(0)z satisfies a harmonic
equation. If we separate the motion into a normal motion and an axisymmetric motion. As
the normal motion leads to zero velocity on z direction, u(0)z should only be contributed
by axisymmetric motion, and the axial velocity is only a function of r. Combing all these
conditions, the axial component has the form

u(0)z = D lnr+E, (3.31)

Where D and E are new coefficients relating to axial field. Substitute Eq. 3.31 back to
boundary condition along the axial direction in Eq. 3.20(c), u(0)z is solved as

u(0)z = D
(

ln
r

ελ
+

Λ

ελ

)
+U1. (3.32)
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Finally I have three coefficients A, α and D. Observing the form of solution, the singular
terms diverge logarithmically near the filament, which is consistent with the argument of two
dimensional flow. The form of inner solution naturally leads to the expansion in logarithms.
The coefficients are thus expanded as orders of 1/ lnε ,

A =
A(1)

lnε
+

A(2)

ln2
ε
+ ... (3.33a)

α =
α(1)

lnε
+

α(2)

ln2
ε
+ ... (3.33b)

D =
D(1)

lnε
+

D(2)

ln2
ε
+ ... (3.33c)

Also let us expand u(0) as

u(0)r = u(00)
r +

1
lnε

u(01)
r + ... (3.34a)

u(0)
θ

= u(00)
θ

+
1

lnε
u(01)

θ
+ ... (3.34b)

u(0)z = u(00)
z +

1
lnε

u(01)
z + ... (3.34c)

Substitute Eq. 3.33 and 3.34 into Eq. 3.29 and 3.32, the leading order of the flow is solved as

u(00)
r = −[A(1)−U2]cosθ +α

(1) sinθ , (3.35a)

u(00)
θ

= [A(1)−U2]sinθ +α
(1) cosθ , (3.35b)

u(00)
z = −D(1)+U1. (3.35c)

Next order solution (O(1/ lnε) is

u(01)
r =

[
A(1)

(
ln

r
λ
−χ

)
−A(2)

]
cosθ −

[
α
(1)
(

ln
r
λ
−χ

)
−α

(2)
]

sinθ , (3.36a)

u(01)
θ

= −
[
A(1)

(
ln

r
λ
+1−χ

)
−A(2)

]
sinθ

−
[
α
(1)
(

ln
r
λ
+1−χ

)
−α

(2)
]

cosθ , (3.36b)

u(01)
z = D(1)

(
ln

r
λ
+

Λ

ελ

)
−D(2). (3.36c)

Higher order terms can be derived systematically. Note that the leading order is same as that
in Ref. [31], slip length appears in the term of order of 1/ lnε .
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3.1.3 Outer solution and matching

Next I consider the flow far away from the body, which is induced by a line of stokeslets.
Denote the outer flow û, the velocity around point s is

û(s) =
1

8π

∫ 1

0
f(s′) ·

(
I
R
+

RR
R3

)
ds′, (3.37)

where
R = r(s)+ rer(s)− r(s′), R = |R|, (3.38)

and f is the point force exerted by the body on the fluid. Now the question is to obtain the
force density along the centerline. Before giving the result, we look at the force density and
the corresponding induced singular field. For the general form of constant force density

f = f1i1 + f2i2 + f3i3, (3.39)

the singular part of the flow would be

−
(

f1

2π
i1 +

f2

4π
i2 +

f3

4π
i3
)

lnr. (3.40)

I already calculated the flow field in Eq. 3.29 and 3.31, consider the relation between the
force and the velocity, the singular part of velocity is

(Di1 +Ai2 −αi3) lnr, (3.41)

and the corresponding point force density should be

f =−2πDi1 −4πAi2 +4παi3. (3.42)

Consider that if the thickness of the filament tends to be zero, the flow field will be
undisturbed leading to zero velocity. Matching with Eq. 3.35, coefficients A(1), α(1) and D(1)

are evaluated as
A(1) =U2, α

(1) = 0, D(1) =U1. (3.43)
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Expand û and f as orders of
1

lnε
,

û =
û(1)

lnε
+

û(2)

ln2
ε
+ ... (3.44a)

f =
f(1)

lnε
+

f(2)

ln2
ε
+ ... (3.44b)

and combine Eq. 3.42 and 3.43, the leading order force density is

f(1) =−2πU1i1 −4πU2i2. (3.45)

Substitute Eq. 3.44 and 3.45 into Eq. 3.37, the leading order integration is

û(1) =−1
4

∫ 1

0
[U1(s′)i1(s′)+2U2(s′)i2(s′)] ·

(
I
R
+

RR
R3

)
ds′ (3.46)

In order to evaluate Eq. 3.46, we separate it into nonlocal and local regions with an
intermediate length δ which satisfies ε ≪ δ ≪ 1,

û(1) = û(1)
NL + û(1)

L . (3.47)

Since the integral kernel diverges at s′ = s where R ∼ ε , the leading order should be
contributed by the local integration, in which the force can be Taylor-expanded as

f(1)(s′) = f(1)(s)+O(∆), (3.48)

where ∆ = s− s′. Then the force can be treated as a constant and pulled out of the integration.

û(1)
L =

1
8π

∫ s+δ

s−δ

f(1)(s′) ·
(

I
R
+

RR
R3

)
ds′

=
f(1)(s)

8π
·
∫ s+δ

s−δ

(
I
R
+

RR
R3

)
ds′+o(1).

(3.49)
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Change integration variable to ∆ and substitute Eq. 3.38 into Eq. 3.49 , the integration
becomes

J =
∫ s+δ

s−δ

(
I
R
+

RR
R3

)
ds′

=
∫

δ

−δ

I√
∆2 + r2

+
∆2ezez +2r∆erez + r2erer

(∆2 + r2)
3
2

d∆.

(3.50)

Using the integration results,

∫
δ

−δ

1√
∆2 + r2

d∆ = 2ln
2δ

r
+o(1), (3.51a)

∫
δ

−δ

r2

(∆2 + r2)
3
2

d∆ = 2+o(1), (3.51b)

the local integration is evaluated as

J =

(
4ln

2δ

r
−2
)

i1i1 +
(

2ln
2δ

r
+2cos2

θ

)
i2i2 +

(
2ln

2δ

r
+2sin2

θ

)
i3i3

+2sinθ cosθ i2i3 +2sinθ cosθ i3i2 +o(1).
(3.52)

Substitute Eq. 3.45 into Eq. 3.49, the local flow is

û(1)
L =−1

4
(U1i1 +2U2i2) ·J. (3.53)

Then substitute Eq. 3.52 into Eq. 3.53 and include the non-local integration. The leading
order (order of 1/ lnε) of the outer field written in components is

û(1)1 =

(
1
2
− ln

2δ

r

)
U1 + û(1)

NL · i1, (3.54a)

û(1)2 = −
(

ln
2δ

r
+ cos2

θ

)
U2 + û(1)

NL · i2, (3.54b)

û(1)3 = −sinθ cosθU2 + û(1)
NL · i3. (3.54c)

To match with the inner solution we transfer Eq. 3.54 to cylindrical coordinates using

ur = u2 cosθ +u3 sinθ , (3.55a)

uθ = −u2 sinθ +u3 cosθ , (3.55b)

uz = u1. (3.55c)
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Then the components in cylindrical coordinates are

û(1)r =

[
−
(

ln
2δ

r
+1
)

U2 + û(1)
NL · i2

]
cosθ +

[
û(1)

NL · i3
]

sinθ , (3.56a)

û(1)
θ

=
[
û(1)

NL · i3
]

cosθ +

[
−
(

ln
2δ

r

)
U2 − û(1)

NL · i2
]

sinθ , (3.56b)

û(1)z =

(
1
2
− ln

2δ

r

)
U1 + û(1)

NL · i1. (3.56c)

Now we can compare the order 1/ lnε term in outer solution with that inner solution in
Eq. 3.36. Substitute Eq. 3.43 into Eq. 3.36, inner solution is rewritten as

u(01)
r =

[(
ln

r
λ
−χ

)
U2 −A(2)

]
cosθ +α

(2) sinθ , (3.57a)

u(01)
θ

= α
(2) cosθ +

[
−
(

ln
r
λ
+1−χ

)
U2 +A(2)

]
sinθ , (3.57b)

u(01)
z =

(
ln

r
λ
+

Λ

ελ

)
U1 −D(2). (3.57c)

Compare Eq. 3.56 with Eq. 3.57, the coefficients A(2), α(2) and D(2) are evaluated as

A(2) =

(
ln

2δ

λ
+1−χ

)
U2 − û(1)

NL · i2, (3.58a)

α
(2) = û(1)

NL · i3, (3.58b)

D(2) =

(
ln

2δ

λ
+

Λ

ελ
− 1

2

)
U1 − û(1)

NL · i1. (3.58c)

3.1.4 Force density on the body

Now we have obtained the velocity field and then measure the force on the body. Considering
Eq. 3.42, which is the force density exerted by the body, the force on the body exerted by the
flow f⋆ is

f⋆(s) =−f(s) = 2πDi1 +4πAi2 −4παi3. (3.59)

Expand f⋆ in logarithms

f⋆ =
f⋆(1)

lnε
+

f⋆(2)

ln2
ε
+O

(
1

ln3
ε

)
, (3.60)
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and substitute Eq. 3.43 and Eq. 3.58 into Eq. 3.60, the first two orders are evaluated as

f⋆(1)

2π
= U · [2I− tt], (3.61a)

f⋆(2)

2π
=

[(
ln

2δ

λ

)
U− û(1)

NL

]
· [2I− tt]

+U ·
[

2(1−χ)I+
(

2χ +
Λ

ελ
− 5

2

)
tt
]
, (3.61b)

where t is the tangential vector that t = i1 =
drc(s)

ds
, and û(1)

NL is the non-local integration
which is

û(1)
NL =

1
8π

∫ s−δ

0
+
∫ 1

s+δ

f1(s′) ·
(

I
R
+

RR
R3

)
ds′

=−1
4

∫ s−δ

0
+
∫ 1

s+δ

U · [2I− tt] ·
(

I
R
+

RR
R3

)
ds′.

(3.62)

This is final result of the SBT I derived with Navier slip boundary condition. Comparing to
orginal result in Ref. [31], the slip length Λ only show up from the second order. Slip length
becomes important when χ is of order one, so that λ is order of ε . So this derivation is valid
when slip length is the same order of the radius.

3.2 Distribution of flow singularities for straight rods

In this section, I consider a special case of a translating rod. By assuming constant force
density, the flow can be calculated directly. I will discuss two cases that the rod translates
along the direction parallel (Fig. 3.3(a)) and normal (Fig. 3.3(b)) to the axis respectively.

3.2.1 Along the axis

First I consider a rod translating along the axis, which is shown in Fig. 3.3(a), and the
centerline moves with velocity

U =U∥ez, (3.63)

where ez is the axial direction vector. Note that if there is no explaination the notation is
consistent with that in the last section. Due to the axisymmetry, the slip boundary condition
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Fig. 3.2 Rod translates with slip boundary condition along the axis (a) and along the direction
perpendicular to the axis (b).

would be

ur(s,ελ (s)) = 0 (3.64a)

uz(s,ελ (s)) = U∥+Λ
∂uz

∂ r

∣∣∣∣
r=ελ (s)

. (3.64b)

I first assume constant force density that

f = f∥ez, (3.65)

then the flow field induced by this force density would be

u(s,r) =
f∥

8π
ez ·
∫ 1

0

(
I
R
+

RR
R3

)
ds′ (3.66)

Substitute integration result in Eq. 3.52, we have

u(s,r) =
f∥

4π

[
2ln

2
√

s(1− s)
r

−1+o(1)

]
ez. (3.67)
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Next we consider the boundary condition in Eq. 3.64 and calculate the strain rate term

∂uz

∂ r
=−

f∥
2πr

, (3.68)

and on the boundary it satisfies

f∥
4π

[
2ln

2
√

s(1− s)
ελ (s)

−1

]
=U∥−Λ

f∥
2πελ (s)

. (3.69)

Then the force density is linear with the velocity which has relation

f∥ =
4πU∥

2ln
2
√

s(1− s)
ελ (s)

−1+
2Λ

ελ (s)

. (3.70)

Here we see that the result is conflict with our assumption that the force density is constant.
Although it is not accurate solution, we can still discuss how it varies along the centerline. If
the magnitude changes slowly enough, the result will still be asymptoticly valid. I choose the
radius in the center as the length scale of the radius, so we have

λ

(
1
2

)
= 1. (3.71)

As I assume the radius changes slowly along the centerline, or can be alternatively illustrated
as that the variation of the radius is the same order of the total length, we can expand the
force density around the center point,

f∥ =
4πU∥

2ln
1
ε
−1+

2Λ

ε


1−

(
s− 1

2

) 2λ
′
(

1
2

)(
1− Λ

ε

)

2ln
1
ε
−1+

2Λ

ε

+O

((
s− 1

2

)2
)

 . (3.72)

For symmetric shape, for example spheroid or cylinder, we have λ ′(1/2) = 0, then

f∥ =
4πU∥

2ln
1
ε
−1+

2Λ

ε

[
1+O

((
s− 1

2

)2
)]

. (3.73)
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As (s−1/2)2 ≤ 0.25, we say the value of force density varies slowly along the body, and the
force density is approximately

f∥ =
4πU∥

2ln
1
ε
−1+

2Λ

ε

. (3.74)

3.2.2 Perpendicular to axis

In the second problem, I consider the normal translation with velocity

U =U⊥i2. (3.75)

The slip boundary condition is

ur(s,ελ (s)) = U⊥ cosθ (3.76a)

uθ (s,ελ (s)) = −U⊥ sinθ +Λ

[
r

∂

∂ r

(uθ

r

)
+

1
r

∂ur

∂θ

]∣∣∣∣
r=ελ (s)

. (3.76b)

Similarly I first assume constant force density,

f⊥ = f⊥i2, (3.77)

and the flow would be

us(s,r,θ) =
f⊥
8π

i2 ·
∫ 1

0

(
I
R
+

RR
R3

)
ds′. (3.78)

Note that different from the axial translation case, we will see that the flow induced by the
stokeslets can not be matched with boundary condition, dipole is thus needed. So here I use
’s’ to denote velocity induced by the stokeslets. Substitute the integration result in Eq. 3.52,
we obtain

us(s,r,θ) =
f⊥
8π

[(
2ln

2
√

s(1− s)
r

+2cos2
θ

)
i2 +2sinθ cosθ i3

]

=
f⊥
4π

[
ln

2
√

s(1− s)
r

i2 + cosθer

]
.

(3.79)

The induced flow field is not aligned along the direction of i2, so we need to include
dipoles to match the boundary condition. Following the same procedure, assume the dipole
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density is constant
g = gi2, (3.80)

then the flow is integrated as

ud(s,r,θ) =
g

4π
i2 ·
∫ 1

0

(
I

R3 −
3RR
R5

)
ds′. (3.81)

Then substitute Eq. 3.38 into Eq. 3.81 and change integration variable with ∆, the integration
becomes

K =
∫ 1

0

(
I

R3 −
3RR
R5

)
ds′

∼
∫ s

s−1

(
I

R3 −
3RR
R5

)
d∆

∼
∫ s

s−1

(
I

(∆2 + r2)
3
2
−3

∆2ezez + r2erer

(∆2 + r2)
5
2

)
d∆.

(3.82)

Calculate the integrals

∫ s

s−1

1

(∆2 + r2)
3
2

d∆ ∼ 2
r2 , (3.83a)

∫ s

s−1

r2

(∆2 + r2)
5
2

d∆ ∼ 4
3r2 , (3.83b)

and substitute it into Eq. 3.82, we obtain

r2K =
(
2−4cos2

θ
)

i2i2 +
(
2−4sin2

θ
)

i3i3
−4sinθ cosθ i2i3 −4sinθ cosθ i3i2 +o(1).

(3.84)

Substitute Eq. 3.84 into Eq. 3.81, the dipole induced velocity is

ud(s,r,z) =
g

2πr2 [i2 −2cosθer] . (3.85)

Next combine Eq. 3.79 and 3.85, we can cancel the unwanted component on the radial
direction. Assume the net field is

u⊥ = us +ud, (3.86)
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and consider the boundary condition in Eq. 3.76. Calculate the the components in cylindrical
coordinates

ur =
cosθ

4π

[
f⊥

(
ln

2
√

s(1− s)
r

+1

)
− 2g

r2

]
, (3.87a)

uθ = −sinθ

4π

[
f⊥ ln

2
√

s(1− s)
r

+
2g
r2

]
(3.87b)

and the strain rate terms

r
∂

∂ r

(uθ

r

)
=

sinθ

4πr

[
f⊥

(
ln

2
√

s(1− s)
r

+1

)
+

6g
r2

]
, (3.88a)

1
r

∂ur

∂θ
= −sinθ

4πr

[
f⊥

(
ln

2
√

s(1− s)
r

+1

)
− 2g

r2

]
. (3.88b)

Substitute Eq. 3.87 and3.88 it into Eq. 3.76, we obtain

f⊥

(
ln

2
√

s(1− s)
ελ (s)

+1

)
− 2g

ε2λ 2(s)
= 4πU⊥ (3.89a)

−
[

f⊥ ln
2
√

s(1− s)
ελ (s)

+
2g

ε2λ 2(s)

]
= −4πU⊥+

8Λg
ε3λ 3(s)

. (3.89b)

Solve for g and f⊥, we obtain that g is linear with the force density as

g =
ε3λ 3

4(ελ +2Λ)
f⊥ =

χε2λ 2

2
f⊥ (3.90)

to match the boundary condition and the force density is

f⊥ =
4πU⊥

ln
2
√

s(1− s)
ελ (s)

+1−χ(s)

. (3.91)

Again the solution here is conflict with the assumption of constant force density. With
the same approach of expansion, we can prove that the force changes slowly along the
centerline. I assume λ (1/2) = 1 and expand the force around the point, and the force density
is approximately

f⊥ =
4πU⊥

ln
1
ε
+1− ε

2(ε +2Λ)

, (3.92)
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Fig. 3.3 Lighthill’s singularity construction for the slender-body theory of flagellar hydro-
dynamics. To evaluate the flow near the point s, the body is separated into inner and outer
region by an intermediate length δ which satisfies a ≪ δ ≪ L. The flow is presented by that
induced by a line distribution of stokeslets along the whole centerline and dipoles only in the
inner region.

which is a constant. As discussed before, slip becomes important when it the slip length has
the same scale with the radius, then I define a ratio of the slip length to ε ,

γ =
Λ

ε
, (3.93)

which is order 1 according to the assumption. Combine with Eq. 3.74 and 3.92, and introduce
the resistance coefficients ξ∥ and ξ⊥, we obtain the resistive force theory with Navier slip
condition that

f ⋆∥ =−ξ∥U∥, f ⋆⊥ =−ξ⊥U⊥, (3.94)

where f ⋆ represents the force exerted by flow on the rod. The coefficients are

ξ∥ =
2π

ln
1
ε
− 1

2
+ γ

, (3.95a)

ξ⊥ =
4π

ln
1
ε
+

1
2
+

2γ

1+2γ

. (3.95b)

Compare Eq. 3.95 with Lighthill’s result in Ref. [88], the resistant coefficient is a function of
the γ . In the case of zero slip length, γ = 0, it is consistent with the Lighthill’s.

3.3 Slender-body theory

In the previous section, I have obtained the relation between the dipole density and force
density to match the boundary condition. Using this relation in Eq. 3.90 I derive Lighthill’s
SBT [89] for slip in this section. The idea is to consider an arbitrary slender body and choose
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an intermediate length δ that satisfies ε ≪ δ ≪ 1. Define that the inner region is |∆| ≤ δ , and
the outer region |∆|> δ . The velocity of the filament is induced from stokelets and dipoles
with relation in Eq. 3.90. Let us see the orders of velocity in two regions respectively. In
the inner region, the velocity induced by the stokelets is O(1/ lnε) and the velocity induced
by the dipoles is O(1). In the outer region, the velocity from stokeslets is O(1/ lnδ ) while

from dipoles it is O
(

ε2

δ 2

)
. If we keep all the terms as large as order 1, then we consider

a line of stokeslets along the whole centerline and dipoles with density linear with that of
force (Eq. 3.90) only in the inner region. Consider the slip boundary condition in Eq. 3.6,
mathematical interpretation of the velocity is

U = UI +UO, (3.96a)

UI =
[
uI

s +uI
d −2Λ(I− erer) ·

(
EI

s +EI
d
)
· er
]∣∣

r=ελ (s), (3.96b)

UO =
[
uO

s −2Λ(I− erer) ·EO
s · er

]∣∣
r=ελ (s), (3.96c)

in which the upper indices ’I’ and ’O’ represents the inner and outer regions, and the lower
indices ’s’ and ’d’ indicate the velocities or strain rates induced from stokeslets and dipoles.
The velocity and strain rates are represented by the integrals

uI
s =

∫

|∆|≤δ

f
8π

·
(

I
R
+

RR
R3

)
d∆,

uI
d =

∫

|∆|≤δ

g
4π

·
(

I
R3 −

3RR
R5

)
d∆,

uO
s =

∫

|∆|>δ

f
8π

·
(

I
R
+

RR
R3

)
d∆,

EI
s,d =

∇uI
s,d +(∇uI

s,d)
T

2
, EO

s =
∇uO

s +(∇uO
s )

T

2
.

What is important in this description is that, different from no slip case, the velocity of the
body is not equal to the fluid velocity near the surface, so that we cannot directly use the
fluid velocity to represent the body motion. Instead, we need to subtract the slip velocity
which is proportional to the stress according to Eq. 3.6.

I first calculate the velocity induced by inner region. Consider Eq. 3.90 and assume
constant force density

f = f∥i1 + f⊥i2, (3.97a)

g =
χε2λ 2

2
f⊥i2. (3.97b)



48 Slip slender-body theory

Substitute integration results in Eq. 3.52 and 3.84 into Eq. 3.96b, we have

uI
s =

f∥
4π

(
2ln

2δ

r
−1
)

i1 +
f⊥
4π

[(
ln

2δ

r
+ cos2

θ

)
i2 + sinθ cosθ i3

]
,

uI
d =

g
2πr2

[
(1−2cos2

θ)i2 −2sinθ cosθ i3
]
.

Then the components of the total flow uI
s +uI

d in cylindrical coordinates are

uz =
f∥

4π

(
ln

2δ

r
−1
)

(3.98a)

ur =
f⊥ cosθ

4π

(
ln

2δ

r
+1−χ

ε2λ 2

r2

)
(3.98b)

uθ = − f⊥ sinθ

4π

(
ln

2δ

r
+χ

ε2λ 2

r2

)
. (3.98c)

Separate the velocity along the axial and normal directions

UI =U∥i1 +U⊥i2, (3.99)

and write the U∥ and U⊥ with cylindrical components of uI
s +uI

d , we have

U∥ =

[
uz −Λ

∂uz

∂ r

]∣∣∣∣
r=ελ (s)

(3.100a)

U⊥ =

√
u2

r +

[
uθ −Λ

(
r

∂

∂ r

(uθ

r

)
+

1
r

∂ur

∂θ

)]2∣∣∣∣
r=ελ (s)

. (3.100b)

Substitute Eq. 3.98 into Eq. 3.100, we have

U∥ =
f∥

4π

(
2ln

2δ

ελ
−1+

2Λ

ελ

)
(3.101a)

U⊥ =
f⊥
4π

(
ln

2δ

ελ
+1−χ

)
. (3.101b)

By introducing a new parameter

q(s) =
1
2

ελ (s)e
1
2− Λ

ελ (s) , (3.102)
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we can write Eq. 3.101 as

U∥ =
f∥

2π
ln

δ

q
, (3.103a)

U⊥ =
f⊥
8π

(
3−2χ − 2Λ

ελ

)
+

f⊥
4π

ln
δ

q
. (3.103b)

Substitute into Eq. 3.99 and consider the inverse result of Eq. 3.84, the inner velocity can be
written as the integration form

UI(s) =
f⊥
8π

(
3−2χ − 2Λ

ελ

)
+
∫

q(s)<|∆|≤δ

f
8π

·
(

I
R
+

RR
R3

)
d∆. (3.104)

Then we consider the velocity induced by the outer region which is

UO =
[
uO

s −2Λ(I− erer) ·EO
s · er

]∣∣
r=ελ (s), (3.105)

where

EO
s =

∫

|∆|>δ

f
8π

·
(

IR
R3 − 3RRR

R5

)
d∆. (3.106)

The order of uO
s is O(1/ lnδ ), and the order of EO

s is O
(
δ−1), then the order of the second

term in Eq. 3.105 is O(Λ/δ ). As we assumed slip length is the same order of radius, the
second term should be much smaller than the first term. Taking advantage of this, δ can be
cancelled and the velocity of the centerline would be

U(s) =
f⊥
8π

(
3−2χ − 2Λ

ελ

)
+

1
8π

∫

|∆|>q(s)
f ·
(

I
R
+

RR
R3

)
d∆. (3.107)

When the slip length is zero, χ = 1/2 (Eq. 3.27), and the result is consistent with Lighthill’s
[89]. Considering Eq. 3.102, parameter q which represents the length of the integration
region, is also a function of slip length. When the slip length is zero, it is consistent with no
slip case in which q ∼ 0.82b (recall the notation of radius b = ελ ). With larger slip length,
the length of local region decreases exponentially. For example for Λ/b = 0.5,1,2, we have
q/b = 0.5,0.3,0.1.
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3.4 Validation and comparison

With the Navier slip assumption, I now have extended the SBT of Cox’s in Eq. 3.61 and
Lighthill’s in Eq. 3.107. In between I also calculated the resistance coefficients for translating
rods in Eq. 3.95. In the section, I first compare the the SBT result with the resistance coeffi-
cients derived and prove the consistency, then compare the coefficients with the numerical
results that have been obtained for spheroid.

3.4.1 Validation of slip SBT

First consider the rod translating along the axis with velocity

U =U i1, (3.108)

substitute it into Eq. 3.62 and calculate the integration is evaluated as

uNL
1 = ln

δ√
s(1− s)

. (3.109)

Then substitute Eq. 3.109 into Eq. 3.61, we have

f⋆1
2π

= U i1 (3.110a)

f⋆2
2π

=

[
ln

2
√

s(1− s)
λ

+
Λ

ελ
− 1

2

]
U i1. (3.110b)

Substitute into the logarithmical expansion of f⋆ and U , and consider the resistive force
theory in Eq. 6.4, the logarithmical expansion of the tangential resistance coefficient is

ξ∥
2π

=− 1
lnε

− 1
ln2

ε

[
ln

2
√

s(1− s)
λ

+
Λ

ελ
− 1

2

]
+O

(
1

ln3
ε

)
(3.111)

Then I compare it with Eq. 3.70 by expand Eq. 3.70 as

ξ∥
2π

=
1

ln
2
√

s(1− s)
ελ

− 1
2
+

Λ

ελ

=− 1
lnε

[
1+

1
lnε

(
ln

2
√

s(1− s)
λ

+
Λ

ελ
− 1

2

)
+O(ln2

ε)

]
,

(3.112)
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which shows is consistent with Eq. 3.111. Similarly, we can consider the rod translates along
the direction normal to the axis,

U =U i2, (3.113)

with the slip SBT we obtain

f⋆1
4π

= U i2, (3.114a)

f⋆2
4π

=

[
ln

2
√

s(1− s)
λ

+1−χ

]
U i2, (3.114b)

leading to the normal resistance coefficient expanded as

ξ⊥
4π

=− 1
lnε

− 1
ln2

ε

[
ln

2
√

s(1− s)
λ

+1−χ

]
+O

(
1

ln3
ε

)
, (3.115)

which can be easily proved to be consistent with Eq. 3.91.

3.4.2 Comparison with numerical results

We now have approximate local resistance coefficients for rods in Eq. 3.95. As mentioned
in the beginning, for the geometry of spheroid, although it is not straightforward to de-
rive the drag coefficient analytically, numerical methods have been used to measure it. In
Ref. [69, 25], Keh and Chang measured the tangential and normal drag coefficients for
spheroids with a range of aspect ratios. I pick the data for relatively long and thin geometries
with aspect ratios ε = 0.1 and 0.05, and compare it with my result in Eq. 3.95. The compari-
son is shown in FIG. 3.4.

We observe that for thinner shape, my result matches more accurately. And the error
increases with Λ/ε because in the asymptotics, we assume Λ/ε ∼ O(1), and the expansion
in logarithms breaks when Λ ≫ ε| lnε|.

3.5 Discussion

In this Chapter, I derive a slender-body theory with Navier slip boundary condition. In
particular, I calculate the corresponding resistance coefficients in Eq. 3.95. We observe that
the tangential resistance coefficient decrease significantly with increasing slip length, while
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Fig. 3.4 Compare the theoretical results with numerical results from Keh and Chang
[69](tangential) and [25](normal). (a) The tangential coefficient ξ∥ for the spheroid with
ε = 0.1. (b)The tangential coefficient ξ∥ for the spheroid with ε = 0.05.(c) The tangential
coefficient ξ⊥ for the spheroid with ε = 0.1. (d) The ratio of ξ∥ to ξ⊥.
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Fig. 3.5 Plot the ratio of resistance coefficients for ε = 0.001.

the resistance coefficient of normal direction is relatively less dependent on the change of slip
length. For example, we consider a very thin rod with aspect ratio ε = 0.001. Introducing a
ratio of resistance coefficients γξ = ξ∥/ξ⊥ which is evaluated as

γξ =

ln
1
ε
+1− ε

2(ε +2Λ)

2ln
1
ε
−1+

2Λ

ε

, (3.116)

we plot γξ with respect to slip length in FIG. 3.5. When the slip length is large, tangential
resistance coefficient is much smaller than that along the normal direction. Intuitively we
consider the swimming enhancement provided by slip effects is due to the reduction of
viscous friction, and the influence from such boundary condition is much weaker along
the normal direction comparing to along the tangential direction. The study in this chapter
provide a quantitative evidence for this understanding.





Chapter 4

Hydrodynamic interactions between
biological filaments

In previous two chapters, I focus on slip effect, which generally exists in complex fluids
and plays an important role in locomotion of micro-swimmers. Inspired by classical studies
for no-slip boundary condition, I develop analytical models for swimming with slip and in
particular I propose a new mechanism for swimming enhancement. In all the problems that
have been discussed, I study only a single filament. However, in many situations, for example
most types of bacteria, more than one filament are involved in swimming. From this chapter,
I will consider multiple filaments and discuss how the hydrodynamic interactions between
the filaments affect the flow.

In this chapter, I first consider two filaments close to each other and show that analytical
progress can be achieved by taking advantage of a separation of length scales. A generic
two-filament setup (as in Fig. 1b) is characterized by three length scales: the filament radius,
a; the separation distance between the filaments, h; and the filament length, L. While far-field
studies focus on the limit h ≫ L,a, many biological situations are in the opposite near-field
limit, for example in the case of waving cilia arrays [15], for which a,h ≪ L, i.e. slender
filaments close to each other compared to their typical size. I show here that in the special
case where a ≪ h, i.e. for filaments thinner than any other length scale in the problem, the
hydrodynamic interactions between the filaments can be analytically integrated out, leading
to a set of simplified local equations at leading order in the limit a ≪ h ≪ L. The final
results, illustrated on a simple model of two interacting rigid filaments, will allow to tackle
theoretically a range of problems in biological physics. The model will be illustrated in §4.1,
and an application of the result for planner wave will be shown in §4.2.
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vortex was found to have a linear relation with the angular
position difference, which corresponds to the head-head dis-
tance in our simulations.

So far, we have considered sperm with a single beat fre-
quency. In nature, sperm of the same species always have a
wide distribution of beat frequencies. For example, the beat
frequency of sea-urchin sperm ranges from 30–80 Hz !1",
and the frequency of bull sperm ranges from 20–30 Hz !36".
Thus, we assign different beat frequencies to two sperm, f1
=1 /120 and f2=1 /119.4, corresponding to !f / f1#0.5%,
but set the same initial phases "s=0. This implies that the
phase difference of the beats between the two sperm in-
creases linearly in time,

!" = 2#$f2 − f1%t . $11%

Figure 3 shows the head-head distance versus time. It agrees
very well with the data for fixed phase differences. At tf1
=150 where !"&1.5#, the sperm trajectories begin to de-
part.

Figure 4 shows two cooperating human sperm swimming
in an in vitro experiment near a glass substrate !39,40". The
two sperm swim together for more than 6 s at a beat fre-
quency of approximately 8 Hz. Their tails remain synchro-
nized during this time, while the head-head distance and
phase difference increases with time $see Fig. 4%. After a
while, the sperm leave each other because the phase differ-
ence becomes too large. There is no indication of a direct
adhesive interaction between the sperm.

An interesting question is whether the cooperation of a
sperm pair reduces the energy consumption. Figure 5 dis-
plays the energy consumption of two sperm with the same
beat frequency f =1 /120 as a function of the phase differ-
ence. The energy consumption P is nearly constant at small
phase difference. It increases for !"$0.5# roughly linearly
until it reaches another plateau for !"$1.5#. The second
plateau corresponds to two sperm swim separately, so that
energy consumption is twice the value of a single sperm. Our
results are in agreement with the conclusion of Taylor !5"
that less energy is dissipated in the fluid if the tails are syn-
chronized.

Figure 5 also shows the energy consumption of two sperm
with f1=1 /120, f2=1 /119.4, and "1="2=0 as a function of
time t. In this simulation, we start with two sperm which are
parallel and at a distance d=5. For tf1%25, the energy con-

sumption decreases as the sperm are approaching each other.
The data agrees quantitatively very well with results for con-
stant !", and reaches a plateau when the cooperating sperm
pair departs.

The synchronization and attraction also exists in our
simulation of swimming flagella without heads. In this case,
the time-reversal symmetry of Stokes flow implies that no
synchronization nor attraction is possible at zero Reynolds
number. In our simulations, the thermal fluctuations and a
finite Reynolds number break the time-reversal symmetry.

B. Asymmetric sperm

In nature, sperm have an abundance of different shapes. In
particular, these shapes are typically not perfectly symmetric.
The asymmetric shape can cause a curvature of the sperm
trajectory !7,41". For example, sea-urchin sperm uses the
spontaneous curvature of the tail to actively regulate the
sperm trajectory for chemotaxis !42,43". In our simulations,
we impose an asymmetry of the tail by employing a nonzero
spontaneous curvature c0,tail.

We consider curved sperm tails, with c0,tail=0.04 /a,
which results in a mean curvature of the trajectory of a single
sperm of cta=0.041&0.009. For sperm with curved tails, the
head-head distance dh$!"% is not symmetric about !"=0, as
shown in Fig. 6. Here !" is defined as the phase of the
sperm on the inner circle minus the phase of the sperm on
the outer circle. The steric repulsion of the heads causes a
plateau of the head-head distance at dh=5 for small phase
differences !", as in Fig. 3 for symmetric sperm. For !"
%−# /2 and !"'# /4, the head distance increases linearly
with increasing phase difference, with a substantial differ-
ence of the slopes for !"%0 and !"'0, see Fig. 6. The
two sperm depart when !"'0.7#. For !"(−2.0#, the
sperm pair briefly loses synchronicity, but then rejoins with a
new phase difference !"!=!"+2#.

The energy consumption P for sperm with spontaneous
curvature $see Fig. 7% also increases sharply at !"=0.8# and

FIG. 4. Snapshots of two synchronized human sperm in experi-
ment at different times !39,40". $Left% Two sperm with initially well
synchronized tails and very small phase difference. $Middle% The
sperm are still swimming together and are well synchronized after
4 s; a phase difference has developed. $Right% The sperm begin to
depart after 7 s. The scale bar corresponds to a length of 25 )m.

FIG. 5. $Color online% Energy consumption per unit time P of
two cooperating sperm. Symbols show simulation data for fixed
phase difference $red, !%, where error bars denote the standard
deviation. P versus time t in a simulation with a 0.5% difference in
the frequencies of two sperm $solid black line%.

COOPERATION OF SPERM IN TWO DIMENSIONS:… PHYSICAL REVIEW E 78, 061903 $2008%

061903-5

Fig. 4.1 (a) Four examples where biological filaments interact through a viscous fluid
(clockwise from top left): flagellar filaments of peritrichous bacteria; two spermatozoa
synchronizing their flagella; the two flagella of Chlamydomonas; epithelium cilia. (b)
Schematic representation of prototypical situation of interest: two slender filaments of length
L and cross-sectional radius a located at distance h from each other.

4.1 Long-wavelength integration

4.1.1 Set-up

Consider the two filaments in Fig. 1b, numbered #1 and #2. Denote the location of the
centerline to filament i as r(s, t) where s is the arclength, and let t(i)(s) = ∂r(i)/∂ s be its
unit tangent. Since the filament is slender (a ≪ L), resistive-force theory [88] states that the
hydrodynamic force densities on each filament, f(1) and f(2), are proportional to the local
velocity of the filament relative the background fluid i.e.

f(1) = −
[
ξ∥t(1)t(1)+ξ⊥

(
I− t(1)t(1)

)]
·
(

∂r(1)

∂ t
−v(2)→(1)

)
, (4.1a)

f(2) = −
[
ξ∥t(2)t(2)+ξ⊥

(
I− t(2)t(2)

)]
·
(

∂r(2)

∂ t
−v(1)→(2)

)
, (4.1b)

where all fields are implicitly functions of s and t and where ξ⊥ and ξ∥ are the drag coefficients
for motion in the direction perpendicular and parallel to its local tangent [88]. I compute
below the hydrodynamic force density acting on filament #1, the other one being deduced
by symmetry. In Eq. 4.1a, the term v(2)→(1) denotes the flow induced by the motion of
filament 2 near filament 1: it represents the effect of hydrodynamic interactions and the goal
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Fig. 4.2 (a) Ilustration of method to compute hydrodynamic interactions. The integration
region is divided into local region with length 2δ and non-local region. (b) Geometric
relations between d, d0 and R; R is the distance between points on two rods; εhd the
projection in x− y plane; εhd0 is the local separation distance.

of this work is to show how to calculate its value. As filament #2 undergoes in general both
rotational and translational motion, I split v(2)→(1) into the flows induced by local moments,
v(2)→(1)

M (rotation), and those induces by local forces, v(2)→(1)
F (translation). We then write

v(2)→(1) = v(2)→(1)
M +v(2)→(1)

F , (4.2)

and calculate the values of each term in the long wavelength limit, h ≪ L.

4.1.2 Point moments (rotlets)

To simplify the presentation, I focus in detail on the derivation of the first velocity term,
v(2)→(1), induced by the rotational motion of filament #2, while the value of v(2)→(1) is
computed along similar lines (see below). Note that while v(2)→(1) is exactly zero for non-
rotating filaments, e.g. in the case of the planar waving flagella of spermatozoa, it will
be important in other situations involving rotation, e.g. the dynamics of bacterial flagellar
filaments. Since a ≪ h, the flow may be described by a superposition of flow singularities. If
m(2) denotes the hydrodynamic torque density acting on filament #2, the flow is given as a
line of integral of rotlets (or point torques) as [8]

v(2)→(1)
M (s) =

∫ L

0

−m(2)(s′)
8πµ

× R(s,s′)
R(s,s′)3 ds′, (4.3)
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where s and s′ are the arclengths along filaments 1 and 2 and R(s,s′) = r(1)(s)− r(2)(s′) is
the relative position vector with magnitude R (all quantities are implicit functions of time).
If filament 2 rotates relative to the background fluid with rotation rate ω(2)(s′) then it is a
classical result that m(2)(s′) =−ξrω

(2)(s′)t(2)(s′), where the resistance coefficient in rotation
is ξr = 4πµa2.

Next I nondimensionalize lengths by L, leading to two dimensionless numbers: the
filament aspect ratio, εa = a/L, and the distance-to-size ratio, εh = h/L. Times are nondi-
mensionalized by a relevant time scale T . The integral from Eq. 4.3 becomes then in
dimensionless form

v̄(2)→(1)
M (s̄) =

ε2
a
2

∫ 1

0
ω̄(s̄′)(2)t(2)(s̄′)× R̄(s̄, s̄′)

R̄(s̄, s̄′)3 ds̄′, (4.4)

and I drop the bars for notation convenience.
Since we are in the long wavelength limit, εh ≪ 1, the typical radius of curvature

of the filaments, L2/h, is much larger than h, and thus it is natural to use cartesian co-
ordinates (Fig. 2). I denote ez the unit vector along the mean direction of the (approx-
imately) parallel filaments and describe the instantaneous geometry of each filament as
r(i)(t,s(i)) = [εhx(i)(t,s(i),εhy(i)(t,s(i)),s(i)] where s(1) = s and s(2) = s′. Introducing the
notation ∆ = s− s′ and the planar vector d(s;s′) = [x(1)(s)− x(2)(s′),y(1)(s)− y(2)(s′),0] of
magnitude d = |d|, then the relative position vector R is written by separating direction along
and perpendicular to the filaments as R = ∆ez + εhd, with magnitude R =

(
∆2 + ε2

h d2)1/2.
The schematic representation of how the integration is performed is shown in Fig. 2a with

detailed notation in Fig. 2b. The method is inspired by a classical calculation due to Lighthill
where, in order to describe the flow induced by the motion of a single filament, he separated
the flow induced by point singularities into local and nonlocal terms using an intermediate
length scale on which the filament was still slender but almost straight [9]. I introduce an
intermediate length scale δ satisfying εh ≪ δ ≪ 1 and split the integration into two regions:
(1) a nonlocal region, |∆| ≥ δ , where the distance between two points on the filaments is
dominated by R ∼ |∆| since εh ≪ δ (resulting velocity denoted vNL); and (2) a local region
where |∆| ≤ δ , and for which in the limit δ ≪ 1 we can approximate R ∼ (∆2 + ε2

h d2
0)1/2

where d0 is the local filament-filament distance d0(s)= d(s;s′= s) (resulting velocity denoted
vL). The final result, sum of vNL and vL, should then be independent of the value of δ .

Changing the variable of integration in Eq. 4.4 to ∆ = s− s′, the non-local contribution to
the integral is given by

vNL
M =

ε2
a
2

(∫ −δ

s−1
+
∫ s

δ

)[
ω

(2)(s−∆)t(2)(s−∆)× R
R3

]
d∆. (4.5)
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Since |∆| ≥ δ and εh ≪ δ , we have R(s;s−∆)≈ |∆|. Writing R = ∆ez + εhd(s;s−∆) and

t(s−∆) = ez+εht⊥(s−∆) where t⊥(s−∆) =

(
∂x(2)

∂ s′
,
∂y(2)

∂ s′
,0

)∣∣∣∣
s′=s−∆

, the integrand from

Eq. 4.5 is given by

εhω
(2)(s−∆)[ez ×d(s;s−∆)+ t⊥(s−∆)×∆ez]

1
|∆|3 · (4.6)

The leading-order term in Eq. 4.6 diverges as 1/∆3 in the limit δ → 0, leading to a final
asymptotic integral as

vNL
M =

ε2
a εh

2

(∫ s−1

−δ

+
∫ s

δ

)
ω

(2)(s−∆)ez ×d(s;s−∆)
d∆

∆3 · (4.7)

In the limit where δ → 0, the result in Eq. 4.7 diverges and is dominated by the behavior
of the integrand near the boundary, i.e. δ = 0. Calling d0 the local direction between the
filaments perpendicular to their long axis, i.e. d0 = d(s;s) (Fig. 2b), we obtain in the limit
δ → 0

vNL
M =

ε2
a εh

2δ 2 ω
(2)(s)ez ×d0, (4.8)

at leading order.
Next I consider the local integration where we have

vL
M =

ε2
a
2

∫
δ

−δ

ω
(2)(s−∆)t(2)(s−∆)

R
R3 d∆. (4.9)

In the local region, we can Taylor-expand ω(2) and d around ∆ = 0 (i.e. around s′ = s), as

(
ω(s−∆)(2)

d(s−∆)

)
=

(
ω(s)(2)

d(s)

)
+∆

(
ω

(2)
0∆

d0∆

)
+O(∆2), (4.10)

where under the long-wavelength approximation, the derivatives ω(2) and d0∆ are of order
one (i.e. the geometry and the rotation of the filaments vary on the length scale L). In that
case, each term in the integrand can be expanded and we get at leading order that only the
local values of the rotation rate, ω(2)(s), and the force, f(2)(s), enter the problem, with a local
flow given by

vL
M =

ε2
a εh

2
ω

(2)(s)
∫

δ

−δ

ez ×d0

(∆2 + ε2
h d2

0)
3
2

d∆, (4.11)
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which may be evaluated analytically asymptotically as

vL
M =

ε2
a εh

2
ω

(2)(s)ez ×d0

(
2

ε2
h d2

0
− 1

δ 2

)
· (4.12)

Adding up Eq. 4.8 and 4.12, we obtain the final flow induced by filament #2, which is
independent of the value of δ , given at leading-order by

v(2)→(1)
M =

ε2
a

εhd2
0

ω
(2)(s)ez ×d0. (4.13)

4.1.3 Point forces (stokeslets)

A similar approach may be used to evaluate the second velocity term, v(2)→(1)
F , induced by

the forcing of filament #2 on the fluid. In that case, the flow is given by a line integral of
stokeslets singularities (point forces) as

v(2)→(1)
F (s) =

∫ L

0

−f(2)(s′)
8πµ

·
(

I
R
+

RR
R3

)
ds′, (4.14)

where I is the identity tensor and f(2) the force density acting on filament #2. One notable
difference between Eq. 4.3 and Eq. 4.14 is that the integrand in Eq. 4.14 is known explicitly
(filament rotation), whereas that in Eq. 4.14 has in it the quantity we are trying to determine,
specifically the unknown force density, f(2). We can however proceed as above as long as
f(2) varies on the length scale L, and similarly for the other filament, so that the resulting
velocities in Eq. 4.1 will lead to a linear system to invert to determine both f(1) and f(2). After
nondimensionalizing force densities by 8πµL/T , the nonlocal contribution of the integral in
Eq. 4.14 is written as

vNL
F =−

(∫ −δ

s−1
+
∫ s

δ

)(
I
R
+

RR
R3

)
· f(2)(s−∆)d∆. (4.15)

In the non-local region we have R(s;s−∆)≈ |∆| and R ≈ ∆ez and thus obtain

vNL
F0 = −

(∫ −δ

s−1
+
∫ s

δ

)
f(2)(s−∆)

|∆| +
∆2[f(2)(s−∆) · ez]ez

|∆|3 d∆ (4.16a)

= −[I+ ezez] ·
(∫ −δ

s−1
+
∫ s

δ

)
f(2)(s−∆)

|∆| d∆. (4.16b)
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Here again the asymptotic behaviour in the limit δ → 0 is dominated by the behavior near
∆ = 0 and we obtain

vNL
F =−[I+ ezez] · f(2)(s)

(∫ s−1

−δ

+
∫ s

δ

)
d∆

∆
. (4.17)

whose evaluation at leading-order value is given by the logarithmic term

vNL
F = 2(lnδ )(I+ ezez) · f(2)(s). (4.18)

Next the local integration is given by the integral of

vL
F =−

∫
δ

−δ

(
I
R
+

RR
R3

)
· f(2)d∆. (4.19)

In the local region, the force can be Taylor-expanded as

f(2) = f(2)(s)+∆
∂ f(2)

∂∆

∣∣∣∣
∆=0

≡ f(2)(s)+∆f0∆, (4.20)

where again we assume that f0∆ = O(1) under the long-wavelength approximation (i.e. the
relevant length scale describing the variations of the force is the length of the filaments, L).

Substitute into Eq. 4.19, we get at leading order that only the local value of the force,
f(2)(s), enters the problem, with a local flow given by

vL
F = −

∫
δ

−δ

f(2)(s)√
∆2 + ε2

h d2
0

+
[(f(2)(s) · (∆ez + εhd0)][∆ez + εhd0]

(∆2 + ε2
h d2

0)
3/2 d∆ (4.21a)

= −
∫

δ

−δ


 f(2)(s)√

∆2 + ε2
h d2

0

+
∆2(f(2)(s) · ez)ez

(∆2 + ε2
h d2

0)
3/2 +

ε2
h (f

(2)(s) ·d0)d0

(∆2 + ε2
h d2

0)
3/2


d∆. (4.21b)

While the first two integrand each give a value which diverges in the limit δ → 0, the third
term does not, and can be neglected. We are left with two integrals. Using the integrations

∫ du
(1+u2)1/2 = ln

(
u+
√

1+u2
)
, (4.22a)

∫ u2du
(1+u2)3/2 = ln

(
u+
√

1+u2
)
− u

(1+u2)1/2 , (4.22b)
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we are able to evaluate

−
∫

δ

−δ

f(2)(s)√
∆2 + ε2

h d2
0

d∆ = 2ln
(

εhd0

δ

)
f(2)(s) (4.23)

and

−
∫

δ

−δ

∆2(f(2)(s) · ez)ez

(∆2 + ε2
h d2

0)
3/2 d∆ = 2ln

(
εhd0

δ

)[
ez · f(2)(s)

]
ez (4.24)

so that to local term is finally given by

vL
F = 2ln

(
εhd0

δ

)
(I+ ezez) · f(2)(s). (4.25)

Adding the nonlocal term with the local term, Eqs. 4.18 and 4.25, we obtain

v(2)→(1)
F = 2ln(εhd0)(I+ ezez) · f(2)(s), (4.26)

for the velocity induced by the unknown force density.

4.1.4 Dimensional results

Returning to dimensional quantities Eqs. 4.13 and 4.26 can be written as

v(2)→(1)
M =

(
a

h(s)

)2

ω
(2)(s)ez ×h(s) (4.27a)

v(2)→(1)
F =

1
4πµ

ln
[

h(s)
L

]
(I+ ezez) · f(2)(s), (4.27b)

where h(s) is the dimensional local vector between the filaments, i.e. h(s) = r1(s)− r2(s),
and h(s) its norm.

The results in Eq. 4.27, together with Eq. 4.1 are the main new results of this work. They
provide a linear, local, relationship between the force density on each filament (f(i)) and
the kinematics of their motion (ω( j) and ∂r( j)/∂ t). While derived only in the case of two
filaments with main directions parallel, these results are easily generalisable to the case of
N > 2 non-parallel filaments. As a remark, we note that one is not allowed to formally take
the limit h → 0 or h → ∞ in Eq. 4.27, as both violate the limit a ≪ h ≪ L in which these
formulae were derived.
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4.2 An example of planar motion

For planar motion (ω( j) = 0 for j = 1,2), the algebra simplifies further. In Eq. 4.1, since
h ≪ L, the tangent vectors are t = ez at leading order in h/L and since ξ⊥ ≈ 2ξ∥ [88] we
have for each filament ξ⊥I+(ξ∥−ξ⊥)tt ≈ ξ⊥[I− 1

2ezez]≡ J, so that on each filament i we
have the dynamic balance

f(i)(s, t)−J ·v( j)→(i) =−J · ∂r(i)

∂ t
, (4.28)

with j ̸= i. Given the tensorial operator appearing in Eq. 4.27b, we have to evaluate

(
I− 1

2
ezez

)
· (I+ ezez) = I, (4.29)

and we further note that ξ⊥/4πµ ≈ 1/ ln(1/εa) [88]. As a result, Eq. 4.28 simplifies for each
filament to

f(i)(s, t)+
ln(h(s, t)/L)

ln(a/L)
f( j)(s, t) =−J · ∂r(i)

∂ t
, (4.30)

with j ̸= i. Defining λ (s, t) ≡ ln(h(s, t)/L)/ ln(a/L) and Λ(s, t) ≡ 1− λ 2(s, t) (note that
Λ > 0 since a < h), this linear system can be inverted by hand and we obtain the analytical
formula for the force density f(i)(s, t) acting on filament i as

f(i)(s, t) =− 1
Λ(s, t)

J ·
(

∂r(i)

∂ t
−λ (s, t)

∂r( j)

∂ t

)
· (4.31)

I now illustrate predictions of my theory on a simple model of two rigid filaments under-
going planar motion, and compare with numerical slender-body simulations. Consider
two planar filaments of radius a, length L with centerlines located at [0,εy1(z, t),z] and
[0,h0 + εy2(z, t),z]. Assume for simplicity small amplitude motion ε ≪ 1 and let us use
our results to calculate the force density in the y direction, f (i) = f(i) · ey, in powers of the
amplitude ( f (i) = ε f (i)1 +ε2 f (i)2 + ...) in the limit a ≪ h ≪ L. Writing h = h0 +εh1, a Taylor
expansion gives ln(h/L) = ln(h0/L)+ ε1/h0 +O(ε2), which we use to evaluate Eq. 4.31 at
order ε , leading to

f (i)1 =
ξ⊥

1− [ln(h0/L)/ ln(a/L)]2

(
ln(h0/L)
ln(a/L)

∂y( j)

∂ t
− ∂y(i)

∂ t

)
· (4.32)



64 Hydrodynamic interactions between biological filaments

At order ε2, Eq. 4.30 becomes

f (i)2 +
ln(h0/L)
ln(a/L)

f ( j)
2 =− h1

h0 ln(a/L)
f ( j)
1 , (4.33)

Assuming that both y1 and y2 are periodic in time on the same period, then a time-average
of Eq. 4.32 using Eq. 4.33 leads to identical mean force densities along both filaments as
⟨ f (1)1 ⟩= ⟨ f (2)2 ⟩= f2(s), where

f2(s) =
ξ⊥ ln(a/L)

2h0[ln(h0/L)+ ln(a/L)]2

〈
y−

∂y+
∂ t

〉
, (4.34)

with y+ ≡ y(1)+y(2) and y− ≡ y(2)−y(1). For illustration purposes, let us assume that the first
filament undergoes sinusoidal rigid- body motion of the form y1(t) = R(∑n lnexp inωt) while
the second filament has the same motion with a phase difference φ , i.e. y2(t) = y1(t +φ).
Our theory, Eq. 4.34, predicts that the two-rod system will pump the fluid by exerting a net
force on it, F , of magnitude

F2 =
4πµωL

2h0[ln(h0/L)+ ln(a/L)]2 ∑
n

n|ln|2 sin(nφ)· (4.35)

Clearly Eq. 4.35 predicts zero net force for in-phase (φ = 0) and out-of-phase (φ = π) motion
and thus an optimal phase difference between the two filaments exits. We test in Fig. 3
this theoretical prediction against a numerical implementation of non- local slender-body
appropriate for interactions [65] in the case n = 1. We numerically solve for the force
distribution along each filament using a Galerkin method based on Legendre polynomials.
The net force on each filament is then computed at 15 equidistant points within a period,
and the mean force calculated. While the theoretical approach (Eq. 28) was derived only
asymptotically in the limit where a/h → 0 and h/L → 0 we see that even when these
parameters are not asymptotically small (here a/h = 0.25 and h/L = 0.1), the theoretical
prediction (solid line) is able to capture the computational results (dashed line and symbols)
with good approximation. In contrast, far-field predictions are off by more than two orders of
magnitude.

4.3 Discussion

In summary, I have used an asymptotic method to compute the hydrodynamic inter- actions
between nearby filaments undergoing arbitrary rotation and translation. The key ingredient
allowing the calculation to be carried out is to exploit the separation of length scales a ≪ h ≪
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Fig. 4.3 Fig. 3:Net force induced on the fluid by a two-rod pump, F/µωL2 , as a function of
the phase difference, phgr, between the rods. Dashed line and symbols: slender-body theory
simulations; Solid line: theory (eq. (4.35)). The dimensionless distance between the rods is
h/L = 0.1 , their aspect ratio a/L = 0.025 (so that a/h = 0.25 ) and the motion amplitude is
εℓ= h/10 .

L which enables a representation of the flow as a superposition of fundamental singularities
whose strengths vary only on long wavelengths compared to the separation between the
filaments.

Like any other asymptotic derivation, a crucial question in this work is that of the
magnitude of the error (i.e. the order of the next-order terms). To fix ideas, consider first a
single filament undergoing planar deformation with a centerline described by [x,y(x, t)]. The
classical formula for the leading-order force density, f , on the filament is f =−(ξ⊥∂y/∂ t)ey,
with (i) logarithmic corrections in the aspect ratio of the filament from next-order terms
beyond resistive-force theory, i.e. relative error O(1/ ln(L/a)) and (ii) algebraic corrections
in the typical slope of the filament, i.e. relative error O(h/L) due to the difference between
the true instantaneous geometry of the filament and its mean direction [77] The same relative
errors apply to our current work. Additional errors arise in our work near the ends of the
filaments. Specifically, in order for the non-local integrations to be carried out near the
ends of the filaments, the arclength s needs to satisfy h ≪ min(s,L− s), with logarithmically
(resp. algebraically) small relative errors in h/min(s,L− s) from filament translation (resp.
rotation). Physically, this logarithmic accuracy of local hydrodynamics is the equivalent to
that of resistive-force theory but extended to multiple filaments. Note that since h ≪ L, the
results are still able to provide the value of the hydrodynamic force density on the majority of
the filaments. I finally point out that while the addition of higher-order flow singularities than
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rotlet and stokeslets along each filament would improve the analysis, the resulting additional
terms would decay spatially algebraically and faster than the terms in Eq. 4.27, which provide
thus the leading-order contribution in the limit a ≪ h ≪ L.

The framework developed in this work will allow to address theoretically a number
of problems on the biomechanics of filaments where nonlocal hydrodynamic interactions
may be integrated out analytically for example in cytoskeletal mechanics, hydrodynamic
interactions and cellular propulsion, beyond the classical, complementary, far-field approach.



Chapter 5

Bundling of elastic filaments from
hydrodynamic interactions

One particular example involves hydrodynamic interaction is flagellar bundling and un-
bundling for petrichous bacteria (Fig. 1.1), which have attracted a lot of attention in recent
years. The presence of multiple flagella allow bacteria to undergo random walk-like tra-
jectories where long straight swimming ‘runs’ (∼1 s) are interrupted by short ‘tumbles’
(∼0.1 s) during which the cells randomly reorient [12, 95, 96]. During the run phase, all
flagella take a normal left-handed shape and are rotated in a counter-clockwise direction
(CCW, when viewed from outside the cell behind the flagella) by specialised rotatory motors
embedded in the cell wall. During a tumble, at least one motor switches its rotation direction
to clockwise (CW), the corresponding flagella fly out of the bundle and change their helical
pitch, amplitude and handedness as governed by biochemistry [22, 60, 133]. This in turn
leads to a modification of the force balance on the whole cell and its reorientation. At the
end of a tumble, all motors return to a CCW rotation, and the splayed flagella reintegrate
into the normal left-handed helical bundle behind the cell, then resumes swimming along a
straight line.

Given its relevance to one of the most fundamental forms of mobility on the planet,
the role of fluid dynamics in this process has received a lot of attention from the research
community. Experimentally, a macro-scale version of the interactions between rotated helices
[71], and subsequent flow measurements [72], showed that hydrodynamic interactions alone
were able to lead to wrapping of flexible helical filaments consistent with experimental
observations at the cellular scale [133]. Computationally, the issue of synchronization
between rotating helices was addressed [72, 109], and similarly for rotating paddles [6]. Full
simulations of the bundling process were carried using a variety of computational methods
including the use of regularized flow singularities [41], multi-particle collision dynamics
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[110, 112], finite differences [64], the immersed boundary method [92], beads-spring models
[136] and the boundary element method [67].

The process by which the flagella of peritrichous bacteria interact, repeatedly come
together and separate is complex and involves at least three important mechanical aspects:
hydrodynamic interactions between the rotating helical filaments [95, 71, 41, 109, 110, 92,
112, 67, 64], elasticity and deformation from the short flexible hook joining the rotary motors
to the flagellar filaments [109, 20] and interactions between the filaments and the rotating
body of the cell [106, 3].

In parallel to these significant computational advances, theoretical studies have not been
able yet to derive simplified models allowing it capture, from first principle, the essence
of the dynamics of the bundling and unbundling process. In this chapter, I derive the tools
required to build such a model and apply it to the case of of two rotated straight filaments.
Taking advantage of a separation of length scales for slender filaments I show that in the
long-wavelength limit the shape of the filament, obeying a balance between hydrodynamic
and elastic forces, satisfies a local nonlinear partial differential equation. Crucial to the
derivation of this equation is the integration of non-local hydrodynamic interactions which
can be done by hand in the long-wavelength limit [51, 98]. Then I study the dynamics
predicted by our model numerically and reveal the presence of two configuration instabilities,
first to a ‘crossing’ state where filaments touch as one point and then to a ‘bundled’ state
where filaments wrap along each other in a helical fashion. The derivations, which provide
a simplified approach to capture the dynamics of bundling and unbundling, should be
applicable to a wide range of problems in biological mechanics where slender filaments
interact hydrodynamically.

5.1 Interactions between two elastic filaments

5.1.1 Set-up

To address flagellar bundling as a balance between hydrodynamics and elasticity, I set up
a very simplified model illustrated in Fig. 5.1. Two naturally straight elastic filaments of
length L and radius a are rotated at their clamped ends by imposed rotation rates ω

(i)
0 where

i = 1,2 refers to the filament number. The filaments are initially parallel and separated by a
distance h0. The filaments are assumed to be located in a viscous fluid of viscosity µ . As a
result, their rotation set up rotational flows and, with the other ends of both filaments free,
will lead a helical wrapping driven purely by hydrodynamic interactions. Note that in general
the two rotation rates of the filaments are allowed to be different; however, in most of the
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Fig. 5.1 A simplified model of flagellar bundling. Two parallel elastic filaments of length L
and radius a are separated by a mean distance h0. Both filaments are rotated with speed ω

(i)
0

(i= 1,2) in a viscous fluid from their clamped end while their other end remains mechanically
free. We use cartesian coordinates with z along the filaments and x,y perpendicular to it.
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cases studied below we will consider identical rotation rate, i.e. ω
(i)
0 = ω0. Note also that

while we focus our initial derivation to two filaments, the results will generalised later in the
paper to the case of N > 2 filaments.

In order to derive an analytical model of the dynamics, we need to make a further
assumption. Looking at the typical dimensions of flagellar filament of bacteria, we see that
the three relevant length scales a, h0, and L are often in the limit where there is a clear
scale separation, a ≪ h0 ≪ L. As an illustrative example, consider the flagellar filaments
of E. coli. Each filament has a typical length L ≈ 10 µm and radius a ≈ 10 nm. The cell
body takes approximately the shape of a prolate ellipsoid of 1 µm width and 2 µm length
[133, 10]. Assuming the same scale as the body size, the distance between the proximal ends
of the flagellar filaments can be thus estimated to be around h0 ≈ 1 µm. These numbers lead
therefore to ratios a/h0 ∼ 10−2 and h0/L ∼ 10−1, which confirms this separation of scales.

Mathematically, placing ourselves in the limit a ≪ L means that each filament is slender
and we will be able to make use of resistive-force theory to compute hydrodynamic forces.
The limit h0 ≪ L means that the filaments are not in the far-field limit but in the opposite
limit where all long-range hydrodynamic interactions have to be included. Furthermore,
given that their separation will remain at most h0, this means that we will be able to treat the
problem in the long-wavelength limit, a crucial step to derive an analytical model. Finally,
the limit a ≪ h0 means that lubrication stresses can be ignored and the flow can be accurately
captured by a superposition of hydrodynamic singularities.

5.1.2 Force balance

Focusing on small-scale systems, we remain safely in the low-Reynolds number regime, and
therefore the force balance on each filament is written instantaneously as

f(i)h (s, t)+ f(i)e (s, t) = 0, (5.1)

where f(i)h (s, t) and f(i)e (s, t) refer, respectively, to the hydrodynamic and elastic forces per unit
length acting along filament i and where s refers to the arclength along the filament ranging
from s = 0 (clamped end) to s = L (free end). I denote the position vector of filament i as
r(i)(s, t).
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5.1.3 Kinematics

Assuming that all displacements remain on the order of h0, it is natural to describe the shapes
of the filaments using Cartesian coordinates (Fig. 5.1) as

r(i)(s, t) = [h0x(i)(s, t),h0y(i)(s, t),s] =
[

h0ζ
(i)(s, t),h0

(
∓1

2
+η

(i)(s, t)
)
,s
]
, (5.2)

where [x(i),y(i)] and [ζ (i),η(i)] denote the filament position and displacement scaled by h0,
respectively.

5.2 Calculation of elastic force density

5.2.1 Classical rod theory

First let us compute the elastic force density, fe, arising in Eq. 5.1. Notation-wisely, we drop
for simplicity the upper index (i) and consider one specific filament. For an inextensible
elastic filament able to both bend and twist, it is a classical result that fe contains three terms,
namely [138, 107]

fe =−A
∂ 4r
∂ s4 +C

[
Ω

(
∂r
∂ s

× ∂ 2r
∂ s2

)]

s
−
[

Λ
∂r
∂ s

]

s
. (5.3)

In Eq. 5.3 the coefficients A,C are the bending and twisting moduli of the filament, re-
spectively, Ω is the twist density and Λ is the Lagrange multiplier (tension) enforcing the
inextensibility of the filament. The conservation law for twist density (often referred to as
the compatibility equation) is [107]

∂Ω

∂ t
=

∂ω

∂ s
+

∂r
∂ s

× ∂ 2r
∂ s2 ·

[
∂r
∂ t

]

s
, (5.4)

where ω , a notation shorthand for ω(i)(s, t), is the local rotation rate of the filament around
its local centerline. In addition, the local torque balance along the filament is written as

C
∂Ω

∂ s
= ξrω, (5.5)

where ξr ≈ 4πµa2 is the local drag coefficient for rotation around the filament centerline.
Substituting Eq. 5.5 into Eq. 5.4 classically leads to a forced diffusion equation for the twist
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density as
∂Ω

∂ t
=

C
ξr

∂ 2Ω

∂ s2 +
∂r
∂ s

× ∂ 2r
∂ s2 ·

[
∂r
∂ t

]

s
. (5.6)

5.2.2 Separation of time scales

In order to appreciate the relative magnitude of each term in Eq. 5.3, I consider the physical
scalings of the various quantities of interest. The relevant time scale in Eq. 5.6 is a diffusion
time, Tt , scaling as

Tt =
ξrL2

C
· (5.7)

In contrast, balancing Eq. 5.3 with an usual hydrodynamic drag term of the form ∼ ξ⊥∂r/∂ t,
reveals that the relevant bending time scale in Eq. 5.3 is a hyper–diffusion time, Tb, scaling as

Tb =
ξ⊥L4

A
. (5.8)

In the slender limit L/a ≫ 1 we have the classical result for the drag coefficient [31, 82]

ξ⊥ ≈ 4πµ

ln(L/a)
, (5.9)

and therefore, after introducing the ratio Γ of elastic modulus,

Γ =
C
A
, (5.10)

we obtain that the ratio of twist to bending relaxation time scales is given by the scaling

Tt

Tb
∼ ε2

a ln(1/εa)

Γ
, (5.11)

where we have defined εa ≡ a/L, a small number in the slender limit. Clearly Eq. 5.11
indicates that Tt ≪ Tb. Since Tb is the time scale relevant to describe the shape of the
filaments, we will be able to separate the time scales and consider the twist problem solved
in a quasi-steady fashion [137].

5.2.3 Non-dimensionalisation

We proceed by nondimensionalising the equations using the length scale L and time scale Tb

as the relevant dimensions and we use bars to denote dimensionless variables. Following
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Eq. 5.2, we write for the position of the filament

r̄ = [εhx̄,εhȳ, s̄], (5.12)

where we have defined a second dimensionless number εh ≡ h0/L, which is assumed to be
small. Writing as well

s̄ = s/L, Λ̄ = Λ
L2

A
, f̄e = fe

L3

A
, Ω̄ = ΩL. (5.13)

we obtain the dimensionless equations as

f̄e = −∂ 4r̄(i)

∂ s̄4 +Γ

[
Ω̄

(
∂ r̄
∂ s̄

× ∂ 2r̄
∂ s̄2

)]

s̄
−
[

Λ̄
∂ r̄
∂ s̄

]

s̄
, (5.14a)

∂ Ω̄

∂ t̄
=

Γ

ε2
a ln(1/εa)

∂ 2Ω̄

∂ s̄2 +
∂ r̄
∂ s̄

× ∂ 2r̄
∂ s̄2 ·

[
∂ r̄
∂ t̄

]

s̄
· (5.14b)

Note finally that the imposed rotation is nondimensionalised as ω̄0 = ω0Tb, and the result
is related to the classical dimensionless Sperm number, Sp, quantifying a balance between
elastic and viscous drag as [82]

ω̄0 =
ξ⊥ω0L4

A
≡ Sp4. (5.15)

5.2.4 Twist equilibrium

For convenience, let us now drop the ‘bar’ notation in what follows, and except where
explicitly stated results should be assumed to be dimensionless.

Given the separation of time scales by Eq. 5.11, we expect the first term on the right-hand
of Eq. 5.14b to dominate and thus with the boundary condition at the clamped and free ends,

∂Ω

∂ s
(s = 0) =

ε2
a ln(1/εa)

Γ
ω0, Ω(s = 1) = 0, (5.16)

the twist density is given in quasi-steady equilibrium by a simple linear function

Ω =
ε2

a ln(1/εa)

Γ
ω0(s−1). (5.17)
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Substituting this result into Eq. 5.14a, we obtain the explicit formula for the elastic force
density as

fe =−∂ 4r
∂ s4 +ω0ε

2
a lnεa

[
(1− s)

(
∂r
∂ s

× ∂ 2r
∂ s2

)]

s
−
[

Λ
∂r
∂ s

]

s
. (5.18)

5.2.5 Scalings

In order to make further progress, we next compare the expected magnitude of each term in
Eq. 5.18. The first two terms clearly scale as

∂ 4r
∂ s4 ∼ εh, (5.19a)

ω0ε
2
a lnεa

[
(1− s)

(
∂r
∂ s

× ∂ 2r
∂ s2

)]

s
∼ εhε

2
a ln(1/εa)Sp4. (5.19b)

In order to derive the scaling for the third term, we need to carefully examine the equation
for the tension, Λ.

5.2.6 Tension

In order to solve for Langrange multiplier Λ explicitly, we consider the original equation for
the force density, Eq. 5.3. The inextensibility condition is mathematically written rs · rs = 1
or rts · rs = 0, where we use superscripts to denote partial derivatives. We next compute the s
derivative of the force density as

fs =

(
I− 1

2
rsrs

)
· (rts −vs)−

1
2
(rssrs + rsrss) · (rt −v)

= rts −
(

I− 1
2

rsrs

)
·vs −

1
2
(rssrs + rsrss) · (rt −v),

(5.20)

and now aim to simplify all terms involving time derivatives in Eq. 5.3. Since rs · rs = 1, it is
clear that a derivative of this equation leads to rs · rss = 0. Evaluating next the dot product
fs · rs we have

fs · rs =−vs · rs +
1
2

vs · rs −
1
2

rss · (rt −v)

=−1
2

vs · rs −
1
2

rss · (rt −v).
(5.21)
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We then calculate f · rss as

f · rss = rss · (rt −v), (5.22)

and can now eliminate all terms involving time derivatives by combining these equations as

2fs · rs + f · rss =−vs · rs. (5.23)

Substituting the equation for the elastic force, Eq. 5.3, into Eq. 5.23, we obtain

2(Λrs)ss ·rs+(Λrs)s ·rss =−2r5s ·rs+2Γ[Ω(rs×rss)]ss ·rs−r4s ·rss+Γ[Ω(rs×rss)]s ·rss+vs ·rs.

(5.24)
The terms on the left-hand side can be simplified by noting that

2(Λrs)ss · rs +(Λrs)s · rss = 2Λss +Λr3s · rs, (5.25)

while the terms on the right-hand side involving the twist density combine into

2Γ[Ω(rs × rss)]ss · rs +Γ[Ω(rs × rss)]s · rss =−ΓΩrs × r3s · rss. (5.26)

The equation for Λ takes therefore the final form

2Λss +Λr3s · rs =−2r5s · rs − r4s · rss −ΓΩrs × r3s · rss +vs · rs. (5.27)

Since s = O(1), we see that the first term on the left-hand side of Eq. 5.27 provides
the leading-order scaling for the magnitude of Λ. This needs to be balanced with the
leading-order term on the right-hand side of the equation, which includes three terms scaling
respectively as O(ε2

h ), O(ε2
h ε2

a ln(1/εa)Sp4) and O(εhv). Since v is expected to scale with f,
the term vs · rs will contribute to a higher orders, and therefore we obtain the scaling for the
final term in Eq. 5.18 as

(
Λ

∂r
∂ s

)

s
∼ O(max{ε

2
h ,ε

2
h ε

2
a ln(1/εa)Sp4}). (5.28)

5.2.7 Orders of magnitude and final scalings

In order to estimate the relative magnitude of the bending, twisting and tension terms in
the case relevant to the bundling of bacterial flagella, we need to examine the numbers
applicable in the biological world. Beyond the length scales mentioned above, we may use
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past measurements for real biological filaments [61] to obtain the estimates

ω ≈ 100 s−1, A ≈ 10−24 −10−22 Nm2. (5.29)

These numbers imply that the range in Sperm numbers is Sp ≈ 3−10. As seen in Section
5.1.1, a typical value for εa is around 10−3, and thus we see that

ε
2
a ln(1/εa)Sp4 ≪ 1. (5.30)

This in turn means that the tension in Eq. 5.30 scales in fact as

(
Λ

∂r
∂ s

)

s
∼ O(ε2

h ), (5.31)

and that the term in Eq. 5.19b can be neglected when compared with the one in Eq. 5.19a.
Since εh ≪ 1, the tension term in Eq. 5.31 may also be neglected in comparison with the
bending term in Eq. 5.19a. In the dynamical regime relevant to the helical filaments of
bacteria, the elastic force density is therefore dominated by the bending term and we have
the final result

fe =−∂ 4r
∂ s4 · (5.32)

5.3 Calculation of hydrodynamic force density

Having evaluated the elastic force density in the limit relevant to the bundling of bacterial
flagella, we here consider the second term appearing in Eq. 5.1, namely the hydrodynamic
force density. We derive its value in the long-wavelength limit; an early version of this
calculation was presented in Chapter. 4.

5.3.1 Resistive-force theory

Since the filament is slender (a ≪ L), the hydrodynamic force density is provided by resistive-
force theory, which states that the force is proportional to the local velocity of the filament
relative to the background flow [31, 82], as

f(i)h =−
[
ξ∥t(i)t(i)+ξ⊥

(
I− t(i)t(i)

)]
·
(

∂r(i)

∂ t
−v( j)→(i)

)
, (5.33)
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where v( j)→(i) denotes the flow velocity induced by the motion of filament j near filament i
(i.e. hydrodynamic interactions). The tangent vector along the filament is defined as

t(i) =
∂r(i)

∂ s
· (5.34)

The hydrodynamic resistance coefficients for motion parallel and perpendicular to the local
tangent, ξ∥ and ξ⊥, approximately satisfy

ξ⊥ = 2ξ∥, (5.35)

which leads to a simpler form of Eq. 5.33 as

f(i)h =−ξ⊥

[
I− 1

2
t(i)t(i)

]
·
[

∂r(i)

∂ t
−v( j)→(i)

]
. (5.36)

Using the scalings consistent with Eq. 5.13,

f̄h =
L3

A
fh, v̄( j)→(i) = v( j)→(i)ξ⊥L3

A
, (5.37)

the dimensionless form of Eq. 5.36 is finally given by

f̄(i)h =−
[

I− 1
2

t(i)t(i)
]
·
[

∂ r̄(i)

∂ t̄
− v̄( j)→(i)

]
. (5.38)

5.3.2 Hydrodynamic interactions

Hydrodynamic interactions between the moving filaments fundamentally arise from two
different types of motion, which will be captured by different flow singularities: rotational
motion of the filaments around their centreline (fast decaying rotlets) and translational motion
(slow decaying stokeslets). The dimensional flow field induced by the motion of filament j
near filament i, v( j)→(i), can therefore be split into two terms induced by local moments and
forces as

v( j)→(i) = v( j)→(i)
M +v( j)→(i)

F . (5.39)

Due to the wide-separation assumption, a ≪ h0, both vM and vF can be described by a
superposition of flow singularities.

Using m( j) to denote the torque density acting on filament j, and R(s,s′) the relative
position vector r(i)(s)− r( j)(s′), with magnitude R(s,s′), the flow v( j)→(i)

M is given by an
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integration of rotlets singularities [8],

v( j)→(i)
M =

∫ L

0

−m( j)(s′)
8πµ

× R(s,s′)
R(s,s′)3 ds′, (5.40)

where the minus sign arises from the fact that −m( j) is the density of moment acted from the
filament on the fluid.

Using the classical hydrodynamic result

m( j) =−ξrω
( j)t( j), (5.41)

which also Eq. 5.5, the integral becomes

v( j)→(i)
M =

∫ L

0

ξrω
( j)

8πµ
t( j)× R(s,s′)

R(s,s′)3 ds′. (5.42)

Similarly, the flow velocity induced by the translational motion is given by a linear
superposition of stokeslets as

v( j)→(i)
F (s) =

∫ L

0

−f( j)
h (s′)

8πµ
·
(

I
R
+

RR
R3

)
ds′, (5.43)

where the force density along filament j, f( j)
h , is still to be solved for.

Following the nondimensionalisation procedures from Eq. 5.13 and 5.37, the dimension-
less form of these two integrals are given by

v̄( j)→(i)
M (s̄) =

ε2
a
2

∫ 1

0
ω̄(s̄′)( j)t( j)(s̄′)× R̄(s̄, s̄′)

R̄(s̄, s̄′)3 ds̄′, (5.44a)

v̄( j)→(i)
F (s̄) =

1
2ln(1/εa)

∫ 1

0
f̄( j)
h ·
(

I
R̄
+

R̄R̄
R̄3

)
ds̄′. (5.44b)

For notation convenience, we drop the bars below to indicate dimensionless quantities in
the following derivations. Consider the integration results in previous chapter, Eq. 4.13 and
4.26, Eq. 5.44 is evaluated as

v( j)→(i)
M =

ε2
a

εhd2 ω
( j)(s)ez ×d, (5.45a)

v( j)→(i)
F =

ln(εhd)
lnεa

f( j)
h (s) · (I+ ezez) . (5.45b)
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The algebraic dependence of vM on d arises from the fast ∼ 1/r3 spatial decay of rotlets
while the logarithmic dependence in vF is a consequence of the slow ∼ 1/r decay of point
forces in Stokes flows.

5.4 Long-wavelength bundling model

With both the elastic and hydrodynamic forces evaluated asymptotically in the limit relevant
to the bundling of bacterial flagella (εa ≪ εh ≪ 1), we may now derive the long-wavelength
bundling model.

First, we substitute Eq. 5.32 and Eq. 5.38 into Eq. 5.1, so that the force balance on
filament i may now be written

∂ 4r(i)

∂ s4 +

[
I− 1

2
t(i)t(i)

]
·
[

∂r(i)

∂ t
−v( j)→(i)

]
= 0. (5.46)

As seen in Sec. 5.2.4, the twist density is quasi-steady mechanical equilibrium, and as a
consequence the local rotation rate of the filament relative to the fluid is constant, i.e. ω(i)(s)=
ω

(i)
0 . Since at leading order t(i) is ez, we have the force balance as

∂ 4r(i)

∂ s4 +

[
I− 1

2
ezez

]
·
[

∂r(i)

∂ t
−v( j)→(i)

]
= 0. (5.47)

Considering the description of the geometry in cartesian coordinates as in Eq. 6.10, we see
that

ez ·
∂r(i)

∂ t
= 0. (5.48)

Also, considering Eqs. 5.39 and 5.45, and using the fact that the force density in Eq. 5.45b is
given by Eq. 5.32, we obtain

v( j)→(i) =
ε2

a ω
( j)
0

εhd2 ez ×d− ln(εhd)
lnεa

∂ 4r( j)

∂ s4 , (5.49)

which clearly leads to
ez ·v( j)→(i) = 0. (5.50)

Substituting Eqs. 5.48 and 5.50 into Eq. 5.47, we have

∂ 4r(i)

∂ s4 +
∂r(i)

∂ t
= v( j)→(i), (5.51)
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which, when using Eq. 5.49, transforms into

∂r(i)

∂ t
+

∂ 4r(i)

∂ s4 =
ε2

a ω
( j)
0

εhd2 ez ×d− ln(εhd)
lnεa

∂ 4r( j)

∂ s4 · (5.52)

An inspection of the terms in Eq. 5.52 reveals the presence of two dimensionless numbers.
The first one, which is multiplying the bending term, is given by a ratio of logarithms

ln(εhd)
lnεa

· (5.53)

This term is not a true parameter since it depends on the local filament-filament distance,
d. However, given the presence of two logarithms, it is is expected to show only weak
dependence on it, and is thus approximately given by the ratio [51]

ln(L/h0)

ln(L/a)
· (5.54)

The second dimensionless number is more critical and controls the driving force in the
bundling dynamics. It is the one comparing the rotational component of the flow in Eq. 5.52
to the bending (or viscous terms) which scales as εh. We term this dimensionless ratio the
Bundling Number, Bu, which is therefore defined by

Bu =
ε2

a ω0

ε2
h

, (5.55)

and if different filaments have different rotation rates then clearly there will be more than
one relevant bundling numbers. Alternatively, given Eq. 5.15, the bundling number can also
be written as

Bu =
ε2

a Sp4

ε2
h

· (5.56)

As a final note, we may write the final model projected along cartesian coordinates, and
obtain

∂

∂ t

[
x(i)

y(i)

]
+

∂ 4

∂ s4

[
x(i)

y(i)

]
=

ε2
a ω

( j)
0

ε2
h d2

[
−y(i)+ y( j)

x(i)− x( j)

]
− ln(εhd)

lnεa

∂ 4

∂ s4

[
x( j)

y( j)

]
, (5.57)

where d2 = (x(1)− x(2))2 +(y(1)− y(2))2. This is the form which will be used below in the
numerical solution of the problem.
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5.5 Bundling and unbundling of elastic filaments

I have derived above the local partial differential equation describing the time-evolution
of the filaments interacting hydrodynamically. It is given in Eq. 5.52 in a vector form and
in Eq. 5.57 in cartesian coordinates. We now study numerically (with technical details
summarised in §5.5.1) the dynamics predicted by the model and focus on four situations
of interest: Two filaments with identical rotation rate (§5.5.2); N > 2 symmetric filaments
(§5.5.3); An asymmetric of arrangement of three filaments (§5.5.4) and the unbundling of
filaments (§5.5.5).

5.5.1 Numerical procedure

In order to solve Eq. 5.52, we discretise the equation spatially using second-order central
finite difference. Each filament is assumed to be clamped at its rotated end (s = 0) and free
on the other end (s = 1) and thus the boundary conditions are written as

r(s = 0, t) = r0,
∂r
∂ s

(s = 0, t) = ez, (5.58a)

∂ 2r
∂ s2 (s = 1, t) = 0,

∂ 3r
∂ s3 (s = 1, t) = 0, (5.58b)

where r0 refers to the location of the end point of the particular filament of interest. Each
filament starts initially from a straight shape given by

r(s, t = 0) = r0 + sez, 0 ≤ s ≤ 1, (5.59)

from which Eq. 5.52 is solved in time using a second-order Crank-Nicolson method. In order
to prevent the interacting filaments from touching each other and overlap, I apply numerically
a short-range repulsive potential of the form

Vr =

(
2εa

εhd

)q

. (5.60)

In the results shown in the following sections we choose the value q = 4 so that this re-
pulsion only comes into play when d ∼ a and thus does not affect any of the long-ranged
hydrodynamic features. I also tried q = 6 with no qualitative impact on the dynamics.
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5.5.2 Bundling of two filaments

Let us first consider the case of two filaments with identical rotation rate, ω0. If we denote
the projection of r on the x− y plane as r̃ = r · (I− ezez), then by symmetry we clearly have

r̃(1)(s, t)+ r̃(2)(s, t) = 0. (5.61)

Or in components,

[
x(1)

y(1)

]
+

[
x(2)

y(2)

]
= 0. (5.62)

Substituting this symmetry property into Eq. 5.57, we obtain that each filament shape satisfies

∂ r̃
∂ t

+

[
1− ln(εhd)

lnεa

]
∂ 4r̃
∂ s4 =

2Bu
d2 ez × r̃, (5.63)

written in components as

∂

∂ t

[
x
y

]
+

[
1− ln(εhd)

lnεa

]
∂ 4

∂ s4

[
x
y

]
=

2Bu
d2

[
−y
x

]
, d2 = 4(x2 + y2). (5.64)

This equation was solved numerically for a wide range of values of Bu. As will be
detailed below, we obtain three qualitatively different dynamics which we now illustrate
by focusing on three representative values of Bu (specifically, Bu = 2, 30 and 60). The
time-varying shapes of the filaments are shown as a function of time in Fig. 5.2 while in
Fig. 5.3 we plot the dimensionless bending energy of each filament as a function of time.
This bending energy defined for each filament, Eb, is proportional to the bending modulus,
and the integration of square of curvatures,

Eb =
∫ L

0

A
2
|rss|2ds. (5.65)

I define the dimensionless form, Ēb,

Ēb =
∫ 1

0
x2

s̄s̄ + y2
s̄s̄ds̄, (5.66)

with scaling

Eb =
A
2L

ε
2
h Ēb. (5.67)

In all three cases the long-time steady-state shapes are illustrated in Fig. 5.4.
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For a small value, Bu < 2, the rotating filaments each bend toward each other until
converging on steady weakly bent shapes (Fig. 5.2-5.4a). For an intermediate value, Bu = 30,
the initial dynamics is similar but then at a critical time the filaments undergo a rapid
conformation change and snap into a crossing configuration in which they remain (Fig. 5.2-
5.4b). In contrast for a high value, Bu = 60, the filaments do not remain in a crossing
configuration but instead they quickly transition to a bundled state where the filaments wrap
helically around each other all along the filament after the crossing point (Fig. 5.2-5.4c)

In order to further characterise the different steady-state conformations, I plot in Fig. 5.5
the value of the long-time dimensionless bending energy of the filaments as a function of Bu.
The results show two branches; the black solid line represents numerically results obtained
while increasing the values of Bu while the red dashed line captures the computational results
obtained by starting with a high value and decreasing Bu. Interestingly, we see that the two
transitions (bent ↔ crossing and crossing ↔ bundle) both show hysteresis loops. When
Bu increases from zero, the transitions occur approximately at Bu ≈ 2 and 40, while in the
decreasing case, the critical values are Bu ≈ 10 and 1.5.

5.5.3 N symmetric filaments

After focusing on two filaments, we can consider the more general case of N filaments
distributed symmetrically along a circular base from which they are all rotated with equal
angular velocity. This situation is sketched in Fig. 5.6.

The in-place location of filament #n is written as

r(n)(s) = [h0x(n)(s),h0y(n)(s)], (5.68)

which maybe be related to the displacements [ζ (n),η(n)] as

x(n) =
sin(n−1)θ

2
+ζ

(n), y(n) =−cos(n−1)θ
2

+η
(n). (5.69)

In order to simplify the system we define the complex number

z(n) = x(n)+ iy(n), (5.70)

which, due to the expected symmetry of the N-filament configuration, satisfies

z(n) = zei(n−1)θ . (5.71)
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To derive the dynamics equation, we first extend Eq. 5.52 to the case of N arbitrary
filaments by adding up the flows arising from hydrodynamic interactions. Using dimensional
quantities, the position of the nth filament satisfies

∂r(n)

∂ t
+

A
ξ⊥

∂ 4r(n)

∂ s4 = a2
ω0

N

∑
j ̸=n

ez × (r(n)− r( j))

|r(n)− r( j)|2 − A
ξ⊥

N

∑
j ̸=n

ln(|r(n)− r( j)|/L)
ln(a/L)

∂ 4r( j)

∂ s4 · (5.72)

The two summations in Eq. 5.72 maybe be expressed explicitly by exploiting symmetries.
Focusing on the filament with n = 1, for which we write r(1) ≡ r, we observe that

∑
l= j,N+2− j

z− z(l)

|z− z(l)|2 =
z
[
2− ei( j−1)θ − ei(N+1− j)θ

]

|z|2
[
(1− cos( j−1)θ)2 + sin2( j−1)θ

] = z
|z|2 ,

(5.73)

which is independent of j. As a result we have a first summation given by

N

∑
j=2

ez × (r− r( j))

|r− r( j)|2 = (N −1)
ez × r
2|r|2 . (5.74)

Similarly for the second summation we have

∑
l= j,N+2− j

ln |z− z(l)|∂
4z(l)

∂ s4 = 2cos( j−1)θ
[
ln |z|+ ln

√
2−2cos( j−1)θ

]
∂ 4z
∂ s4 , (5.75)

so that

N

∑
j=2

ln |r− r( j)|∂
4r

∂ s4 =
∂ 4r
∂ s4

N

∑
j=2

cos( j−1)θ
[
ln |r|+ ln

√
2−2cos( j−1)θ

]

= (αN ln |r|+βN)
∂ 4r
∂ s4 ,

(5.76)

where the coefficients αN and βN are given by

αN =
N

∑
j=2

cos( j−1)θ , βN =
N

∑
j=2

cos( j−1)θ ln
√

2−2cos( j−1)θ . (5.77)

Substituting Eq. 5.74 and 5.76 into Eq. 5.72, we obtained the simplified equation in the
case of N symmetric filaments

∂r
∂ t

+
A

ξ⊥

∂ 4r
∂ s4 = a2

ω0
(N −1)ez × r(1)

2|r|2 − A
ξ⊥ ln(a/L)

(αN ln |r/L|+βN)
∂ 4r
∂ s4 , (5.78)
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which may also be written using dimensionless variables as

∂ r̄
∂ t̄

+

[
1+

(αN ln |r̄|+βN)

lnεa

]
∂ 4r̄
∂ s̄4 =

ε2
a ω̄0(N −1)

2
ez × r̄
|r̄|2 , (5.79)

where a N-filament Bundling number is naturally defined as

BuN =
ε2

a ω̄0(N −1)
ε2

h
· (5.80)

Note that the case N = 2 which was considered earlier in the paper may be recovered
identically under this framework. Indeed we have in this case

θ =
π

2
, α2 =−1, β2 =− ln2, (5.81)

leading to
∂ r̄
∂ t̄

+

[
1− ln(2|r̄|)

lnεa

]
∂ 4r̄
∂ s̄4 =

ε2
a ω̄0

2
ez × r̄
|r̄|2 · (5.82)

Since 2r̄ = εhd, the equation is identical to Eq. 5.64.
The final equation, Eq. 5.79, allows thus to exploit symmetries in order to significantly

simplify the complicated multi-filaments problem. Qualitatively, we obtain the same three
regimes (bent, crossed, bundled) as with two filaments. Numerical results showing the
time dependence of the shapes are illustrated in Figs. 5.7 for N = 3 filaments (top) and
N = 6 (bottom) in the case of a large Bundling number, BuN = 60, leading to crossing at
intermediate times and a final bundled state.

5.5.4 Asymmetric filaments

In the situation where the distribution of filaments is not symmetric, it is possible to apply
our model by solving the coupled system of equations in Eq. 5.72. As an illustration, we
show in Fig. 5.8 the dynamics in the case of N = 3 filaments clamped and rotated with a 3:1
separation distance. The initial position of the filaments is given in a dimensional form by

r(1)0 = [0,−0.05L], r(2)0 = [0,0.25L], r(3)0 = [0,0.05L]. (5.83)

For Bu = 30 (εh is chosen as the largest ratio between filament-filament distance and L,
which is 0.1 in this case), the two filaments which are the closest to each other bundle first
together, and then bundle as a pair with the third filament located further away.
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5.5.5 Unbundling

In the biological world, swimming bacteria change their swimming direction by reversing
the rotation direction of at least one its rotary motors, leading the bundle of helical flagella
coming apart [133]. This process may be addressed with this simple model. We consider N
identically-rotating filaments in the steady bundled state and may then switch the rotation
direction of one of the filaments (i.e. switching its Bundling number to a negative value).
This is illustrated in Fig. 5.9 for N = 2 filaments (top) and N = 3 (bottom). In both cases,
the unbundling process is fast compared to the initial bundling dynamics shown Figs. 5.2
and 5.7 and it results in a separation between the negatively-rotating filament and the other
ones. With more filaments, different numbers of motors may switch directions, leading to
different unbundled states. This is illustrated in Fig. 5.10 in the case of N = 6 filaments
where we show the long-time conformation of the rotating shapes as a function of the number
of negatively-rotating filaments and their location (indicated by a red dot at their base).

5.6 Crossing instability

One of the main results predicted from our model is the occurrence of instabilities in the
conformation of the filaments. This is best seen by inspecting Fig. 5.5. The dimensionless
bending energy of the steady-state shape of each filament clearly indicates that sharp transi-
tions occur from weakly bent to crossing (Bu ≈ 2) and from crossing to bundling (Bu ≈ 40).
In addition, each transition is associated with a strong hysteresis loop.

Both crossing and bundling instabilities share the same physical origin. Hydrodynamic
interactions bend the filaments and are resisted by elastic forces. At a critical rotation rate, the
bending resistance is unable to balance the hydrodynamic stresses, and the filament transition
to a new conformation.

From a kinematic standpoint, if two nearly-straight filaments cross, their crossing is
expected to take place at either one point of along many points; indeed if two filaments
happen to cross at one point, and then are made to cross at a second location along their
length, then the remaining portion of the filaments is expected to remain in close continuous
contact. In summary, it is expected that two crossings implies in fact many crossings.

Intuitively, I propose therefore that the fundamental instability to understand is the first,
crossing instability. In this section, by focusing on the case of two filaments, I present a
theoretical approach, together with a simple two-dimensional model, to show how to predict
that instability.
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5.6.1 Small Bu analysis and analytical ansatz

We start by solving the problem for the steady-state shape of the filaments in the small-Bu
limit. The steady state of Eq. 5.64 satisfies the equation

[
1− ln(εhd)

lnεa

]
∂ 4

∂ s4

[
x
y

]
=

2Bu
d2

[
−y
x

]
. (5.84)

Based on the symmetries in the geometry, we expect x to be odd in Bu while y is expected
to be even. In the limit of small values of Bu we thus look to solve Eq. 5.84 as a regular
series expansion

x = Bux1 +Bu3x3 + ..., y =−1
2
+Bu2y2 + ..., (5.85)

and we aim to solve for the leading order deflections (x1,y2). In order to proceed with the
solution, we also need to choose values for the small dimensionless parameters εa and εh.
Given the numbers relevant to the bundling of bacterial flagella discussed in Sec. 5.1.1, we
choose the relevant values εa = 0.001 and εh = 0.01.

With these assumptions, the solution of Eq. 5.84 at O(Bu) is

∂ 4x1

∂ s4 =
3
2
· (5.86)

With the boundary conditions given in Eq. 5.58, we obtain the solution as

x1 =
s4

16
− s3

4
+

3s2

8
· (5.87)

At next order, O(Bu2), we have to solve

∂ 4y2

∂ s4 = 3x1, (5.88)

whole solution satisfying the boundary conditions in Eq. 5.58 is

y2 =
s8

8960
− s7

1120
+

s6

320
− 3s3

80
+

13s2

160
· (5.89)

Let us compare the numerical solution to the asymptotic solution in Fig. 5.11a. For find
that for Bu = 1, the agreement with between the two is very good; however for Bu = 2 (close
to the instability point), the difference between the computational solution and the theoretical
one is more important.
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In order to build a more accurate analytical model for the deflection of the filaments,
we need to correct the asymptotic solution so it remains valid up to the instability point.
To do so, we examine the shape of the filaments as obtained numerically for Bu = 1 and
Bu = 2 and plot the rescaled distance between the filaments in Fig. 5.11b as a function of the
arclength scaled by the arclength where the minimum distance occurs, sc. We linearly map d

to 1− d −1
dmin −1

, so that the minimum points both reaches zero. We see that, up to a rescaling,

the shapes at Bu = 1 and Bu = 2 are identical and the only difference is how their magnitude
scale with the change in Bu.

To construct a better analytical model, we then proceed by choosing a steady reference
state [Buo,xo(s),yo(s)] where the asymptotic solution provides a good estimate (we choose
Buo = 1). I denote by [soc,xoc,yoc] the critical point where the distance between the filaments,
d, reaches its minimum value. We then numerically track this same critical point as we
increase the value of Bu, which we denote [sc(Bu),xc(Bu),yc(Bu)]. From this, and given the
similarly of the shapes seen in Fig. 5.11b, we can construct an analytical steady-state ansatz
[Bu,x(Bu;s),y(Bu;s)] by simply scaling in x, y and s the reference analytical solution as

x(Bu;s) =
xc

xoc
xo

(
Buo;

soc

sc
s
)

(5.90a)

y(Bu;s) = −1
2
+

yc +
1
2

yoc +
1
2

[
yo

(
Buo;

soc

sc
s
)
+1/2

]
. (5.90b)

I show in Fig. 5.12 a comparison for each component of the shapes x(s) (Fig. 5.12a) and
y(s) (Fig. 5.12b) between the computations (solid lines) and the analytical ansatz (dashed
lines). We see that the ansatz, obtained analytically for Bu = 1, is able to fully capture the
shape obtained numerically at Bu = 2.

We may then use this analytical ansatz as an accurate base state, [xb(Bu;s),yb(Bu;s)],
around which we may carry out a linear stability calculation. Assuming small deviations
around the base state and exponential growth, we decompose the general shape [x(s, t),y(s, t)]
of the filament as

x(s, t) = xb(Bu;s)+ x̂(s)eσt , y(s, t) = yb(Bu;s)+ ŷ(s)eσt , (5.91)

and substitute into Eq. 5.84, leading to the linear system,

σ

[
x̂
ŷ

]
+

[
2
3
−

ln2
√

x2
b + y2

b

lnεa

][
x̂
ŷ

]

4s

= A

[
x̂
ŷ

]
, (5.92)
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where the matrix A is given by

A =




xb(xb)4s

(lnεa)(x2
b + y2

b)
+

Buxbyb

(x2
b + y2

b)
2

yb(xb)4s

(lnεa)(x2
b + y2

b)
+

Bu(y2
b − x2

b)

2(x2
b + y2

b)
2

xb(yb)4s

(lnεa)(x2
b + y2

b)
+

Bu(y2
b − x2

b)

2(x2
b + y2

b)
2

yb(yb)4s

(lnεa)(x2
b + y2

b)
− Buxbyb

(x2
b + y2

b)
2



. (5.93)

We use use finite differences
in order to solve numerically the eigenvalue problem in Eq. 5.92. We plot in Fig. 5.13

the eigenvalue with the larges real part as a function of the Bundling number. The system is
seen to become linearly unstable slightly above Bu = 2.5, a value close to the computational
result of Bu ≈ 2.2 for the crossing instability.

5.6.2 Two-dimensional model

The analytical asymptotic solution with rescaling of its amplitude allows to capture the
shape instability at a critical value of the Bundling number, and thus the transition to the
‘crossing’ configuration. In order to understand intuitively the physics behind this instability,
we consider a simple toy problem displaying the same instability.

Instead of a continuous filament, consider two parallel rigid cylinders which are linked
elastically to a reference position. The cylinders are assumed to rotate at a constant rate in
the fluid and thus to interact hydrodynamically. This setup is illustrated schematically in
Fig. 5.14 with the same axis notation as for the two-filament case.

Assuming that one of the cylinders is located at (x,y) in Cartesian coordinates. When
t = 0, the position is (0,−1/2). According to symmetry, the other cylinder is located at
(−x,−y). We assume a elastic force simply proportional to the displacement of the cylinders
away from their reference configuration (x,y+1/2), the force balance between local viscous
drag, elastic restoring force and hydrodynamic interactions leads to the dimensionless
equation for the position (x,y)

∂

∂ t

[
x
y

]
+

[
x

y+ 1
2

]
=

B
d2

[
−y
x

]
, (5.94)

where B is a dimensionless coefficient similar to the bundling number which includes
geometry and elasticity, and d = 2

√
x2 + y2 is the distance between cylinders.

For which values of B can a steady state be found? At steady state, the hydrodynamic
force has to balance the elastic resistance. If both cylinders are located at a distance d from
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each other, the magnitude of the hydrodynamic force is given by B/2d while the elastic
restoring force is given by the distance to the reference point. Since the hydrodynamic
force acts at right angle to the vector joining the cylinders, each cylinder is constrained
mechanically to remain on a circle of diameter 1/2 (see Fig. 5.14b). the distance between the
cylinder and its reference configuration may then be obtained using the Pythagorean Theorem
as
√

1/4−d2/4=
√

1−d2/2. Force balance between elasticity and hydrodynamics requires
therefore that

B = d
√

1−d2. (5.95)

The right hand-side of this equation is bounded from above by 1/2 and thus there exists
a steady state only for B ≤ 1/2, which corresponds to a finite critical distance between
the cylinders of d = 1/

√
2. This simple elasto-hydrodynamic model allows therefore to

reproduce the same physics of a continuous elastic deformation until a critical finite distance
and a bifurcation.

5.6.3 Single model

Inspired by the success of the simple cylindrical model, we adapt a similar idea to the case of
two elastic filaments by focusing on the elastic deformation at their tips. Using the asymptotic
results in Eqs. 5.86 - 5.89, we see that for small values of Bu the components at tip (s = 1) of
the elastic forces and the displacements are given by

x4s(s = 1) =
3
2

Bu, x(s = 1) =
3

16
Bu, (5.96)

y4s(s = 1) =
9

16
Bu2, y =−1

2
+

413
8960

Bu2. (5.97)

Using these results, we can then infer a linear force-displacement relationship valid at the tip
at small Bu

x4s = 8x, y4s =
5040
413

(
y+

1
2

)
. (5.98)

Using Eq. 5.98 to replace the continuous elastic forcing by one proportional to the displace-
ment of the tip away from its reference point, we may replace Eq. 5.84 by an algebraic
equation as

[
1− ln(εhd)

lnεa

]


8x
5040
413

(
y+

1
2

)

=

2Bu
d2

[
−y
x

]
. (5.99)
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Since the two vectors in Eq. 5.99 are proportional to each other, their cross product is zero
leading to the identity

x2 =−630
413

y
(

y+
1
2

)
· (5.100)

As a consequence we have

d2

4
= x2 + y2 =−217

413
y2 − 315

413
y. (5.101)

We then use the first row of Eq. 5.99 to obtain Bu as an explicit function of y

Bu =−
(

1− lnεhd
lnεa

)
4xd2

y
, (5.102)

with x given by Eq. 5.100 and d by Eq. 5.101.
The value of the right-hand side of this equation may be computed for all y in the interval

−0.5 ≤ y < 0, with results shown in Fig. 5.15.
We see that Bu reaches its maximum value around 2 at position (0.31,−0.23), with

distance d around 0.76. When Bu is larger than this critical value, no steady-state solution
exists, thus the a shape instability. This analytical estimate agrees very well with the critical
value of Bu found numerically and allows therefore to successfully capture the physics of it.

5.7 Discussion

In this chapter, I have presented a long-wavelength elastic filaments model of flagellar
bundling. By deriving the leading-order coupling flow that represents the hydrodynamic
interactions between two nearby elastic filaments with separation h lying in the regime
a ≪ h ≪ L, I have obtained a partial differential equation with a single controlling dimen-
sionless number, bundling number Bu. Based on this model, I have solved the bundling and
unbundling dynamics of two or more filaments. The steady-state filaments demonstrate three
types of configurations, nearly straight, crossing and bundle, depending on the range of Bu,
and instabilities occur with the transitions. I analytically tackled the instability occurs in the
first transition by building a small Bu ansatz and a simplified 2d model. The critical values
of Bu given by two methods are Bu = 2.5 and 2 respectively, which is in good agreement
with the numerically computed Bu = 2.2.

Beyond the far field h ≫ a where the bundling model has been derived, an untouched
question is the case when filaments almost touch each other. In numerical studies, I have
applied repulsion forcing to keep the distance between filaments in the same order of
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magnitude of radius a. We can check the validity by considering the lubrication limit where
h ≪ a. At lubrication limit, the hydrodynamic force is scaled as O(a3/2h−1/2), while in
our calculation the far-field result is O(a2/h). When the distance h ∼ O(a), both forces
are O(a). However, when the filaments approach further and reach the lubrication limit,
hydrodynamic force should be replaced by a much smaller force at lubrication regime, and
a more sophisticated model would be required to untangle the matching of lubrication and
far-field solutions.

The framework we developed to calculate the hydrodynamic interaction term is very
general and can be extended to any particular situations where two or more nearby slender
filaments interacting through fluids. I would like to include the helical feature of filaments to
improve our bundling model in the future. Beyond that we also expect to implement applica-
tions in other problems of similar nature such as cilia arrays and cytoskeletal mechanics.
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Fig. 5.2 Bundling of two elastic filaments as a function of time for three representative values
of Bu; (a): Bu = 2, with a weakly bent final configuration; (b): Bu = 30, with a final crossing
configuration; (c): Bu = 60, with a final bundled state. The bending energy corresponding to
these shapes is plotted in Fig. 5.3.
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Fig. 5.3 Dimensionless filament bending energy for each filament, Ēb, as a function of time
for the dynamics illustrated in Fig. 5.2 with specific times shown in circles: (a): Bu = 2; (b):
Bu = 30; (c) Bu = 60.
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Fig. 5.4 Steady-state filament shapes for Bu = 2, 30 and 60 obtained for the dynamics shown
in Figs. 5.2-5.3 in the long-time limit. The three possible final states are: (a): weakly bent;
(b): crossing; (c): bundled.
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Fig. 5.5 Plot of dimensionless bending energy for each filament with respect to Bu. Black
solid line represents the states marched from low Bu, while red dash line represents the states
marched from high Bu. Two strong hysteresis exist in the considered range. The critical
values of transitions for increasing branch is Bu = 2 and 40, while for decreasing branch is
Bu = 10 and 1.5.
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Fig. 5.6 (a) Configuration of N filaments symmetrically distributed along a circle of diameter
h0; (b): Top view of the N filament configuration; v( j)→(i) denotes the velocity generated by
jth filament near the ith one while θ = 2π/N. By exploiting the symmetries of the setup, the
net flow generated by jth ( j = 2,3...N) and (N +2− j)th filaments is independent of j.
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T/Tb = 0 0.04 0.08 0.12 0.16= 0

0.04 0.080.060.02T/Tb = 0= 0

Fig. 5.7 Time dynamics of a symmetric arrangement of N = 3 filaments (top) and N = 6
(bottom) for Bu = 60 showing crossing at intermediate times followed by a transition to a
bundled state at long times.



5.7 Discussion 99

0.01 0.05 0.12 0.16T/Tb = 0= 0

Fig. 5.8 Bundling of three filaments clamped and rotated with a 3:1 ratio in their relative
separation for Bu = 30.
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0.001 0.005 0.01 0.4T/Tb = 0= 0

0.002 0.005 0.25 0.4T/Tb = 0= 0

Fig. 5.9 Hydrodynamic unbundling of rotating filaments. Top: cases of two bundled filaments
where at t = 0 the Bundling number of the filament on the left (with red dot at bottom) is
switched to Bu =−50, while for the other is maintained at Bu = 50. Bottom: three filaments
where the filament with the red dot at bottom is switched to Bu =−40, while for the other
two are maintained at Bu = 40.
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Fig. 5.10 Steady unbundled states for N = 6 filaments. Filaments with a red dot at their base
have negative rotation and Bu =−40 while all other ones are maintained at Bu = 40.
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Fig. 5.11 (a) Comparison between the asymptotic solution for the deflection of the filaments
(thin red lines) with the numerical solution (thick black lines) for Bu = 1 (solid) and Bu = 2
(dashed); (b) A closer look at the numerical solutions for for Bu = 1 (solid) and Bu = 2
(dashed) indicated that up to a re-scaling they have the same shape. We denote sc the critical
value where the distance between filaments reaches its minimum.
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Fig. 5.12 Comparison between the numerical steady shapes (solid lines) and the shape
predicted by the analytical ansatz (dashed line): (a): x(s); (b): y(s). The shapes are
compared for Bu = 1 (thick black lines) and Bu = 2 (thin red lines).
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Fig. 5.13 Solution of the eigenvalue problem in Eq. 5.92 with the largest real part as a
function of the Bundling number. The red dotted dash line indicated the critical point of
transition from stable to unstable, which takes places slightly above Bu = 2.5.
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Chapter 6

Synchronisation of two nearby helices

The bundling of flagellar usually contains two effects that involve hydrodynamic interactions
between filaments, which are attraction and synchronisation. In previous chapter, I propose a
two-filament model for flagellar bundling, which address the process of attraction. However
it is still not realistic enough as we ignore the helical geometry of the filament, which leads
to the problem of synchronisation.

In recent years, several experimental and computational studies have been focused on the
process of synchronisation. Kim etc. set up a macroscopic experiment of two relatively rigid
helical filaments immersed in viscous fluid, and observed synchronisation of two helices [71].
This experiment proved that the synchronisation can be a consequence of interplay between
the flow and the helical geometry. Subsequent numerical studies have clarified the problem
further. Kim and Powers considered two completely rigid helices, the ends of which are fixed
so only rotation motion are allowed [72]. With this setup, they measured the instantaneous
force and torque on each helix and the phase difference between helices. However, the phase
difference evolving with time did not show any synchronisation. Then Reichert and Stark
used the same setup but applied an elastic recovery force at the end of the helices, which
allowed the helix to tilt slightly [109]. As a result of that synchronisation was observed,
elasticity was proved to be crucial.

As we know that analytically evaluating hydrodynamic integrations of flow singularities
between nearby filaments have been thought as a challenging problem, and helical geometry
can even increase the complexity. I demonstrate a new method to deal with hydrodynamic in-
tegrations between rods in Chapter. 4. Using the similar idea of long-wavelength assumption,
I consider helical geometries in this chapter and measure the force and torque asymptoticly.
As illustrated in Chapter. 4 and 5, the main idea of the long-wavelength integration is achieved
by taking advantage of a separation of length scales, which is assumed as a ≪ h ≪ L. When
it comes to helical case, another length scale, the amplitude of the helix, b, should be consid-
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(a) (b)

Fig. 6.1 Geometry considered in (a) Ref. [72] and (b) [109]. The difference is that in (a) the
ends of helices are fixed while in (b) it allowed the helices to tilt slightly.

ered. Since I have already derived the result for rod case, it is natural to consider the solution
perturbed with small amplitude of helix. Then in this study, I use a separation of length scales
that a ≪ b ≪ h ≪ L, using which I derive leading order force and torque, and then compare
with numerical measurements in Ref. [72]. Furthermore, I propose a model that includes a
recovery torque, which is a simple form representing the elastic effect. By calculating the
phase difference evolving with time, synchronisation is observed. The derivations in this
chapter provide a fully analytical model for synchronisation during flagellar bundling, the
result can be applied to a variety of problems in which helical geometry is involved.

6.1 Hydrodynamic interactions between two helices

6.1.1 Set-up

Consider two identical helices shown in Fig. 6.2, each with radius a, amplitude b, wave
length λ , and wave number k which is 2π/λ . Another wavelength measured along the arc
length s, is denoted Λ. We define the ratio between two wave lengths α = λ/Λ and then the
helix angle is cos−1 α . Two helices are located with a fixed separation distance h between
centerlines. With phase of helices denoted φ1 and φ2, the position of the helices in cartesion
coordinates are

r1 = [bcos(kαs+φ1),−
h
2
+bsin(kαs+φ1),αs], (6.1a)

r2 = [bcos(kαs+φ2),
h
2
+bsin(kαs+φ2),αs], (6.1b)
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Fig. 6.2 Two identical helices with wavelength λ separated by a distance h between center-
lines. The helices rotate with rotation rates ω1 and ω2.

which has geometric constrain that

(b2k2 +1)α2 = 1. (6.2)

Each helix rotates with a instantaneous rate ωi (i = 1,2) which is

ωi =
∂φi

∂ t
. (6.3)
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6.1.2 Hydrodynamic force

Now we consider the force exerted by the flow on the filaments which is fi. According to
resistive force theory [88], we have

f1 = −
[
ξ⊥I+(ξ∥−ξ⊥)t1t1

]
·
(

∂r1

∂ t
−v2→1

)
, (6.4a)

f2 = −
[
ξ⊥I+(ξ∥−ξ⊥)t2t2

]
·
(

∂r2

∂ t
−v1→2

)
, (6.4b)

where ξ∥,⊥ are resistance coefficients, ti is the tangential direction vector along the helix,
and v j→i is the flow field induced by helix j around helix i. Approximately substitute

ξ⊥ = 2ξ∥, (6.5)

into Eq. 6.4, the force is simplified to

f1 = −ξ⊥

(
I− 1

2
t1t1

)
·
(

∂r1

∂ t
−v2→1

)
, (6.6a)

f2 = −ξ⊥

(
I− 1

2
t1t1

)
·
(

∂r2

∂ t
−v1→2

)
. (6.6b)

Similar with the definition in Chapter. 4 and 5, the interaction term v j→i is represented by
a line of flow singularities. With the assumption that the amplitude b is much larger than
the radius a, the flow induced by translation motion should be more significant than that
induced by rotation. Then we only consider stokeslets, take filament 1 as an example, the
term relevant hydrodynamic interactions is

v2→1 =− 1
8πµ

∫ L

0
f2 ·
(

I
R
+

RR
R3

)
ds, (6.7)

where
R(s,s′) = r1(s)− r2(s′), R = |R|. (6.8)

6.1.3 Nondimensionalisation

In our set up, we have four length scales, total length L, amplitute b, separation distance h,
radius of filament a. Keeping the previous length separation that a ≪ h ≪ L, we consider
small amplitude which is much smaller than the separation distance but still much larger than
the radius. Then four lengths satisfy a ≪ b ≪ h ≪ L. By nondimensionalise all the lengths
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with L, we obtain three small parameters,

εa = a/L, εh = h/L, εb = b/L. (6.9)

In terms of time scale, since we consider the rotation rate ωi changing with time, we
assume the initial rotation rate is ωi0 and we take 1/ω10 as the time scale for nondimension-
alisation. Then the dimensionless form of position vector is

r̄1 = [εb cos(2πnα s̄+φ1),εb sin(2πnα s̄+φ1)−
εh

2
,α s̄], (6.10a)

r̄2 = [εb cos(2πnα s̄′+φ2),εb sin(2πnα s̄′+φ2)+
εh

2
,α s̄′]. (6.10b)

Notation-wisely, we drop the ’bars’ for following derivations. If the force density is
scaled as 8πµLω10, Eq. 6.6 becomes

f1 =
1

2lnεa

(
I− 1

2
t1t1

)
·
(

∂r1

∂ t
+J2→1 · f2

)
(6.11a)

f2 =
1

2lnεa

(
I− 1

2
t2t2

)
·
(

∂r2

∂ t
+J1→2 · f1

)
, (6.11b)

where

J2→1(s) =
∫ 1

0

I
R
+

RR
R3 ds′. (6.12)

We move all the force terms to the left hand side, we obtain a linear system for the forces,

f1 −
1

2lnεa

(
I− 1

2
t1t1

)
·J2→1 · f2 =

1
2lnεa

(
I− 1

2
t1t1

)
· ∂r1

∂ t
, (6.13a)

f2 −
1

2lnεa

(
I− 1

2
t2t2

)
·J1→2 · f1 =

1
2lnεa

(
I− 1

2
t2t2

)
· ∂r2

∂ t
. (6.13b)

6.2 Asymptotic analysis with small amplitude

6.2.1 Expand as orders of εb

Since we have derived the force for rod case in Chapter. 4, taking advantage of which, it is
natural to consider the solution perturbed by small amplitude, or εb in dimensionless form.
We thus expand Eq. 6.13 as orders of εb. First we expand all the variables that appear in
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Eq. 6.13 as orders of εb,

fi = εbf(1)i + ε
2
b f(2)i + ... (6.14a)

ti = t(0)i + εbt(1)i + ... (6.14b)

J j→i = J(0)j→i + εbJ(1)j→i + ... (6.14c)

ri = r(0)i + εbr(1)i + ... (6.14d)

Substitute Eq. 6.14 into Eq. 6.13, we can solve the forces order by order. At zeroth order,
which is the rod case, no forces can be generated because the displacement is zero. Then to
obtain non-zero force, we need to consider at least order of εb, at which the equation is

f(1)i − 1
2lnεa

(
I− 1

2
t(0)i t(0)i

)
·J(0)j→i · f

(1)
j =

1
2lnεa

(
I− 1

2
t(0)i t(0)i

)
· ∂r(1)i

∂ t
. (6.15)

And for the next order, we have

f(2)i − 1
2lnεa

(
I− 1

2
t(0)i t(0)i

)
·J(0)j→i · f

(2)
j =− 1

4lnεa
(t(0)i t(1)i + t(1)i t(0)i ) ·J(0)j→i · f

(1)
j

+
1

2lnεa

(
I− 1

2
t(0)i t(0)i

)
·J(1)j→i · f

(1)
j

− 1
4lnεa

(t(0)i t(1)i + t(1)i t(0)i ) · ∂r(1)i
∂ t

+
1

2lnεa

[
I− 1

2
t(0)i t(0)i

]
· ∂r(2)i

∂ t
.

(6.16)

6.2.2 Expand position vector

The dimensionless form of Eq. 6.2 is

α
2 +

4π2α2ε2
b

λ 2 = 1, (6.17)

considering 1 = nΛ = nλ/α , the condition becomes

α
2 +4π

2n2
ε

2
b = 1, (6.18)
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Then the ratio α can be expanded as

α = (1−4π
2n2

ε
2
b )

− 1
2

= 1+2π
2n2

ε
2
b +O(ε4

b ).
(6.19)

Substitute Eq. 6.19 into Eq. 6.10, we have the position vector expanded as

ri =




0

∓εh

2
s


+ εb




cosΦi

sinΦi

0


+ ε

2
b




0
0

2π2n2s


+O(ε3

b ), (6.20)

where Φi = 2πns+φi. Take derivative with respect to s, we obtain the expansion of tangential
vector

ti =




0
0
1


+2πnεb



−sinΦi

cosΦi

0


+O(ε2

b ). (6.21)

In Eq. 6.13, tangential vector appears in a form of tensor titi, which can be expanded as

titi = t(0)i t(0)i + εb

(
t(0)i t(1)i + t(1)i t(0)i

)
+ ... (6.22)

For calculation convenience, I use matrices or dyadics to represent tensor. Substitute Eq. 6.21
into Eq. 6.22, we obtain

t(0)i t(0)i = ezez ≡




0 0 0
0 0 0
0 0 1


 , (6.23a)

t(0)i t(1)i + t(1)i t(0)i = 2πn




0 0 −sinΦi

0 0 cosΦi

−sinΦi cosΦi 0


 . (6.23b)

Take derivative of Eq. 6.20 with respect to time, we obtain the expansion of velocity of
the deformation of each filament,

∂ri

∂ t
= εbωi



−sinΦi

cosΦi

0


+O(ε3

b ), (6.24)
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in which we apply the result that ωi =
∂Φi

∂ t
. Now we have obtained expansions of all the

terms except interaction term J j→i, which can be considered as a tensor. Since the procedure
is more complicated, we derive in a separate section.

6.3 Expand hydrodynamic interaction term

6.3.1 Expand relative position vector R

By introducing ∆ = s− s′, integration in Eq. 6.12 becomes

J2→1 =
∫ s

s−1

I
R
+

RR
R3 d∆. (6.25)

For notation convenience, we use J to represent J2→1 in this section and another term J1→2

can be obtained by symmetry. Considering Eq. 6.20, R can be expanded as

R = r1(s)− r2(s′)

=




0
−εh

∆


+ εb




δcos

δsin

0


+ ε

2
b




0
0

2π2n2∆


+O(ε3

b ),
(6.26)

where δcos = cosΦ1 − cosΦ2, and δsin = sinΦ1 − sinΦ2. Then the magnitude can be calcu-
lated as

R2 = R ·R
= (ε2

h +∆
2)−2εbεhδsin +O(ε2

b ),
(6.27)

with which we can calculate

R−1 = (εh +∆
2)−

1
2 + εb

εhδsin

(ε2
h +∆2)

3
2
+O(ε2

b ) (6.28a)

R−3 = (εh +∆
2)−

3
2 + εb

3εhδsin

(ε2
h +∆2)

5
2
+O(ε2

b ) (6.28b)

Considering Eq. 6.26, the dyadic tensor RR can be expanded as

RR = R(0)R(0)+ εb[R(0)R(1)+R(1)R(0)]+O(ε2
b ), (6.29)



6.3 Expand hydrodynamic interaction term 113

where

R(0)R(0) =




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


 (6.30a)

R(0)R(1)+R(1)R(0) =




0 −εhδcos ∆δcos

−εhδcos −2εhδsin ∆δsin

∆δcos ∆δsin 0


 . (6.30b)

6.3.2 Evaluate J(0)

Now we substitute Eq. 6.28 and 6.30 into Eq. 6.25 and combine Eq. 6.14c, we have

J(0) =
∫ s

s−1

I
(ε2

h +∆2)
1
2
+

1

(ε2
h +∆2)

3
2




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


d∆. (6.31)

We choose an intermediate length δ that εh ≪ δ ≪ 1, the integration is separated into
local and non-local parts

J(0)NL =
∫ −δ

s−1
+
∫ s

δ

I
(ε2

h +∆2)
1
2
+

1

(ε2
h +∆2)

3
2




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


d∆, (6.32a)

J(0)L =
∫

δ

−δ

I
(ε2

h +∆2)
1
2
+

1

(ε2
h +∆2)

3
2




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


d∆. (6.32b)

Since in the nonlocal region ∆ ≫ εh,

J(0)NL =
∫ −δ

s−1
+
∫ s

δ

I
|∆| +

ezez

|∆| d∆. (6.33)
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And in the local region, ∆ should be the same order with εh. Using the results of integrals

∫ −δ

s−1
+
∫ s

δ

d∆

|∆| = −2lnδ + lns(1− s)+ ..., (6.34a)

∫
δ

−δ

d∆

(∆2 + ε2
h )

1
2

= −2lnεh +2lnδ +2ln2+O
(

ε2
h

δ 2

)
, (6.34b)

∫
δ

−δ

d∆

(∆2 + ε2
h )

3
2

=
2
ε2

h
− 1

δ 2 + ..., (6.34c)

∫
δ

−δ

d∆

(∆2 + ε2
h )

5
2

=
4

3ε4
h
+O

(
1

δ 2

)
, (6.34d)

we calculate Eq. 6.32 as

J(0)NL = −2lnδ (I+ ezez), (6.35a)

J(0)L = (−2lnεh +2lnδ )(I+ ezez). (6.35b)

Adding up two parts and δ can be cancelled out, finally we have

J(0) =−2lnεh(I+ ezez). (6.36)

6.3.3 Evaluate J(1)

Now we move to the next order. Substitute expansions in Eq. 6.28, 6.30 and 6.14c into
Eq. 6.25, we have

J(1) =
∫ s

s−1

εhδsin

(ε2
h +∆2)

3
2

I+
1

(ε2
h +∆2)

3
2




0 −εhδcos ∆δcos

−εhδcos −2εhδsin ∆δsin

∆δcos ∆δsin 0




+
3εhδsin

(ε2
h +∆2)

5
2




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


d∆.

(6.37)

In order to calculate Eq. 6.37, we need long-wavelength assumption as illustrated in
Chapter. 4 and 5. We assume the phase changes slowly along the helix, then δ sin and δ cos
can be expanded as

δcos = δcos|∆=0 +O(∆), (6.38a)

δsin = δsin|∆=0 +O(∆). (6.38b)
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There are three terms in the integration, then we evaluate them one by one. Substitute
Eq. 6.38 and results of integrals in Eq. 6.34 into the first part of integration, we obtain

∫ s

s−1

εhδsin

(ε2
h +∆2)

3
2

Id∆ ∼ 2
εh

δsin|∆=0I. (6.39)

Then the second term is evaluated as

∫ s

s−1

d∆

(ε2
h +∆2)

3
2




0 −εhδcos ∆δcos

−εhδcos −2εhδsin ∆δsin

∆δcos ∆δsin 0


∼− 2

εh




0 δcos|∆=0 0
δcos|∆=0 2δsin|∆=0 0

0 0 0


 . (6.40)

Then the last term is

∫ s

s−1

3εhδsin

(ε2
h +∆2)

5
2




0 0 0
0 ε2

h −εh∆

0 −εh∆ ∆2


d∆ ∼ 2

εh
δsin|∆=0




0 0 0
0 2 0
0 0 1


 . (6.41)

Add three parts Eq. 6.39, 6.40 and 6.41 together, we obtain

J(1) =
2
εh




δsin|∆=0 −δcos|∆=0 0
−δcos|∆=0 δsin|∆=0 0

0 0 2δsin|∆=0


 . (6.42)

6.4 Evaluate torque and force

6.4.1 Torque

Now we have calculated all the expansions for titi,
∂ri

∂ t
and J j→i. Substitute Eq. 6.23a, 6.24

and 6.36 into Eq. 6.15, and introduce a ratio that

β =
lnεh

lnεa
< 1, (6.43)
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we have first order equation

f(1)1 +β

(
I− 1

2
ezez

)
· (I+ ezez)f

(1)
2 =

ω1

2lnεa

(
I− 1

2
ezez

)
·



−sinΦ1

cosΦ1

0


 , (6.44a)

f(1)2 +β

(
I− 1

2
ezez

)
· (I+ ezez)f

(1)
1 =

ω2

2lnεa

(
I− 1

2
ezez

)
·



−sinΦ2

cosΦ2

0


 . (6.44b)

Using the result that (
I− 1

2
ezez

)
· (I+ ezez) = I, (6.45)

and

ez ·



−sinΦi

cosΦi

0


= 0, (6.46)

Eq. 6.44 is simplified to

f(1)1 +β f(1)2 =
ω1

2lnεa



−sinΦ1

cosΦ1

0


 , (6.47a)

f(1)2 +β f(1)1 =
ω2

2lnεa



−sinΦ2

cosΦ2

0


 . (6.47b)

Eq. 6.47 is a linear system and the forces are solved as

(
1−β

2) f(1)1 (s) =
ω1

2lnεa



−sinΦ1

cosΦ1

0


− βω2

2lnεa



−sinΦ2|s′=s

cosΦ2|s′=s

0


 , (6.48a)

(
1−β

2) f(1)2 (s′) =
ω2

2lnεa



−sinΦ2

cosΦ2

0


− βω1

2lnεa



−sinΦ1|s=s′

cosΦ1|s=s′

0


 . (6.48b)
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Then we consider the torque along z direction

mi =

(
ri ±

1
2

ey

)
× fi · ez. (6.49)

We observe that the leading order should be the order of ε2
b , then we expand it as

mi = ε
2
b m(2)

i + ..., (6.50)

where
m(2)

i = r(1)i × f(1)i · ez. (6.51)

Substitute Eq. 6.20 and 6.48 into Eq. 6.51, and use the result that




cosΦi

sinΦi

0


×



−sinΦi

cosΦi

0


 · ez = 1, (6.52a)




cosΦi

sinΦi

0


×



−sinΦ j

cosΦ j

0


 · ez = cos(Φi −Φ j) = cos(φi −φ j), (6.52b)

we have

(
1−β

2)m(2)
1 =

ω1

2lnεa
− βω2

2lnεa
cos∆φ (6.53a)

(
1−β

2)m(1)
2 =

ω2

2lnεa
− βω1

2lnεa
cos∆φ , (6.53b)

where ∆φ = φ1 −φ2.
If we write linear system in Eq. 6.53 with the form of matrix,we have

[
m1

m2

]
=

ε2
b

2(1−β 2) lnεa

[
1 −β cos∆φ

−β cos∆φ 1

][
ω1

ω2

]
. (6.54)

6.4.2 Force

We have obtained the first order force in Eq. 6.48, integrate it along the centerline, the net
force is zero. To obtain non-zero force, we need to move to the next order. Substitute
expansions in Eq. 6.23, 6.24, 6.36 and 6.42 into second order equation in Eq. 6.16, we have
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f(2)i +β f(2)j = πnβ




0 0 −sinΦi

0 0 cosΦi

−sinΦi cosΦi 0







1 0 0
0 1 0
0 0 2


 f(1)j

+
1

εh lnεa




1 0 0
0 1 0
0 0 1

2







δsin −δcos 0
−δcos δsin 0

0 0 2δsin


 f(1)j

− πnωi

2lnεa




0 0 −sinΦi

0 0 cosΦi

−sinΦi cosΦi 0






−sinΦi

cosΦi

0


 .

(6.55)

Calculate



0 0 −sinΦi

0 0 cosΦi

−sinΦi cosΦi 0







1 0 0
0 1 0
0 0 2


=




0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0


 , (6.56)




1 0 0
0 1 0
0 0 1

2







δsin −δcos 0
−δcos δsin 0

0 0 2δsin


=




δsin −δcos 0
−δcos δsin 0

0 0 δsin


 , (6.57)

and



0 0 −sinΦi

0 0 cosΦi

−sinΦi cosΦi 0






−sinΦi

cosΦi

0


= ez, (6.58)
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Eq. 6.55 is simplified to

f(2)i +β f(2)j = πnβ




0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0


 f(1)j

+
1

εh lnεa




δsin −δcos 0
−δcos δsin 0

0 0 δsin


 f(1)j

− πnωi

2lnεa
ez.

(6.59)

Then we substitute Eq. 6.48 into Eq. 6.59, and use the result that




0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0






−sinΦ j

cosΦ j

0


= cos∆φez, (6.60)

and



0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0






−sinΦi

cosΦi

0


= ez, (6.61)

and we simplify the first term




0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0


 f(1)j =

1
2(1−β 2) lnεa

(cos∆φω j −βωi)ez. (6.62)

Then add the first and third term together we have

πnβ




0 0 −2sinΦi

0 0 2cosΦi

−sinΦi cosΦi 0


 f(1)j − πnωi

2lnεa
ez

=
πnβ

2(1−β 2) lnεa
(cos∆φω j −βωi)ez −

πnωi

2lnεa
ez

=
πn

2(1−β 2) lnεa
(β cos∆φω j −ωi)ez,

(6.63)

and Eq. 6.59 becomes
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f(2)i +β f(2)j =
1

εh lnεa




δsin −δcos 0
−δcos δsin 0

0 0 δsin


 f(1)j

+
πn

2(1−β 2) lnεa
(β cos∆φω j −ωi)ez.

(6.64)

Next we substitute Eq. 6.48 into Eq. 6.64 and calculate




δsin −δcos 0
−δcos δsin 0

0 0 δsin






−sinΦ j

cosΦ j

0


=




1− cos∆φ

sin(Φ1 +Φ2)− sin2Φ j

0


 , (6.65)

and



δsin −δcos 0
−δcos δsin 0

0 0 δsin






−sinΦi

cosΦi

0


=




−1+ cos∆φ

−sin(Φ1 +Φ2)+ sin2Φi)

0


 , (6.66)

apply this result, Eq. 6.64 is finally simplified to

f(2)i +β f(2)j =
1

2(1−β 2)εh ln2
εa


ω j




1− cos∆φ

sin(Φ1 +Φ2)− sin2Φ j

0




+ βωi




1− cos∆φ

sin(Φ1 +Φ2)− sin2Φi)

0







+
πn

2(1−β 2) lnεa
(β cos∆φω j −ωi)ez.

(6.67)

We see that on the right hand side of this equation, first two terms are related to x,y-
components while the last term is related to z-component, so we calculate separately. First
we consider the system for z component which is

f (2)1z +β f (2)2z =
πn

2(1−β 2) lnεa
(β cos∆φω2 −ω1), (6.68a)

f (2)2z +β f (2)1z =
πn

2(1−β 2) lnεa
(β cos∆φω1 −ω2). (6.68b)
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The solution of Eq. 6.68 is

f (2)iz =
πn

2(1−β 2)2 lnεa

[
−(1+β

2 cos∆φ)ωi +β (cos∆φ +1)ω j
]
, (6.69)

or in matrix form
[

f (2)1z

f (2)2z

]
=

πn
2(1−β 2)2 lnεa

[
−(1+β 2 cos∆φ) β (cos∆φ +1)

β (cos∆φ +1) −(1+β 2 cos∆φ)

][
ω1

ω2

]
. (6.70)

Next we calculate x-component f (2)ix , according to Eq. 6.67, we have

f (2)ix +β f (2)jx =
1− cos∆φ

2(1−β 2)εh ln2
εa
(ω j +βωi), (6.71)

the solution of which is
f (2)ix =

1− cos∆φ

2(1−β 2)εh ln2
εa

ω j. (6.72)

At last we consider y-direction, the equation is

f (2)iy +β f (2)jy =
1

2(1−β 2)εh ln2
εa
{[sin(Φ1 +Φ2)− sin2Φ j]ω j

+β [sin(Φ1 +Φ2)− sin2Φi]ωi}.
(6.73)

And it is solved as

f (2)iy =
sin(Φ1 +Φ2)− sin2Φ j

2(1−β 2)εh ln2
εa

ω j. (6.74)

We see that force is linear with the rotation rates. For x and y components, the forces
only depend on the rotation rate of the other helix, while the force along z direction depends
on both. If we choose constant rotation rate ωi, we can take average by time of Eq. 6.69, 6.72
and 6.74 and obtain

< f (2)ix >t =
ω j

2(1−β 2)εh ln2
εa

(6.75a)

< f (2)iy >t = 0 (6.75b)

< f (2)iz >t =
πn

2(1−β 2)2 lnεa

(
−ωi +βω j

)
. (6.75c)
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Fig. 6.3 Compare torque along z direction with the numerical result in Ref. [72].

Also, we can consider the net force along the helix. If the number of turns n is an integer,
we see that the instantaneous force along y-direction is zero,

< f (2)iy >s= 0. (6.76)

6.5 Compare with numerics

In Ref. [72], Kim and Powers numerically measured the torque and force along z direction.
We compare our result with it in this section. They use two helices with four turns (n=4) with
separation h = 3b. Using our notation, the three small parameters are approximately

εa = 10−3, εb = 0.02, εh = 0.06. (6.77)

And the parameter β is approximately 0.4. Substitute these parameters into our results for
torque in Eq. 6.54 and 6.69, and nondimensionalise the data in Ref. [72], we plot the z
component of torque and time-averaged force in Fig. 6.3 and Fig. 6.4 respectively.

Kim and Powers inferred from numerical measurements that the torque only depends on
the phase difference ∆φ and it is largest when the phase difference is π . Both features have
been captured by our result in Eq. 6.54. If we write the torque density in matrix as

[
m1

m2

]
= A

[
ω1

ω2

]
, (6.78)
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Fig. 6.4 Compare time-averaged force along z direction with the numerical result in Ref. [72].

according our theory, the matrix is calculated as

A = 10−5 ×
[

3.19 −1.31cos∆φ

−1.31cos∆φ 3.19

]
, (6.79)

while the numerical measurement is approximately

A = 10−5 ×
[

3.23 −0.36cos∆φ

−0.36cos∆φ 3.23

]
. (6.80)

We see that if we take average with time, the magnitude of the torque matches very well.
And the force along z direction, which is called anchoring force, our result makes a good
agreement with numerical measurements. According to Eq. 6.75c, the time-averaged force is
linear with both ω1 and ω2. In Fig. 6.4, we fix ω2, then the force changes linearly with ω1,

with slope
πn

2(1−β 2)2 ln(1/εa)
and − πnβ

2(1−β 2)2 ln(1/εa)
for helix 1 and 2 respectively.
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6.6 Synchronisation with recovery torque

In the last section, I propose I simple model with recovery torque. Just add a recovery torque
linear with phase to represent the elastic effect, which is

mr =−Kφ , (6.81)

where K is a positive constant. Combine Eq. 6.54, we have the torque balance that

ε2
b

2(1−β 2) lnεa

[
1 −β cos∆φ

−β cos∆φ 1

][
ω1

ω2

]
−K

[
φ1

φ2

]
= 0. (6.82)

Subtract two equations, and use

ω1 −ω2 =
d∆φ

dt
, (6.83)

we have a first order ODE of ∆φ ,

ε2
b

2(1−β 2) lnεa
(1+β cos∆φ)

d∆φ

dt
−K∆φ = 0, (6.84)

or

d∆φ

dt
=

2K(1−β 2) lnεa

ε2
b

∆φ

(1+β cos∆φ)
. (6.85)

We see that this equation has only one critical point which is

∆φ = 0. (6.86)

In order to check the stability at ∆φ = 0 we calculate

∂

∂∆φ

[
∆φ

(1+β cos∆φ)

]∣∣∣∣
∆φ=0

=
1

1+β
. (6.87)

Since
β < 1, (6.88)

and then
2K(1−β 2) lnεa

ε2
b (1+β )

< 0, (6.89)
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Fig. 6.5 Recovery torque model with initial phase difference of 0, π/2 and π , all the cases
reach steady state that ∆φ = 0.

then ∆φ = 0 is a stable point, which leads to the conclusion that helices reach the status of
synchronisation with any initial phase difference. We can plot several solutions with different
initial phases in FIG. 6.5 to see. We claim that adding the recovery torque will always lead to
synchronisation.

6.7 Discussion

In this chapter, using the similar idea of long-wavelengh integration and separation of
length scales, I have derived the leading order of non-zero torque and force induced by
hydrodynamic interactions between two nearby helices. For fixed geometry, the interaction
torque only depends on the phase difference between helices and reaches its maximum when
the phase difference is π . This result perfectly matches previous numerical measurements
[72].

In the last section, I apply the calculate results of torque and propose a simple mathe-
matical model for synchronisation between helices. Since the elastic effect is considered
indispensable during synchronisation, a recovery torque is added to balance with the hydro-
dynamic torque. The in-phase state is found to be the only stable state for the controlling
equation, which leads to synchronisation for arbitrary initial phases.
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Another result presented in this work is that the net force along y-direction, where two
helices are aligned, is always zero. The similar feature is illustrated in Chapter. 5 for two
rotating rods, although it is completely different physical origin. This feature of force might
be able to trigger the attraction of helices, which is expected to be included to help to develop
more sophisticated model for flagellar bundling.



Chapter 7

Conclusion

In this thesis, I use mathematical ways to answer two recently much-focused questions in
swimming at low Reynolds number, why does the slip shown in complex fluids lead to
swimming enhancement? And how does the hydrodynamic interactions affect bundling of
flagellar filaments?

The answer to the first question is intuitively simple, slip can reduce friction. More
specifically, the presence of the slip effect near the surface affects normal hydrodynamics
weakly but leads to a reduction of tangential viscous drag, hence should always leads to a
faster swimming. In order to seek for quantitative evidences for this argument, I undertake
the problem by considering a classical simple model swimmer, Taylor swimming sheet,
but with a Navier slip boundary condition. The speed in this two-dimensional setup can
be increased by 1+ 2kΛ for the swimming with wave number k and slip length Λ. By
considering more realistic three-dimensional waving cylinder and a phase-separation in fluid
adjacent to surface, three more scenarios have been constructed and the speed of swimming
is always increased with larger slip length or thinner slip layer. This model inspired by
Taylor’s swimming model claims the effect of slip a mechanism for swimming enhancement.
However, to obtain a quantitative description of the problem, this model is still not realistic
enough, for its constrain of small deformation and simple sinusoidal waveform assumption.
Therefore a more generic slender body is considered, which is characterized by that the
length L is much larger than the breadth a. The well-known slender-body theory describes the
relation between the locomotion and the force on the body, and has been developed by many
people in 1970’s. By following the ideas of logarithmical expansions [31], and singularity
construction in inner and outer region [88], I extend both Cox and Lighthill’s slender-body
theory with a Navier slip boundary. Furthermore the resistant coefficients can be derived
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from both theories, which is approximately

ξ∥ =
2πµ

ln
L
a
− 1

2
+

Λ

a

, ξ⊥ =
4πµ

ln
L
a
+

1
2
+

2Λ

a+2Λ

. (7.1)

This result explicitly quantifies the argument that slip length raises a systematic decrease of
tangential viscous drag, however has relatively weak influence in the direction perpendicular
to the surface. The slip slender-body theory derived in this thesis is a very general conclusion
and is expected to be applied in a wide range of contexts with physical similarities in slip,
such as capillary flow [7], porous media [87], electroosmotic flow [76], etc.

The second question that addresses hydrodynamic interactions is considered more difficult
since more than one filament are involved. Besides the reason of increased filaments, bundling
itself is a rather complicated biological process, which is a result of combined actions of
not only hydrodynamic interactions, but also elasticity and interplay between filament and
head. As a result of its complexity, it is more straightforward to use numerical simulations in
theoretical studies and leads to a lack of analytical model. In this thesis, I have developed an
asymptotic framework to compute the hydrodynamic interactions between nearby filaments,
and the key ingredient allowing the calculation to be carried out is the idea of separation
of length scales. Again starting from a simple geometry of two naturally straight filaments
separated by a distance h, together with another two length scales of radius a and length L, a
separation in lengths a ≪ h ≪ L has been considered. This set-up enables a representation
of the flow as a superposition of fundamental singularities whose strengths vary only on long
wavelengths, taking advantage of which, the flow field induced by hydrodynamic interactions
can be integrated for arbitrary rotation with rate ωez and translation, with a mathematical
description of

v(2)→(1)
M =

(a
h

)2
ω

(2)(s)z×h, (7.2a)

v(2)→(1)
F =

1
4πµ

ln
[

h
L

]
(I+ zz) · f(2). (7.2b)

The viability and efficiency of separation of length scales have been further validated by a
continuous study on helices. With this realistic but more complicated geometry, an additional
length scale, the radius of helix b, is assumed to be small and a corresponding length
separation is considered as a ≪ b ≪ h ≪ L. Under this asymptotic limit, hydrodynamic
torque and force have been evaluated linearly with rotation rates, and the resistance matrices
are functions of only phase difference. This result makes a good agreement with previous
numerical measurements, in both capturing the feature that the torque and anchoring force
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reach largest magnitude when the phase difference is π . Building on the long-wavelength
integrations derived for rods and helices, I have further proposed two models of flagellar
bundling, which emphasizes two stages in bundling process, attraction and synchronisation,
respectively. In the first the model of elastic rods, a partial differential equation governed
by a dimensionless number Bu has been derived. Numerical studies have demonstrated
instabilities with different Bu during both bundling and unbundling processes. In the second
model of helices, the helices are not allowed to tilt but the elasticity represented by a recovery
torque has been included. A simple first order ordinary differential equation has been derived
and in-phase state has been discovered to be the only stable state of this governing equation.
I would like to note that the length separation with a ≪ h ≪ L or a ≪ b ≪ h ≪ L is widely
existed in real biological world, as a result the framework I have constructed to develop
long-wavelength hydrodynamic integrations is very general and is expected to be extended
to any particular situations where two or more nearby filaments interacting through fluids,
for example the conformation of cilia arrays [17] and microtubules [23].
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